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The year 2012 marks the 40th anniversary of the publication of the influen-
tial paper “Reducibility among combinatorial problems” by Richard Karp [37].
This paper was the first to demonstrate the wide applicability of the concept
now known as NP-completeness, which had been introduced the previous year
by Stephen Cook and Leonid Levin, independently. 2012 also marks the 100th
anniversary of the birth of Alan Turing, whose invention of what is now known
as the “Turing machine” underlay that concept. In this chapter, I shall briefly
sketch the history and pre-history of NP-completeness (with pictures), and
provide a brief personal survey of the developments in the theory over the
last 40 years and their impact (or lack thereof) on the practice and theory of
optimization. I assume the reader is familiar with the basic concepts of NP-
completeness, P, and NP, although I hope the story will still be interesting to
those with only a fuzzy recollection of the definitions.

The New Prehistory

When the Garey & Johnson book Computers and Intractability: A Guide to
the Theory of NP-Completeness [23] was written in the late 1970s, the sources
of the theory were traced back only to 1965. In particular, we cited papers
by Cobham [13] and Edmonds [18], which were the first to identify the class
of problems solvable in polynomial time as relevant to the concept of efficient
solvability and worthy of study. We also cited a second paper of Edmonds
[17], which in a sense introduced what was later to be called the class NP, by
proposing the notion of a problem having a “good characterization.”

It turns out, however, that a pair of eminent mathematicians had touched on
the issues involved in NP-completeness over a decade earlier, in handwritten
private letters that took years to come to light. The first to be rediscovered
(and the second to be written) was a letter from Kurt Gödel to John von Neu-
mann, both then at the Institute for Advanced Study in Princeton, New Jersey.
Gödel is perhaps most famous for his 1931 “Incompleteness Theorems” about

Documenta Mathematica · Extra Volume ISMP (2012) 359–376



360 David S. Johnson

mathematical logic. His letter, written in German and dated 20 March 1956,
was not publicized until 1989, when Juris Hartmanis published a translation
and commentary [27].

In this letter, Gödel considered first a problem of finding proofs in a given
proof system: Given a first order formula F and an integer n, is there is a proof
of F having length no more than n? Let A be a Turing machine that solves this
problem, and, following Gödel, let ψA(F, n) denote the number of steps that A
takes when applied to the instance consisting of formula F and bound n. Now
let φA(n) be the worst-case value of ψA(F, n) over all formulas F of length n.
Note that a Turing machine A performing exhaustive search would have a value
for φA(n) that was no worse than exponential in n. Gödel pointed out how
wonderful it would be if there were an A with φA(n) = O(n) or even O(n2),
observing that such a speedup had already been observed for the problem of
computing the quadratic residue symbol. Finally, he asked “how strongly in
general” one could improve over exhaustive search for combinatorial problems,
in particular mentioning the problem of primality testing (a problem whose
worst-case complexity remained open for almost 50 more years, until it was
shown to be polynomial-time solvable by Agrawal, Kayal, and Saxena in 2002
[3]).

Note that Gödel did not make the generalization from O(n) and O(n2) to
polynomial time. He was more interested in algorithms that might plausibly
be practical. He was also not measuring running time in terms of the modern
concept of “input length”. For that he would have had to explicitly specify
that n was written in unary notation. (If n were written in standard binary
notation, then exhaustive search for his problem might have been doubly expo-
nential in the input size.) On the other hand, he does seem to have assumed
binary, or at least decimal, input size when he discussed primality testing.
Moreover, he used the idea of worst-case running time analysis for algorithms
and problems, something that was not all that common at the time, and which
dominates algorithmic research today. And he does seem to have an idea of
the class of problems solvable by exhaustive search, which can be viewed as a
generalization of NP, and his final question hints at the question of P versus
NP. At any rate, Gödel’s letter, once discovered, was immediately recognized
as an important precursor to the theory of NP-completeness. When an an-
nual prize for outstanding journal papers in theoretical computer science was
established in 1992, it was only natural to name it the Gödel Prize. More re-
cently, the letter has even lent its name to a well-written and popular blog on
algorithms and computational complexity (Gödel’s Lost Letter and P = NP,
http://rjlipton.wordpress.com).

The other famous mathematician whose letters foreshadowed the theory of
NP-completeness was John Nash, Nobel Prize winner for Economics and sub-
ject of both the book and the movie A Beautiful Mind. In 1955, Nash sent
several handwritten letters about encryption to the United States National Se-
curity Agency, which were not declassified and made publicly available until
2012 [1]. In them, he observes that for typical key-based encryption processes,
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Figure 1: Stephen Cook, Richard Karp, and Leonid Levin, photographed in
the 1980s

if the plain texts and encrypted versions of some small number of messages
are given, then the key is determined. This is not technically correct, since in
addition there must be sufficient entropy in the plain texts, but Nash’s argu-
ments apply as well to the problem of finding some key consistent with the
encryptions. His central observation was that even if the key is determined, it
still may not be easy to find.

If the key is a binary string of length r, exhaustive search will work (as
it did for Gödel), but takes time exponential in r. For weak cryptosystems,
such as substitution ciphers, there are faster techniques, taking time O(r2) or
O(r3), but Nash conjectured that “for almost all sufficiently complex types of
enciphering,” running time exponential in the key length is unavoidable.

This conjecture would imply that P 6= NP, since the decryption problem he
mentions is polynomial-time equivalent to a problem in NP: Given the data
on plain and encrypted texts and a prefix x of a key, is there a key consistent
with the encryptions which has x as a prefix? It is a stronger conjecture,
however, since it would also rule out the possibility that all problems in NP
can, for instance, be solved in time nO(logn), which, although non-polynomial,
is also not what one typically means by “exponential.” Nash is also making a
subsidiary claim that is in essence about the NP-hardness of a whole collection
of decryption problems. This latter claim appears to be false. Nash proposed
an encryption scheme of the type he specified, but the NSA observed in private
notes that it provided only limited security, and since the publication of the
letters modern researchers have found it easy to break [2]. Also, like Gödel,
Nash did not make the leap from low-order polynomial time to polynomial time
in general. He did however, correctly foresee the mathematical difficulty of the
P versus NP problem. He admitted that he could not prove his conjecture, nor
did he expect it to be proved, even if it were true.
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Cook, Karp, and Levin

The theory of NP-completeness is typically traced back to Steve Cook’s 1971
paper “The complexity of theorem-proving procedures” [14], which provided
the first published NP-completeness results. However, Leonid Levin, then a
student in Moscow, proved much the same results at roughly the same time,
although his results were not published until 1973. Over the years, the con-
temporaneous and independent nature of Levin’s accomplishment have come
to take precedence over publication dates, and what used to be called “Cook’s
Theorem” is now generally referred to as the “Cook-Levin Theorem.” Let me
say a bit about these two parallel developments.

When Cook wrote his paper, he was an Associate Professor in the Computer
Science Department of the University of Toronto, where he is now a Univer-
sity Professor. Earlier, he had received his PhD from Harvard in 1966, and
spent four years as an Assistant Professor in the Mathematics Department of
University of California, Berkeley, which foolishly denied him tenure. Cook’s
paper appeared in the proceedings of the 1971 ACM Symposium on Theory
of Computing (STOC), and there are apocryphal stories that it almost was
not accepted. This seems unlikely, although it wouldn’t be the first time a
major breakthrough was not recognized when it occurred. The paper’s sig-
nificance was certainly recognized as soon as it appeared. Not only did the
paper prove that satisfiability is NP-complete (in modern terminology), but
it also proved the same for 3SAT, and hinted at the broader applicability of
the concept by showing that the same also holds for subgraph isomorphism

(more specifically, the special case now known as the clique problem). I was a
grad student at MIT at the time, and Albert Meyer and Mike Fischer included
these results in their Fall 1971 Algorithms course. Others had also been busy,
as became clear at the March 1972 conference on “Complexity of Computer
Computations” at the IBM T.J. Watson Research Center in Yorktown Heights,
NY, where Richard Karp presented his famous paper.

Karp was also a Harvard PhD recipient (1959), and after an 11-year stint
at the same IBM Research Center that housed the conference, had moved to
a professorship at UC Berkeley in 1968, where he remains today, after a brief
sojourn to the University of Washington in Seattle. Karp’s paper showed that
19 additional problems were NP-complete, including such now-famous char-
acters as vertex cover, chromatic number, the directed and undirected
hamiltonian circuit problems, subset sum, and the knapsack problem.
Most of the proofs were due to Karp himself, but a few were attributed to
Gene Lawler, Bob Tarjan, and “the Algorithms Seminar at Cornell.” The pa-
per appears to be the first to use the notations P and NP, although its term
for “NP-complete” was “polynomial complete,” a locution used in several early
papers before the modern terminology took hold. The paper also introduced
the distinction between a polynomial transformation, where an instance of the
first problem is transformed into one of the second that has the same yes-no
answer, and a polynomial reduction, in which the first problem is solved using
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one or more calls to a subroutine that solves the second. Cook had stated his
results in terms of the latter notion, but his proofs had essentially relied only
on the first.

This was the first conference that I had attended, and I was suitably awed by
all the famous participants whom I was meeting for the first time - including
John Hopcroft, Michael Rabin, Bob Tarjan, Jeff Ullman, and Richard Karp
himself. I even got to sit across the table from Dick at one lunch. I took
the opportunity to mention to him that I had already proved one polynomial
completeness result myself, that for bin packing, the problem that was to be
the topic of my thesis. Albert Meyer had proposed I work on it just a month
earlier, saying “This is perfect for you, Johnson. You don’t need to know
anything – you just have to be clever.” Albert had learned about the problem
from a preprint of a 1972 STOC paper by Garey, Graham, and Ullman [21].
In the problem, one is given a sequence of numbers a1, a2, . . . , an ∈ (0, 1] and
a target k, and asked if the numbers be partitioned into k sets, each summing
to no more than 1. Dick showed polite interest, but, as the words came out of
my mouth, I was embarrassed to realize how trivial my proof was compared to
the ones in his paper (subset sum is the special case of bin packing where
k = 2 and the

∑n
i=1 ai = 2.)

In addition to many other interesting papers, the conference included a lively
panel discussion, a transcript of which is contained in the proceedings [45].
It covered issues raised by many of the preceding talks, but the discussion
kept coming back to the P versus NP question. The most remembered (and
prescient) comment from the panel was by John Hopcroft. He observed that,
although a consensus seemed to be forming that the two classes were not equal,
for all we currently knew, every problem in NP could be solved in linear time.
He concluded that it would be “reasonably safe” to conjecture that, within
the next five years, no one would prove that any of the polynomial complete
problems even required more than quadratic time. It is now 40 years and
counting, and we still have yet to see any such proofs.

Meanwhile, in a much different world, Leonid Levin was thinking about the
same issues, but not getting nearly the same publicity. In the Soviet Union
at the time, many researchers were considering questions related to the P ver-
sus NP question. In particular, there was the notion of the class of problems
that could only be solved by perebor, the Russian name for algorithms that
were essentially based on exhaustive search [52]. Levin was a PhD student
at the University of Moscow. In 1971, he completed a thesis on Kolmogorov
complexity, but although it was approved by Kolmogorov (his advisor) and
by his thesis committee, the authorities refused to grant the degree for po-
litical reasons. (Levin admits to having been a bit intractable himself when
it came to toeing the Soviet line [51, 151–152].) Levin continued to work on
other things, however, in particular perebor, coming up with his version of
NP-completeness that same year, and talking about it at various seminars in
Moscow and Leningrad [52]. He also wrote up his results, submitting them
for publication in June 1972 [52], although the paper did not appear until the
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second half of 1973. Its title, translated into English, was “Universal sequential
search problems” [42] (“Sequential search” was a mistranslation of perebor).
The 2-page paper was brief and telegraphic, a trait shared by many of Levin’s

subsequent papers (e.g., see [55, 43]), omitting proofs entirely. A corrected
translation appears as an appendix in [52]. In his paper, Levin deals with the
generalization of NP to search problems: Relations A(x, y) on strings, such
that for all pairs (x, y) such that A(x, y) holds, the length of y is polynomially
bounded in the length of x, and such that for all pairs (x, y), one can determine
in polynomial time whether A(x, y) holds. Here x stands for an instance of the
problem, and y a corresponding “solution.” The search problem for A is, given
x, find a y such that A(x, y) holds. The corresponding problem in NP is, given
x, does there exist a y such that A(x, y) holds. Levin mentions this version,
calling it a “quasi-search” problem, but concentrates on the search problem
version. He describes what we would now view as the standard notion of a
polynomial reduction from one search problem A to another one, and calls a
problem a “universal search problem” if there exist polynomial reductions to it
from all the search problems in the above class. He then goes on to list six search
problems that he can prove are universal search problems. These include the
search versions of satisfiability, set cover, and subgraph isomorphism,
along with others that were not on Karp’s list, such as the following tiling
problem: Given a square grid whose boundary cells each contain an integer
in the range from 1 to 100, together with rules constraining the contents of
interior cells, given the contents of the four neighboring cells (to the left, right,
top, and bottom), find a legal tiling that agrees with the given assignment to
the boundary cells.
Those who heard Levin speak about these results were immediately im-

pressed. Trakhtenbrot [52] quotes Barzdin, who heard Levin speak in Novosi-
birsk in April, 1972, as saying “Just now Levin told me about his new results;
it is a turning point in the topic of perebor !” Note that this is clear evidence
that the work of Cook and Karp had not yet received wide attention in Russia.
However, neither did the work of Levin. In 1973, when Russian theoreticians
finally did take up NP-completeness, it was mainly through the Cook and Karp
papers [25]. Levin’s impact appears not to have spread much beyond those who
had heard him speak in person.
In 1978, Levin emigrated to the US, where I first met him while visiting

MIT. There he finally received an official PhD in 1979, after which he took up
a position at Boston University, where he is now a Full Professor. He has made
many additional contributions to complexity theory, including

• A theory of average case completeness [43], using which he shows that a
variant of his above-mentioned tiling problem, under a natural notion of a
uniform distribution for it, cannot be solved in polynomial expected time
unless every other combination of a problem in NP with a reasonably
constrained probability distribution can be so solved.

• A proof that the one-way functions needed for cryptography exist if and
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only if pseudorandom number generators exist that cannot in polynomial
time be distinguished from true random number generators [28].

• A proof that a 1965 precursor of the ellipsoid algorithm, in which simplices
play the role of ellipses, also runs in polynomial time [55] (thus there is
a simplex algorithm that runs in polynomial time . . . ).

Cook and Karp also have made significant contributions to complexity theory
since their original breakthroughs. Karp’s many contributions are well known
in the mathematical programming community and too extensive to list here.
Cook’s main work has been in the study of proof complexity, but he is respon-
sible for introducing at least one additional complexity class, one that provides
an interesting sidelight on NP-completeness.
This is the class SC, the set of decision problems that can be solved by al-

gorithms that run in polynomial time and require only polylogarithmic space,
that is, use O(logk n) space for some fixed k. Here “SC” stands for “Steve’s
Class,” the name having been suggested by Nick Pippenger in recognition of
Steve’s surprising 1979 result that deterministic context-free languages are in
this class [15], but also in retaliation for Steve’s having introduced the terminol-
ogy “NC” (“Nick’s Class”) for the set of decision problems that can be solved
in polylogarithmic time using only a polynomial number of parallel processors
[26]. The significance of these two classes is that, although it is easy to see that
each is contained in P, one might expect them both to be proper subclasses
of P. That is, there are likely to be problems in P that cannot be solved in
polynomial time if restricted to polylog space, and ones that cannot be solved
in polylog time if restricted to a polynomial number of processors. By anal-
ogy with NP-completeness, one can identify candidates for such problems by
identifying ones that are “complete for P” under appropriate reductions. One
famous example, complete for P in both senses, is linear programming [16].
Both Cook and Karp have won multiple prizes. Cook won the 1982 ACM

Turing Award (the top prize in computer science) and the 1999 CRM-Fields
Institute Prize (the top Canadian award for research achievements in the math-
ematical sciences). Karp won the Lanchester Prize in 1977, the Fulkerson Prize
in discrete mathematics in 1979, the ACM Turing Award in 1985, the ORSA-
TIMS von Neumann Theory Prize in 1990, and many others. Levin is long
overdue for his own big award, although I expect this will come soon. And, of
course, the biggest prize related to NP-completeness is still unawarded: The
question of whether P equals NP is one of the six remaining open problems for
the resolution of which the Clay Mathematics Institute is offering a $1,000,000
Millenium Prize.

Garey, Johnson, and Computers and Intractability

My own most influential connection to the theory of NP-completeness is un-
doubtedly the book Computers and Intractability: A Guide to the Theory of
NP-completeness, which I wrote with Mike Garey and which was published in
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Figure 2: Michael Garey and David Johnson in 1977

1979. At the time, we optimistically promised the publishers that we would sell
5,000 copies, but it has now sold over 50,000, picking up some 40,000 citations
along the way, according to Google Scholar.
My early involvement with the theory, beyond the lunchtime conversation

mentioned above, mainly concerned one of the methods for coping with NP-
completeness: Designing and analyzing approximation algorithms. While at
MIT I wrote a PhD thesis on approximation algorithms for the bin packing
problem [32] and a paper exploring how the same approach could be extended
to other problems, such as graph coloring, set covering, and maximum satisfi-
ability [33].
On the strength of this research, I was recruited to come to work at Bell

Labs by Ron Graham and Mike Garey, whose initial paper on bin packing
had introduced me to the topic. After receiving my PhD in June 1973, I
moved to New Jersey and began my Bell Labs/AT&T career. One of my
first collaborations with Mike was in producing a response to a letter Don
Knuth had written in October to many of the experts in the field. The letter
sought a better name than “polynomial complete” for the class of problems
that Cook and Karp had identified. Knuth asked for a vote on three terms
he was proposing (“Herculean,” “formidable,” and “arduous”). We did not
particularly like any of Knuth’s alternatives, and proposed “NP-complete” as
a write-in candidate. We were not the only ones, and when Knuth announced
the results of his poll in January 1974 [41], he gave up on his original proposals,
and declared “NP-complete” the winner, with “NP-hard” chosen to designate
problems that were at least as hard as all the problems in NP, although possibly
not in NP themselves. See Knuth’s article or [23] for an amusing summary of
some of the other proposals he received.
Mike and I also began an active research collaboration, covering both bin

packing and scheduling algorithms and the proof of new NP-completeness re-
sults. When Karp wrote a journal article [38] derived from his original proceed-
ings paper, his expanded list, now of 25 problems, included some of our new
results. This set the stage for our book [23], with its much longer list, although
the actual genesis of the book was more happenstance. In April 1976, Mike
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and I attended a conference at Carnegie-Mellon University on “New Directions
and Recent Results in Algorithms and Complexity,” where I gave a talk on the
various types of approximation guarantees we had seen so far. Afterwards, at
a coffee break, an editor for the Prentice-Hall publishing company came up to
me and suggested that Mike and I write a book on approximation algorithms.
In thinking about that proposal, we realized that what was needed, before any
book on approximation algorithms, was a book on NP-completeness, and by
the time we left the conference we were well on our way to deciding to write
that book ourselves.

One of my tasks was to collect NP-completeness results for our planned list,
which in those days before personal computers meant writing the details by
hand onto file cards, stored in plastic box. At that time, it was still possible to
aim for complete coverage, and our eventual list of some 300 problems covered
most of what had been published by the time we finished our first draft in mid-
1978, including many results we came up with ourselves when we identified
interesting gaps in the literature, and for which we provided the unhelpful
citation “[Garey and Johnson, unpublished].” We did keep notes on the proofs,
however (in that same plastic box), and most can still be reconstructed . . .
After detailed discussions about what we wanted to say, I wrote first drafts of
the chapters, with Mike then clarifying and improving the writing. (A quick
comparison of the writing in [23] with that in this memoir will probably lead
most readers to wish Mike were still doing that.)

We did resort to computers for the actual typesetting of the book, although
I had to traipse up to the 5th floor UNIX room to do the typing, and put up
with the invigorating smell of the chemicals in the primitive phototypesetter
there. Because we were providing camera-ready copy, we had the final say on
how everything looked, although our publisher did provide thorough and useful
copy-editing comments, including teaching us once and for all the difference be-
tween “that” and “which.” There was only one last-minute glitch, fortunately
caught before the book was finalized – the cover was supposed to depict the
graph product of a triangle and a path of length two, and the initial artist’s
rendering of this was missing several edges.

Over the years, the book has remained unchanged, although later printings
include a 2-page “Update” at the end, which lists corrigenda and reports on
the status of the twelve open problems listed in Appendix A13 of the book. As
of today only two remain unresolved: graph isomorphism and precedence

constrained 3-processor scheduling. Of the remaining ten, five are now
known to be polynomial-time solvable and five are NP-complete. For details,
see [35, 46]. A second edition is perpetually planned but never started, although
I have resumed my NP-completeness column, now appearing on a sporadic basis
in ACM Transactions on Algorithms, as groundwork for such an undertaking.

We never did write that book on approximation algorithms, and indeed no
such book seems to have appeared until Dorit Hochbaum’s Approximation Al-
gorithms for NP-Hard Problems [29] appeared in 1997. This was an edited
collection, to which Mike, Ed Coffman, and I contributed a chapter. The first
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textbook on approximation algorithms was Vijay Vazirani’s Approximation Al-
gorithms [53], which did not appear until 2001. Although Mike and I never got
around to writing a second book, there is a second “Garey and Johnson” book
of a sort. In 1990, our wives, Jenene Garey and Dorothy Wilson, respectively
a Professor of Nutrition at NYU and a school teacher, coauthored The Whole
Kid’s Cookbook, copies of which were sold to raise funds for the Summit Child
Care Center, a local institution where Dorothy had worked.

The Last Forty Years: Hardness of Approximation

It would be impossible, in the limited space left to me, to give a thorough
history of the developments in the theory of NP-completeness since the 1970s,
so in this section I shall restrict myself to just one thread: applying the theory
to approximation algorithms.
An approximation algorithm does not necessarily return an optimal solution,

but settles for some feasible solution which one hopes will be near-optimal. A
standard way to evaluate an approximation algorithm A is in terms of the
“worst-case guarantee” it provides. Let us suppose for simplicity that the
problem X for which A is designed is a minimization problem. Then A pro-
vides a worst-case guarantee equal to the maximum, over all instances I of
the problem, of A(I)/OPT (I), where A(I) is the value of the solution that
algorithm yields for instance I, and OPT (I) is the optimal solution value. For
example, Christofides’ algorithm for the Traveling Salesman Problem (TSP)
has a worst-case guarantee of 3/2 if we restrict attention to instances satisfying
the triangle inequality [12].
We are of course most interested in approximation algorithms for NP-hard

problems that run in polynomial time. Unfortunately, it turns out that some-
times designing such an approximation algorithm can be just as hard as finding
an optimal solution. The first paper to make this observation appeared in 1974,
written by Sahni and Gonzalez [49]. They showed, for example, that if one does
not assume the triangle inequality, then for any constant k, the existence of a
polynomial-time approximation algorithm for the TSP with worst-case guaran-
tee k or better would imply P = NP. The proof involves a “gap” construction,
by transforming instances of HAMILTON CIRCUIT to TSP instances whose op-
timal tours have length n if the Hamilton Circuit exists, and otherwise have
length greater than kn (for example by letting the distance between u and v
be 1 if {u, v} is an edge in the original graph, and kn otherwise).
By the time our NP-completeness book appeared, there were a few more re-

sults of this type. Of particular interest were results ruling out “approximation
schemes.” A polynomial-time approximation scheme (PTAS) for a problem is
a collection of polynomial-time algorithms Aǫ, where Aǫ has a worst-case guar-
antee of 1+ ǫ or better. In 1975, Sahni [48] showed that the Knapsack Problem
has such a scheme. His algorithms, and many like them, were seriously imprac-
tical, having running times exponential in 1/ǫ, although for any fixed ǫ they
do run in polynomial time. Nevertheless, over the years much effort has been
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devoted to finding such schemes for a wide variety of problems.

Given how impractical PTASs tend to be, one could perhaps view this ever-
popular pastime of designing them as providing “negative-negative” results,
rather than positive ones. One can rule out the existence of such a scheme
(assuming P 6= NP) by proving that there exists an ǫ such that no polynomial-
time approximation can have a worst-case guarantee of 1 + ǫ or better unless
P = NP. This is trivially true for bin packing, since if an algorithm could
guarantee a ratio less than 3/2, then one could use it to solve the subset sum

problem. The existence of a PTAS for a problem thus merely shows that there
is no ǫ such that one can prove a 1 + ǫ inapproximability result.

There is one particular type of PTAS, however, that can perhaps be viewed
more positively. Shortly after Sahni’s knapsack PTAS appeared, Ibarra and
Kim [31] significantly improved on it, designing what we now call a fully
polynomial-time approximation scheme (FPTAS): An algorithm A that takes
as input both an instance I and an ǫ > 0, returns a solution that is no worse
than (1+ ǫ)OPT (I), and runs in time bounded by a polynomial not just in the
size of I, but also in 1/ǫ.

Unfortunately, it was quickly realized that FPTASs were much less common
than ordinary PTASs. In particular, the TSP with the triangle inequality could
not have an FPTAS unless P 6= NP, something that could not then be ruled
out for ordinary PTASs. This was because it was “NP-hard in the strong
sense,” which means it was NP-hard even if we restrict all numbers in the
input (in this case the inter-city distances) to integers that are bounded by
some fixed polynomial in the input length, rather than the exponentially large
values normally allowed by binary notation. It is an easy result [22] that no
optimization problem that is strongly NP-hard can have an FPTAS unless P
= NP (in which case none is needed).

On the other end of the scale (problems for which no algorithms with a
bounded performance guarantee could exist, or at least were known), there
were fewer results, although the best performance guarantee then available for
the SET COVER problem was H(n) =

∑∞

i=1 1/i ∼ lnn [33, 44], and no algo-
rithms for clique were known with guarantees better than O(n/polylog(n))
[33]. Whether this was best possible (assuming P 6= NP) was unknown, and
the field remained in this state of ignorance for more than a decade. Indeed,
although there was the occasional interesting problem-specific result, approxi-
mation algorithms remained only a minor thread of algorithms research until
1991, when a seemingly unrelated result in NP-completeness theory suddenly
gave them an explosive new life.

This result was the discovery of a new characterization of NP, in terms of
“probabilistically checkable proofs” (PCPs). A PCP is a proof whose validity
can be estimated by looking at only a few, randomly chosen, bits. If the proof
is valid, then any choice of those bits will support this fact. If it is defective,
than a random choice of the bits to be examined will, with probability 1/2
or greater, confirm that the proof is not valid. This basic concept developed
out of a series of papers, starting with the study of interactive proofs involving
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multiple provers and one verifier. (These papers include one with Leonid Levin
as a co-author [10].)
If f(n) and g(n) are two functions from the natural numbers to them-

selves, let PCP(f, g) denote that class of all problems that have PCPs us-
ing O(f(n)) random bits and looking at O(g(n)) bits of the proof. In late
1991, Feige, Goldwasser, Lovász, Safra, and Szegedy [20] showed that NP ⊆
PCP(log n log log n, log n log log n) and that, surprisingly, this highly-technical
result implied that clique could not be approximated to any constant factor
unless NP ⊆ DTIME[nO(log logn)]. This is a weaker conclusion than P = NP,
but not much more believable, and in any case, the implication was strength-
ened to P = NP in early 1992, when Arora and Safra [7] showed that NP
= PCP(log n, log n). Shortly thereafter, Arora, Lund, Motwani, Sudan, and
Szegedy [5] improved this to NP = PCP(log n, 1), which had even stronger
consequences for approximation. In particular, it implied that many famous
problems could not have PTASs, including max 2-sat, vertex cover, and
the triangle-inequality TSP. There is not room here to give the details of the
proofs of these results or all the references, but the key idea was to produce a
gap construction for the problem in question, based on the relation between the
random bits used by the verifier in a PCP for 3sat, and the proof bits at the
addresses determined by those random bits. For a contemporaneous survey,
providing details and references, see [34].
In the twenty years since these breakthrough results, there has been an ex-

plosion of inapproximability results exploiting variants and strengthenings of
the original PCP results, and based on a variety of strengthenings of the hy-
pothesis that P 6= NP. For surveys, see for instance [36, 54]. Today we know
that clique cannot be approximated to a factor n1−ǫ for any constant ǫ > 0
unless P = NP [56]. We also know that the Greedy algorithm for set cover,
mentioned above, cannot be bettered (except in lower-order terms) unless NP
⊆ DTIME[nO(log logn)] [19].
Other hypotheses under which hardness of approximation results have been

proved include NP * DTIME[nO(log log logn)], NP * ∪k>0 DTIME[nlog
k n], NP

* ∩ǫ>0 DTIME[2n
ǫ

], and NP * BPP, the latter a class of problems solvable
by randomized algorithms in polynomial time. Currently, the most popular
hypothesis, however, is the “Unique Games Conjecture” (UGC) of Subhash
Khot [39]. Suppose we are given a prime q, a small ǫ > 0, and a list of
equations of the form xj − xk = ch (mod q) in variables xi and constants ch.
The conjecture says that it is NP-hard to distinguish between the case where
at least a fraction 1 − ǫ of the equations can be simultaneously satisfied and
the case when no more than a fraction ǫ of the equations can – a very large
gap. As with the PCP results, this conjecture initially came from a problem
involving multiple prover systems, and it was in this context that it obtained
its name.
The reason this rather specialized hypothesis has garnered attention is that

it implies that for many important problems, our currently best approxima-
tion algorithms cannot be improved upon unless P = NP . For instance, no
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polynomial-time approximation algorithm for vertex cover can guarantee
better than the factor of 2 already guaranteed by several simple approxima-
tion algorithms [9]. Similarly, the Goemans-Williamson algorithm [24] for max
cut, which exploits semidefinite programming and randomized rounding and
has a worst-case guarantee of (2/π)/(min0<θ≤π((1−cos(θ))/θ)) ∼ .878, cannot
be improved upon by any polynomial-time algorithm [40]. More generally, for
any Constraint Satisfaction Problem (CSP) where the goal is to find an assign-
ment to the variables that satisfies a maximum number of the constraints, it
can be shown that a standard algorithm, based on semidefinite programming
and rounding, achieves the best possible worst-case approximation ratio of any
polynomial-time algorithm, assuming P 6= NP and the UGC [47], and even
though for many such problems we do not at this point know what that ratio
is.
Whether the UGC is true is, of course, an open question, and researchers

tend to be more skeptical of this than of P 6= NP. Moreover, its impact seems
restricted to problems where approximation algorithms with finite worst-case
ratios exist, while the other conjectures mentioned above have led to many
nonconstant lower bounds, such as the roughly lnn lower bound for set cover.
This has had the interesting side effect of making algorithms with non-constant
worst-case ratios more respectable – if one cannot do better than Ω(log n),
then maybe O(log2 n) isn’t so bad? Indeed, a recently well-received paper had
the breakthrough result that the label cover problem had a polynomial-
time approximation algorithm with an O(n1/3) worst-case ratio, beating the
previous best of O(n1/2) [11].
Let me conclude by addressing the obvious question. All this definitely makes

for interesting theory, but what does it mean for practitioners? I believe that
the years have taught us to take the warnings of NP-completeness seriously. If
an optimization problem is NP-hard, it is rare that we find algorithms that,
even when restricted to “real-world” instances, always seem to find optimal
solutions, and do so in empirical polynomial time. Even that great success of
optimization, the concorde code for optimally solving the TSP [4], appears to
have super-polynomial running time, even when restricted to simple instances
consisting of points uniformly distributed in the unit square, where its median
running time seems to grow exponentially in

√
n [30].

Thus, the classical justification for turning to approximation algorithms re-
mains valid. How that is refined by our hardness-of-approximation results is
less clear. Many approximation algorithms, such as the greedy algorithm for
set cover, seem to come far closer to optimal than their worst-case bounds
would imply, and just because a problem is theoretically hard to approximate
in the worst case does not mean that we cannot devise heuristics that find rel-
atively good solutions in practice. And frankly, once exact optimization runs
out of gas, what other choice do we have but to look for them?
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