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Abstract-The concept of the entropy of natural languages, first introduced by Shannon [A 
mathematical theory of communications, Bell Syst. Tech. J. 27, 379-423 (1948)] and its significance 
is discussed. A review of various known approaches to and results of previous studies of language 
entropy is presented. A new improved method for evaluation of both lower and upper bounds of the 
entropy of printed texts is developed. This method is a refinement of Shannon’s prediction (guessing) 
method [Shannon, Prediction and entropy of printed English, Bell Syst. Tech. J. 30, 50-64 (1951)]. 
The evaluation of the lower bound is shown to be a classical linear programming problem. Statistical 
analysis of the estimation of the bounds is given and procedures for the statistical treatment of the 
experimental data (including verification of statistical validity and significance) are elaborated. The 
method has been applied to printed Hebrew texts in a large experiment (1000 independent samples) 
in order to evaluate entropy and other information-theoretical characteristics of the Hebrew 
language. The results have demonstrated the efficiency of the new method: the gap between the 
upper and lower bounds of entropy has been reduced by a factor of 2.25 compared to the original 
Shannon approach. Comparison with other languages is given. Possible applications of the method 
are briefly discussed. 
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length of a sequence of consecutive symbols (L-gram) 

number of different symbols in an alphabet of a discrete source (the size of the 

alphabet) 

particular L-gram (j = 1, 2, ., KL) 

set of all the possible L-grams 

random variable associated with all the possible L-grams 

probability of a particular sequence s,” 

symbol of the alphabet (k = 1, 2, ., K) 

alphabetic number of the symbol xk 

random variable associated with all the symbols of the alphabet 

joint probability of an L-gram sf and the following symbol xk 

conditional probability of a symbol xk following a given L-gram of 

marginal probability of a symbol xk 

conditional entropy of (L + 1)th order of a text 

joint L-gram entropy per symbol 

entropy of a text per symbol 
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zero-order entropy 

redundancy of a text 

amount of information in the previous (infinite) text about the following symbol 

symbol of the reduced text (the number of attempts) 

random variable associated with symbols of the reduced text in an experiment of 

the prediction of a symbol, following an L-gram 

probability of the number of attempts yI 

total number of trials in a guessing experiment 

number of trials in which the number of attempts was equal to ); 

frequency of yI 

probability space 

space of elementary events 

elementary event which is a sequence .sf and a fohowing letter xk 

Bore1 field on E 

probability measure on E 

element of Bore1 field 93 associated with the event that an L-gram is followed by 

symbol ,& 

element of the Bore1 field 33 associated with an L-gram 3: 

element of the Bore1 field 3 associated with a symbol of the reduced text y, 

alphabetic number of a symbol occupying the ith place in the permutation of the 

alphabet determined by an L-gram 

conditional probability of the symbol xk,(,) following a given L-gram 3: (the 

ordered conditional probability) 

Shannon’s lower bound of entropy per symbol 

Shannon’s upper bound of entropy per symbol 

estimate of Shannon’s upper bound 

estimate of Shannon’s lower bound 

estimates of the lower and upper bounds of redundancy, respectively 

disjoint subsets of Q obtained by subdivision for the upper bound 

probability of the subset a, 

probability of the number of attempts yr if sf E a, 

Shannon’s upper bound of entropy for the subset a, 

total upper bound of entropy obtained by use of subdivision 

vector of ordered conditional probabilities 

simplex of all the ordered probability vectors p 
vertices of simplex C 

weight coefficients of a probability vector in the simplex e 

vector of ordered conditional probabilities of the symbol following a given 

L-gram s,” 

entropy of the probability distribution given by the vector pj = (p,‘, ., p,“) 
mean probability vector of the simplex C 

convex set in a (K - 1)-dimensional space 

number of extreme points of the convex set C 

extreme points of the convex set C 

convex subset of simplex 0 

number of extreme points of C, 

extreme points of C, 

disjoint subsets of Q, such that if s: E d,, then pj E C, 

the probability of a subset d, 

mean probability vector corresponding to the subset d, 

weight coefficients of q(‘) expressed in terms of ut,’ 

lower bound of entropy per symbol obtained by use of subdivision; H, is the 

lower bound for d, 

estimate of the upper bound H, for a subset a, 
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estimate of the (total) upper bound obtained by subdivision 

number of trials, where L-grams belong to a, 

number of trials belonging to a, with the outcome y, 

estimate of 0, 

estimate of 4!r) 

variance of a random variable Z 

expected value of a random variable Z 

bias of an estimate 

estimate of q(‘) 
estimate of P, 

estimate of the lower bound U(X), &-estimate of the lower bound for subset d, 

smoothed estimate of q(‘) 
Kronecker’s &function 

a threshold value of probability 

objective functional in a linear programming problem 

A equals B by definition 

A is approximately equal to B 

A is approximately equal to B or greater than B 

1. INTRODUCTION: THE CONCEPT OF THE ENTROPY OF A LANGUAGE AND ITS 

SIGNIFICANCE 

A natural language gives us a remarkable example of a system used for the generating of 
long sequences of symbols-texts-which possess some exceptional properties. Being, on 
one hand, “natural”, a text is specially prepared in each case in order to serve as a 
message containing some specific information. To meet this purpose a text evolving in time 
or in space should be “random”, i.e. not completely predictable: a completely predictable 
(deterministic) process would not provide any new information. Thus, a text in a natural 
language is a realization of a random process (Shannon [l, 21; Mandelbrot [3]; Yaglom et 
al. [4]; Herdan [5]). But, in contrast with other random processes which exist in nature, 
this random process was developed, modified and selected during a long period of 
evolution and “natural selection” being specially intended for meaningful communication 
between human beings. So, the texts in a natural language represent a random process of a 
very unusual sort -a naturally produced information-carrying process. The stochastic 
nature of this random process is of extreme complexity. For instance, the question of 
ergodicity of the process is still controversial. In our opinion, it is, to some extent, a matter 
of interpretation, since it cannot be checked experimentally by use of rather short 
“segments” of realizations of this random process, which are the only empirical data 
available to us. In any case, the statistical interdependence between elements of a text 
is very complicated and spread over long ranges. What has been said can explain 
the importance of information-theoretical study of natural languages. An information- 
theoretical approach is highly relevant here, since we have to deal with a process specially 
built and intended for information transmission. Therefore one may expect that the results 
of such a study can be meaningful for both linguistics and communication theory. On the 
other hand, though complicated, this information-carrying random process has a clear, 
well-distinguishable structure and appeals much to our experience and intuition. We may 
hope that a deeper investigation of this process can provide us with a better insight into the 
nature of other random processes which are typical for the functioning of living bodies and 
intellectual beings, par excellence. As A. N. Kolmogorov pointed out, the totality of texts 
is the richest and unique material for such a study, which can shed new light on general 
rules and laws of mental information processes. 
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The basic information-theoretical characteristic of a language is the entropy per symbol 
of the text. The formal definition of the entropy of a discrete random process will be given 
in Section 2. Entropy per symbol is one of the most important concepts having a profound 
triple meaning. Entropy is a measure of the variety of all the possible texts. If entropy per 
symbol is H bits, then there exist approximately 2NH various texts of the large length 
(number of symbols) N. Entropy is also a measure of the uncertainty associated (on 
average) with each new symbol of a consecutively produced text: if a long preceding text is 
given, then there exist approximately 2”” possible continuations of length N, all of them 
being almost equiprobable. At the same time, entropy is a measure of information which is 
obtained (on average) when the uncertainty is eliminated by letting know the actual 
following symbol of the text. It means that a text of length N contains NH bits of 
information and requires NH binary digits, if the totality of all the possible texts is 
encoded by a binary code in the most economical way (with the minimum of binary digits 
per symbol). 

Some other important characteristics of a language can be introduced on the basis of the 
entropy concept. The relative reduction of the text length attainable by optimal coding 
expresses the redundancy of the language (see Section 2), while the difference between the 
first-order entropy (entropy of the probability distribution of symbols considered as 
independent) and the entropy of “infinite order” characterizes the interdependence 
between the symbols of the text, its predictability and noise immunity. Formal restrictions, 
imposed on special types of texts, such as verses, can be also expressed in terms of entropy 
and such a characterization was shown to be of typological importance in philology 
(Rychkova [6]; Kondratov [7]). The distribution of information along the text is non- 
uniform, and the entropy of specific types of linguistic situations can be a useful tool in the 
analysis of language as a communication system. 

All the above-stated explains the interest displayed by many researchers during 40 years 
for the entropy of language. Section 2 of this paper presents a review of different known 
approaches to, and results of, the study of language entropy. Sections 3-8 are devoted to 
the development of a new improved method for evaluation of the entropy of a language 
and to application of this method to a new object-to printed Hebrew. Proofs of theorems 
and other parts of research are omitted here due to lack of room. For more comprehensive 

information see Reingold [S]. 

2. APPROACHES TO THE STUDY OF LANGUAGE ENTROPY 

2.1. Written language as a random process; entropy of a language 

The totality of texts written in a certain language can be considered as a set of 
realizations of a random process generated by a certain source, where a “source” is a 
collective name for all the producers of the texts. As was mentioned before, this random 
process is of extremely complex stochastic nature. Being treated on the level of separate 
symbols it is a discrete random process produced by a source symbol-by-symbol, with an 
alphabet including letters and space (punctuation marks are usually ignored). This random 
process is assumed to be ergodic. Though it is by no means a finite-order Markovian 
process, a description of the language as a Markovian process of a high order can be used 
as a useful approximation. 

Consider a sequence of consecutive symbols of length L taken from a long text written 
in a given language. Such a sequence will be called an “L-gram“. Denote the number of 
symbols in the alphabet by K: then there are KL possible L-grams, which we denote by s,” 
(j = 1. . ., K’-). 
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Since we assume the text to be a realization of an ergodic process a random variable SL 
can be introduced which takes on values from the set Q = {Sj } of all the possible L-grams 
with probabilities P,L(s;). The symbol X following the random sequence SL is also a 
random variable, which takes on values & from the alphabet {xk} (k = 1, , . , K). 

Denote by Ps~,x(s/L, xk) the joint probability of the event that a symbol xk follows a 

L-gram SF; by Pxls~(xk/s,!) the conditional probability of xk to follow s/” and by pX(+) 
the marginal probability of the symbol &. 

The conditional entropy of the random symbol X following the random sequence SL is 
defined as 

FL+1(x/sL) = -c ~pS~,X(s~~ xk) In pXISL(xk/sf) (2.1.1) 

51 L Xk 

and measured in natural units-“nats”. It is sometimes called “the entropy of the (Z_. + 1)th 
order per symbol” of the random process. The conditional entropy FL is connected with 
the joint L-gram entropy per symbol 

by the following equation (Shannon [l], Theorem 6): 

FL = LGL - (L - l)GL-I. (2.1.3) 

It was shown by Shannon [l] that FL is a monotonically decreasing function of L and there 
exists a limit, 

;F= C+l(X/sL) = H(X) (2.1.4) 

which is, by definition, the entropy of the random process (the printed language) per 
symbol. The (L + 1)th order entropy corresponds to the approximation of the random 
process by a Markov process of Lth order. 

According to the information-theoretical meaning of entropy, the entropy per symbol 
H(X) characterizes the amount of information delivered (on average) by each symbol of 
the text. This amount of information is much less than the maximum possible amount of 
information per symbol F. which can be achieved by use of an alphabet of K symbols 
provided the symbols are equiprobable and independent: 

F. = 1nK. (2.1.5) 

Actually, the symbols in a natural language are far from being equiprobable, and therefore 
the first-order entropy Fl defined on the base of unconditional probabilities of separate 
symbols (the dependence between consecutive symbols being neglected) is considerably less 
than the maximum entropy: 

F,(X) = -~PX(Xk)ln pX(xk) < Fn. 
Xk 

(2.1.6) 

However, the main contribution to the difference between the maximum possible value of 
the entropy per symbol and the actual one is made by the stochastic dependence between 
the symbols. The statistical structure of a natural language is characterized by a “long- 
distance memory” so that even rather distant elements of the text can impose some 
additional constraints on the conditional probabilities of the current symbol. The effect of 
the memory is measured quantitatively by the amount of information in the preceding text 
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about the following symbol 

L(S, X) = limmZ(SL, X) = F,(X) - H(X). (2.1.7) 

This information expresses the property of the noise immunity of the text: the more 
information the better a missing symbol can be restored on the ground of our knowledge of 
the previous text. The total influence of both factors-the non-equiprobability of the 
symbols and the dependence between them-can be characterized quantitatively by the 
redundancy R 

R = Fo - H(X) 
_ (2.1.8) 

The value of redundancy is equal to the maximum possible compression of a text 
(reduction of the text length) provided we make a complete use of the statistical properties 
of the language. In other words, for a long text of N symbols given in a natural language, 
the greatest lower bound N, of the length of an encoded text, obtained by use of a 
reversible coding, with an output alphabet of the same size, satisfies the relation 

R= 
N - N1 

(2.1.9) 
N 

This result is valid for any ergodic source and follows from the Shannon-McMillan- 
Breiman theorem (Shannon [l], Theorem 3). 

The concept of redundancy finds wide applications in communication, data storage and 
cryptography. 

A few years ago a paper was published (Hillberg [9]) which suggested a drastic revision 
of the entropy concept as applied to texts in natural languages. The author developed an 
abstract model of text structure that led him to a very strange conclusion: the total 
information does not grow linearly with the length of the text, but much slower, say, as a 
square root of the length. It means that the information rate tends very rapidly to zero with 
the length of the text. Taking into account the total length of texts already published, we 
would have to conclude that a new book of lo6 letters (about 500 pages) contains at most 
one bit of information only (?!) Nobody would be able to say anything new! To be exact, 
the author restricts (rather arbitrarily) the applicability of his results to “connected” or 
“related” (“zusammenhaengende”) texts and sets “practical information values in the order 
of magnitude of 10-3-10-4 bits per letter”. Hillberg’s own paper consists of approximately 
20,000 letters. If his paper were considered from the standpoint of his own theory, it would 
contain no more than two information bits, which, in our opinion, makes his model 
inapplicable. 

Several researchers (e.g. Ebeling and Nicolis [lo]; Nicolis and Katsikas [ll]) approached 
the problem of language entropy from the perspective of the nonlinear system dynamics. 
They developed interesting theoretical models which certainly add a new dimension to our 
understanding of the problem. However, in the words of Ebeling and Nicolis, “actually the 
present stage of the analysis does not even allow us to decide” which model describes 
correctly the real language phenomena. 

2.2. Approaches and results based on the statistics of languages 

A straightforward approach to the estimation of the entropy per symbol of a language is 
to use the statistics of L-grams in order to evaluate the Lth order entropy. Such 
calculations were done first by Shannon [2] for English and then by many authors for a 
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number of various languages. In Table I, L-gram entropies for several languages are given. 
It should be taken into account that the results obtained by Kuepfmueller [12] for 

German were based on the statistics of syllables and words rather than of L-grams, and the 
alphabet did not include the space. The results obtained for Hebrew by Ladany [13] were 
based on an alphabet of 28 symbols including the space and the five special end-forms of 
letters (“kaf”, “mem”, “nun”, “peh”, “tsadeh”) being considered as separate letters. (The 
values of FL for Hebrew were calculated from the values of GL given originally by Ladany 

r131.1 
Some efforts were made to estimate the higher order entropies of languages by use of 

word statistics. Shannon [2], applying the Zipf law, evaluated the entropy of English of 
approximately 5th or 6th order as 2.62 bits/symbol. Kuepfmueller [12] used the statistics of 
words and syllables (not including the space as a symbol), but his approach suffers from 
neglecting the combinations of letters belonging to different neighboring words. He 
evaluated G3 = 2.8 bits/symbol, G6 = 2.0 bits/symbol and estimated H e 1.6 bits/symbol. 

The statistical approach is severely restricted by computational difficulties which make us 
unable to obtain statistics of L-grams even for comparatively small L (L = 10-15). 

The use of word statistics and empirical laws of Zipf’s law type (the applicability of the 
latter was very much criticized by Herdan [5], and was rejected by Choueka and Yeshurun 
[14] with respect to Hebrew) leads to very inaccurate and unreliable results. 

Major progress in developing “objective” (statistical) approaches to entropy evaluation 
for long symbol sequences (not necessarily texts in natural languages) has been achieved by 
Grassberger [15] who introduced efficient methods based on modifications of the Lempel- 
Ziv universal coding algorithms. The first applications of these methods to written English 
showed promising results (the entropy estimates for fiction varied between 1.04 and 1.62 
bits per symbol). However, this method shares with other statistical techniques the 
fundamental limitations which stem from the insufficiency of the total amount of available 
texts (see below, Section 2.3). 

2.3. Shannon’s prediction (guessing) method 

Shannon [2] invented an ingenious method which makes it possible to overcome the 
above-mentioned limitations of the statistical approach and to obtain upper and lower 

Table 1. L-gram entropies for eight languages 

FL English’ 

F0 4.76 
FI 4.03 

FZ 3.32 
F3 3.1 

Russian2 Frenchs Rumanian4 Hebrew5 Arabic6 Portugese’ German* 

5.00 4.76 4.76 4.52” 5.00 4.76 4.7 
4.35 3.9 4.12’0 4.2 3.9 4.1 

4.22’O 

3.52 3.71’0 3.8 3.5 

3.0 2.83 2.69 3.21’O 2.5 3.1 2.95 

‘Shannon [2]. 
2Garmash et al. [45]. 
3Piotrovski [20], Barnard. 
4Piotrovski [21]. 
SLadany [47], Ladany (131. 
6Wanas et al. [48]. 
‘Manfrino [49]. 
*Piotrovsky (201, Kuepfmueller [ 121. 
923 symbols. 
lo28 symbols. 



716 L. B. LEVITIN and Z. REINGOLD 

bounds of the conditional entropy FL+,(X/SL) for arbitrarily large L, so that it gives an 
evaluation of the entropy per symbol H(X). 

The conditional entropy FL+r expresses the uncertainty of a symbol following a set of 
length L (an L-gram). If the entropy is close to zero, it means that the symbol can be 
predicted almost for certain when the previous L-gram is given. The larger the entropy, 
the more difficult it is to predict the following symbol. This means, in particular, that the 
predicted symbol can be wrong, and that more than one attempt may be needed to obtain 
the right result. It suggests to us that it is possible to go in the opposite direction and to 
extract information about the value of the entropy from the results of a prediction 
experiment. 

Shannon suggested to use a human being-a person experienced in the language-as a 
predictor for an experiment of this sort. The reasoning is expressed by Shannon in the 
following words: 

The new method of estimating entropy exploits the fact that anyone speaking in a language 
possesses, implicitly, an enormous knowledge of the statistics of the language. Familiarity 
with the words, idioms, cliches and grammar enables him to fill in missing or incorrect 
letters in proof-reading, or to complete an unfinished phrase in conversation. 

According to Shannon, the prediction experiment is performed in the following way. The 
guesser who knows the text up to the current point is asked to guess the next symbol. If he 
is wrong, he is told so and asked to guess again. This procedure continues until he finds the 
correct symbol. The number of attempts required until the correct symbol is found is 
recorded. The next symbol to guess can be either the symbol that follows the guessed one 
(sequential guessing) or that following a completely different L-gram. Here is an example 
(taken from Shannon’s paper) of the results of sequential guessing: 

(1) There is no reverse on a motorcycle a 
(2) 111511211211 11 J 11121321227111141111131 

-15-17- 
(1) friend of mine found this out 
(2) 861311111111111621111112111111 
(1) rather dramatically the other day 
(2) 4111111 ~51111111111161111111111111 

-ll- 

The first line is the original text and the numbers in the second line indicate the attempt at 
which the correct symbol was obtained. The sequence of the recorded numbers of attempts 
constitutes the so-called “reduced text”, which is in fact a specially encoded form of the 
original text. Shannon has proved that this coding is completely reversible. In the case of 
non-sequential guessing there is no sense to speak about coding; nevertheless the term 
“reduced text” will be used. 

The numbers of attempts, which are the symbols of the reduced text y, (i = 1, 2, . . ., K) 
are in fact natural numbers from 1 to K. Because of the randomness of the symbol 
following a given L-gram, the number of attempts is a random variable YL, which takes on 
values y1 with probabilities Pr,,(y,) = ~7~. These probabilities are determined, of course, by 
the guesser’s performance and can be estimated by the frequencies: 

4^, = 2, 
N 

(2.3 1) 

where N is the total number of guessed symbols and m, is the number of symbols which 
have been guessed at the ith attempt. 
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Now we shall introduce in a more formal way the random variables SL, X and YL with 

which we are to deal with. 
Consider a probability space (E, 93, P), where E is the space of elementary events: 

E = {c?,,~}, the elementary event ej,k 

= (St x,), (j = 1, . 

is a pair of a L-gram sj and the following symbol 

lZZ&lity ‘measure on E, 

KL, k = 1, . . ., K); 93 is a Bore1 field on E, and P is a 
defined by the probabilities of the elementary even 

P~~,~(s~, xk). P,,,,(.sF, xk) is interpreted as a joint probability of the event that SL takes on 

a value s,” and X takes on a Value xk: 

psL,x(sf, xk) = Pr[SL = sjL, X = xk]. (2.3.2) 

Consider now an element xk of the Bore1 field 9 which is the set of all the elementary 
events ej,k such that k is fixed, and j takes on all the possible values: 

xk = {e,,k]j = 1, . . ., KL}. (2.3.3) 

Obviously, xk represents the event that the symbol following a L-gram is xk. Thus the 

probability of X to take on the value xk is 

pX(xk) = Pr[xk] = Pr[{e,,klj = I, 2, . . ., KL}] = gP,~,,(sf, xk). 
I=1 

(2.3.4) 

Similarly, if sf E “33 is the set of all elementary events e,,k, such that j is fixed and k takes 

on all the possible values, then the probability of SL to take on the value sf is: 

&(S;) = PI+;] = PI-[{e,,,lk = 1, 2, . . ., K}] = -&L,&;; xk). 
k=l 

(2.3.5) 

Now let us consider special elements y, (i = 1, 2, . . . , K) of the Bore1 field 3, which are 
the sets of all the elementary events ej,k such that j takes on all the possible values and for 
each j and i the index k takes on a value k = k,(j) in such a way that for different values 
of i the corresponding values of k,(j) are also different: 

Y1 = {ej,klj = 1, 2, . . ., KL, k = k,(j)} (i = 1, 2, . . ., K; kiz(j) f ki,(j) if iI # iz). 

(2.3.6) 

We interpret the event y, as the event that the random variable YL takes on the value y,: 

9i = pi, = Pr(Yi) = Pr[{ej,klj = 1, . . ., KL, k = ki(j>>] = zp+,x(sF, q(j)). 
]=I 

(2.3.7) 

As a matter of fact, the one-to-one correspondence between the indices i and k,(j) (for a 
fixed j) is a permutation of the alphabetic order of the symbols x, according to the order in 
which the symbols are named in the process of guessing a symbol following a given L-gram 
sf. It is reasonable to assume that a guesser names symbols consecutively according to his 
subjective estimation of their conditional probabilities: first the most probable (to his 
opinion) symbol, then the second one, and so on. This brings us to the concept of an 
“ideal guesser”, or “ideal predictor”, introduced by Shannon. An ideal guesser is such a 
guesser who for any L-gram s,” knows exactly the order of the conditional probabilities 

pX,XL(xk/s;) = 
PSL.X (s,“> xk) 

(2.3.8) 
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and names the symbols consecutively in the order of decreasing conditional probability. In 
other words, for an ideal guesser the indices k;(j) are chosen in such a way that 

pX/SL(xkl(j)/s~) > (xk*(j)/s,L) . . . > pXjSL(xk&)/s,L>. (2.3.9) 

Thus for an ideal guesser the probability q1 to guess a letter at the first attempt is the 
weighted (with probabilities Ps~(sf)) sum of all the maximum conditional probabilities, q2 
is the weighted sum of the second highest values of conditional probabilities, etc., so that 

41 > q2 > ... > qK. (2.3.10) 

The set of probabilities q1 of the numbers of attempts is the only information about the 
probabilities Ps~ x(sf, xk), which is obtained in Shannon’s guessing experiment. Neverthe- 
less, this limited ‘information allows us to put some upper and lower bounds for the entropy 
F L+l. It was shown by Shannon that for an ideal guesser the following upper and lower 
bounds for the conditional entropy of (L + 1) order are valid: 

&(X)ai(q, - q,+Jiln i s FL+l C -iqlInql = H(Y,)U,,(X). (2.3.11) 
r=l i=l 

(Here and henceforth AAB means “A equals B by definition”.) 
Both of these bounds are attainable; therefore they cannot be improved without any 

additional information. A real guesser is in fact non-ideal. This means that he misunder- 
stands the order of conditional probabilities of a letter following a L-gram at least in some 
cases. Since qi is the average of conditional probabilities which occupy the ith place in the 
descending order of the probabilities [cf. (2.3.7)], 

(2.3.12) 
j=l 

a wrong ordering leads to a transfer of some probability from the larger qi (with smaller 
index i) to the smaller ones (with larger index i), so that the distribution of q1 becomes 
more uniform. 

Hence the upper bound increases for a non-ideal guesser, remaining still valid (but less 
exact). Unfortunately, the lower bound given by (2.3.11) also increases for a non-ideal 
guesser, which makes the value of the lower bound less reliable. There exists, however, 
some other effect imposed by the statistical nature of the experimental data which 
influences in the opposite direction, decreasing the value of the lower bound (cf. Section 
4). It should also be taken into account that the lower bound can be achieved only at a 
very specific (rectangular) form of conditional probability distribution, which is far from 
actual distributions. Therefore, according to Shannon, the gap between FL+I and the 
“ideal” lower bound is so wide that it “more than compensates for the failure of human 
subject to predict in the ideal manner” (Shannon [2]). 

Since FL+1 + H(X) when L+ 00, the bounds established by (2.3.11) are also valid for 
the actual entropy per symbol of the language, if L is large enough. Both the upper and 
the lower bounds decrease monotonically when L increases, so they do not converge to the 
entropy H(X). According to some experiments (Burton and Licklider [16]; Piotrovskaia et 
al. [17]) the values of the bounds become practically constant for the length L of the order 
of several tens (30-100). 

The striking power of Shannon’s method in comparison with the direct statistical 
approach becomes evident when we realize that the probabilities of L-grams for large L 
cannot be obtained from statistical data not only because of computational difficulties but 
also because the total amount of texts in any language is limited. Indeed, for L = SO, 
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assuming that the entropy per symbol is only 1 bit, we have 2s’ G 10” possible different 
meaningful 50-grams. Let us compare this number with the total length of all the texts 
published in a given language (say, in English). The library of the USA Congress contains 
approximately 5 x lo7 volumes. Suppose that, together with all the periodicals, etc., the 
number of all existing “equivalent volumes” of lo6 symbols each is 109. Then the totality of 

all the texts consists of 1015 letters. This means that only a small part of all the possible 
meaningful 50-grams can be found in published texts, and it is very improbable to find the 
same 50-gram more than once. Thus, the total length of all the existing texts is not enough 
in order to find probabilities of long L-grams. However, a human guesser can usually 
suggest several different continuations of a given possible texts which is much larger than 
the totality that actually exists. In fact, a human being possesses such an enormous variety 
of possible texts because of his knowledge of the generating rules of such texts which 
makes him a source of similar texts himself. This knowledge, which is, of course, mostly 
intuitive, brings the guesser by reading of a previous text into a state which is close to the 
state of the source itself, and that enables him to predict efficiently the continuation. 

2.4. Sources of errors and limitations of Shannon’s method 

In fact Shannon’s method does not enable us to calculate the value of FL itself. Even if 
the guesser is an ideal one, only upper and lower bounds of FL can be obtained. It was 
shown by Shannon [2] that both bounds decrease monotonically with L and approach limits 
for L+m. Nevertheless the limits are, in general, of different values, so there exists a 
finite gap between the bounds and there is no convergence of the bounds to the actual 
value of the entropy. For sufficiently large L the difference between FL and H(X) 
becomes smaller than the gap between the bounds and therefore the lower bound of FL 
becomes also a lower bound of H(X). 

The fact that the upper and lower bounds do not converge to the entropy H(X) is a 
result of rather modest requirements applied to the guesser: he should indicate only the 
order of conditional probabilities but not their exact values. It was noted by Kolmogorov 
(see Yaglom and Yaglom [la], p. 257) that if the guesser is able to indicate the values and 
not only the order of the conditional probabilities of the symbol following a given L-gram, 
then a consistent estimate of entropy per symbol can be constructed, which is given by the 
arithmetical average of the values of [-ln Pxis~(xk/sf) where xk is the symbol which 
actually appears in the text after the given L-gram. This approach was implemented in a 
remarkable paper by Cover and King [19] by use of a gambling procedure: the guesser has 
to divide a “capital” among all the possible continuations in proportion to values which he 
assigns to conditional probabilities of various continuations. However, it should be borne in 
mind that such an approach implies a drastic change in the definition of the ideal guesser. 
Namely, instead of the order of conditional probabilities, the guesser should know the 
exact values of them. This requirement seems to be very unrealistic for a human guesser. 
Even an ideal guesser in Shannon’s sense would usually appear to be far from ideal in the 
sense of Kolmogorov-Cover-King. As shown by Cover and King, an incorrect assessment 
of the conditional probabilities results always in an overestimation of FL and of H(X). 
Thus, in fact, what can be really obtained by use of this approach is not a consistent 
estimate, but an upper bound of the entropy per symbol of the text; it was also obtained by 
Shannon’s method. The experiment done by Cover and King shows that the upper bound 
obtained is actually not better than the bound obtained in Shannon’s original experiment. 
But in contrast with Shannon’s approach this method gives no opportunity to bound the 
entropy from below, which is, of course, a serious disadvantage of the method. 

Undoubtedly, the most important source of errors in a Shannon-type experiment is the 
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non-ideality of the guesser. A non-ideal guesser mixes the order of conditional probabilities 
for some of the L-grams, making the distribution (ql, q2, . . ., qK) less steep. As a result 
both the upper and the lower bounds become larger. The upper bound then is still valid 
but becomes more rough. The situation with the lower bound is even worse, because it 
becomes less reliable: for a guesser far enough from ideality there exists a danger that the 
calculated value of the lower bound can exceed the entropy. 

Another sort of limitation of accuracy is imposed by the statistical nature of the 
experiment. In fact, the experiment gives us not the probabilities qi but the frequencies 
4^1 = mj/N. Th e upper and lower bounds of the entropy are to be estimated by use of the 
frequencies G1. It brings into consideration the usual problems inherent in a statistical 
estimation-those of the variance and the bias of the estimates. 

The analysis of the statistical properties of the estimates will be given in Section 5. It 
should be mentioned that the usual estimate of the upper bound (which is, in fact, an 
estimate of the entropy of distribution (ql, . . ., qK)) given by the formula 

S,,(X) = ii = -i$lnz 
i=l 

(2.4.1) 

is considerably negatively biased, which should be taken into account in the evaluation of 
the upper bound. 

The estimate of the lower bound is a linear function of the frequencies: 

&(X) = 2 : - EgL 
i 1 ilni. 

,=I 
(2.4.2) 

Thus, this estimate is unbiased. But it should be borne in mind that the lower bound in 
the form (2.3.11) is valid only for monotonically decreasing probability distributions. 
Therefore the frequencies Qi should be smoothed in an appropriate way (see Section 5) in 
order to satisfy the condition of monotonity. This smoothing leads to a negative bias. On 
the other hand, this negative bias seems to compensate partially the positive “bias” of the 
lower bound caused by the non-ideality of the human guesser. 

2.5. Early results obtained by Shannon’s method 

Shannon [2] was the first to apply the prediction method for the evaluation of the 
entropy of English. The results were based on a sample of 100 cases of a symbol guessed 
after a known text of 100 symbols. Numerical values obtained in the experiment are given 
in Table 2. 

Later on, extensive results for a number of European and non-European languages were 
obtained by Piotrovski [20-221 and his collaborators (Piotrovskaia et al. [17]; Petrova et al. 
[23]; Boguslavskaia et al. [29,25]; Novak and Piotrovski [26]; Korolenko et al. [27]). 
Piotrovski introduced an important modification of the guessing method. Namely, he 
separated the cases when a symbol is uniquely determined by the previous text (so-called 
“zeros of information”). It gives a considerable improvement of the upper bound of 
entropy. The results, obtained by Piotrovski et al. and by other authors, which used the 
same method (Baytanaieva and Bektaiev [28]) for fiction samples are given in Table 3. It 

Table 2. Results obtained by Shannon for English 

^ 
HShcX) (bits) ff (%) 2(%) @I 

1.3 0.6 73 87 0.8 
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Table 3. Entropy and redundancy of fiction texts for several languages by Piotrovski er al. 

Language I? bits 5 bits A (%) !? (%) 

1 Russian 1.19 0.70 76 86 
2 Polish 1.29 0.83 74 84 
3 English 1.10 0.65 77 86 
4 German 1.36 0.83 71 82 
5 French 1.36 0.78 71 84 
6 Rumanian 1.26 0.78 74 84 
7 Kazakh 1.35 0.81 75 85 

should be pointed out that the results given in Table 3 are obtained by sequential guessing 
as an arithmetical average of FL for a number of various values of L, from L = 30 to 100 
or 200. 

Some other authors used Shannon’s original version of the guessing method (Kazarian 
[29]; Lenskoi [30]; Doleiel [31]; Savchuk [32]) (Table 4) or other modifications of the 
method: a reduced guessing procedure, suggested by Kolmogorov (Piotrovski [20], pp. 

60-61) (Table 5); a collective guessing procedure (the latter gives only an estimation of the 
entropy, which is apparently negatively biased) (Piotrovski [20], pp. 60-61; Petrova et al. 
[23], p. 157; Gut [33]; Korolenko et al. [27]; Georgiev [34]) (Table 6). Table 7 contains the 
results found by Cover and King [19] by use of a “gambling approach”, which gives, in 
fact, an upper bound of entropy. 

2.6. Problems involved in the implementation of the guessing method 

The applications of the guessing method usually suffer from a number of shortcomings of 
different nature which affect the validity and the accuracy of the results. 

Table 4. Entropy and redundancy of fiction texts (results modified by Piotrovski by use of a 
correcting factor) 

Language I? bits 5 bits j (%) E (%) 

1 Adyghe 2.26 - 56 
2 Armenian 1.38 0.78 74 85 
3 Czech 1.38 1.08 74 80 

Table 5. Results obtained by the reduced guessing method 
Kolmogorov 

Language i? (bits) 

1 Russian (fiction) 1.1 
2 French 1.0 

Table 6. Results obtained by collective guessing 

Language I? (bits) 

Polish 0.95 
Rumanian 0.725 

Bulgarian (fiction) 0.88 
Spanish 1.05 
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Table 7. Entropy of English by Cover and King 

Case description a (bits) 

1 Best subject estimate (text from “Jefferson the Virginian” by D. Malon) 1.29 
2 Committee gambling estimate (the same text) 1.25 
3 Best subject estimate (text from “Contact” by L. and N. Zunin) 1.26 

First of all, it is obvious that in the case of sequential guessing many of the L-grams used 
in the experiment are largely overlapping and thus cannot be considered as independent 
samples. It affects the representativeness of the sampling and makes the statistical 
treatment of the results impossible. Therefore, in our opinion, a non-sequential guessing 
procedure which uses non-overlapping L-grams chosen from different and remote parts of 
the text is much more preferable. 

It should be noted that the uncertainty of a letter to be guessed depends very much on 
the position of the letter in a word. For instance, it is minimum at the end of the word and 
maximum at the beginning of it. Therefore, if the text given to a guesser in a sequential 
guessing experiment starts with the beginning of a word (as it was usually done) the results 
display a quasi-periodic oscillatory structure due to the fact that letters situated at different 
distances from the beginning of the text have different probabilities to occupy a certain 
position in a word. The experiments made by Piotrovski and others show that even for 
lengths of several hundreds of letters and text still keeps memory about the beginning. In 
order to eliminate this memory effect and to obtain valid bounds of FL+i for a given L, the 
beginning of each sampled L-gram should be chosen completely at random (cf. Section 7). 

In the original version of Shannon’s method the probability IZJ~ estimated from an 
experiment is a result of averaging conditional probabilities Px~s~(xk,,j~/s,L) for fixed i over 
the set of all linguistic situations (cf. (2.3.12)). Hence, the conditional entropy FL+, , i.e. 
the averaged value of the entropy of conditional probability distributions (cf. (2.1.1)), is 
replaced by the entropy of averaged conditional probabilities ql, which gives an upper 
bound of the former. Since entropy is a concave function of probability, the more the 
conditional probabilities PX:s~.(xk,C,)/s~) for a given i differ for different is, the more the 
upper bound differs from the actual value of the conditional entropy. In fact, the values of 
the above-mentioned conditional probabilities are very different for different linguistic 
situations (for instance, the probability of the most probable continuation can vary from 
l/K up to 1). Thus the upper bound given by the original Shannon method is rather rough. 

An attempt to overcome this disadvantage was undertaken by Piotrovskaia et al. [ 171. 
They separated linguistic situations when the following letter is determined uniquely by the 
previous L-gram. The separation of the “zeros of information” implies the use of some 
objective characteristics of the text and can be performed even a posteriori, after the 
termination of the guessing experiment. Another possible approach is to extract some 
additional information from the guesser. In fact, a good guesser can tell more about the 
probabilities of possible continuations than just their order, as is assumed for an ideal 
guesser by Shannon. 

Kolmogorov and his co-workers performed a number of experiments aimed at obtaining 
such information (Rychkova [6]). They suggested to the guesser to make one of the 
following predictions: 

(1) the next symbol is certainly the kth letter of the alphabet; 
(2) the next symbol is one of two or three letters named by the guesser; 
(3) the next symbol is probably (but not certainly) the kth letter of the alphabet; 
(4) the next letter is probably one of two or three letters; or 
(5) no prediction can be made by the guesser. 
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This approach yielded an upper bound of 1.0-1.2 bits per symbol (for Russian 
language). 

Another extreme assumption is that an ideal guesser is able to evaluate exactly the 
conditional probabilities of all the possible continuations after a given L-gram (Cover and 
King [19]). The best strategy is, probably, to put before a human guesser such questions 
which are adequate to his ability to discriminate probabilities of various possible continu- 
ations. 

The situation with the lower bound is even worse. As was pointed out by Shannon [2] his 
lower bound is far from the actual value of FL+r due to “the failure to have rectangular 

distribution of conditional probability”. To the best of our knowledge, no research was 

done previously aimed at improving the lower bound given by Shannon. 
There are a number of statistical problems involved in the evaluation of the bounds of 

entropy (see Section 5). Seemingly, no statistical treatment was given before to the results 
of prediction experiments. 

3. AN IMPROVED METHOD FOR THE DETERMINATION OF THE UPPER BOUND OF 
ENTROPY 

3.1. Subdivision of the set of L-grams 

According to Sha,nnon’s prediction method the only information about the probability 
distribution Ps~,x(s, , xk) obtained from the guessing experiment is that contained in the 
probabilities qL = PY,(y,), which are, in essence, the result of averaging of the ordered 

conditional probabilities of a letter Xk,(j, following a sequence s:: 

41 = Pv,(Y’) = Cps~(s,L)PX,SL(Xk,(;)/Sf). 
i J, 

(3.1.1) 

The roughness of the upper bound given by 

RdX) = ff(Yd = -Calnq, (3.1.2) 

depends on the dispersion of values of the conditional probabilities P,,sL(Xk,(j,/S,L) for given 
i. The more they differ the greater the increase of entropy resulting from the smoothing 
given by (3.1.1). This suggests improving the upper bound by subdivision of the totality Q 
of all possible sequences s/” into subsets which are more homogeneous with respect to the 
conditional probability distributions PX,s~(~k,c,,/~f). 

Consider the simplex of all probability distributions of ordered probabilities pi = 
Px,:,E~(_uk,c,,/s~) defined by inequalities: 

p1 2 p2 s p3 b . 3 pK 3 0 and in, = 1. (3.1.3) 

Our aim is to subdivide the simplex into domains as small as possible but still distinguish- 
able by the guesser. From our experience a human guesser can estimate well only the 
values of the largest probabilities and their sums: pl, p1 + p2, . . . up to p1 + p2 + p3 + p4. 
This is the reason for defining the subdivision in terms of some threshold values of the 
sums of the largest probabilities. 

Some other a priori characteristics can also indicate domains in the probability simplex in 
an indirect way and so they can be used for the subdivision of the set of all L-grams. 
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3.2. The effect of subdivision on the upper bound of the entropy 

Consider the set R of all possible sequences 3,” of length L and a partition of Q into a 
number of disjoint subsets a,.. Let us introduce the average conditional probabilities qjr) of 
a symbol following a sequence s/” belonging to a given subset a,: 

where 41’) is the probability of a 
L-gram s,” belongs to a,. Denote 

symbol to be guessed at the ith attempt if the preceding 

w, = c P&). 
,:,,, 

(3.2.2) 

Then Shannon’s upper bound of the entropy per symbol 

by 

for the cases when s,” E a, is given 

H, = -C~~“‘ln~~“. (3.2.3) 

Consider the weighted sum of the upper bounds n, for the subsets a,.: 

H(X)aCo,R,. = -CCw,.qi”ln 4j’). (3.2.4) 

The next two theorems show that the quantity H(X) gives a better upper bound of the 
entropy FL+1 than the quantity Hs,,(X) given by Shannon, i.e., that any subdivision of B 
can only improve the upper bound. 

Theorem 3.2.1. 

F,,+,(X/+) zz I. 

The equality holds only in the case when 41’) = Px~s~(x~~~,~/s~‘)) for any s,” E a,. 

(3.25) 

Theorem 3.2.2. 

H(X) c &I(X), (3.2.6) 

where the equality holds iff the probabilities qi (I) are the same for all the subsets a, and do 

not depend on r. 

4. AN IMPROVED METHOD FOR THE DETERMINATION OF THE LOWER BOUND OF 
ENTROPY 

4.1. A simplex of ordered probabilities 

As was mentioned above, for any sequences s,” the ordered conditional probabilities 

pI = Px~.F~(xk~,~/~~), (i = 1, 2, . . . K), can be considered as components of K-dimensional 

vector belonging to a (K - I)-dimensional simplex. More exactly, the following proposition 

is valid: 
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Theorem 4.1.1. The set of all possible vectors of ordered probabilities p = (pl, . . ., pK) 
constitutues a (K - 1)-dimensional simplex 0 in a K-dimensional linear space defined by 
conditions: 

with K vertices: 

(4.1.1) 

(g = 1, . . ., K) (4.1.2) 

where the vector vg has g non-zero components. 

4.2. Entropy as a concave function on a convex set; Shannon’s lower bound 

It is known (Fano [35]) that the entropy of a discrete random variable 2 taking values z, 
with probabilities pi (i = 1, . ., K) is a concave function of the probability vector 

P = (PI,. .> pK). That is, for a number of probability vectors pj = (P,~, . ., PjR) and any 
weight coefficients aj s 0, c,a, = 1, the following inequality is valid: 

CajH(Pj> s H Ca,Pj 
j i 1 I 

where H(Pj) = -Ci~,~lnp,,, and the equality holds iff all the 
identical. 

Consider the set of probabiity vectors pj = (piI, . ., pJ of 
abilities pi, = P,I,L(xk,(j,/S:). These conditional probabilities are 
tion method allows us to evaluate the mean probability vector 

q = (41, . . ., qK) = CM$)P,. 

(4.2.1) 

probability vectors pj are 

ordered conditional prob- 
unknown, but the predic- 

(4.2.2) 

The problem is to find a lower bound for the conditional entropy 

(4.2.3) 

based on the knowledge of the mean probability vector q only. 
A non-trivial lower bound can be found in the case when all the probability vectors pj 

belong to a convex set C, which is a convex hull of its extreme points ug 
(g = 1,. . ., G, G 3 K). 

Theorem 4.2.1. Let all pj E C and q = CjPsr(sf)Pj, then the conditional entropy 
FL+l(X/SL) satisfies inequality 

(4.2.4) 

where the minimum is taken over all the possible sets of weight coefficients {my,} subjected 
to constraints: 

myg G= 0; -&, = 1; &,u, = q. (4.25) 
g=l g=l 
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It should be borne in mind that the condition ~~E1&yg = 1 is not independent, but follows 
from the equation ~~+cygus = q and from the fact that q and all Us are probability 
vectors. 

The equality in (4.2.4) holds iff each of the probability vectors Pj coincides with one of 
vertices ug 

Note also that the sum in the right-hand side of (4.2.4) is a linear function of the weights 
cyK over a compact set C, and therefore the minimum is always attainable (Bourbaki [36]). 

In our case, as was shown in Section 4.1, all the vectors Pj belong to the simplex fi. 
defined by (4.1.1). For any set of such vectors the following theorem is valid. 

Theorem 4.2.2. Let all Pj E 6 and q = (qi, . . ., qg, . . ., qK) = C,Ps(S,L)pj. 
Then the lower bound for the conditional entropy F(X/,!?) is given by inequality 

FL+I(X/S~) 2 C (qg - qg+dgln g. 
g=l 

(4.2.6) 

The lower bound (4.2.6) was given first by Shannon [2], who used a different way of 
reasoning. This bound is attained iff every Pj coincides with one of the vertices v~: 

Pj = vg(j). 

4.3. Subdivision of the simplex 6 into convex domains; its effect on the lower bound of 
entropy 

The lower bound (4.2.6), being attainable, cannot be improved, if the only information 
about the conditional probability vectors pi is the knowledge of the mean probability vector 
q. But if, in addition, the set Q of all sequences s, 

U,d, = Q2, 

’ is subdivided into disjoint subsets d,, 
such that if 3,” E d, then Pj E C,, where C, C c” is a convex subset of the simplex 

6, and for each subset d,. the mean probability vector 

(4.3.1) 

is given, this additional information can be used in order to obtain a better lower bound for 

&+1(X/W 
Consider a number of convex sets C, c o, U,.C, = cr with extreme points UK’, (gl = 1, 

. ., G,; G, 3 K). (Sets C, should not be, in general, disjoint.) Denote the probability that 

+d,bypr 

PI = c W,L). 
s ,L t d , 

(Note, that if s,” E d,, then Pj E C,, but the converse is, in general, not correct.) Then it 
follows from Theorem 4.2.1 applied to each subset d,, that 

(4.3.2) 

where 
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The next theorem shows that the lower bound given by (4.3.2) is better than the lower 
bound given by (4.2.6). 

Theorem 4.3.1. Consider a convex (K - 1)-dimensional set C with extreme points ug 
(g = 1, . . . , G, G > K) in a K-dimensional linear space. Assume that the convex set C 
corresponds to a set d c SJ of sequences SF, so that if S: E d then pj E C. 

Denote: 

p = Pr {s,” E d} = 2 Ps~(sk). (4.3.4) 
sftd 

Let C, (r = 1, 2, . . .) be convex subsets C, c C, U ,C, = C with extreme points u(,:‘(g, = 1, 
. . . , G,; G, 3 K). (C, can intersect one another and some of the extreme points II:’ can 
coincide with ug and can be common to several different subsets.) 

Let d, be disjoint subsets of d, U,d, = d. 
Denote: 

(4.3.5) 

(4.3.6) 

q = 2- c P,L(S,L)Pj = ~~prq’? 
P .s+d P r 

Then the following inequality is valid: 

(4.3.7) 

(4.3.8) 

where: 

a’p” 3 0; r 2 g, g, 
*(~)u(~) = q(‘) (4.3.9) 

&?,=I 

cyg 2 0; 5 q LXgug = . (4.3.10) 
g=l 

The inequality (4.3.8) turns into equality iff several very specific requirements are fulfilled: 

1. No new vertices are introduced by subdivision: each of ug’ coincides with one of ug. 
2. There exists a basis (a set of K vertices) common to all the convex domains C,. 
3. All the vectors q(‘) belong to the convex hull of the common basis of requirement 2. 
4. This common basis is that for which the minimum of the quantity ~,“r(~~)H(u~)) is 

attained simultaneously for all r. 

Theorem 4.3.1 shows, in particular, that the lower bound of entropy, as defined by (4.2.4), 
is a convex function of the mean probability vector q. 

Applying this theorem to the simplex 6, we obtain an affirmative answer to the question 
which was formulated at the beginning of this section. 

Thus, the improved lower bound is given by 
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L. B. LEVITIN and Z. REINGOLD 

a;’ B 0; 
r iL,& . (&(r) = (p’ (4.3.12) 

g,=i 

4.4. Determination of the lower entropy bound as a problem of linear programming 

The results of the preceding section show that if we can use some additional a priori data 
in order to implement the subdivision of the set Q of all sequences into disjoint sets d, and 
of the simplex 0 into corresponding convex subsets C,, an improvement of the lower bound 
is to be expected. Now a new problem arises, namely, to find for each convex set C,. the 
minimum of the expression 

G, 
c a;‘H(u;)) = F (4.4.1) 

where LYE’ are unknown variables, but subjected to the conditions (4.3.12). 
If the minimum of (4.4.1) is obtained for a:,’ = Sk’, th en the lower bound of entropy for 

the subset d, is given by: 

(4.4.2) 

Note, that F is a linear function of cyt’, while H(ug’) are given numbers. In the case 
G, = K, equations (4.3.12) have a unique solution, and the value of N, is uniquely 
determined. But in case G, > K there exist an infinite variety of coefficient sets ax’ 
satisfying conditions (4.3.12). Then we come to a classical linear programming problem, 
namely, to find the minimum of a linear function (4.4.1) under a system of linear 
constraints (4.3.12). As is known from the theory of linear programming (Danzig [37]), the 
minimum is always achieved at an extreme point of the convex set which is the set of all 
possible solutions of (4.3.12). The dimensionality of this convex set is G,, and its extreme 
points are characterized by the condition, that (G, - K) of the weights a’g,’ are equal to 
zero, while the rest K wei hts 

lz 
are determined uniquely as a solution of the system 

(4.3.12). (The inequalities CY~:) 2 0 are satisfied automatically for g(‘) E C,.) If all the K 

weights are actually non-zero, then the number of the extreme points is equal to 

G,.! 
z 

K!(G,. - K)! ’ 

Of course, even for moderately large G, the selection of the extreme point which yields the 
minimum requires the use of a computer. 

5. DETERMINATION OF THE UPPER AND LOWER BOUNDS OF ENTROPY AS A 

STATISTICAL PROBLEM 

5.1. The estimate of the upper bound and its properties 

The upper bound of the entropy per symbol obtained by subdivision of the set of Q of 
all the possible sequences s,” into disjoint subsets a,. is the mean value of the upper bounds 
for each of the subsets a, (see (3.2.3), (3.2.4)). 

In fact, the data obtained from an experiment are not the probabilities of the subsets (0, 
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and the mean conditional probabilities qfr’, but the numbers of occurences N(a,) = N, and 

mi(a,) = rn!‘). The maximum likelihood estimates of probabilities are given by frequencies 

(5.1.1) 

(5.1.2) 

Here of course, ~filrn~” = N,, cfk,N, = N, where R is the number of subsets a,. Then 
the simplest estimate of the upper bound can be obtained by substituting the frequencies 
for the probabilities in (5.1.1) and (5.1.2): 

(I) (r) fir = -~!?!lLlnTL. 
i=l N N 

(5.1.3) 

(5.1.4) 

The numbers of occurrences N, have a multinomial distribution: 

Pr(N,, . . ., 
R 1 

N) = N!rFl$r. (5.1.5) 
i-. 

The estimates fi, of the upper bounds for the subsets a, are independent random variables. 
The joint probability distribution of all N, and H,. can be written in a form: 

Pr(N, . . ., NR, &, . . ., 6,) = Pr(N,, . . ., N,)fiP&. (5.1.6) 
r=l 

Using (5.J.5) and (5.1.6) we obtain the following expression for the variance of the 
estimate H(X): 

v&x)) = ~w;V($ + + CoJl - ~,)V(i?r)~orE~(&) - E2 , 
I I r 

(5.1.7) 

where V(Z) and E(Z) denote the variance and the expectation of a random variable Z, 
respectively. 

It is seen from (5.1.7) that the main term of the total variance is a linear combination of 
the variances of the estimates for separate subsets. This term would be the only one, had 
the numbers N,. of cases belonging to each subset not been random. The secondary term 
(of order l/N) appears due to the random sampling of the L-grams. It is easy to show that 
this term is always positive. 

For the bias of the estimate fi(X) using (5.1.5) and (5.1.6) we obtain: 

B(ti(X)) = E@?(X) - n(X)) = E - R(X) 

= ~w,B(fi,) (5.1.8) 
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According to formulae (5.1.7) and (5.1.8) the value ofCthe total variance is determined 
mainly by a weighted sum of variances of estimates_H, and the total bias is just the 
mean value of the biases of the same estimates. Each H, is an estimate of the entropy of a 
discrete random variable evaluated from a sequence of independent trials. The properties 
of the estimates have been studied by Basharin [38], and Levitin and Reingold [39]. The 
results show that the variance of the estimate for each group can be written in a form 
(omitting terms of order l/N:) 

and the bias (omitting terms of order l/N:) for the case qi”)N, >> 1 is 

(5.1.9) 

(5.1.10) 

Practically, in our case, K = 23 and N, is of the order of 100. Thus the bias is gather 
large and cannot be negleged. For practical use we have to substitute the estimates H, for 
their expected values E(H,) and for the u er bounds of entropy H, and replace the 

by frequencies Sir’ = WZ!FN~., and probabilities 0,. by frequencies 

The result is an estimate of the variance of the estimate of the upper bound of entropy 
per symbol. 

where 

(5.1.12) 

The estimate of the bias is given by 

&E(X)) = ~~E(fi,) (5.1.13) 
r=l 

where g(H,) is evaluated numerically. 

5.2. Estimation of the lower bound 

As it was shown in Section 4.4, the value of H(X) is determined b a solution of a 
$1 . linear programming problem (4.3.11), (4.3.12). For every set of values qi (1 = 1, . ., K) 

not more than K coefficients a:,’ are nonzero. It is known from the theory of linear 
programming that CY~’ are piece-wise linear functions of qFr). It means that, in general, 
there exists a neighbourhood of a probability vector q”‘, where the lower bound is a linear 
function of the probabilities qL(r). 

In order to estimate U(X) from the experimental data we have to use frequencies 

(5.2.1) 

instead of the probabilities pI and qfr). 
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However, here we meet a difficulty resulting from the fact 
necessarily belong to the convex domain C,, because of 
number of occurrences ml and because of the non-ideality 
the conditions (4.3.12) become incompatible. It means I \ 

that the estimate q(‘) does not 
statistical fluctuations of the 
of the guesser. In such a case 
that in such cases not the I \ 

frequencies g)r’ but some other estimates of the probabilities ql” should be used which 
always satisfy the a priori order restrictions. 

5.3. The maximum likelihood of probabilities with known order 

Consider a discrete random variable Y which takes on values yi (i = 1, . . . , K) with 
probabilities q[. Suppose the probabilities qi are unknown, but it is known a priori that the 
values of the probabilities are ordered: 

91 3 q2 9 . . . 2 q,y 2 0; (5.3.1) 

Now suppose that the results of N independent trials are known, the random variable Y 
taking on the value yi in m, trials. Cfc=lmi = N. It is known that in the case where there 
are no special restrictions on the values of the probabilities q1 the maximum likelihood 
estimation of the probabilities is given by the frequencies qF= m,/N which provide the 
absolute maximum value of the likelihood function for the multinominal distribution (e.g. 

Van der Waerden [40]): 

Umlq) = Urn,, . . ., mdq,, . . ., qK) = fiqlmg. 
i=l 

(5.3.2) 

However, the frequencies q: do not satisfy, in general, conditions (5.3.1). Therefore, we 
have to find the constrained maximum of the likelihood function (5.3.2) subjected to 
conditions (5.3.1). The solution of the problem is given by the following propositions. 

Lemma 5.3.1. If for some i, 

m, < m,+, (5.3.3) 

then the likelihood function L can achieve maximum only on the boundary of the simplex 
0 defined by the condition: 

41 = 4i+1. (5.3.4) 

Lemma 5.3.2. If the likelihood function L(m/q) can achieve maximum value only on the 
boundary of the simplex 6, defined by conditions: 

and 

41 = 4i+1 = . . . = qi+k-I 

and at the same time 

qr+k = q,+k+l = . . . = q,+k+r-1 (5.3.5) 

m, + . . . + . . . + mjfk_l + 
< 

Wli+k . . + mi+k+t-i 

k 
9 (5.3.6) 

t 

then the likelihood function L(m/g) can achieve maximum value only on the boundary 
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defined by the condition 

41 = q1+1 = . . = q(+k = . . . = qr+k+t-l. (5.3.7) 

Theorem 5.3.1. If the likelihood function L can achieve maximum value only on the 
boundary of the simplex 0 defined by conditions: 

qs,+1 = q.,,+2 = . . . = q.,,,, (5.3.8) 

where 

r = 0, 1 n - 1, 0 < sg < s, < . < s,, = K (5.3.9) 

and for any Y: 

m,,+i + . . . + msr+, , 

Sr+l - s, 

then the maximum likelihood estimate for the 

m >,+,+I + + m.,r+7 
(5.3.10) 

SF+? - Sri1 

probabilities qr. . . ., qK are given by: 

(5.3.11) 

5.4. The estimate of the lower bound and its properties 

Using the results of Section 5.3, we can now write the estimate of the lower bound of the 

entropy in the form 

B(X) = c 2 p,S;‘H(u;,‘), (5.4.1) 
I g,=l 

where b’,: are the coefficients for which the right-hand side of (5.4.1) achieves maximum 
under conditions: 

/j(r) & ao; 5 B’,:’ = @‘, (5.4.2) 
g,=l 

The “smoothing” of the frequencies according to the rules derived in Section 5.3 always 
makes the distribution Ljfr) steeper than Qf”, which results in_a lower value of B(X). 
Therefore, B(X) obtains a negative bias. On the other hand, _H(X) is a convex function 
of the vector q(‘) (cf. Theorem 4.3.1). Therefore, the expected value of the estimate of the 
lower bound is larger than the lower bound calculated by use of the expected values of the 
smoothed frequencies. (These expected values constitute a distribution which is steeper 
than the actual probability distribution qtr) .) This means that the estimate B(X) gets a 
positive bias, which is opposite to the bias caused by the smoothing of the frequencies. Due 
to the compensation of these two influences the total bias of the estimate of a lower bound 
seems to be almost negligible. 

Now let us consider the variance of the estimate s(X). The estimate 5 can be 
expressed as a linear function of ml’) (using 5.3.11)): 

(5.4.3) 

where ml” obey the multinominal distribution. 
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Then the variance of & can be calculated as follows: 

where 

733 

(5.4.4) 

(5.4.5) 

For the evaluation of the variance frcm the experimental data we should substitute the 
frequencies m i”/N instead of prqir’. We obtain: 

(5.4.6) 

5.5. Statistical verification of the subdivisions for the upper and lower bounds 

As was stated in Section 3 the improvement of the upper bound can be achieved by 
subdivision of the totality of linguistic situations into several groups. Some of the original 
groups are, in practice, very small and should be joined to larger groups with similar 
distributions. A modified two-sample Wilcoxon rank test with ties (using mid-ranks) 
(Lehmann [41]) was found to be suitable in order to verify the difference and the similarity 
of the probability distributions qi’) of the groups. 

The problem of subdivision for the lower bound is formulated in a different way. 
Here we have to rely mostly on guesser’s decisions about the bounds for probabilities 

PL = pX/SL(xkx(j) / ") and their sums (for instance, the guesser can indicate that p1 > 0.85, or s, 

p, < 0.85, but pi + pz > 0.85. etc.). The validity of the characterization, given by the 
guesser, can be checked, however, by calculation of the average values qi” of the 
corresponding probabilities in the groups (which should not be too close to the bound- 
aries). It has been found that the majority of incorrect qualifications made by the guesser is 
connected with specific linguistic situations (for instance, the situation “after possible 
prefix”) and can be properly corrected. 

6. THE EXPERIMENT 

6.1. Introduction 

The goal of our experimental research was to investigate the information-theoretical 
properties of the Hebrew language using the improved prediction method. 

A point of great interest was the comparison of the information-theoretical character- 
istics of Hebrew with those of European languages, since they differ so much in grammar 
and transciption. The theoretical treatment given in Sections 3-5 forms a basis for a new 
kind of experimental study and provides tools and methods which enable more accurate 
and more reliable results. 

6.2. The description of the experiment 

The experiment consists of 1000 independent trials: in each of them the guesser must 
guess a symbol which is following a text of 1000 letters, unknown to the guesser before the 
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experiment. The texts were taken from original modern Hebrew fiction (twentieth-century 
prose) and were not overlapping. 

A random number generator was used to prepare a sequence of random numbers, which 
were later used for the choice of the symbol to be guessed. The range of the random 
numbers was taken with precautions in order to avoid influence of beginnings and endings 
of lines. 

Starting from the randomly chosen symbol, a window was open in the backward 
direction uncovering a text of approximately 1000 letters (?lO letters) which should be 
read prior to the guessing itself (thus, L = 1000 in our experiment). After reading the text 
the guesser was asked to relate the linguistic situation to one of the following groups: 

1. There is a single continuation with a probability close to 1 (pl 3 0.85). 
2. There are two possible continuations, one at least twice as probable as the other, with a 

total probability p, + p2 s 0.85. 
3. There are two possible continuations with almost equal probabilities and with a total 

probability p1 + p2 2 0.85. 
4. There are up to four possible continuations with a total probability pi + 

p2 + p3 + p4 3 0.85. 
5. All the other cases. 

The guesser is also asked to state if the last symbol of the visible text can be characterized 
as a “possible prefix” and only then a number of attempts is made to guess the unknown 
symbol, starting with the most probable until the guess is correct. 

A number of a priori and a posteriori characteristic was recorded as follows: 

1. A priori characteristics: 
(a) The previous symbol (the last symbol of the visible text). 
(b) The number of the position of the symbol to be guessed in the word. 
(c) The characterization of the previous symbol as a “possible prefix”. 

2. A posteriori characteristics: 
(a) The outcome of each attempt. 
(b) The correct continuation. 
(c) The number of attempts (the symbol of the “reduced text”). 
(d) The characterization of the guessed letter as “a first letter-prefix”, “a first letter- 

stem”. “a letter after prefix”, “a middle letter”, “an end letter”. 

It should be noted that in Hebrew the articles and most of the prepositions and 
conjunctions are connected with the following word and therefore we call them “prefixes”. 

In the main experiment two guessers were engaged together as a collective guessing 
team. They were free to discuss all the questions arising in the process of guessing. 
Decisions were usually made on the basis of a consensus. The guessers were aided by 
tables of probabilties of first letters in total, first letters in words beginning with a stem, 
first letters in words beginning with a prefix. The tables were prepared from the material in 
Choueka and Yeshurun [14] and Choueka [42]. 

7. THE EVALUATION OF THE UPPER BOUND OF ENTROPY 

7.1. Subdivision for the upper bound 

The primary groups of data l-5 obtained in the experiment were further subdivided into 
11 secondary groups using the a priori characterizations: “after a possible prefix” (“a”) and 
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“a beginning of a word” (“f”). Those secondary groups are listed in Table 8 and the 

distributions of the number of attempts are given in Table 9. 
The two-sample modified Wilcoxon sum-rank test with ties (mid-ranks) (Lehmann [41]) 

was used to verify similarities and differences between the various secondary groups. Most 
of the groups were pair-wise tested. The tests proved the groups I, J, K, which constitute 
the original group 5 to be different, justifying their separation. It has also been proved that 
group A differs from B and D, and that group D differs from E and F. Groups C, B, H, F, 
G and E are too small to be considered separately and they should be combined with 
larger groups. The final decision was based on values of estimates of probabilities that two 
groups may differ more than they do if they belong to the same population. 

It was decided to combine groups C, D, B and H into one group and groups F, G, I and 

Table 8. Secondary groups of experimental results based on primary subdivision and a 
priori characterization 

No. Group Definition of the group Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

J 
K 

Group 1 excluding “a”s and “f’s 442 
The “a”s of group 1 10 
The “f’s of group 1 14 
Group 2 excluding “a”s and “f’s 84 
The “a”s of group 2 5 
The “f’s of group 2 8 
The primary group 3 6 
The primary group 5 11 
Group 5 excluding “a”s and “f’s 124 
The “a”s of group 5 118 
The “f’s of group 5 158 

Table 9. Subdivision into secondary groups 

Group 

Y! 
m, 

A B C D E F G H I J K 

1 446 7 12 62 2 4 2 7 62 37 60 
2 8 1 1 14 2 2 3 2 21 11 23 
3 3 1 0 4 0 0 1 1 7 3 13 
4 1 0 0 2 1 1 0 0 9 5 11 
5 1 0 0 0 0 1 0 0 3 12 8 
6 0 0 0 0 0 0 0 0 5 8 9 
7 2 0 0 0 0 0 0 0 2 6 6 
8 1 0 0 1 0 0 0 0 1 7 8 
9 0 1 1 0 0 0 0 0 1 6 2 

10 0 0 0 0 0 0 0 0 4 1 2 
11 0 0 0 0 0 0 0 0 2 6 6 
12 0 0 0 0 0 0 0 0 2 0 0 
13 0 0 0 0 0 0 0 1 1 3 1 
14 0 0 0 0 0 0 0 0 1 2 4 
15 0 0 0 1 0 0 0 0 2 4 1 
16 0 0 0 0 0 0 0 0 0 2 2 
17 0 0 0 0 0 0 0 0 0 2 0 
18 0 0 0 0 0 0 0 0 1 1 1 
19 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 1 1 
21 0 0 0 0 0 0 0 0 0 1 0 

Total 462 10 14 84 5 8 6 11 124 118 158 
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E into another group. Finally, we have obtained five groups for the evaluation of the upper 
bound. The final subdivision is shown in Tables 10 and 11. 

7.2. Calculations of the estimates of the upper hand of entropy 

The final results of the calculations of the upper bound estimates for both Shannon’s 
original method and the improved method are given in Table 12. 

Table 10. The arrangement of secondary groups into five groups in accordance with results of the Wilcoxon tests 

Final group 

al 
a1 

a3 

a4 
a5 

Definition 

A-group 1 excluding “a”s and “f”s 
C. D, B, H--“f”s of group 1; group 2 excluding “a”s and “f”s: 
“a”s of 1; group 4 
F, G, I, E--“f”s of 2; group 3: group 5 excluding “a”s and Y’s: 
“a”S of 2 
K--“f”s of group 5 
J-“a”s of group 5 

Size (IV,) 

462 
119 

133 

158 
118 

Table 11. The final subdivision for the evaluation of the upper bound of entropy per symbol 

f-? 
Yr 

Group al a2 a3 a4 a5 Total 

1 446 88 70 60 37 701 
2 8 18 28 23 11 88 
3 3 6 8 13 3 33 
4 1 2 11 11 5 30 
5 1 0 4 8 12 25 
6 0 0 5 9 8 22 
7 2 0 2 6 6 16 
8 1 1 1 8 7 18 
9 0 2 1 2 6 11 

10 0 0 4 2 1 7 
11 0 0 2 6 6 14 
12 0 0 2 0 0 2 
13 0 1 1 1 3 6 
14 0 0 1 4 2 7 
15 0 1 2 1 4 8 
16 0 0 0 2 2 4 
17 0 0 0 0 2 2 
18 0 0 1 1 1 3 
19 0 0 0 0 0 0 
20 0 0 0 1 1 2 
21 0 0 0 0 1 1 

Total 462 119 143 158 118 1000 

Table 12. Final results for the estimate of the upper bound of entropy in nats and bits 

The estimate The bias (abs. value) The s.d. Final results 

Shannon’s estimate Nats 1.327 0.008 0.050 1.335 + 0.050 
%sX) Bits 1.915 0.012 0.072 1.927 f 0.072 

B(X) Nats Bits 1.078 1.555 0.044 0.063 
0.044 1.122 It 0.044 
0.063 1.618 k 0.063 
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8. THE EVALUATION OF THE LOWER BOUND OF ENTROPY 

8.1. Subdivision for the lower bound; determination of boundaries of convex domains 

In order to apply experimentally the technique which was developed in Sections 4 and 5 
we should manage to subdivide the population of linguistic situations into several groups 
such that the conditional probability vectors Pj for all the cases belonging to a certain group 
are concentrated in a corresponding convex domain which is a subset of the simplex B of 
all the ordered probability vectors. Thus, such a subdivision of the linguistic situations 
induces a subdivision of the simplex 6 into convex subsets (which may, in general, overlap) 
by hyperplanes, defined by equations of the following general form: 

~Cip. = const. (8.1.1) 

These hyperplanes together with the boundaries of the simplex 6 itself form the boundaries 
of the convex domains corresponding to different groups of linguistic situations. 

Note that the characterizations of the linguistic cases which were given by the guesser 
according to criteria l-5 in Section 6.1 separate the different groups of cases just by 
conditions of the form (8.1.1). Hence, the hyperplanes subdividing the simplex 0 may be 
specified by equations: 

Pl = PO, 

PI + P2 = PO, 

(8.1.2) 

(8.1.3) 

p1 = 2pz or 
Pl 

_ = 2 , 
P2 1 

Pl + P2 + P3 + p4 = po. 

(8.1.4) 

(8.1.5) 

(In our experiment p. = 0.85.) 
It is natural to expect that the characterization of the linguistic cases with respect to the 

boundaries (8.1.2)-(8.1.5) is subjected to errors: some of the cases have probability vectors 
which lie, in fact, outside the domain indicated by the guesser. The values of the sums of 
frequencies [or, for (8.1.4), the ratio of frequencies] for different groups of linguistic 
situations (which are estimates for the sums of average conditional probabilities for the 
group) can serve as “indicators” of the validity of the characterization for the group as a 
whole: they should take values which are located well inside the corresponding domain and 
not close to the boundaries separating this domain from its neighbours. An analysis of the 
secondary groups formed by use of the a priori characteristics (Table 9) shows that some 
small groups (such as B, E, F and G) do not satisfy the criteria which they should obey 
according to the original characterization of the guesser: the sums of the corresponding 
frequencies take values lying outside the proper domains. This means that a large part of 
erroneously characterized cases belong to those groups. Of course, the values of the 
frequencies are subjected to statistical fluctuations. In any case in order to obtain a more 
reliable result we should for such doubtful cases always make a decision which will provide 
a lower value of the lower bound. It can be seen that because of the concavity of the 
entropy function and the convexity of the lower bound (Theorem 4.3.1) it is more reliable 
to join such a small group to a group whose domain has vertices with larger values of 
entropy. 

Following these ideas we finally come to four convex domains Cl, C2, C, and C4 in the 
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simplex 0 and to corresponding groups of linguistic situations (L-grams) d,, d2, d3 and d,, 
as follows: 

Cl--the domain defined by the expressions: 

PI 3 p2 b p3 b . . . 2 PK 9 0, C,“,lPl = l] (8.1.6) 
Pl 2 PO 

C,-the domain defined by the expressions: 

p1 2 p2 2 . . . 2 p 2 0, 

Pl d PO> Pl + P2 3 PO, 

~$=*l~ 

I 
(8.1.7) 

C,-the domain defined by the expressions: 

PI 2 p2 b . . . 9 pK 2 0, 

Pl d PO, 
CfilP, = q 

Pl + P2 + P3 + Pa 2 PO 1 

C&the domain defined by the expressions: 

(8.1.8) 

Pl 3 p2 z= . . 3pK30 , CLIPi = 1 
I 

. (8.1.9) 
Pl + P2 s PO 

The correspondence between the secondary groups of L-grams, the final groups and the 
convex domains, as well as the values of indicators, are given in Table 13. Table 14 shows 
the distribution of cases in the final groups. The smoothed distributions obtained according 
to Section 5.3 are given in Table 15. 

8.2. Final results for the estimate of the lower bound of entropy 

Applying the methods and techniques developed in Sections 4 and 5, we come to the 
following final results for the lower bound of entropy of printed Hebrew: 

A(X) = 1.217 -C 0.059 bits 

Z&(X) = 1.019 ? 0.053 bits. 

9. RESULTS AND DISCUSSIONS 

9.1. Entropy and redundancy of printed Hebrew and comparison with other results 

The experiment described in Sections 6-8 gives estimates of the upper and lower bounds 
of the “entropy of 1000th order” Flooo which certainly can be taken as estimates of the 
upper and lower bounds of the actual entropy per symbol H. Finally, we have: 

fi = 1.618 k 0.063 bits (9.1.1) 

a = 1.217 f 0.059 bits. (9.1.2) 

Table 13. Final groups, final convex domains and total values of the relevant indicators for the evaluation of the 
lower bound 

Final 

group 

Final convex 
domain 

Total values of indicators 

s^, + q^2 q1 + B2 + ?3 + q^4 

Secondary 
groups 

dl 
6 
d3 
d4 

Cl 0.962 A+C 
C2 0.738 0.905 4.43 D 
C3 0.55 0.925 B+E+F+G+H 
C4 0.535 I+J+K 
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Table 14. The final subdivision for the evaluation of the lower bound 

Group dr d2 da d4 

m, (total) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

62 
14 

4 
2 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

Total 476 84 

458 
9 
3 
1 
1 
0 
2 
1 
1 
0 

22 
10 

3 
2 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

40 

159 701 
55 88 
23 33 
25 30 
23 25 
22 22 
14 
16 

9 
7 

14 
2 
5 
7 

3 
0 
2 
1 

400 

16 
18 
11 
7 

14 
2 
6 
7 
8 
4 
2 
3 
0 
2 
1 

Table 15. The smoothed distributions in the final groups for the evaluation of the lower bound 

Group 

Yl 
fi, &, (total) 

d2 d3 d4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1; 
l/4 
l/4 
lj4 

l/7 
l/7 
l/7 
117 
117 
117 
117 

0 
0 
0 
0 
0 
0 

Total 476 84 

458 62 
9 14 
3 4 

22 
10 

3 
2 

I/‘4 

114 
114 
114 
114 
114 
114 
114 

0 
0 
0 
0 
0 
0 
0 
0 

40 

159 
55 
24 
24 
23 
22 
15 
15 
10 
10 

2;; 
2114 
2114 
2114 

51; 
512 

1 
1 
1 

400 

701 

88 
33 
30 
25 
22 
17 
17 
11 
10.5 
10.5 

5.75 
5.75 
5.75 
5.75 
4 
2.5 
2.5 

1000 

The results show a considerable improvement in comparison with the upper and lower 
bounds calculated from the same experimental data by the original Shannon method: 

A 
H,, = 1.927 k 0.072 bits (9.1.3) 
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&, = 1.019 + 0.053 bits. (9.1.4) 

Thus the gap between the upper and the lower bounds is reduced more than twice by the 
use of the improved method: 

Sfi(X) = g(X) - &X) = 0.401 bits (9.1.5) 

Si?,,(X) = fish(X) - &s,,(X) = 0.908 bits (9.1.6) 

The results (9.1.1) and (9.1.2) show, in particular, that the statistical inaccuracy is rather 
small (4-5%) in our experiment, so that the accuracy of the evaluation of the entropy per 
symbol is limited mostly by the gap between the upper and the lower bounds. A theoretical 
analysis of the limits of the gap is given in Reingold [8], Ch. 3. 

The amount of information in the preceding text about the following symbol [cf. (2.1.7)] 
is bounded for Hebrew by: 

I 
I (S, X) = F,(X) - N(X) = 2.767 + 0.070 bits (9.1.7) 

&S, X) = F,(X) - H(X) = 2.366 + 0.074 bits. (9.1.8) 

The bounds of the redundancy of a language are defined by formulae [cf. (2.1.8)]: 

(9.1.9) 

The zero-order entropy for Hebrew is FO = log, 23 = 4.52 bits. 
Using (9.1.1) and (9.1.2), we obtain: 

F = 73%; & = 64%. (9.1.10) 

It can be seen that the entropy per symbol of Hebrew is considerably larger (by = 0.3-0.5 
bits) than that of European languages, Armenian and Kazakh. The redundancy of the 
European languages is larger by approximately 10% (see Table 3) than that of Hebrew. 

In order to understand the origin of these differences some special features of printed 
Hebrew text should be considered. The printed Hebrew has a partly syllabic structure: the 
vowels “a” and “e” are not indicated by special letters, the vowel “0” and “u” are denoted 
by the same letter, and moreover, this letter and the letter for “i” are sometimes omitted 
in older texts, which are written in the so-called “ktav khaser” (“missing spelling”) in 
contrast with modern texts written in “ktav maleh” (“full spelling”). In our experiment, 
twentieth-century Hebrew texts were used which included both types of spelling. The 
partial removal of vowels results, of course, in a reduction of redundancy and it can explain 
the higher entropy per symbol of Hebrew in comparison with other languages using 
complete transcription of vowels. 

9.2. Entropy per symbol for special linguistic cases 

It is known that information is distributed in a text in a highly non-uniform way. The 
uncertainty of a symbol following a given L-gram depends very much on the position of 
the symbol in the word and on other grammatical features of the situation. 

Subjectively, the beginnings of words seem to constitute the most difficult situations for a 
guesser in such languages as English or Russian. However, it should be noted that in 

Hebrew the articles and most of the prepositions and conjunctions are connected with the 
following words. Therefore, it is worth considering separately this type of situation, which 
we called “a letter after a prefix” (a posteriori). Other cases of interest are “a middle 
letter” (excluding the cases “after prefix”), “an end letter” and “space”. 
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Table 16 gives the upper and lower bounds of the entropy of the first letter of a word 
(for “beginning with a prefix”, “beginning with a stem” and “total”, respectively). 

These results are compared with the values of the first order entropy F[ for the same 
types of situations. Similar results for Russian obtained by Piotrovski [20] are also given. It 
can be learned from the table that “the beginning with a stem” provides considerably more 
information than “the beginning with a prefix”. 

The results for the “beginning with a stem” are closer to the “total” results for Russian, 
apparently because of the fact that there are no such “prefixes” as articles, prepositions 
and conjunctions in Russian. 

Table 17 contains the estimates for the upper and lower bounds of entropy for the 
situations “after prefix”, “middle letter”, “end letter” and “space”. It is seen that the 
entropy of letters “after prefix” . IS the highest one and even higher than the entropy of a 
“first letter-stem”. 

This situation is specific for Hebrew in contrast with such languages as English and 
Russian. The entropy of “middle letters ” is a little less than the general entropy per letter. 
The entropy of “end letters” is, as expected, much less, and the entropy of spaces is close 
to zero. 

9.3. Applications of the method and the results 

The method developed in the present work can be easily applied to other languages 
(though the characterization of the groups and the a priori characteristics recorded should 
be adapted to each language individually). A more general field of application of the 
method is an information-theoretical study of other forms of information-carrying 
processes which possess a very complicated probabilistic structure and interdependence 
between their elements, inaccessible for a direct statistical analysis, but appeal to our 
experience, knowledge and intuition. Objects such as meaningful images, music, languages 
on other linguistic levels (such as syllables, morphems, words, etc.), information exchange 
between a human group and a leader, systems with man-machine interaction, etc., can be 
investigated by some modifications of the prediction method. The prediction experiment 
itself can be used in psychology as a test of personality features: intellectuality, memory, 
language knowledge, ability to evaluate probabilities of random events, decision-making 
properties, etc., for which purpose a set of standard texts should be prepared. 

The results of the experiment can be used in communication engineering, as was 
indicated by Shannon [2], and in cryptography (for the preliminary elimination of source 

Table 16. Entropy of the first letter of a word in bits 

First letter-prefix 

2.47 
1.58 

2.93 

First letter-stem 

3.27 
2.39 

4.24 

First letter-total First letter-total for Russian 

2.94 3.45 
1.98 2.98 
3.88 4.23 

Table 17. Entropy per symbol for different types of linguistic situations 

After prefix Middle letter End letter Space 

a 3.57 1.48 1.01 
5 

0.176 
2.73 0.87 0.471 0.0816 
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redundancy). Some applications of such results in linguistics were discussed by Bar-Hillel 
[43], Herdan [5], Piotrovski [20,22], and others (Yaglom et al. [4]; Dobrushin [44]; 
Kondratov [7]). 
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