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Introduction and Summary 
 

Artificial intelligence will play an important role in national and international 

security in the years to come. As a result, the U.S. government is considering 

how to control the diffusion of AI-related information and technologies. 

Because general-purpose AI software, datasets, and algorithms are not 

effective targets for controls, the attention naturally falls on the computer 

hardware necessary to implement modern AI systems. The success of modern 

AI techniques relies on computation on a scale unimaginable even a few 

years ago. Training a leading AI algorithm can require a month of computing 

time and cost $100 million. This enormous computational power is delivered 

by computer chips that not only pack the maximum number of transistors—

basic computational devices that can be switched between on (1) and off (0) 

states⁠—but also are tailor-made to efficiently perform specific calculations 

required by AI systems. Such leading-edge, specialized “AI chips” are 

essential for cost-effectively implementing AI at scale; trying to deliver the 

same AI application using older AI chips or general-purpose chips can cost 

tens to thousands of times more. The fact that the complex supply chains 

needed to produce leading-edge AI chips are concentrated in the United 

States and a small number of allied democracies provides an opportunity for 

export control policies. 

 

This report presents the above story in detail. It explains how AI chips work, 

why they have proliferated, and why they matter. It also shows why leading-

edge chips are more cost-effective than older generations, and why chips 

specialized for AI are more cost-effective than general-purpose chips. As part 

of this story, the report surveys semiconductor industry and AI chip design 
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trends shaping the evolution of chips in general and AI chips in particular. It 

also presents a consolidated discussion of technical and economic trends that 

result in the critical cost-effectiveness tradeoffs for AI applications. 

 

In this paper, AI refers to cutting-edge computationally-intensive AI systems, 

such as deep neural networks. DNNs are responsible for most recent AI 

breakthroughs, like DeepMind’s AlphaGo, which beat the world champion 

Go player. As suggested above, we use “AI chips” to refer to certain types of 

computer chips that attain high efficiency and speed for AI-specific 

calculations at the expense of low efficiency and speed for other 

calculations.* 

 

This paper focuses on AI chips and why they are essential for the 

development and deployment of AI at scale. It does not focus on details of the 

supply chain for such AI chips or the best targets within the supply chain for 

export controls (CSET has published preliminary results on this topic1). 

Forthcoming CSET reports will analyze the semiconductor supply chain, 

national competitiveness, the prospects of China's semiconductor industry for 

supply chain localization, and policies the United States and its allies can 

pursue to maintain their advantages in the production of AI chips, 

recommending how this advantage can be utilized to ensure beneficial 

development and adoption of AI technologies. 

 

This report is organized as follows: 

 

Industry Trends Favor AI Chips over General-Purpose Chips 
 

From the 1960s until the 2010s, engineering innovations that shrink 

transistors doubled the number of transistors on a single computer chip 

roughly every two years, a phenomenon known as Moore’s Law. Computer 

chips became millions of times faster and more efficient during this period. 

(Section II.) 

 

 
* Our definition of “AI chips” includes graphics processing units (GPUs), field-programmable 

gate arrays (FPGAs), and certain types of application-specific integrated circuits (ASICs) 

specialized for AI calculations. Our definition also includes a GPU, FPGA, or AI-specific 

ASIC implemented as a core on system-on-a-chip (SoC). AI algorithms can run on other 

types of chips, including general-purpose chips like central processing units (CPUs), but we 

focus on GPUs, FPGAs, and AI-specific ASICs because of their necessity for training and 

running cutting-edge AI algorithms efficiently and quickly, as described later in the paper. 
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The transistors used in today’s state-of-the-art chips are only a few atoms 

wide. But creating even smaller transistors makes engineering problems 

increasingly difficult or even impossible to solve, causing the semiconductor 

industry’s capital expenditures and talent costs to grow at an unsustainable 

rate. As a result, Moore’s Law is slowing—that is, the time it takes to double 

transistor density is growing longer. The costs of continuing Moore’s Law are 

justified only because it enables continuing chip improvements, such as 

transistor efficiency, transistor speed, and the ability to include more 

specialized circuits in the same chip. (Section III and IV.) 

 

The economies of scale historically favoring general-purpose chips like 

central processing units have been upset by rising demand for specialized 

applications like AI and the slowing of Moore’s Law-driven CPU 

improvements. Accordingly, specialized AI chips are taking market share 

from CPUs. (Section V.) 

 

AI Chip Basics 
 

AI chips include graphics processing units (GPUs), field-programmable gate 

arrays (FPGAs), and application-specific integrated circuits (ASICs) that are 

specialized for AI. General-purpose chips like central processing units (CPUs) 

can also be used for some simpler AI tasks, but CPUs are becoming less and 

less useful as AI advances. (Section V(A).) 

 

Like general-purpose CPUs, AI chips gain speed and efficiency (that is, they 

are able to complete more computations per unit of energy consumed) by 

incorporating huge numbers of smaller and smaller transistors, which run 

faster and consume less energy than larger transistors. But unlike CPUs, AI 

chips also have other, AI-optimized design features. These features 

dramatically accelerate the identical, predictable, independent calculations 

required by AI algorithms. They include executing a large number of 

calculations in parallel rather than sequentially, as in CPUs; calculating 

numbers with low precision in a way that successfully implements AI 

algorithms but reduces the number of transistors needed for the same 

calculation; speeding up memory access by, for example, storing an entire AI 

algorithm in a single AI chip; and using programming languages built 

specifically to efficiently translate AI computer code for execution on an AI 

chip. (Section V and Appendix B.) 
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Different types of AI chips are useful for different tasks. GPUs are most often 

used for initially developing and refining AI algorithms; this process is known 

as “training.” FPGAs are mostly used to apply trained AI algorithms to real-

world data inputs; this is often called “inference.” ASICs can be designed for 

either training or inference. (Section V(A).) 

 

Why Cutting-Edge AI Chips are Necessary for AI 
 

Because of their unique features, AI chips are tens or even thousands of times 

faster and more efficient than CPUs for training and inference of AI 

algorithms. State-of-the-art AI chips are also dramatically more cost-effective 

than state-of-the-art CPUs as a result of their greater efficiency for AI 

algorithms. An AI chip a thousand times as efficient as a CPU provides an 

improvement equivalent to 26 years of Moore’s Law-driven CPU 

improvements. (Sections V(B) and VI(A) and Appendix C.) 

 

Cutting-edge AI systems require not only AI-specific chips, but state-of-the-art 
AI chips. Older AI chips—with their larger, slower, and more power-hungry 

transistors—incur huge energy consumption costs that quickly balloon to 

unaffordable levels. Because of this, using older AI chips today means overall 

costs and slowdowns at least an order of magnitude greater than for state-of-

the-art AI chips. (Section IV(B) and VI(A) and Appendix D.) 

 

These cost and speed dynamics make it virtually impossible to develop and 

deploy cutting-edge AI algorithms without state-of-the-art AI chips. Even with 

state-of-the-art AI chips, training an AI algorithm can cost tens of millions of 

U.S. dollars and take weeks to complete. In fact, at top AI labs, a large 

portion of total spending is on AI-related computing. With general-purpose 

chips like CPUs or even older AI chips, this training would take substantially 

longer to complete and cost orders of magnitude more, making staying at the 

research and deployment frontier virtually impossible. Similarly, performing 

inference using less advanced or less specialized chips could involve similar 

cost overruns and take orders of magnitude longer. (Section VI(B).) 

 

Implications for National AI Competitiveness 
 

State-of-the-art AI chips are necessary for the cost-effective, fast development 

and deployment of advanced security-relevant AI systems. The United States 

and its allies have a competitive advantage in several semiconductor industry 

sectors necessary for the production of these chips. U.S. firms dominate AI 
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chip design, including electronic design automation (EDA) software used to 

design chips. Chinese AI chip design firms are far behind and are dependent 

on U.S. EDA software to design their AI chips. U.S., Taiwanese, and South 

Korean firms control the large majority of chip fabrication factories (“fabs”) 

operating at a sufficiently advanced level to fabricate state-of-the-art AI 

chips, though a Chinese firm recently gained a small amount of comparable 

capacity. Chinese AI chip design firms nevertheless outsource manufacturing 

to non-Chinese fabs, which have greater capacity and exhibit greater 

manufacturing quality. U.S., Dutch, and Japanese firms together control the 

market for semiconductor manufacturing equipment (SME) used by fabs. 

However, these advantages could disappear, especially with China’s 

concerted efforts to build an advanced chip industry. Given the security 

importance of state-of-the-art AI chips, the United States and its allies must 

protect their competitive advantage in the production of these chips. Future 

CSET reports will analyze policies for the United States and its allies to 

maintain their competitive advantage and explore points of control for these 

countries to ensure that the development and adoption of AI technologies 

increases global stability and is broadly beneficial for all. (Section VII.) 

 

The Laws of Chip Innovation 
 

All computer chips—including general-purpose CPUs and specialized ones 

like AI chips—benefit from smaller transistors, which run faster and consume 

less energy than larger transistors. Compared to CPUs, AI chips also gain 

efficiency and speed for AI applications through AI-optimized designs. 

However, at least while transistor shrinkage came at a fast rate and produced 

large speed and efficiency gains through the late 2000s, the value of 

specialized designs remained low and CPUs were the dominant chip. 

However, Moore’s Law is close to driving transistors to fundamental size limits 

at atomic scales. For a basic introduction to chips, see Appendix A. 

 
Transistor Shrinkage: Moore’s Law 
 

Moore’s Law states that the number of transistors in a chip doubles about 

every two years. Technical innovations that shrink transistors allow increased 

transistor density. Moore’s Law was first observed in the 1960s, and it held 

until the 2010s, when improvements in transistor density began slowing. 

Today, leading chips contain billions of transistors, but they have 15 times 

fewer transistors than they would have if Moore’s Law had continued.2 
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Transistor density increases occur in generations, or “nodes.” Each node 

corresponds to the transistor size (expressed in terms of length) that allows a 

doubling of transistor density relative to the previous node. Fabs began “risk 

production,” i.e. experimental production, of the latest node of 5 nanometers 

(“nm”) in 2019, with mass production expected in 2020.3 The previous 

leading nodes were 7 nm and 10 nm.4 

 

A companion principle to Moore’s Law says that because smaller transistors 

generally use less power than larger ones, as transistor density increases, 

power consumption per unit chip area remains constant.5 However, transistor 

power reduction rates slowed around 2007.6 

 

Efficiency and Speed Improvements 
 

CPU speed has improved prodigiously since the 1960s due in large part to 

Moore’s Law. Greater transistor density improved speed primarily via 

“frequency scaling,” i.e. transistors switching between ones and zeros faster 

to allow more calculations per second by a given execution unit. Because 

smaller transistors use less power than larger ones, transistor switching speeds 

could be increased without increasing total power consumption.7 Figure 1 

shows transistor density, speed, and efficiency improvements since 1979. 

 

Between 1978 and 1986, frequency scaling drove 22 percent annual 

increases in speed. Then, between 1986 and 2003, speed increased by 52 

percent annually, due to frequency scaling and design improvements 

enabling simultaneous calculations to be performed through parallel 

computing. As frequency scaling slowed, parallelism enabled by multi-core 

designs powered 23 percent annual speedups between 2003 and 2011. 

Exploitation of the final remnants of available CPU parallelism brought 12 

percent annual gains between 2011 and 2015, after which progress on CPU 

speed slowed to three percent per year.8 

 

Efficiency has also improved dramatically. Because decreased transistor size 

reduces power use per transistor, overall CPU efficiency during peak chip 

usage doubled every 1.57 years until 2000.9 Since then, due to the slowing 

of transistor power reduction, efficiency has doubled every 2.6 years, 

equivalent to a 30 percent per year efficiency improvement.10 
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Figure 1: CPU improvement rates normalized relative to 197911 
 

 
 
 

Increasing Transistor Density Unlocks Improved Designs for Efficiency and 
Speed 
 

As transistors shrink and density increases, new chip designs become 

possible, further improving efficiency and speed. First, CPUs can include more 

and different types of execution units optimized for different functions.12 

Second, more on-chip memory can reduce the need for accessing slower off-

chip memory. Memory chips such as DRAM chips likewise can pack more 

memory.13 Third, CPUs can have more space for architectures that implement 

parallel rather than serial computation. Relatedly, if increased transistor 

density enables smaller CPUs, then a single device can house multiple CPUs 

(also called multiple “cores”), which each run different computations at once. 

 

In the 1990s, design improvement lagged behind transistor density 

improvement because chip design firms struggled to exploit design 

possibilities unlocked by rapidly increasing transistor availability.14 To get 

around this bottleneck, design firms focused comparatively more on trailing 

nodes (chips several generations behind the leading-edge), outsourced the 

brute-force work of creating a large number of chip designs to lower-paid 

engineers abroad, reused portions (“IP cores”) of previous designs, and used 

EDA software to translate high-level abstract designs—easier for design 

engineers to work with—into concrete transistor-level designs.15 
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Transistor Design is Reaching Fundamental Size Limits 
 

As transistors have shrunk to sizes only a few atoms thick, they are fast 

approaching fundamental lower limits on size. Various physics problems at 

small scales also make further shrinkage more technically challenging. The 

first significant change arrived in the 2000s when the transistor’s insulative 

layer became so thin that electrical current started leaking across it.16 

Engineers used new, more insulative materials and stopped shrinking the 

insulative layer even as other components continued to shrink.17 

 

More dramatic structural changes followed. From the 1960s to 2011, key 

transistors were manufactured as thin layers stacked on top of each other.18 

Yet even the more insulative materials could not prevent leakage. Instead, 

engineers replaced this planar arrangement with a more complex three-

dimensional structure. This new structure has been dominant from the 22 nm 

node—released in 2011—to the current 5 nm node.19 However, beyond 5 

nm, even this structure leaks. A completely new structure has been developed 

for the future 3 nm node;20 it includes components measuring only a few 

atoms in thickness, making further shrinkage beyond 3 nm challenging.21 

 

The Slowing of Moore’s Law and the Decline of General-Purpose 

Chips 
 

Today, the trends that sustained CPU progress and primacy over specialized 

chips are ending. Technical difficulties are increasing the costs of Moore’s 

Law improvements at a faster rate than the growth of the semiconductor 

market. Ultimately, these economic and technical factors suggest actual 

transistor densities will fall further behind what Moore’s Law predicts and that 

we may reach the point of no further significant improvements in transistor 

densities.22 

 

The Economies of Scale of General-Purpose Chips 
 

The steady improvement in transistor-switching speeds and transistor power 

reduction favored CPUs over specialized chips. In the era of general-purpose 

chip dominance, specialized chips could not generate enough sales volume 

to recoup steep design costs.23 Specialized chips earn their task-specific 

improvements over CPUs from design. But when rapid frequency scaling was 

still producing large speed and efficiency benefits, the computing premium 

from specialized chips was quickly erased by next-generation CPUs, whose 
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costs were spread across millions of chip sales.24 Today, the slowing of 

Moore’s Law means that CPUs no longer quickly improve. This results in 

longer useful lifetimes of specialized chips, making them more economical. 

 
Costs are Increasing Faster than the Semiconductor Market 
 

Increasing technical difficulties at small scales have driven up the costs of 

high-end semiconductor research and development across the supply chain. 

Different sectors of the semiconductor industry have localized in different 

regions based on their comparative advantages.25 

 

The highest-value sectors, particularly SME, fabs, and chip design, have seen 

especially steep rates of cost growth and consolidation.26 Annual growth 

rates in the cost of semiconductor fabrication facilities (eleven percent) and 

design costs per chip (24 percent) are faster than those of the semiconductor 

market (seven percent).27 And the approximate number of semiconductor 

R&D workers has been increasing seven percent per year. 

 

Since the early 2000s, the growth rate of semiconductor fabrication costs, 

including costs of fabs and SME, has trended at 11 percent per year. Fixed 

costs increasing faster than variable costs has created higher barriers of entry, 

squeezing fab profits and shrinking the number of chipmakers operating fabs 

at the leading nodes.28 Figure 2 shows increasing construction costs of the 

largest fabs owned by Taiwan Semiconductor Manufacturing Company 

(TSMC). Currently, there are only two chipmakers at the 5 nm node: TSMC in 

Taiwan and Samsung in South Korea. Intel follows at 10 nm with plans to 

introduce the 7 and 5 nm nodes; GlobalFoundries and Semiconductor 

Manufacturing International Corporation (SMIC) lag at 14 nm (see Table 

1).29 
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Figure 2: TSMC’s leading-edge fab costs30 

 

 
 

Costs of photolithography tools, the most expensive and complex segment of 

SME, have risen from $450,000 per unit in 1979 to $123 million in 2019.31 

And only one photolithography company, ASML in the Netherlands, now 

sells photolithography equipment capable of manufacturing the smallest 5 nm 

transistors. Nikon in Japan is the only other company making a significant 

volume of photolithography tools that operate at ≤90 nm (see Table 1). 

Eventually, increasing research and development costs for photolithography 

equipment and fabs at the leading node may prevent even a natural 

monopoly from recouping costs from the slowly growing global 

semiconductor market. 

 

Table 1: Number of companies at each node 

 

Node (nm) 180 130 90 65 45/ 

40 

32/ 

28 

22/ 

20 

16/ 

14 

10 7 5 

Year mass 

production 

1999 2001 2004 2006 2009 2011 2014 2015 2017 2018 2020 

Chipmakers32 94 72 48 36 26 20 16 11 5 3 3 

Photolithography 

companies33 

4 3 2 2 2 2 2 2 2 2 1 
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Meanwhile, as shown in Figure 3, multiple estimates suggest the cost of chip 

design has been rising exponentially. When matched with TSMC’s node 

introduction dates, design costs per node according to International Business 

Strategies (IBS) yields a 24 percent yearly cost increase.34 Due to their 

general-purpose usage, CPUs enjoy economies of scale enabling U.S. firms 

Intel and AMD to maintain a decades-long duopoly in CPU design for servers 

and personal computers (PCs), such as desktops and laptops.35 

 

Figure 3: Chip design costs at each node36 
 

 
 

As semiconductor complexity increases, demands for high-end talent drive 

design and fabrication cost overruns. The effective number of researchers, 

measured by dividing semiconductor R&D spending by wages of high-skilled 

workers, saw an 18x increase from 1971 to 2015.37 Put another way, a 

Moore’s Law doubling required eighteen times as much human research 

effort in 2015 than in 1971, representing a seven percent increase per 

year.38 

 

Overall design and manufacturing cost per transistor may be the best metric 

to measure whether transistor density improvements remain economical. This 

cost has historically decreased by around 20-30 percent annually.39 Some 

analysts claim that decreases have stopped past the 28 nm node introduced 

in 2011, while others disagree.40 
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The Semiconductor Industry’s Growth Rate is Unlikely to Increase 
 

Unless new chip applications cause growth rates to increase, the 

semiconductor industry is unlikely to see growth rates sufficient to 

accommodate the industry’s increasing costs. The semiconductor market is 

already growing at a faster rate than the world economy’s three percent rate. 

Currently, the semiconductor industry produces 0.5 percent of global 

economic output. Due in part to the trade war between the United States and 

China, the semiconductor market shrunk in 2019.41 However, it typically 

exhibits a year-to-year sawtooth growth trajectory, so a multi-year slowing 

would better indicate a slowing in long-run growth.42 

 
Chip Production at Each Node 
 

Given the technical and economic challenges of chip production, new nodes 

are being introduced more slowly than in the past. Intel, the standard bearer 

of Moore’s Law, has indeed slowed node introduction. It introduced 32 and 

22 nm nodes two years after their predecessors, consistent with Moore’s Law, 

but 14 nm followed three years after 22 nm, and 10 nm four years after 14 

nm node chips.43 Yet the leading foundry services vendor, TSMC, has not 

slowed node introduction.44 

 

Trends in leading node chip sales volumes do not yet suggest a major slowing 

in the adoption of new nodes. From 2002 to 2016, TSMC’s leading node 

stably represented approximately 20 percent of its revenue.45 TSMC's 10 nm 

and 7 nm nodes introduced in 2016 and 2018, respectively, also reached 

25 percent and 35 percent respectively, as shown in Figure 4. 

 

TSMC’s stable sales rates of new nodes—though slower than in the early 

2000s—may mask the fact that the foundry services market as a whole is 

slowing adoption. TSMC has controlled roughly half of the world’s foundry 

services market share for the last decade.46  Rising production costs are 

reducing the number of companies at the leading node. For example, during 

this time, GlobalFoundries dropped out by failing to progress beyond 14 nm. 

If this trend is accompanied by less fab capacity at the current leading node 

than was the case for previously leading nodes, it would indicate that 

Moore’s Law is slowing.47 
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Figure 4: TSMC’s rate of introduction and adoption of new nodes has 

remained stable48 
 

 
 

Fabs still make chips at the old nodes shown in Figure 4 for several reasons. 

Fabs incur great costs to build leading fabs or upgrade old ones to 

manufacture chips at newer nodes, so immediately transitioning world fab 

capacity to leading nodes is not possible. Instead, fabs continue selling old 

nodes at lower prices, especially to customers for whom purchase cost is the 

primary criterion. Many of these customers may be less concerned about 

efficiency because their applications are not computationally intensive. 

Similarly, their applications may not require fast speeds or otherwise may 

complete computations fast enough on old chips. Additionally, some 

specialized low-volume products like analog chips require trailing nodes to 

remain cost-effective.49 

 

Chip Improvements as Moore’s Law Slows 

 
As Moore’s Law slows, chips continue to improve in two ways: efficiency and 

speed improvements of smaller transistors, and efficiency and speed 

improvements from advanced chip designs exploiting larger numbers of 

transistors per chip enabled by smaller transistor size. These advanced 

designs include the ability to pack more specialized cores on a single chip.50 
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Transistor Improvements Continue, but are Slowing 
 

Fortunately, some speed and efficiency improvements are still available, but 

with considerable technical challenges. Around 2004, when the 65 nm node 

was reached, transistor density improvements slowed in reducing transistor 

power usage and increasing transistor switching speed (frequency scaling).51 

Nevertheless, fabs report that transistor-level rather than design-level 

innovation continues to provide consistent, albeit slowing, improvements from 

node to node. TSMC and Samsung claim their 5 nm node chips improve 

upon the transistor speed of their 7 nm node chips respectively by 15 and 10 

percent with power usage held constant52 and reduce power usage by 30 

and 20 percent with transistor speed held constant.53 Figures 5 and 6 show a 

downward trend in TSMC’s claimed node-to-node transistor speed 

improvements at constant efficiency between 90 nm and 5 nm, but a flat trend 

in TSMC’s claimed transistor power reduction improvements.54 Samsung 

trends downward between 14 nm and 5 nm on both metrics, but we lack 

data at nodes larger than 14 nm.55 Intel sees slightly dropping transistor 

speed improvements,56 but continuing node-to-node transistor power 

reduction improvements from 65 nm to 10 nm.57 Intel has not yet introduced 

its 7 nm node. These improvements in speed and efficiency benefit both 

general-purpose chips like CPUs and specialized chips like AI chips.58 

 

Figure 5: Node-to-node transistor speed improvements 
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Figure 6: Node-to-node transistor power reduction improvements 
 

 
 

Chip design improvements now provide decreasing CPU efficiency and 

speed improvements. Figure 7 consolidates the speed and efficiency 

measurements by node, both for CPUs and for transistors. For CPUs, we use 

data from Figure 1. For transistors, we use data for TSMC’s and Intel’s nodes 

from Figures 5 and 6.59 The sources roughly agree on speed and efficiency 

improvements. TSMC’s and Intel’s reported improvements, derived from 

transistor-level innovation, generally match CPU improvements derived from 

both transistor-level and design-level innovation. The rough match implies that 

transistor-level innovation60 has continued to play a major role in CPU 

efficiency and speed improvements over the last 15 years,61 at least for the 

measured CPU benchmarks.62 Efficient designs, however, do still play a 

role.63 
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Figure 7: Measured efficiency and speed improvements against 90 nm 

node 
 

 
 

 

Improved Transistor Density Enables Specialization 
 

Besides improving transistor function, increasing transistor density enables 

chips to include more varieties of specialized circuits that perform different 

types of calculations.64 A chip can call upon a different specialized circuit 

depending on which calculation is requested. These circuits can include some 

optimized for AI algorithms and others specialized for different types of 

calculations. AI chips, which will be discussed in section V, are chips entirely 

specialized for AI. 

 

Outside of the use of these specialized circuits, in recent years there has been 

little left to gain by adding more transistors to general-purpose chips. More 

transistors could theoretically enable a CPU to include more circuits to 

perform a larger number of calculations in parallel. However, speedups from 

parallelism are commonly limited by the percentage of time spent on serial 

computations, computations performed one after the other because the result 

of one computation is needed to start another. Parallel computations, 

conversely, are performed simultaneously. Even when only one percent of an 

algorithm’s calculation time requires serial calculations, 45 percent of 

processor energy is wasted.65 Unfortunately, most applications require at 

least some serial computation, and processor energy waste becomes too high 

as the serialization percentage increases. As other design improvements have 

slowed since the mid-2000s, multi-core designs with ever larger numbers of 

cores have proliferated. But multi-core designs also cannot efficiently 
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parallelize algorithms requiring a significant percentage of time spent on 

serial computations. 

 

The AI Chip Zoo 

 
The trend toward chips specialized for AI applications is driven by two 

factors. First, as discussed in Section IV, the critical improvements in 

semiconductor capabilities have shifted from manufacturing to design and 

software.66 Second, an increasing demand for applications like AI requires 

highly parallelizable, predictable computations that benefit from specialized 

chips.67 Deep neural networks (DNNs)—AI algorithms responsible for most 

recent AI breakthroughs—fit this bill. DNNs usually implement a type of 

machine learning called supervised learning, which involves two computing 

steps: “training” an AI algorithm based on training data (i.e. building the 

algorithm) and executing the trained AI algorithm (i.e. performing 

“inference”) to classify new data consistent with knowledge acquired from 

data in the training stage. The training step in particular often requires 

performing the same computation millions of times. As discussed in Section 

IV(B), improved transistor density allows more types of specialized circuits on 

a single chip. AI chips take this to the extreme—the layout of most or all 

transistors on the chip is optimized for the highly parallelizable, specialized 

computations required by AI algorithms. 
 

Although analysts disagree widely on the size of the global AI chip market—

2018 estimates ranged between $5 and $20 billion—they agree that the 

market will grow faster than for chips not specialized for AI.68 Until recently, a 

small number of firms designing general-purpose chips like CPUs dominated 

the logic chip design market. They enjoyed economies of scale that enabled 

them to reinvest into powerful new CPU designs. However, the slowing of 

Moore’s Law is damaging CPU producers’ economies of scale; now 

specialized chips have longer useful lifetime before Moore’s Law-driven CPU 

efficiency and speed gains overcome the benefits of specialized chips. 

Therefore, the ability of CPU design firms to reinvest in new designs to 

maintain market dominance is declining. This trend lowers barriers to entry for 

chip design startups—especially those focused on specialized chips.69 

 

AI chips are a common type of specialized chip, and share some features in 

common. AI chips execute a much larger number of calculations in parallel 

than CPUs. They also calculate numbers with low precision in a way that 

successfully implements AI algorithms but reduces the number of transistors 
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needed for the same calculation. They also speed up memory access by 

storing an entire AI algorithm in a single AI chip. Finally, AI chips use 

programming languages specialized to efficiently translate AI computer code 

to execute on an AI chip. For more detail on these techniques, see Appendix 

B. 

 

While general-purpose chips include a small number of popular designs, 

particularly the CPU, AI chips are more diverse. AI chips vary widely in 

design, the applications they are suited to, efficiency and speed for different 

AI tasks, generality, and classification accuracy when performing inference. 

The following subsections categorize AI chips along these axes. 

 
AI Chip Types 
 

AI chips include three classes: graphics processing units (GPUs), field-

programmable gate arrays (FPGAs), and application-specific integrated 

circuits (ASICs).70 

 

GPUs were originally designed for image-processing applications that 

benefited from parallel computation. In 2012, GPUs started seeing increased 

use for training AI systems and by 2017, were dominant.71 GPUs are also 

sometimes used for inference.72 Yet in spite of allowing a greater degree of 

parallelism than CPUs, GPUs are still designed for general-purpose 

computing.73 

  

Recently, specialized FPGAs and ASICs have become more prominent for 

inference, due to improved efficiency compared to GPUs.74 ASICs are 

increasingly used for training, as well.75 FPGAs include logic blocks (i.e. 

modules that each contain a set of transistors) whose interconnections can be 

reconfigured by a programmer after fabrication to suit specific algorithms, 

while ASICs include hardwired circuitry customized to specific algorithms. 

Leading ASICs typically provide greater efficiency than FPGAs, while FPGAs 

are more customizable than ASICs and facilitate design optimization as AI 

algorithms evolve.76 ASICs, by contrast, grow increasingly obsolete as new AI 

algorithms are developed. 

 

Different AI chips may be used for training versus inference, given the various 

demands on chips imposed by each task. First, different forms of data and 

model parallelism are suitable for training versus inference, as training 

requires additional computational steps on top of the steps it shares with 
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inference. Second, while training virtually always benefits from data 

parallelism, inference often does not. For example, inference may be 

performed on a single piece of data at a time. However, for some 

applications, inference may be performed on many pieces of data in parallel, 

especially when an application requires fast inference of a large number of 

different pieces of data. Third, depending on the application, the relative 

importance of efficiency and speed for training and inference can differ. For 

training, efficiency and speed are both important for AI researchers to cost-

effectively and quickly iterate research projects. For inference, high inference 

speed can be essential, as many AI applications deployed in critical systems 

(e.g. autonomous vehicles) or with impatient users (e.g. mobile apps 

classifying images) require fast, real-time data classification. On the other 

hand, there may be a ceiling in useful inference speed. For example, 

inference need not be any faster than user reaction time to a mobile app.77 

 

Inference chips require fewer research breakthroughs than training chips, as 

they require optimization for fewer computations than training chips. And 

ASICs require fewer research breakthroughs than GPUs and FPGAs; because 

ASICs are narrowly optimized for specific algorithms, design engineers 

consider far fewer variables. To design a circuit meant for only one 

calculation, an engineer can simply translate the calculation into a circuit 

optimized for that calculation. But to design a circuit meant for many types of 

calculations, the engineer must predict which circuit will perform well on a 

wide variety of tasks, many of which are unknown in advance. 

 

An AI chip’s commercialization has depended on its degrees of general-

purpose capability. GPUs have long been widely commercialized, as have 

FPGAs to a lesser degree.78 Meanwhile, ASICs are more difficult to 

commercialize given high design costs and specialization-driven low volume. 

However, a specialized chip is relatively more economical in an era of slow 

general-purpose chip improvement rates, as it has a longer useful lifetime 

before next-generation CPUs attain the same speedup or efficiency. In the 

current era of slow CPU improvements, if an AI chip exhibits a 10-100x 

speedup, then a sales volume of only 15,000-83,000 should be sufficient to 

make the AI chip economical.79 The projected market size increase for AI 

chips could create the economies of scale necessary to make ever narrower-

capability AI ASICs profitable. 

 

AI chips come in different grades, from more to less powerful. At the high-

end, server grade AI chips are commonly used in data centers for high-end 
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applications and are, after packaging, larger than other AI chips. At the 

medium-end are PC grade AI chips commonly used by consumers. At the 

low-end, mobile AI chips are typically used for inference and integrated into 

a system-on-a-chip that also includes a CPU. A mobile system-on-a-chip 

needs to be miniaturized to fit into mobile devices. At each of these grades, AI 

chip market share increases have come at the expense of non-AI chips.80 

 

Supercomputers have limited but increasing relevance for AI. Most 

commonly, server grade chips are distributed in data centers and can be 

executed sequentially or in parallel in a setup called “grid computing.” A 

supercomputer takes server grade chips, physically co-locates and links them 

together, and adds expensive cooling equipment to prevent overheating. This 

setup improves speed but dramatically reduces efficiency,81 an acceptable 

tradeoff for many applications requiring fast analysis. Few current AI 

applications justify the additional cost of higher speed, but training or 

inference for large AI algorithms is sometimes so slow that supercomputers 

are employed as a last resort.82 Accordingly, although CPUs have 

traditionally been the supercomputing chip of choice,83 AI chips are now 

taking an increasing share.84 In 2018, GPUs were responsible for the 

majority of added worldwide supercomputer computational capacity.85 

 

AI Chip Benchmarks 
 

There is no common scheme in the industry for benchmarking CPUs versus AI 

chips, as comparative chip speed and efficiency depends on the specific 

benchmark.86 However, for any given node, AI chips typically provide a 10-

1,000x improvement in efficiency and speed relative to CPUs, with GPUs and 

FPGAs on the lower end and ASICs higher.87 An AI chip 1,000x as efficient 

as a CPU for a given node provides an improvement equivalent to 26 years 

of CPU improvements. Table 2 shows our estimates for efficiency and speed 

gains for GPUs, FPGAs, and ASICs relative to CPUs (normalized at 1x) for 

DNN training and inference at a given node. No data is available for FPGA 

training efficiency and speed, as FPGAs are rarely used for training. These 

estimates are informed by benchmarking studies, which are summarized in 

Appendix B. Table 2 also lists the generality and inference accuracy of these 

chips. 
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Table 2: Comparing state-of-the-art AI chips to state-of-the-art CPUs 

 

 Training Inference Generality88 Inference 

accuracy89 

Efficiency Speed Efficiency Speed 

CPU 1x baseline Very High ~98-99.7% 

GPU ~10-100x ~10-1,000x ~1-10x ~1-100x High ~98-99.7% 

FPGA - - ~10-100x ~10-100x Medium ~95-99% 

ASIC ~100-1,000x ~10-1,000x ~100-1,000x ~10-1,000x Low ~90-98% 

 
 

The Value of State-of-the-Art AI Chips 
 

Leading node AI chips are increasingly necessary for cost-effective, fast 

training and inference of AI algorithms. This is because they exhibit efficiency 

and speed gains relative to state-of-the-art CPUs (Table 2 and Appendix C) 

and trailing node AI chips (Figure 7). And, as discussed in subsection A, 

efficiency translates into overall cost-effectiveness in chip costs—which are the 

sum of chip production costs (i.e. design, fabrication, assembly, test, and 

packaging costs). Finally, as discussed in subsection B, cost and speed 

bottleneck training and inference of many compute-intensive AI algorithms, 

necessitating the most advanced AI chips for AI developers and users to 

remain competitive in AI R&D and deployment. 

 
The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 
 

Efficiency translates into overall cost-effectiveness. For trailing nodes, chip 

operating costs—due to energy consumption costs—dominate chip 

production costs and quickly balloon to unmanageable levels. Even for 

leading nodes, operating costs are similar to production costs, implying the 

need to continue optimizing for efficiency.  

 

Table 3 presents the results of a CSET model of chip production and 

operating costs for nodes between 90 and 5 nm with the same number of 

transistors as a generic server-grade 5 nm chip modeled according to the 

specifications similar to those of the Nvidia P100 GPU. This means that an 

above-5 nm chip would require a larger surface area. For above-5 nm 
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nodes, the model could equivalently be interpreted as accounting for 

production of multiple chips that together have the transistor count of one 5 

nm chip. The model takes the perspective of a fabless design firm that, in 

2020, designs the chip, buys foundry services from TSMC, then runs the chip 

in its own server. This mirrors the approach of companies like Google, which 

designs its TPU in-house, outsources fabrication to TSMC, then runs its TPUs in 

Google servers for its own AI applications or cloud-computing services to 

external customers. 

 

The costs break down as follows. The foundry sale price paid by the fabless 

firm includes capital consumed (i.e. costs of building a fab and purchasing 

SME), materials, labor, foundry R&D, and profit margin. The fabless firm 

additionally incurs chip design cost. After fabrication, an outsourced 

semiconductor and test firm assembles, tests, and packages (ATP) the chip. 

The sum of foundry sale price, chip design cost, and ATP cost equals the total 

production cost per chip. The fabless firm also incurs energy cost when 

operating the chip. We estimate energy cost based on an electricity cost of 

$0.07625 per kilowatt-hour. See Appendix D for explanations of how each 

line-item in Table 3 is calculated. We make two findings. 

 

Table 3: Chip costs at different nodes with 5 nm-equivalent transistor 

count 

 

Node (nm) 90 65 40 28 20 

16/ 

12 10 7 5 

Year of mass production 2004 2006 2009 2011 2014 2015 2017 2018 2020 

Foundry sale price to fabless firm per 

chip (i.e. costs + markup) $2,433 $1,428 $713 $453 $399 $331 $274 $233 $238 

Fabless firm’s design cost per chip given 

chip volume of 5 million90 $630 $392 $200 $135 $119 $136 $121 $110 $108 

Assembly, test, and packaging cost per 

chip $815 $478 $239 $152 $134 $111 $92 $78 $80 

Total production cost per chip $3,877 $2,298 $1,152 $740 $652 $577 $487 $421 $426 

Annual energy cost to operate chip $9,667 $7,733 $3,867 $2,320 $1,554 $622 $404 $242 $194 

 
 

First, in less than two years, the cost to operate a leading node AI chip (7 or 5 

nm) exceeds the cost of producing said chip, while the cumulative electricity 

cost of operating a trailing node AI chip (90 or 65 nm) is three to four times 

the cost of producing that chip.91 Figure 8 presents total chip costs for 
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continuous use up to three years: total production cost per chip is added in 

year zero, with annual energy cost of using the chip added in each 

subsequent year. These results suggest that leading node AI chips are 33 

times more cost-effective than trailing node AI chips when counting 

production and operating costs. Likewise, because leading node AI chips 

exhibit one to three orders of magnitude greater efficiency than leading node 

CPUs (Table 2 and Appendix C), we expect leading node AI chips are also 

one to three orders of magnitude more cost-effective than leading node CPUs 

when counting production and operating costs. 

 

Figure 8: Cost of AI chips over time for different nodes 
 

 
 

Second, it takes 8.8 years for the cost of producing and operating a 5 nm 

chip to equal the cost of operating a 7 nm chip.92 Below 8.8 years, the 7 nm 

chip is cheaper, and above, the 5 nm chip cheaper. Therefore, users have an 

incentive to replace existing 7 nm node chips (assuming they do not break 

down) only when expecting to use 5 nm node chips for 8.8 years. Figure 9 

shows node-to-node comparisons between 90 nm and 5 nm. We find that 

the timeframe where these costs become equal has increased, with a 

dramatic rise at the 7 versus 5 nm comparison.93 Firms typically replace 

server-grade chips after about three years of operation, which is consistent 

with recent timeframes for introduction of new nodes—that is, firms relying on 

leading node chips purchase newly introduced node chips as soon as they 

are available. However, if firms begin purchasing 5 nm node chips, they may 

expect to use these chips for much longer.94 This would constitute a market 

prediction that Moore’s Law is slowing, and that the 3 nm node may not be 

introduced for a long time.95 
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Figure 9: Node transition economics 
 

 
 

Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 
 

AI firms’ time and money spent on AI-related computing have become a 

bottleneck on AI progress. Given leading node AI chips are vastly more cost-

effective and faster (Table 4 and Figure 7) than trailing node AI chips or 

leading node CPUs, these AI labs therefore need leading node AI chips to 

continue AI progress. 

 

First, training costs of AI lab DeepMind’s leading AI experiments, such as 

AlphaGo, AlphaGo Zero, AlphaZero, and AlphaStar, have been estimated 

at $5 to $100 million each.96 One cost model suggests AlphaGo Zero’s 

training cost was $35 million.97,98 AI lab OpenAI reports that of their $28 

million total 2017 costs, $8 million went to cloud computing.99 Multiplying 

these computing costs by thirty for trailing node AI chips, or even more for 

leading node CPUs, would make such experiments economically prohibitive. 

And computing costs for some AI companies have increased so quickly that a 

cost ceiling may soon be reached, necessitating the most efficient AI 

chips.100,101 

 

Second, leading AI experiments can take days or even a month for 

training,102 while deployed critical AI systems routinely require fast or real-

time inference. Increasing these times by using trailing node AI chips or 

leading node CPUs would make the required iteration speed for AI R&D and 

inference speed of deployed critical AI systems unacceptably slow. A 
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company with slower chips could attempt to pay the enormous energy costs 

to increase speed by using large numbers of slower chips in parallel. But this 

gambit would fail for two reasons. For one, as discussed in Section A of 

Appendix A, leading experiments require AI researchers to tune AI algorithms 

to support more data and model parallelism. AI researchers can do this to a 

limited degree, but may face difficulty if attempting to use a dramatically 

greater number of AI chips in parallel than currently used by leading AI 

experiments. For another, even if algorithmically possible, such parallelism 

requires complementary software and networking technology to enable it.103 

Scaling up hundreds or thousands of GPUs in parallel is extremely difficult.104 

Scaling up an even larger number of trailing node GPUs would likely be 

beyond current capabilities. The new Cerebras Wafer Scale Engine chip 

presents an intriguing potential workaround to networking technology. It is the 

first wafer-scale chip, having a much larger surface area than any other AI 

chip, meaning a large degree of parallelism can be accomplished on a single 

chip, reducing the need for advanced networking technology between 

multiple chips.105 

 

A caveat to this analysis is that some recent AI breakthroughs have not 

required a significant amount of computing power.106 Furthermore, there is 

ongoing research in developing AI algorithms requiring minimal training (e.g. 

“few shot” learning techniques).107  For these AI algorithms, multiplying a 

small cost or speed by a large number may still yield a small cost or speed. 

U.S. and Chinese AI Chips and Implications for National 

Competitiveness 
 

Cost-effectiveness and speed of leading node AI chips matter from a policy 

perspective. U.S. companies dominate AI chip design, with Chinese 

companies far behind in AI chip designs, reliant on U.S. EDA software to 

design AI chips, and needing U.S. and allied SME and fabs to fabricate AI 

chips based on these designs. The value of state-of-the-art AI chips, 

combined with the concentration of their supply chains in the United States 

and allied countries, presents a point of leverage for the United States and its 

allies to ensure beneficial development and adoption of AI technologies.108 

 

U.S. companies Nvidia and AMD have a duopoly over the world GPU 

design market, while China’s top GPU company, Jingjia Microelectronics, 

fields dramatically slower GPUs.109 Likewise, U.S. companies Xilinx and Intel 

dominate the global FPGA market, while China’s leading FPGA companies 
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Efinix, Gowin Semiconductor, and Shenzhen Pango Microsystem have only 

developed trailing node FPGAs thus far.110 

 

The AI ASIC market, especially for inference, is more distributed with lower 

barriers to entry, as ASICs and inference chips are easier to design (see 

Section VI(A)). Unlike GPUs and FPGAs, companies active in AI such as 

Google, Tesla, and Amazon have begun designing AI ASICs specialized for 

their own AI applications. Google’s TPU is a leading commercial AI ASIC.111 

Intel is also developing powerful commercial AI ASICs,112 and claims even 

greater improvements for research ASICs in the range of 10,000x and 

1,000x for efficiency and speed respectively.113 Competitive Chinese 

companies in the AI ASIC space include Baidu, Alibaba, Tencent, HiSilicon 

(owned by Huawei), Cambricon Technologies, Intellifusion, and Horizon 

Robotics. Chinese researchers have also produced high-end research 

ASICs.114 However, they are largely limited to inference, although Huawei 

recently announced the development of an AI training ASIC.115 

 

Table 4 lists world-leading server grade U.S. AI chip designs alongside 

leading Chinese counterparts.116,117 The data tells two stories. 

 

Table 4: Leading U.S. and Chinese AI chips 

 

Type Firm HQ Design firm AI chip Node (nm) Fab 

GPU United 

States 

AMD118 Radeon Instinct 7 TSMC 

Nvidia119 Tesla V100 12 TSMC 

China Jingjia Micro120 JM7200 28 Unknown 

FPGA United 

States 

Intel121 Agilex 10 Intel 

Xilinx122 Virtex 16 TSMC 

China Efinix123 Trion 40 SMIC 

Gowin Semiconductor124 LittleBee 55 TSMC 

Shenzhen Pango125 Titan 40 Unknown 

ASIC United 

States 

Cerebras126 Wafer Scale Engine 16 TSMC 

Google127 TPU v3 16/12 (est.) TSMC 

Intel128 Habana 16 TSMC 
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Tesla129 FSD computer 10 Samsung 

China Cambricon130 MLU100 7 TSMC 

Huawei131 Ascend 910 7 TSMC 

Horizon Robotics132 Journey 2 28 TSMC 

Intellifusion133 NNP200 22 Unknown 

 
 

First, Table 4 shows that U.S. AI chip design firms fab exclusively at TSMC, 

Samsung, or Intel, with chips either at the leading commercial node (7 nm) or 

close behind. U.S. GPUs use more leading nodes than U.S. FPGAs and 

ASICs—possibly due to their generality and therefore higher sales volumes 

that recoup higher leading node design costs.134 

 

Experts disagree on the need for leading nodes for AI chips. An executive of 

the EDA company Cadence Design Systems said, "everybody who wants to 

do AI needs the performance, power and form factor of 7nm and below.”135 

Meanwhile, a semiconductor researcher at Hong Kong Applied Science and 

Technology Institute was more skeptical: “For AI chips … manufacturing costs 

will be much lower if you use 28nm technology and not 10 or 14nm tech … 

you need to spend a lot of effort from scratch [to design at leading nodes]—

mathematical models, the physical layers, the computational language, all 

these need investment.”136 

 

The data in Table 4 settles this question: near-leading-edge nodes (i.e. ≤16 

nm) are used for all of the leading U.S. AI chips we investigated. This data is 

consistent with the CSET chip economics model discussed in Section VI(A). 

Specifically, the model’s results in Figure 8 show an especially high cost-

effectiveness for chips at ≤16 nm, with ≥20 nm having much higher costs. 

 

Few fabs are capable of manufacturing near-state-of-the-art AI chips, as 

shown in Figure 10. Only approximately 8.5% of global fab capacity could 

be used to fabricate near-state-of-the-art AI chips, and only a subset is 

currently used for it. The actual percentage used to fabricate near-state-of-

the-art AI chips is difficult to calculate and varies year-to-year. 
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Figure 10: Near-state-of-the-art AI chips comprise a small percentage of 

all chips137 

 
Red intersection: chip fab capacity capable of making near-state-of-the-art 

AI chips 

Blue circle: chip fab capacity actually used to make near-state-of-the-art AI 

chips 

 
 

Second, Table 4 shows that Chinese AI chip design firms use trailing nodes 

for GPUs and FPGAs, and a mix of leading nodes and trailing nodes for 

ASICs. Even though China has some local fabrication capacity at a number 

of these trailing nodes, China’s AI chip design firms still mostly outsource 

fabrication of trailing node chips to the Taiwanese fab TSMC. This likely 

reflects TSMC’s more reliable fabrication processes than those of Chinese 

domestic fabs like SMIC. SMIC has capacity as advanced as 14 nm, but only 

at a low volume.138 Some of these chip design firms do use SMIC, but SMIC 

relies on SME imports from the United States, the Netherlands, and Japan. 

This is because China’s SME industry includes only a small number of 

companies that are not at the state-of-the-art.139 Chinese AI chip design firms 

also rely on U.S. EDA software to design their AI chips. Therefore, China 

remains dependent on the United States and its allies for AI chip production 

capabilities. 

 

China has achieved the most design success in AI inference ASICs, as its 

large and well-educated population of engineers is well-suited to the labor-

intensive work of designing a chip that performs extremely well on a specific 
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task.140 However, given China’s relatively young AI chip design industry, 

Chinese companies have yet to acquire the implicit know-how needed to 

navigate the large optimization space and higher complexity of mastering 

GPUs and FPGAs. 

 

Chinese companies also heavily incorporate Western IP cores into their 

designs. For example, Huawei licenses British chip design firm ARM’s 

instruction set architecture and IP cores.141 Chinese FPGA makers also license 

Intel and Xilinx FPGA IP cores.142 Licenses for IP cores become exponentially 

more expensive at leading nodes.143 

 

China’s lack of development in key sectors of AI chip supply chains—

including AI chip designs, EDA software, SME, and fabs—means the United 

States and its allies maintain a competitive advantage in the production of 

leading-edge AI chips. As discussed in Section VII, leading-edge AI chips 

have critical strategic value for the development and deployment of 

advanced security-relevant AI systems. Therefore, it is vital to U.S., allied, and 

global security to maintain this advantage. 

 

Future CSET reports will more deeply analyze AI chip industry 

competitiveness of the United States and China, China’s semiconductor 

industry and its plans for chip independence and supply chain localization, 

and recommend policies the United States and its allies should pursue to 

maintain their advantages in the production of AI chips. 
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Appendix A: Basics of Semiconductors and Chips 
 

A semiconductor is a material with an electrical conductivity between that of 

a conductor, which allows the flow of electrical current, and an insulator, 

which does not. A semiconductor can switch between being conductive and 

insulative in different circumstances. Silicon is the most commonly used 

semiconductor. Semiconductors are used in a wide array of devices, such as 

transistors, resistors, capacitors, and diodes, each of which perform distinct 

functions. These devices can be manufactured separately as “discrete” 

devices or multiple devices can be combined into an integrated circuit, also 

called a “chip.” 

 

Transistors are especially important devices for computing, as they can be 

switched between on and off states representing 1 and 0. The metal-oxide-

semiconductor field-effect transistor (MOSFET) has been the dominant 

transistor type since the 1960s. The name is explanatory: a MOSFET includes 

an insulator (e.g. an oxide) between a gate (e.g. a conductive metal) and a 

semiconductor channel (e.g. silicon144) that connects a source and a drain 

(see Figure 11). When a voltage (i.e. an electric field) is applied to the gate, 

the channel is put in an “on” state so that current flows between the source 

and the drain. When voltage is not applied, the channel is put in an “off” state 

such that current does not flow between the source and the drain. 

 

The structure of a chip includes a “front-end” and “back-end.” The front-end 

has silicon layers embedded with electrical devices such as transistors. The 

back-end sits on top of the front-end and consists of layers formed of 

insulators through which conductive metal wires called interconnects connect 

the electrical devices of the front-end (see cross-sectional side view in Figure 

11).145 Different combinations of transistors and other electrical devices, 

wired in particular ways, create various types of “logic gates,” which perform 

basic logical operations. Seven basic logic gates serve as building blocks to 

create larger “execution units,” which implement any desired computation.146 

“Chip design” refers to the layout and structure of these electrical devices and 

their interconnections. 
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Figure 11: Transistor and chip structure 

 
 
 

Chips today perform virtually all computing and include many types. First, 

logic chips perform calculations on digital data (0s and 1s) to produce an 

output. Examples include CPUs, which are general-purpose processors 

suitable for a wide variety of computing tasks but not specialized for any 

given tasks, and specialized chips like graphics processing units (GPUs), 

field-programmable gate arrays (FPGAs), and application-specific integrated 

circuits (ASICs). GPUs, FPGAs, and ASICs are specialized for improved 

efficiency and speed for specific applications—such as AI—at the expense of 

worse-than-CPU efficiency and speed on other applications.  

 

In contrast to logic chips, memory chips store the digital data on which logic 

devices perform calculations. Examples include “dynamic random-access 

memory” (DRAM), NAND flash memory, and solid-state hard drives. Analog 

chips convert between analog (continuous) data and digital (0s and 1s) 

data. Mixed-signal chips include both digital and analog functions. A 

system-on-a-chip (SoC) is a single chip that includes all necessary computer 

functions, including logic functions and memory.147 
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Appendix B: How AI Chips Work 

 
AI chips implement specific techniques to increase efficiency and speed 

relative to CPUs. See Figure 12 for a top-down view of a generic AI chip and 

a pictorial representation of these techniques, which are described in detail in 

the following subsections. 

 

Figure 12: Generic AI Chip 

 
 

Parallel Computing 
 

The most important improvement an AI chip provides over traditional CPUs is 

parallel computing. AI chips can run a much larger number of simultaneous 

computations than a CPU can. 

 

Computations for DNNs are especially parallelizable because they are 

identical and not dependent on the results of other computations. DNN 

training and inference require a large number of independent, identical 

matrix multiplication operations, which in turn requires performing many 

multiplications that are then summed—so called “multiply-and-accumulate” 

operations.148,149 

 

AI chip designs typically include large numbers of “multiply-accumulate 

circuits” (MACs) in a single chip to efficiently perform matrix multiplication 

operations within a massively parallel architecture.150 Performing calculations 

in parallel also enables the AI chip to complete calculations faster than in 

sequence. Multiple AI chips connected in a parallel architecture can further 

increase the degree of parallelism.151 While advanced CPUs have some 

degree of parallel architectures, AI chips achieve significantly greater 

parallelism.152 
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Parallel processing operations use several techniques. Data parallelism, the 

most common form of parallelism, splits the input dataset into different 

“batches,” such that computations are performed on each batch in parallel. 

These batches can be split across different execution units of an AI chip or 

across different AI chips connected in parallel. Data parallelism works for any 

type of neural network. Across a wide variety of neural networks, data 

parallelism using hundreds to thousands of batches during training achieves 

the same model accuracy without increasing the total number of required 

computations. However, greater numbers of batches start requiring more 

compute to achieve the same model accuracy. Beyond a certain number of 

batches—for some DNNs, over a million—increasing data parallelism 

requires more compute without any decrease in time spent training the model, 

thereby imposing a limit on useful data parallelism.153 

 

Model parallelism splits the model into multiple parts on which computations 

are performed in parallel on different execution units of an AI chip or across 

different AI chips connected in parallel.154 For example, a single DNN layer 

includes many neurons, and one partition may include a subset of those 

neurons and another includes a different subset of the same neurons. An 

alternative technique performs calculations on different neural network layers 

in parallel.155 

 

Given the limits on parallelism, scaling up the amount of compute through 

more AI chips in parallel is not on its own a viable strategy for further AI 

progress.156 Instead, research is necessary to produce AI algorithms allowing 

greater degrees of data and model parallelism, including research to 

combine techniques to multiply the degree of parallelism.157 

 

Low-Precision Computing 
 

Low-precision computing—which sacrifices numerical accuracy for speed and 

efficiency—is especially suitable for AI algorithms.158 An x-bit processor 

contains execution units each built to manipulate data that is represented by x 

bits. A transistor stores a bit, which can take a value of 1 or 0; therefore, x bit 

values allow 2x different combinations. Table 5 shows common values of x for 

processor data types. 
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Table 5: Data types 

 

Data types 64-bit 32-bit 16-bit 8-bit 

Possible values 18 quintillion 

(1.8 x 1019) 

4.3 billion 

(4.3 x 109) 

65,536 

(6.5 x 104) 

256 

(2.5 x 102) 

 
 

Higher-bit data types can represent a wider range of numbers (e.g. a larger 

set of integers) or higher precision numbers within a limited range (e.g. high 

precision decimal numbers between 0 and 1). Fortunately, with many AI 

algorithms, training or inference perform as well, or nearly as well, if some 

calculations are performed with 8-bit or 16-bit data representing a limited or 

low-precision range of numbers.159 Even analog computation can suffice for 

some AI algorithms.160 These techniques work for the following reasons. First, 

trained DNNs are often impervious to noise, such that rounding off numbers 

in inference calculations does not affect results. Second, certain numerical 

parameters in DNNs are known in advance to have values falling within only 

a small numerical range—precisely the type of data that can be stored with a 

low number of bits.161 

 

Lower-bit data calculations can be performed with execution units containing 

fewer transistors. This produces two benefits. First, chips can include more 

parallel execution units if each execution unit requires fewer transistors. 

Second, lower-bit calculations are more efficient and require fewer 

operations. An 8-bit execution unit uses 6x less circuit area and 6x less 

energy than a 16-bit execution unit.162 

 

Memory Optimization 
 

If an AI algorithm’s memory access patterns are predictable, AI chips can 

optimize memory amounts, locations, and types for those predictable uses.163 

For example, some AI chips include sufficient memory to store an entire AI 

algorithm on-chip.164 Intra-chip memory access provides major efficiency and 

speed improvements compared to communication with off-chip memory. 

Model parallelism becomes an especially useful tool when a model becomes 

too large to store on a single AI chip; by splitting a model, different portions 

can be trained on different AI chips connected in parallel.165 
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By contrast, most CPUs have a “Von Neumann” design, which includes a 

single central bus—a communication system that shares data between the 

CPU and a separate memory chip storing program code and data. Given the 

bus’ limited bandwidth, the CPU must separately access the code and data 

sequentially and experiences a “Von Neumann bottleneck,” whereby 

memory-access latency prevents CPUs from achieving speeds enabled by 

high transistor-switching speeds.166 The Von Neumann design is useful for 

general-purpose computing. AI chips, on the other hand, do not require a 

Von Neumann design or exhibit the Von Neumann bottleneck. 

 

Domain-Specific Languages 
 

Domain-specific languages (DSLs) provide efficiency gains for specialized 

applications run on specialized chips.167 

 

Programmers use computer languages to write computer code (i.e. 

instructions to a computer) in a human-understandable way. A computer 

program called a compiler (or an interpreter) then translates this code into a 

form directly readable and executable by a processor. Different computer 

languages operate at various levels of abstraction. For example, a high-level 

programming language like Python is simplified for human-accessibility, but 

Python code when executed, is often relatively slow due to complexities of 

converting high-level instructions for humans into machine code optimized for 

a specific processor. By contrast, programming languages like C operating at 

a lower-level of abstraction require more complex code (and effort by 

programmers), but their code often execute more efficiently because it is 

easier to convert into machine code optimized for a specific processor.168 

However, both examples are general-purpose programming languages 

whose code can implement a wide variety of computations, but is not 

specialized to translate efficiently into machine code for specific 

computations. 

 

By contrast, DSLs are specialized to efficiently program for and execute on 

specialized chips. A notable example is Google’s TensorFlow, which is DSL 

whose code runs with higher efficiency on AI chips than any general-purpose 

language would.169  Sometimes, the advantages of DSLs can be delivered by 

specialized code libraries like PyTorch: these code libraries package 

knowledge of specialized AI-processors in functions that can be called by 

general-purpose languages (such as Python in this case).170 
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Appendix C: AI Chip Benchmarking Studies 

 

Many researchers have attempted to benchmark DNN efficiency and speed 

of AI chips against CPUs and each other, with varying results depending on 

variables including chip type, whether the computation is training or 

inference, and DNN type (i.e. the benchmark). DNN types include fully 

connected neural networks (FCNNs), convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), long short-term memory (LSTM), residual 

networks (ResNets), and others. Table 6 presents results for a sampling of key 

recent studies on various comparisons between server grade and PC grade 

chips.171 Notably, even some CPUs are being designed with improved AI 

capabilities (e.g. 200x speed increases), which may reduce the difference 

between CPU and AI chip results.172 Finally, all of the chips listed below are 

U.S. chips, except for the U.K. Graphcore chip and the Chinese Cambricon 

chip. Little rigorous benchmarking data exists for Chinese AI chips. 

 

Table 6: AI Chip Efficiency and Speed Benchmarking Studies for DNNs 
 

Author and 

year 

Chip comparison Computati-

on type 

DNN types Efficiency Speed 

Harvard-1 

(2019)173 

Nvidia Tesla 

V100 GPU vs. 

Intel Skylake CPU 

Training FCNN - 1-100x 

Google TPU 

v2/v3  ASIC vs. 

Nvidia Tesla 

V100 GPU 

CNN, RNN, 

FCNN 

- 0.2-10x 

MLPerf 

(2019)174 

Google TPU v3 

ASIC vs. Nvidia 

Tesla V100 GPU 

Training ResNet, SSD, R-

CNN, NMT, 

Transformer, 

MiniGo 

- 0.8-

1.2x 

Graphcore 

(2019)175 

Graphcore IPU 

ASIC vs. GPU 

Training Transformer, MLP, 

Autoencoder, 

MCMC 

- 1-26x 

Inference Transformer, 

ResNext 

- 3-43x 

Google 

(2017)176 

Nvidia K80 GPU 

vs. Intel Haswell 

CPU 

Inference Weighted average 

of MLP, CNN, 

RNN 

3x 2x 
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Improved 

Google TPU v1 

ASIC vs. Intel 

Haswell CPU 

196x 50x 

Stanford 

(2017)177 

Nvidia Tesla K80 

or P100 GPU vs. 

16 Intel 

Broadwell vCPUs 

Training ResNet - 2-12x 

Inference - 5-3x 

Hong Kong 

Baptist 

(2017)178 

Nvidia GTX 

1080 GPU vs. 

Intel Xeon CPU 

Training FCNN, CNN, 

RNN, ResNet 

- 7-572x 

Harvard-2 

(2016)179 

 Nvidia GeForce 

GTX 960 GPU 

vs. Intel Skylake 

CPU 

Training CNN, RNN, 

FCNN, MemNet 

- 3-

1,700x 

Inference - 2-500x 

Bosch 

(2016)180 

Nvidia GTX Titan 

X GPU vs. Intel 

Xeon CPU 

Training CNN, RNN, 

FCNN 

- 7-29x 

Inference - 9-30x 

Stanford / 

Nvidia 

(2016)181 

Nvidia GeForce 

Titan X GPU vs. 

Intel Core i7 CPU 

Inference Geometric mean 

of CNN, RNN, 

LTSM 

4-7x 15-16x 

EIE ASIC vs. 

Nvidia GeForce 

Titan X GPU 

1,052x 4x 

Rice (2016)182 Nvidia Jetson 

TK1 GPU vs. 

Nvidia Jetson 

TK1 CPU 

Inference CNN 4x 16x 

Texas State 

(2016)183 

Nvidia GeForce 

Titan X GPU vs. 

Intel Xeon CPU  

Training CNN 12x 19x 

UCSB / CAS 

/ Cambricon 

(2016)184 

Cambricon-ACC 

ASIC vs. Nvidia 

K40M GPU 

Mean of 

training 

and 

inference 

Geometric mean 

of MLP, CNN, 

RNN, LTSM, 

Autoencoder, BM, 

RBM, SOM, HNN 

131x 3x 

Michigan-1 

(2015)185 

Nvidia GTX 770 

GPU vs. Intel 

Haswell CPU 

Inference DNN 7-25x 5-9x 
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Xilinx Virtex-6 

FPGA vs. Intel 

Haswell CPU 

20-70x 10-18x 

Michigan-2 

(2015)186 

Nvidia K40 GPU 

vs. Intel Xeon 

CPU 

Inference CNN, DNN - 40-

180x 

Peking / UCLA 

(2015)187 

Xilinx Virtex-7 

FPGA vs. Intel 

Xeon CPU 

Inference CNN 25x 5x 

Microsoft 

(2015)188 

Nvidia GeForce 

Titan X GPU vs. 

Intel Xeon CPU 

Inference CNN 77x 78x 

Intel Arria 10 

GX1150 FPGA 

vs. Intel Xeon 

CPU 

102x 16x 

ETH Zurich / 

Bologna 

(2015)189 

Nvidia GTX 780 

GPU vs. Intel 

Xeon CPU 

Inference CNN - 23x 

NYU / Yale 

(2011)190 

Nvidia GTX 480 

GPU vs. Intel 

DuoCore CPU 

Inference CNN 34x 267x 

Xilinx Virtex-6 

FPGA vs. Intel 

DuoCore CPU 

368x 134x 
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Appendix D: Chip Economics Model 
 

This appendix explains the assumptions and calculations underlying the line-

item values for the CSET chip economics model presented in Table 3. The 

model takes the perspective of a fabless firm designing a chip, purchasing 

foundry services to fabricate the chip, and operating the chip, all in 2020 

when TSMC expects to mass produce 5 nm node chips. 

 

Chip Transistor Density, Design Costs, and Energy Costs 
 

Chip transistor density. Our model uses, as a baseline, a hypothetical 5 nm 

GPU with the specifications of Nvidia’s Tesla P100 GPU, which OpenAI used 

in 2018 to train the breakthrough AI algorithm OpenAI Five.191 The P100 

GPU is fabricated at TSMC at the 16 nm node and contains 15.3 billion 

transistors in a chip (die) area of 610 mm2, translating to a transistor density 

of 25 MTr/mm2.192 A 300 mm diameter silicon wafer produces 71.4 610 

mm2 GPUs on average.193 Our hypothetical 5 nm GPU has a chip area of 

610 mm2 and given its greater transistor density than the P100 GPU, 90.7 

billion transistors.194 Table 7 presents estimated TSMC transistor densities for 

nodes between 90 and 5 nm. For nodes in the 90 to 7 nm range, our model 

uses a hypothetical GPU with identical specifications, including transistor 

count, as the hypothetical 5 nm GPU, except with a transistor density 

associated with the hypothetical node. Therefore, GPUs with nodes larger 

than 5 nm will respectively have an area greater than 610 mm2, resulting in 

differing numbers of GPUs fabricated per wafer as shown in Table 7.  

However, the model could equivalently be interpreted as accounting for one 

chip at the 5 nm node, but at any given larger node, multiple chips totaling 

the same transistor count as one 5 nm chip. 

 

Table 7: TSMC transistor density195 

 

Node (nm) 90 65 40 28 20 16/12 10 7 5 

Density (MTr/mm2) 1.6 3.3 7.7 15.3 22.1 28.9 52.5 96.3 171.3 

Average chips per 

wafer 

0.7 1.4 3.2 6.4 9.2 12.0 21.9 40.1 71.4 

 
 

Design costs per chip. For chip design costs for nodes between 5 to 65 nm, 

we use the IBS estimates presented in Table 1 for 5 to 65 nm. For the 90 nm 
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node, we extrapolate the cost based on the IBS data.196 We assume 

production of 5 million units.197 For the 5 nm node, we obtain a design cost 

per chip of $108. For larger nodes, the chips in our model require a larger 

chip area (or equivalently, more chips), therefore for larger nodes the per 

chip cost is determined by dividing by a smaller number of units.198 In 

practice, the design cost per chip could vary widely due to varying 

production volume for different AI chips or depending on whether a fabless 

firm reuses old chip designs or IP cores.199 

 

Annual energy cost per chip. The Nvidia Tesla P100 GPU runs at 9.526 

teraflops for 32-bit floating point calculations with a thermal design power 

(TDP) of 250 watts.200 When a typical high-end GPU is idle, it uses 31 

percent of TDP,201 while peak utilization uses 100 percent of TDP. We adopt 

OpenAI’s assumption that a typical GPU exhibits a utilization rate of 33 

percent during training.202 For simplicity, we assume a linear relationship 

between utilization and power consumption,203 yielding an estimate that the 

Nvidia Tesla P100 GPU uses 54 percent of TDP during training.204 We then 

use an estimated electricity cost of $0.07625 per kilowatt-hour to determine 

chip annual energy usage.205 We then increase the energy costs by 11 

percent to account for cooling and other costs based on Google’s report that 

its data centers have an average power usage effectiveness (PUE) of 1.11.206 

We also increase energy costs to account for a power supply efficiency of 95 

percent. For nodes other than 16 nm, we adjust electricity cost according to 

TSMC’s node-to-node comparative power consumption data presented in 

Figure 6.207 

 
Foundry, Assembly, Test, and Packaging Costs 
 

We first use TSMC’s historical financial data to estimate foundry sale price 

per chip for each node. Initially, we note foundry revenue equals capital 

assets consumed (i.e. depreciated) plus other costs plus operating profit. 

Table 8 breaks down the unweighted yearly average of the percentage 

contributions of these components for the period from 2004 to 2018. Table 8 

also lists the unweighted yearly average of TSMC’s capital depreciation rate 

for this period. For the remainder of the calculations, we use these values.208 
 

Table 8: Costs used in the model (taken from TSMC’s financials)209 
 

Financial line-item Average from 2004 to 2018 

Capital consumed (i.e. depreciated) 24.93% 



 
 

Center for Security and Emerging Technology | 43 

 

Other costs 39.16% 

Operating profit 35.91% 

Revenue 100% 

Capital depreciation rate 25.29% 

 
 

We first calculate capital consumed per wafer for each node based on 

TSMC’s capital investments, annual wafer capacity of its foundries, and the 

capital depreciation rate as follows. Then, we will infer other costs and 

markup per chip using Table 8. 

 

To obtain capital consumed per wafer, we first calculate capital investment 

per wafer processed per year. TSMC currently operates three GigaFabs 

(Fabs 12, 14, and 15) with a fourth (Fab 18) scheduled to come online in 

2020 with expansion thereafter.210 These four fabs include a total of 23 fab 

locations each with a known initial capital investment in 2020 USD—

representing investments in facilities, clean rooms, and purchase of SME—and 

annual 300 mm wafer processing capacity. Dividing these two values 

produces the capital investment per wafer processed per year for each fab 

location. Figure 13 plots these 23 values according to the year in which each 

fab location began processing wafers.211 When fit to an exponential 

trendline, capital investment per wafer processed per year shows an 8.3 

percent increase per year, with a value of $4,649 in 2004 and $16,746 in 

2020. 

 

Figure 13: Capital investment per 300 mm wafer processed per year212 
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Table 9 on line 2 lists the trendline-fitted capital investment per wafer 

processed per year for each node based on the year and quarter of 

introduction of that node listed in line 1.213 Based on the yearly depreciation 

rate of 25.29 percent from Table 8, line 3 lists net capital depreciation rate 

for each year’s capital investment per wafer processed per year from the 

perspective of the year 2020. Typical capital depreciation schedules reach a 

maximum. Here, we assume a maximum of 65 percent.214 Line 4 lists 

undepreciated capital remaining at the start of 2020, which we obtain by 

depreciating the capital investment per wafer processed per year using the 

net capital depreciation rate. Line 5 lists how much of any given year’s 

undepreciated capital the processing of one wafer would consume in 2020. 

This value is obtained by multiplying any given year’s undepreciated capital 

by the capital depreciation rate of 25.29 percent.215 Line 6 lists other costs 

and markup per chip for each node, which we obtain by multiplying capital 

consumed per chip by the ratio of other costs and operating profit as a 

percentage of revenue (75.07 percent) and capital consumed as a 

percentage of revenue (24.93 percent), as obtained from Table 8. To avoid 

complexity, for each node we assume a flat ratio of capital consumed to 

other costs and markup.216 Line 7 lists the foundry sale price per wafer, which 

is the sum of capital consumed per wafer (line 5) and other costs and markup 

per wafer (line 6).217 In line 8, we convert the per wafer value to a per chip 

value by dividing by the number of chips per wafer of a given year’s node 

listed in Table 7.218 Foundry sale price per chip values in line 8 are not 

integer fractions of foundry sale price per wafer values in line 7, as for each 

node the average number of chips per wafer is not an integer.219 

 

Table 9: Calculation of foundry sale price per chip in 2020 by node 
 

Line Node (nm) 90 65 40 28 20 16/12 10 7 5 

1 

Mass production year and 

quarter220 

2004 

Q4 

2006 

Q4 

2009 

Q1 

2011 

Q4 

2014 

Q3 

2015 

Q3 

2017 

Q2 

2018 

Q3 

2020 

Q1 

2 

Capital investment per wafer 

processed per year $4,649 $5,456 $6,404 $8,144 $10,356 $11,220 $13,169 $14,267 $16,746 

3 

Net capital depreciation at 

start of 2020 (25.29% / 

year) 65% 65% 65% 65% 65% 65% 55.1% 35.4% 0.0% 

4 

Undepreciated capital per 

wafer processed per year 

(remaining value at start of 

2020) $1,627 $1,910 $2,241 $2,850 $3,625 $3,927 $5,907 $9,213 $16,746 

5 

Capital consumed per wafer 

processed in 2020 $411 $483 $567 $721 $917 $993 $1,494 $2,330 $4,235 
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6 

Other costs and markup per 

wafer $1,293 $1,454 $1,707 $2,171 $2,760 $2,990 $4,498 $7,016 $12,753 

7 Foundry sale price per wafer $1,650 $1,937 $2,274 $2,891 $3,677 $3,984 $5,992 $9,346 $16,988 

8 Foundry sale price per chip $2,433 $1,428 $713 $453 $399 $331 $274 $233 $238 

Finally, we calculate assembly, test, and packaging (ATP) costs per chip. 

Under the fabless-foundry model, fabless firms design chips, and purchase 

foundry services from foundries and assembly, test, and packaging (ATP) 

services from outsourced semiconductor assembly and test (OSAT) firms. We 

can derive OSAT costs based on the ratio of the fab market to the ATP 

market. Total 2018 OSAT revenue was $30 billion.221 Because OSAT 

revenues are about 36.8% of ATP revenues, the total ATP market was $81.5 

billion.222 Total 2018 foundry revenue was $62.9 billion.223 Total 2018 IDM 

revenue was $312.8 billion and total 2018 fabless revenue was $108.9 

billion for a ratio of 2.9.224 We multiply total 2018 foundry revenue by this 

ratio to obtain an estimated $180.6 billion in fab revenue attributable to 

IDMs. Adding this value to 2018 foundry revenue gives us a total 

semiconductor fab revenue of $243.5 billion. Finally, dividing the ATP market 

of $81.5 billion by the fab market of $243.5 billion equals 33.48% percent. 

We calculate OSAT costs for each node by multiplying the foundry sale price 

by this percentage.225 
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