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Abstract

This paper tackles the challenging problem of one-shot semantic image synthe-

sis from rough sparse annotations, which we call “semantic scribbles.” Namely,

from only a single training pair annotated with semantic scribbles, we gener-

ate realistic and diverse images with layout control over, for example, facial part

layouts and body poses. We present a training strategy that performs pseudo

labeling for semantic scribbles using the StyleGAN prior. Our key idea is to con-

struct a simple mapping between StyleGAN features and each semantic class

from a single example of semantic scribbles. With such mappings, we can gen-

erate an unlimited number of pseudo semantic scribbles from random noise to

train an encoder for controlling a pretrained StyleGAN generator. Even with our

rough pseudo semantic scribbles obtained via one-shot supervision, our method

can synthesize high-quality images thanks to our GAN inversion framework.

We further offer optimization-based postprocessing to refine the pixel alignment

of synthesized images. Qualitative and quantitative results on various datasets

demonstrate improvement over previous approaches in one-shot settings.
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1 INTRODUCTION

Recent advances in generative adversarial networks (GANs) have enabled us to easily create realistic and diverse

images.1-3 This success, in turn, has encouraged researchers to find how to control GANs’ outputs.4-8 They have analyzed

the latent space of GANs to reveal the effect of latent code manipulation on output images. Through the disentangled

latent space, users can control various attributes (e.g., face orientation,mouth shape, and hair color) in the output images.

However, attribute manipulation is not necessarily intuitive against, in particular, layout-related attributes (e.g., facial

part layout and body pose), which we focus on in this paper.

Layout control in image synthesis is possible with image-to-image (I2I) translation,9 where layouts are specified with

semantic masks or sketches. A drawback is that most existing techniques require substantial training data in source and

target domains for high-quality outputs. Even worse, fine-grained annotations of pixel-wise labels in both training and

testing times are quite costly. Although some public datasets like those for human faces may be sufficient to train I2I

models, various datasets in other domains such as for animals and cartoons are not well organized.

In this paper, we present the first method for controlling GANs’ outputs via one-shot learning in a one using rough

sparse annotations as input. We term these input annotations “semantic scribbles,” and they can be used to specify out-

put layouts with sparse annotations like brush strokes for body parts and cross lines for the face. Imagine that you
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F IGURE 1 Our method can synthesize photorealistic images from rough semantic scribbles using a single training pair and a

pretrained StyleGAN model.

have a large dataset of unlabeled images, but only a single annotated pair is available (see Figure 1). In this scenario,

we would utilize StyleGAN,2,3 pretrained using the unlabeled dataset. Namely, we would achieve high-quality image

synthesis by exploring StyleGAN’s latent space via GAN inversion.10 What is challenging here is that, although com-

mon GAN inversion techniques11,12 assume that test inputs belong to the same domain as a GAN’s training data (e.g.,

facial photographs), our test and training data are in different domains, that is, semantic layouts and photographs.

How to invert the input in a different domain into a GAN’s latent space is an open question, especially in a one-shot

scenario.

To bridge the domain gaps, we construct a mapping between the semantics predefined in the one-shot example

and StyleGAN’s latent space. Inspired by the fact that pixels with the same semantics tend to have similar Style-

GAN features,13 we generate pseudo semantic scribbles from random noise in StyleGAN’s latent space via simple

nearest-neighbor matching. This way, we can draw an unlimited number of training pairs by only feeding random

noise to a pretrained StyleGAN generator. After integrating an encoder on top of a fixed StyleGAN generator, we then

train the encoder for controlling the generator using the pseudo-labeled data in a supervised fashion. We further offer

optimization-based postprocessing to refine the pixel alignment of synthesized images. Our approach integrates semantic

layout control into pretrained StyleGAN models publicly available on the Web,14 via pseudo labeling even from a single

annotated pair.

In summary, our major contributions are as follows:

– We explore a novel problem of controlling GANs’ outputs using semantic scribbles in a one-shot setting, where users

can synthesize high-quality, various images in target domains even from a single and rough semantic layout provided

during training.

– We propose a simple yet effective framework for training a StyleGAN encoder for scribble-based image synthesis in a

one-shot scenario, via pseudo sampling and labeling based on the StyleGAN prior.

– We propose a postprocessing method, which is optimization-based GAN inversion that refines our encoder-based

results.

As demonstrated in Figure 1 and the experiments in Section 4, ourmethod is the first to control StyleGAN in a one-shot

scenario using semantic scribbles, which can handle various layouts such as complicated poses as well as face orientation.

2 RELATED WORK

This section introduces related work for latent space manipulation and image-to-image translation. We also discuss one-

or few-shot approaches for controlling GANs.



ENDO and KANAMORI 3 of 16

2.1 Latent space manipulation

Recent techniques attempt to manipulate disentangled latent spaces of pretrained GANs for image editing. Here, we

briefly introduce some of them; please refer to a survey paper10 for more information. A typical choice for pretrained

GANs is StyleGAN,2,3 which enables coarse-to-fine editing using multiple layer-wise latent codes. Chiu et al. developed a

framework that allows users to search 1D subspaces for efficient user exploration from a high-dimensional latent space.4

Jahanian et al. computed trajectories in a latent space for simple image transformations in a self-supervised manner.5

InterFaceGAN6 can control the pose and expression of faces by finding semantic boundaries via the training of a linear

SVM. Shen et al. and Härkönen et al. found interpretable paths in a latent space through closed-form analysis7 and

principal components analysis (PCA).15 Although these methods enable image editing via operation in a latent space,

users cannot directly control output layouts.

Image2StyleGAN11,12 is a GAN inversionmethod that can control GANs’ outputs by inverting given images into latent

space via optimization. Roich et al.16 proposed a technique that not only optimizes latent codes but also tunes a generator

to improve editability of inverted real images. However, inverting semantic layouts into a latent space defined by pho-

tographs is not straightforward because how tomeasure the discrepancy between the two different domains (i.e., semantic

scribbles and photographs) is an open question, especially in a one-shot scenario.10 Recently, the Pixel2Style2Pixel (pSp)17

encoder has enabled GAN inversion without optimization for test inputs. Because this method does not need to compute

losses between inputs and a GAN’s outputs, it can also handle semantic layouts as input. To improve editability for the

encoder-based approach, Tov et al.18 introduced regularization and adversarial losses for latent codes into encoder train-

ing. In addition, Alaluf et al.19 proposed a method that improves reconstruction quality of inverted images by iteratively

refining latent codes from the encoder. However, the encoder-based approach requires many training pairs to improve

the generalizability of the encoder, as demonstrated in Section 4.

2.2 Image-to-image translation

There are various I2I translation methods suitable for interactive image synthesis using semantic layouts as input; the

goals are, for example, to improve image quality,9,20-24 generate multi-modal outputs,22,25-28 and simplify input annota-

tions using bounding boxes.29-31 There are also image synthesis methods using sketch and color scribbles as input.32,33

However, these methods require a large amount of training data for both source and target domains and thus are

unsuitable for our one-shot scenario. Moreover, although fine-grained annotations allow us to specify fine details, the

annotation cost is very high. Meanwhile, our focus is on roughly specifying the layouts of GANs’ outputs using semantic

scribbles.

There are also methods that use sketches as input instead of semantic masks.34 SketchyGAN35 is a variant of GANs

that can generate images for various classes from freehand sketches. SketchyCOCO36 enabled image generation for more

complicated scenes. While these methods require a large amount of paired data for training the networks, Wang et al.37

proposed amethod that can generate diverse images by learning a small number of sketches. However, this method is not

suitable for interactive editing because it requires re-training the model for about 30K iterations every time the test input

changes. Our method enables interactive synthesis for various test inputs after training our model. It can also handle

novel and arbitrary annotations such as cross lines.

2.3 One-/few-shot GAN control

To the best of our knowledge, there is no other one-shot method dedicated to controlling GANs’ outputs using semantic

layouts. Meanwhile, several few-shot techniques were proposed recently. DatasetGAN38 and RepurposeGAN39 demon-

strated high-quality semantic segmentation by leveraging pretrained StyleGAN models and a few annotations. They use

feature maps from the hidden layers of StyleGAN to learn segmentation models. However, they are not suited for the

class-imbalanced setting in our one-shot scenario, where only sparse sets of pixels are labeled with scribbles. Seman-

ticGAN40 trains GANs that generate both images and semantic masks using many unlabeled images and dozens of

segmentation maps. Although this method can generate high-quality segmentation maps for out-of-domain images, it

does not work well if we have only one-shot scribbles for training. Therefore, these techniques are not suitable to replace

our pseudo labeling in our framework, as demonstrated in Section 4.
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3 METHOD

Our goal is to accomplish scribble-based image synthesis via trainingwithNu unlabeled images and a single labeled image

both in the same target domain. A single training pair consists of one-hot semantic scribbles x ∈ {0, 1}C×W×H (where C,

W , andH are the number of classes, width, and height) and its ground-truth (GT) RGB image y ∈ R3×W×H . Each scribble

has a unique class label, whereas unoccupied pixels have an “unknown” class label. Hereafter, we denote the labeled

dataset asl = {x, y} and the unlabeled dataset asu = {yj}
Nu

j=1
.

The core of our method is to find appropriate mappings between semantics defined by a single labeled pair l and

StyleGAN’s latent space defined by an unlabeled datasetu. Our StyleGAN encoder learns the mappings to extract latent

codes from semantic scribbles. The overall training procedure (Figure 2 and Section 3.2) involves iterating three steps;

(i) first, we randomly sample images from a StyleGAN generator pretrained with u, (ii) then perform pseudo labeling

with l for the sampled images, and (iii) update the StyleGAN encoder parameters. In pseudo labeling (Section 3.1),

we first extract feature vectors representing each semantic class and then find matchings with StyleGAN’s feature maps.

Such matchings enable pseudo labeling, that is, to obtain pseudo semantic scribbles from random noise in StyleGAN’s

latent space, which are then used to train an encoder to extract latent codes for controlling the pretrained StyleGAN

generator.

For inference, we extract latent codes from test inputs using the StyleGAN encoder and generate images by feeding the

latent codes to the StyleGAN generator. As the StyleGAN encoder, we adopt the pSp encoder.17 The inference process is

the same as that of pSp; from semantic scribbles, the encoder generates latent codes that are then fed to the fixed StyleGAN

generator to control the spatial layout. We can optionally change or fix latent codes that control the local details of the

output images. In addition, we can refine the generated results via optimization-based GAN inversion in a postprocessing

stage (Section 3.3). Note that naïvely training the pSp encoder with a single ground-truth pair cannot generalize the

mapping function between various semantic scribbles and latent codes (see the results in Section 4). Hereafter, we explain

the pseudo labeling process, the training procedure with the pseudo semantic scribbles, and the postprocessing stage.

F IGURE 2 Training iteration of the StyleGAN encoder. We first generate images from noise vectors via the mapping network and the

StyleGAN generator. We then compute pseudo semantic scribbles using class-wise feature vectors. We train the encoder based on L2 loss

between latent codes.
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3.1 Pseudo labeling

Figure 3 illustrates the pseudo labeling process for semantic scribbles. As explained at the beginning of Section 3, each

semantic scribble has a unique class label, and unoccupied pixels have an “unknown” label. To obtain pseudo semantic

scribbles, we first extract class-wise feature vectors corresponding to class labels except for the “unknown” label. We then

find matchings between the feature vectors and pixels in images newly sampled from StyleGAN.

Specifically, we extract StyleGAN’s feature maps F ∈ RZ×W ′×H′

(where Z, W ′, and H′ are the number of channels,

width, and height) corresponding to the semantic scribbles x. There are two ways to prepare the feature maps F. If a

pair of semantic scribbles x and GT RGB image y is available in l, we first invert y into the StyleGAN’s latent space via

optimization-based GAN inversion using the L2 and LPIPS41 losses between y and the StyleGAN output. We then extract

the feature map via forward propagation. Alternatively, we feed one noise vector to the pretrained StyleGAN generator,

extract the featuremap and synthesized image, andmanually annotate the synthesized image to create semantic scribbles.

In all of our results, the feature map F is at a resolution of 64 × 64 and extracted from the layer closest to the output layer

of the StyleGAN generator. We set the resolution to 64 × 64 by reference to Collins et al.;13 they used 32 × 32 feature maps

to get “most semantic” clusters, but we want to obtain modestly high-resolution pseudo semantic scribbles to train the

encoder.

After obtaining StyleGAN’s feature map F, we extract class-wise feature vectors {fcj }
Nc

j=1
for semantic scribbles x′ ∈

{0, 1}C×W
′×H′

(where x′ is a downsampled version of x at the same spatial resolution as F, and Nc is the number of pixels

annotated with class c in x′). Meanwhile, we randomly sample images from the pretrained StyleGAN model and extract

their feature maps from the hidden layers. Next, we take the correspondence between each class-wise feature vector

fcj and the pixels in these feature maps. For pseudo semantic scribbles, we want to retain spatial sparsity so that the

pseudo semantic scribbles resemble genuine ones as much as possible. However, many annotated pixels in x′ might

match an identical pixel-wise vector in the feature maps (i.e., many-to-one mapping), which results in fewer samples in

pseudo semantic scribbles (see Figure 4). Therefore, we calculate the top-k (i.e., k-nearest-neighbor) matching instead of

one-nearest-neighbor to increase matchings. In the case of many-to-one mappings from different classes, we assign the

class label of an annotation that has the largest cosine similarity. To avoid outliers, we discard thematchings if their cosine

similarities are lower than a threshold t and assign the “unknown” label. Figure 5 shows examples of pseudo semantic

scribbles with different parameters. We set k = 3 and t = 0.5 for all results in this paper.

3.2 Training procedure

Figure 2 and Algorithm 1 summarize the learning process of the StyleGAN encoder. After preparing a pretrained Style-

GANand class-wise feature vectors asmentioned in Subsection 3.1,we iteratively train the StyleGANencoder. Specifically,

F IGURE 3 Pipeline of pseudo labeling. Left: We extract class-wise feature vectors for all labeled pixels. Right: For each feature vector,

we take top-k correspondences and assign its class label to corresponding pixels whose similarities are above threshold t.
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Algorithm 1. One-shot learning of StyleGAN encoder

Input: A labeled setl and unlabeled setu

Train StyleGAN usingu

Compute class-wise feature vectors usingl

for each training iteration do

Sample latent codes according to (0, I)

Feed the latent codes to the generator

Perform pseudo labeling using class-wise feature vectors

Feed the pseudo semantic scribbles to the encoder

Compute the loss  as in Eq.∼(1)

Compute the gradient and optimize the encoder

end for

F IGURE 4 Matching between class-wise feature vectors and a feature map. The solid and dashed arrows are first and second

matchings, respectively, and numbers near arrows show cosine similarity. Nearest-neighbor matching may result in fewer samples in pseudo

labeling than in genuine ones due to many-to-one mapping like cell A. K-nearest-neighbor matching can avoid this problem by increasing

matchings with cells like B. In addition, if feature vectors with different classes match same cell like C, we assign class label with highest

similarity (i.e., class 2 in this case).

we sample randomnoise z from a normal distribution (0, I) and feed it to the StyleGAN’smapping networkM to obtain

latent codes w. Next, we feed the latent codes to the pretrained StyleGAN generator to synthesize images while extract-

ing the intermediate layer’s feature maps. Using these feature maps and the class-wise feature vectors, we create pseudo

semantic scribbles, which are then fed to the encoder to extract latent codes {ŵi}
L
i=1

(L is the number of StyleGAN layers

to input latent codes). In the backward pass, we optimize the encoder using the following loss function:

 = Ew∼M(z)Σ
L
i=1||ŵi −w||22. (1)

This loss function indicates that our training is quite simple because backpropagation does not go through the pretrained

StyleGAN generator and does not require hyperparameter tuning.

3.3 Postprocessing via optimization

In general, encoder-based GAN inversion is fast but not so accurate in reconstructing images10 (see Figure 6a,b). There-

fore, in this section, we propose an optimization-based postprocessing to further refine our encoder-based outputs.

Inspired by the knowledge that StyleGAN features form semantic clusters using spherical k-means clustering,13 we for-

mulate an optimization procedure such that feature vectors in the same class will become similar in the cosine distance.

Specifically, we aim to find a latent codew∗ in the latent space1, following the objective function of k-means clustering:

1We can also optimize latent codes in the+ latent space,11 but we chose the latent space because it can obtain stable results.
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F IGURE 5 Our pseudo-labeled results with different parameters. We set k = 3 and t = 0.5 (highlighted in red) for all results.

F IGURE 6 Comparison with different postprocessing methods. We first obtain the result (b) from the input image (a) via our

encoder-based approach. (c,d) show the postprocessed results of (b) using Equations (2) and (4)

w∗ = argminŵ(f (ŵ),CX′
test), (2)

where the function f outputs a flattened StyleGAN feature map (i.e., Z ×W ′H′ matrix) from the latent code ŵ, C ∈ RZ×C

is a matrix consisting of C cluster centers in Z dimensions, X′
test ∈ RC×W ′H′

is a matrix obtained by flattening the resized

test semantic scribbles x′test ∈ {0, 1}C×W
′×H′

, and  is the mean of negative cosine similarities between corresponding

columns of two input matrices. In the function f , we feed the latent code ŵ to be optimized to the first eight layers in

StyleGAN because latent codes fed to the latter layers affect fine-scale attributes rather than layout. Meanwhile, we feed

fixed latent codes (e.g., encoder outputs) to the latter layers and exclude them from gradient computation. For the cluster

centers C, we can define C = (v1, v2, … , vC), where vc for class c is computed with the feature map F and the resized

training semantic scribbles x′ as follows:

vc =

∑
x,y F

(x,y)
1
[
x

′(c,x,y) = 1
]

∑
x,y 1

[
x′(c,x,y) = 1

] , (3)
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F IGURE 7 Postprocessed results (a) without and (b) with latent code initialization via our encoder

where (x, y) denote pixel positions, and 1[⋅] is an indicator function that returns 1 if the argument is true and 0 other-

wise. To avoid falling into undesirable local minima in Equation (2), we initialize ŵ with the encoder output ŵ0 before

optimization.

However, if we naïvely compute Equation (2), the pixels in each cluster will have the same feature vectors, converg-

ing to an almost flat-color image, as shown in Figure 6c. Inspired by GANSpace,15 we solve this problem by restricting

the latent code exploration to certain principal directions. This restriction prevents the latent codes from deviating sig-

nificantly from the actual data distribution. Specifically, we aim to find a parameter vector g∗ ∈ RZ to obtain the latent

codew∗ = Wg∗ by using principal components in the latent space. Here,W is a Z × Z matrix consisting of basis vectors,

sorted in the ascending order of their corresponding eigenvalues. We first initialize g∗ withW−1ŵ0 (ŵ0 is the encoder

output) and then optimize a part of g∗ as follows:

g∗s∶t = argminĝs∶t(f (Wĝ),CX′
test), (4)

where ĝ is a parameter vector initialized similar to g∗. The subscript s ∶ t denotes a vector’s elements from sth to tth,

and we set s = Z − 8 and t = Z. Namely, we optimize the latent code only in the principle directions corresponding to

the largest eight eigenvalues. Note that the “unknown” region is excluded from the loss calculation. Figure 6d shows the

result obtained by decoding the latent codeWg∗.

Note that, because Equation (4) has local optimal solutions, the result depends on the initial value. Depending on the

initial value of ĝ, converged results may deviate from the layout of the input mask, as shown in Figure 7a. Therefore, we

can see that optimizing Equation (4) without appropriate initialization is insufficient and the latent code initialization by

our encoder is essential, as shown in Figure 7b.

4 EXPERIMENTS

We conducted experiments to validate the effectiveness of our method. We first explain implementation details of our

method and then show results and discuss them.

4.1 Implementation details

We implemented our method with PyTorch and ran our code on PCs equipped with GeForce GTX 1080 Ti. We used

public StyleGAN2 models3,14 pretrained with unlabeled images. We trained the encoder using the Ranger optimizer17

with a learning rate of 0.0001. The batch size (i.e., the number of pseudo-labeled images per iteration) was set to 2. We

performed 100,000 iterations, which took a day at most. For postprocessing, we applied PCA to 1,024 randomly-sampled

latent codes to obtain basesW. We used the Adam optimizer with a learning rate of 0.05 and performed 200 iterations for

the cat images and 50 iterations for the anime portrait images. Testing one image took about 0.2 s for the encoder-based

approach and around 10 seconds for postprocessing. To increase interactivity, the users first edited images via only the

encoder-based approach and then used postprocessing as necessary.
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4.2 Results

4.2.1 Qualitative results

Figures 8 and 9 showcat and animeportrait images generated from semantic scribbles. In these comparisons, pSp,17which

was trained only with a one-shot example without our pseudo semantic scribbles and randomly-sampled images, ignored

the input layouts due to over-fitting to the single training examples and did not reflect the input layouts in the results.

We obtained the other results via our framework with different pseudo-labeling approaches. The compared methods

are DatasetGAN38 and RepurposeGAN,39 which use pretrained StyleGAN models similarly to ours2. For the cat results,

the compared methods did not sufficiently consider the given layouts. In contrast, our results overall reflected the given

layouts. For the anime portrait results, the compared methods worked relatively well. Still, some results did not reflect

the given layouts (e.g., face orientation in the third row in Figure 9). Meanwhile, our method worked well as seen in

the overall results. Furthermore, postprocessing (Ours w/post.) improved their layouts, especially in the case of the cat

results. We also demonstrate our interactive demo in Video S1. Additionally, Figure A1 shows results with LSUN car and

ukiyo-e datasets (see Appendix for details).

4.2.2 User study

We conducted a user study for quantitative evaluation to compare our method with the previous work regard-

ing the layout faithfulness of generated images. We asked 15 participants to score the eight sets of results in

Figures 8 and 9 in a range of 1 to 5, where 1 means that the generated images did not match the input layouts

at all, and 5 means that the generated images completely matched input layouts. We compared the results of four

methods (i.e., DatasetGAN, RepurposeGAN, Ours, and Ours w/post), and thus the number of collected evaluations

is 256.

F IGURE 8 Comparison of the cat images generated using the semantic scribbles in one-shot setting

2We used the public codes with the default settings that can be downloaded from the DatasetGAN and RepurposeGAN project pages.
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F IGURE 9 Comparison of the anime portrait images generated using the cross lines in one-shot setting

TABLE 1 Layout faithfulness scores in user study

Cat

ID DatasetGAN RepurposeGAN Ours Ours w/ post.

1 3.27 1.67 3.33 4.13

2 1.60 1.33 3.87 4.73

3 2.93 1.87 3.93 3.93

4 2.07 1.20 4.53 4.60

Avg. 2.47 1.52 3.92 4.35

Anime portrait

ID DatasetGAN RepurposeGAN Ours Ours w/ post.

5 3.47 4.13 3.60 3.73

6 4.27 3.87 4.00 4.33

7 1.93 1.80 2.93 4.53

8 2.27 3.13 4.40 4.47

Avg. 2.98 3.23 3.73 4.27

OAvg. 2.73 2.38 3.83 4.31

Note: Best score and second best score in each row are marked in red and blue. OAvg. means overall average for all cases.
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F IGURE 10 Multi-modal results of our method

F IGURE 11 Intermediate training outputs
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Table 1 shows the average scores for each case, the average scores for each category, and the overall average scores

for all cases. We assigned an index to each case in the order from top to bottom rows in Figures 8 and 9. For the cat

results, our method obtained the best score, and we can also confirm the effectiveness of the postprocessing stage. For the

anime portrait results, while the compared methods sometimes obtained the best score, our method obtained the best or

second best scores for all cases and obtained the best score on average. Overall, Ours and Ours w/ post. outperformed the

compared methods on average in the user study.

4.2.3 Multimodal generation

Figure 10 demonstrates that our method can generate multimodal results. To obtain multimodal outputs in test time, we

followed the same approach as pSp17; we fed latent codes encoded from an input layout to the first l layers of the generator

and random latent codes to the other layers. We set l = 5 for the results in Figure 10, and l = 8 for the other results.

F IGURE 12 Comparison of pseudo labeling. Given StyleGAN2’s outputs, we obtained pseudo-labeled results using our method,

RepurposeGAN,39 and SemanticGAN.40 Given StyleGAN’s images, we also obtained pseudo-labeled results using DatasetGAN.38
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4.2.4 Analysing training procedure

Figure 11 shows the intermediate outputs during training iterations. For each set of results, we fed random latent codes

to the pretrained StyleGAN generator to obtain synthetic images (top row) and feature vectors, from which we calculated

pseudo semantic scribbles (middle row). We then used the pseudo semantic scribbles to train the encoder to generate

latent codes for reconstructing images (bottom row). It can be seen that the layouts of the bottom-row images recon-

structed from themiddle-rowpseudo semantic scribbles gradually become close to those of the top-rowStyleGAN samples

as the training iterations increase.

4.2.5 Analyzing pseudo labeling

We analyzed the fidelity3 of pseudo labeling. Figure 12 shows pseudo-labeled images generated by the comparedmethods

using one-shot pairs in Figures 8 and 9. Using our method and RepurposeGAN,39 we assigned class labels to StyleGAN2’s

outputs generated from the same latent codes. Meanwhile, we could not evaluate DatasetGAN38 with the same inputs

because the official code uses not StyleGAN2 but StyleGAN. We, therefore, analyzed the labeling performance for other

inputs qualitatively. As can be seen in the results of RepurposeGAN and DatasetGAN, some noise appeared, and labels

were missing. These existing approaches, which train segmentation models, are suitable for “few-shot” and “dense”

semantic segmentation, as their papers demonstrated. However, their performance may decrease due to overfitting for

“one-shot” and “sparse” semantic scribbles consisting of imbalanced class labels. In addition, we compared our method

with SemanticGAN.40 This approach does not use pretrained StyleGAN models and trains GANs from scratch. There-

fore, we trained SemanticGANs using the official code with the LSUN cat42 and Danbooru2019 portrait43 datasets, and

our one-shot annotations. However, the labeling results looked not like sparse scribbles but rather like inaccurate dense

masks. In addition, the generated masks looked similar even if the input images were different, probably because mode

collapse occurred due to the lack of annotation data. In contrast to these existing methods, our pseudo labeling is simple

yet effective for sparse semantic scribbles.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple yet effective method for controlling StyleGAN’s outputs using semantic scribbles

in a one-shot scenario for the first time. To compensate for the lack of pixel-wise annotation data, we generate pseudo

semantic scribbles via k-nearest-neighbor mapping between the feature vectors of a pretrained StyleGAN generator and

each semantic class in one-shot labeled pairs. In each training iteration,we can generate a pseudo label from randomnoise

to train an encoder17 for controlling the pretrained StyleGAN generator using a simple L2 loss. In addition, we proposed a

postprocessing method that optimizes latent codes and refines generated images according to principal directions in the

latent space. Experiments demonstrated that our method can synthesize high-quality images with more accurate spatial

control than competitive methods.

5.1 Limitations

Because our pseudo labeling is not completely accurate, its performance may also affect the results of the encoder-based

approach.As shown inFigure 13a,b, the input layout contains two cats, but the result contains only one cat. Postprocessing

can alleviate this problem somewhat, as shown in (c). In addition, our method, which depends on pretrained StyleGAN

models, cannot handle layouts that the StyleGANmodels cannot reproduce. For example, as shown in Figure 13d,e, even

if we draw the cross lines on the right side of the image, it is difficult to generate images that reflect those positions

because the StyleGAN model is trained with aligned faces. The GAN inversion method44 and StyleGAN3,45 which can

handle geometric translations, might solve this problem in the future. Finally, although the scope of this paper is to

3Note that achieving perfect pixel alignment between pseudo semantic scribbles and output images is out of our scope and might be too difficult in

our one-shot scenario.
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F IGURE 13 Limitations of our method. (a,b) Our encoder-based method cannot consider complex layouts. (c) Postprocessing can

improve results somewhat. In addition, (d,e) we cannot handle layouts that pretrained StyleGAN models cannot reproduce.

control StyleGAN using sparse semantic scribbles, we would also like to extend our method to handle dense inputs, such

as semantic segmentation masks.
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APPENDIX. ADDITIONAL QUALITATIVE RESULTS

As shown in Figure A1, we also tried applying ourmethod to other StyleGANmodels pretrainedwith LSUN car or ukiyo-e

datasets.We can see that ourmethod can generate photorealistic images according to the given layouts even if the one-shot

training examples and test inputs were specified roughly and sparsely. We can also confirm that our postprocessing made

the generated images more faithful to the given layouts.

F IGURE A1 Additional qualitative results for other pretrained StyleGAN models
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