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PREFACE 

The Initial Impetus for this thesis came from a 

suggestion by Prof. Karl Deutsch, my thesis supervisor, 

that | look more closely at the prediction of national 

assimilation and polttical mobIlizatton, by use of the 

Deutsch-Solow model; his comments have been of major 

help to me with all the empirical work on nationalism, 

and In revising the original structures of Chapters (V) 

and (VI). The earller work reported in section (ii) of 

Chapter (VI) was carried out under his supervision and 

support, through a research project funded by the 

Cambridge Project. | have been surprised more than 

once by the sensitivity and receptiveness of his 

intuition, in suggesting areas of research which looked 

unworkable at first but which led In the end to useful 

and surprising Innovations. The opinions expressed in 

Chapter (V), however, remain my own responsibility, 

particularly in thelr more bull-headed aspects. 

Professor Mosteller, In the Harvard Statistics 

Department, has helped by introductng me to current 

work on robust estimation, by suggesting the use of 

simulation tests, and by monitoring the general content 

of the first four chapters. Professors Anderson and 

Bossert, of the Committee on Applted Mathematics, and
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Professor Dempster, of the Harvard Statistics 

Department, have helped me to find a more orderly way 

of presenting the mathematical Ideas here, help whlich 

was sorely needed in the summer of 1973. To the 

Cambridge Project, and its sponsors at ARPA, must be 

given thanks, not only for all the computer time used 

in thts research and In Its documentation, but also for 

the opportunity to translate some of these Ideas from 

theory Into operational systems without the extensive 

delays more common In such research; without thelr 

support, this research could never have been brought to 

a state final enough to allow its continuation. 

The personal and financial conditions which led to 

the completion of this thesis were rather complex, and 

debts are owed to more Individuals than should properly 

be cited here. Certainly | have a strong debt to my 

parents In this respect; a debt to Richard Ney, whose 

ideas on the stock market financed a large part of my 

activity In thls period; amoral debt to Prof. Nazli 

Choucri, of M.1t.T., who, In a brief discussion In the 

spring of 1973, encouraged me to continue this work; a 

debt to a colleague, Gopal Krishna, for helping me see 

more clearly that the psychological hurdles | faced at 

first were not totally unique; a debt to Dr. Karreman, 

of the Bockus Research Institute, who, In one of those
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1960's programs to encourage high school students, 

connected with the Moore School of Electronics at the 

University of Pennsylvania, got me started asking 

questions about the phenomenon of intelligence, 

questions which led me to the dynamic feedback concept, 

which was applied only later to formal statistics.
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SYNOPSIS 

This thests provides a broad, coherent exposttion 

of a new mathematical approach to social studies and to 

related fields. 

This work began as an attempt to apply the 

classical techniques of statistics and econometrics to 

the Deutsch-Solow model of nationalism, in order to 

turn thts model Into a workable tool for predicting the 

political future. itn the course of this effort, it 

became clear that the usual statistical methods do a 

poor job in fitting dynamic models to real-world data, 

if we judge these models by thelr ability to make good 

predictions across time. It also became clear that 

newer and better methods would not be feasible, 

economically, unless we could Invent less expensive 

algorithms, too. Thus the goals of this thesIs are 

five-fold: (1) to describe new ways of fitting models 

to data; (11) to define new algorithms which make 

these methods feasible; (ili) to Introduce evidence for 

the superlority of these methods, both for real-world 

and for simulated data; (Iv) to discuss the 

applications of these ideas, in broad terms, to social 

and even blological sclences; (v) to discuss the new 

work on natftonalism which has led us In these
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directions. 

Let us begin with the first three goals. 

We have studied not one, but two, new approaches 

to fitting models to data. First, we generalized the 

work by Box and Jenkins, on "ARMA" processes, on "mixed 

AutoRegressive Moving-Average processes." Chapter 

(111) discusses the mathematics of this approach, In 

detail. [tt shows how an ordinary, multivariate 

autoregressive process, observed by way of "noisy" data 

(i.e. data measured with random measurement errors or 

conceptual distortions), becomes a "vector ARMA 

process.'' It then shows how to apply "dynamic 

feedback" to estimate the coefficients of such 

processes, at much lower costs than were possible 

previously; the resulting computer program Is now 

avallable to the public through the MIT Cambridge 

Project Consistent System. In Chapter (Vv), we discuss 

why we considered this approach [mportant for 

quantitative political science. 

in studies of simulated data, the ARMA approach 

generally ylelded only half as much error as regression 

did, in estimating the coefficients of a simple model; 

it was more efficient in making use of limited data and 

It led to less systematic bias, both. However, with 

real-world data, the ARMA approach did little better
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than regression In making long-term predictions; the 

error distribution curves for ARMA are only about 10% 

smaller than those for regression, and the curves are 

untformly close to each other. 

After re-examining these empirical results and the 

theory of maximum likelihood Itself, we formulated a 

new, more radical and more successful approach to the 

fitting of models. tn essence, the idea is to maximize 

long-term predictive power directly, over the known 

data, Instead of maximizing formal likelihood. 

Formally, thls Idea rests upon the aprior! expectation 

that many social processes are governed by relatively 

deterministic underlying trends, obscured both by 

measurement noltse and by transient deviations of great 

complexity. The qualitative, political basis of this 

tdea Is discussed In Chapter (V). Sections (vii) and 

(xt) of Chapter (11) discuss the statistical basis. 

The "measurement-nolse-only" approach strongly 

outperformed both ARMA and regression, over both 

real-world and simulated data. It outperformed ARMA 

most strongly In our most complex simulated processes, 

which seem most representative of the real world. 

According to our error distribution graphs, the new 

method cuts In half the errors In long-term predictions 

of real-world vartables; the biggest reductions occur
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with those varlables, such as national assimilation, 

and with those cases, near the middle of the 

distributions, for which the simple models of the first 

half of Chapter (VI) can do an adequate job of 

prediction. 

These empirical results for our new approach came 

from special computer programs, which exploited the 

simplictty of the models under study. In Chapter (11), 

we discuss how the algorithm of "dynamic feedback" can 

be used to estimate more general 

‘measurement-nolse-only" models, at minimal cost, 

especially for models which are very Intricate, 

nonlinear and nonMarkhovian; we also discuss how the 

algorithm can flt more conventional models, can 

optimize policy, and can perform "pattern analysis" - a 

dynamic alternative to factor analysis. "Dynamic 

feedback" Is essentlally a technique for calculating 

dertvatitves inexpensively, for use with the classic 

method of steepest descent. In section (iv) of Chapter 

(111), and in section (fit) of Chapter (VI), we discuss 

how our experftence here with steepest descent has led 

us to new ways of adjusting the “arbitrary convergence 

welghts" of steepest descent; these methods speeded up 

the process of convergence by a large factor. The 

Appendix to Chapter (I1) discusses extensfons of these
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methods, for the general, nonlinear case. 

From a practical point of view, the applications 

of such mathematical tdeas In the social sciences 

remain controversial. The extreme positions of 

“behaviorism™ and "traditionalism" remain popular; 

divistons still exist between quantitative and verbal 

studies of soctal behavior. In Chapter (Vv), we 

describe how our mathematical tools might fit in, in 

the broader context of social studies and political 

decitston-making. From a utilitarian and Bayesfan point 

of view, we suggest a methodological approach 

intermediate between "behaviorism" and 

"reraditionalism," in which the different frameworks 

might be Integrated more closely with each other. In 

sketching out the possibilities for such an integrated 

framework, we also point out that the algorithms of 

Chapter (11), taken as part of "cybernetics," have a 

direct value as paradigms, to help us understand the 

requirements of the complex informatton-processing 

problems faced by human societies and by human brains. 

We also mention possible applications to other fields, 

Including ecology. 

Finally, Chapter (VI) presents our emptrical and 

analytic work on natlonalism. 

In sections (il) and (ttt), we discuss our success
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In making long-term predictions of national 

assimilation and mobilization, by use of the 

Deutsch-Solow model. Table V!I-8, for example, gives the 

average errors In predicting the percentagse of 

population assimilated, over time periods on the order 

of thirty years; these errors are unlformly distributed 

between 0% and 2%, except for four outliers (20% of all 

cases) at 2.68%, 3.08%, 3.09% and 6.21%. The fallures 

of these predictions are also Informative; they give us 

a picture of those external factors which really do 

have the power to divert the processes of assimilation 

and mobilization from a steady course. We have 

tabulated the predictions of the "robust" method for 

the years 1980, 1990 and 2000; these predictions are 

subject to caveats discussed in section (iil). 

In section (Iv), more complex models of 

nationalism are synthesized, by drawing together ideas 

from the literature on this topic and Ideas from social 

psychology. The future possibilities of these models, 

In verbal and quantitative analysis, are sketched out 

briefly. These models attained high levels of 

"statistical significance," and led to noticeable 

Improvements In long-term prediction, in emplrical 

tests described In section (v); however, these tests, 

based on classical estimation routines, are regarded as
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preliminary. The communtcattons concepts of section 

(Iv), as applied In section (v), also yielded an 

explanation of one of the Inconsistencies observed with 

"sravity models" In previous research; thls explanation 

was validated empirically. 

The MIT Cambridge Project has begun Implementing 

the algorithms of Chapter (11).
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(1) GENERAL INTRODUCTION AND SUMMARY 

The original purpose of this research was to apply 

the classical techniques of statistics and econometrics 

to the Deutsch-Solow model of nationalism, In order to 

turn this model Into a workable tool for predicting the 

political future. In the course of this research, It 

became clearer and clearer that the usual statistical 

methods do a poor job In fitting dynamic models to 

real-world data, If we judge these models by thelr 

abIltty to make good predictions across time. 

Furthermore, It became clear that newer and better 

methods would not be feasible, economically, unless we 

could also develop new, less expensive algorithms. 

Thus the goals of this thesis have heen five-fold: 

(1) to describe new ways of fitting models to data; 

(11) to define the new algorithms which make these 

methods feasible; (iil) to Introduce evidence for the 

superlfority of the methods (see Table IV-1, on Page 

1V-34, and the graphs which start on Page Vi-3)3 

(iv) to discuss the applications of these Ideas, fn 

broad terms, to social and even biological sciences} 

(v) to discuss the new empIrical work on nattonalism 

whtch has led us tn these directions. 

Let us begin by discussing the first three goals.
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Strictly speaking, we have studied not one, but 

two, new approaches to fitting models to data, In 

polltical sclence. The first approach was essentially 

an extenston of work by Box and Jenkins, on "ARMA! 

processes, on "mixed AutoRegressive Moving~Average 

processes.'' Chapter (II!) discusses the mathematical 

statistics of this approach, In detail. !t begins by 

polnting out that an ordinary, multivariate 

autoregressive process, observed by way of data which 

were not measured perfectly accurately (l.e. measured 

with random measurement errors or conceptual 

distortions), turns Into a "vector mixed autoregressive 

moving-average process." It then proceeds to show how 

the algorithm of "dynamic feedback," discussed In 

Chapter (!1!), can be applied to estimate the 

coeffictents of such a process, at a lower cost than 

was possible with previous methods; the resulting 

procedure has been tested, and made available to the 

general user, as part of the MIT Cambridge Project 

Consistent System. !n Chapter (V), we discuss why this 

approach seemed Important to us, In quantitative 

polftical sclence. 

In studies of simulated data, this approach did 

quite a bit better than the best form of regression. 

In Table !V-1, on Page !V-34, one can see that the
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average estimates ("av'') produced by "arma," for the 

coeffictents of a simple model, were much closer to the 

true values than were those of "reg,'' In the twelve 

cases studied; this tmplles much less systematic blas. 

Also, the disperston of the "arma" estimates was about 

half as much as that of "reg," on the whole; this 

Implles less random error In estimation, or, In other 

words, greater practical efficiency In making use of 

limited data. However, in studies of real-world data, 

the long-term predictions by this method were only 

slightly better than those by regression; for example, 

In Figures VI-1 through Vi-4, on Pages VI-4 through 

VI-7, one can see that the error distribution curve for 

"ARMA" 1s only about 19% smaller In area than that for 

"Regresstion,'' and that the curves are uniformly close 

to each other. 

After re-examining the empirical results of this 

research, and the concepts of maximum likelfhood 

themselves, we have arrived at a new, more radical and 

more successful .approach to the fitting of models. In 

essence, the idea is to maximlze long-term predictive 

power directly, over the known data set, instead of 

maximizing formal lfkelthood. Formally, this tdea rests 

upon the aprior! expectation that many social processes 

are governed by relatively deterministic underlying
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trends, obscured both by measurement noise and by 

transtent deviations of a very complex sort. The 

qualitative, political basts of this Idea is discussed 

In Chapter (V). The statistical basis Is discussed In 

sections (vil) and (xf) of Chapter (II). 

The "measurement-nolse-only'"' approach performed 

much better than both ARMA and regression, on both 

real-world and stmulated data. In Table IV-1, "ext" Is 

markedly superior to “arma” In estimating coefficients; 

in the text of Chapter (IV), we note that this 

supertority is greatest for the stmulated data 

generated by the more complex processes (11 and 12), 

processes which may be more representative of the real 

world. In Figures Vl-1 through VI-4, the 

'measurement-noise-onlty' approach, described as the 

"robust'! approach, had much lower distributions of 

error than ARMA or Regresston did, In long-term 

prediction. If one allows for the spread of the 

vertical axis In these graphs, one can see that the 

"Robust!! method cuts the long-term prediction errors In 

half, roughly; the blgegest reductions occur with those 

vartables, such as natlonal assimilatlton, and with 

those cases, near the middle of the distributions, for 

whitch the simple models of the first half of Chapter 

(VI) can do an adequate job of prediction.
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The empirical results for the "robust" method were 

all based on special computer programs, destgned to 

take advantage of the simplicity of the models under 

study. In Chapter (11), we discuss how the general 

algorithm of "dynamic feedback"’ can be used to estimate 

such "measurement-noise-only" models, at a minimal 

cost, especially for models which may be very 

Intricate, nonlinear and nonMarkhovian; we also 

discuss how the algorithm can be used to fit more 

conventional models, to optimize policy, and to perform 

"pattern analysis" - a dynamic alternative to factor 

analysis. The technique of "dynamic feedback" fs 

essentially a technique for calculating derivatives 

Inexpensively, to be used with the classic method of 

steepest descent. In section (Iv) of Chapter (11), and 

In section (ttt) of Chapter (VI), we point out how 

practical experfence with steepest descent In this 

context has Jed us to new ways of adjusting the 

“arbitrary convergence weights" of steepest descent; 

these methods appear to have the power, In normal, 

practical situations, to speed up the process of 

convergence by a large factor. In the Appendix to 

Chapter (11), we mention a few generalizattions of 

these methods, whitch may be helpful In the general, 

noniftnear case,



Pare I-f 

From a practical potnt of view, the applications 

of these and other mathematical approaches In. the 

soctal sclences remain a subject of dispute. The 

extreme posttions of "behaviorism" and "traditionalism" 

remaln popular; a diviston still tends to exist 

between quantitative and verbal studies of social 

behavior. In Chapter (V), we describe the way that our 

mathematical tools might fit In, In the broader context 

of soctal studies and political decision-making. From 

a utllitartan and Bayestan point of view, we suggest a 

methodological approach Intermediate between 

"bhehaviorism' and "traditionalism," tn which the 

different frameworks might he Integrated more closely 

with each other. In sketching out what such an 

Integrated framework might look llke, we also polnt out 

that the algorithms of Chapter (I1), taken as part of 

"cybernetics," may have some direct value as paradlems, 

to help us try to understand the requirements of the 

complex Informatlon-processing problems faced by human 

soctetles and by human braltns. We also mention the 

possibility of applying these approaches to other 

flelds, such as ecology. 

Finally, In Chapter (VI), a few substantive 

conclustons emerge from our empirfeal and analytic work 

on nattonalism. The relative success of our long-term
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prediction of national assimilation and mobilization, 

as shown In Tables VI-8& and VI-9 [In section (tt) of 

Chapter (VI), Is of some substantive Interest; note, 

for example, that In predicting the percentaze of 

population assimilated, over perlods of time on the 

order of thirty to forty years, that the errors are 

untformly distributed between 0% and 2%, except for 

four outllers (20% of all cases) at 2.68%, 3.08%, 3.09% 

and 6.21%. The exact sources of weakness In these 

predictions are also of Interest, Insofar as they give 

us a picture of those external factors which really do 

have the power to divert the processes of assimilation 

and mobIltzatton from a steady course. In Tables VI-21 

and Vi-22, In sectton (ttt) of Chapter (vi), we have 

listed the predictions of the "robust" method for the 

years 1980, 1990 and 2000; these predictions are 

subject to caveats discussed In the text of that 

section. Both In sections (if) and (ttt), all 

predictions are based on the Neutsch-Solow model, with 

minor modifications. 

In section (Iv), more complex models of national 

asstmit lation and mobIlization are synthesized, by 

drawing together Ideas from the literature on this 

topte and Ideas from soctal psychology. The future 

possthtlities of these models, In verbal and
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quantitative analysis, are sketched out briefly. In 

section (v), a preliminary test of the models Is 

described. The main methodologteal conclusion of 

Chapter (VI) Is that the available tools for 

time-series analysis cannot cope adequately with the 

level of complexity represented by such models; 

however, In the preliminary tests, the models attained 

a high level of "statistical stgntficance," and did 

have a noticeable value [In [Improving long-term 

prediction. The communications concepts of section 

(iv), as applied In section (v), also had the spinoff 

of suggesting a rational explanation of one of the 

Inconsistencies observed with "gravity models," fn 

previous research; this explanation was validated 

empirically. 

In concluding thts Introduction, It would seem 

appropriate to describe what might come out of this 

work, In the future. However, these possibIiifties are 

discussed In enough detail In each of the separate 

chapters. Still, It should be of general Interest that 

the programming of the general algorithm of Chapter 

(11) ts already underway at MIT, as part of the 

large-scale "DATATRAN" project on Multics, and Is 

scheduled to be avallable to the social sclentist In 

1974,
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(II) DYNAMIC FEEDBACK, STATISTICAL ESTIMATION AND 

SYSTEMS OPTIMIZATION: THE GENERAL TECHNIQUES 

(1) INTRODUCTION 

In recent years, social scientists and ecologists have become 

interested more and more in the use of mathematical models 

to describe the dynamic laws of the systems they study. Karl Deutsch 

and Robert Solow, for example, have proposed(1) the following model 

to predict the size of the assimilated population, A, and the 

unassimilated population, U, in a bilingual or bicultural society: 

dA 
at = aA + bU 

(2.1) 
Fi 
dt cus 

where "a", "b" and "c" may be treated as constants, at least for 

medium lengths of time, The constant "b" represents the rate of 

assimilation, as a fraction of the people yet to be assimilated, 

per unit of times; "a" and "c" represent the natural growth rates 

of the assimilated and unassimilated populations, respectively, 

Mathematical models may serve two general purposes in the 

social sciences, On the one hand, they may be used as a tool in 

verbal reasoning, as a technique for formulating one's assumptions 

and their consequences very clearly and very coherently; 

they may be used to construct paradigms, which, like metaphors,
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may be very useful but which are not meant to be taken literally, 

The "prisoner's dilemna" paradigm(2) is a good example of such 

a model, On the other hand, mathematical models may be used to make 

actual predictions of variables which can actually be measured; 

economists, for example, have long been in the business of predicting 

the GNP, as a number, from the use of equations(3) originated by 

Keynes and Samuelson, These equations offer different predictions 

for the GNP, depending on one's assumptions abeut government spending 

and tax rates; thus they can be used, not merely in prediction, but 

in helping the government to choose a policy for spending and taxation 

which will maximize the real GNP, 

Our major concern in this thesis is with the second type of 

model ~ predictive models, like the Deutsch-Solow model above, 

Given such a model, the social scientist would want to ask three 

questions: (1) how likely is it that the model is true, empirically? ; 

(11) how can we measure the values of the constants in the model? ; 

(414) if the model is true, but if certain policy-makers could change 

some of the constants or even control some of the variables directly, 

what should they do in order to get the “best" results? The first two 

questions concern the problem of estimation, the core of classical 

statistics, The third question falls roughly into the area now called 

"control theory", All three questions can be answered, by use ef 

existing methods, but only for certain restricted classes of models, 

Our main objective in this chapter is to present a more general



Page II-3 

method, to allow us to answer these questions for any explicit 

model, of any complexity, at a minimal cost in terms of computer 

time, More precisely, if a user specifies his model in terms of 

equations built up out of elementary operations and functions, 

known to a standard computer package, then our method could give 

this computer package the power te answer the three questions above, 

at a minimal cost, As more data become available in the social 

sciences and in ecology, and as models are developed which reflect 

the true complexity of the secial systems themselves, the need for 

such a general method may grow greater and greater, 

In this chapter, we plan to explain the dynamic feedback method, 

by building up examples of its most important applications; these 

examples will grow in complexity until, in section (xii), we present 

the general algorithm explicitly. Thus we will start out in 

section (111) by showing how to reduce the cost of conventional 

nonlinear estimation, In section (iv), we will show how the dynamic 

feedback method can cope with simple models with "memory"; even 

simple models ef this type are difficult to handle by other methods, 

In sections (v) through (vii), we will discuss the basic problem of 

induction, as seen by the statistician, This material prepares us for 

the discussion of more advanced applications in later sections and 

also in Chapter (III). In particular, in section (vii), we will 

propose a new, "robust" approach to estimation, which, even for
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simple models, calls for the use of the dynamic feedback methods 

later, in section (xi), we will specify exactly which "models with 

memory" are used in this approach, and in Chapters (IV) through (VI) 

we will discuss the evidence that this approach is worthwhile, 

In section (xiii), we will discuss the problem of estimation with 

complex noise models, In section (ix), we will discuss a radically 

new concept, "pattern analysis," for dealing with situations where 

the nonlinearities and complexities of a process defy the use of 

straightforward estimation; the applications of this concept would 

include problems now dealt with by factor analysis or by pattern 

recognition techniques, Once a person has finished estimating a model, 

he may then wish to go on to use this model in formulating policy; 

in section (x), we will show how the dynamic feedback method can be 

used at that stage, too, to help one maximize the utility function 

of one's choice, Finally, in the Appendix, we will mention a few 

technical procedures, which can help speed up the convergence of a 

computer routine based on the dynamic feedback method, 

(41) ORDINARY REGRESSION 

Let us begin by discussing the first two questions listed on 

page II-2, from the viewpoint of classical maximum likelihood theory. 

How would we ascertain the "truth" of a model like the 

Deutsch-Solow model, equations (2.1), if we were given the values
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of "A" and "U" every year for some nation, from 1901 to 1973? 

If we were given the values of the constants, a, b, and c, then we 

could simply solve these equations, starting from the known values 

of A and U in 1901, In order to avoid having to solve a differential 

equation, we could rewrite the model in a simpler, but equivalent, 

form: 

A(t+l) = k, A(t) + k,U(t) 

(2.2) 
U(ttl) = k,U(t), 

where "U(t)" means the value of U in the year t, and where 

Ky ky and ky are all constants, In either case, we could predict 

A and U for 1902 through 1973, by starting from our knowledge of 

A and U in 1901, and using our model, We could compare the predictions 

of the model against the observed data, And we would discover that 

equations (2,2) are simply false, as written; there would always be 

some difference between our predictions and the data, while the 

equations (2,2) do not allow for any such error, Equations (2,2) are 

completely deterministic, This complaint may seem like quibbling, 

but it is central to the classic concepts of statistics, In practice, 

admittedly, one may be more interested in the predictive power of a 

simplified model, rather than its formal statistical truth; however, 

in section (vii), we will be able to discuss this possibility as an 

extension of the more classical approach discussed here, At any rate, 

to construct a model which has some hope of being “true”, in the
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social sciences, we need to express the idea that there will be 

a certain amount of unpredictable random noise in the system we are 

studying. Thus we might rewrite equations (2.2) to gets 

A(tt+1) = k,a(t) + kU (t) + b(t) (2.3a) 

U(tt1) = k,U(t) + o(t), (2,3b) 

where b(t) and c(t) are random error terms, obeying: 

  

  

a,/by2 
1 -3(5) 

p(b) = THRs ° 

~3(£)* (2.4) 

p(c) = 2 
Lic 

In other words, we do not know what b(t) and c(t) will be in advances 

the probability that b(t) will equal some particular value, b, is 

given by p(b) in the formula, Strictly speaking, since "b" is a 

continuous variable, p(b) is actually a probability density functions 

one may think of it as the probability that b(t) lies between "b", 

and a nearby point, "btdb", divided by the size of the interval(4), 

db, These functions for the probability of b and c are simply the 

classic bell-shaped curve, or “normal distribution," The constants 

in front of the "e" are there, te make sure that the probabilities of 

the different values for b add up to one, when the formula is 

integrated, The constants "B" and "C", like the constants "ky "s "Kk," 

and "ky" need to be specified before our model is complete,



Page II~7 

According to this elementary model, the probability of b (or c) 

is highest when b (or c) is zero; in other words, it is highest 

when the exponent is zero, instead of a negative number, When b gets 

to be a large number, positive or negative, in proportion to B, 

the exponent gets to be a large negative number, and the probability 

falls off very quickly, It should be emphasized that this simple 

model of noise, while standard, is far from the only possibility 

in this case; in section (vii), we will mention a few other 

possibilities, 

Once we have decided to formulate such a simple model, 

at least to start with, classical statistics can tell us exactly 

how to measure its “likelihood of truth" for any combination of 

and k the constants k,, k In sections (v) and (vi), we will 
2 3° 

discuss in more detail how it is possible for some statisticians 

to arrive at such strong statements; for the moment, however, 

we will relegate the theoretical abstractions to a footnote(5), 

Even on a very concrete level, one can get a feeling for the 

power of the classical appreach, 

Looking back at equations (2.3), we may define: 

A(t+1) = ka(t) + kU(t) 

(t+1) = kU (t) 

“A(t+i)" 1s simply the best prediction one could make for A(t+1),
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at time t, given our knowledge of A(t) and U(t), and given our 

model, From equations (2.3), we get: 

b(t) = A(ttl) - A(t+1) 
(2.5) 

e(t) = U(tt1) = O(t+1). 

Intuitively, one would expect that a model which gives us 

"zood" predictions, %, would be likelier to be true than 

a model which gives us "bad" predictions; one would expect that 

bigger errors, b and c, would imply a lower probability that the 

model is true, Indeed, when we look back at equations (2.4), 

. the only probability functions we have with this model, 

we can see that larger values of b and c would imply a lower 

probability, More exactly, as we look at these equations, we 

can see that the probabilities of these errors really depend 

upon (B)* and (8)? - i,e the size of the square of the error, 

As part of our model, we assume that the errors at different times 

are all independent of each ether, Thus in order to combine 

all the different probabilities fer different times, t, 

into one overall probability, it is legitimate to multiply them 

all together; this has the effect of telling us to add up all 

the exponents, the square error terms, (2) and (5 

to get an overall measure of the probability of the model, 

Therefore we can measure the total effective size of the errors 

in equation (2.3a) by: 

ye Dee = Low? 
a ¢
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In order to pick the best values of k, and Kos in our model, 

we do not have to account for the ether part of the error, 

the of term, since our choice of k, and ky does not affect 

equation (2,3b), Indeed, to pick the best values of ky and Kos 

in equation (2.3a), we do not even have to worry about the value 

of B, since B does not appear in that equation; thus we can 

simply try to minimize: 

2 
L= > (o(t)) (2.6) 

t 
Similarly, in equation (2.3b), we can pick k, by minimizing the 

analogous function: 

Lt = 2. (e(t))° 
t 

Notice that we now seem to have two separate measures of truth, 

for (2.3a) and (2,3b) treated as independent equations, 

Formally speaking, we have found that the maximization of 

likelihood for the composite model, (2.3) and (2.4), 

can be decomposed into the maximization of likelihood for 

(2,3a) and (2.3b) as separate equations, attached to the 

top and bottom equations of (2.4), respectively. 

This decomposition is due to the simplicity of the original model; 

{t would not be valid for many more complex models, In section (vi), 

we Will present more details of this decompesition with ordinary 

regression; in Chapter (III), however, we will focus on a class of 

standard statistical models, the "vector ARMA" models, for which
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such a decomposition is impossible, and for which 

an equation-by-equation estimation procedure cannot have statistical 

consistency, 

Even in the simple case here, however, we have yet to specify 

how to pick k, and k, to minimize "L", in equation (2.6). 

Let us begin by substituting into (2,6) the value of b(t) from 

equation (2,3a): 

L= D_ (a(te2) - k,a(t) ~ k,u(t)) (2.7) 

¢ 
Qur problem, again, is to minimize L as a function of ky and Kos 

while treating the measured data series, A(t) and U(t), as fixed, 

From basic calculus, we know that a function has its minimum, 

for variables ky and Kos only at a point where its derivatives 

with respect to ky and 7) both equal zero, In other words, if the 

derivative of L with respect to ky were not zero, but, say, +10, 

this means that L will change whenever we change ky and that 

the change in L will equal 10 times the change in Ky» roughly, 

for small changes in kis thus, if we change ky by -1/100, then 

L would change by about -1/10, proving that it hadn't yet reached 

a minimum at our original choice of k, and k,, Thus we can try to 
1 

1 and k, such that the. derivatives of L 

with respect to both of these parameters will equal zero, 

find values for k
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Differentiating, we get: 

2s (A(t+1) - k,A(t) - KU(t))” 

t 

>. 2(A(t+1) - k, A(t) - k(t) AA (E44 Jol a(t) =H U(t)) 

t 

DS z(a(tet) = a(t) = u(t) (At) 
t 

= -2( DS (ACA A(t) = (ACE)? = kyu(t)a(t))), 

which we will try to set to zero, And we get a similar expression 

for aL, putting them together, we get two algebraic equations: 

2 

D_ A(ttt a(t) = ky Baw + Hy Queda 

t 

“Va(tti)u(t) = 1 Event Eww 
t 

We can calculate these sums by looking at our datas; we can solve 

these simple simultaneous equations for the variables ky and k, 

exactly, by classical algebra, or by using programs available on 

any computer. The procedure above is the procedure of classic 

multiple regression, 

All ef this reasoning, however, supposes that we decide to look 

at a very simple model, like equation (2.3a), It also assumes that 

the "errors", b and c, follow a normal distribution, There is nothing 

to stop us from using the same calculating procedure in cases where
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we do not expect the noise to be normal; from a classical point of 

view, this may still be equivalent to accepting the normal 

distribution as part of one's "simplified model,” but the effects 

of such a “simplification” are far from obvious apriori.(6), 

What happens, however, if we move on to consider a more complex 

model? What would happen if we decided to change equation (2,.3a) 

itself? For example, in equation (2,3a), we assume that the rate of 

assimilation, Kos is constant in any given country. In reality, we 

know that this is unreasonable, If the "unassimilated”" outnumber the 

"assimilated" by a large majority, they may feel very little pressure 

at all to assimilate; on the other hand, if they are a tiny isolated 

group, dependent on an economic world which is mostly "assimilated", 

then their rate of assimilation is likely to be higher than it 

otherwise would be, There are other factors involved, but, holding 

those facters censtant, our model is likely to be “truer” and better 

if it accounts somehow fer the power of percentage dominance, 

How could we revise equation (2,3a) to express this kind of 

effect? First of all, we need to find some kind of measure of 

“percentage dominance," The simplest and most obvious measure is 

simply the difference between the percentage of the population 

which is assimilated and the percentage of the population which 

is unassimilated. In order to avoid having to multiply everything 

by 100, let us look instead at the difference between the fraction
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which is assimilated and the fraction which is not, The fraction 

of the population assimilated equals, by definition, the ratio 

between the number of people assimilated, A(t), and the total 

number of people, A(t)+U(t); thus it equals A(t)/(A(t)+U(t)). 

The fraction unassimilated equals U(t)/A(t)+U(t); the difference 

between the two equals (A(t)-U(t))/(A(t)+U(t)). Somehow, we 

wish to express the idea that an unassimilated person is more likely 

to assimilate if the "percentage dominance” of the assimilated 

population is larger, If we recall that ko was defined as the rate 

of assimilation per unassimilated population per unit of time, 

we may simply postulate that Kos instead of being constant, 

will be larger if “percentage dominance", as defined above, is larger, 

For simplicity, We may consider the idea that i) is directly 

proportional to percentage dominance: 

» A(t )=U k(t) = ks As (2.8) 

This time, ky is assumed to be constant. While the actual 

relation between ky and percentage dominance is not likely to be 

quite this simple, this equation still gives us some expression of 

the important qualitative idea that there is a strong and consistent 

positive connection between the two, To generate an explicit model 

of assimilation, we may substitute this equation back into (2.3a): 

A(t+L) = k,a(t) + ks he ate u(t) + b(t) (2.9)
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The second term on the right is an “interaction term," nonlinear 

in A and U, A great deal of fuss has been made about this kind of 

nonlinearity, with terminology such as "curvilinear regression", 

"polynomial regression", and even "spectral regression” often 

used,(7), However, this kind of situation is fairly easy to deal 

with, We can solve for b(t), as before, to get: 

Ls 2 (A(tet) = galt) - AEE u(t) )? 
t 

(2,10) 

As a function of ky and ke this is really the same kind of 

expression as (2.7), with "U(t)" replaced by a mere complicated 

expression which we might call "U'(t)": 

A(t )-U(t 
U'(t) = A(t)+U(t u(t) 

The derivatives with respect to k, and k, are the same, with a few 

"prime" signs interjected, and we wind up with the same 

algebraic equations to solve and almost the same sums to calculate, 

(We have to sum up (u'(t))* and U'(t)A(t) instead of u(t)* and 

U(t)A(t).) In practice, one would normally begin by calculating 

the variable "U'" from one's existing data, and injecting it into 

a standard regression package to calculate the sums and solve 

the equations; in a computer package such as TSP, one could compute 

U' from one's previous data by use of the command "GENR" (generate), 

and issue a regression command (OLSQ) with U' and A as independent
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variables, What is essential in this example is that we 

continue to express A(t+i) as a linear combination of 

other variables, which are defined as specific functions of 

the available data, 

(4111) NONLINEAR REGRESSION AND DYNAMIC FEEDBACK 

However, if we want to move on to more interesting models of 

social phenomena, we will often find that we have to estimate 

constants which do not simply multiply an expression we already 

know how to calculate, like U'(t); we will find that there are 

constants on the “inside" of the model, For example, in equation (2,8) 

we said that ky is directly proportional to the dominance of A over U 

as a fraction of the total population, How do we know that it is 

a matter of direct proportionality? k, is the rate of assimilation, 

per unassimilated person per unit of time, as originally 

defined in equation (2,3). In equation (2.8), if U is 25% of the 

population, then = will equal $; if U is almost 0, then i will 

equal 1, Thus we assume that the rate of assimilation will always be 

twice as much in the latter case, as compared with the former case, 

But how do we know it is only twice as much? It might be four times 

as much, After all, the pressures on a tiny community, near 0%, may be 

much, much larger than en a community near 25%, which may be large 

enough to protect its own members, and to give them economic
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opportunities almost as great as they would find after assimilation. 

AU A-U )2 A-U 3 So instead of 777, we might have written (au? 1? . . Or (5 

Even without considering more complicated possibilities, it would be 

interesting to try to measure just how strong these effects are that 

we have been talking about; we may write: 

a(t)-u(t) Me 
k(t) = ky Grey) , 

where Ky like kos is a constant we would like to estimate, 

To turn this into an explicit model of assimilation, we substitute 

into (2.3a): 
k 

A(ttL) = KjA(t) + kf Ae ste ) u(t) + v(t) (2611) 

We can solve for b(t), to get: 

D (v(t)? 
© k 

= Dated) ~ ka(t) - xy (AL) Yu(t) )? (2.12) 

When we differentiate L, and try to set the derivatives to zero, 

as before, we find a very unpleasant set of equations emerging: 

A(t)A(t41) = ky) (A(t)? + ky Zaenatestty u(t) 
t 

U(t)A(ttL) = k 1 Fawcett 

+k Sooty hy
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k 

2 ( 2(A(t+t) - k,a(t) - wie Ste) UC) 

A(t)-U(t) A(t )-U(4) 
* (ky suc) Aue) log 4(t)s0(t) )) 

(Note that we use the asterisk to indicate multiplication, as in 

FORTRAN, ) To solve these three equations as functions of Ky» ky and 

k, is not only a difficult exercise in algebra; it would appear to be 
4h 

impossible, There are many equations in algebra for which there simply 

exist no "closed" solutions <- no solutions which can be expressed 

in terms of the ordinary "vocabulary" of mathematics, (8). 

Thus, in order to devise computer routines to handle this 

contingency, we must use routines which give numerical approximations 

to the constants Kye ky and kt we must estimate kk and ky, by a 

numerical technique of successive approximations, rather than an exact 

solution, This is the classic problem of "nonlinear estimation," 

A similar problem can even arise when dealing with more sophisticated 

linear models, 

There are two well-known methods for dealing with the problem of 

nonlinear regression, The simplest, and perhaps the best, is the 

method of “steepest descent," (9), When we try to maximize L, 

as a function of Kys 2 and k ye We may not be able to solve for 

a = 0, aa = Q ond Se = QO, However, if we start off with 

reasonable guesses for all of the constants, k 1° ky and k, 9 then we 

can differentiate (2,12), plug in our guesses, and see if the
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derivatives happen to equal zero; if so, chances are good that 

we have guessed the best values, (With classic regression, when we 

had two simple equations in two unknowns, k, and Kos there would 

only be one solution in the usual case, and there would always be a 

minimum for L; therefore, we could be fairly certain that the 

derivatives were zero only at the minimum, With very complex 

formulas, we simply have no way of being sure about this, ) 

If the derivatives are not zero, then we can guess new values for 

our constants, values which will make L smaller, rp Sk is positive, 

then we can decrease L by decreasing kj 3 1 Se is negative, then we 

can decrease L by increasing k,- re $f is close to zero, then 

k is probably close to its best value; parte is far away from zero, 

then k, is probably further off, Thus we can create a new guess, 

k,(n+1), better than the old guess, k,(n), by changing k, in 

proportion to Se but in the opposite direction: 

Kk, (ntt) = k,(n) - oe , 

where C is some positive constant, and where we calculate the 

derivative by using our old guesses, ky (n)s k3(n) and k(n). 

We also calculate the derivative and then the new guess for 

ky and Kye each, Once we have our new guesses for Kys ky and Kus 

we can go back to (2,12), to see if we really have gotten a smaller 

value for L, If we have, then we can start again from our new 

guesses, to check the derivatives, etc, If not... then C must be
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too big. If C is small enough, the definition of the derivative 

assures us that L can be predicted as well as we like by looking 

at just the first derivative; therefore, for some C small enough, 

we know that our new guesses will have a smaller L than our old 

guesses, If we find ourselves making C smaller and smaller, from 

guess to guess, then we may eventually quit, when C is so small that 

we aren't changing the constants very much, Hopefully, this will mean 

that our approximations are very close to the ideal values. 

In the Appendix to this chapter, we will suggest a few ways to 

speed up the convergence of this classical technique, 

As we look back at equatien (2,12), it is clear what our biggest 

problem is in actually doing all this work: we have to calculate 

the derivatives of a very complicated-looking expression, L, 

and We have to calculate the exact numerical values of these 

derivatives for many different values of the constants Kas ky and Kye 

Even worse, there is the question of who the "we" is who will do all 

the work, in most cases, Classical regression can be done automatically 

for the social scientist, at a low cost, by a computer program; the 

social scientist need only load in his data, and specify his choice 

of variables, Who is to do the differentiating here? The social 

scientist? In BMD, one of the biggest computer packages for use in 

social science and biology, there is only one “nonlinear regression" 

routine, added into the X-Supplement(10) available June 1972;
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this routine requires the social scientist to write his own 

FORTRAN programs both for the function A(t+1) and for all its 

derivatives, It is reasonable to ask a social scientist to 

understand the logic behind a formula like (2,11); it seems 

rather unreasonable to ask him to carry out elaborate 

differentiations, and write and debug his own FORTRAN programs, 

for every such model he chooses to investigate, Also, this approach 

could become expensive in terms of computer time, too, depending on 

the user's ability to devise lew-cost ways of calculating his 

derivatives, There is a second possibility: the user could be asked 

to specify a FORTRAN program to calculate A(tt+l), as a function 

of A(t), U(t), Ky k, and k,; the program would then go on to 

calculate the derivatives numerically, by changing k, a little bit, 

and seeing what happens to A(t+1), At each time, for each constant, 

the computer would have to carry out calculations as expensive as 

calculating A(t+i); with many constants, this could multiply the cost 

many-fold, In the two nonlinear regression reutines easily available 

in Cambridge, besides BMD - TSP-CSP(11) and Troll1/1(12) - the social 

scientist has a more convenient way to get his work done, In these two 

systems, he need only specify his model in terms of a "formula", like: 

A(t+1) = kLwa(t) + k2*U(t)*(((A(t)-U(t) )/(A(t)4U(t)) ed) 

This is the same as (2,11), but with FORTRAN conventions used to 

make it possible to put everything on one line, and with error terms
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Actual Variable Variable Category Major Minor 
Number source source 
(Address) 

A(t+1) 13 sun 12 11 

k, A(t) 12 product 3 1 

A(t )-U(t ky 
k5U(t) (5 eyau(t ) 11 product 10 4 

A(t )=u(t) So 
UL wu(t ) 10 product 9 2 

A(t JeU(t Ky 

are) 7 power ° ° 
A(t JeU(t 
A(t) #U(t) 8 ratio 7 6 

A(t)-U(t) 7 difference 1 2 

A(t) +(t) 6 sum 1 2 

k, 5 parameter - - 

ky 4 parameter - - 

ky 3 parameter - - 

u(t) 2 given - - 

A(t) 1 given s - 
  
        

Table II-1: Table of Operations for Equation (2,11) 
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left implicit, (Single asterisk means multiplication, double means 

raising to a power.) This formla then gets translated by the 

computer into a list of simple expressions, This list of 

expressions would normally look something like Table II-1, 

with the explanation column on the left removed; such a list is 

called a "Polish string," The categories of operation allowed 

on such a list depend on the arbitrary choices of the systems 

programmers, In some systems, there are function names reserved 

for user-supplied FORTRAN subroutines; in other systems, there are 

functions corresponding to model neurons, for use in statistical 

pattern recognition; et cetera, It is already possible for a 

computer to calculate the symbelic derivatives of a formula by 

manipulating formulas which have been broken down like this; 

however, that process becomes quite expensive, if we have many 

parameters to differentiate against, 

The easiest way to calculate these derivatives is by a simple 

use of dynamic feedback, Now we know that: 

L= 2 (o(t))? 
t 

ob 2. 2 ee 2 3 ((0()") 

To calculate oh we need only calculate Bi ((o(4))) for each time, 

and add up these derivatives over time, We want to know the effect 

on the error, (o(+))*, of changing, say, k,, while we keep our data
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(i.e. A(t), A(ttl),U(t)) constant, and while we keep the other 

parameters (k5 9k, ) constant, In Table II-1, let us define the 

“ordered derivative” of (v(t)? with respect to variable number i 

to be the change we get in (o(t))* in proportion to the change 

in variable #1, when we hold all the previous variables constant, 

For Sf (p(t))*, this definition doesn't give us anything new; 

the ordered derivative, 5p (v(t))*, is the same as the ordinary 

partial derivative, o (b(t))*. But for the other variables, 

it gives us something new to calculate, 

Now: suppose we ask, in changing variable #7 by a small amount, 

what will the total effect be on (b(t))*? Changing variable #7, 

we will have a direct effect on only one variable, later in the 

system, variable #8, (See Table II-1.) Thus if: 

Hn + ay 
where “d" is a small number, where x, 4s variable #7, and where 

"X'" 45 the value after our changes, We will produce the 

following direct effect on later variables: 

, xX +4 te Ze 2 Ly 48 Xe Xt X, X, + x, (X, held constant. ) 

If we are calculating backwards from the top of the table, we 
+ 

already know 5x, ((o(t))*)s we already know the ratio between 
8 

(b(t)")*=(b(t))® and Xj-X,, Let us call that ratio, or derivative,
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"Spe Thus we know, for small values of g, that if Xp=nXotés that 

pi? = Med + Sog, Now we just found out, for small d, that if 
8 

Kak, +4, that Ki =X, + zo 5 thus if we write g=<%, 
8 Xe x,’ 

we know that this change in Xe will lead to a total change in 

(o(t))* of Spa- it . (Before, when we measured S,, we assumed that Xy 

would be held constant, However, when we vary Xo and hold the 

earlier variables constant, there is no way that this change can 

affect anything later on, except by way of Xg.) Thus we deduce: 

8 
s= 

7 OX 

In more sophisticated language, this is an example of: 

+ fy 

a (OF) - St ((b(t))*) ee 

where fp is the function Xe = fg (Xp) = , . Now let us consider 

a more complicated example, In Table II-i, X, has a direct effect on 

three variables higher in the table - Xi grX and Xp When we start to 

vary Xos we have to account for the total effect of all three of the 

changes it introduces directly on these other variables, Thus we get: 

f 
io + 5 2 + aot 

~ "10 Fi 7% ook 

= Si o% + So(-1) + S(+1). 

Of course, X, is simply U(t); the reader, differentiating (2,12) 

with respect to U(t), would also arrive at. three terms, equal to
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the three terms here, but the work involved would be rather 

tedious, To make it explicit how we begin this downwards calculation, 

let me point out how to get Sy 3! 

+ 

S15 = geceray ((e(t))") 

r A 2 
= StH) ((A(t#1) - A(t+1)) ) 

= =2(A(te1) - M(t41)) 

One way to operationalize all this is to start from the top, 

and, for every variable, look at all of its direct connections to 

‘variables higher up. An easier Way, in practice is to pass down 

from the top all the information to variables below them and also 

directly connected to them; the effect is exactly the same, but the 

order of computations is easier to deal with, We can start out, 

in our example, by. setting 8, through Si to zero, and plugging in 

S,. a8 above, At S139 we note that we have a "sum"; thus we add 
13 

13 12 
2 

X44 on (b(t))©, Then we are done; we go down to S,,. At Sj5, we know 

S,. to S,, and to Sia to account for the direct effect of Xo and of 

that all the later effects of X15 have already been added into Sior 

and that our value for S10 has been completely calculated, At S109 

we encounter a product, XqXy Thus we add Siok, to Sie and 545%, to 

Sa. We go down to S44: We encounter another product, We add 544%46 to 

S,. and Sy 10° 

really look only at Seo 8, and Sa the derivatives we wanted for the 

XK, to 5 We go down to S4o¢ And so on, At the end, we
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steepest descent method, The mathematical basis of these operations 

is the theorem, for a set of ordered functional relations 

Xyety (Ky ig hyip ee eXy Je thats 

+. + o%, O38) 
® 

Ory me OX; OX 
pret 

a theorem to be discussed in section (xii), For each line 

  

(2,13) 

  

of the list, as we go down, we have only two calculations to perform 

at most, one for the "major source” and one for the "minor source”; 

thus the total number of calculations needed for each time, t, 

“will equal only ny» where ny is the total number of variables 

on the list. The total cost will be én T, across all times, to get 

all of the derivatives we want, regardless of how many parameters 

there are, Notice that te go up the list, starting from U(t) and 

A(t), requires one calculation per line of the list; thus the total 

cost, merely to compute all the M441) for a given model, will equal 

nT, the same order of magnitude, I assumed, above, that we had 

already carried out this latter calculation, so that the values of 

the "X," were already known; given that we have to find L for each 
4. 

guess, not just the derivatives of L, there is no extra cost in 

first caleulating the "x," and L. 

In practice, one can imagine three ways that a systems 

programmer might want to use the generalized form ef the dynamic 

feedback method, First of all, he might simply write a subroutine,
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to do the calculations specified above directly, on the table of 

operations fer some model, Second of all, he might write one 

subroutine to look at one table of operations, and to specify the 

calculations required by the dynamic feedback method for this 

table, in another table of operations; he might write a second 

subroutine to prune away all unnecessary and redundant operations 

from this table, The relative advantages of these methods would 

depend heavily on the characteristics of the model being studied, 

on the number of time periods and calculations of derivatives to be 

performed, and even on machine characteristics, Finally, one might 

imagine the possibility that the operations on a table like 

Table II-1 will someday be grouped into "strata," groups of 

operations that can be performed in parallel, on a computer 

capable of parallel processing, On such a machine, one could perform 

the operations at a given set of "Sys in parallel, using the 

same procedures as above, so long as none of the corresponding "X," 

depend directly on each other as input sources; in short, one could 

use any system of stratification which was adequate for calculating 

the Xye This possibility is restricted, however, by the requirement 

that several processors would have to be able to add something to 

the same machine word (S, for "i" on the next lower stratum), at the 

same time, with the result that this word would be increased by the 

sum of all the numbers added,
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(iv) MODELS WITH MEMORY 

Now: with a firm mathematical basis for these procedures, 

equation (2,13), we can extend tham still further, The models we have 

discussed so far have all been rather conventional "Markhovian" 

models; in other words, they give us a prediction of A(tti) as a 

function of A(t) and U(t), We could add in A(t-i) and U(t-1) as 

dependent variables, without changing much, because we would still 

have a distinct table for every time "t" giving @(t+1) as a function 

of a manageable number of variables, Suppose, however, that we have 

a model with "memory," In economics, for example, there is a model 

of consumer behavier which states that consumers spend money, not in 

proportion to their current income, but in proportion to the 

permanent income(13) which they expect to average in their lifetimes; 

the model states that the perceived permanent income is adjusted 

slightly, from year to year, in response to actual income, 

Thus we get a model: 

C(t) = ky Y(t) + b(t) 

(2,14) 

Y p(t) = (l-K DY (t-1) + KY, (t)s 

Where "C" is consumption, tS is permanent income, v," is actual 

annual income, and "b(t)" is an error term, Note that statistics 

will normally be available here for "C" and for "Ya" s not for YD 

However, this is still what we would call an "explicit" or
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“phenomenological” model, Given estimates for Yp(t)s and data 

for Y(t), the model tells us exactly how to calculate ¥ (t+) 

and how to predict C(t). To calculate the Y(t), for all times t, 

and to make predictions for the C(t), we need to start off, 

at time t#l, with some estimate of ¥,(0)s this estimate we can treat 

as an external constant ef the model, like ky and Kos to be estimated 

by the statistician (us), (From ¥,,(0) and Y,(1) equation (2,14b) 

tells us how to calculate ¥,(4)s then we can calculate ¥,(2) from 

¥,() and X,(2)s then ¥,(3) from ¥,(2) and Y,(3)s etc, ) 

To minimize the sum of the errors squared, L, is much harder 

in this case than with our complicated-looking model in equation (2,11), 

To calculate here, it is not enough to set up separate tables, 

like Table II-1, for each time t, and add up the se (o(t)*). 

Equation (2,14b) establishes a connection between the unknown 

variables, oe at all different times, However, We can set up a 

large table to include all the different values of Y(t) and C(t) 

across different times; this will be like taking the separate tables 

for each time t, tables like those implied by Table II~1, and putting 

them together inte one large table, In this large table, we can show 

the relations that exist across time, Suppose that we have data 

for "C" and "x," from time 1 to time 4, We get a big table, 

as shown in Table II-2, on the next page. 

With a given set of constants - ¥,(0), k, and k, - and with a
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Actual Variable Variable Operation Ma jor Minor 

Number Category Source | Source(s) 

L 37 sum 36 28,20,12 

(o(4))? 36 product 35 35 
b(H)ac(4 ky ¥ (4) 35 | difference 34 33 

c(4) 34 input - - 

ky¥ (4) 33 product 32 1 

¥,(4) (see 2,14b) 32 sum 31 29 

kpY, (4) 31 preduct 30 2 

¥, (4) 30 input - - 

(1-k, )¥,(3) 29 product 24 4 

(0(3))* 28 product 27 27 

b( 3)=C(3)-k, ¥,( 3) 27 difference 26 25 

c(3) 26 input - - 

ky¥ (3) 25 product 24 1 

¥,() (see 2,14b) 24 sum 23 21 

kY (3) 23 product 22 2 

¥,(3) 22 input - - 

(1-k, )¥_ (2) 21 product 16 4 
  

Table II-2: Table of Operations for Equations (2.14), 
(top section)
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Actual Variable Variable Operation Ma jor Minor 
Number Category Source | Source 

2 
(b(2)) 20 product 19 19 

b(2)=c(2 )-kyY (2 ) 19 difference 18 17 

c(2) 18 input - - 

ky¥,(2) 17 product 16 1 

¥,(2) 16 sum 15 13 

kpY, (2) 15 product 14 2 

¥, (2) 14 input - - 

(i-k, )¥ (1) 13 product 12 4 

(b(4))* 12 product i1 11 

b(1)mc(4 ky ¥ (1) 11 difference 10 9 

ky¥ (1) 9 product 8 1             

Table II-2: Table of Operations for Equations (2,14), 
(middle section)
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Actual Variable Variable Operation Ma jor Minor 
Number Category Source | Source 

¥,() 8 sum ? 5 

k oY, (1) ? product 6 2 

¥, (4) 6 input - - 

(1-k, )¥,(0) 5 product 3 4 

ink, 4 difference 0 2 

¥ (0) 3 parameter - - 

k, 2 parameter - - 

ky 1 parameter - - 

1 0 input - ~             
Table II-2: Table ef Operations for Equations (2,14). 

(bottom section)



eC 447) 

given set of data, we can calculate "forwards in time", or upwards 

in this table, to calculate every one of the "actual variables," 

including L, the total error, To calculate i we can calculate 

backwards, just as we did before with Table II-1, from the top of 

the table to the bottom. This time, however, it is easier to see 

where to start: 

gs « ah. Hey 

37 By, OL 

This time, with L itself on tep, instead of (n(t))*, 

we get a simpler result at the end: 

5 « Ob. Ok 
1 OX, 4 I

Y
 

5 « Oe. 
2 ox, Ok, 

o"L L 
55 " ax, 7 3x0). 

exactly the quantities we need to apply the steepest descent method, 

For each line of the table, except for the top, there are only two 

sources, or no sources; thus to go back from the top line to the 

bottom line requires only two operations per line, at the most, 

For a very large table, with n, lines for each time t, and with T 

periods of time, this amounts to nt lines, and en T operations 

in all, to get all the derivatives of L, Remember that to go up
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the table, to calculate L, we had to carry out one operation 

per line - nit operations in all. No matter how complex the model, 

if the functional relations across time are explicit enough that 

they can be put into formulas which the computer can translate 

into a table, like Table II-2, then "dynamic feedback” can be used 

to calculate all the derivatives, in one pass, 

As a practical matter, one may wonder just how explicit is 

“explicit enough”, In general, the procedure above allows us to 

calculate the derivatives backwards down any ordered table of 

operations, so long as the operations correspond to differentiable 

functions, In order for us to use this method, then, the primary 

requirement is that we be able to specify the model well enough 

to construct such a table, This is the same requirement that applies 

when we wish to use a model forwards in time, to make a prediction 

of the future, without having te solve a complex set of nonlinear 

algebraic equations in every time period, In general, in the existing 

computer packages (including FORTRAN compilers), any formula 

expressed in the following form can be parsed into a table of operations 

(a "Polish string") generating the variable X,(t) from operations 

performed on the arguments: 

X, (t) = f, (arguments), 

where "f," is a function made up by nesting basic operations known to 

the computer package; for example: 

X, (t) = W(t-1)*¥(t-1) + k + sin(Z(t-1)),
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In order for a set of such formulas to be converted into a table 

of operations, we need only find an ordering of the variables to be 

computed, "X,(t)"s such that the arguments used in calculating X, (t) 

are calculated before x, (t) itself is; the table of operations to 

calculate X, (t) can simply be inserted on top of the table already 

built up to calculate variables earlier in the causal ordering, 

If the arguments of "f," {included only constants, parameters and 

values of variables at "t-n", for all fy» with "n" always greater 

than zero for endogenous variables, then this requirement would be 

satisfied automatically, Otherwise, an ordering of the variables 

X, (t) Would have to exist, with the later expressed as functions of 

the earlier, Global things to be calculated, such as the sum of a 

utility function or a loss function over time, can always be inserted 

on top of the table of calculations, so long as we specify formulas 

for calculating them as a function of sums across time or the like, 

Indeed, even if one had a set of implicit equations, so that one had 

to use algebraic solution methods instead of explicit calculation 

in order to carry out a simple prediction of the future from given 

parameters, then one could easily calculate the matrix of partial 

derivatives for those equations, to be used in conjunction with the 

algebraic solutions generated for prediction, to allow one to carry out 

dynamic feedback estimates; however, simulations of this sort are 

both expensive, and outside the major realm of interest here,
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Parenthetically, one might note that there is a certain 

difference between the operations needed to specify the generation 

of a random number, and the operations needed to calculate the 

associated loss function, Estimation by dynamic feedback requires 

the specification of loss functions, In the case where the 

unobserved random numbers are generated by a rather complex process, 

the translation between the two forms of specification may not be 

easy, However, if the losses one is concerned with are the 

discrepancies between the actual and predicted values of Imown 

variables, the specification of an explicit loss function should 

present no problem to the user of a computer package, The 

corresponding model would be suitable for predicting the future, 

but may not be quite as suitable for stochastic simulations of 

the future, in some cases, In such cases, however, the method of 

pattern analysis, to be discussed in section (ix), may help 

reduce the distance between the two forms of specification, 

(v) NOISE, AND THE CONCEPT OF THE TRUTH 

OF A MODEL, IN STATISTICS 

Up until now, we have avoided one other aspect of statistical 

estimation: the problem of noise models, In our old model, in 

equations (2,3) and (2,4), we assumed a simple equation to predict 

A(t+i), and a simple bell-shaped curve for the distribution of the
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errors, b(t), In the last thirty pages or so, we have considered 

more and more complex models to predict things. However, we have 

stayed with the old idea of minimizing the square of the error, 

an idea based upon the old bell-shaped normal distribution, 

We have begun in this way only with great reluctance, and only 

for the sake of exposition, In fact, if we admit that most processes 

in human society and ecology do contain important elements of 

randommess, then we must admit that equation (2.4) is just as much 

a part of our original model as equation (2.3). Equation (2.4) is 

not an “assumption which must be proven true before we can use 

classical techniques"; like equation (2.3) itself, it is part of a 

simple, approximate model, to be evaluated for its predictive power, 

Unfortunately, there has sometimes been a tendency in social science 

and ecology to formulate ever more complicated models to predict 

things, without an explicit model of the random element; the "errors" 

are sometimes regarded as something unpleasant, that one faces up to 

at the end of one's research, after one has formated a model of 

what is interesting. 

Statisticians, on the other hand, have long since passed 

the stage of “minimizing least squares" or of "ninimizing error" 

in general, We mentioned, earlier, the idea of measuring the 

"probability of truth” of a model, We mentioned the problem of 

how to estimate the probability of truth of a model, given
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a set of data observations, The traditional "maximum likelihood" 

school of statistics, as represented by Jeffreys and Carnap(14), 

and the more recent Bayesian schools, both agree that this is 

simply a problem in conditional probabilities: how do we estimate 

the probability of the truth of a model, conditional upon our 

having made a certain set of observations? Formally, the conditional 

probability of A given B, p(A|B), is defined to equal 

p(A and B)/p(B); from this follows Bayes' Law: 

P(a(B) = Pllaleta) 

Statisticians have applied this law to deduce: 

p(model| data) = data tmodel )p( model (2,15) 

p(data) 

This equation does not say that the “data” and the "model" have to be 

expressed in purely mathematical terms; as a result, the equation 

has led to enormous controversy both among statisticians and among 

philosophers, It is a general equation telling us how to determine 

the probability of truth of any sort of theory; thus, its relevance 

to social and natural science goes well beyond the question of 

statistical methods proper, The calculations on the right involve 

two terms of real interest ~ p(data| model) and p(model), The term 

p(data) is the same for all models, and does not help us to evaluate 

the relative probabilities of truth of different models, except 

perhaps indirectly(15), The term p(data| model) represents what
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statisticians have traditionally focused on: how well the data "fit" 

the model, defined as the probability that these particular data 

would have been generated if the model were true, The term p(model) 

refers to the probability of the model before any data have been 

observed at all; it is our apriori probability distribution, 

The philosopher Immanuel Kant long ago asserted that “empirical 

induction" is impossible, without some system of apriori assumptions 

(the "apriori synthetic") with real information content to them(16); 

the choice of "p(model)" would constitute such a system of assumptions, 

More recent philosophers, such as Carnap and Jeffreys(17), 

have tried to preserve the more popular attitudes of pure empiricism 

and positivism, by suggesting that p(model) should be "equal" 

(apriori) for all different models, Thus p(datal model) would be the 

only term left to consider, in measuring probabilities of truth. 

Their suggestions have been carried over to the field of statistics, 

where they are now orthodox practice(18), This approach is normally 

referred to as the "maximum likelihood approach," In more recent years, 

however, many members of a new school of statisticians, the Bayesians, 

have grown in their opposition to this orthodox procedure, They have 

pointed out that "p(model)=k", with the same "k" for all models, 

is a very strong assumption, just as strong as any of the alternatives, 

In most practical problems, the social scientist would have some 

reason to expect some models to be likelier than others, even before
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he runs his statistical analysis, Thus they suggest that a user 

of statistical programs should be asked to specify his apriori 

probability distribution as the first step of any statistical 

analysis(19); then the computer program Can account for both 

p(model) and p(data model), in picking out the model with the 

highest probability of truth, From a broader perspective, 

one might say that the Bayesians are proposing a procedure for 

allowing the social scientist to account for two different kinds 

of data ~- statistical data, and verbal data he has from other 

sources, This still leaves open the question of where his initial 

p(model) should come from, a question which we can avoid in this 

context. (20). 

The Bayesians may be right in principle, but in practice 

the orthodox procedures may remain a sensible way to design 

computer statistical packages. The social scientist, when he reads 

the output of a computer, would normally expect that this output 

reflects only the ability of different models to fit the actual data; 

in deciding what he finally believes about the world, he can then 

account for his verbal data, This does require that he understand 

what "standard errors" mean, in ordinary regression, 80 that he can 

get some idea of the variety of models consistent with the statistical 

data, It also suggests that a direct printout of the relative 

probabilities of truth of different models, over the given data,
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would be a useful feature to have, In brief, it requires the 

development of an intuition regarding the relation of mathematics 

to social processes, an intuition strong enough to sustain the 

balanced assessment of probabilities, This does place a burden on 

the social scientist, On the other hand, the extreme Bayesian 

alternative - to ask a social scientist to encode his intuition 

into a few normal distributions, and to ask for a more complete 

faith in what cemes out of a computer - would seem to place a 

much heavier burden on the social scientist, It would tend to 

de-emphasize the learning experience which usually occurs at 

the end of a statistical analysis, when the social scientist tries 

to relate all the things which came out of the computer to what 

he knows in the real world; if this experience is what develops 

a balanced intuition in the first place, it should not be given 

a diminished role, In Chapter (V), we will discuss in detail the 

importance of this type of experience to the actual application of 

statistical methods in the social sciences, Furthermore, the verbal 

knowledge of a social scientist will not normally fit a simple 

distribution, Even if it did, few “intuitive decision-makers" can 

express their intuition at all reasonably in terms of probability 

distributions, even in simple cases, without extensive training 

in that task,(21), While there is more that could be said on both sides 

of this particular issue, the orthodox approach would seem quite 

adequate for the purposes of the present context,
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The dynamic feedback algorithm, which we are discussing in this 

paper, can actually be applied to Bayesian estimation as easily 

as to conventional estimation, In our examples and in our applications 

we will follow the more orthodox procedures, However, we will refer 

back, on occasion, to the concept of "prior probabilities" when 

this is appropriate, 

In concluding this section, we might note, for the sake of the 

mathematician, that equation (2,15), when used in statistics, is 

normally used to give the probability distributions of a continuous 

family of models, rather than a discrete probability, Strictly 

speaking, such distributions are not even functions; they are 

actually "measures", and they would normally be written as the 

product of a function times an explicit measure, like "de", where 

"9" 4s a parameter of the model, In equation (2,15), however, 

the choices of measure used for the data cancel out; thus it is 

not of intrinsic importance, so long as We are consistent in the 

units we use to record the data, The choice of measure for the 

model is one more aspect of the problem of specifying p(model), 

an aspect discussed by the sources referred to above, In general, 

however, one would not expect the maximum likelihood choice of 

parameters to be affected very strongly by the choice of measure, 

unless the standard error for these parameters indicated a large 

uncertainty and probably a low statistical significance in any case,
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(vi) ORDINARY REGRESSION AND THE MAXIMUM 

LIKELIHOOD APPROACH 

Back in section (ii), when we discussed how to measure 

the "probability of truth" of the Deutsch-Solow model, 

we glossed over the basic questions discussed in section (v). 

In section (11), we found ourselves discussing two different 

"neasures" of the probability of truth, one for equation (2,3a) 

and another for equation (2,30); all the rest of our discussion 

focused on equation (2,3a), an equation to predict a single 

variable, A(tti). When discussing a single equation, to predict 

a single variable from known data, it makes some kind of sense 

simply to add up all the square errors (v(t))* across time, and use 

the sum as a measure of how good the equation is, However, what 

do we do if there are two equations and two sets of errors? 

How do We combine the two different error terms to measure the 

validity of the model as a whole? With the Deutsch-Solow model, 

we could pick out the best values for k, and. k, without answering 

these questions, because the two equations were essentially 

independent, and because we assumed that the two error terms, 

"hb" and "c", each had their own probability distributions 

independent of each other, (Equation (2.4).) But we had to 

avoid the question of how to measure the validity of the model 

as a whole, Now, using the concepts of section (v), we can come back
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to answer this question, Let us define the relative probability 

of truth, P, of any model, as: 

P= p(data|model), 

the probability that we would have observed the data we have 

observed, if the model were true, More precisely, this 

"probability" is actually a probability density, as are the 

other "probabilities" in this section, For simplicity, 

let us assume, with the Deutsch-Solow model, that we only have 

data for three years, 1958, 1959 and 1960, in one country, 

Writing out the data explicitly, we are trying to measure: 

P = p(A(1960),U(1960),A(1959),U(1959),A(1958) ,U(1958)] model), 

which, by classic probability theory, equals the product: 

P = p(a(1960)]u (1960), a(1959),U(1959),A(1958),U(1958), model) 
* p(U(1960)fa(1959),U(1959),A(1958),U (1958) model) 

* p(a(1959)fu(1959),A(1958),U(1958),mode2) 

* p(U(1959)f.A(1958) ,U(1958), model) 

* p(A(1958),U(1958)|mode2). 
Now our model, equation (2,3), predicts A(1960) as a funetion of 

A(1959) and U(1959)3; once these data are given, the other data will 

not affect the probability of A(1960) as given by the model,
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Similarly for U(1960), etc,; thus we can simplify our expression: 

P = p(A(1960)]A(1959) ,U(1959) model) 

* p(u(1960) [U(1959) model) 

* p(a(1959) la(1958) (1958) »mode) 

* p(U(1959)|U(1958) »model) 

* p(A(1958),U(1958)| model). 

Once we are given values for A(1959) and U(1959), how do we 

determine the probabilities of the possible values for A(1960)? 

The most likely value of A(1960), according to equations (2.3) 

and (2.4), is the one with b(1960)=0, i.e. A(1960) = a(1960), 

which equals k,A(1959 )+k,U(1959). But any value for A(1960) would be 

consistent with equations (2,3), for some value of b, Values of 

A(1960) far away from A(1960), however, would imply large values of b, 

which, according to equations (4.4) are not as likely as small values 

of b, To determine the probability of any given A(1960), given 

A(1959) and U(1959), we need only look at the probability of the 

value of b needed to generate the combination, 

(1959 )=A(1960 )-k, A(1959)-kpU (1959). Thus: 

p(A(1960)}4(1959),U(1959) model) = p(b(1959)| model) 
1/b(1959) \2 

1 —3( 3 ) 
e 

{are 
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And similarly for A(1959), U(1960) and U(1959), Thus we get, 

in summary: 

P = p(b(1959)| model) * p(b(1958)|nodel) * p(o(1959)\node2) 

* p(e(1958)|model) * p(A(1958),U(1958)| mode1), 

which, by equation (2.4), equals: 

      

  

~2 (211959) 2 421258) 2 ~3(£(4259))2 

cee yt eR eS 
{2qB Jana V2nc 

4 e(1958) 2 

* os e+) * p(a(1958),U(1958)| mode2) 

What do we do about the last term, representing our earliest 

data point, 1958? The usual practice is simply to ignore the final 

term on grounds that it is difficult to compute, and contributes 

only one time-point worth of information; for long series of data, 

the importance of one extra point of information grows very small, 

In the social sciences, the argument for eliminating this term 

grows even stronger, This term, as usually interpreted(22), 

requires us to compute the probability that we would have started off 

at a data point equal to (A(1958),U(1958)), if this initial data had 

been generated by the Deutsch-Solow model operating for an infinite . 

length of time before the start of the available data. Normally, 

in the social sciences, one picks the start of one's data series for 

one of two reasons: (1) one is trying to find a model to describe 

events in a given historical period, and one does not expect the
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model to be valid before the start of one's data series; 

(44) the data are not available before a certain time, usually 

implying that some aspects of the social system were different 

beforehand, Furthermore, if one’s model is not "stationary", 

as few stationary processes are, then the usual procedure for 

computing this term breaks down in any case, 

On this basis, we get a relative probability density: 

e e e e 

J2nB AZNB {anc AAC ; 

which reduces to: 
2 2 2 2 

((RUSID)” 4 PUREED)” 4. (2L4952)," 4 2142581)” 

  

      

P = 

1 
ene — rN 

le? B* cH 

The interesting part of this formula is the exponent, the part which 

pe 

depends on b and c, In order to maximize p with respect to kis ks 

and Kas we try to bring the negative number in the exponent as 

close to zero as possible, This number is essentially the sum of 

the errors squared, exactly what we tried to maximize before, 

Once we have done this, it is well-known that we can maximize P 

by picking B and C to equal the root-mean-square average of b 

and c, respectively,
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(vii) THE NEED FOR SOPHISTICATED NOISE MODELS 

In general, there is little reason to believe that the classic 

normal distribution, of equations (2.4), will be a good model of 

the noise element in all social processes, Mosteller, for example, 

has pointed out that "flukes" occur fairly often in real social 

data. (23), There may be many processes which normally plod along 

in a predictable sort of way, governed by a noise process b(t) 

which fits a normal distribution and which never gets to be very 

large; every once in a while, however, the process may be hit by 

a fluke, which leads to changes much larger than one would have 

expected in the normal course of events, Suppose that "Py" is the 

probability, at any time, of getting a fluke, Then the probability 

distribution for b(t) may actually fit this kind of equation: 

1 2 

tes, 
    p(b) = (1-p,) e + D,* 

1 

vane 

where By is much larger than B, This equation states that most of 

the time - (1-p, ) of the time, to be precise - b will fit the same 

bell-shaped curve as before; however, when a “fluke” occurs, 

b will fit a much broader bell-shaped curve, leading to much larger 

values for b, One way to account for these effects is to use this 

probability formula explicitly, instead of the usual normal 

distribution, in one's noise model; it may be impossible to
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estimate "By" accurately, but, if flukes are a serious problen, 

it may still be possible to estimate k, and ky more accurately, 

and to show when "P" is larger for this kind of model, 

Another source of noise, rarely handled explicitly in social 

science, is “measurement noise," In our discussion above, we 

talked about "A(1959)" and "A(1960)" as if we had available exact 

data for the true levels of assimilation in those years, We may have 

data, but there is good reason to believe that errors of different 

sorts occurred in the collection of this data, Even if the data were 

"perfect", in the sense of giving us a perfect measure of who speaks 

what language when, for example, they may still not be giving us a 

perfect measure of the underlying concept of assimilation, as 

governed by equations (2,3), Let us define "U(t)" as the true size 

of the unassimilated population, and "U'(t)" as the measured size of 

the unassimilated model, Then we might modify equation (2.3b) 

by writing: 

U(ttl) = k,U(t) + e(t) 

(2.16) 
U'(t+1) = U(t+L) + a(tt), 

where "c" is the noise going on in the process itself, and where 

"a" is the measurement noise, The "process noise," "c", is a random 

factor in the actual process (top equation) which determines the 

objective evolution of the real variable we are interested in, U,
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through time, The "measurement noise", "d", does not affect the 

objective reality, U, but only adds a factor of distortion to our 

measurement ef U, our U'sU'-U, the difference between the measured 

value of U and the true value of U, equals the measurement error, d, 

Even if U* did represent an objective variable in its own right, but 

a variable different from the one we really postulate to govern the 

dynamics, then this mathematical structure would still apply, 

Given that we do not know the true value of U(t) at any times t, 

this model is not an "explicit" model; it does not tell us directly 

how to estimate U'(t+1) from earlier data available, (Note that the 

noise term, "c(t)", makes it impossible to calculate later values of 

U(t) from an estimate of U(O).) However, Box and Jenkins(24) have 

shown that this model is equivalent to the explicit model; 

UN(t+l) = kU'(t) + £(t41) = ky £(t), 

where "f" is a noise process fitting a normal distribution, 

This model has a kind of “memory term" in it, k, f(t), and may be 

estimated by use of the dynamic feedback method, as discussed in 

section (iv), In Chapter (III), we will describe how this method can 

be specialized to deal with models of this general sort, with 

any number of dependent variables, Economists, like Cochrane and 

Orcutt, have developed techniques to deal with some of the 

secondary consequences of measurement noise, like the problem of
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serial correlation; however, in their original article(25), these 

authors have made it quite clear that the general problem of 

measurement noise is beyond the scope of their techniques, 

This idea can be taken even further, if we wipe out the 

term for "process noise," and allow for the possibility of 

measurement neise only, In equation (2,16), this would mean 

eliminating the term c(t), while retaining d(t+1) and the other 

terms of the models this would make (2,16) an “explicit” nedel, 

with memory U(t), similar to our example of section (iv), 

At first glance, this procedure sounds both unrealistic, and totally 

inferior to the procedures of the paragraph above, Process noise 

does exist in most social and ecological processes; as long as we can 

account for process noise and measurement noise both, why should we 

limit ourselves to the second possibility only? 

Let us begin by seeing what this process really entails, 

If we assume that there is no process noise at all, then we can 

start out from our initial estimates (or data) for our variables, 

and solve our equations exactly to yield a stream of predictions 

for later data, right up to the end of our data set; these 

predictions account only for the data in the initial time-period, 

Notice that this is exactly what we were thinking of doing, 

early in section (11), before we introduced the more "sophisticated" 

concept of ordinary regression, Also, note that this is what 

Jay Forrester's techniques(26) for "dynamic systems analysis"
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tend to involve, even though he prefers to judge the final fit of 

his models by eye rather than by computer, Above all, note that 

the practical value of social and ecological models usually lies in 

their ability to predict the situation at distant times, without 

requiring knowledge of intervening times in the future, (This includes, 

of course, the ability to predict the results of different policies, ) 

Using our new procedure, we evaluate models by their ability to 

yield good predictions across long periods of time, not by their 

ability to predict across the smallest possible period of time; 

therefore, we will generate models and coefficients better suited to 

the practical demands which will be placed on them, In order to estimate 

such models, we will have to resort to the dynamic feedback 

techniques of section (iv) above, The prior unavailability of such 

techniques offers at least some justification for the apparent 

disregard of empirical data in some of Forrester's more interesting 

work(27); however, if these estimation routines should become 

available soon at the Cambridge Project Consistent System, a more 

empirical analysis of these issues will become possible, 

In short, the practical reasons for disregarding process noise 

can be very strong, at times, From a theoretical point of view, 

however, the reasons are not so obvious, If we start with a given 

statistical process, governed by a given set of equations, then 

those equations themselves are the best possible basis for prediction,
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whether across one period of time or many, Thus “truth” implies 

predictive power, When we have a given set of data, the maximum 

likelihood method allows us to make use of all the information 

available - not just one measure, like long-term predictive power 

over the given data ~ to find the parameters and model closest 

to being "true," 

The difficulty in this argument is that "closeness te truth,” 

unlike “truth” itself, can be measured in many different ways, 

The Bayesian school of thought has begun to argue that this point, 

too, should be accounted for in practical statistical routines(28); 

however, their concepts of “loss function" do not fully encompass 

the concept of "long-term predictive power" here, As a practical 

matter, most models in the social sciences and in ecology are 

simplified, approximate models, which we do not expect to be "true" 

in any absolute sense; we only expect tham to approach truth, or, 

more realistically, we expect them to give us predictions similar 

in a broad way to what we would predict if we knew the full truth, 

Even when these models contain a hundred variables or so, they will 

still be hundreds of times simpler than the complete systems which . 

they represent, If there were an infinite quantity of representative 

data available, and if we had to choose between a limited set of 

models, none of which are "true" in an absolute sense, then the model 

which performs best, on, say, predicting across ten years of time,
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over this data, can also be expected to give us the best predictions 

of the future ten years hence, In order to estimate such a model, 

we should indeed try to minimize the errors across ten years, 

instead of following the conventional likelihood approach, 

In other words, if we wish to carry out an estimation which is 

"robust" - an estimation which will give us good predictions despite 

the oversimplifications of one's model - then a direct maximization 

of predictive power is appropriate; that is exactly what our 

"measurement noise only" approach entails, 

In reality, we will have to accept limits both upon our choice of 

models and upon the size of our data, We will have two sorts of 

information to use in evaluating the predictive powers of our models: 

(i) the long-term predictive power as measured directly over the 

available data; (ii) general information about the "truth" of our 

model, as given by the maximum likelihood formulas, The first 

information is a direct measure of what we want to know, On the other 

hand, we only have a certain limited amount of this kind of 

information, in our data, The second information does tell us 

something about how close our model is to "truth", which in turn 

tells us something about predictive power, When our total information 

is limited, statistical theory recommends that we make use of all the 

information at our disposal, including both the "hard" and the 

"soft," Our problem, then, is ene ef a more practical nature:
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which of the two sources of information should we emphasize, 

when we want to build a model suitable for medium-term and 

long-term prediction? 

General guidelines for dealing with this problem will have to 

come from experience, experience with both ordinary procedures 

and with the new procedure suggested here, It should be clear, 

however, that the relative importance of process noise and 

measurement noise will vary from case to case, A direct comparison 

of the methods, say, in predicting the second half of one's data 

from the first half, would probably be desirable, in most cases, 

When the major flaw in one's existing model lies in its inability 

to describe measurement noise accurately, then one would suspect — 

the possibility that the unexplained portion of that measurement 

noise would be organized enough to be partly "predictable" from 

one's process variables and noise; this would lead to distortion 

of the parameters of the process proper, For models which have 

this problem, the best way to improve predictive power may be to 

avoid this distortion, by making sure that measurement noise is not 

falsely attributed to the precess equations (i.e. to process noise). 

by falling back on a "measurement noise only" model, in which 

process noise does not exist at all, one can eliminate this 

distortion entirely, Once again, as noted en the previous page, 

the "measurement noise only" approach involves no distortion at all,
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insofar as it maximizes long-term predictive power, directly; 

its weakness lies in the lack of formal statistical efficiency, 

When process noise is very large, and the neglect of process noise 

would appear to seriously weaken one’s ability to make full use 

of one's data, then it would still be possible to compromise, 

by the relaxation methods to be discussed in section (xi); 

these methods, by allowing process noise, but by making it 

much more “expensive” to attribute randomness to process noise 

than to measurement noise, may reduce the false attribution 

of the latter to the former, while preserving an adequate level of 

statistical efficiency, It is conceivable that in social science, 

as in hard science, there will someday be a viable distinction 

between “practical” statistical work, where prediction is most 

important, and "theoretical" statistical work, where "truth" as such 

turns out to be a more effective guide to finding new variables and 

terms to use in one's models, However, ence again, the practical 

values of these techniques will have to emerge from empirical work, 

The empirical work of this thesis, in Chapters (IV) and (VI), does 

provide a strong indication that the “measurement noise only" 

approach is superior to the pure maximum likelihood approach, in the 

social sciences; this indication has been strong enough to totally 

reverse our own initial bias in favor of the classical approach, 

Still, the empirical studies here are only the beginning of a long 

process,
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Finally, let us consider one other situation where the 

conventional approach to noise is inadequate: the case of 

"ideal types," Very often, in social science, we run across 

variables like "Republican President" and “Democratic President" 

which do not tend to vary across a continuous spectrum; they 

tend to be simply "true" or "false," The error in predicting 

such variables would not follow a normal distribution, but the 

problem need not be overwhelmingly difficult, On the other hand, 

we often find societies falling into certain distinct 

"ideal types"(29), such as "traditional", "developed" and 

"transitional"; we may find that a whole collection of other 

variables ~ political stability(30), aggressiveness, economic 

growth, etc, - depend heavily on which ideal type a society falls 

into, As an extreme example, let us imagine that there are three 

"ideal types" a nation might fall into, and that we have been 

studying four social variables which are all really determined 

by the current “ideal type": 

  

  

  

  

Type Type Type 
1 2 3 

Variable 1 1 0 1 

Variable 2 0 1 1 

Variable 3 1 0 0 

Variable 4 0 1 0           
Table II-3: Hypothetical Example of "Ideal Types",
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If we predict that variable one will equal one, and discover that 

it actually equals zero, then this last piece of information tells us 

exactly what to expect for variables two, three and four, If we 

already made predictions for variables two, three and four, then 

we would also know now exactly what errors to expect in these 

predictions, Thus there is a connection, though complex, between 

the “errors” in predicting different variables, If our example 

had been somewhat more complex, with a lot of nonlinearity, and 

a certain amount of freedom to deviate from one's ideal type, 

it is clear that the correlations between the prediction errors 

of different variables could become hopelessly complex, 

According to maximum likelihood theory, as sketched briefly in 

section (v), it is important to minimize the "right" measure of 

error, even when we estimate the coefficients we intend to use in 

making predictions of this process, The "right" measure is supposed to 

correspond to the actual noise process going on, If it does become 

important, in practice, that we do have such an accurate measure of 

error, and if the actual noise process is as complex as above, 

then we face serious difficulties in estimating any parameters at all. 

In our simple example, we could escape from these difficulties, 

by carrying out a simple factor analysis to detect the ideal types; 

then we could go on to study the ideal types only, and disregard
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the original four variables. However, in the general case, a linear 

technique like factor analysis may not be enough; also, we may still 

want to consider the original variables, to account for whatever 

independent variation they have, In any case, it is clear that the 

conventional model of independent errors, following a normal 

distribution, cannot deal effectively with this kind of situation, 

The "measurement noise only" technique could conceivably reduce 

the difficulties here, but one would still expect a better model 

to emerge, if one could account for the complex interrelations 

of the process variables more explicitly. 

In summary, in order to produce a "true" model of a social 

process, Which is also capable of yielding good predictions, 

one must have an accurate model both of the "predictive part" 

(like equations (2.3)), and of the "noise part" (like equations (2.4))3 

otherwise, the standard techniques of statistical estimation may 

yield unrealistic estimates of both, If one pursues an unbalanced 

approach, giving more weight to the "predictive" part than to the 

"noise" part, one may soon find oneself in a situation where the 

inaccuracies in one's noise model are so large that any improvements 

in the "predictive" part are reflected by little improvement, 

if any, in the statistical likelihood of one's model, The "models 

without process noise" discussed above can, at the very least, serve 

as detectors for this kind of difficulty.
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(vidi) HOW TO ESTIMATE EXPLICIT 

SOPHISTICATED NOISE MODELS 

Suppose that we had decided to make the Deutsch-Solew model 

for assimilation more sophisticated, not by working on the 

“predictive” part, but by working on the "noise" part; suppose that 

we decided to account for the possibility of "flukes," as discussed 

above, Then we might write the model: 

A(t+1) = k, A(t) + k,U(t) + b(t+1) 

  

~3(2)? ~3(2-)? (2.17) 

p(b) = (1-p,) t— 9 > + ae e 74 
{zn B fan, 

Qur problem is to try to maximize "P", which, as in the case of 

ordinary regression, will equal the product: 

P = p(b(2))p(b(3) p(b(4))..- P(b(T)), 

where T is the last time period for which we have data, An easier way 

to approach this is by trying to maximize the logarithm of P: 

L = log P = log p(b(2)) + log p(b(3)) +... + log p(b(T)). 

We are trying to pick out the best possible values for the parameters 

Ky» Kos B, By and Py. As before, we can try to do this by using 

"steepest descent"; as before, this means trying to measure the . 

derivatives, 57 etc, As before, in section (i411), we can set up 

a table of operations for each time t, which corresponds to a table 

which would emerge from a computer program to analyze this models
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Actual Variable Variable} Operation Ma jor Minor 
Number Category Source | Source 

log p(b(t+1)) 32 logarithn | 31 - 

p(b(t+1) ) 34 sum 30 25 

3B tt1 ) 2 
. 72 

(i=Pi) , ** 2B 30 product 29 16 
127 8B 

~3(2G#) 2 

e 29 exponential | 28 - 

~4(PUEHLD 2 28 product 27 1 

(Pitt) 2 27 product 26 26 

oth 26 ratio 20 9 

Py ~4( Bi —— L 2 

—— e 1 25 product 24 13 
(anB, 

1 (pitt ) ye 
"2 

e By 24 exponential | 23 ~ 

~j(RUtt) 2 23 product 22 1 

(PG) 2 22 product 21 21 
1           
  

Table II-4; Table of Operations for Equations (2,17) 
(top section)
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Actual Variable Variable | Operation Ma jor Minor 
Number Category Source {| Source 

bith) 21 ratio 20 8 
1 

b(t+1 Jaa(t+1)-ky A(t )-k,U(t) 20 difference 6 19 

k,A(t)+k,U(t) 19 sum 18 17 

k, A(t) 18 product 5 11 

kU (t) 17 product 4 10 

1-p, 

16 ratio 15 14 
427 B 

1=p, 15 difference 3 7 

{27 B 14 product 2 9 

Py 
13 ratio 7 12 

eT By 

Jan By 12 product 8 2           

Table II-4: Table of Operations for Equations (2,17) 
(middle section) 
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Actual Variable Variable {Cperation Ma jor Minor 

Number Category Source ]| Source 

ky 11 parameter - - 

ky 10 parameter - - 

B 9 parameter - - 

By 8 parameter - - 

Py 7 parameter - - 

A(t+1) 6 given - - 

A(t) 5 given - 7 

U(t) 4 given - - 

1 3 given - - 

{27 2 given ~ - 

4+ 1 given - -         
  

Table II-: Table of Operations for Equations (2.17) 

(bottom section) 
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_ this table is shown in Table II-4, 

We may use such a table, as before, to calculate all the 

derivatives required by the steepest descent method, We may 

compute ae log p(b(t+1)), etcetera, by inserting Saoml, and 

working down the table as before to compute all the derivatives, 

The error model was complicated; therefore, the table is long. 

We can compute Se simply by computing si ee p(b(t+1)) for 

all times t, from 1 to T-1, and adding up all the results; 

this would be the same sort of operation as in section (iii), 

In brief: if our model of error is complicated, but explicit, 

then dynamic feedback can be used to estimate the parameters of 

our model, Notice, if there had been two variables to predict, 

A(t+1) and U(t+1), that the two error terms b(t+1) and e(t+1) 

would appear somewhere in the middle of the table; if 

p(b(t+1),c(t+1)) were a function of both errors, a very complicated 

but explicit function, we could still have put together a table 

like this and used dynamic feedback, Also, if there were "memory" 

in the model, we could merge all these tables, for different times t, 

just as we did in section (iv), Nete, however, that when the models 

become extremely complex, the choice of the initial guesses for our 

constants, to be used with the steepest descent method, becomes 

increasingly important; bit by bit, this problem becomes a sub ject 

worthy of attention in its own right, as our models grow in complexity,
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(ix) PATTERN ANALYSIS 

When ideal types or other systematic patterns are present, 

as in our example in section (vii), then it may be very difficult to 

formulate a good explicit model of noise, accounting for all the 

interrelationships between the errors in the predictions of different 

variables, A more natural way te handle such situations is by finding 

out what the ideal types are, and trying to predict them instead of 

predicting our original variables, In order te do this, we must try 

to find a way to describe the data at time t+i in terms of a limited 

number of "ideal type" variables, Our description should be "complete", 

in the sense that we can regenerate the original data at time t+1 from 

knowing the ideal types, with minimum error, In the case of simple or 

only moderately complicated systems, with limited data available, we 

may use this approach as a way to reduce the number of variables, as 

we do with factor analysis, More generally, if we find that we have a 

large set of variables, heavily interconnected in a nonlinear way, we 

may try to find a set of "fundamental" variables which govern the 

behavior of all the original, more superficial variables, in a more 

independent, more linear and more comprehensible manner. The formulas 

which we use to estimate such variables might be considered to be 

“pattern detectors" or "feature detectors", in the language of 

pattern recognition, With a complex nonlinear system, the number 

of fundamental variables might actually be larger than the
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original number of variables; however, it would still be much 

smaller than the number of possible system configurations, 

Let us imagine that we start out with a set of variables 

to study, Xa neeesXsnevenks forming a vector, x. We are looking 

for another set of variables, RyseeosRis forming a vector, 

which "governs" the vector X in the sense that it accounts for all 

the cross-correlation between the different components of X, 

(More precisely, it accounts for the cross-correlation in the 

random disturbances applied to the different components of x, ) 

At every time t+1, we wish to define these variables, Ry (t+), 

as functions of the data at time t41, Kitet), More generally, 

we may allow them to be functions of X(t) and R(t) also; this 

would allow us to detect dynamic patterns, involving such 

phenomena as population growth or physical motion, 

Thus we may define: 

R,(t41) = £,(X(tH1), Kt), R(t), 

In trying to "find" or to “define” the fundamental variables, Ry 

our goal is to adjust the parameters of the functions f, to 

fit the verbal requirements implied by our discussion above, 

These requirements involve the dynamic relations of the R, 

and X, variables; thus we can fit the parameters of the functions f, 

only within the broader context of fitting a dynamic model of the 

entire process,
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The first of the requirements we must meet is that the R, (t+1), 

unlike the original X,(t+1), are generated by independent stochastic 

processes, Our dynamic model must include a description of each of 

these processes. Thus it must specify the probability distribution 

—_ —_ 

for each variable, R,(t+1), as a function of R(t) and X(t); it must 

maintain the assumption that these probability distributions are 

independent of each other, Thus we may write: 

p(y (et )| RCE), RE)) = wy (Ry (t+), Ke), Rt) 

These functions, Ey» like the functions fys are part of our model, 

Rather than assume that we start out with the "correct" By» we will 

try to adjust the parameters of the functions Sy and the parameters 

of the functions f,. both, in order to make the model as a whole 

fit the data as well as possible; this procedure will presumably 

ad just the functions f, to fit as well as possible the assumption of 

independence, which is built into this model, 

Finally, we have a second verbal requirement to meet. 

We require the ability to regenerate the X, (t+1) back again from 

Rt+1), with minimum possible errors; as before, we can also allow 

the use of information from R(t) and X(t) in this procedure, 

In setting up equations to predict the X,(t+1), from known values 

of Rit+1), X(t) and R(t), we are effectively just extending our 

dynamic model to predict a new set of variables, We want the value of
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R(t41) to account for all the interdependence of the variables, 

X,(t+l)s thus, once the value of H(t+1) is known, we want to be able 

to predict all of the X, (t+1) independently of each other, Thus we 

want to extend our dynamic model to describe the probability 

distribution of each variable, X, (ttl), as a function of R(t+1), R(t) 

and X(t)} we want to maintain the requirement that each of these 

probability distributions is independent of all the others. Thus we 

may write: 

p(x, (t+2)| R(t41), R(t), X(t)) = hy (X, (tt) R(t41), R(t) X(t) 

These functions, hys like the functions Es and fy are part of our 

model, In adjusting the parameters of all these functions, to fit the 

data, we Will hope to adjust the parameters of the f, to fit the 

assumptions of independence both for the Bs and for the hye 

Our objective, then, is to estimate the functions fy» gy and hye 

so as to maximize the likelihood of this model as a whole, In order to 

do this, we could calculate the likelihood as we have with other models: 

p(R(t+t)PRt), R(t), mode?) = p(R(t+1 )|R(e+t ), X(t), Blt) moder) 

* p(R(t+1)\ X(t), R(t) node) 

(Notice, in this equation, that we do not have to integrate over 

all possible values of R(t+1), on the right, because the R, (t+1) 

have been defined as definite functions of the other variables here}; 

it is as if they were components of X(t+1), or, from another point of
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view, as if their probability distribution contingent on X(t+1), 

R(t) and X(t) were a Dirac delta function which we have already 

integrated implicitly, ) This yields a likelihood measure for 

a complete set of data: 

L= 2 log p(X(t+t) (X(t), Rt)) 
Ww 

- > (J tow ny (tet), Mev), Re), Mey 
t Gat 

+ > leg 6,(R, (t+), X(t), R(t))) 
c= 

-> 2 Log hy (Xy(t41), F(R(t) RAY, Kt), Met)) 
Tt ¢=t 

+ “log 5 (£4 (Kt) R(t), Xt), R(t))) 
et 

Using this likelihood function, we may construct tables, 

analogous to those used in section (iii) for log p, to let us 

calculate the derivatives of likelihood with respect to all of 

our parameters, in the functions fy» &5 and hy. Thus, once again, 

we may use the method of steepest descent to maximize likelihood, 

It should be emphasized, however, that the likelihood function 

spelled out in the equation above was based on substitutions which 

were, in some ways, arbitrary, From a formal point of view, 

the functions fis Es and hy are somewhat redundant as model 

specifications; thus we have a certain amount of leeway in deciding 

how to combine them, When, as above, the functions hy are adjusted
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in such a way that the "f," are considered to be fixed but effectively 
i 

wl 

unknown funetions, and in such a way that R(t) and X(t) are directly 

available to the h, as arguments, then the resulting model will, 
i 

as a whole, be at least as good as a simple model specifying the 

X, (t+1) as independent functions of R(t) and X(t)} in other words, 

even if the R, (t+1) are totally ignored, a model fit in this way 

can achieve, at a minimum, the level of fit that would be achieved 

by a conventional model assuming independence. In order to get 

maximum value from this technique, however, one would want to adjust 

the éefinition of the "f," to increase the actual likelihood of the 

model as a whole, evaluated in terms of the observed data, X(t+1), 

by themselves, It is likely that the constraint of having to assume 

independence at all levels, in order to minimize cost with a large 

number of variables, might not be consistent with achieving an 

absolute maximum of likelihood by this more strenuous criterion, 

Also, it is far from obvious that the procedure above is the best 

procedure for measuring likelihood, even subject to that constraint. 

The concepts of time-series analysis discussed elsewhere in this 

thesis required considerable theoretical and empirical work, both, 

before the pros and cons of specific algorithms began to seem clear; 

pattern analysis, which is a more subtle and potentially more 

powerful technique, will require at least as much development, both 

theoretical and empirical, to become useful in the future, Theoretical
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studies of the linear special case may be of particular value in 

the early stages of this develepment, 

Even at this stage of research, however, it seems clear where 

the applications of pattern analysis will lie, Pattern analysis is 

essentially a generalization of the idea of factor analysis to the 

nonlinear dynamic case, The dynamic power of a proposed "principal 

factor" would appear to be a better measure of its importance than 

the variance it account for in static cross-sections; when 

time-serles data are available, pattern analysis would appear to be 

a clearly superior strategy for evaluating the same set of parameters 

as with faetor analysis, With many variables, or long time-series, 

the nonlinear feature may also turn out to grow in importance; 

statistical pattern-recognition, or satellite-collected data, may 

both provide major applications for the possibility of nonlinearity 

here, In such highly complex systems, the massive number of 

variables may make the assumption of independence a necessity, both 

in terms of computational cost and in terms of avoiding models with 

more degrees of freedom than one could hope to estimate; pattern 

analysis may be essential to prevent excessive reductions of model 

likelihood as a result of that assumption, Also, with such systems, 

note that one does not have to restrict one's computer package to 

estimating functions - fs Bs and hy - whose form has been specified 

in advance by the user, One can provide an option for the computer to
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try out new tables of operations, automatically, by pruning out 

terms which contribute little and by evaluating the improvement in 

likelihood frem adding new terms, chosen essentially at random. 

Finally, one should note that the assumption of independence 

may be especially valuable on machines which allow parallel processing; 

the one-to-one association between functions f, and functions Bys 

corresponding to the same components of ® may be of major 

importance in making pattern analysis operational on such machines, 

(x) OPTIMIZATION 

In sections (iii) and (iv), we saw how dynamic feedback can be 

used to minimize error; later on, We saw how it could be used to 

maximize probability, In general, the method of steepest descent 

can be used to minimize or maximize any function we please, so long 

as We can calculate all the derivatives, Dynamic feedback lets us 

calculate the derivatives, so long as our system of formulas is 

explicit, Therefore: the dynamic feedback method can be used to 

minimize or maximize other things besides error, 

Suppose, for example, that we have a simple model of the US 

economy, something like this: 

C(t+1) = k, C(t) + k¥(t+1 ) 

Y(t+1) = a, P(t+1 ) (2,18) 

P(t+1) = P(t) + k, (P(t) - c(t))
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In this case, we are not trying to evaluate or estimate a model, 

We assume that the model has already been tested, and that Ky» ko 

and k. have already been estimated by some kind of statistical 
3 

procedure, "C" here represents consumption; "Y" represents personal 

income; “P” represents production, With eptimal government policy, 

all production capacity will be channelled to either consumption 

or to some kind of investment; "ays the rate of taxation, determines 

how much goes to each, Our problem here is to find the "best" level for 

"a,". Suppose that we define "best" to mean the level of a, which 

maximizes consumption in the long term, Suppose that we start from 

a known position in year 1, and want to maximize the sum of 

consumption over the next three years, Then we may define our 

utility function, "U", to equal C(2)+C(3)+C(4), We may set up 

the table of calculations, shown in Table II-5 over the next few 

pages, which defines how "U" is to be calculated up from the 

parameter and the constants of this problem, In order to maximize 

U by the method of steepest ascent, we need only calculate 53," 

the derivative of U with respect to the parameter we have to control, 

We may calculate the derivatives of Usk ge as before, by using 

the method of dynamic feedback on the table of operations, Table II-5, 

We may start with S,.= OU. = 1; then, if we calculate derivatives 
29 Ox 

29 Qu 
down the table, as before, S, will equal ja, ° Our original model 

1 

  

was very simple in this example; however, it should be clear that
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Actual Variable Variable} Operation Ma jor Minor 
Number Category source | Source 

U = 0(2)4+C(3)+c(4) 29 sum 28 21,14 

(4) = K, 0(3) +k ¥ (4) 28 sum 27 26 

Kk, 0(3) | 27 product 21 4 

kY(4) 26 product 25 3 

Y¥(4)ea, P(4) 25 product 24 1 

P(4 )=P(3 +k, (P(3)-C(3)) 24 sum 23 17 

k,(P(3)-C(3)) 23 product 22 2 

P(3)-c(3) 22 difference 17 21 

C(3) = ky C(2)+k,¥(3) 21 sum 20 19 

k,C(2) 20 product 14 4 
4. 

ko ¥(3) 19 product 18 3 

¥(3)=a,P(3) 18 product 17 1 

P(3 )=P(2) +k (P(2)-C(2)) 17 sum 16 10 

k,(P(2)=C(2)) 16 product 15 2 

P(2)-C(2) 15 difference 10 14             
  

Table II~5: Table of Operations for Equations (2,18), 
(top section)
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Actual Variable Variable ] Operation Ma jor Minor 
Number Category source Source 

c(2) = k, C(1)+k,¥(2) 14 sum 13 12 

—_—_—_—_—_— > 

k,c(1) 13 product 7 4 

fr 

kX (2) 12 product 14 | 3 

oa SNL ET i 

¥(2)=a, P(2) 411 product 10 1 

oom 

P(2 )eP(1)+k,(P(1)-C(1)) 10 sum 9 5 

k,(P(1)-c(1)) 9 product 8 2 
ee 

P(1)-c(1) 8 difference 5 7 
- 

c(1) 7 given - - 

Y(1) 6 given | - - 

P(1) 5 given - —_ 
~ 

ky 4 given - - 

ky . 3 given - - 

SmaI . 

Ke 2 given - - 

- TL 

ay 1 parameter - -             
Table II-5: Table of Operations for Equations (2,18), 

(bottom section)
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even a complicated nonlinear model, involving many control 

parameters, could be translated into a table like Table II-5, by 

computer, if the model is "explicit" in the sense of section (iv), 

In our example above, we have described a problem which does not 

quite fit the standard format used most often in control theory, 

It is a problem in what we would prefer to call “systems optimization" 

or "dynamic systems optimization," Problems of this type have been 

discussed by Jacobson and Mayne(31), as a device for overconing some 

of the difficulties of optimization under conditions of uncertainty; 

in the social sciences, however, this formulation may have substantive 

advantages over the more standard formulation, which are worth pointing 

out here, 

In the case above, for example, we tried to pick the best possible 

value for "ays a constant in the nation's taxation system, 

In standard control theory, one would usually look at a,(t), the 

taxation rate at each time, and try to find the best possible schedule 

of tax rates for different years, In principle, the second way is 

better, but only if it is feasible, politically, to change the tax 

rates up and down every year, In practice, governments trying to 

follow conventional Keynesian policies, edjusting tax rates every year, 

have encountered serious political problems and problems of timing; 

thus there has been great interest in “automatic adjustment” 

factors(31), and in other system parameters which can be adjusted to



Frage iisff 

improve economic performance without forcing us to change policy 

too often, Thus "systems optimization" has something worthwhile 

to offer the policy~maker, above and beyond its mathematical 

convenience, 

The methods here could also be used in conventional control 

theory problems, In our example, we could try to pick the best 

values for the three parameters, a(2), a(3) and a(4), by putting 

all three at the bottom of our table, and calculating back 

Bay ’ SG and 5 . Jacobson and Mayne(32) have shown how 

steepest ascent methods, very similar to ours, can also be used in 

cases where noise terms appear in the model, The dynamic feedback 

method allows us to calculate $¢- » in cases where the dynamic laws 

of the system are arbitrarily complex, and where the interconnections 

in time may stretch over several time~periods; it allows us to 

exploit the internal structure of the model, as spelled out in a 

table, in order to calculate back all the derivatives in one pass, 

at a cost much lower than with separate differentiations, Otherwise, 

however, the methods discussed by Jacobson and Mayne for making use 

of sn » in systems optimization, are very general, and do not 

require further elaboration here,
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(xi) THE METHOD OF “RELAXATION” WITH 

MEASUREMENT-NOISE-ONLY MODELS 

In section (vii), we have discussed the possibility of 

"measurement-noise-~only" models, which are at the opposite pole 

from the usual regression models, which may be characterized as 

"process-noise-only" models, Between these two poles is a whole 

spectrum of more moderate techniques, Let us suppose that one has 

a simple model of some process, defined by the equations: 

X, (t+1) = £5 (Xy (tees x (t)) ifei,n (2,19) 

Using the classical regression approach, we would tack on a normal 

noise term, a,(t)s to the end of these equations, to arrive at 

the stochastic model: 

X,(t+h) = £5(Xy(t)eeee Xi (t)) + ay (t) 

We would estimate the parameters in this model by trying to minimize 

the square errors: 

Ll, > (Xy(t41) = £,QG (tree. X(t), (2.20) 

after we substitute in for the measured values of X, (t+1) and X s(t). 

In effect, this would imply minimizing the square error for | 

predictions over one interval of time. 

With the measurement-noise-only models, we would normally 

include, in the list of parameters to be estimated, the values of 

¥, (0) where Y, is defined as the "true" value of X,. Using
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equations (2,19), we can predict the "true" value of xX, (1), ¥, (1), 

from our estimates of the Y, (0), and predict Y, (2) from the 

predictions of Y,(1), et cetera, Using these long~term predictions, 
~ 
Y,(t)s we can try to minimize the errors: 

= D_ (x(t) = (Fy (t)ve RC)? (28) 
t 

From the viewpoint of maximum likelihood theory, these predictions, 

T(t), may be viewed as the “estimates” of Y,(t)s derived from the 

estimates ¥,(0) and from the assumption that equations (2.19) are 

exactly true, with no noise, for the true values, Y,(t). 

How can we find a viable compromise between (2.20) and (2,21)? 

In (2,20), we use the measured value, X(t), to estimate the true 

values, Y,(t), for use as the arguments of f,3; in (2.21), we use i 

estimates, %(t), based solely on updating our estimates for Y,(t-1), 

ive, %(t-1), by use of (2,19), The obvious compromise is to estimate 

Y, (t) by something half-way between the measured values, X(t), 

and the estimates of Y, (t) which result from updating our estimates of 

Y,(t-1), Thus we may define new estimates, Z(t). of Y,(t), by: 

Z,(t) = (ler )f,(Z,)(t-1),... Z_(t-1)) + rX, (t). (2.22) 

Using these estimates, we may attempt to minimize the loss function: 

oe 2 Ltt = > (X,(t41) = £,(2,(t)eeee Z(t)))® — (2.23) 
t
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The Z5(0), like ¥ 5(0), would be parameters to estimate, The constant 

"yr" may be called the "coefficient of relaxation”; it is a kind of 

interest rate which, when large, implies a greater concern for 

short-term prediction than for long-term prediction. 

Note that the structure of equation (2,22) looks similar to 

that of a filtering system, designed to yield a posterior 

estimate of the "true” value of given both a prior expectation 

and an actual measurement, In the field of engineering, a great deal 

of work has been done on the problem of designing an optimal filtering 

system, to deal with vectors, x which result from noisy measurements 

of a linear process which has been completely specified in advance, 

It is well-known that the best way to update one's estimates, in this 

situation, is not by the independent equations (2,22), but by the 

matrix equations of the "Kalman filter"(33): 

~*~ 7 
At) = FZ e-1)) + R(t) (R(t )-w(t F(Z(t-1))), 

where K and H are time-varying matrices determined by: 

K(t) = p(t) H(+)R7+ (+) 

P(t) = (T(t) + H(t )RT (tL )H(t))™ 
M(t4L) = A(t)P(t)s7(t) + G(t)Q(t)G"(t), 

and where H, R, G and Q are all characteristic matrices of the linear 

process, a process which may be specified: 

X(t) = H(t)¥(+) + B(t) 

-* 
2,24 

Y(t+1) = G(t)¥(t) + C(t), (2,24)
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with R and Q the covariance matrices of the noise vectors b and %, 

respectively. The details of these equations are beyond the range of 

our discussion here, One should note that the linear processes of 

equation (2,24) are essentially the same as those we will discuss 

early in Chapter (III); it will be shown in that chapter that processes 

of that general sort can be dealt with exactly by use of the "ARMA" 

approach, whose practical limitations will be discussed in Chapters 

(IV), (V) and (VI), However, even if the Kalman filtering equations 

were derived for a limited class of linear processes, one might expect 

them to be an improvement over equations (2.22), on the theory that 

they can be used to perform the same function, somewhat more 

rationally, as part of our system of robust estimation, In this case, 

one would adjust the matrices H, R and Q in an ad hoc sort of way, 

just as one would adjust the relaxation constant, "r", rather than 

estimate them all beforehand by use of the maximum likelihood 

technique on some version of the simple equations (2.24), However, 

this use of the Kalman filter brings three difficulties with it, 

which make it a subject for future research rather than present 

systems design: (i) the need to adjust three matrices, H, R and Q, 

automatically, requires a much greater development of the theory of 

robust estimation than does the need te adjust a single constant, r, 

by hand; (ii) the sheer complexity of the Kalman equations would impose



Page II-82 

heavy costs on the systems programmer; (111) even given a rational 

approach to estimating the matrices H, R and Q, one would presumably 

need a huge quantity of data to estimate so many parameters, in 

addition to all the parameters of one's model, 

(xii) THE ORDERED DERIVATIVE AND 

DYNAMIC FEEDBACK 

The traditional formalism used for dealing with partial 

derivatives was evolved to deal with the problems of geometry 

and of physical science, In those fields, one normally deals with 

funetions defined over a fixed set of coordinate variables; 

even when one changes one's choice of coordinates, one is usually 

making a clearcut shift from one set to a second set, In the social 

sciences, however, one normally deals with a complex web of 

functional relations and variables, This web will often have a 

causal ordering associated with it, Thus when we say that 

Xe FY 22) we not only mean that a relation exists between the 

variables Yys 2 and Xp 444 we also tend to mean that the variables yy 
t 

and z, “cause” X, 14 to equal what it does, and that X44. 

"later" than Yy and Ze We will often be interested in asking 

4 is causally. 

what changes will follow, later, if we change a given variable by 

a small amount at a given time, Clearly, this question calls for us 

to calculate some kind of partial derivative, In order to deal with
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this kind of situation, as easily as we now deal with situations 

in physical science and geometry, we need to define a new formalism 

for this kind of partial derivative. 

Let us begin by imagining that we have a well-ordered set of 

variables, Xe Xoveee Xys with each variable Xy obeying a 

functional relation: 

Xp = fy (Xy pe Xpigeeee Xy)e 

Let us define a new set of functions, Fy recursively: 

(1) F(x) eX, yp e%pigeeee x) =X, 

(14) Fy_y (<p ly oXyovere x4) 

FC L(g oXq pv eee de My ge%ypvees %) 

(In other words, "F," expresses x, as a function of the variables 
i 

Xi 9%s_qeeeeXys arrived at by substitution into higher F 5's.) 

Let us define the ordered derivative of x, as follows: 

a, 
O%X4 Ox,” 
  nZiriy 

where the derivative on the right is evaluated by traditional 

procedures, holding constant all the variables Xp proce Kye
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We may further define: 

    

  

n 0 <q = i<iSi4 OX, Ox, - 0 

Theorem: 

= + 
f £3< 

oF 5 = OX, for to 25 " 

“OX = OX, OF} 1<1<j 
z+) d 

We can prove this, for any given i and n within the acceptable range, 

by induction on j downwards from j=n-1 (down to jei), Let us begin 

by considering the initial case, jen-1, In this case, our general 

claim reduces to: 

Ont < 3%, oF, 

O%y o%, OX, " 

  

From our definitions of Fo and of Fini? this reduces immediately to: 

oH . & 
ay ae, Oy 

which is clearly true, 

Now, to complete our proof, we need only prove the formula 

for j> i and ? los on the assumption that it is true for jtiS n, 

Let us begin by going back to the definition of Pat 

P(X soXs pees »X4) = Psat (E gag (X5eX sig oee eX eX sree eX)
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In order te make this more explicit, we may write it as follows: 

F(X eX 5_ gee eX) = Fi (Ssag eS jeSzigreee s,) 

where S541 = F 54q (X5o% pig o ee %y) 

8, =X 1 < i < je 

By the conventional chain rule for partial differentiation: 

atl 
2 S_ aa 

Sx, (Ps yeX giz my)? = (55 (Fsyq (Ssyq eee 5q)))( x ) 

i k i 
wel 

14iS8j 

Now for k < j, our definitions of 5, as 4 simple function of the X, 

s 

clearly tell us that —* equals 1 if k=i, and zero otherwise, 

O*4 s, of 
°} j+1 

For k=j+i, our definition tells us that: sx = Ox . 
4 i 

Thus the sum on the right in the equation above may be evaluated 

to give us a new equation: 

F, > of 
—ul es jti 
oy 544 (Fsag (Ss yp eeee s,))) Xs 

+ so (Fyag (Ss ygeeee5y)) 

- Given that our remaining derivatives with respect to the S; do not 

involve the expression "x," anywhere, and given that the 8, have been 

defined in such a way as to equal the x, for 11 S jti, the value 

te 

of these expressions will not change if we substitute in the letter "x
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for every occurrence of the letter "s", Thus we get: 

Fy OF at ay 
OF aa +1 

OX, O% 544 x * Os, 

Now from the induction hypothesis we were given that: 

  

  

OF 544 > Xn Of, 

3%, "9x, 

os Wepre 

From our definition of the ordered derivative, this is merely: 

+ 

2 Te Me |S BO 
aX, OX 544 OX . OX, "Os 

Kt 

2% 

a%, se 
kt! 

which establishes our contention for the case j, and which, 

  

by induction, proves the contention as a whole, 

Corollary 1: If 4, $? <n: 

ox ox, 
  

This follows immediately from setting j=i in our theorem, and 

exploiting the definition of the ordered derivative. 

Corollary 2: If 1 S i < io: 

2%, oF, . ox, of, 

ox OX OX O% + 
Kzcotl 
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Notice that F, (x, p20 0X) is the function which expresses x, 

0 “0 
as a function solely of the "external parameters,” X5 through Xqe 

0 

If x, represents something like "likelihood", L, and if the 

“external parameters" represent constants of the model and fixed 

data, then F, expresses likelihood as a function of these 
0 

parameters, When we are trying to maximize likelihood "as a function 

of these parameters," we are trying to maximize L expressed as Fy . 
0 

"YL iy 

Thus, when we ask about 3k, » in that context, we are really asking 
1 

  

Notice that the concept of "ordered derivative” does not 

really depend upon the exact choice of order XysXqveeeX 

Suppose that "xy" is really "simultaneous" with Xs eXqgoeee pigs 

in the sense that it is not really an argument of the functions 

Ta Taz Tide Then, in our chain rule above, 

the derivative —J as zero for j of itl through k-1; thus the 
Ox 

i 
actual value of the ordered derivative, as given by those formulas, 

will not be affected by our arbitrary decision to treat these variables 

as if they were "later" than Xx, in the causal ordering, The ordered 

derivative would appear to be defined with respect to the general 

causal ordering, a weak ordering of our lattice of variables, rather 

than the strong numerical order chosen to represent it, For our 

purposes, however, it is not necessary to establish such generality, 

since we need only justify a calculating procedure based upon the 

definite numerical ordering chosen for our tables,
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As a practical matter, all of the "working back" of derivatives 

cited above might be carried out by one standard computer subroutine, 

called on by simple "main programs" within ene's computer package 

to carry out estimation and optimization for models of all different 

sorts, Other possibilities have been mentioned briefly in section (iii), 

Model specification could be allowed either in terms of standard 

TSP formulas, or in terms of Forrester-style "DYNAMO" expressions, 

The standard subroutine(s), set up to allow optimal control 

calculations, would, in principle, also allow maximum-likelihood 

estimation of "hidden variables” in implicit models; however, the use 

of this provision should probably not be encouraged, except in those 

cases where a theoretical understanding exists of its potential value.
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APPENDIX: VARIATIONS ON THE STEEPEST ASCENT METHOD 

FOR EFFICIENT CONVERGENCE 

The discussion of the dynamic feedback method throughout 

this chapter depends on the assumption that the derivatives 

calculated by this method can be used as the input to the 

steepest ascent method, in minimizing or maximizing various types 

of functions, In practice, however, we have found great difficulties 

in getting adequate convergence with the classical steepest ascent 

method, in our early experiments with ARMA estimation, to be 

discussed in Chapter (III), This experience seems to be in line with 

the general impressions of other people in the community who have 

used the method, It is possible, however, to bring the convergence 

rate up to reasonable standards by use of "variable metric techniques" 

and related methods, 

In section (iii), we alluded briefly to the constants "C" to be 

used in the steepest ascent method; in our discussion, there was never 

any reason to require that "C" be the same for all of the parameters, 

Bs. In the "variable metric" approach, one simply chooses different 

constants, Cys for different parameters, Thus one would write: 

(ntt) 2 i (n) QU a(n) 
Bs as * sa, (ar). 

This equation specifies that our n-plus-first estimate of the 

parameter a, Will equal our nth estimate, plus C, times the 
i
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derivative with respect to as of the function, U, which we are 

trying to maximize, (The derivative is calculated, of course, 

from our current set of estimates, 2°"), ) This approach has become 

fairly popular , in some quarters, 

Ideally, if one had all the second derivatives available, 

one might use the classic Gaussian method: 

“7(n+1) = y(n) ~ at qe), 

— 
where "YW" is the vector ou and "A" is the matrix of the second 

2 1 

derivatives, 7 U . To pick the constants, "C,," above, one might 
Qa,0a 4 

try to pick them to form as close an approximation as possible 

to the Gaussian equation here, Thus one might try to approximate: 

C, = -1 
‘ (S32 

In order to generate a low-cost, order~of-magnitude estimate, Sts 

fy 2 

of OY) = 
Oa ‘32 

down oir tabled of operations: 

-> ( soy Se + ¢ se , (2.25) 
yrctl 

guy one might carry out another feedback calculation 

where S, 4s the ordered derivative of U with respect to X50 

as computed by the procedures of section (441), and the rest of 

the notation here comes from section (xii), The term on the left side 

of the expression to be summed preserves the sign of the "estimated"
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second derivatives, as we go down from the 3 to Sf. The term 

on the right, however, risks a change of signs it might either be 

eliminated, or else cut off to equal zero whenever it tries to 

go too far in an abnormal direction, if we choose to avoid this 

risk, Note, in the case of a maximization problem, that the 

normal sign for the second derivatives is negative, 

If we write: 

Cc, = “W/SF 

then, if the n-plus-first estimate turns out to be inferior to 

the nth, we can simply reduce the unsubscripted constant “w" and 

try again, This method is guaranteed eventual convergence to a 

local maximum, as we adjust “w" back and forth, for exactly the 

same reasons that the classical method is guaranteed convergence 

as "C" is adjusted back and forth; given that we have imposed 

measures to keep the signs of the St negative, we may invoke the 

definition of the derivative, just as we did in section (iii). 

In the case of ARMA estimation, a similar though more specialized 

approach has turned out to be quite successful, While we have not 

run across this particular form of the variable metric approach 

in the literature, we have heard rumors that something similar may 

have attracted attention elsewhere in statistics; however, it would be 

difficult to believe that equation (2.25), itself, which is based on
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a procedure related to dynamic feedback, has been used in this 

general forn, 

In situations where the number of variables is great, and 

many iterations are required in any case, one can imagine an 

additional provision, "convergence learning," to try to make the 

constants C, better approximations to the choice which would lead 

to the fastest convergence, One may set: 

C, = -w0,/St, 

(n) seems to be moving 

systematically in one direction from estimate (n) to estimate, 

where "e," is increased when the parameter a 

(nJ seems to be oscillating, 

One might, for example, multiply 8, by 14+C, for some positive C, 

and where it is decreased when a 

when x calculated at sgintt) has the same sign as st 

calculated at"), one might divide it by 1+C when the signs are 

opposite, As before, if the sign of 9, is positive, one is still 

assured of eventual convergence to a local maximum, Insofar as 

each of these factors, "@,", is essentially an adjustment factor 

for our approximation of @, we might even use it in (2.25), 

to divide those terms in our summation on the right which involve 

entries, Xoo in our table of operations, which use the parameter a, 

as a "source variable," 

In order to define these procedures in more detail, it would be
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necessary to have some way to evaluate the many alternative 

possibilities in these directions; insofar as these procedures are 

all aimed at the practical goal of speeding up convergence, 

it would seem best to evaluate them by way of practical experiments, 

when the necessary computer routines become available,
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FOOTNOTES TO CHAPTER (ITI) 

(1) Deutsch, Karl W., Nationalism and Social Communications _, 

MIT Press, Cambridge, Mass, 1966, revised second edition, 

Appendix V, Note that we have used the letter "U" instead 

of "D", in the revised version of the model, Also note that 

several versions of this model have appeared in print, 

The version here, in all fairness, was actually taken directly 

from Hopkins, Raymond and Carol, "A Difference Equation 

Model for Mobilization and Assimilation Processes", 1969, 

unpublished; a copy of this paper was provided to us by 

Prof, Deutsch, and described as containing the final revision 

of the model, This revision appears, in difference equation 

form, in Hopkins, Raymond, “Projections of Population Change 

by Mobilization and Assimilation", Behavioral Science, 1972, 

p.254, The reasons for the revisions to earlier versions 

are described in Hopkins, Raymond, "Mathematical Modelling 
of Mobilization and Assimilation Processes", in 
Mathematical Approaches to Politics, edited by Hayward Alker, 

Karl Deutsch and Antoine Stoetzel, Elsevier Publishing Co., 

NY, 1973, p. 381, 

(2) Rapoport, Anatol, Fights, Games and Debates, U. of Michigan Press, 
Ann Arbor, Mich,, 1961, Second Printing, p. 173. 
The "prisoner's dilemna", in its original form, is a simple 
two-person game in which each player has two options to choose 
from: to betray or not to betray the other player to the 

police, If neither player is betrayed, both pay a slight 
penalty (a small jail sentence), If one is betrayed, then 
he pays a heavy penalty, but the other escapes all penalty. 
If both betray each other, both pay a fairly heavy penalty. 
The structure of this game has been used as a paradigm for 
certain arms races, in which the self-interest of each player, 

paradoxically, may lead both into a competition in which 
both of them enjoy less security and have less money left over 
than if both had shown restraint, 

(3) Even the most elementary models used in economics tend to be used 

to generate tangible numerical prediction; see, for example, 
Economics : An Introductory Analysis, by Paul A, Samuelson, 

Fourth Edition, McGraw-Hill, NY, 1958, chapters eleven through 
thirteen, More explicit predictive models may be found in 
Hickman, Bert G., Econometric Models of Cyclical Behavior, 
National Bureau of Economic Research, 1972.
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(4) From a strict mathematical point of view, these "density 
functions" are actually “measures" or "distributions" 
rather than functions, Thus on p,4, the notation "db" 
and "de" should have followed equations (2,4), for total 
rigor, Historically, this issue has not turned out to be 
of major importance; see the discussion at the end of 
section (v), and the more rigorous discussion in 
Box, George E,P, and Jenkins, Gwilym M, Time-Series Analysis: 
Forecasting and Control, Holden-Day, San Francisco, Calif., 

1970, pe274-283, 

  

(5) More precisely, classical maximum likelihood theory specifies 
a unique log likelihood measure of goodness of fit, for the 
simple model above, including the normal noise distribution 

as part of the model.This measure of fit is a special case 
of what we will describe in more detail in section (vi), 
based upon the concepts of section (v), From a conservative 
Bayesian point of view, this measure is taken to be the 
logarithm of the probability of truth of a model, conditional 
upon the observed data, assuming a prior probability distribution 
which is "flat" when described in terms of the coefficients 
of the model as written, and relying on the space of these 
coefficients and of the data as encoded to provide us with 
the measures over which these probability distributions are 
defined, 

In a sense, this criterion provides a meaningful estimate 
of the relative probability of truth of the coefficient values 
considered, subject to the constraint that the model is 
assumed to be “true,” for some value of the coefficients, 
in whatever sense it is possible for a statistical model 

to be "true," One of our primary objectives in this thesis 
is to point out tangible, correctible deficiencies in the 
classical idea of looking for "truth" as such, in statistical 
dynamic models; in Chapter (V), we will point out that verbal 
models and statistical models are subject to similar difficulties, 
in basic matters, (Statistical models in a very hard science, 
such as pure physics, may be different, however, ) , 
In section (vii), where the new alternatives are discussed 

on a theoretical level, we have been careful to emphasize 
that these approaches to the practical prediction of 
time-series can be understood as an offshoot of the more 
general and more coherent Bayesian philosophy of induction, 
as briefly sketched in section (v), The maintenance of this 

connection is especially important to the social sciences, 
where the Bayesian framework has many applications beyond 
those of explicit data analysis; see, for example, Raiffa, 

_ Howard, Decision Analysis: Introductory Lectures on Making 

Choices Under Uncertainty, Addison-Wesley, Reading, Mass,, 1968,
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(6) Once again, our discussion has been based on the maximum 

likelihood point of view, which will be called into question 

in section (vii), For those who are concerned with predictive 

power, and not with the likelihood of truth as such, 

the success of various noise models depends less on their 

"truth" in the process at hand and more on the robustness of 

the associated estimation procedure; thus, one may choose to 
regard the regression procedure described above as an 
independent algorithm, which can be derived from maximun 

likelihood theory but which is still a distinct object able 

to stand alone, From this point of view, then, the methods 

above do not require an assumption of a normal distribution, 

(7) Ezekiel, Mordecai and Fox, Karl A,, Methods of Correlation and 

Regression Analysis, Wiley, New York, 1959, Third Edition, 
chapter six, 

(8) Postrikov, Foundations of Galois Theory, Pergamon Press, McMillan, 

New York, 1962, p. vil. 

(9) Wasan, M.T., Parametric Estimation, McGraw-Hill, New York, 
p.161-162, Alternative techniques exist, but the ones listed by 
Wasan are second-order - they require the calculation of 
second derivatives, which are more numerous than first 
derivatives and may be expensive to calculate, The Marquadt 
algorithm, the better-known alternative, assumes that the. 
likelihood function is quadratic, an assumption we will 
not make in this thesis, in later sections; also, it incurs 
heavy costs in other ways. In the Appendix, we have proposed 
a procedure for handling the convergence difficulties cited 

by Wasan, for variations on the theme of steepest descent; 
in the case of multivariate ARMA(1,1) estimation, at least, 
resulting convergence times have been reasonable, 

(10) Dixon, W.J. BMD Biomedical Computer Programs: X-Series 

Supplement, U, of California Press, Berkeley, Calif., 
June 1972, p.177. 

(11) Brode, John, Time-Series-Processor - CSP, available from 
Project Cambridge, MIT, 5th floor, 575 Technology Square, 
Cambridge, Mass, 02139, A manual for the revised version of 
TSP may be forthcoming in the MIT Press, 

  

(12) National Bureau for Economic Research, TROLL/1 Primer, available 
c/o 9th floor, 575 Technology Square, Cambridge, Mass, 02139,
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(13) Friedman, Milton, A Theory of the Consumption Function, Princeton 

University Press, Princeton, N.J., 1957, p.20-31, Friedman's 

discussion here leaves open somewhat the question of how 

permanent income is determined; the simplified model we use 

as our example assumes a simple exponential learning process, 

based on actual income, 

(14) The most fundamental source for this point of view is Carnap, 

Rudolf and Jeffreys, Richard C,, Studies in Inductive Logic and 

Probability, U. of California Press, Berkeley, Calif, 1971, 

Discussions of its direct applications to statistics may be 

found in Box and Jenkins, op. cit, (note 4), p.250-252, and in 

Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics, 

Hafner Publishing Co., NY, Second Edition, 1970, Vol.2, p.150. 
  

(15) However, in the philosophy of science, there is occasional 

reference to the "cosmological principle" that we expect 

p(data) for the observed data to end up reasonably large, 

once a full spectrum of theories has been studies, In other 

words, one expects that the observed data will not be an unusual 

local coincidence, according to a “true” theory; one expects 

that data, as observed from earth, in particular, are likely 

to be typical of data observed elsewhere, Such an additional 

assumption would not be necessary, or even logical, if we felt 

that we had p(model) available for the full range of possible 

models, along with p(data model), However, When we ask about 

the probability that new models, as yet unformulated, may turn 

out to be valid, the “cosmological principle" does have 

something to tell us, 

(16) Immanual Kant, A Critique of Pure Reason 

(17) Carmap and Jeffreys, op. cit, (note 14), 

(18) See the references of note 14, Also see Wasan, op,cit., 

(note 9) p.150-152; Anderson, R.L, and Bancroft, T.A., 
Statistical Theory in Research, McGraw-Hill, New York, 
1952, p.i01; Hays, William L., Statistics for the Social 
Sciences, Holt Rinehart and Winston, Second Edition, 1973, 

p. 641-842 and 816-821, 

(19) Hays, op. cit. (note 18), later chapters; Lindley, D.V., 
"Professor Hogben's Crisis - a Survey of the Foundations of 
Statistics", Applied Statistics, Vol.7, No.3, 1958,p,186-198; 
Raiffa, H. and Schlaifer, R., Applied Statistical Decision 
Theory, chapter thirteen; Hogg and Craig, Introduction to 
Mathematical Statistics, McMillan, London, Third Edition,
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p.208-209; Wasan, op, cit, (note 9), p.184, definition 5, 

and subsequent discussions, (Also Box, G.E, and Tiao, Geo 

book coming out.) The two computer programs generally 

available in Cambridge for Bayesian estimation are described 

in Brode, John, op. cit. (note 11) and in Schlaifer, R., 

User's Guide to the AQD Programs, Fart III, p. 18, 

available c/o the Harvard Business School, 

(20) In this area, too, the traditional formulation by Carnap and 

Jeffreys is under question, Shimony, Abner, "Selentific 

Inference", in Nature and Foundation of Scientific Theories, 

Colodny, ed., U. of Pittsburgh Press, especially p,100}3 

Solomonoff, “Mathematical Foundations of Induction", 

manuscript available in 1964 at the MIT Artificial Intelligence 

Laboratory, from Prof, Minsky; Barker, Stephen F., "The Role 

of Simplicity in Explanation", in Current Issues in the 

Philosophy of Science, Feigl and Maxwell, eds., Holt Rinehart 

and Winston, 1961, 

(21) Alpert, Mare and Raiffa, Howard, "A Progress Report on the 

Training of Probability Assessors," available in 1971 as an 

unpublished manuscript from the office of Prof. Raiffa in the 

Littauer Building, Harvard U, 

(22) Box and Jenkins, op. cit. (note 4), p. 274, Note that the 

"Bayesian estimates" suggested on p,252 of this reference, 

and also the approximations suggested on p,277, involve 

disregarding this term, with or without small adjustments 

elsewhere, 

(23) Mosteller, C, Frederick and Rourke, Robert E., Sturdy Statistics: 

Nonparametric and Order Statistics, Addison-Wesley, Reading, 

Mass,, 1973; Tukey, John W,, “A Survey of Sampling From 

Contaminated Distributions", in Contributions to Probability 

and Statistics: Essays in Honor of Harold Hotelling, 

Olkin, Ingram and G, Sudhish, Wassily Hoeffding, William G, 

Madow, Henry B, Mann, eds., Stanford U, Press, Stanford, 

Calif,, 1960, p, 448-485, 

(24) Box and Jenkins, op. cit. (note 4),p,121-124, Our formula here 

is a special case, 

(25) Cochrane, D, and Orcutt, G.H., “Application of Least Squares 

Regression to Relationships Containing Autocorrelated Error 

Terms", Journal of the American Statistical Association, 

March 1949, p.34,
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(26) Forrester, Jay W,, Industrial Dynamics, MIT Press, Cambridge, 

Mass,, 1961, 

(27) Forrester, Jay W., World Dynamics, Wright-Allen Press, Cambridge, 

Mass,, 1971; the successor to this book was The Limits to 

Growth, by Meadows, D.H. and D,L, Randers, J,, and Behrins, W,, 

Signet Books, New York, 1972, Third Printing; the lack of 

empirical validation, and other important aspects of this 

work are discussed in Models of Doom: A Critique of The 

Limits to Growth, by Cole, H,S,D., Freeman, Christopher, 

Pavitt, K.L,R., and Jahoda, Marie, Universe Books, New York, 

1973, A few alternative approaches are sketched in Chapter (V). 

(28) Hoge and Craig, op, cit, (note 19), p. 250-253, 

(29) The "ideal types" idea originated with Max Weber; a review of 

the early idea may be found in Max Weber's Ideal Type Theory, 

by Rogers, Rolf E,, Philosophical Library Inc,, New York, 

1969, 

(30) Feierabend, Ivo K, and Rosalind L., and Gurr, T., eds., 
Anger, Violence and Politics, Prentice-Hall, Englewood, 

NeJey 1972, p.114=118, 

(31) Jacobson and Mayne, Differential Dynamic Programming, 
American Elsevier, NY, 1970, especially chapter six, 

(32) Samuelson, op, cit. (note 3), p. 345, begins a discussion of 

this topic; his own attitude is more partial to the traditional 

Keynesian approach, but his discussion clearly indicates that 

automatic adjustment factors have been of great interest to 

some economists, 

(33) Jacobson and Mayne, op, cit. (note 31), 

(34) Bryson, Arthur E, Jr. and Ho, Yu-Chi, Applied Optimal Control, 
Ginn and Company, Waltham, Mass., 1969, p.361.
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(III) THE MULTIVARTATE ARMA(1,1) MODEL, 
TTS SIGNIFICANCE AND ITS ESTIMATTON 

(1) INTRODUCTION 

In recent years, the "ARMA" model for Statistical processes 
has become very popular both in industry and in certain parts of the 
social science community, This popularity is due partly to the 
landmark book by Box and Jenkins, Time-Seriles Analysis(1), which 
places emphasis on the application of ARMA models to predicting 

future values of time-series variables, Using their approach, 

one fits a separate model te each variable of interest, a model 

of the variable as a mixed “AutoRegressive Moving-Average” process 
of some very complex order; one uses these models, variable by varlable, 
to make predictions of the future, 

Our emphasis here is quite different, Our concern, from the 
beginning, was with studying the interaction between different 

variables = national assimilation and communications, as deseribed 
in Chapter (VI) = rather than with the prediction of time-series 
in isolation from each other; univariate studies were carried out 
only to help us evaluate methods for dealing with the more general 

case, With "“eausal analysis" of this sort, where many variables 
must be considered together, multiple regression still is the most 
popular technique by far,(2), Nevertheless, one of the theorems of
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Box and Jenkins - that the presence of errors in data~colleetion 

can turn a simple regression process into an ARMA process ~ can be 

generalized very easily to the multivariate case, as We will show 

below, Thus one might think of multivariate ARMA analysis as 

generating the same coefficients as a multiple regression analysis, but 

"corrected" for the effects of measurement errors, In Chapters (IV) 

through (VI), we will discuss the empirical work which has convinced 

us that such measurement noise is not only common, but may also 

have a drastic effect in reducing the quality of predictions of 

a model fit by ordinary regression, 

In practice, there are two difficulties with using the 

generalization of the ARMA model to the multivariate CASE, 

First, and most important, is the sheer computational difficulty 

of estimating a full, miltivariate ARMA model (a "vector ARMA" model), 

Hannan(3), in 1970, described the current techniques in this area 

as follows:"Though there are, no doubt, circumstances in which 

a vector mixed moving~average autoregressive model will give a 

much better fit with a given number of constants than either a 

moving-average or autoregressive model (1.e, ordinary regression - PJW), 

the computational complications are so great that it can be doubted 

whether the more complicated model will be used, and we do net feel 

that the techniques at the present Stage are sufficiently near to 

being practically useful to be ineluded in this book." In 1973,
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Prof, George E, Box, of Box and Jenkins, mentioned to us that 

the heavy orientation of his own work te the univariate case was due 

in large part to such difficulties, In section (141) of this charter, 

we will deseribe how we have been able to apply the dynamic feedhack 

algorithm, described in Chapter (II), te overcome this difficulty; 

in section (iv), we will deseribe in detail the computer routine, 

now available to social scientists from Hawaii to London, which 

we have written to use this methed in estimating multivariate 

ARMA processes, 

Second, and more persistent, 1s the difficulty of “too many 

degrees of freedom" with ARMA models, If, in addition to accounting 

for many variables at once, we also added "higher-order" terms, 

as discussed by Box and Jenkins, the number of parameters in these 

models could become hopelessly large; such higher-order models 

could be estimated by a variant of our algorithm below, but the 

substantive value of the estimates would be questionable, In practice, 

however, our interest in the ARMA model does not lie in its capacity 

for being made ever and ever more complicated; our interest is in 

the possibility of accounting rationally for the problem of 

"measurement noise,” the problem of errors in measuring and indexing 

the underlying variables which one is trying to study, Thus we will 

restrict ourselves here to considering "white noise" (random noise, 

uncorrelated with itself across time but possibly correlated from
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variable to variable at the same time) in the process of 

measurement; all of the ARMA models we will discuss are of the 

variety which Box and Jenkins would call "ARMA(1,1)" models, 

While the degrees of freedom problem makes it impractical 

in most cases to consider more complex, more realistic models of 

measurement noise, it has been our hope that the difference between 

accounting for measurement noise and not accounting for it at all 

would be enough to overcome most of the problems of real-world 

prediction, However, as we pointed out in Chapter (I), this hope 

has only been partly realized; given the impracticality of adding 

too many degrees of freedom to these models, our current opinion 

is that the "robust method" described in sections (vii) and (xi) 

of Chapter (II) will be crucial to any further progress with the 

real-world problems, 

Let us now define more precisely what we mean by an "ARMA(i,1)" 

model, Box and Jenkins(4) define an ARMA(1,1) process "2" as 

a stationary process governed by the scalar equation: 

- 3 z, #2, 4 +a, O12, 49 (3.1) 

where "ay" is a random normal noise process of covariance oF ’ 

and where "t" is the time period, (We recall from Chapter (IT) 

that "random" means that the process has no correlation with 

itself across time, or with other processes in the system at 

earlier times, }) Also, note that we are treating "t" as a subseript
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here solely because this is the way it appears in Box and Jenkins, 

By contrast, the classic autoregressive model may be written, 

in the univariate case; 

X= Py + aye (3.2) 

The term "a," in this equation refers to “process noise," 

to a random impulse whieh will affect the true value of x 

at time ty and thereby affect later values of x as well, In practice, 

however, the measured data, which we may call "eas may differ from 

the true values of the variable we are trying to study, which 

we may call "KX," The difference between the true value and the 

measured value, Zi~X i» May be called, “measurement noise,” 

If we postulate that this measurement noise, like the random impulses 

which govern Xy itself, is a random process, then we arrive at 

the following modification of the classic regression model (3,2): 

x = OX + By 

(3.3) 
ay = x Teh, 

where b anid. c, both are normal random normal noise processes with 

zero means and with no correlation between each cther, 

Box and Jenkins(5) have pointed out that any stationary process, 

Z,» such as the z, of (3.3) or (3,1), may be completely characterized 

by knowledge of its correlation funetion (or, more precisely, its 

autocovariance}, Zp» across time: 

7 & Zen = E( 2,25 pn)s
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This equation states that "Z," is defined to equal E(2,2, os 

"E(Z 2, on)» in turn, is the notation we will use to indicate 

the "expected value" or "mean valug" across all times t, of the 

product, 2@ 7: throughout the statistical process under study, tte 
Box and Jenkins argue(6}, in the context of discussing general 

processes which include (3,3) as a special case, that the 

autocorrelation function of the "2," in (3.3) has the same 

characteristics as that of "Z," in (3.1); therefore, they conclude 

that the former statistical process, as a generator of "Ey" is 

equivalent to a process of the second kind, In other words, a “Z," 

generated by a process such as (3,3) will appear to obey a 

phenomenological equation such as (3,1). 

More precisely, Box and Jenkins ask us to consider the 

following precess, in connection with (3,3): 

ES é —- m= { a f 

Wee Ay Pay = Oy te) - Ply + oy) 

= (Px, 4 +b, to.) = px, > do, y 

(3.4) 4 

= bp te, > pers 

From the randomness of b and Cis it is clear that the autocorrelation 

of this process will be zero for time intervals, T, larger than one, 

From this information, and from the Gaussian character of the 

process, they conclude immediately that Wy is itself a simple
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moving average process of order one, representable as: 

Me = Bg 7 Say ys 

for some ®, and some random process ays if we recall the definition of 

W, in (3.4), and substitute, we find that our z, from (3,3) obeys 

an equation representable as (3,1), Those readers who have difficulty 

with this equivalence should refer back te Box and Jenkins, 

In the social sclences, however, most dynamic processes of 

interest involve more than one variable, Fortunately, it is easy 

to generalize the definitions and results above to the multivariate 

case, by treating sets of variables as vectors, Thus we ean define 

a multivariate ARMA(1,1) process as a process which obeys: 

a] 7 = a + OF, + PR? (© and P matrices) (3,5) to=1? 

where "a" is a vector random process, obeying a multivariate 

normal distribution(7): 

a”) = 4 . 

exp(“3a,A a}, } 
Vem det A . 

where A is the covariance matrix of this process, Where the 

  

off-diagonal terms of A allow us te account for the possibility of 

cross-correlations in the noise process, and where n is the 

dimensionality of the vectors @ and @, We can also define a noisy
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time-series regression process as one obeying: 

%, OX, 4 + b, 

(3.7) 
* —_> 
2 = %, + Ty, 

—_? 

where "b," and "er" are random normal precesses of dimensionality n, 

as Was "a" above, with covariance matrices which we will call B and ¢C, 
w 

If we define "W." as #-O2” ,, then the rest of (3.4) goes through 
» 

t t tel 

exactly as before, yielding a process with zero autocorrelation 

for T>1, representable, as before, as a simple moving average 

process, i,e, as Ways thus Box and Jenkins’ argument for 

equivalence goes through in its entirety, with equal validity, in the 

multivariate case, 

Our main concern, in this chapter will be with the estimation 

of the coefficients in (3.5) and (3,6), for a given set of data, {zi. 

However, since our interest in (3.5) and (3.6) comes from our 

interest in (3.7), it is of interest to see how we could go back, 

after fitting a model of the form (3,5), to derive the coefficients 

of an equivalent model of the form (3.7), In the following section, 

we Will elaborate on the mathematical details of this process, 

For the social scientist, however, the most interesting conclusion 

from this argument will be the equivalence between "6" in (3,5) 

and "6" in (3.7). Thus, the ©, estimated by the ARMA estimation 
ij 

program itself may be thought of as “corrected" regression coefficients, 

Just as the usual regression coefficient, ba is called a 

"bo coefficient" or "beta coefficient”, our "corrected regression
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ecefficient,” ©, may be called a "theta coefficient"; in a 
J 

similar way, our P,. may be called a "rho coefficient," ij 

(141) THE RECONSTRUCTION OF A WHITE NOISE MODEL 

FROM A VECTOR ARMA MODEL 

After fitting a vector ARMA(i1,1) model, a model of the form 

(3.5) and (3,6), how do we derive the coefficients ef the equivalent 

model of the form (3,7), assuming that an equivalent model does 

exist? Recalling that Gaussian stationary processes are completely 

characterized by their autocevariance funetions(8), we may phrase 

this question as follows, For a given value of 9, P and A, in (3,5) 

and (3,6), we wish to find values for @, B and C in (3.7), such that 

the autocovarlance matrices 4 will be the same for the two processes, 

for all time increments n, Let us use the notation "@" to represent 

the "6" in equation (3.5), and "%" to represent the "@" in (3,7)3 

these two matrices will turn out to be equivalent to each other, 

but for now we mist establish the equality, 

The autocevariance matrix, a9 is defined as being made up of 

components, 2 .., defined as follows: 
Nels 

A 
€ me yy 

anh Bee ®t, 3)? 

where Z. 4 refers to the value of the i-th comperent of the vector Z, 
s 

the value of the vector Pat time t; from another point of view, 

z may be regarded as the value of the individual variable z “tai 
4
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at time t, Note that we have used the same notation here as in 

section (1) to define the autocovartance, From this definition, 

we may immediately deduce that: 

A yy S= 
Zig eaten, 97 

= Bey eg) Zl at 

att 

Z =Z" for allo, 
n -n 

Thus if (8) 0 ze), for our two processes "a" and "b", for n2O, 

then the equality will hold for n& 0, and vice-versa; thus we need 

only consider n20 in determining equivalence, 

From the randomness of "as "b," and "2," from the causal 

structure of our equations, and from our assumptions about the normal 

distributions governing these processes, we have: 

Ba, sian, a) = S0As5 = Bohs (3.8) 

HCO, Pb an, 5) > 808s 5 = Bobi (3.9) 

Bee etn? = Snoaz = Sno (3,10) 

Bay sean, 37 = © for n€o (3,11) 

BOD Zhan, 4 0 for no (3,12) 

(Cy Zhan, 9 = 0 for n€0 (3,13) 

ED, sXban, 3 = C for n€0o (3,14)
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x \ x is Eley s*tan, 97 0 (3.15) 

E(b 0 (3,16) t,4°tan, 3 “ 

Note that "a5". the Kronecker delta, is defined to equal 1 if 

i=j, and zero otherwise, 

Let us begin by calculating the autecovariance natrices, a4 

for an ARMA(i,1) process as in (3.5). To make our caleulations 

more explicit, let us transform (3.5) into: 

tt "Day ot 7 Deas, ge (2?) 
v 

Let us multiply (3.17) on the right by ay ue and take the expectation * 

a 

ef the resulting equation on beth sides; 

qi 

a a = E(z, .a - 6. ,E(z . (24 atta? = Bley gay) 2 5 leet 54,5? 

PsP et, Pee 
v 

which, by (3,8) and (3,11), reduces to: 

4 titt,k? ~ Atk * Akg (3.18) 
E(2 

Multiplying (3,17) by ayy ge and taking expectations, we get: 
9 

Blas Fete? = BZ 44 i) - 29, a, ety 

- 2 iP at, Pete” 
u 

which, by (3.8) and (3.18), reduces to; 

Ee, set? = (9 + P)A (3,19)
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Now let us multiply (3,17) on the right by Bs nk? for n greater 
* 9 

than one: 

BOs seen) @ Bley stein dO 2 98.1, Pent) 

J 

which by (3,8), and by changing the arbitrary origin of our 

expectation notation, reduees te: 

E( = @E(z #4 ten, «? t, jr tent, ic)? 

which, by induction starting from (3,19), gives us: 

nei 
B24 stank =@ “(6+ P)A n>o (3,20) 

Now let us multiply (3.17) on the right by 2,4 ,o for n greater 
Ly nh 

than one; 

i sx BY ye > 

Bay shone? C2 seen! 7 PECL 52h nr) 

- PECs 4 j@teny ke? 

which, by (3.8) and by change of origin in expectation, reduces to: 

Z = Oy n> i 

(3,21) 
z = git, n>1 

n i - 

Multiplying (3,17) by 2.4.49 We get: 
6 

‘ a= Bio 5 om { \ 

Blas Meet? = Ble stead) 7 8 Bley sty a) 

7 iF Blas stat
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Which, by (3.11) and (3,18), reduces to: 

Z, = 62) + PA (3,22) 

Multiplying (3,17) by Zs 39 We get: 
5 

E( ) = E( 94174, 4 74447, 5) ~ © Blea, 54,3 

~P Bla, 4 , st, k? 9 

which, by (3,18), (3.19) and our definitions, reduces to: 

A= Z) - @(Z; ) -P ({e+ P)a)’, 

which by substitution from (3,22) reduces to: 

Ae Z- 62,07 - gap! ~ pag! — pap (3.23) 

Equations (3,21) and (3,22) are clearly enough to determine the Z, 

for n greater than zero, given A, P, © and Zoe 

From the stationarity of the process (3,5), we know that the 

true variance matrix of fe does exist, and must satisfy (3,23), 

Just as it is consistent with all the equations from which (3,23) 

has originally been derived, From the stationarity of (3.5) and 

(3.7), we may also deduce that both ( and © have the property 

that there exist no nonzero matrices M such that M = eve? or M= gue’, 

(9). It is werth noting, however, that this property, which we will 

make use of here, involves a much weaker assumption than that of 

stationarity.(10), At any rate, from this property, we may deduce 

that the solution, Zos to (3,23), is unique; if there had been two
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distinct solutions, Zo and 4s 

matrix violating our assumption for ©, At any rate, given our 

» then M = £9724 would be a nonzere 

restriction on @, equations (3,21), (3.22) and (3.23) are 

sufficient to define the matrices 4, as functions of 6, FP and A, 

Now let us calculate the autocovariance matrices as functions 

of B, C and J, Let us rewrite (3,7): 

Pty *tya 7 24s stat, 5 (3624) 
a 

8 & oo Cea” Fey 7 *eya (3.25) 

Let us multiply (3,24) by b and take expectations: 

BOP Pe) = Bt Peg) BBO Pes 

which, by (3.10) and (3,15), reduces to: 

a — = 7 2 96) BOX, ae ad By 7 By (3.26) 

Let us multiply (3,24) by On kK? for n greater than zero: 
? 

= = % ~ w \ 

BCE e Pen? = BOE Pen a) 7 BU 5°ten, ke?” 

which, by (3.9), by changes of time origin and by induction, reduces 

tor 

5 = nog ‘se B(X4 Peon, K g B(x, ae $3, (3.27) 

where the last step comes from substituting (3,25), 

Now let us multiply (3,24) by Xn kk? for n greater than sero: 
ot ge n 

ECD aXeonyk) = BO, Xen) 7 FBO Seon ee
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which, by (3,14) and by induction, reduces to: 

E(x, .X ) = P'R(x, .x, ,) = ox (3,28) 
tai ten, K . t,i t,k 0 . 

Multiplying (3,24) by x 2 We get: 
ty 

B(Dy aXe ic? = BO Me) 7 BOG HE ae 

which by (3,26) and (3,28) reduces to: 

; T T 5 
X, = @ (PX) + B= PX MP +B (3,29) © 0 0 

Now let us shift to considering (3,25), miltiplying it by 

Xone for n greater than or equal to zero: 

at = WF : 4 ~- i 7 \ 

Bly sen, k? BZ Xone? BCX, ®ten,k)? 

which, by (3.15) and (3,28), reduces to: 

\ = n 30° B24 a*ton,k) ~ %, = FX (3.30) 

Multiplying (3.25) by C, 1» We gets 
$ 

H = Bz, 5c i) 7 Bee see ye 
‘ 

“Ht tk? 

which, by (3,10) and (3,15), leads to: 

= 2 (3.31) Bley sea) = Bag * Beg 

Multiplying (3.25) by Z, 9 We get: 
ug! 

my = r Yo A 
Ble, 524 4) Blas 524g? Ce Ce, 

which by (3,31) and (3,30) gives us: 

2, = 0 +k (3,32) 0 0
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Multiplying (3.25) by 2 » for n greater than zero, we get: 
ton, k 

E( = E( ) ~ z CL atten, k/ Ze ater, k? 7 BO Benya 

which by (3,13) and (3,30) reduces to: 

2, = PX, n'pO (3.33) 

Now: cur problem is to find @, B and C given 0, A and P, 

Assuming that the Z,. are nonsingular, equations (3,33) and (3.21) 

clearly tell us: 

f= (3.34) 

To findB, let us begin by left-multiplying equation (3,22) 

vy ong, 

=i, ~1 
8 4 Zo + @ PA, 

From (3.33) and (3.34), this reduces to: 

. =1 
Ko = a + 9 PA 

Let us left-multiply this by 6, right-mltiply it by ¢@!, 

and subtract the results from the original equation: 

x. - 6 =z - 62.6! + op, ~ pao 0 0 0 0 

Substituting in from (3,23) and (3.29), we get: 

1 , T T T - at 
B= A + GAP” + PAO” + PAP” + 9 “PA = PAG 

= A + QAP) + PAP’ + entra (3,35) 

To find C, let us left-miltiply (3,32) by 6, right-multiply
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the result by e, and subtract the result from (3,32) proper: 

ry wer enc. earct _ oy el Zp = OZ)8 = C= ECO + Xo ~ CXC, 

which by (3,29) reduces te: 

. T Hon. orolk Zy 7 828 = C - Ce +3, 

which by (3,35) and (3,23) gives us: 

A+ QAP’ + pag! + pap! = Zo 7 6z,6° 

T r = 0 - eco! + (a + eap’ + pap! + o74pa), 

which reduces to: 

pag’ = c - ece! + otra, 

which can be selved by: 

c= - otra, (3,36) 

As with equation (3,23), our assumptions about 9 lead to uniqueness 

in this selution, in the same way, 

In summary, equations (3.36), (3.35) and (3,34) give us the 

values of J, 5 and C necessary to the construction of a model of 

the form (3.7), equivalent to a process known to fit (3,5) and (3,4) 

for a given set of coefficients 6, P and A, These values, however, 

may yet be insufficient; in other words, there may be no values of C, 

B and § able to yield an equivalence, Box and Jenkins' argument, 

cited earlier, states that processes of the form (3,7) will always 

have equivalents of the form (3,5); they did net state the converse,
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If 6, P and A, in equation (3,36), should require that "c" 

not be a positive symmetric matrix ~ what a variance matrix is 

supposed to be - then we may conclude that our estimates of 

6%, P and A contradict the hypothesis that the process at hand 

fits a model of the form (3.7), For the purpose of actual 

social science modelling, equation (3,34) tells us that "6" 

coming out of ARMA estimation can not only be used in forecasting, 

but can also be treated as a description of the underlying secial 

dynamics, %; therefore, we have decided, in our statistical programs, 

to concentrate on the task of estimating this © matrix, and the 

other ARMA coefficients, rather than adding routines to operationalize 

(3.35) and (3,36), The terms “beta coefficient" and "b coefficient" 

are already widely used, in describing the matrix elements of 

ordinary regression; therefore, cur computer routines call the 85 

"theta coefficients", to emphasize the parallel with regression, 

The “Pas” are called "rho coefficients,” and the “Ag 3" are simply 
4 

Called "error covariance,"
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(441) THE ESTIMATION OF MULTIVARIATE 
ARMA PROCESSES 

Now let us move on to the central question of this chapters 

the estimation of multivariate ARMA(1,1) processes, As we pointed out 

in section (i), it seems rather clear that techniques for 

multivariate ARMA estimation have not, in the past(i1), been 

reduced to a computational cost approaching that of classical 

regression, One might have imagined that some kind of spectral 

techniques might exist in parts of the literature which Hannan and 

Box and Jenkins are unaware of, However, Jenkins is co-author 

of one of the classic textbooks on the application of spectral 

methods to statistics, and has been fully aware of such recent 

developments as the fast Fourier transform(i2); Hannan'’s book(13) 

also indicates a full awareness of the possibilities for spectral 

analysis, 

Box and Jenkins, in their Time-Series Analysis, do present(14) 

a technique for the estimation of ARMA precesses, This technique, 

while described in univariate terms, is phrased in such a way that 

it extends very easily to the multivariate case; we will find, 

however, that the extension Involves costly computations, They begin 

with the maximum likelihood technique, as deseribed in Chapter (II); 

in other words, they set themselves the task of maximizing: 

L= log p(observations | model),
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They note, on p.210, that the "a," in equation (3.1) can be 

calculated as functions of 6,, ¢ and ays by use of the equation 

itself, and that the {2.4 contain all the information we have 

available about et: given 8h g¢ and ays thus they put: 

L= log Play +-ap | Bs ats o), 

where "T" is the last time-period for which data are available, 

Given that a, is a normally distributed random variable, they get: 
t T 

1og \[ pla, | 8 rai 6) 

t?1 

u L(G, »,at,0%) 

2 
a 

sce T] rs exp(-$ ) ) (3,37) 
t= 2m a 6: - a, 

q 

1 2 
k~ Tleg@ - —-> a 

a 26° + 

a 

q 

(k is a constant) 

In the multivariate case, we need only use the multivariate 

normal distribution, (3.6), for Bs to get an equivalent expression: 

-_~ + T ’ ris L(O,P,Ayat) =k ~ 5 log det a - aA ” (3,38) 

They note, in (3.37), that the term "Fae" is a function only of 

of 8,5 é and ats not of oO, and that we can go on to minimize 

this term without consideration of Oo, Also, they have a rather 

elaborate discussion, on p,211 and 502, about finding "good" values 

for ats or for estimates of prior data used to predict ays our own
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interpretation is that the "best" empirical value for ay is simply 

the value of maximum likelihood(15) for the data given, and that 

the best procedure is simply to append ay to the list of parameters 

to be estimated, In any Case, as Box and Jenkins point out, the choice 

of procedure here should make little difference, for long or moderate 

time-series, 

At this point, with two parameters to estimate - 8, and ¢ ~ 

Box and Jenkins suggest that the Parameters be lumped into a 

coefficient vector, ? to be analyzed by the general method of 

"nonlinear estimation", discussed verbally on p,231 and defined 

specifically on p, 50+ as the Marquardt algorithm, The first step 

of this algorithm is to construct some initial estimate, B,, of the 

coefficient vector, 2, The second step is to calculate the ay and L 

for this value, By, by using the dynamic equation, (3,1), With T 
periods of time t, this implies on the order of T calculations; 

if we use the multivariate dynamic equation, (3.5), With n variables 

and Cn terms to be caleulated and added per variable, this implies 

cn® calculations per time period, cn calculations in all, 

("C" will be used throughout this diseussion as an arbitrary 

proportionality constant,) The third step is to calculate the 

derivatives: 

Oo 
OB, » for all k and t, 

my
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by differentiating (3,1) to get an iterative equation: 

a es o etek + a 3% = 8 (3,39) 
05, 1 05, t-4 0°, tel 32, 

ww 

(from a formal point of view, their cifferentiation is straightforward, 

because the oe ’ "B44 9 8; and g are all considered here te be 

functions of 2, all the differentiations are carried out with respect 

to this vector, B, The set of observed data, {z4: is a constant 

parameter throughout this entire analysis, } 

In the multivariate case, we must recall that any coefficient Be 

may affect any component, Be? of the error vector, indirectly, 

and we will see that the iterative equation below for calculating 

these derivatives does not allow us to limit our attention to, say, 

2-(atA e ay “i9 43 thus the generalization of Box and Jenkins’ method 
k 

requires us to compute: 

04,4 
>, » for all k, i and t, 

k 

by using the iterative rule which comes fron differentiating (3,5) 

in the same way as we differentiated (3,1) above: 

0% : Of: : 02 ~1 

me es Oe 
J 3 

Ooi a 
te, 3 (3.40)
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For each actual By in © or F or elsewhere, this equation will still 

require cn” calculations for any period of time t, to handle all the 

possible combinations of i and j, Thus with cn® coefficients BL, and k? 

cn® calculations per time peried per coefficient, and T time periods, 

this leads to a prand total of ony calculations, And this is only 

the beginning, 

The next step, in the general nonlinear estimation routine, 

as discussed by Box and Jenkins on p.,232, is to go back to our 

likelihood function, (3,37) or (3.38), and substitute in a first-order 

=> , : Taylor series for a, or @, in terms of B, In the multivariate Case, y 
t t 

this gives us the major term: 

>. 26% i” (39° ay 1G.,; 
oj 

Oa, +. (0) 

“ 9 (B = ) % 
2 Ba mm ) 

leading to a generalized form of the matrix which Box and Jenkins 

unfortunately call "A"; 

a, O24 4 gt Se i 

Voy Oy, 15 BE 
t4,% 

For the cn! combinations of k and m, the caleulation of this matrix 

requires the summation of nT terms per combination, and cnr 

calculations in all, By summing the products of the two terms on the
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right, over j, for all i, t and m, we may reduce the cost down to 

Cn, But at this point, the simplifications stop; an "M" of these 

dimensions, with these properties, is clearly central to the 

algorithm presented in Box and Jenkins, We could go on to discuss 

further details of the Marquardt algorithm in the multivariate case, 

but the number of calculations required ~ Cnt ~ ls already large 

enough to contrast strongly with the new algorithm we will present 

below, 

Now: how do we arrive at a less expensive algorithm to 

accomplish the same objectives? 

To begin with, we will build our new algorithm on a well 

established foundation, the classic method of steepest ascent; 

we will maximize L( @, Py, yA) by writing: 

1 n L pin ) . 3h daw 6, Se , (3,41) 

where w is an arbitrary seale factor to be adjusted during 

maximization, and where Bk is an arbitrary positive "metric factor" 

to be applied to Bie We will include 6, P and as components of 

however, we will not include A, Starting from a given KO) 469) and OT TTT SM: LNT “Ste 

=p 
Ww, We will first compute ge. Then we will compute BY, From ‘BeB" 

kK 
alone, equation (3.5) allows us to compute all the (eh. from times 

t=1 to t=T, It is a well-known fact, for a given set of data, =. 

that the maximum likelihood estimate "A" of the covariance matrix 

generating this data as a random process of zero mean, will simply be
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the observed covariance of the (rt. 

ats t Qh aet5 
t 

Thus for a given B', we can maximize the likelihood function (3,38) 

by finding the (2:3, and picking A‘ accordingly, For this combination, 

we will immediately be able to estimate L(A',3"), by equation (3,38). 

If L(A',B') is less than L(A6) CO) we may reduce w in half and 

try again, Eventually, for w small enough, we may be sure that 

Lat, Bt) PL(a?), 5) >a(al2) BO) ae SE (460) $(0)) # 0, 

by the definition of the derivative, We nay then set Be to be the new 

BO) and At to be the new 46), AS a practical matter, if 

L(A’, 3B y>>x(alO) R)), we may increase the value of w, to speed 

convergence, Also, while it would complicate the logie above to 

change Ey while changing w, it would not hurt to choose a new value 

By while estimating ae 

At any rate, this procedure clearly allows a steady improvement 

in our choice of A and F, up until a local maximim is attained - 

i,e, until = ® 0, The steepest ascent method, like other variational 

algorithms, including the Marquardt algorithm, does not have the 

capacity to insure that local maxima are also global maxima, 

In principle, this means that supplementary routines of varying 

complexity may be added to the basic algorithm, In practice, we will 

follow Box and Jenkins by placing emphasis on reasonable initial 

estimates of Bhs we will discuss this, and the practical problem
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of speeding up convergence, in section (iv), 

We face one real theoretical problem in converting the 

steepest ascent methed into a useful algorithm for ARMA estimation - 

OL 
2, 

The most elegant way to selve this problem is by the direct 

how to caleulate the derivatives at an acceptable cost, 

application of the ordered derivative concept mentioned in Chapter (II), 

or at least to apply related concepts; however, in order to avoid 

the use of unfamiliar mathematics, and in order to make our derivation 

self-contained, we will use a more conservative, algebraic derivation 

here, 

Let us begin by recalling that "eg in equation (3,5) ean be 

considered to be a function of By, @ and P, insofar as (3.5) allows 

us to solve for the @, by repeated application, In fact, it is 

simple for us to write out this solution explicitly, for times t 

ereater than one: 

> > (t-m) t~1 alten) > =) -iw . 
a, * . (Z. + ez, 4) + Poa, (3,42) 

mz 

The validity and uniqueness of this solution can be proven easily 

by induction; for t=2, this expression reduces to (3,5) with t=2: 

for t+l, equation (3,5) gives us: 

- _ 
Boag * Fay + OF at) 4 + Pas 

and, if we substitute in from (3.42) for Bye as the induction
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hypothesis allows us to, we get; 

é 
> 2? »> > tm, ae pinl ss 
Pett Bea * Beer yer TPC Z PO CE eee) PB) 

mre 
t 

-> ~> ttlem = .  ) | ate Bag * OB sar yny t 2? (2702 4) + Pays 

a2 

which reduces to (3.42) for the case ttl, Thus, if we think of 2" 

aS a shorthand for the algebraic expression (3,42), it is clear that 

we can make use of (3,40) above, and of the similar equation which 

comes from differentiating (3,38): 

a . 9,3 a 
ow, 7 35, 67 PP Mea, 

: vigt 

oa Stay nt, 3a xt OF 

° 0% MAP tg ~ * tyiL 5. OB, Ay 

‘iit nit 
which, by the symmetry of A, equals: 

QL O*t,4) -1 - aes on = A. . 4 

lan (yer AL He, 5 (3.43) 
vj 

It will also be convenient for us to write out (3,40) 

explicitly for the cases B =O? B,#P and £. =a : 
k k “rs k “1,7 

rs 

Oo 1 S O91 j 
7 R ise) > Si int,3 (36tHh) 

OF 3 9401.3 tom = PE. - (3.45) =. d ii P.. ) irrtet,s (90) 

07405 Pai. 5 
=z Pr oo 046 ee > Ge) (3,46)
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Now let us define a new variable, Wags by induction: 
oi 

~i 

"ya 7 LATE, 3 
3 (3.47) 

vt > 
Wea 7 7 D Ares 7 > “tet, J at 

oat 2 
(Note that W, , is really st in the notation of Chapter (II),) 

§ ‘tyi 
we now claim that: 

ob ; 
O%.. 7 2" text-t,8 (3.48) 

72 
(In Chapter (II), this would follow from a direct application 

ef the chain rule for ordered derivatives, equation (2,13), 

without reference to (3,44) or (3.45),) This claim can be proven, 

by proving the more general proposition which follows, and by 

considering the special case m=1: 

wT 

2, aS at ta) _ . 
0°... C- 27 aA “a,) = “trtets 

tom temtl , 
a, 

+ >" ed 1imndr 
Myi Ors - 

é 
olP 

4 
affected by ©, In the case m=T, the first sum of the right will be 

(For m=l, recall that is an externally supplied parameter, not 

held simply to have zero terns, ) Differentiating the term on the left, 

as we did with (3,43), we can simplify this new proposition: 
+t 

- mata d arte mom Ww, +e Sal t 

. é 
tem o4 1 én€r (3.49)
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We will prove this by induction en m, downwards from the case m=T, 

For m=T, this expression reduces te: 

ri wi O20 4 DE Sins Deg 
i bj 

substituting in for Wang from (3.47), this is equivalent te: 
8 

Dea Aus 5 “he LAP ogg “ds 

which clearly holds crue. Now we try to prove 6.49) for T> m2 1, 

on the assumption, provided by the induction hypothesis, that 

it is true for mti, We note, for mT, that: 

O84 4 i =f 08s 5 

” 2° De ity J —— Jf 3°, Say ty 
ttm b,5 temtl 6, 

Oni at 
Oe S ij m,j ’ 

on 
which by the induction hypethesis is equivalent to: 

Sys 92,5 ae 
~ eat on 

e, 
tw, 4 

s so 
4 Se Pets DY) He ae 

“m+l,i Qe, “ym, j 
b an) 

which, by substitution from (3,44), equals: 
T 

mae 
“ DY yrtetye * Zonet ™ 87x, s Dag) 

Ermitd 
3 

ot anes 
22 eS gS 

my 3
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da 
— 5 , ~ ~ wad 

Wir tele “ned vm, DL nt se 
+t mor >: & 2 

. Mi ,ot 

YE Aas? my J 
‘3 

of — ity ~ wants 
? Wer tet,s 2 Se > ( Py Pnet Ad jm, 9? 
timt ‘ 3 

which, by (3.47), equals: 

> D5 = aemecrcmermdeere 
“tertet,s ~ & 96 “mi! 

tth+i ¢ ~ 

proving (3,49), as required in induction, for the case m; 

with the induction complete, (3,49) is proven, and the special case 

(3.48) follows immediately, 

In a similar way, we claim that: 

FD ee (3,50) 
t*2 

the proof of this claim is exactly the same as that of (3.48), above, 

if we replace all instances of "Cs by "Fre? of "2" by "a", and of 

references to (3,44) by references to (3,45), 

Our final claim is that: 

OL 

cn 0092)
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This comes out as a special case of: 

= 
maT ~le 

oa : (- ie a.) = x Y gate ay 3 
a ttm 

a. 

+ “ Coan 
— mi Qa ’ 

i,x t 9 

for m=l, This follows from induction, too, by the exact same proof 

  

used for (3,49), but with "Bas. replaces by "aq r? with references 
+9 

te (3,44) replaced by references to (3,46), and with references to 

ve of 

Ze a4 replaced by zeroes,,,. 1,@, With these terms left out, 

In short, equations (3.49), (3,50) and (3,51) will give us 

all the derivatives we need, to operationalize (3,41), once we have 

computed the “w, ," in equation (3.47), Equations (3,49), (3.50) and bs i 

(3,47) each require us to carry out cn® computations, for every 

period of time t, and (3,51) requires us te carry out fewer, 

Thus the total number of computations required, to get all of the 

derivatives, is ont per iteration, This is substantially less than 

the on per iteration of the Box and Jenkins method; for an "n" 

(number of variables) of about ten, it implies a thousand~fold 

reduction of cost, Alsc, we may recall that it requires cnt 

iterations even to selve for the Bi, given {zt, 460) ana 20°), 

tnus the cost of our method here is on the order of the theoretical 

2 minimum, Even classical regression costs on the order of (nT 

operations per analysis(16); thus the technique above brings
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ARMA(1,1) analysis down into the range of costs acceptable to these 

who now can afford multiple regression, 

(iv) DESCRIPTION OF COMPUTER ROUTINE 

TO ESTIMATE ARMA PROCESSES 

Our primary goal, in applying the dynamic feedback method 

to the problem of ARMA estimation, was to construct an operating 

computer program for use with social seience data, This program was 

written as a new command, "ARMA", in the "TSP" (Time-Series Processor) 

package for economists, which in turn is a major subsystem of the 

MIT Cambridge Project Consistent System for social scientists; 

through TSP, the program has been available for several months 

to anyone with access to the MIT Multies machine (tilt by Honeywell), 

which, as part of the ARPA computer network, can be used directly 

from all types of computer consoles in a variety of cities fron 

Honolulu, to Washington D.C,, te London, England, Donald Sylvan, 

working with Frof, Bobrow at the University of Minnesota, has made 

extensive use of this routine to evaluate the impact of American aid 

programs overseas, The usage of this program is documented in the 

current TSP manual(i7); our coneern in this section is with 

the mathematics behind the program, 

In order to convert the algorithm of section (i414) into a 

working computer program, it was necessary for us to go back and deal
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with a number of more practical issues, 

To begin with, how do we choose the values for "w" and "E," 

in (3,41) to give us enough progress per iteration to make the 

reductions in cost we have cited meaningful? Wasan(i8) has pointed to 

this difficulty as the central preblem in using steepest ascent in 

ordinary problems of statistical estimation, We did encounter 

this difficulty in seme of our earlier tests, but quickly found 

a simple interpretation of the problem and a solution, 

In essence, the problem is one of sealing, Suppose that we have 

two variables - say, world population and average births per female ~ 

to be called "Za" and "gs respectively, and to be used in predicting 

each other’s future values, Let us suppose that about 10% of the 

value of each variable can be explained by the value of the other 

variable in the preceding year, Then the maximum likelihood value 

for G,o% for our data, will be a number in the billions; G15» 

when multiplied by a "Zn" which is much less than one, must lead to 

a product, ©1259 on the order of billions, ®34» by similar logic, 

must be on the order of billionths, A change on the order of unity 

in e815 will have very little effect on L, because it represents such 

a smail fraction of the current value of 815 er of Bie Thus se 

will te extremely small, even if 840 has been misestimated by, say, 

10%, On the other hand, a very small change in 849 much less than 

unity, could still double the value of S549 and thus lead to a very
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large effect on L; thus 9h will be a very large number, if 6. 
29.4 21 

has been misestimated by, say, 10% or so, Looking at (3,41), we can 

see what the result would be without the "Ey terms: B10 which 

requires a huge change in absolute terms, would be changed very 

Little, while Go49 which requires a small change, would be changed by 

a much larger amount, Balanced improvement in the two coefficients 

would be impossible, One might imagine the possibility of imbalanced 

grewth - that “w" might be made very small at first, that 9@., would 
21 

converge to its own optimum, where it would generate a zero derivative, 

and that "w" could then grow enough to allow @,, to move to its 
12 

optimum, However, in general, the coefficients in a statistical model 

are not so completely independent of each ether, If the optimum of 854 

depends at all en the estimate of S459 then our first small changes 

in 6,,, Will lead to enormous derivatives from © 
12 21 

the system again before there is a chance for “w" te build up enough 

again, destabilizing 

to allow a large increase in 8156 Thus, at least when the scaling 

problem is severe, the hope of imbalanced growth is net an answer to 

the danger of slow convergence, 

The solution of this problem was rather straightforward for 

ARMA estimation; we simply scaled the variables of the problem 

according to a common seale, More precisely, we achieved the same 

effect by setting: 

2 2 
G.. ow, 

Bk for es = i 8, for Ps = A, ’
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where "g" refers to the standard deviation, On a more sophisticated 

level, what we are doing here is trying to maximize the expected 

progress per iteration, in light of our pricr probabilistic 

knowledge about L, We do not expect the units of measurement 

of the variables to tell us anything about their relative influence 

on each other; therefore, we demand a choice of "Ey which insures 

that a change of units will have no effect on our algorithn, 

More generally, these variances give us an idea of the expected 

order of size of a coefficient, and we set "Sy to keep the changes 

in line with the expected ratios between sizes and derivatives, 

To handle the case of BL = a » therefore, we write a rough 
kK 1,xr 

but reasonable expression: 

&. = max( T(1-P Aes Ae) 

By changing By by a certain amount, we are changing a in 
s ter 

units proportional to 1g thus our formula for Sy is like our formula 

for the Si with Sag? except that " s is replaced by "1", If Pec 

equals one, then this effect will take place on all the ay nt 
? 

and the analogy is exact, Otherwise, if Per is smaller, the derivative 

with respect to a of L will be much smaller, even when the optimal 1,x 

size of a4» is still just as large; thus we propose a large Bn 
s 

in that case. Note, as "ale is recalculated in every major 

iteration, the formulas above encourage us to recalculate the "By 

at the same time, In Chapters (IV) and (VI) we have included 

a brief discussion of the success of this general precedure with
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the estimations we have carried out; in the Appendix to Chapter (II) 

we have suggested ways of generalizing the procedure for use with 

general, nonlinear models, 

The choice of "w" requires a similar exercise in prior 

estimation, At each step, our program looks at three essential 

pieces of data - L(A) B02) ) L(a', B') and 2 a Re 

Assuming that L is essentially quadratic, wna “hat. the current choice 

of wis "right" (4,e, that L(A’, B®) is the maximum of the quadratic 

distribution), the program "expects" that L(A', 5°) will be better 

than 1(a69) 3X0) by exactly half what the gradient would appear to 

indicate, If this expectation is correct, then the program concludes 

that B’ is not only acceptable, but also that there probably is 

little point in exploring further in the same direction; it sets 

ao Br, A (0) e* to A', and begins a new major iteration, If L(A',B yr } 

is worse, then, by the quadratic assumption, we have overshot by 

at least a factor of two; w should be cut in half, and a new BY tried 

accordingly. In order to be a bit more conservative have specified 

in our program that w will be reduced by 40%, 4f the actual gain 

is less than 25% of what is indicated by the eradient, If L(A’, B®) is 

better than 75% of what is indicated by the gradient, our quadratic 

assumption tells us to deuble w, In an earlier version, We Were more 

conservative here, and required 100%; however, convergence was slow 

in some cases, and we reduced the requirement to 87%, which has proven 

aml 
adequate, In the intermediate range, when B* is deemed acceptable for
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the start of a new major iteration, w is still changed somewhat, 

for the sake of the next iteration; w is multiplied by twice the 

actual gain, L(A',2') - L(a°) 780°’), aayvided by the gain predicted 

by the gradient, At the other extreme, if w appears to be far off, 

the program will multiply w by 4 or by .3 in each minor iteration; 

more precisely, if w appears to be tceo small to let us set BOOB, 

even after w has just been doubled within the same major iteration, 

er if w appears to be too large after having just been cut to 60%, 

then a larger change will be tried in the next minor iteration, 

Flags are set in the program, to force it to stop changing w, 

as soon as it starts changing w in opposite directions within the 

same major iteration; in such cases, our procedures above insure that 

either the last #3’ or the one before it gave an L(A’, 2!) much better 

than i(abO) B00) and our program will set BOO? to this new EB’ for 

the next major iteration, For reasons similar to those mentioned 

in the previous paragraph, W is initialized at 1/T, 

At each step, the program prints out L, as defined in equation 

(3,38), and the direction of change of w, After five major iterations, 

or after L appears to have stabilized to within ,01, whichever 

comes first, the program stops, and asks the user if he wishes to 

continue; if not, it prints out the analysis so far, and transfers 

to another program to carry out simulation studies of his model, 

In the current version described above, five major iterations have 

usually been enough for a close approximation, for analyses of actual
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social science data; for safety, however, we have generally used 

ten in our own analyses, (Once L is about 0,1 away from its 

naximun, then the current set of coefficient estimates has almost 

as high a probability of exact truth - 90% as high - as the 

maximum Likelihood set itself; thus 0,1 is a conservative upper limit 

to how mich accuracy it makes sense to ask for,) Unfortunately, 

the changes above were made piecemeal over a number of runs on’ 

different data, with the final improvements existing only in the 

basic subroutine incorporated into the MIT version, This routine has 

a more effective procedure for generating initial estimates than 

we used with our earliest test data; thus the direet comparison, 

before and after, would overstate somewhat the relative merits 

of the current system, In the Appendix to this Chapter, we have 

provided a numerical example of convergence results before and after 

these procedures for convergence were introduced, 

The fundamental purpose in using ARMA estimation, as we have 

deseribed it, is to improve upon classical multiple regression, Thus 

we have decided to use multiple regression itself, to provide the 

initial estimates, 3°), Not only are these likely to be reasonable 

estimates, in terms of their general order of size and in terms of 

the size of the biggest terms; they also provide us with an assurance 

that our ARMA model will either represent an improvement upen 

multiple regression, or, in some cases, will confirm multiple regression,
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Gur subroutine has been written to allow other initial estimates, 

but the main program now available at TSP does net make use of 

this option, Originally, we used the regression coefficients that 

come from a standard model ineluding regression constants; 

our results on Norway, in section (v) of Chapter (VI), were based on 

that system, With the constants, one intreduces a greater degree of 

freedom into the regression models, to offer a more interesting 

(though perhaps artificial) comparison against the ARMA models, 

which do not include that degree of freedom, However, in order to 

insure convergence under all circumstances, we have eliminated the 

regression constants in the MIT version; users of that system still 

have the freedom, in any case, te obtain regression constants based 

on constant terms by using other modules in the same system or even 

by another run of the ARMA command, Both the MIT version, and our 

private version used on the Norway data, print out all the ARMA 

estimates and regression coefficients, along with the standard 

deviations of the variables (te assist in interpretation) and 

the likeliheed values for both models, The significance of the 

various coefficients can be estimated by looking at the likelihood 

of the models which result when the coefficients are removed from 

the model, 

several other options have been added, to extend this algorithn 

somewhat, First of all, there is now provision for "exogenous
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tet 

could have been replaced systematically by "Oy. 4" where 6 is 

variables,” In the discussion above, the expression "@z 

now @ rectangular matrix, and where Youd ineludes both Ze 4 

and a few other components; none of the equations above would have 

had to be changed in form, Our program, in its current forn, 

allows both endegenous and exogenous variables, 

Second, there is provision to allow the user to dictate 

apriori that certain components of 6 will be constrained to equal 

zero, This is done simply enough, by setting their initial values 

to zero, and constraining (3,41) to apply only to the other 

components of ©, Thus L is maximized as a funetion of the other 

components, subject to this constraint, The basic subroutine allows 

this for any coefficient, but, in the MIT version, we have limited 

this to those 5 for which Vy is an exogenous variable, 

Third, there is provision to give the user some ability, 

at least, to handle nonstationary precesses, Hox and Jenkins(1i9) 

discuss at great length the prominence of nonstationary processes 

in practical statistics; they point out the value of introducing 

some kind of careful procedure for dealing with nonstationary 

processes, even if the procedure must have a less rigorous 

foundation than the usual statistical processes, in order to give 

the social scientist confronted with such processes an alternative 

other than either giving up or using an inappropriate tool, However, 

the procedures they introduce(20) involve processes which tend to grow
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t 

as +t", for some constant k, By contrast, the commonest processes of 

growth in the social seiences would appear to be those of exponential 

growth, processes which may come out of a dynamic relation like that 

of equation (3,5), but with a choice of "6" iarge enough to allow 

growth, The concept of maximum likelihood, as discussed in 

Chapter (II), dees not require a "e" that generates a stationary 

process; thus at first glance, the special procedures suggested by 

Sex and Jenkins might appear irrelevant, However, our estimation 

procedure has depended on equation (3.6), not just on (3.5) and the 

likelihood concept, Hguation (3,6) implies that the average size of 

the random component of our process remains the same across time, 

If we were analyzing a two~hundred~year series of data on the US GNP, 

for example, this would imply that a $10 billion error in our 

predictions for 1790 from 1789 should be treated as a smaller matter 

than an $11 billion error in our predictions of 1973 from 1972; 

a $10 billion error would always be regarded as less slenificant 

than an $11 billion error, regardless of the year in which the error 

occurred, In practice, the measurement errors and random fluctuations 

both are likelier to be a fixed percentage of the vartable itself - 

Oo NP ~ than to be a fixed independent process, To handle this kind 

of situation, we have introduced an option, "ARMAWT", to deal with 

a model of error slightly different from (3,6): 

_ 1 NS tek art tad ) 
8 pla,) = exp( - 3 : 

fen" aera O43 79 7,5 
t»4
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which is simply the normal distribution for the n-dimensional 

vector es » and which requires us to ecaleulate Aas as the 

covariance of this vector, In practice, however, the simulation 

studies of Chapter (IV) suggest that the ordinary ARMA command 

generally performs at least as well as ARMAWT, even for most of 

the nonstationary processes studied, 

Finally, provision has been made for the possibility - 

mentioned in Chapter (II) = that the available data would consist, 

not of one string of observations across time for our variables, 

but of a whole set of such strings; a general model of the process 

of population growth, for example, might encourage us to develop 

a model for application to data-series involving the same variables 

across many different countries, In order to handle this possibility, 

we can use (3,41) as before, but must note:(1) aa a across 

all the data strings, will simply equal their sun acress all the 

ae data-strings; (ii) each data-string, 5S, Will require its 

WS) . QL own ay for initialization; (i141) will, of course, equal the (s) 
Qasr 

value of git caloulated in string BE (Note that this example 
1,r 

might be a good candidate for the use of "ARMAWT", to prevent the 

analysis from being dominated by nations of large population,,.. 

unless such weighting is actually desired, )
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APPENDIX: NUMERICAL EXAMPLE OF THE BEHAVIOR 

OF DIFFERENT CONVERGENCE PROCEDURES 

All of the ARMA estimations reported in Chapters (IV) and (VI) 

were based upon the final form of our algorithm, making use of the 

special convergence procedures described in section (iv), However, 

before we installed these precedures, we carried out a number of 

tests on the preliminary version of the ARMA reutine, on simple 

made-up data sets, in order to check out the accuracy of the routine, 

One cf these simple test series was used before we introduced the 

possibility ef different "Bie" for different "Bes as in equation 

(3,41); thus we can see the effect of adding our new convergence 

procedures by comparing the old test results against a new analysis 

of the same serles, The data series in question is a simple 

univariate series of length seven - 1,0, 1,2, 1.2, 1.3, 1.5, 1.4, 1,0 = 

fit te the model Zia * 2, + a, + Pasige This series does not fit 

well to a simple arithmetic progression; thus the “distance” from 

the regression model to the ARMA model turns out to be fairly great; 

the series is a relatively severe test of convergence possibilities, 

(The cost per iteration is low, because the series is short, but the 

progress per iteration in log probability, as a percentage of the gap 

in log prebability, is extremely slow,) Our initial test output
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Was a string of numbers, which we may arrange in a table: 

Ma jor Theta aayat LogP Change 
Iteration i y at of 
Number Oo) 2(0)* 460) Ba" wW 

1 6 8204 — ~,2017 0 
atas anaes neat 1,6138 =} 

ane eee anny 2602 mi 

2 1, 0049 1,6138 41,5624 0 
teas aay rae 1,6571 ot 

sae ane fees ~0325 =f 

3 F746 14,6571 1.6773 0 
4 29843 1,6773 1, 6849 0 
5 HY 1, 6849 1,7004 0 

aoe trae one 4 . 7162 1 

sae grat any 1,8176 2 

at aut tear 2, 3374 2 

ai te an t9 anne 8, 8156 2 

ape s988 aen7 3.6485 anf 

Table IlI-1: Example of Convergence Results With Harly 
Version of the ARMA Estimation Routine 

“Change of w" means the value of “ntest", a number indexing 

the source of the current B', If the w used in generating =) was 

taken directly from the last major iteration, "0" is used; ifw 

was eut by 40% in the previous minor iteration within the same 

major iteration, a "“-1" is used; and so on, as one might expect fron 

our description in section (iv). Note that the calculations implied 

by this table include five computations of the gradient of 

likelihood, and fourteen computations of likelihood (average errors) 

for sample coefficient vectors B’, 

There follows the script of a TSP session based on the same 

data~series, The ordinary user, to get into TSP, would have to
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sign in on the MIT Multics, then enter the consistent system, 

and then issue the command "tsp:x" or “tspr:x"; in our own 

directory, we only needed to issue the command "tspr" directly: 

tspr (us) 

T 23:25 4,916 §$ .33 (tsp) 

datag$ (us) 

T 23:25 965 $,07 (tsp) 

smpl 1 7§ load oldtst) 11,2 1.2 1.3 1.5 1,4 1,08 end$ (us) 

smpl veetor (tsp) 
1 7 (tsp) 

T 23:26 ,581 $0,05 (tsp) 

arma oldtst$ end$ (us) 

it,no, 1, from logp= 1,616 ( tsp here on down) 
O;newlogp= 1,709 

~isnewlogp= 2,251 

it,no. 2, from logp= 2,281 
O;newlogp= 12,660 

~Lynewlogp= 1,900 
-2newlogp= 2,864 
ipnewlogp= 3,468 
Linewlogp= ~2,119 
1 ynewlogp= 3,468 

it,no, 3, from logp= 3,468 
O;newlogp= ~H? , 638 

~isnewlogp= ~30,132 

~2;newlogp= 3,396 
-2jneWlogp= 4,032 
ljnewlogp= 4,706 
1Lynewlogp= oO), OL 
Lsnewlogp= 4,706 

it,no, 4, from logp= 4,706 
O;newlogo= 22,527 

Table I[I-2: Sample Session With Convergence Results For 
Final Version of the ARMA Estimation Routine (top section),
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~Lnewlogp= “11,374 (tsp) 
~2:;newlogp= 3.865 
~2 ;newlogp= 4,895 
it.,no, 5, from logp= 4,895 
O;newlogp= 5.114 
isnewlogp= 5249 

eontinue? (tsp) 
yes (us) 
it.no, 1, from logp= 5,2h9 (tsp) 
O;newlogp= 11,615 

~1;newlogp= 3,043 
2 new logp= 4.928 
~2 new Logp= 5,381 
it,no, 2, from logp= 5,381 
O;newlogp= 5 MAS 

it,no, 3, from logp= 5S 
O;newlogp= 5, 2 

it,no, 4, from logp= 5, 542 
Os;newlogp= 5.204 

~isnewlogp= 5,537 
~2 snewlogp= 2 586 
it.no, 5, from logp= 5, 586 
O;newlogp= 5,636 
isnewlogp= 5, 684 
Z2;newlogp= 5, O46 

continue? (tsp) 
yes (us) 
it,no, 1, from logp= 5, HE (tsp) 

C3; newlogp= ~20, 319 
~Linewlogp= -12,058 
~2 ;new logp= 1,427 
~2 ;newlogp= 5,025 
~2 ;newlogp= 5,968 
it,no, 2, from logp= 5.968 
O;newlogp= 6,005 

it,no, 3, from logp= 6,005 
Osnewlogp= 6,021 
Lynewlogp= 6,037 
2;newlogp= 6,127 
2 pnewlogp= 6,020 
2ynewlogp= 6,127 

Table TiI-2: Sample Session With Convergence Results For 
Final Version of the ARMA Estimation Routine (middle section)
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it,no, 4, from logp= 6,127 (tsp) 
O;newlogp= 947 

~lsnewlogp= 4,054 
~2 snewlogp= 6, O46 
~2 snewlogp= 6,147 
it.no, 5, from logp= 6,147 
O;newlogp= 6,162 

continue? (tsp) 
yes (us) 
it,no, 1, from logp= 6,162 (tsp) 
O;newlogp= 6,184 

it,no, 2, from logp= 6,184 
O;newlogp= 6,197 

~i:newlogp= 5,203 
it,no, 3, from logp= 6,203 
Osnewlogp= 6,202 

~lsnewlogp= 6,219 
it,no, 4, from logp= 6,219 
O;newlogp= 6,235 

it.no, 5, from logp= 6,235 
Osnewlogp= 6,249 

continue? (tep) 
no (us) 

logp= 6,249 1,615) (tsp) 

predicting oldtst 

indep,var, theta rho reg, coeff, error rns 
oldtst 2 9722 708 1,636800 0,98203e-02 1,276715 

reg error = 0,36896e-01 (tsp) 
continue? (tsp) 
no (us) 
continue With simulation? (tsp) 
yes (us) 

Tacle III-2: Sample Session With Convergence Results For 
Final Version of the ARMA Estimation Routine (bottom section) 

After this, we went on to check out the simulation routine, 

and other routines in TSP, to make sure that all was working correctly. 

Note that the convergence information would not have been printed out
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in so much detail if we had turned on the "output some" flag, 

Notice that the variance of the error with the ARMA model - 

. 0098203 = was quite a bit smaller than the variance of the error 

with regression ~ ,036896, This is a good index of the distance 

between the two models, It is interesting that the economic cost 

of using ARMA analysis - measured in iterations ~ would appear to be 

less when it turns out to be unnecessary, when the distance is small; 

the number of iterations can get large, mostly in the case where 

the benefit from using ARMA analysis is also large, We have 

deliberately used many iterations in this recent run, to confirm 

that convergence was reasonable after ten major iterations or so, 

in this difficult special case, Our earlier test run was continued for 

only five major iterations, as shown in Table III-1; however, 

in these five iterations, it covered roughly the same distance, 

in inereasing logp, that our new system did in the first two, 

More significantly, the old routine showed major signs of floundering, 

and one has the impression that its final breakthrough was partly 

a matter of luck, The new routine moved systematically towards 

convergence, Note, also, that the problem of scaling is not 

unusually great in this case; the variables P and ay need sealing 

vis-a-vis ©, but with long miltivariate time-series one expects 

a far greater scaling problem, and a more dramatic need for the new 

procedures suggested in section (iv), and in the Appendix to Chapter (II),
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FOOTNOTES TO CHAPTER (IIT) 

(1) Box, George E,P, and Jenkins, G.M,, Time Series Analysis: 

(2) In 

Forecasting and Control, Holden-Day, San Francisco, Calif... 
1970, 

principle, this statement might call for a statistical survey 
itself, although for those familiar with the usual procedures 
in social science it is an understatement, The MIT computing 
center, which now serves both MIT and Harvard, has put out 
a brief survey of statistical procedures available to its users 
on the IBM 370, in its publication AP-77, This survey lists six 
available statistical packages - the Statistical Fackage for 
the Social Selences, Data-Text, Econometric Software Package, 
the (IBM) Scientific Subroutine Package, P=STAT (Prineeton 
statistical package), and the BloMeDical package, Five of the 
six include "multiple regression"; ESP, the sixth, would appear 
to contain the same provision under the term “simple linear 
regression,” Bayesian statistics are not ineluded in any of 
the listings, Nonlinear least squares is present only in BMD, 
(We suspect, however, that ESP - a cousin of TSP ~ might 
have this capability by new, ) Moving average models are not 
mentioned, Spectral analysis is not mentioned as such; 
the X Supplement to the BMD manual indicates its presence 
in the more recent version of that package, but in none of 
the others, This probably gives as aceurate indicsation of 
the dominance of regression analysis in actual work in 
the social sciences, 

(3) Hannan, E,J., Multiple Time-Series, Wiley and Sons, New York, p, 39% 

(4) Box and Jenkins, op, cit., p,76 

(5) Box and Jenkins, op.cit., p.30 (bottom of page) 

(6) Boz «and Jenkins, op, cit,, p.121-124, Consider the case 
dao" ’ d=Q, 

(7) Box and Jenkins, op, cit., equation (A7.1.9), p.260, 

(&) See note 5, 

(9) One way_of expressing fora of stationarity is that the norm 
of 8", and thus of (6+)", will become arbitrarily small for n 
sufficiently large; in particular, let us chogse ann for 
which these norms are less than, ong» If M=eMe", then, by 
substitution and induction, M=@Me!", If M is nonzero, then
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there must exist some vector, V, of unit length, for which 
MV is of nonzero length; let us pick the unit vecter 7 for 
which the length of M¥ is a maximum, (Given that the matrix M 
is of finite dimension, at least one such vector must exist, ) 
Then our assumptions clearly tell us that, the length of MV 
would be greater than the length of ene ty contradicting 
our matrix equality, 

(10) Consider, for example, @ = kI, where k is not +1 or -1, and where 
I is the identity matrix, If k is larger than +1, this 9 
would correspond te a highly nonstationary process, Yet 
this © still meets our requirements, If Meee! then, by 
substitution, M=kK°M; this cannot happen fer the "k" we 
have mentioned, for a nonzerc M, Indeed, it would appear 
that our assumption could only be violated for that 
infinitesimally small proportion of matrices @ which 
have elgenvalues exactly equal to 1 in absolute value, 
If this were preven, it is conceivable that our reasoning could 
be extended even to that set of matrices by some sort of 
limit theorem; however, such possibilities go beyond the scepe 
of our discussion here, 

(11) Tt has been pointed out te us that R,L, Kashyap, in the area of 
engineering, has suggested a procedure for the "estimation" 
of models of the form of equation (3.7), in "A New Method of 
Recursive Estimation in Discrete Linear Systems", in IEEE 
Transactions, AC-15, #1, v,1&25, "Estimation" in this article 
is different from what a statistician would call estimation; 
the article concerns itself with the use of a model of the 
form (3,7), with coefficients already determined, to predict 
future values of "2" and the like, Nevertheless, another 
article by Kashyap in the same journal, "Maximum Likelihood 
Identification of Stochastic Linear systems", does present 
a general method of approach which could be extended to yield 
an algorithm similar to our own for estimating processes of 
the form (3,5) above, Kashyap's general algorithm is 
considerably weaker than our own or Jacobson's, discussed in 
Chapter (II), insofar ag it applies only to linear processes, 
On page 26, he discusses the possibility of using a representation 
for his statistical processes involving a "moving average error"; 
however, he uses a form of moving average with considerably 
more degrees of freedom than the form used in statistical 
theery, and comes to the conclusion that such a representation 
is impossible, A study of the relation between his paraneters 
and ours might yield a solution procedure, like ours 
discussed in section (11); alternatively, the same general 
appreach might have been used from the beginning on our own 
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representation, Wasan (see note 18 below) has pointed out 
the importance of adding a rational procedure for handling 
"w" and “g ", an issue which Kashyap does not discuss, 
before one can claim to have a workable algorithm in the 
field of statistics, Kashyap also mentions a notion of 
“constrained derivative," which looks like a precursor of 
the "ordered derivative" of Chapter (II), but based upon 
notions of variational calculus; the concept, as he uses it, 
does not include his “lambdas” as a set of constrained 
derivatives, while they correspond very clearly to ordered 
derivatives in our own system, 

(12) Jenkins, G.M, and Watts, D.G., Spectral Analysis, Holden-Day, 
San Francisco, Calif,, 1968, p,313 ineludes reference to 
the Cooley~Tukey fast Fourier algorithm, developed in 1965, 

(13) Hannan, op, cit,, p.32-106, p,127=136, and the greater part of 
Pe2t 5a O5, 

(14) Box and Jenkins, op, cit, 

(15) Strictly speaking, our estimate of pla, ) should include 
reference to the general probability”of the z, which 
We would deduce, etc, However, as we point out later 
in the text, our estimation procedures are not very 
sensitive to the assumption of stationarity; to account 
for this extra piece of information, z., becomes rather 
doubtful when nonstationarity is invelVed, and when Zo 
represents the beginning of a process previously 
governed by different dynamics, As in section (vi) of 
Chapter (II), we have decided that "perfection" on this 
point would not be worth the cost, especially in light of 
Box and Jenkins’ similar loose approach te the point, 

(16) With n dependent variables, and n independent, one must 
compute two n by n covariance matrices, with each term 
requiring T multiplications and summations, in conventional 
regression, when the estimation of such a model is carried 
out by the separate estimation ef n simple repression 
equations, directly from raw data, one commites an nti by ntl 
matrix n different times, implying an even greater cost, 

(17) The best, most recent description is available in 
Brode, John, Wexbos, Faul and Dunn, Elizabeth, 
TSP in the Datatran Language, available in draft form 
from the Cambridge Project, 5th Floor, Technology nquare , 
Cambridge, Mass,; discussions are underway regarding the 
publication of this manual through the MIT Press, 
The command language has been changed, to increase flexibility,
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(18) Wasan, M.T., Parametric Estimation, MeGraw-Hill, New York, 
1970, p,i 51-152, 

(19) Box and Jenkins, op, cit., especially p, 85-94, 

(20) Box and Jenkins, op, cit,, p.87 (bottom) and p.113 (top),
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CIV) SIMULATION STUDIES OF TECHNIQUES OF 

TIME-SERIES ANALYSIS 

C7) INTRODUCTION 

Most of the discusston tn this thesis about the 

disadvantages of multiple regression - the classtcal 

mainstay of time-series analysis - has emerged from the 

study of concrete data in political science. One might 

ask, however, whether our discussion applies to other 

sorts of time-series, in economics or ecology or 

elsewhere. Our verbal discussions, in section (vii) of 

Chapter (Itt) and in Chapter (V), suggest that the 

superiority of the "ARMA" approach and of the "robust"! 

approach are due to special characteristics of the data 

we have studied; in particular, this superfority may be 

due to the presence of complex measurement noise. While 

measurement noise may be almost universal tn the social 

sciences, it would still be very interesting to set 

some kind of tangible idea about how much measurement 

  

noise, of what kind, and where, leads to how big of a 

failure of ordinary regression. Indeed, {in section 

(vil) of Chapter Cli), tn discussing the trade-off 

between the maximum likelihood approach, as represented 

by ARMA estimation, and the "robust approach", we
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emphasized that some weight should be given to the 

Findings of each approach, and that there is no 

universal prescription for what these weights should be 

in all cases; even if a universal prescription is 

impossible, however, a number of clear concrete 

numerical examples may help us greatly in building up 

an intuftive map of the tradeoffs. 

Simulation studies can provide us with these 

examples. Indeed, with simulation studies it ts 

possible to generate hundreds of sample time-series, 

all standardized, all based on known types of 

statistical process; time-series in the real world 

rarely offer such tidiness, and rarely allow us to feel 

so secure In our interpretations, Even the possibility 

of unique, erratic events can be accounted for, if we 

insert terms for erratic types of random disturbance 

into the simulation process, as we will describe below. 

In principle, one could even simulate unique, 

all-encompassing shifts, in which one is asked to 

predict the behavior of a time-series which will, in 

the future, obey a different system of dynamic laws 

from those it has obeyed in the past; however, it fs 

not reasonable to expect any statistical routine to
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pass this last test, In its most general form. 

Nifficulties of this last sort, in the real world, can 

only be minimized hy intelligent human use of 

statistics, as we will discuss in Chanter (V). 

Qur goal fin this chapter, then, Is to begin the 

process of mapping out the domains in which different 

techniques of time-series analysis are appropriate, as 

indicated by the analysis of simulated data. The 

territory to be mapped out, in princinole, ts very vast; 

it includes all the statistical processes and models, 

multivariate and nonlinear and hishly complex, which 

could ever he relevant to the social or natural 

sciences. Thus we have no choice, here, but to try and 

pick out a subregion of this territory, small enough to 

be manageable but large enoush to fllustrate the 

qualitative factors most important in our discussion, 

Our goal, more precisely its to compare the ability 

of different estimation techniques to fit the 

coefficients of a simple model, in such a way that fit 

predicts effectively the hehavior of an "unknown"! 

process which may actually he more complex than what 

the model [itself can express completely. tn social 

science, in general, we presume that a true, complete
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description of the actual processes going on would 

contain far too many parameters to he estimated from 

the available data. We will focus on the problem of 

estimating the simplest model we can think of, of 

relevance to social science: 

Z(t+1) = ce2(t) (4.1) 

Sample time-series, "Z", of length 200, have been 

generated by simulating the results of more complex 

processes; then, for each sample time-serfes, Z, we 

have compared the ability of each of our hastc 

estimation techniques to come up with a good value for 

"oe", tt should be noted that ordinary linear 

multivariate estimation problems are simply the 

extension of this example to the case where Z is a 

vector and cis a matrix. 

In section (fifi), we will see that the studies 

which we have carried out generally support the 

conclusions outlined in Chapter (1); however, before we 

can describe these results, it fs necessary to define 

in detail precisely what studies were carried out.
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Cif) MEFINITION OF STUDIES CARRIED OUT 

The main results of these tests are summarized in 

Table !V-1, at the end of this chapter; secondary 

results are summarized [tn Table IV-2, and the raw 

computer output Is tabulated at lensth in Tables {V-3 

and IV-4. In order to explain precisely what these 

tables mean, we must define:(i) what the twelve more 

complex processes are, that we use In simulating sample 

time-series; (ii) what the stx estimation techniques 

are, that we use to estimate "c" from the first 100 

observations of each sample time series:(fit) what the 

criteria are that we use to evaluate these estimates, 

The complex processes used in simulation were all 

chosen to be "compatthle"™ with (4.1), tn the sense that 

(4.1) could do an adequate Joh of prediction if the 

"c'' were chosen appropriately. This impltes a constant 

constant average rate of growth for the variable "Zz". 

Thus we decided to focus our attention on twelve 

processes that generate a single observed time-series, 

Z, on the basis of homoseneous linear equations, 

In our verbal discussion, we have placed great 

emphasis on the possthility of "measurement noise" or 

"transient noise", as distinct from "process noise" or
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"objective randomness", This has led us to focus on 

processes which generate an "ohserved" (or 

"superfictal") variable, Z, as the result of two 

subprocesses:(i) an "inner", or "ohjective", process, 

which determines the evolution of the "true" or 

‘variable, "X", over time:(Ti) an "outer", “underlying' 

or "measurement", process, in which Z, the "measured 

value" of X (or an "index of X"), is determined, by 

superimposing some noise factor over the true value 

of X. Z, and only Z, was later made available to the 

estimation routines. (Strictly speaking, this situation 

is merely a special case of the more general situation, 

where one can observe directly only a subset of the 

variables of dynamic significance.) The first six of 

these processes we determined by equations of the form: 

XCt+1) = (€1.93)X(t)(14+P(t)) 

(4.2) 

Z(t) = X(t)€1 + MCt)) 

"P(t)" and "M(t)" were both "noftse processes" of 

various sorts; "P(t)" represents "objective" or 

"process noise", while "M(t)" represents "transient" or 

2G "measurement noise'', Note that we chose a 3% natural
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growth rate, per time period, for X and Z; this would 

seem rather typical for economic and social science 

data. 

The equations generating P(t) and M(t) were 

different for each of these six processes. In essence, 

they were chosen from three different nofse processes, 

A, B and c. "A was a normal random process of mean 

zero and of variance one: 

1 ~4(A(t)) 
Vz 

Thus "A" ts a simple classical nofse process, hased on 

pCACt)) = (4.3) 

a bell-shaped curve. To generate "8", we would first 

generate a random number, "A", as above. Then, with 

probability .95, we would set B=A; however, [fn 5% of 

the cases, chosen at random, we would set PB = 190A. This 

impties a probability distribution: 

i 

wt a) Lf BH) 

p(B(t)) = AS cal , 25, G8) (how) ar \oTar 
"Bp" is generated by a "distribution with outliers." 

To generate "C(t)", a more complex noise process, we 

would first generate R(t); then we would generate @(t), 

another random variable, by picking @A(t)=1 with
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probahilfty 20%, or by settins 9(t) to a number chosen 

at random from a uniform distribution between 0.9 and 

0.2 in all other cases; we would then generate C(t) via 

the equation: 

C(t) = C1- A(t) )CCt-1) + HOCt) R(t) (4.5) 

This procedure for generating C(t) is an attempt to 

express the ftdea of notse which "may or may not 

' whose correlation correlate with itself across time,' 

itself, (1-8(t)), can change randomly with time. 

Equation (4.5) was further modified by the use of an 

occasional cutoff, which we will describe below. 

The choices used in processes one through six, for 

insertion [nto equations (4.2), may be summarized: 

" Process 1 (and 7): P(t) .O5A 3 M(t) = 0 

Process 2 (and 8): P(t) = ,05A 3; M(t) = ,15A 

Process 3 (and 9): P(t) = .958; M(t) = .15A 

(4.6) 

Process & (and 10): P(t) = .95A ;: MCt) = .15R 

Process 5 (and 11): P(t) = .95A 3 M(t) = .95¢ 

Process 6 (and 12): P(t) = ,95B: M(t) = ,95C 

Five and fifteen percent errors were chosen on grounds
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that they seem "typical"; computer time was not 

available to replicate this study for different values 

of these parameters. !t should be noted that the 

appearance of "A" twice with Process 2, above, does not 

mean that the same random number, A(t), was used in 

both processes; in general, every time that we needed 

a random number for a new application, we invoked a new 

call to "random", the random number generator of the 

Project Cambridge TSP-CSP system. In equation (4.2), 

one should also note that an unrealistic change of sign 

could occur if P(t) should ever equal -1 or less; this 

would be a very rare event, with the systems we have 

specified, but even one such incident would persist 

throughout an entire simulated time-series, making it 

totally unrealistic as a representative of 

social-science time-series, Similarly, while 

measurement errors are occasfonally quite gross for 

social science variables, it is unrealistic to Imagine 

someone getting the sign wrong for such variables as 

GNP or population. Thus for P(t) and M(t) both we 

instituted a cutoff of -.75; values less than this were 

set equal to the cutoff. (No simulations were run 

without a cutoff; thus it is possible that the cutoff
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was never actually invoked.) A more elegant procedure, 

mathematically, might have heen to use Ff and M instead 

of (1+P) and (14M) fn equation (4.2). However, major 

and enduring crashes do sometimes occur in those social 

science variables subject to erratic behavior: for 

example, phenomena such as zero or nefzative population 

seem to be avoided as a result of extraordinary 

processes different from those onerating on normal 

populations. Thus, on grounds of realism, we decided to 

use cutoffs instead of a more elegant approach. Also, a 

cutoff of -15. was used for the value of 8(t) Inserted 

into equation (4.5), on grounds that this would prevent 

the possibility of invoking a cutoff several times [na 

row on M(t). 

The choices ahove, in brief, give us a chance to 

look at the four possibilities of no measurement noise, 

of simple measurement noise, of medium-complex 

measurement noise, and of complex measurement noise, 

all in the presence of simple process noise; they also 

let us look at simple measurement noise and complex 

measurement noise, in the presence of medium-complex 

process noise. Processes 1 and 2 closely resemble the 

processes for which simple regression and ARMA models,
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respectively, should be ideal, in theory. The extreme 

case of zero process nofse, the case which should be 

most favorable to the "robust approach", was not 

included, on grounds that we are f[nterested In 

evaluating that approach under more normal, mixed 

conditions. tn order to account for the possibility of 

more complex processes, without violating homogeneity, 

we introduced Processes 7 through 12 based on the 

following equations, which yield a growth rate of 1.6% 

(from the linearized difference equation) : 

XCt+#1)=(.38X Ct) +. 35XCt-1)4.3XCt-2)) C1+P(t)) 

(4.7) 

Z(t) = X(t)C1 + M(t)) 

The choices of P(t) and M(t) here were identical to 

those with Processes 1 through 6, as tndicated in 

equations (4.6), and the same cutoffs were used. 

For each of the twelve processes defined above, 

ten sample time-series, "71" through "Z19", were 

menerated. Then, in order to estimate "c" in equation 

(4.1), for each of those sample time-series, we used 

the three general techniques discussed throughout this 

thesis:(i) classical regression; (ii) the "ARMA"
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approach; (iii) the "robust approach", The most 

conventional way of estimating "c", for the model 

(4.1), is to use a standard regression program to do a 

maximum likelihood estimation of the related model: 

Z(t+1) = cZ(t) + k + a(t), (4,8) 

where "k'' is a constant to be estimated, and "a(t)" is 

a normal random noise process. In practice, this 

amounts to doing a least-squares estimation, as in 

section (ii) of Chaper (11); one hopes that "k", which 

is expected to be zero, will he estimated as something 

close to zero. This technique, regression with a 

constant term, fs abbreviated as "regtk" in our tables. 

A better way of using classical regression, to 

estimate "c'' in (4.1), is to use a simpler model, 

without the meaningless constant term: 

Z(t+l) = cZ(t) + a(t) (4.9) 

This kind of regression can be performed automatically 

in the Time-Series~Processor system, This technique, 

regression without a constant term, is abbreviated as 

ia] it res'' in our tables. 

Corresponding to these two simple regression
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models are two simple ARMA models. According to our 

result fin the beginning of Chapter (Ill), the 

correspondence {s more than just one of similarity; the 

ARMA models below are the generalizations of (4.8) and 

(4.9) to account for the possibility of "white noise" 

in the process of data measurement. Model (4.8) 

corresponds to: 

ZC t+1) = cZ(t)+a(t)+Pa(t-l)+k, (4,10) 

which can be estimated directly fn the Project 

Cambridge Time-Serles Processor, by use of the command 

"ARMA", described tn the later part of Chapter (I11I). 

This technique for estimating "c'"' we abbreviate as 

"armatk" in the tables at the end of this chapter. 

Model (4.9) corresponds to: 

Z(t+1) = cZ(t)+alt)+Pa(t-1), (4,11) 

which can also be estimated by the command "ARMA"; this 

technique for estimating ''c" we will abbreviate as 

"arma" in the tables at the end of this chapter. 

Finally, the estimation algorithm described in Chapter 

(til) allowed us to write another command, A&8MANWT, to 

estimate the model:
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Z(t+1) = cZ(t)Clta(t))+Pa(t-1)z(t-1) (4.12) 

This command, mentioned briefly in Chapter (Ill), fs 

essentially equivalent to estimating (4.11), with the 

assumption that the noise process, "a(t)" in (4.11), fs 

determined as a percentage of the actual variable, as 

in (4.2), rather than a process of constant mean and 

variance, This technique for estimating "c”’, we 

abbreviate as "armawt" in the tables at the end of this 

chapter. 

Finally, we had to find a "robust procedure" for 

estimating c, drawn from the discussion of section 

(vil) of Chapter (1!!). In the pure case of zero process 

noise, these procedures require us to estimate the 

initial "underlying" values of the variables measured, 

and the coeffictents of the model, by directly 

minimizing the average errors of long-term predictions 

made with this model. tn other words, for the estimated 

initial values, and a given set of coefficients, one 

makes a full set of predictions for the variables of 

interest, without ever making use of the measured 

values of the variables at intermediate times; one 

uses the average error in these predictions, 

predictions which are generally long-term predictions,
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as one's criterion of fit; one uses the method of 

steepest descent, or a related procedure, in order to 

pick coefficients and initial estimates to minimize the 

total error in these predictions. (A "relaxed" version 

of these procedures would allow a little bit of 

allowance to be made for intermediate measured values, 

in predicting more distant time periods.) 

The full multivariate, nonlinear version of this 

procedure, based on the dynamic feedback algorithm of 

Chapter (Il), was not available at the time these 

simulations were carried out. However, for equation 

(4.1), there Is a measurement-noise-only model which is 

much easfer to estimate than fs usually the case: 

X(t+1) = cX(t) 

(4,13) 

) 
2(t)=x(4)y abt WS xX(t)(1 + alt)) 

If the measurement noise, a(t), is on the order of 10% 

or less, the approximate equality here will be very 

. . a(t) 
good, according to the Taylor expansion of e . In 

order to estimate X(N) and c in this model, one can 

transform (4.13) algebraically to deduce:
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2(t) = xCoct ert 

(4.14) 

log Z(t) = t loz c + log X(9) + alt) 

{n order to pick the constants, log c and log X(N), to 

maximize the likelfhood of this model, according to 

standard maximum likelfhood theory, one need only 

perform a simple regression of log Z(t) against the 

independent variable "t" and a constant term. A special 

routine to perform this operation, called "GRR" (GRowth 

Rate), was added to the Project Cambridge Time-Series 

Processor fn January 1974. Note that this routine 

estimates "c'"' and X(9) in exactly the same way as the 

old routine "EXTRAP" did, in the work reported in 

Chapter (V1). 

Finally, after the simulation processes and the 

estimation techniques are defined, we face the problem 

of measuring how well the estimation techniques 

actually perform. We have used two different criteria. 

First, there is the criterion of predictive power, 

measured explicitly. For each combination of 

time-series (out of 12 X 19 = 120 sample ttme-series) 

and of estimation technique, we used the value of “c", 

as estimated for the first 1990 time-periods, to try to
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predict the values of the variable Z over the remalning 

109 periods. For each such set of predictions we 

calculated four measures of error: (i) rem.s. (root 

mean square) average percentage error In predicting 

periods 191 through 110; (if) rom.s. average percentage 

error in predicting perfods 101 through 125; (Citi) 

r.m.S. average percentage error in predicting periods 

101 through 150; (iv) r.m.s. average percentage error 

in predicting perfods 101 through 200. (Also, a set of 

predictions was made, from period 1, to pertods 1 

through 100.) The exact results of these tests are 

shown in Table !V-4, for every sample time-series. 

Let us define in a bit more detail how these 

predictions were arrived at. For the regression models, 

(4.8) and (4.9), we Inserted the known value of z(109), 

and the estimates of c and k, and the most probable 

value for a(190) (i.e. zero), in order to predict 

z(101); this prediction for Z(191) was reinserted, 

along with a(101)=0, to give us a prediction of 27(192), 

which In turn was reinserted, etc. For equation (4.9), 

this has the same effect as inserting the estimate of 

c" into (4.1), and using (4.1) to make the forecasts. 

With the ARMA models, equations (4.10), (4.11) and
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(4.12), almost the same procedure was used. The 

measured value of Z(190) was inserted to give the first 

prediction, the prediction of Z(191); a(109) through 

a(199) were set to zero. However, the ARMA equations 

also refer to a(t-1); thus, in the very first round, in 

predicting Z(101), the value of a(99) has to be 

accounted for; for a(99), we use the estimated value 

which was generated by the ARMA estimation procedure 

which had been used on periods 1 through 109. With 

equation (4.11), as with equation (4.9), this has the 

same effect as Inserting the estimate of "c" into 

equation (4.1), starting from the predicted value of 

7(101). “Percentage error" was defined, in general, as 

a percentage of the average of predicted and actual 

values, on grounds that this is a good intelligible 

approximation to exponential error in the normal range, 

and that it does not nlace overemphasis on outliers, 

All of these decisions were made, not at the time of 

simulation, but at the time when the TSP command "ARMA" 

was written; at the time of simulation, we specified 

the initial time and the number of periods to predict, 

and the ARMA CARMAWT) command carried through the 

decisions described In thls paragraph by itself. (When
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the full nonlinear algorithm of Chapter (I!) Is 

operationalized, however, we will be able to let the 

user choose his own index of prediction error, 

according to what he considers important to 

policy-makers in his own particular domain of interest. 

With ARMA, a linear system, it was necessary to make a 

general choice for all users, based on mathematical 

rather than substantive considerations.) With the 

univariate robust approach, there are two reasonable 

bases for prediction. One is to use (4.14) directly, 

assuming that a(191) through a(299) equal zero; we 

abbreviate this method as "“ext1". (This corresponds to 

our old "EXTRAP" procedure, described in Chapter (1); 

also, it corresponds to using (4.1), starting from the 

estimated value of X(9) as the initial value of Z(9).) 

The other is to use the estimated value of c in (4,1), 

inserting the measured value of Z(190) into this 

equation; we abbreviate this as "ext2", The rims. 

average errors are computed as with the "ARMA" model, 

automatically, by the command GRR, 

Table {V-h is a bit too complex to be assimilated 

directly by the intuition, Thus we have summarized the 

major results of Table IV-4, regarding prediction
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errors, in Table !V-2. For each of the twelve simulated 

processes described in equations (4.2) through (4.7), 

each of the seven prediction techniques described 

above, and each of the four prediction intervals, we 

have calculated the average prediction errors across 

the ten sample time-series. More precisely, to avoid a 

picture distorted by outliers, we have tabulated the 

worst (biggest) of the errors out of the ten, and the 

average across the remaining nine. The rows containing 

the average values, for different prediction 

techniques, are labelled "av"; the rows containing the 

maximum errors are labelled "max", Also, in column 

eight, we list the "dispersion" of the errors of the 

best technique, defined as the average over the nine 

better sample time-series of the ahsolute value of the 

difference between the error in each sample series and 

the average error. 

A quick scan of Table IV-2 indicates a general 

tendency of "ext2" to be supertor substantially to 

regression; in some cases,"ext2" and "arma" are 

approximately equal, while in other cases "arma" and 

regression are approximately equal. A more detailed 

scan reveals three difficulties with these measures of
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predictive power. At long time intervals, errors get 

so high that fit is hard not to worry about the effects 

of our percentage-taking procedure, and hard to feel 

fully comfortable about the significance of the 

averages; this difficulty may not be as real as it 

seems, but it is worth noticing. A more serious 

difficulty ts the tendency of all prediction techniques 

to do equally well at very short time fntervals, with 

most of our processes. With short-term predictions, 

the effects of different estimates of '"'c'' have not had 

time to build up; thus all of the predictions are close 

to each other, relative to the very large short-term 

fluctuations our simulated processes impose. It is the 

medium and long-term predictions which separate the 

sheep from the lambs. This reminds us of certain 

schools of thought in the stock market, who compare the 

short-term fluctuations of stocks to a roulette game, 

and who claim that superior analysis makes money only 

by pointing out longer-term trends. With complex, 

large-scale multivariate processes [In the social 

sciences, however, one might expect the fluctuations to 

look a bit smoother through time, even though the 

measurement noise problem remains. A few of our twelve
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processes do show sifenificant differences between 

estimation techniques in the ten-year prediction tests; 

these processes may he more representative of the 

social sciences. A third difficulty is the limitation 

of having only ten sample time-series per analysis. 

In Table IV¥-1, we have used a second criterion to 

measure the success of different estimation techniques. 

We have looked directly at the values of "c", as 

estimated by the different models. With simulation 

studies, unlike studies in the real world, we can be 

sure that the 'true'’ value of c is the same for all the 

samples of a given process; this is what makes a direct 

comparison possible. With a direct comparison, one does 

not worry about having one's conclusions randomized by 

the effects of random fluctuations in later periods of 

time, in a limited number of sample time-series; the 

actual prediction errors in Table !V-2 may be 

interpreted as a noisy measurement of the quality of 

the estimates of "c", tndeed, tn most studies of 

polftical and economic phenomena, people tend to be 

interested In the validity of the coefficients, "c", 

and only vaguely aware of the connection between the 

validity - even _in the short-term - and the long-term
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predictive power of the resulting model. (This attitude 

would be quite reasonable when ft is a choice hetween 

focusing on the validity of "c", or focusing on 

short-term predictive power. An accurate model of the 

effects of government policy might reduce prediction 

error by only 20%, fn comparison with a null model, If 

short-term fluctuations are larre enough, fin accord 

with the pattern described in the paragraph ahove; 

however, this 20% would include 100% of the effects 

which the decision-maker can have on the situation.) 

tt For all these reasons, the estimates of "c", 

evaluated directly for accuracy, appear to be the best 

criterion to use tn evaluating the estimation 

techniques here. The exact estimates of "c" for each 

sample time-series are shown in Table IV-3. In Table 

IV-1, we have summarized this information, for easier 

interpretation. For each estimation technique, and each 

simulated process, we have calculated the average value 

of the estimates of "c"', across all ten sample 

time-series. We have also calculated the "dispersion" 

of these estimates, the average value of the absolute 

value of the difference between the estimate of "c" for 

a given sample time-series and the averaze estimate
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across all ten samples. The rows labelled "av" give the 

average; the rows labelled "disp" give the dispersion. 

These calculations were made with the help of a hand 

calculator, directly from Table IV-4. (Note, however, 

that the version of Table IV-4 in this chapter has been 

rounded off, to save space; the calculations were made 

from the unrounded original.) 

Unfortunately, the noise components of our twelve 

processes, while "unbiased! In the sense of an 

arithmetic average, do produce a negative shift in the 

average rate of growth. In order to give some sort of 

measure of the "true" rate of growth, we have taken the 

geometric average of the estimates of "c" by "GRR"; 

this appears in the "av" rows, in column seven, of 

Table !V-1. Following the logic of section (vii) of 

Chapter (1!), we would contend that the "true average 

rate of growth" might even be defined as the expected 

"estimate" or "observation" of the rate of growth, c, 

based on fitting an exponential curve such as (4.13) 

implies, over an infinitely long sample of the process 

in question. (For column seven, we use a data sample 

ten times as large as that used with any of the 

specific estimates.) The potential difficulty with the
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"robust" technique is not with consistency, the ability 

to converge to the value most useful in long-term 

prediction when unlimited data are available, but 

efficiency, the ability to make full use of the limited 

data available, as recommended by the maximum 

likelihood technique. (More precisely,the maximum 

likelihood method, as sketched out in section (v) of 

Chapter (Il), claims to point to the estimates of 

maximum probability, conditional upon all information 

in the observed data.) If simple regression does 

outperform the robust method, one would expect it to do 

best for simulated processes which fit a regression 

model; one would expect the (geometric) average of the 

estimates of "c"" to be equally good for both methods, 

but one would expect the dispersion to be less with 

regression, because regression, in exploiting more 

information per sample of data, can converge more 

quickly to its asymptotic estimates. 

(iii) DESCRIPTION OF RESULTS 

In short, in examining Table iV-l1, we can sort out 

two different sources of error in using our estimation 

techniques:(i) systematic bias, the gap between the
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average estimate and the "true" estimate, as indicated 

in column seven and in the estimates of all the better 

techniques; (ii) inefficiency, the inabilfty to 

converge quickly to the asymptotic estimates, as 

indicated by the dispersion of the estimates across 

different sample time-series. (In all of what follows, 

we emphasize that the "true" estimate is betng defined 

as the estimate which leads to the best predictions.) 

Classic maximum likelihood theory would claim total 

efficiency as its prime advantage over the robust 

approach, as discussed above; thus the dispersion 

errors are of particular interest. 

Looking carefully at Table IV-1, we immediately 

observe a startling fact: in nine out of the twelve 

simulated processes, the "robust method" outperforms 

every other method, even in terms of dispersion. 

Regression without a constant term does better than the 

robust approach for only two processes, in terms of 

dispersion : Processes 1 and 7, the simple processes 

with no measurement noise at all, following a 

regression model almost exactly; even in these very 

special cases, the dispersion with the robust method is 

only slightly larger. Even with Process 1, the ARMAWT
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technique outperforms regression by a larger margin 

than that of regression over the robust approach, which 

comes in as third. With Process 7, the simple ARMA 

technique is best. Process 8 is the only other process 

for which the robust approach is not superior; in that 

case, where the measurement noise is "white", the 

situation discussed in section (i) of Chapter (111), 

the simple ARMA model does a bit better than the robust 

approach, but both of these two do substantially better 

than the others. Even with Process 2, where the process 

and measurement noise are again both "white", the 

robust approach is ahead. In seven out of the eight 

remaining processes (all but Process 3), the robust 

method outperforms all the other methods, except for 

the simple ARMA models, by at least a factor of two, in 

all cases. 

In summary: even in the domain of statistical 

efficiency, where the maximum likelihood methods should 

have their greatest advantage, the robust method enjoys 

substantial superiority - i.e. dispersion errors less 

than half the size - in all but the simplest cases, 

where the advantages of the other methods, where they 

exist, are slight. 
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In the domain of systematic bias, where we expect 

the robust approach to enjoy its greatest advantage, 

the criteria available are unfortunately less 

objective. The estimated growth factors, "c'', are all 

less than (1.03) and (1.016), the growth factors 

inserted into the original sets of processes, due to 

the expected watering-down effect of random noise. 

With every one of the twelve processes, however, our 

estimate of the "true" value of c, in column seven of 

Table IV-3, is either closer to the original growth 

factor than are any of the six average estimates, or 

else within .0002 of whichever of those estimates is 

closest; this tends to support the value of our 

estimate in column seven. 

Looking at Table !V-1, we see very clearly a 

strong negative bias, in all the averaged estimates of 

c, which are from simple regression. In five out of the 

twelve processes, regression has estimated a negative 

rate of growth, for processes which we know at least to 

have a positive rate of growth; thus the very sign of 

the trends in these processes are reversed. I!n four of 

the remaining processes, regression gives a growth rate 

of less than 1%. The size of these bias errors is much 
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f£reater than the average dispersion errors, which, we 

have noted, were already quite a bit larger than those 
of the robust method: thus if both sources of error are 

added together, the overall] errors in coefficient 

estimates are considerably worse than a mere factor of 

two for regression, in comparison with the robust 
approach. If we look more closely at the three 

  

  

Processes most favorable to regression, in terms of 

bias error, we find that in two of them the bias error 

is still larger than the average dispersion error, and 

that in the third the bias error is still larger than 

1%, i.e. larger than 35% of the actual growth rate. 

The estimates of "c", with a constant term present, 

are, as one might expect, still worse than those of 

simple regression. The ARMAWT analysis also performs 

disappointingly poorly, with negative growth rates for 

all but four of the processes; in this case, it is 

theoretically possible that a hidden bug in programming 

was involved, insofar as cross-checks against existing 

Programs were not possible, but a simple lack of 

robustness would seem to be a more likely explanation. 

The contest between the ARMA and the robust methods 

is closer, and more interesting. After doing the
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analyses of political data, reported in Chapter (VI), 

we were frankly surprised at how much better the ARMA 

method did here. In one process - Process 8 - the ARMA 

model had the same average estimate of "c" as the 

robust approach did, and a smaller dispersion error; 

thus, for this one process, the robust approach was 

actually somewhat inferior to the ARMA approach. On the 

other hand, as we have noted, process 8 was defined in 

terms of pure white noise; most social science 

variables, like the ones studied in Chapter (VI), may 

be more like processes 11 and 12, or much further in 

the same direction, in terms of complexity. In four out 

of the twelve processes, the ARMA and robust approaches 

gave average estimates of "c" within .9005 of each 

other; this tends to reinforce the validity of these 

estimates as an indication of the "true! growth rate. 

Only for two of the processes was the bias error of the 

ARMA estimate larger than 1%, relative to the estimate 

in column seven. In general, the bias errors of the 

ARMA estimates were less than their dispersion errors. 

On balance, the robust approach did better, only 

because the dispersion errors of the ARMA estimates 

were substantially larger than the errors of the robust
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approach for the majority of our processes, especially 

the more complex processes. (For the twelve simulated 

processes, in order, the ARMA dispersion errors, as a 

fraction of the robust method errors in Table IV-1, 

equalled 1.03, 1.16, 1.54, 2.29, 2.55, 2.13, .84 ,.80, 

1.15, 1.21, 4.18 and 1.83.) 

In Table IV-1, we have tncluded one other piece of 

information, of relevance to our discussion in Chapter 

(lil). We have included a description of the number of 

major iterations required before convergence, with our 

algorithm for ARMA estimation. In the ARMA 

estimations, we allowed for ten major iterations before 

stopping the routine. In the seventh column, in the 

"disp" rows, we list, first the number of iterations 

actually required, on the average, before the 

likelihood scores converged to within 0.1 of their 

final value. (i.e. The posterior probability of the 

estimates was at least 90% of the posterior probability 

of the "most likely" estimates finally converged to.) 

This average was taken only for those sample 

time-series in which such convergence was attained 

before the last iteration. Second, after a colon, we 

list the number of sample time-series, out of the ten,
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in which the 0.1 level of convergence was achieved only 

on the last iteration or later. In most cases, 

convergence was achieved well before the last 

iteration. In those processes where convergence was 

slower, such as processes 8, 2 and 10, the final 

" do not appear to have suffered as a estimates of "c 

result; indeed, the negative bias of the initial 

estimates obtained from regression was overcome more 

completely in these processes than in the others. 

Again, the cost of the ARMA estimation, in terms of 

iterations, was highest precisely in those cases where 

the payoff of the approach was also greatest. 

Finally, we should say a little about Table IV-2. 

Here again, the competition fs mostly between the 

robust approach - ext2, more exactly - and the simple 

ARMA approach. The errors in short-term prediction tend 

to be watered down and randomized, due to the sheer 

size of the unpredictable short-term fluctuations, as 

discussed a few pages back. A closer look at Table IV-3 

shows that these prediction errors are affected heavily 

by outlying time-series. Otherwise, the ARMA technique 

appears to do a little better here, relatively, than it 

" does with its estimates of "c"; also, the differences
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between all the estimation techniques are watered down, 

with only a few examples of ratios of two in average 

error. On balance, however, Table IV-2 appears to 

follow the conclusions for Table IV-1 fairly closely.
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Process 1 

Timespan extl ext2 regtk armatk reg arma armawt disp 

10 av 11.7 7.8 8.4 8.2 8.0 7.9 7.4 2.4 

"max 29.1 12.2 23.1 23.1 21.6 21.6 21.1 

25 av 13.7 10.2 15.2 15.0 13.4 13.5 12.2 2.5 

"max 33.2 18.7 37.7 38.7 33.4 33.5 31.6 

50 av 23.7 18.1 28.4 28.3 24.9 24.8 22.7 6.1 

"max 38.8 35.3 66.2 66.2 56.9 57.1 53.2 

100 av 32.1 26.3 57.0 56.8 45.7 45.0 41.7 8.6 

"max 53.9 59.4 104. 104. 87.0 88.6 82.2 

Process 2 

10 av 20 21 32 22 27 18 22 3.1 

"max 48 37 58 36 53 31 33 

25 av 22 23 53 33 45 24 32 Woy 

max 55 uh 88 61 80 4g 55 

50 av 29 29 80 48 69 33 50 7.6 

max 76 60 116 192 106 80 97 

109 av 36 36 120 72 103 40 95 1.5 

max 104 81 149 138 Thy 105 140 

Table IV-2: Prediction Errors as Defined in Section (Cit)



Timespan ext 

10 av 52 

"max 93 

25 av 77 

"max 109 

50 av 98 

""max 139 

100 av 111 

"max 165 

10 av 30 

"max 42 

25 av 33 

"max 56 

50 av 37 

"max 63 

100 av 4h 

"max 91 

Table IV=2: 

Process 3 

1 ext2 regtk 

25 

51 

51 

96 

77 

134 

97 

161 

Process 

17 

113 

22 

119 

28 

125 

Ky 

132 

32 

77 

61 

112 

76 

143 

100 

165 

20 

110 

33 

129 

57 

149 

armatk 

22 

52 

50 

81 

78 

114 

100 

148 

17 

33 

24 

35 

35 

63 

62 

119 
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reg arma armawt disp 

34 22 39 5.1 

62 46 106 

64 46 90 10.6 

103 84 167 

91 73 122 15.4 

134 121 184 

116 107 134 22.2 

165 146 189 

18 17 24 6.6 

145 32 100 

27 22 41 3.9 

172 32 150 

43 26 65 8.7 

186 49 176 

77 39 101 15.3 

193 100 188 

Predictfon Errors as Defined in Section Cii)
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Process 5 

Timespan extl ext2 regtk armatk reg arma armawt disp 

1N av 26 19 19 20 20 20 34 5.1 

"max 60 57 78 71 89 69 102 

25 av 29 2h 29 28 27 28 58 5.8 

"max 61 65 83 82 114 78 1h 

50 av 32 29 48 4h 38 39 86 9.8 

"max 75 82 124 125 156 128 172 

100 av 51 46 90 82 66 61 126 10.8 

"max 85 87 154 155 179 161 186 

Process 6 

10 av 31 22 24 24 27 28 29 8.3 

"max 109 i) 45 47 56 55 73 

25 av 38 32 4 4 Kh uh 63 8.2 

"max 104 55 85 90 112 111 133 

50 av 57 47 66 67 A6 65 95 19.3 

"max 119 81 116 123 148 147 166 

100 av 82 70 98 97 93 91 136 13.7 

"max 140 116 157 162 174 174 184 

Table IV-2: Prediction Errors as Defined in Section (ii)



Timespan 

10 av 

Mlinax 

25 av 

"Wimax 

50 av 

Mitts x 

100 av 

" "ma x 

10 av 

"Hoax 

25 av 

Nm a x 

50 av 

"max 

100 av 

WHina x 

Table IV=-2: 

extl 

20.0 

17.1 

29.8 

17 

31 

17 

33 

21 

4h 

25 

62 

Process 7 

ext2 regtk armatk 

6.7 7.5 

9.9 15.9 

7.8 12.6 

12.4 26.3 

10.6 23.0 

21.4 46.9 

13.8 51.0 

32.7 83.5 

Process 8 

21 37 

38 55 

22 5h 

35 74 

24 75 

41 89 

28 196 

53 120 

5. 

12. 

8. 

21. 

15. 

36. 

37. 

61. 

22 

43 

30 

58 

4h 

79 

70 

113 

5 

5 

reg 

6.9 

13.2 

9.6 

19.0 

14.1 

31.9 

24.0 

54.9 

27 

49 

40 

69 

63 

93 

193 

135 

Page |IV-38 

arma armawt disp 

5.2 5.1 9 

10.0 8.4 

6.7 6.6 1.7 

14.6 13.9 

11.4 11.2 2.8 

21.4 20.9 

18.8 18.4 3.8 

31.6 37.3 

17 19 2.1 

17 22 2.8 

30 37 

21 31 3.0 

3h 62 

26 57 8.8 

36 101 

Prediction Errors as Defined in Section (ii)
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Process 9 

Timespan extl ext2 reg+k armatk reg arma armawt disp 

10 av 28 21 32 19 28 16 25 3.8 

max 39 4S 69 53 60 27 81 

25 av 41 36 52 34 51 28 50 5.5 

"ma x 62 56 87 75 96 45 128 

50 av 51 46 64 46 76 36 72 9.9 

"max 81 78 110 101 178 69 163 

100 av 58 57 91 76 118 55 93 14.8 

"max 109 98 139 122 160 85 182 

Process 10 

10 av 19 14 24 15 16 14 21 6.7 

"max 29 114 78 53 135 28 80 

25 av 23 17 4h 25 26 18 38 5.4 

"max 30 120 90 76 162 26 133 

50 av 24 20 67 39 4h 19 60 3.3 

max 33 123 106 95 180 28 166 

100 av 27 27 101 70 77 25 93 6.1 

max 52 127 131 124 190 47 183 

Table IV-2: Prediction Errors as Defined in Section (ti)



Page IV-40 

Process 11 

Timespan extl ext2 regtk armatk reg arma armawt disp 

10 av 21 20 21 21 20 21 39 5.1 

"max 55 57 56 54 86 61 108 

25 av 24 23 33 30 29 27 70 4.7 

"max 66 66 65 68 103 93 158 

50 av 26 26 52 46 39 35 102 9.1 

"max 62 75 92 95 149 140 180 

100 av 36 35 91 84 65 52 143 8.7 

"max 75 74 118 120 175 170 190 

Process 12 

10 av 22 20 21 20 22 21 24 5.5 

max 4g 34 31 31 33 33 75 

25 av 28 27 39 35 35 34 54 6.4 

"max 4h 47 53 60 80 58 134 

50 av 39 35 57 56 55 48 89 7.8 

max 61 66 94 &5 118 74 169 

100 av 51 49 80 81 8h 66 124 7.1 

max 80 75 128 122 116 111 185 

Table IV-2: Prediction Errors as Defined in Section (iti)



Z1 

Z2 

Z3 

Z4 

Z5 

Z6 

Z7 

Z8 

Z9 

Z10 

Zl 

Z2 

Z3 

Z4 

Z5 

Z6 

Z7 

Z8 

Z9 

|Z10 

1.014 

1.026 

1.025 

1.020 

1.032 

1.032 

1.027 

1.022 

1.034 

1.030 

Table 

Process 1 

regtk 

1.916 

1.011 

1.029 

1.002 

1.001 

1.021 

1.016 

1.016 

1.011 

1.026 

armatk 

1.016 

1.0910 

1.031 

1.002 

1.000 

1.021 

1,916 

1.915 

1.014 

1.026 

Process 2 

- 896 

~967 

1.001 

959 

957 

~959 

940 

1.000 

-950 

968 

{[V-3: 

984 

1.007 

1.033 

1.026 

1.028 

1.001 

~998 

1.052 

1.004 

1.027 

reg 

1.018 

1.019 

1.930 

1.014 

1.912 

1.023 

1.021 

1.022 

1.920 

1.926 

995 

1.020 

1.020 

1.002 

992 

~994 

-994 

1.024 

990 

1.005 

arma 

1.018 

1.019 

1,031 

1.014 

1.012 

1.023 

1.021 

1.022 

1.022 

1.026 

1.024 

1.022 

1.031 

1.029 

1.033 

1.030 

1.015 

1.037 

1.018 

1.028 

Page 

armawt | 

1.015 

1.020 

1.031 

1.015 

1.016 

1.021 

1.022 

1.024 

1.923 

1.024 

~994 

1.015 

1.006 

1.002 

1.008 

1.009 

-998 

1.003 

1.017. 

1.012 

Estimates of Growth Factor, 
Hell 

1V-41



Zl 

Z2 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8 

z9 

Z10 

Zl 

Z2 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8 

Z9 

1Z10 

ext 

1.006 

1.029 

1.024 

1.030 

1.003 

1.032 

1.027 

1.014 

1.025 

1.009 

1.020 

1.028 

1.022 

1.028 

1.026 

1.028 

1.033 

1.034 

1.028 

1.023 

Table 

Process 3 

reg+k armatk 

905 ~998 

-932 1.017 

- 926 955 

-972 1.017 

» 760 ~8h1 

928 -978 

932 988 

895 -987 

-901 1.020 

1.030 1.050 

Process 4 

1.017 1.037 

~-766 1,015 

-991 1.005 

-968 1.030 

-929 1.002 

- 980 992 

-988 1.019 

1.036 1.050 

-978 1.011 

1.929 1.02 

IV-3: 

reg 

986 

986 

~967 

1.008 

-959 

984 

~994 

-988 

-989 

1.032 

1.025 

898 

1.010 

1.004 

987 

1.006 

1.011 

1.038 

1.010 

1.030 

arma 

1.015 

1.031 

~982 

1.023 

-979 

1.006 

1.018 

1.020 

1.022 

1.038 

1.031 

1.034 

1.015 

1.0931 

1.022 

1.911 

1.025 

1.045 

1.024 

1.034 

Page 

armawt | 

-876 

-988 

883 

1.909 

783 

987 

-998 

889 

-997 

~964 

1.011 

-890 

1.004 

-990 

1.006 

997 

1.020 

1.020 

1.013 

-962 

Estimates of Growth Factor, Holl 

1V-42



Z1 

Z2 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8 

Z9 

Z10 

Z1 

Z2 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8& 

Z9 

1Z10 

ext 

1.023 

1.021 

1.035 

1.026 

1.020 

1.035 

1.020 

1.028 

1.029 

1.037 

1.023 

1.020 

1.016 

1.025 

1.045 

1.029 

1.035 

1.053 

1.004 

1.030 

Table 

Process 5 

regt+k armatk 

1.011 1.013 

-835 905 

-993 1.011 

-998 1.007 

992 ~994 

926 ~916 

1.915 1.018 

1.013 1.013 

1.095 1.008 

1.031 1.034 

Process 6 

1.016 

1.002 

935 

1.922 

980 

1.060 

-890 

1.950 

938 

1.042 

1V-3: 

1.015 

1.013 

-950 

1.014 

982 

1.066 

888 

1.047 

~951 

1.043 

reg 

1.020 

943 

1.014 

1.025 

1.014 

983 

1.023 

1.922 

1.018 

1.037 

1.021 

1.024 

999 

1.932 

1.002 

1.053 

~952 

1.953 

-999 

1.039 

arma 

1.022 

~984 

1.021 

1.030 

1.015 

-979 

1.024 

1.022 

1.020 

1.039 

1.021 

1.027 

1.906 

1.029 

1.003 

1.056 

953 

1.052 

1.003 

1.040 

Page 

armawt | 

987 

908 

1.022 

982 

98h 

~909 

1.015 

1.908 

872 

1.011 

1.010 

-967 

887 

986 

~994 

1.020 

-918 

1.052 

903 

~977 

Estimates of Growth Factor, 

| 

Well 

1V-43



Z1 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8 

Z9 

Z10 

Z1 

Z2 

Z3 

Z4 

Z5 

Z6 

Z7 

Z8 

Z9 

[Z10 

ext 

1.010 

1.014 

1.016 

1.018 

1.012 

1.013 

1.012 

1.915 

1.017 

1.013 

1.008 

1.013 

1.014 

1.010 

1.016 

1.017 

1.014 

1.012 

1.018 

1.016 

Table 

Process 7 

regtk armatk 

989 994 

-998 1.002 

1.002 1.011 

-990 997 

987 993 

1.001 1.009 

1.002 1.004 

-998 1.006 

-988 1.004 

1.005 1.008 

Process & 

673 740 

- 906 969 

-933 1.017 

834 914 

884 979 

-897 1.012 

847 992 

~ Shy 981 

889 ~957 

883 ~942 

iV-3: 

reg 

1.009 

1.911 

1.014 

1.009 

1.007 

1.011 

1.012 

1.013 

1.010 

1.014 

980 

1.002 

1.904 

988 

985 

987 

986 

~994 

985 

993 

arma 

1.010 

1.012 

1.016 

1.911 

1.009 

1.012 

1.012 

1.015 

1.014 

1.913 

1.011 

1.011 

1.916 

1.014 

1.018 

1.016 

1.010 

1.014 

1.015 

1.014 

Page 

armawt | 

1.008 

1.012 

1.016 

1.013 

1.009 

1.011 

1.012 

1.014 

1.015 

1.012 

~996 

1.007 

999 

1.002 

1.013 

1.004 

1.004 

1.002 

1.006 

1.009 

Estimates of Growth Factor, Holl 

iV-44



Z1 

Z2 

Z3 

Zu 

Z5 

Z6 

Z7 

Z8 

Z9 

Z10 

Z1 

Z2 

Zu 

Zz5 

Z6 

Z7 

Z8 

Z9 

1Z10 

ext 

1.008 

1.016 

1.015 

1.016 

1.004 

1.018 

1.015 

1.011 

1.013 

1.006 

1.011 

1.015 

1.011 

1.015 

1.014 

1.015 

1.018 

1.018 

1.014 

1.012 

Table 

Pro 

regt+k 

786 

834 

839 

- 883 

2475 

863 

- 835 

734 

743 

892 

cess 9 

armatk 

1.903 

1.014 

~961 

951 

-619 

958 

1.900 

886 

833 

973 

Process 10 

~958 

-662 

-936 

867 

851 

~937 

0925 

~971 

903 

-958 

IV-3: 

- 983 

791 

~973 

940 

~987 

987 

986 

1.005 

1.001 

985 

reg 

978 

-978 

-967 

994 

966 

981 

987 

973 

-979 

-998 

1.008 

929 

1.002 

988 

986 

1.000 

-997 

1.008 

998 

1.008 

arma 

1.012 

1.017 

1.001 

1.014 

~999 

1.014 

1.015 

1.910 

1.016 

1.014 

1.009 

1.017 

1.021 

1.014 

1.015 

Page 

armawt | 

- 966 

1.009 

972 

1.005 

~932 

1.000 

1.006 

~924 

1.009 

988 

1.006 

~914 

1.002 

-987 

1.011 

-985 

-978 

1.007 

1.003 

950 

Estimates of Growth Factor, 

| 

Wal 

1V-45



Z1 

Z2 

Z3 

Z4 

Z6 

Z7 

Z8 

Z9 

Z10 

Z1 

Z2 

Z3 

Z4 

Z5 

Z6 

Z7 

Z8 

Z9 

{Z10 

ext 

1.013 

1.012 

1.023 

1.014 

1.008 

1.020 

1.012 

1.015 

1.017 

1.019 

1.013 

1.012 

1.010 

1.013 

1.024 

1.015 

1.020 

1.029 

1.005 

1.015 

Table 

Process ll 

regtk 

- 968 

831 

- 964 

-968 

-971 

996 

armatk 

975 

849 

~ 988 

935 

879 

791 

978 

~991 

976 

999 

Process 12 

980 

-938 

839 

~ 943 

- 946 

1.018 

834 

1.017 

764 

~995 

IV-3: 

-987 

978 

~874 

~962 

971 

1.028 

891 

1.027 

822 

1.007 

reg 

1.007 

944 

1.003 

1.004 

-990 

959 

1.009 

1.010 

1.006 

1.015 

1.008 

1.008 

988 

1.006 

993 

1.023 

964 

1.027 

993 

1.013 

arma 

1.009 

985 

1.012 

1.011 

993 

950 

1.011 

1.012 

1.008 

1.017 

1.010 

1.016 

1.000 

1.015 

1.002 

1.025 

~990 

1.032 

1.008 

1.018 

Page 

armawt] 

972 

- 888 

973 

~957 

~953 

828 

998 

994 

839 

-997 

Estimates of Growth Factor, "c"! 
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Process 1 : Predicting Z(101)-Z(110) from Z(100) 
|method Zl Z2 73 Zh 25 26 Z7 28 ZS ZI10] 

extl 11 14 #10 29 22 6 9 5 25 5 

ext2 12 8 12 12 8 6 6 6 7 5 

regtk 11 #10 #12 #23 «14 6 4h 19 6 4 

armatk 10 8 12 23 15 5 ho 11 4 h 

reg 11 8 12 22 13 6 \ 3 5 4 

arma 11 7 12 22 = 13 5 5 9 4 4 

armawt 9 8 12 21 11 5 5 8 4 ty 

Predicting Z(101)-Z(125) from Z(100) 
extl 11 23 15 33 16 9 Ii 9 2h 5 

ext2 13.911 #13 #11 «#19 9 8 14 8 5 

regtk 11 #19 #12 38 38 #11 5 27 21 4 

armatk 10 9 13 38 39 11 5 28 17 5 

reg 12 7 #13 33 32 = «10 6 23 15 4 

arma 12 6 13 34 34 11 7 23 12 5 

uw armawt 8 6 13 32 28 #12 7 21 #141 

Predicting Z(101)-Z(150) from Z(100) 
extl 2h 19 2h 36 23 8 27 30 39 23 

ext2 25 10 22 8 20 8 2h 35 22 23 

regtk 20 37 19 66 4&9 9 11 60 30 22 

armatk 20 36 21 66 50 10 12 61 23 «21 

reg 24 25 20 57 38 8 18 51 18 22 

arma 24h 2h 21 57 40 9 20 52 13 20 

Jarmawt 16 21 21 53 30 #11 #21 #48 12 26 | 

Table IV-&: Errors In Prediction & Miscellany



Page I[V-l8 

Process 1 : Predicting Z(191)-Z(200) from Z(100) 

|method Z1 Z2 23 Zh Z5 Z6 27 28 29 ZI10{ 

extl 23 20 50 53 26 13 24 Sh 35 wh 

ext2 24 26 47 2h 19 13 21 59 #19 4Yy 

regtk 27 84h &O 104 83 22 33102 80 43 

armatk 27 84 #46 104 86 22 32 108 70 41 

reg 24 63 43 87 61 16 21 87 55 42 

arma 24 62 46 87 64 17 21 89 46 39 

armawt 31 55 45 80 45 25 20 82 39 36 

Predicting Z(1)-Z(100) from Z(1) 

extl 12 8 12 16 11 9 8 6 11 13 

ext2 12 #10 39 #20 4211 #16 25 9 20 17 

regtk 16 27 21 #51 #30 23 1h 39 «+442 1h 

armat+k 15 30 35 51 31 20 16 4O 38 13 

reg 12 4&7 442 103 56 12 37 #31 #76 416 

arma 12 47 39 104 59 12 35 33 68 15 

armawe 22 39 41 98 39 12 33 25 61 23 

Iterations and Significance of ARMA vs. regression 

its/ak 0 1 1 0 3 3 3 1 3 1 

its/a 0 1 3 0 3 3 3 1 3 1 

its/aw 3 2 1 g 6 4 2 1 6 4 

p/ak .49 .00 .05 .50 .25 .01 .15 .42 .02 .26 

| p/fa -49 .00 .05 .50 .23 .01 .14 .43 1.02 .26 | 

Table !V-4: Errors in Prediction & Miscellany
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Process 2 : Predicting Z(101)-Z(110) from Z(100) 
|method Z1 22 23 Zh 725 Z6 27 Z8& 29 Z10 

extl 48 15 8 26 24 22 29 27 18 #11 

ext2 18 #12 22 16 25 37 23 37 #18 «14 

regtk 40 16 15 28 45 58 4h 30 4O 33 

armatk 22 17 22 18 26 36 22 35 22 11 

reg 20 12 #19 20 4&2 53 39 36 34 25 

arma 18 #13 21 #19 #28 #19 #18 #321 #19 «211 

armawt 33. 31 #11 =#15 #23 33 0«6.28©6«6©210~615—0~—«(20 

Predicting Z(101)-Z(125) from Z(100) 
extl 55 14 21 3h 26 22 26 22 15 19 

ext2 21 #12 #37 22 #19 #37 2h bh 19 #17 

regt+k 76 25 19 62 G66 88 73 28 78 53 

armatk 37 22 43 1h 27 53 38 61 43 16 

reg 39 12 31 43 61 80 65 45 71 35 

arma 18 13 4&1 15 32 20 27 448 33 16 

armawt 55 37 14 36 23 50 50 20 28 26 

Predicting Z(101)-Z(150) from Z(100) 
extl 76 71 #70 #55 34h 25 25 28 22 £33 

ext2 41 19 36 4h 20 30 29 60 18 27 

reg+k 116 53 28 105 98 111 107 27 112 80 

armatk 73 42 51 20 32 63 66 102 62 26 

reg 81 23 27 83 94 103 101 63 106 50 

arma 24 23 47 18 43S 23 47 80 4&3 27 

|armawt 97 52 34 76 4h 60 86 2h 39 32 | 

Table IV~-h: Errors fn Prediction & Miscellany
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Process 2 : Predicting Z(101)-Z(200) from 2(100) 

Jmethod Zl 22 23 Zh 25 26 27 Z& 29 2104 

extl 104 21 23 90 32 2h 30 26 50 31 

ext2 73 20 30 81 20 25 30 60 39 25 

reg+k 149 96 78 148 141 147 142 50 143 131 

armatk 118 76 58 4O 28 107 105 138 91 22 

reg 129 37 31 131 141 144 140 66 14h 104 

arma 33 30 48 32 43S 22 7h 105 55 2h 

armawt 140 76 86 127 96 103 127 7h 52 110 

Predicting Z(1)-Z(100) from Z(1) 

extl 26 18 18 22 18 20 25 21 #18 21 

ext2 26 25 19 28 18 21 33 32 18 4&7 

ao ~
 regtk 47 58 62 54 75 81 61 80 85 

armatk 66 50 2h 67 4h 78 36 180 67 22 

reg 91 52 33 76 142 137 142 38 148 134 

arma 60 39 33 56 19 21 79 83 75 38 

armawt 94 64 95 85 108 101 132 86 78 116 

Iterations and Significance of ARMA vs. regression 

its/ak 10 3 8 19 10 10 10 8 9 10 

its/a 4 1 4 4 10 10 6 6 4 9 

its/aw 7 6 7 4 8 9 9 4 5 7 

p/ak .00 .20 .00 .00 .90 .01 .00 .00 .n0 .00 

| p/fa -00 .17 .90 .00 .00 .00 .00 .00 .90 .00 | 

Table !V-4&: Errors in Prediction & Miscellany
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Process 3 ;: Predicting Z(101)-Z(110) from Z(100) 
|method Zl 22 Z3 Zh Z5 26 27 28 29 710] 

extl 90 16 84 34 34 65 48 83 16 93 

ext2 17 4h 2606 30) «2106 «1606380 51 O13 

regt+k 43 66 26 14 18 36 1h 77 42 28 

armatk 17 17° 29°~«18~«216=«217——=Oo22 52 28 85 

reg 26 62 50 18 42 38 20 62 23 29 

arma 12 15 46 20 23 14 27 4O 20 31 

armawt 84 36 98 1h 120 27 18 106 34 29 

Predicting Z(101)-Z(125) from Z(100) 
extl 107 34 108 98 48 67 91 96 &k 109 

ext2 43 61 55 96 40 35 83 67 45 28 

regt+k 87 106 48 58 40 73 4M 112 69 26 

armatk 43 45 49 81 39 55 58 %77 43 42 

reg 66 103 67 7h 73 80 52 93 47 27 

arma 31 29 58 84 47 50 69 53 43 33 

armawt 115 83 141 70 167 70 59 153 52 80 

Predicting Z(101)-Z(150) from 27(100) 
extl 137 52 139 120 49 52 139 118 95 122 

ext2 92 71 86 118 36 53 134 9h 98 42 

reg+k 132 132 56 52 40 119 75 143 52 30 

armatk 93 62 55 94 4O 103 104 114 83 69 

reg 121 134 82 77 110 129 92 131 41 33 

arma 73, #49 58 101 67 95 121 77 87 48 

Jarmawt 173 117 168 74 184 121 92 177 46 126 | 

Table !V-4&: Errors in Prediction & Miscellany
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Process 3 : Predicting Z(101)-2(200) from Z(100) 

[method Zl Z2 73 Zh ZS Z6 Z7 28 29 Z10| 

extl 165 77 132 122 68 43 164 127 120 142 

ext2 141 70 75 119 85 77 161 105 124 79 

reg+k 165 142 88 85 77 157 68 163 70 49 

arma+k 143 51 88 77 77 148 111 139 102 109 

reg 161 153 143 64 157 165 84 159 68 54 

arma 124 83 126 90 134 141 146 79 109 76 

armawt 187 136 185 61 192 161 909 189 58 142 

Predicting Z(1)-Z(100) from Z(1) 

extl 60 20 43 21 4&3 31 22 442 18 42 

ext2 69 64 95 25 62 43 22 43 30 60 

regt+k 68 67 78 71 43 7h 67 5k 62 129 

armatk 85 34 75 32 43 59 59 Sh 71 148 

reg 85 165 137 113 135 162 135 120 145 139 

arma 93 26 115 4&5 90 132 53 45 24 143 

armawt 184 160 178 108 190 160 127 185 129 132 

Iterations and Significance of ARMA vs. regression 

its/ak 9 10 4 5 7 9 10 10 10 3 

its/a 2 9 2 6 3 3 9 4 7 2 

its/aw 3 9 6 9 5 8 9 9 10 4 

p/ak .00 .00 .18 .00 .24 .00 .00 .00 .00 .15 

| p/fa -90 .00 .12 .00 .03 .00 .00 .00 .00 .16 | 

Table [V-4%: Errors in Prediction & Miscellany
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Process & : Predicting Z(191)-Z(110) from Z(100) 
[method Z1 Z2 23 Zh 75 276 27 78 ZI Z10 

extl 34h 30 8 29 26 42 442 38 29 32 

ext2 7 113 9 31 5 15 29 22 29 19 

regtk 7110 #19 2h 30 27 Jl 20 35 9 

armatk 6 25 15 31 9 18 23 13 33 MIi1 

reg 5 145 15 23 2h 25 16 19 30 9 

arma 5 26 13 32 19 16 25 14 29 9 

armawt 12 100 18 27 7 23 #18 %31 36 49 

Predicting Z(101)-Z(125) from Z(100) 
extl 43 35 12 23 30 53 56 42 25 38 

ext2 18119 13 26 13 #15 42 31 25 17 

regtk 17129 37 4&1 61 4O 1h 28 44S 16 

armatk 10 35 28 29 14 29 27 25 31 24 

reg 12.172 28 26 Sh 34 15 28 30 17 

arma 9 26 22 31 21 22 32 25 2h 19 

armawt 31 150 36 48 20 39 21 46 37 87 

Predicting Z(€101)-Z(150) from Z(100) 
extl 60 39 17 31 25 SO 63 4h 433 38 

ext2 35 125 19 35 15 17 49 31 31 21 

regtk 36 149 65 73 100 77 47 26 64 25 

armatk 11 50 47 39 &O 63 2h 26 28 48 

reg 23.186 47 46100 66 26 23 31 26 

arma 9 20 35 43 18 4D 30 20 22 34 

larmawt 60 176 62 82 54 79 19 65 36 130 | 

Table IV-&: Errors in Prediction & Miscellany



Process 

|method 

extl 

ext2 

regtk 

armat+k 

reg 

arma 

armawt 1 

Predicting Z(1)-Z(100) 

extl 

ext2 

regtk 

armatk 

reg 

arma 

armawt 

Iterations and Significance of ARMA vs. 

h 

Z1 

90 

70 

74 

17 

50 

19 

05 

16 

16 

54 

25 

29 

58 

53 

its/ak 10 

its/a 3 

its/aw 4 

p/ak .00 

| p/fa .00 

Table 

Page 

Predicting Z(101)-Z(200) from Z(100) 

Z2 23 Zh 

49 35 25 

132 36 27 

170 113 130 

83 90 30 

193 88 107 

17 67 34 

188 108 138 

29 23 18 

36 29 28 

76 52 7h 

55 47 18 

186 52 98 

37 32 23 

186 74 130 

9 7 10 

10 3 10 

6 3 3 

-00 .00 .00 

-00 .00 .00 

IV-4: Errors 

Z5 

30 

43 

145 

100 

149 

46 

112 

16 

22 

66 

57 

135 

19 

89 

10 

.00 

00 

Z6 Z7 28 

38 91 38 

34h 79 35 

129 87 4&4 

119 22 87 

118 4&3 47 

1900 40 72 

13? 17 #4268 

from Z(1) 

23 18 16 

45 19 18 

hl 73 57 

33 42 190 

127 105 22 

112 #50 4&9 

142 70 78 

-00 .00 .00 

-90 ,00 .00 

Z9 Z10| 

4QO 655 

37 33 

113 22 

55 72 

66 24 

19 Al 

64 161 

15 17 

22 18 

63 53 

31 76 

99 47 

29 «66 

81 162 

regression 

10 9 

7 1 

10 6 

-00 .00 

-00 .00 | 

in Prediction & Miscellany 

1V-54
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Process 5 : Predicting Z(101)-Z(110) from Z(100) 
[method Zl 22 273 Zh 25 26 27 ZB 29 Z10{ 

extl 28 33 60 19 41 33 20 21 #13 = «29 

ext2 19 57 33 23 23 21 6 17 16 15 

regtk 21 78 #%17 15 29 48 5 11 14 16 

armatk 20 71 #19 %16 29 50 6 11 1h 15 

reg 19 89 21 22 2h 42 7 #13 #14 = «15 

arma 18 69 22 23 2h 4&3 7 13 #14 15 

armawt 35 102 22 2h 4&4O 78 4 6 83 16 

Predicting Z(€101)-Z(125) from Z(100) 
extl 21 61 56 23 36 36 22 19 20 29 

ext2 18 65 30 22 19 20 21 16 27 40 

regt+k 18 83% 29 21 33 79 #19 #15 13 «35 

armatk 17. 77 20 17 #32 82 20 15 13+ 38 

reg 17 Wh 21 210 220=«6720¢=«COo22 13 «16 O39 

arma 18 78 18 25 22 76 23 13 16 42 

armawt 48 138 18 61 59 133 18 %25 141 18 

Predicting Z(101)-Z(150) from z2(100) 
extl 17 Gh 75 32 51 29 23 21 #22 29 

ext2 16 82 52 20 33 25 20 19 30 && 

regtk 21126 45 50 70 13 19 34 31 = =35 

armatk 17 120 26 36 68 125 20 34 29 42 

reg 1h 156 27 20 4&5 122 2h 23 19 45 

arma 15 128 2h 25 42 125 26 23 18 50 

Jarmawt 86 170 26 109 107 167 21 54 172 36 | 

Table IV-4: Errors In Prediction & Miscellany
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Process 5 : Predicting Z(101)-Z(200) from Z(100) 

{method Z1 22 23 Zh 25 26 Z7 ZR Z9 Z10] 

extl 48 63 85 55 8h 46 66 39 27 32 

ext2 43 87 62 32 68 31 Sh 41 36 50 

regt+k 71 153 100 105 122 154 67 90 71 33 

armatk 65 150 59 86 119 155 56 91 65 45 

reg 49 179 61 34 89 159 43 68 36 51 

arma 46 161 33 26 84 161 39 68 31 = 69 

armawt 139 185 27 154 152 184 75 115 186 106 

Predicting Z(1)-Z(100) from Z(1) 

extl 28 36 29 24 35 46 27 22 37 = 20 

ext2 28 43 76 25 48 47 5H HI 52 20 

regtk 54 63 7h 79 59 83 42 57 79 97 

armatk 53 62 58 80 S59 83 38 57 79 92 

reg 30 176 68 26 67 159 43 29 49 20 

arma 28 145 50 30 62 162 40 29 46 24 

armawt 135 184 75 151 149 184 76 81 185 111 

Iterations and Significance of ARMA vs. regression 

its/ak 2 8 8 1 1 1 2 0 1 1 

its/a 2 3 4 1 1 1 2 0 1 1 

its/aw 8 9 10 10 9 10 7 6 9 6 

p/ak .40 .03 .02 .41 .45 .44 1.20 .50 .42 138 

| p/fa -39 .01 .00 .37 .43 .47 1.18 .50 .41 .37 | 

Table {V-4: Errors in Prediction & Miscellany
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Process 6 : Predicting Z(101)-Z(110) from Z(100) 
[method 71 22 %Z3 Zh 25 %26 27 278 2729 Z10] 

extl 29 &2 %16 26 50 23 109 22 36 35 

ext2 26 21 11 = 28 7 30 15 17 #4O 43 

regtk 26 15 16 27 29 43 21 16 27 45 

armat+k 26 17 #12 #23 «28 «47 21 Th 28 «4G 

reg 25 22 5 30 26 41 56 17 #35 45 

arma 25 22 7 28 26 43 55 16 37 45 

armawt 30 18 67 12 31 23 73 #16 BI 22 

Predicting Z(191)-Z(125) from Z(100) 
extl 42 36 35 446 58 28 108 28 34 35 

ext2 36 25 31 30 17 #55 22 30 4h 53 

regtk 41 15 56 29 55 85 52 28 26 63 

armat+k 42 20 51 30 53 90 52 27 27 #65 

reg 38 29 38 31 50 80 112 30 38 62 

arma 38 30 33 29 4S 83 111 29 42 62 

armawt 52 58 129 58 59 43 133 29 101 37 

Predicting Z(101)-Z(150) from Z(100) 
extl 57 58 69 81 75 35 119 40 36 £463 

ext2 50 60 56 52 40 64 33 28 41 81 

regtk 60 56109 51 89 116 67 28 36 98 

armatk 61 56105 65 88 123 67 29 34 100 

reg 53 63 88 40 82 107 148 28 34 96 

arma 54h 650 750 AB O77 112 «147 28) «639 96 

jarmawt 78 101 166 118 97 46 165 28 149 69 | 

Table IV-4: Errors in Prediction & Miscellany



Process 6 

}method 

extl 

ext2 

regtk 

armatk 

reg 

arma 

armawt 

extl 

ext2 

regt+k 

armatk 

reg 

arma 

armawt 

lterations and Significance of ARMA vs. 

Its/ak 

its/a 

its/aw 

p/ak 

| p/a 

Table 

Predicting 

Z1 22 23 Zh 

68 48 66 102 

63 47 51 73 

85 63 135 74h 

87 4&5 131 99 

70 58 112 4&2 

71 #67 87 #55 

112 151 184 157 

16 32 33 22 

31 54 38 22 

45 85 51 90 

46 90 50 8&7 

25 68 99 49 

23 80 7h 35 

52 146 185 138 

1 1 2 1 

1 1 1 1 

8 5 8 

«40 .37 .39 43 

-40 .35 .29 .45 

[V-4: Errors 

Z(101)-Z(200) from Z(100) 

Z5 

113 

86 

126 

125 

118 

114 

137 

Predicting Z(1)-Z(190) 

31 

57 

139 

249 

49 

Z6 Z7 Z8 

92 140 52 

114 66 65 

157 101 56 

162 101 47 

152 174 68 

155 174 61 

86 183 62 

from Z(1) 

18 4s 4&0 

18 Sh 4&6 

190 88 150 

190 88 151 

108 175 47 

116 175) &4 

50 182 4b 

~3a2 

- 36 259 

2 

2 

4 

15 

15 

Z9 

92 

69 

100 

98 

83 

72 

176 

42 

50 

50 

51 

45 

46 

178 

2 

Pare 

Z10] 

102 

116 

139 

141 

135 

136 

159 

25 

74h 

96 

90 

108 

109 

140 

2 

2 

10 

O04 

95 

regression 

in Prediction & Miscellany
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Process 7 : Predicting Z(101)-Z(1190) from Z(100) 
|method Z1 22 23 ZH 75 26 27 28 Z9 ZI104 

extl 7 9 6 15 11 5 6 4h 13 4 

ext2 10 6 8 9 7 6 7 7 4 6 

regtk 6 4 11 16 12 6 6 11 8 4 

armatk 4 5 9 13 9 6 4 6 3 4 

reg 9 5 9 13 9 5 7 8 5 5 

arma 6 5 7 10 7 5 5 4 5 4 

armawt 5 5 7 8 7 6 5 4 5 4 

Predicting Z(101)-Z(125) from Z(100) 
extl 7 #12 8 17 9 6 7 6 13 h 

ext2 11 8 7 9 12 6 9 10 6 6 

regtk 6 6 10 26 26 12 5 23 22 5 

armatk 6 6 6 20 21 9 5 14 8 6 

reg 9 5 19 #19 7 8 15 11 6 7 

arma § 5 7 14 #15 7 6 6 5 \ 

armawt 5 5 8 10 14 8 6 8g 5 5 

Predicting Z(101)-Z(150) from Z(100) 
extl 13 #10 #13 #319 #=(12 5 14 17 #20 =«13 

ext2 17 7 #11 7 #12 5 15 21 10 11 

regtk 10 23 16 4k 35 18 6 4&7 35 21 

armatk 8 20 7 36 27 9 5 33 12 20 

reg 14 #10 8 29 21 7 15 32 16h 10 

arma 12 9 11 21 #15 6 12 18 8 13 

jJarmawt 7 8 12 15 ih 8 11 21 8 17 | 

Table IV-4: Errors in Prediction & Miscellany
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Process 7 Predicting Z(101)-Z(200) from Z(100) 

|method Z1 22 23 Zu 25 Z6 Z7 28 Z9 ZI10| 

extl 13 11 26 28 13 8 12 30 18 24h 

ext2 1eeo61300«230¢=«~z‘2's—=é«dlzaL 8 13 33 9 21 

regt+k 48 58 27 7h 62 hI 28 8h 76 46 

armatk 42 50 7 61 51 20 25 61 #40 41 

reg 15 27 13 4&4 34 15 13 55 37 20 

arma 13 25 22 30 22 10 11 «#32 «#121 «24 

armawt 20 23 24 18 22 16 11 #37 #210 «= «23 

Predicting Z(1)-Z(100) from Z(1) 

extl 7 5 7 9 6 5 5 5 7 7 

ext2 9 6 26 10 7 #12 «18 7 9 11 

regt+k 16 Ih 12 23 #17 «19 «10 «200 «23 «13 

armatk 13 10 6 20 17 #11 6 18 17 7 

reg 8 19 35 53 26 8 15 19 %&h 11 

arma 7 #16 20 4&1 16 7 14 5 21 10 

armawt 12 Wh 22 30 16 7 #14 7 #19 #17 

Iterations and Significance of ARMA vs. regression 

its/ak 9 7 9 7 9 9 7 10 9 8 

its/a 3 4 4 3 2 4 3 2 3 3 

its/aw 3 2 5 6 3 3 2 5 4 2 

p/ak .00 .00 .00 .00 .00 .00 .00 .N0 .00 .00 

| p/a .00 .00 .00 .00 .00 .00 .00 .09 .00 .00 | 

Table IV-4: Errors in Prediction & Miscellany 

1V-69
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Process 8 : Predicting Z(101)-Z(110) from Z(100) 
{method 71 22 23 Zh 25 26 27 Z8& Z9 Z104 

extl 31 16 9 19 21 21 18 23 #18 «2121 

ext2 18 11 22 18 #30 38 25 33 19 «16 

regtk 47 27 16 38 48 55 42 32 39 4O 

armatk 43 246 18 23 22 20 16 21 26 27 

reg 23 11 17 26h 43 49 39 26 30 26 

arma 18 20 18 17 #21 #18 #%«we 21 #15 13 

armawt 27 25 11 #15 19 25 18 22 16 17 

Predicting Z(€101)-27(125) from Z(100) 
extl 33 4 17 #21 #19 18 #%&3'7 #+«&§I9 IS Ik 

ext2 19 14 32 19 #25 35 25 33 19 16 

regtk 62 47 25 61 62 7h 58 49 66 59 

armatk 58 33 31 46 24 19 19 18 %45 39 

reg 46 12 21 46 61 69 60 20 58 39 

arma 19 19 30 14 22 16 15 21 14 14 

armawt 37 27 14 21 #16 #31 2h 21 24 19 

Predicting Z(101)-Z(150) from Z(100) 
extl uh 19 #17 #+32 23 20 1318 #20 18 «221 

ext2 25 18 32 30 22 29 27 41 16 18 

regtk 83 7h 52 86 80 89 78 60 87 75 

armatk 79 55 35 75 39 19 32 20 64 54 

reg 87 29 19 82 91 93 92 2h 89 58 

arma 23 25 34 16 28 19 21 31 14 16 

Jarmawt 62 38 27 43S 18 37 39 22 34 19 | 

Table {V-4: Errors in Prediction & Miscellany





Page 1V-63 

Process 9 : Predicting Z(€101)-2(110) from Z(100) 
{method Z1 22 73 7h 275 26 Z7 78 29 Z10 | 

extl 39 16 29 19 22 34 27 39 16 47 

ext2 12 #45 15 25 15 18 26 4O 15 27 

regtk 4h 59 28 21 13 34 22 69 4H 26 

armatk 13°15 23 15 13 16 19 53 37 20 

reg 23 60 34 15 31 34 Ih 58 17 23 

arma 11 #15 20 15 15 9 21 2h Jk 27 

armawt 38 18 34 Wh 52 12 17 #81 19 20 

Predicting Z(€101)-Z(125) from 2(100) 
extl 50 24 51 #50 31 #37 Sk 446 30 62 

ext2 21 56 34 56 26 29 51 47 32 24 

regtk 72 85 38 31 25 59 3h 87 62 62 

armat+k 25 2h 32 27 25 43S 41 75 Sh 37 

reg 57 96 57 32 58 68 28 89 41 28 

arma 17 21 30 Sh 25 2706 64S) 631 BO 3 

armawt 78 35 53 33 98 37 37 128 %31 4&4 

Predicting Z(101)-Z(150) from Z(1090) 
extl 73 31 68 59 26 31 81 #60 42 79 

ext2 46 60 45 66 26 39 78 60 50 24 

regt+k 103 103 36 41 28 91 #30 110 56 86 

armatk 5431 30 270 © 280~=677)~=660 6101 «47 O58 

reg 105 127 91 39 102 112 27 178 Sh 41 

arma 3428 = «270=6 «490 60270 hT 69 OB OD 

larmawt 126 45 83 29 143 69 52 163 32 72 | 

Table IV-4: Errors in Prediction & Miscellany
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Process 9 : Predicting Z(101)-Z(200) from Z(100) 

|method Z1 22 23 Zh Z5 Z6 Z7 Z8& Z9 ZI10I 

extl 109 33 61 58 42 28 101 62 53 86 

ext2 87 45 40 65 55 52 98 62 63 40 

reg+k 139 114 83 81 67 128 32 128 71 114 

armatk 100 31 78 66 67 119 65 122 63 94 

reg 151 155 145 72 151 153 58 160 105 75 

arma 68 36 69 4&3 67 79 85 43 58 31 

armawt 164 39 139 37 173 112 54 182 35 86 

Predicting Z(1)-Z(100) from Z(1) 

extl 33 18 28 18 26 22 18 25 16 27 

ext2 4h 4O 49 18 33 26h 25 27 #18 #31 

regt+k 40 42 50 45 28 47 HI 37 37 36 

armatk 36 18 4h 4h 28 36 29 36 38 39 

reg 108 153 141 107 134 143 129 137 136 40 

arma 56 18 53 21 30 60 24 26 16 72 

armawt 134 55 145 68 165 99 61175 30 79 

Iterations and Significance of ARMA vs. regression 

its/ak 10 10 #10 10 9 10 10 10 10 «10 

its/a 5 10 5 7 6 8 10 6 10 3 

its/aw 6 10 9 9 10 6 19 2 10 4 

p/ak .00 .00 .00 .09 .09 .90 .00 .00 .00 .00 

| p/fa -00 .00 .00 .09 .00 .00 .0N .00 .00 .00 | 

Table [V-h: Errors in Prediction & Miscellany
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Process 10 : Predicting Z(101)-Z(110) from Z(100) 
[method Z1 Z2 23 Zh 25 26 Z7 Z8& 29 Z10{ 

extl 18 28 6 25 15 21 23 21 29 #18 

ext2 6 114 4h 27 6 16 14 17 29 190 

regtk 15 78 18 32 28 26 14h 30 37 17 

armatk 10 53 14 27 7 11 9 16 29 12 

reg 7 135 8 22 18 22 7 #22 28 10 

arma 6 26 5 25 16 8 19 11 28 10 

armawt 9 80 11 29 9 25 19 21 33 39 

Predicting Z(101)-Z(125) from Z(100) 
extl 24 30 8 19 18 27 30 30 22 25 

ext2 12 120 6 22 12 15 20 28 23 17 

regt+k 38 90 38 54 50 38 33 51 52 39 

armatk 25 76 27 41 20 19 10 30 24 25 

reg 15 162 17 32 42 31 #15 35 27 #19 

arma 10 26 9 21 19 13 26 2h 22 16 

armawt 19 133 20 4&4 12 46 4H 36 33 87 

Predicting Z(101)-Z(150) from Z(100) 
extl 32 28 13 25 15 26 33 28 21 «27 

ext2 19 123 11 29 11 17 #23 25 23 «21 

regtk 66 106 62 73 72 61 62 78 67 59 

armatk 47 95 47 60 4h 37 25 37 #19 «37 

reg 27 180 33 58 78 52 42 46 35 25 

arma 12 21 15 27 16 #22 28 #18 «#19 «21 

Jarmawt 33 166 36 71 12 83 88 4&& 35 131 | 

Table IV-&: Errors in Prediction & Miscellany



Process 10 : 

[method Z1 272 

extl 52 31 

ext2 40 127 

regtk 106 131 

armat+k 88 124 

reg 55 190 

arma 25 20 

armawt 63 183 

Predicting 

extl 11 28 

ext2 12 #31 

regtk 27 47 

armat+k 30 49 

reg 19 177 

arma 21 28 

armawt 26 182 

Iterations and 

its/ak 10 10 

its/a 5 10 

its/aw 4h 10 

p/ak .00 .00 

| p/a -00 .00 

Table IV-4: 

Z3 Zh Z5 Z6 Z7 28 

22 19 #%&18 %20 51 23 

19 22 25 26 42 = 22 

97.110 111 100 89 105 

83 102 92 78 kh 4&1 

66 113 129 92 73 5h 

28 21 #18 %&4&7 43 30 

69 122 34 132 134 58 

Z(1)-Z(100) from Z(1) 

16 #17 #13 #17 «18 «14 

18 22 17 24 418 =I4 

33 43 38 30 4h 40 

30 40 28 16 43 40 

48 110 115 88 101 52 

17 18 14 49 %@18 #19 

45 111 19 133 143 59 

Significance of ARMA vs. 

19 #10 10 9 10 10 

4h 10 10 3 10 9 

6 9 10 4 9 3 

-00 .900 .00 .00 .00 .00. 

.00 .00 .00 .00 .00 .00 . 

Errors in Prediction & Mi 
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Predicting Z(101)-2(200) from Z(100) 

Z9 =Z10| 

23 32 

25 23 

97 97 

31 72 

71 42 

19 #18 

58 163 

15 15 

15 15 

38 31 

27 36 

88 29 

16 23 

59 165 

regression 

10 10 

10 9 

10 3 

00 .90 

00 .00 | 

scellany
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Process 11 : Predicting Z(101)-Z(110) from Z(100) 
{method Z1 Z2 23 %Zh %Z5 26 Z7 %Z8& Z9 Z10{ 

extl 22 28 55 14 28 32 10 18 #15 21 

ext2 18 57 29 26 21 23 6 23 18 14 

regtk 2h 56 13 18 %36 45 8 14 %18 12 

armatk 23 Sh 17 16 36 48 6 14 #17 #11 

reg 19 86 18 20 28 4&6 5 19 16 12 

arma 18 61 20 21 26 «50 5 19 15 13 

armawt 35 108 13 29 4&7 103 6 9 93 13 

Predicting Z(101)-Z(125) from Z(100) 
extl 18 66 4&7 16 26 31 #17 #17 «#19 128 

ext2 18 66 23 26 18 19 19 21 27 38 

regtk 26 63 35 45 4&8 65 2h 16 18 22 

armatk 23 G63 2h 38 47 68 21 15 17 24h 

reg 17 103 24 18 38 8h 17 17 #16 33 

arma 17 67 #19 20 34 93 #18 #%&17 «+%&IT 35 

armawt 53 14h 63 73 84 158 29 23 150 17 

Predicting Z(101)-Z(150) from Z(100) 
extl 1h 55 62 20 36 27 #17 #%&A7F 22 23 

ext2 16 75 &O 2h 27 18 22 21 #32 «355 

regtk 43 89 50 75 72 92 39 35 38 23 

armatk 37 87 32 69 72 95 31 32 35 21 

reg 16 149 31 2h 72 131 18 #18 #17 #27 

arma 13.109 2h 18 64 1409 20 17 #16 31 

Jarmawt 95 172 99 122 131 180 31 51176 %4O | 

Table !V-h: Errors in Prediction & Miscellany
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Process 11 : Predicting Z(101)-Z(200) from Z(100) 

| method Z1 Z2 23 Zh 25 Z6 27 Z8 Z9 ZIOI 

extl 3h 4k 75) 63820 CGH 3 387 23 27 23 

ext2 32 7h 53 26 55 27 31 22 37 «35 

regtk 88 111 90 112 110 118 91 8h 77 56 

armatk 82 109 62 108 110 120 83 78 7 48 

reg 49175 59 55 122 165 41 41 3h 23 

arma 4O 14h 25 29 112 170 33 35 24 29 

armawt 143 187 147 162 167 190 85 106 188 98 

Predicting Z(1)-Z(100) from Z(1) 

extl 23 37 28 25 33 43 21 20 33 16 

ext2 23 4h 7h 25 &3S 47 41 33 4h 16 

regtk 36 47 Sh 4h 4O 60 28 37 53 48 

armatk 36 46 51 4&3 hO 61 27 36 52 4E 

reg 40 172 60 60 111 165 53 25 he 25 

arma 30 126 &1 31 100 171 43 25 4&1 18 

armawt 143 186 160 162 168 188 97 87 188 103 

Iterations and Significance of ARMA vs. regression 

its/ak 2 8 9 3 0 4 5 2 2 1 

its/a 1 4 6 1 2 1 2 2 2 1 

its/aw 2 3 10 4 4 5 \ 3 4 5 

p/ak .28 .05 .00 .38 .48 .24 .11 .23 .39 .43 

| p/fa -22 .00 .00 .23 .39 .39 .08 .19 .3h .40 | 

Table IV-4&: Errors in Prediction & Miscellany
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Process 12 : Predicting Z(101)-Z(119) from Z(100) 

|method Z1 22 23 Zh 25 26 Z7 Z8& 29 Z1494 

extl 22 36 10 15 30 20 49 9 27 29 

ext2 22 23 #12 #29 #42 23 #13 ~=#19 29 34h 

regtk 26 6 22 13 31 24 25 14 31 28 

armatk 25 8 18 16 24 28 19 19 27 31 

reg 23 20 6 24 29 26 33 17 #25 32 

arma 22 18 7 30 20 28 #18 20 27 33 

armawt 28 18 75 13 32 14 49 9 31 25 

Predicting Z(101)-Z(125) from Z(100) 

extl 27 29 28 33 33 25 %&Yh 19 28 26 

ext2 26 30 31 #30 13 47 Ih 28 36 37 

regtk 4h 27 4S 47 53 52 52 22 36 27 

armatk 41 11 4&2 4O 41 60 4H 28 31 33 

reg 32 25 34 30 49 55 80 26 28 35 

arma 30 27 29 31 #33 58 %48 31 35 39 

armawt 47 50134 57 61 28 105 21 4&8 68 

Predicting Z(101)-Z(150) from Z(100) 

extl 35 Sh 42 59 46 32 61 22 26 33 

ext2 33 66 35 4O 28 53 28 25 28 48 

regt+k 66 62 83 94 80 62 62 25 49 27 

armatk 61 54 81 85 68 77 5h 25 43 39 

reg uh 60 78 55 80 69 118 23 37 45 

arma 41 66 52 34 56 7h 67 30 29 53 

|armawt 71 89 169 114 99 32 145 41 93 118 | 

Table [V-4&: Errors in Prediction & Miscellany
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Process 12 : Predicting Z(101)-Z(200) from Z(100) 

[method 71 22 Z3 Zu %Z5 26 27 Z8& ZS Z101 

extl 4h? &O 37 7h (71 SS 80 38 61 48 

ext2 4O 58 29 52 49 %75 4S 51 50 64 

rege+k 101 86 98 128 108 92 86 27 92 33 

armatk 9h 64 97122 96 116 80 47 87 46 

reg 6h 4&6 111 82 116 104 157 4&3 90 59 

arma 57 65 63 4&0 79 111 107 64h 4h 75 

armawt 108 142 185 155 141 29 173 55 144 168 

Predicting Z(1)-Z(100) from Z(1) 

extl 1h 25 29 20 23 16 33 30 22 24 

ext2 26 35 30 20 33 16 39 34 25 34 

regtk 30 &S 39 4&O 60 52 58 82 27 47 

armatk 31 S51 38 39 55 48 57 75 29 50 

reg 20 28 106 43 117 Sh 165 31 59 39 

arma 18 4&8 62 24 89 Sh 13h 43 31 &3 

armawt 69 144 186 143 139 77 173 77 128 164 

tterations and Significance of ARMA vs. regression 

its/ak 2 7 7 7 5 1 9 3 10 5 

its/a 2 2 2 2 3 1 3 2 h 2 

its/aw 3 2 3 2 3 4 3 10 19 3 

p/ak .14 .07 .29 .26 .08 .37 .92 .03 .00 .07 

| p/fa .11 .03 .08 .11 .06 .37 .00 .03 .90 .05 | 

Table !V-h: Errors in Prediction & Miscellany
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(VE) NATIONALISM AND SOCIAL COMMUNICATIONS: 

A TEST CASE FOR MATHEMATICAL APPROACHES 

(i) INTRODUCTION AND SUMMARY 

In the previous chapter, we have emphasized the 

importance of carrying out statistical research within 

the context of a broader analytic effort. The 

substantive goal of this thesis, however, tn political 

science, was to carry through an analytic point of 

view, already developed by Karl Deutsch, and formulated 

mathematically with the assistance of Robert Solow(1). 

In the first phase of this research, carried out In 

1971, we attempted to develop the original 

Deutsch-Solow model as a predictive model of national 

assimilation and political mobilization; more 

precisely, we attempted to predict such indicators of 

national assimilation as language or ethnicity (see 

Table Vi-24), and such indicators of social 

mobilization as urbanization or literacy (see Table 

VI-23). (Note that these indicators were suggested 

originally by Karl Deutsch, not as operational 

definitions of nationalism, but as usable series of 

numerical data with some sort of correlation, albeit 

noisy, with the underlying concepts he has discussed.)
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Even though the Deutsch-Solow model seems very 

simple, from the mathematician's point of view, the 

existing statistical routines turned out to be unable 

to cope effectively with even this level of complexity. 

Because of this result, which we found rather 

surprising at first, we found it necessary to abandon, 

in this context, the more ambitious goal of predicting 

long~term political trends by way of more interesting, 

complex models. We have, instead, developed two 

distinct strands of thought ~ one methodological and 

the other substantive ~- which may be prerequisites to 

success in the more ambitious undertakings of the 

future. Even in their present form, however, these two 

strands do offer predictions and insights, 

respectively, of some relevance to the decision-maker 

concerned with nationalism. 

First of all, we have developed a new methodology 

for statistical analysis, the "robust method" of 

section (xi) of Chapter (11), able to deal effectively 

with prediction over time. This method emerged from the 

study of the Deutsh-Solow model and of similar simple 

models. In sections (ii) and (iti) of this chapter, we 

will describe the empirical results, based on the 

Deutsch-Kravitz data from more than a dozen nations, 

which led us to this new approach. These results
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LEGEND TO FIGURES Vil-1 THROUGH VI-4 

The figures on the next four pages describe the 
average percentage errors which we found when making 
long-term predictions of our four variables - the sizes 
of the mobilized, underlying, assimilated and 
differentiated populations ~ in a variety of different 
cases, by use of different estimation techniques. In 
each "case" (i.e. a nation and a choice of data to 
study in that nation), we calculate the 
root-mean-square ("RMS") average of the errors In the 
predictions made to all different years for which data 
were available; this may be thought of as taking an 
average across different intervals of prediction. For 
each of our three basic techniques - regression, ARMA 
and the robust method (GRR or EXTRAP) - and for each 
variable, we have drawn a curve which represents the 
distribution of average error size from case to case. 
These distribution curves are like the distribution 
curves for college board scores; to find out how bad 
the errors were for the 20th percentile down from the 
top, we look at 20% on the horizontal axis, and then 
look up at our curves to see how high the prediction 
errors go, in the vertical direction. Notice that the 
vertical axis is spread out at the bottom, and 
compressed at the top, to allow us to fit the whole 
curve on one page; it is still correct, however, when a 
curve is exactly halfway between, say, 50% and 70%, to 
conclude that the error was exactly 60%. Thus in 
comparing the area under different curves, it is 
important to note that the horizontal line at "5%" 
should be thought of as the base of the graph, in 
regions where the error percentages are between 10% and 
50%, in order to compensate for the spreading out at 
the bottom. 

The distributions for regression, ARMA and GRR 
were drawn from Tables VI-15 through VI-20, from the 
columns labelled "Uni." and "extl". They all represent 
predictions based on the reduced form of the 
Deutsch-Solow model, equations (6.1) and (6.2) with the 
"bD" and "fu" terms removed, for the same cases, 
defined in Tables V!-23 and VI-24. The definitions of 
these procedures may be found in section (iii). The 
distributions for EXTRAP, described in section (ii), 
were based on the same model, but a slightly different 
set of sample cases (i.e. data was not interpolated, 
because it was not necessary to do so with this 
program); see Tables V1l-8 and Vi-9 for the original 
figures.
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appear to Indicate that prediction errors are cut in 

half, for prediction over about five or six "units" of 

time, following whatever "units" - years, decades or 

five-year intervals - were used in the original data 

collection. (Note that all nations were studied for 

which sufficient data were available from Deutsch and 

Kravitz, who, in turn, limited their collection effort 

only by the requirements that a nation must have a 

significant problem of national assimilation and that 

the data must be easily available in the Harvard 

libraries.) Although these indications have been 

rather strong, one should still be warned that strict 

statistical generality and uniformity have not been 

possible in this case, due to the limited supply of 

data per nation and due to limitations of existing 

computer software routines; thus the use of judgement 

is required to interpret these results. Chapter (IV), 

by contrast, has been written to provide a test of the 

various methods which avoids such real-world 

difficulties. (See Table IV-1, on page IV-34.) In 

Figures VI-1 through VI-&, we have graphed the 

distribution of prediction errors for the three methods 

tested by comparable procedures over the 

Deutsch-Kravitz data:(i) classical regression; (ii) the 

ARMA technique of Chapter (III); Cifil) the robust
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method. In Figure 1V-1, which gives the curves for 

predicting the assimilated population - for which the 

comparison between methods is exact - one can see that 

the robust method yields errors distributed uniformly 

between 0% and 7%, except for three or four (i.e. 

probability 20%) "fluke" cases. In predicting the 

percentage of population assimilated - which fs not 

directly affected by random population loss in war or 

the like - Table VI-9, on page VI-23, shows a uniform 

error distribution with the robust method between 0% 

and 2%, with four "flukes" at 2.68%, 3.08%, 3.09% and 

6.21% errors. Insofar as much of the data here has been 

encoded in terms of decades, these prediction errors 

refer to periods of time on the order of thirty or 

forty years, for the most part. 

In Tables VI-21 and VI-22, we have tabulated the 

predictions of the robust method for assimilation and 

mobilization in the countrles studied, for the years 

1980, 1990 and 2000. It must be emphasized, however, 

that the model used in generating these predictions - 

unlike the more complex models discussed below - is not 

suitable for evaluating the effects of policy in 

changing what the numbers will equal in those years; 

furthermore, these predictions require care in their 

interpretation, as we wlll discuss in section (iii).
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In sections (ii) and (if), we will elaborate on the 

details of the statistical methods which led to all 

these tables and graphs. Also, in keeping with the 

general philosophy expressed in Chapter (V), we will 

mention some substantive impressions and hypotheses 

which emerged after inspecting the predictions 

generated by the robust approach; a more quantitative 

study of these hypotheses may be appropriate for future 

research, 

The second strand of our research into nationalism 

was more substantive in nature. We went back to the 

original reasoning of Karl Deutsch, in Nationalism and 

social Communications(2), and formulated a model of the 

assimilation process which more fully articulates the 

vision expressed in that book; this model, by 

describing the forces which can speed up or slow down 

national assimilation, can be of direct value to the 

policy-maker who wishes to do one of these two things. 

Such a more complete articulation, however, required 

the addition of intranational "communications terms," 

whose evaluation in turn required detailed data on 

assimilation and communications data at a subnational 

level. Furthermore, the models involved were strongly 

nonlinear; before we can carry out valid long-term 

prediction based on these models, our work elsewhere in
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this thesis suggests that we will have to wait until 

the full nonlinear version of the "robust method" is 

available In a standard computer package such as T.S.P. 

(Indeed, the full analysis of interaction terms between 

comparable subunits across time also requires a novel 

approach to statistical data management as well; 

however, the Janus subsystem at the MIT-Harvard 

Cambridge Project may be able to overcome this further 

difficulty.) Insofar as communications terms are 

actually necessary, to account for the changing rates 

of assimilation crucial to Deutsch's verbal discussion, 

we have concluded that reliable predictions based on 

that discussion will have to await another round of 

research. In the meantime, however, we have used the 

standard regression techniques, and the new ARMA 

techniques discussed in Chapter C(I!!), tn order to 

evaluate our new communications approach, ina test 

case - Norway - for which intranational data were very 

plentiful. 

According to the conventional measure of 

statistical significance, the "ARMA" communications 

model, based on migration data as an Index of 

communications, outperformed all the other models so 

well that there is less than one chance in a million 

billion that this superiority was due to a coincidence.



Page VIi-~-12 

The conventional measure of statistical significance 

depends on short-term predictive power, on the quality 

of predictions over one "unit" of time. (In this case, 

one "unit" means one year ahead into the future.) In 

long-term prediction of the percentage of population 

assimilated, the ARMA communications model made errors 

which were only about 10% less than the errors with the 

best competing models. (In this case, "long-term" 

errors are the average errors over all possible 

intervals of prediction from one to thirty years into 

the future; the averages are based on the 

root-mean-square, "RMS", averaging procedure, which 

places greater weight on the largest errors and thus on 

the longest prediction intervals.) However, given the 

large, diverse data base available, this 10% reduction 

would appear to be just as significant as the reduction 

in error in short-term prediction. 

In section (v), by looking at the final two 

studies of the Norway data, and also by comparing them 

with our earlier, less perfect studies of the same 

data, we have been able to extend further our 

discussion of the regression method and the ARMA method 

as such. In particular, the significance scores of 

ARMA models do indeed seem to be more sensitive to the 

quality of the substantive part of the model and to the
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quality of the data involved (i.e. flukes) than are 

those of regression models. On the other hand, the ARMA 

method shows only a modest improvement over regression 

in reducing the size of errors in long-term prediction 

(again, about a 10% reduction in error size), 

particularly if one's model and data are good to start 

with; this reinforces our conclusion, from 

sections (ii) and (iii), that the estimation of model 

parameters, for use in the long-term prediction of real 

social data, is better done by way of the “robust" 

approach. 

Finally, in our study of Norway data, we have 

looked into the possibility of using "gravity models", 

to reconstruct the networks of interregional 

communication for years fn which no data were 

available. These models, fn standard form, do not allow 

one to express or explain the changes fn communications 

patterns which underly the effects of modernization, as 

discussed by Deutsch and interpreted [fn section Civ). 

Thus we have generalized the simple gravity model of 

internal migration, in order to remedy this defect, and 

have established the validity of this generalization.
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(ii) ENETIAL STUDIES OF THE DEUTSCH-SOLOW MODEL 

Before plunging into the mathematical details of 

our work on the Deutsch-Kravitz data, let us begin with 

a general description of the studies we have carried 

out. These studies fall into two subcategories. In 

this section, we will discuss our initial studies, in 

1971, in which our sole objective was to make use of 

existing methods and existing models - primarily the 

Deutsch-Solow model - in order to make concrete 

predictions of national assimilation and political 

mobilization. Given that we did not expect to generate 

or evaluate any new methods as such, and given that the 

software packages available to us then did not allow 

long-term forecasting for a linear model structured 

like the Neutsch-Solow model, we set up special purpose 

computer programs of our own, tailored to this 

particular problem alone. Each of these programs 

included an estimation part, to estimate the constants 

of the Deutsch-Solow model for each nation 

individually, and a prediction portion, to make 

long-range predictions. Three programs were used, 

based on three methods of estimation, in order: (i) 

the Hopkins programs(3) ;(ii) standard regression; 

Ciif)the "robust method."



Nation and 
Base Years 

Ceyton 

1891,1901,'11 

Thai tand 
1925*,'36,'47 

Malaysia 
1911,'21,'31 

Ceylon 

1919*,'36%*,'53 

scotland 

1881,1814*,'47 

USSR 
1928,'h2*,'56 

Malaysia 
1931, '4h«,'57 

Canada 

1941,'51,'61 

Philippines 
1936*,'h8,'60 

Quebec 
1941,'51,'61 

Argentina 

1930*,'hS5*,'60 

Czechoslovakia 
1900,'10, '20« 

India 
1881,'91,1901 

Argentina 
1870*,'92*,1914 

Predicted Values 
Year Mobil. 
1921 1471 
1951 3H4h 

1958 19926 

1951 891 
1961 1258 

1885 602 

1902 885 

1815 0 

1970 101331 

1914 0 

1905 188 

1918 269 

1901 3138 

1931 4838 

1900 870 

1924 2960 

1901 1972 
1931 2058 

1915 5863 
1900 5575 

1930 5396 

1940 4828 

1911 30210 

1941 0 

1936 17743 

1958 79683 

Assim. 
2791 
L166 

3045 
4064 

1302 
1815 

994 
1316 

2653 
5670 

1205 
3287 

746 
1903 

5012 
1857 

5960 
5588 

294756 
0 

10879 
24650 

Table VI-1: Sample of Results from 
All data measured in thousands of people. 
Asterisk represents estimates from ESTIMATES. 
Mobil.= mobilized population; Assim. = 

in Table VI-10. 
"ZError" is a crude percentage, from figures listed. 

exact definition of both 

Actual 

Year 

1921 
1953 

1960 

1947 
1957 

1881 
1901 

1821 

1965 
1914 

1911 
1921 

1901 
1931 

1903 
1918 

1901 
1931 

1914 
1892* 

1930 
1937 

1911 
1941 

1930 
1960 

DELTA 
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Values 

Mobil. Assim. 
1537 2770 

4509 5209 

18381 

835 2428 

1425 3126 

394 1698 

773 2141 

697 . 

121600 

25800 

193 1368 

292 1569 

2014 3711 

5572 7000 

1003 3219 

3139 3977 

645 1212 

1814 2292 

4157 5511 

1857 2733 

7850 7340 

8020 7500 

28482 217197 

49792 270187 

6914 8625 

14758 17440 

assimilated; 

"eError'! 
Mob. Ass. 
4.29 
23.6 

0.76 
20.0 

25.4 
30.0 
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Nation Data-base r z R f S.E. P of " " of ff 
Ceylon 1811-1921 .999 ,834 1,900 -,26 »241 3 Cyprus 1881-1931 .999 .996 .999 -.939 095 4 
Taiwan 1960-1966 .999 .999 .999 .95] -146 = ,7 USSR 1950-1965 .999 .703 .999 (48h -206 .02 Finland 1800-1960 .996 .938 -996 .002 .030 .9 USA 1790-1960 .995 .998 .995 .168 -112  ~=«.15 Japan 1920-1940 1.440 .307 1.995 2,73 -310 O01 Finland 1958-1967 .993 .976 -994 581 -532 13 
Quebec 1851-1961 .992 .917 .994 1,13 745 415 ie 1901-1961 .981 .885 .993 3,93 1.27 .05 Finland 1880-1960 .992 .965 992 .036 -128 .75 Canada 1851-1961 .989 .983 .991 -,85 -632 ,2 USSR 1922-1931 .986 .991 .990 ,281 -167 = «,1 USA 1880-1960 .986 .989 .987 1.93 1.24 45 Canada 1901-1961 .974 .992 .983 -1.,96 1.56 .2 Belgium 1880-1930 .952 .318 972 -4.54 3,85 3 India 1881-1941 .969 .902 .970 <.]1 -2 7 Japan 1920-1960 .923 .519 .948 37h 576 .15 

Table VI-2: Regresston Statistics for Mobilized and Underlying Populations. "f" is the estimate of fa, the rate of mobilization, in the regression model, (6.6). The "S.E. of f" Is the Standard error of f, the conventional measure of the likely size of errors in the estimate of f. "P of fF" is the probability that an estimate of f this large, or larger (of either sign) would have happened by coincidence, for an f which Is zero, according to conventional theory. "sz" is the estimate of Sa, the natural growth factor of the underlying population, minus the rate of mobilization, in equation (6.6); it is also a close approximation to the autocorrelation of the size of the underlying population. Rm is the multiple correlation coefficient between the predictions of (6.6) for mobilization and the actual values; rm is the autocorrelation of mobilflzation. Data definitions in Table VI-10; cases listed in order of Rm here.



Nation 

Taiwan 
Quebec 
Cyprus 

USA 
{srael 
USA 
Finland 
Taiwan 
Israel 

Canada 
Belgium 
india 
Ceylon 

Table V1I-3: 

Data-Base 

1956~1965 
1901-1961 
1881-1931 
1790-1960 
1951-1967 
1880-1960 
1880-1960 
1946-1965 
1951-1960 
1901-1961 
1880-1930 
1881-1941 
1881-1921 

"A 

1.000 
998 
999 
998 
998 
~994 
996 
~994 
~994 
~972 
~915 
863 
~81h 

c 

-997 
938 
-991 
~971 
969 
~934 
-464 
999 
999 
981 
915 
~976 
~994 

Differentiated Populations. 
by, the assimilation rate, 
(6.5), The "S.E. of b! 

Hye 

Ra 

1.000 
1.000 
999 
999 
-998 
998 
996 
-996 
~994 
-991 
~942 
922 
- 847 

b 

~.031 
-1.7 
-1.91 
3.489 
-1.29 
9.939 
-.57 
~104 
~795 
~815 
391 
2.44 
376 
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S.E. 

of b 
~ 065 

406 

1.41 
~927 

1.20 

3.11 
.69 
-O49 

3.90 
326 
~421 

1.67 
~ 862 

the usual measure of the likely size of errors 

estimate of b. 
estimate of b this 

zero, according to conventicnal 
the natural estimate of cg, 

differentiated population minus the assimilation rate 
as in equation (6.5). Ra is the multiple correlation 
coefficient, between the predictions of (6.5) for 

values; 

"P of bl" 

P of 
b 

.6 
-O1 
2 
01 
3 
01 
245 
O05 
85 
05 
4 
15 
7 

Regression Statistics for Assimilated and 
is the estimate of 

in the regression model, 
is the standard error of b, 

in the 
is the probability that an 

larger or larger (of either sign) 
would have happened by coincidence if b is actually 

assimitation and the actual 
autocorrelation of assimilation. 
in Table VI-10; cases listed in order of Ra here. 

theory. 
growth factor of the 

is the 

ra is the 
Data definitions
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Median Median Pet. Error Nation Data-Base Base Error Error Median Error Pct, 
Year Model Uni. Size Model Uni. Taiwan 1960-1966 1960 4 5 3340 .120 .150 Cyprus 1881-1931 1901 18 12 48 .375 250 Ceylon 1881-1921 1901 19 9 773 «2.46 1.16 Indta 1881-1941 1901 792 697 28500 2.78 2.45 Belgium 1880-1930 1900 171 53 3846 4.45 1.38 Finland 1880-1960 1880 31 40 642 4.83 6.23 Canada 1901-1961 1911 149 524 5572 2.67 9.40 Japan 1920-1960 1930 3739 2680 20022 18.7 13.4 USA 1790-1960 1830 1550 1780 12000 12.9 23,2 Finland 1800-1960 1800 193 123 642 30.1 19.2 USSR 1950-1965 1965 64000 1000 78500 81.5 1.28 Canada 1851-1961 1871 2609 347 2644 98.7 13.1 Japan 1920-1940 1930 10336 5482 20022 51.6 27.4 Quebec 1901-1961 1911 703 211 710 99.0 29,7 USA 1880-1960 1880 9850 4610 12000 82.1 38,4 USSR 1922-1931 1924 19000 huge 78500 24.2 huge Finland 1958-1967 1958 824 607 642 128 94.5 

Table Vi-4: Long-Term Prediction Errors with SERIES 
In Predicting Mobilization. In each case, i.e. a row in this table, 
the "full" Deut 

the "Weye 

over the "data-base", 
real data in the "base year", 
made to all 
(See Table VI- 
of the predict 
in thousands 
for the full model, 
median mobiltzation, 
"median percentage error," 
and downwards bias are mentioned 

in the 

Then, 

we hav 

whose 

predictions were 
years for which we had data 

with 
- were estimated by regression 

Starting from 

the coefficients of equations (6.6), 
sch-Solow model, and of the 

Univariate ("Uni.") form of this model (fee. 
term removed) 

in that case. 
10 for data definitions.) The median 
ion errors, across the years, is shown 

two columns on the left, first 
then the univariate; from the 

e calculated a rough 
limitations 
in the text.



Nation Data-Base 

Taiwan 1960-1966 
Canada 1901-1961 
Belgium 1880-1930 
Finland 1880-1960 
Ceylon 1881-1921 
Cyprus 1881-1931 
India 1881-1941 
Canada 1851-1961 
Finland 1958-1967 
USA 1880-1960 
Finland 1800-1960 
Quebec 1901-1961 
Japan 1920-1940 
USA 1790-1960 
Japan 1920-1960 
USSR 1950-1965 
USSR 1922-1931 

Table VI-5: 
In Predicti 
i.e. a row in the table, 

the Deutsch-Solow 
regression over the "data-base. 
"univariate" version is the sam 
Deutsch-Solow model, 
population.) Then, 
year", predictions were made to 

in that case. (See Table VI-10 for data 
) The median of the prediction 

(6.6), 

we had data 
definitions. 
across the years 
median size of the underlying 
calculated a rough "! 
downwards bias 

Base 

Year 

1960 
1911 
1900 
1880 
1901 
1901 
1901 
1871 
1958 
1880 
1800 
1911 
1930 
1830 
1930 
1965 
1924 

Median Median 
Error 

4 
11 
40 

35 
39 

3.9 
5785 
102 

81 
1760 
150 
75 

3906 

4970 

7220 

39000 

45560 

Size 

8562 
4805 
3184 

2529 
2793 
208 

274518 
3645 
2529 

33000 

2529 
1017 

46358 
33000 
46358 

109200 
109200 

ng the Underlying Population. tn 
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Long-Term Prediction Errors with SERIES 
each case, 

the constants of equations 
were estimated by mode] 

is tabulated 

is mentioned 

" (Note that the 
e as the ful] 

in predicting the underlying 
from real data in the "base 

all years for which 

errors, 
in thousands; from the 
population, we have 

median percentage error," whose 
in the text.
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Median Median Pet. Error 
watton Data-Base Base Error Error Median Error Pet. 

Year Model Uni. Size Model Uni. 

Taiwan 1956-1965 1955 9 9 é99 1.00 1.00 
Cyprus 1881-1931 1901 2 3 199 1.01 41.51 
Israel 1951-1967 1960 21 25 1859 1.13 1.34 
Israel 1951-1960 1953 25 37 1859 1.34 1.99 
Quebec 1901-1961 1911 41 52 2270 1.81 2.29 
Finland 1880-1960 1880 51 61 2754 1.85 2,21 
Taiwan 1946-1965 1955 14 22 899 1.56 2.45 
Belgium 1880-1930 1900 56 76 2705 2.07 2.81 
India 1881-1941 1901 3531 9170 216249 1.63 4.24 
Ceylon 1881-1921 1901 56 32 827 6.78 3.87 
Canada 1901-1961 1911 582 205 5381 10.8 3.81 
USA 1790-1960 1830 7960 5338 38496 20.7 13.9 
USA 1880-1960 1880 253207 3660 38496 658. 9.51 

Table Vi-6: Long-Terms Prediction Errors with SERIES 
In Predicting Assimilation. tn each case, i.e. a row 
in this table, the coefficients of equations (6.5), 
the "full" Deutsch-Solow model, and of the Univariate 
form of this model (i.e. (6.5) with the "bp" term 
removed), were estimated by regression over the 
"“data~base." Then, starting from real data in 
the "base year", predictions were made to all 
years for which we had data in that case. (See Table 
Vi-10 for data definitions.) The median of the errors 
in prediction, across the years, is shown in the two 
columns on the left, in thousands, first for the full 
model, then the univariate; from the median values of 
assimilation, we have calculated a rough "median 
percentage error," whose downward bias Is discussed 
in the text.



Nation Data~Base 

Israel 1951-1960 
Ceylon 1881-1921 
Taiwan 1946-1965 
Taiwan 1956-1965 
Cyprus 1881-1931 
India 1881-1941 

Belgium 1880-1930 
Israel 1951-1967 
Finland 1880-1960 
Quebec 1901-1961 
Canada 1901-1961 
USA 1790-1960 
USA 1880-1960 

Table VI-7: 

Base Media 

Year Error 

1953 1 
1901 29 
1955 87 
1955 101 
1901 1 
1901 1542 
1900 83 
1960 5 
1880 ll 
1911 19 
1911 403 
1830 920 
1880 5563 

nm Median Pct. 

Size Error 

230 ,434 
2739 1.06 
8175 1.06 
8175 1.24 

57 1.75 
85803 1.80 
4336 1.91 
230 2.17 
393 2.80 
605 3.14 

4996 8.07 

6491 14.2 
6491 85.7 

Page VI-21 

Long-Term Prediction Errors with SERIES 
in Predicting the Differentiated Population. 

In each case, i. 

from real data 

a row in the table, 
constants of the Deutsch-Solow model, 
estimated by regression over the data-base,. 

in the base year, 

the 
(6.5), were 

Then, 
we made predictions 

for all years for which we had data in that case. 
(See Table Vl-10 for data definitions.) The median 
of the prediction errors, across the years, Is 
tabulated in thousands (here, univariate predictions 
are same as full model predictions); from the median 
size of the differentiated population, we have 
calculated a rough "median percentage error", whose 
downwards bias is mentioned in the text.



Nation 

Talwan 
India 
Ceylon 

USSR 
Malaysta 
C.S.S.R. 
Belgium 
Israel 

Finland** 
Canada 
Quebec 
USSR 
Argentina 
Quebec 
Canada 
USA 
Cyprus*** 

Philippines 
Finland 
USA 
Fintand 
Japan 

USSR 
Finland 
Scotland 
Japan 

Table VI-8: 

Mobf lized and Underlying Populations, 

columns, 
errors 

population; 

In order, 

Data-Base 

1960-1966 
1881-1941 
1881-1953 

all* 

1911-1957 
1900-1937 
1880-1931 
1952-1967 
1880-1960 
1901-1961 
1851-1961 
1950-1965 
1869-1960 
1901-1961 
1851-1961 
1790-1960 
1881-1960 
1903-1960 
all* 

1880-1960 
1958-1967 
1920~1960 
1922-1931 
1800-1960 
1821-1961 
1920-1940 

RMS Average 

Mobil. Under. 
Error Error 

04% 4% 
9.5% 3.4% 
2.8% 3.4% 
2.5% 4.12 
5.13% 3.3% 
2.5% 2.9% 

5.3% ~9% 
1.8% 44% 
6.1% 6.1% 
6.6% 4.6% 
6.8% 5.1% 
3.22 6.5% 

12.2% 17.8% 
5.1% 4.1% 

11.02 4.9% 
61.7% 28.8% 
21.8% 8.3% 
6.1% 3.9% 
9,3% 11.8% 

11.5% 25.6% 
5.2% 340.3 

16.6% 12.2% 
30.2% 72.7% 
23.8% 24.02% 

24.0% 40.6% 
27.3% 22.2% 

ZMobi 1 
Error 

~17% 
257% 
~57% 
~802 

~81% 
83% 

1.09% 
1,18% 
1.86% 
2.012% 
2.18% 

2.23% 
2.28% 
2.36% 
2.38% 
2.72% 
3.73% 
3.77% 
3.79% 
3.98% 
5.082 
6.38% 

8.032 
8,182 
10.05% 
10.24% 
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Errors of Predictions of 
by EXTRAP. 

In each case (except **), we have given the average 
of the percentage errors as averaged across 
predictions to every year for which we had data. 
(See Table Vi-10 for data definitions.) The three 

give:(i) average of the percentage 
in predicting mobilized population; 

average of percentage errors 
(ii) the 

in predicting underlying 
(fit) the average of the absolute errors 

in predicting the percentage of population which is 
mobflized. 

* - union of all 
** = test 

**x* - Errors 

made over early data, 

Cases 

years only 

listed in order of the latter. 

data-bases shown in this table. 
include data-base proper. 

less than 2% uniformly for runs 
used by SERIES.



Nation 

Japan 

Scotland 
Israel 

India 
israel 

Canada(B) 
Cyprus 

Quebec (A) 
Belgium 
Finland 
Canada(A) 
USA 

Ceylon 

Quebec (B) 
C.S.S.R. 
Philippines 
Malaysia 
Taiwan 
Taiwan 
USA 

Argentina 

Table VI-9: 

Data-Base 

1948-1965 
1891-1963 
1951-1966 
1881-1941 
1951-1959 
1931-1961 
1881-1960 
1901-1961 
1880-1947 
1880-1960 
1901-1961 
1790-1960 
1881-1963 
1931-1961 
1900-1937 
1903-1961 
1911-1957 
1956-1965 
1946-1965 
1880-1960 
1869-1960 

Assim. 
Error 

NO
 
C
O
N
U
S
 

N
N
 
F
H
 
E
e
 

eS 

P
w
W
H
 

U
S
 
w
o
O
A
W
U
H
 

Diff. 
Error 

9% k.3% 
4% 4.0% 

- 0% 1.1% 
~0% Tn 4 
~ 4% 3.6% 
~6% 9% 

0% 6.4% 
29% 6.6% 
«62 3.3% 
~9% 10.5% 
~2% 2.8% 
-3% 16.4% 
8% 6.3% 

- 8% 5.8% 
1% 5.8% 
07% 4.0% 
~3% 5.5% 
~1% 7% 
~3% 1% 
7% 14.52% 
0% 37.2% 

ZAssim. 
Error 

03% 
142 
16% 
37% 
39% 
57% 
~61% 
75% 
~80% 

1.04% 
1.102 
1.11% 
1.12% 
1.22% 
1,412 
1.68% 
2.05% 
2.68% 
3.08% 
3.09% 
6.212% 
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RMS Average Errors of Predictions of 
Assimilated and Differentiated Populations,by EXTRAP. 
In each case, we give the average of the percentage 
errors, averaged across predictions to 
which we had data. (See Table Vl-10 for data 

every year for 

definitions.) The three columns, in order, give: 
in predicting 

(ii) the average of the 
percentage errors in predicting the differentiated 

absolute errors 

(i) average of the percentage errors 
assimilated population; 

population; (iii) the average of the 
percentage of population which is 

Cases listed In order of the latter. 

in predicting the 
assimilated.
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Argentina:M=Urban.(b); A=Ethnicity (average of series). 

Canada:M=Urban.; A=English-Speaking Only (DELTA); 
=Ethnicity British Isles (SERIES); 
=Not French Ethnicity (EXTRAP A); 
=Not French-Speaking Only (EXTRAP B). 

Ceylon:M=Literacy; A=Buddhist, except in SERIES, where 
A=Hindu. (Comparison of univariate models 
still possible by synmetry.) 

Cyprus:M=Urban.; A=Greek Orthodox (SERIES); 
=Not Moslem (civilian) (EXTRAP) 

CSSR=Czechos lovakia:M=Urban.; A=Ethnicity Czech, 
(Deutsch estimates;Bohemia,Moravia,Silesia only.) 

Belgium:M=Urban.; A=French-Speaking Only 

Finland:M=Urban.; A=Finnish=Speaking 

india:M=Urban.; A=Hindu. Deutsch population estimates. 

israel:M=Urban.; A=Total Jews 

Japan:M=Urban.; A=Not Korean. 5-year data interval. 

Malaysia:M=Urban.; A=Malayan Ethnicity 

Philippines:M=Literacy; A=Visayan Ethnicity. 

Scotiand:M=Urban.; A=Speaks No Gaelic 

Taiwan:M=Urban.; A=Mainland Chinese 

Thai land:M=Literacy 

USA:M=Urban.; A=White 

USSR:M=Urban, 

  

Table VI-10: Indices of "M"(Mobilization) and of 
"A" (Assimilation) From the Deutsch-Kravitz Data 
Used For Runs Reported in Tables VI-1 to VI-9. 
"Urban." means "Urbanization."
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With each of the first two Programs, it required 

no more than a glance at the computer outputs of 

predicted versus actual values, and of the estimated 

values of the constants, in order to see that something 

was not working according to plan. (See Tables IV-1, 

and VI-4 through VI-7. The latter group of tables seem 

to imply that assimilation was much easier for SERIES 

to predict than was mobilization. However, in the 

actual year-by-year printouts, the difference was less; 

the use of "median error" appears to exaggerate the 

difference.) It looked as If the main objective of 

these early studies - the construction of reasonable 

predictions - was not going to be possible. A more 

detailed examination of the regression statistics 

convinced us that bad estimates of the constants of the 

Deutsch-Solow model were at fault, not the model 

itself, for the large size of the errors; the 

statistics also hinted very strongly that the bad 

estimates might be due to the random inaccuracies - 

"measurement noise" = which afflict all normal sources 

of data in the social sciences. 

At this point, we were very lucky to be unable to 

do what we wanted to do, and to be restricted to a 

method which our recent work has shown to be much 

better. We wanted to carry out estimation based on the
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Deutsch-Solow model, with terms added to reflect the 

presence of "white noise" in data collection, in 

addition to terms reflecting randomness in the process 

itself; however, we were able to account for "white 

noise" in data collection only by dropping one 

substantive term in the Deutsch-Solow equations, and by 

dropping the terms which allow for randomness in the 

assimilation and mobilization processes themselves. 

Thus we unintentionally were using a special case of 

the "measurement noise only'' method, the “robust 

method" discussed in sections (vii) and (xi) in 

Chapter (Il). This special case is essentially 

equivalent to an advanced form of curve-fitting and 

extrapolation. The predictions of this method were 

quite good, as we have discussed in the Introduction 

and illustrated in Figures VI-1 through VI-4; the 

graphs for this method are based on Tables VI~-8 and 

VI-S, on Pages VI-22 and V1I-23. Having found a method 

suitable for our purpose, we then modified our computer 

program to calculate root-mean-square average 

percentage errors for the predictions of this model. 

Now let us look more closely at the mathematics of 

these three sets of studies. All three studies were 

based upon variations of the revised version of the 

Deutsch-Solow model(4). This model includes two
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equations for the process of national assimilation: 

a8 = aA + bD 

(6.1) 

dD = cD, 

dt 

where A represents the assimilated population and D 

represents the differentiated population. The first of 

these equations states that the rate of growth of the 

assimilated population, A, with time, is equal to the 

sum of two different terms. The first of these terms, 

"aA", refers to the natural growth of the assimilated 

population through births and deaths. !t is assumed 

that "a" is effectively constant, for our purposes; in 

other words, it is assumed that births and deaths 

average out to a fixed percentage of the population 

itself. The second of these terms refers to increases 

in the assimilated population, due to unassimilated 

people being assimilated. It is assumed that "b" is 

effectively constant; in other words, ft is assumed 

that the number of people assimilated per unit of time 

averages out to be a fixed percentage of the number of 

unassimilated people still available. Finally, in the 

bottom equation, a single term - "cD" - is enough, 

mathematically, to express the total effect of both
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such assumptions on the growth rate of the 

differentiated population. Also, the "uniqueness" of 

different countries is acknowledged by acknowledging 

that "a", "b" and "cl"! will be different in different 

countries. The Deutsch-Solow model for political 

mobilization is virtually ftdentical: 

dM eM + fU 
At 

AU . ——= gu, 

at 

where M is the mobilized population, U the underlying 

(6.2) 

population, "“e'' the natural growth rate of the 

mobilized population, "ff" the rate of mobilization as a 

fraction of the underlying population, and "g" a 

constant analogous to "c"', above. Deutsch(5) and 

Hopkins(6) have discussed in great detafl the ability 

of the model to capture the essence of certain portions 

of the history of nationalism. In section Civ) of this 

chapter, we will suggest ways fin which larger aspects 

of this history may be captured by extending this 

model; in that section, and in Chapter (CI!), we discuss 

ways in which we can go beyond the initial simplifying 

assumption that "a", "b'"' and "c" are constant. 

Mathematically, equations (6.1) imply that there
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exist constants ay, by and Cy such that: 

ACt+1) ayACt) + by DCt) 

(6.3) 

D(t+1) c,D(t). 

This time, instead of talking about the instantaneous 

rates of growth of population, we are talking about the 

total growth over one unit of time, from time "t" to 

time "t+1". The actual unit could be a year, five 

tt a," years, a decade, or anything else we choose. 4 

represents the natural factor of increase of the 

assimilated population over one unit of time; thus, an 

annual population growth of 3% per year would imply 

ag = 1.03. "by" represents the fraction of the 

differentiated population which are assimilated per 

unit of time, adjusted slightly for their own natural 

increase during the period in which they are 

assimilated. "oe," represents the natural growth factor 

of the differentiated population minus the fraction of 

the people assimilated. tn a similar manner, equations 

(6.2) imply that: 

MCt+1) e,M(t) + F,UCt) 

(6.4) 

UCt+1) B,UCt)
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In order to make actual predictions of 

assimilation and mobIflization data by use of equations 

(6.3) and (6.4) above, the major substantive problem is 

that of estimating the values of the "constants" a, 

bay Cy, dq, Cy and f- (In order to be more precise, 

instead of calling these things "constants", we will 

refer to them hereafter by the mathematical term, 

"parameters"; a "parameter" is assumed to be fixed 

within a given process - e.g. assimilation in one 

nation - but may vary from process to process and may 

also be treated as a kind of unknown variable.) In our 

initial work in 1971, we used three different methods 

to estimate these parameters. 

First of all, we tried to use the Hopkins 

method(7). The Hopkins method is based on the 

assumption that equations (6.3) and (6.4) are exactly 

true, for the measured values of the variables in every 

country, for the right values of the parameters. Thus 

if we know D(t+1) and D(t) for some time t, then we can 

solve for Cy, as an unknown, in the bottom equation of 

(6.3). In a similar way, we can solve for all the other 

parameters , by use of simple algebraic equations, if 

we know the values of A, D, M and U at three 

consecutive times. In order to solve for these
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parameters, and to carry out predictions on the basis 

of the resulting estimates, we simply made use of the 

original Hopkins programs, DELTA and ESTIMATES. 

Fourteen runs were made, on data from eleven nations, 

selected from the Deutsch-Kravitz data. The results are 

shown in Table Vi-1. These predictions appear to be 

extremely poor; a quick examination of the table will 

make ft clear why further effort was not invested in 

this approach. Indeed, from the point of view of a 

statistician, as discussed early in Chapter (11), one 

would not expect to achieve much success with the false 

assumption that (6.3) or (6.4) are exactly true. Even 

more emphatically, one would expect that the use of all 

the data available would give us better estimates of 

the parameters, than would a series of only three 

time-points, given that the model may be "true" only in 

a statistical sense. 

Our next step was to estimate the parameters ay, 

by. Cq Oa, fy and Bq by use of the classic statistical 

method, by multiple regression. More precisely, we fit 

a regression model of the form: 

ACt+l1) u ayACt) + by DCt) + kg + nt) 

(6.5) 

DCt+1) c4D(t) + ky + m(t),
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where "n(t)" and "m(t)" are error terms which we try to 

minimize, and where the parameters "al", "be" and "eo," 

have the same interpretation as "a", "by" and "ce," 

The "constants terms", ky and k,, were added because 

they tend to be standard in regression studies; 

otherwise, however, this model is essentially just 

another way of interpreting the Deutsch-Solow model, 

(6.1) or (6.3). In like manner, we fit a regression 

model of mobilization: 

MCt+1) = esM(t) + faU(t) + kg + n(t) 

(6.6) 

UCt+1) £,UCt) + ky + m(t) 

In addition, we computed a number of standard 

regression statistics, to go with these models. These 

included the "autocorrelations" of A, D, M and U (e.g. 

the correlation coefficient of A(t) against A(tt1)); 

they included the probability of the proposition that 

bg and fg - the rates of assimilation and mobilization 

- might be zero, as measured by standard statistical 

significance tests; they included the correlations 

("multiple R") between the actual and predicted values 

of A(t+1); etc. Statistics of this sort are usually 

reported as the final results of studies on
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quantitative political science, as if they themselves 

were conclusive. Thirty-one runs were made, on twelve 

nations, again on the Deutsch-Kravitz data. The 

results are summarized in Tables VI-2 and VI-3. 

Looking at these tables, we can see that the 

values of R, the correlations between the predictions 

of our model for A(t+1) or M(t+1) and the actual values 

of AC(t+1) or M(t), tend to be very close to 100%. Thus 

one would expect these regression models to have 

unusually great predictive power. Also, by and e,, the 

rates of assimilation and mobilization in (6.5) and 

(6.6), tend to be very large; this hints that all terms 

of the Deutsch-Solow model are justified and 

maesurable, quantitatively. However, the 

autocorrelations, rm and rma, also tend to be very 

large. Given the short length of the data series, this 

would imply that there is not much information 

(residual variation) here about those components of 

A(t+1) and M(t+1) which cannot be predicted from 

knowledge of A(t) and M(t) alone; indeed, the "standard 

errors" of by and f, turned out to be very large, 

implying large expected errors in the estimation of 

these parameters. Even so, in a number of cases, b, and 

fy were significantly different from zero, despite the 

large standard errors, enough to validate the
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importance of the cross-terms, b,D(t) and f,U(t). 

(Note that "significantly different from zero" means 

that there was a low probability that they could 

actually be zero, according to the usual significance 

measure. When by is estimated to be large, but the 

estimation error appears to be larger yet, then the 

true value of by might just as well equal zero.) When 

by or f, is not significantly different from zero, but 

still apparently large, and when both Rn and hy or Ra 

and lA are near to 100%, one would expect both the 

regression model and the autocorrelation model (i.e. 

(6.5) with the bD term removed, or (6.6) with the fU 

term removed) to have unusually great predictive power. 

For our purposes, however, it was not enough 

simply to look at the regression statistics. The 

multiple correlation coefficient, Rao is a reasonable 

measure of our ability to predict A(t+1l) from knowledge 

of A(t) and D(t), with the help of equations (6.5); 

however, true long-range prediction entails the ability 

to predict A(t+T) from A(t) and D(t), without knowledge 

of intermediate values of A and D, for 

time-differences, "T", which may be very large. In 

order to carry out and test such predictions, based on 

equations (6.5) or (6.6), for all possible values of 
"T', we wrote a special-purpose program, SERIES, in
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FORTRAN. In each test case, for assimilation or 

mobilization in one country, SERIES computed the 

standard regression statistics, shown in Table V!i-2 or 

VI-3, and estimated the parameters of model (6.5) or 

(6.6). The model (6.5), with the error terms removed, 

corresponds to a unique real differential equation of 

the form: 

dA | a3zA + b3 D + kg 

at 

AD. 
at 

(6.7) 

c,D + kg 

Note that these equations are essentially the same as 

the original Deutsch-Solow equations for assimilation, 

(6.1), with only a couple of constant terms added. 

SERIES would begin by using regression to estimate aj, 

by. Cy kq and ky in (6.5); then, by solving the 

corresponding equations, (6.7), tt could calculate the 

values of ag bg, Czy ke and kg corresponding to those 

estimates; finally, by using Its solution of (6.7), it 

could then predict A(t+T) and D(t+T), for any T, even T 

which are not whole numbers, from the initial data, 

A(t) and D(t), at any time-period, t. For comparison 

purposes, SERIES also carried out a parallel set of 

estimations and predictions, based on (6.5) and (6.7)
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with the bD terms removed. This corresponds, in effect, 

to assuming that assimilation is proportional to the 

population already assimilated, when we try to predict 

the assimilated population. The procedures to predict 

M(Ct+T) and U(tt+T), based on (6.6), were essentially 

identical to those described above for A(t+t+T) and 

D(t+T). 

Thirty-one runs were carried out with SERIES, 

based on data from twelve countries, selected from the 

Deutsch-Kravitz data. In each country, SERIES actually 

printed out the prediction and error for every 

individual year; however, it would be impossible to 

reproduce all that output here. Thus in Tables VI-4 

through V!-7, we have listed the median errors, in 

numerical and percentage form, for each run. From a 

formal statistical point of view, Tables V!-15 and 

VIi-18, to be discussed in section (iii), gives a more 

standard measure of the validity of the regression 

method as such. However, these earlier results do 

retain some interest. 

Looking at Tables Vi-4 through VI-~-7, we can see 

that SERIES did at least a plausible job of prediction. 

The median errors run to ten to fifteen percentage 

points, for prediction periods on the order of a 

half-century. The contrast with Table V!-1 is quite
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clear. In only one case - the case of mobilization in 

the USSR - do the Hopkins programs appear to outperform 

SERIES, in predicting one test-year (1920). However, in 

that case, the model used by SERIES was fitted to a 

data-base much further away from the test year, 

relative to the length of the data-base itself, than 

was the data-base used with the Hopkins routines; 

furthermore, the data base used with the Hopkins 

routines, in this case, included only one time point on 

the early side of World War Il, a war which appears to 

have had a major effect in perturbing the population of 

the USSR. A perfect comparison, of course, is 

impossible, since the Hopkins routines by nature 

require a more limited data-base than that of SERIES; 

however, the overall performance of the Hopkins 

routines, over the cases tested, was clearly inferior 

to the overall performance of SERIES. With both 

regression models - the full model, and the model with 

by or f, removed - the predictions made from a smaller 

data-base held up fairly well over a later test-range, 

in comparison with predictions made from a longer 

data-base. 

On the other hand, the full model (including by or 

f.) performed worse, not better, than the reduced 

model. If a better estimate of by or fy would improve
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the predictions of the models (6.5) or (6.6), then one 

must conclude that the estimates produced by regression 

are worse than the estimates produced by arbitrarily 

setting bg and fy to zero; if we believe, from apriori 

knowledge and from Tables VI-2 and VI-3, that b, and Fy 

are substantially different from zero, and that the 

data do give us some knowledge about this difference, 

then we must conclude that regression does a poor job 

of accounting for the existing evidence regarding the 

values of these parameters. Insofar as a simple model, 

like (6.5) or (6.6), is too difficult and complex for 

classical regression to handle, then the development of 

more complex and more realistic models would indeed 

require new techniques. Furthermore, the predictions of 
  

both the simple and complex models, while reasonable, 
  

were not nearly as good as the high values of "RY" and 

"re" seemed to portend. Therefore, in attempting to 

generate good predictions, we decided to waste no more 

effort on this fruitless approach. 

Finally, in the third of our initial studies, we 

considered the possibility that the deficiencies of the 

regression models were due to measurement noise 

problems, as discussed in Chapter (V). Indeed, in 

Tables VI-2 and VI-3, one can see that the 

autocorrelations - r - do not seem to be much higher
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for data measured by years than for data measured by 

decades; this Implies that the predictability of the 

underlying process in not much less over longer time 

intervals, and that the gap between the observed 

correlations and a perfect correlation of 100% may be 

largely due to data measurement error.(8). If the 

"ARMA" techniques discussed in Chapter (I!!!) had been 

available at this time, to fit all the parameters in 

the full model, (6.3) and (6.4), we would have used 

them; fortunately, however, we had no choice but to 

use a different method, which has turned out to be 

superior. 

In order to make some allowance for measurement 

error, we found ourselves forced to eliminate the 

cross-terms in the original Deutsch-Solow model, 

equations (6.1), to get: 

a - ayA 

eH 

In predicting the differentiated population, this is 

(6.8) 

equivalent to the original model; in predicting the 

assimilated population, this its equivalent to assuming 

that the number of people assimilated per unit of time
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is proportional to the number already assimilated, and 

that ay incorporates the sum of the effects of natural 

growth and assimilation. We found it necessary to 

assume that these equations are exactly true, for the 

true, underlying values of "D" and "A". By making these 

strong assumptions, we were able to cope with the 

possibility that the recorded values of A(t) and D(t), 

which we will call A'(t) and D'(t), are different from 

the true values, A(t) and D(t). We can express this 

possibility by writing: 

A'(t) ACt) + m(tdACt) 

(6.9) 

D'(t) DCt) + nCeodCe), 

where m(t) and n(t) are random error terms which we try 

to minimize. Notice that we decided to minimize the 

measurement errors as a percentage of the true values, 

rather than minimize their absolute values; when the 

population values grow by a large factor, it seems 

reasonable to expect that the absolute size of the 

measurement errors will grow along with them. This 

model, which makes allowance for measurement noise 

only, is a simple application of the 

"measurement-noise-only" approach, the "robust
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approach" discussed in section (vii) of Chapter (11). 

In this simple case, for m(€t) and n(€t) much less than 

one (e.g. about 10%), the use of this model reduces to 

the use of sophisticated curve-fitting. More exactly, 

equation (6.8) and (6.9) imply a close approximation(9) 

to the simple regression models: 

log A'(t) = kg + agt + m(t) 

(6.10) 

log D'(t) ky + Cot + n(t), 

where ky and kg , like ay and Cy, are parameters to be 

estimated, defined as: 

ky log A(0) it 

(6.11) 

x
 u log DCO) 

After using simple regression to estimate these 

parameters, we may go on to use equations (6.10) to 

predict A and D at other times: 

katayet 

A(t) e 
(6.12) 

kg toy t 
Dt) e 

The procedure used in predicting mobilization by this 

method is exactly analogous. For the third of our
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three initial studies, we wrote a FORTRAN program, 

EXTRAP, to fit such a model to the Deutsch-Kravi tz 

data; forty-seven runs were carried out over seventeen 

nations, as shown in Tables VI-8 and VI-9. The large 

number of runs were possible because EXTRAP, unlike 

SERIES or DELTA, did not require that the data-base 

used in fitting the model involve measurements at 

regular intervals only; equations (6.10) do not refer 

to a standard interval of time-separation, between "t" 

and "t+1", 

The results from using EXTRAP are shown in 

Tables VI-8 and V1i-9, on Pages VI-22 and VI-23; the 

root-mean-square ("RMS'') average percentage errors in 

predicting the various populations ~ assimilated, 

mobilized, underlying and differentiated - have been 

graphed, and shown in Figures Vi-1 through Vi-4. 

From these graphs, it ts clear that EXTRAP 

performs surprisingly well. In the case of 

assimilation, the prediction errors were uniformly 

distributed between 0% and 7% in 80% of the cases; in 

20% (four) of the cases, they were much larger. A 

case-by-case reexamination of the outlying 20% 

suggested to us that unusual factors ~- war, or chronic 

depopulation for economic reasons - were at work on al 

components of the population, fn these cases; for
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example, Russia, Japan and Cyprus, when predicted from 

before World War !! to after, were prominent among the 

outliers. Thus we suspected that the percentage of 

assimilation given by the model might be substantially 

more reliable in such cases. Indeed, when we tabulated 

the error in predicting the percentage assimilated or 

mobilized, shown in the rightmost columns of 

Tables VI-8 and VI-9, the performance of the model 

looks still better. In the case of assimilation, there 

was a uniform distribution of error between 0 and 2% in 

80% of the cases; in the remaining four outliers, the 

percentages of error were 2.68%, 3.08%, 3.09% and 

6.21%. Looking at the choices of "data-base" and "base 

year" indicated in these tables, we can see that these 

predictions were made over fairly long intervals of 

time; in 25 out of 47 cases, the total interval, from 

the earliest data-base year to the last test year, was 

at least 60 years. It strikes us as significant, 

however, that the mobilization process is less 

predictable than the assimilation process by these 

methods; one might suspect that mobilization is more 

easily influenced by the fluctuations of variables not 

accounted for in any of these simple models, variables 

such as economic development, and that it is less 

rigidly governed by inertia.
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The performance of EXTRAP was not only good: it 

was substantially superior to the performances of the 

regression method and of the ARMA method.(10). In 

Figures VI-1 through Vi-4, the error distribution of 

EXTRAP is substantially lower than the distributions of 

all other routines, except for "GRR". GRR is a slightly 

altered form of EXTRAP, written to allow an exact 

comparison of the robust method against the other two 

methods - regression and ARMA - in the more recent 

phase of research. The curves for the ARMA and 

regression method, shown in these graphs, are based 

upon the same reduced form of the Deutsch-Solow model, 

equations (6.8), that were used with EXTRAP; the 

details will be mentioned in the next section. The 

curves for the robust method - EXTRAP and GRR - are 

lower or equal to the other curves essentially across 

all of the probability distributions, from the worst 

10% to the best 10%. On the whole, they look about 

one-half the size of the other curves, in true area; 

they are particularly low in the critical region, from 

the fortieth to the eightieth worst percentiles, fn 

which prediction errors are large enough to cost 

heavily to the decision-maker, but normal enough that 

they can be reduced. 

In comparing Tables VI-8 and VI-9 against
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Tables VI-3 through Vi-7, one can also see that EXTRAP 

was superior to our old regression procedure, SERIES, 

which was based upon the full Deutsch-Solow model. The 

contrast is particularly graphic when one inspects the 

computer outputs of predicted versus actual values for 

individual years, Unfortunately, these outputs are far 

too lengthy to be included here; thus we must content 

ourselves to note that the comparison between EXTRAP 

and SERIES was consistent with the pattern which has 

been established more objectively by the more recent 

studies of section (iti). Tables VI-8 and VI-9 use a 

"high" measurement of error, which tends to place 

greater weight on the largest errors in one's sample; 

Tables VI-4 through VI-7 use a "low"! measurement of 

error, median error. Thus the superiority of EXTRAP is 

greater than indicated by a direct comparison of the 

tables. (SERIES would have been expanded, to include a 

printout of R.M.S. average error, if its predictions 

had been competitive enough to justify further work.) 

Still, Tables VI-4 and VI-6 do allow us to see that the 

reduced form of the Deutsch-Solow model, equations 

(6.5) and (6.6) with the "bD" and "fu" terms removed, 

performs better than the original form of these 

equations, with regression, when the Same measure of 

error is used; thus the inferiority of the former to
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the robust method, as shown in section (iii), implies 

an even greater inferiority of the latter. Also, a 

direct comparison of the printouts indicated a similar 

or worse performance by this early regression 

procedure, relative to that of the newer regression 

procedure which we have described tn our graphs; it 

indicated an inferiority to EXTRAP by at least a factor 

of two. For example, in Table Vt-9, EXTRAP looks 

especially bad in predicting the US differentiated 

population; however, looking at the printout from 

EXTRAP, for 1790-1960, a median error of 230 shows up, 

versus 920 for SERIES. As percentages of the median 

size of the differentiated population, these numbers 

correspond to 3.5% and 14.2% respectively. tn Table 

VI-7, SERIES looks especially good in predicting the 

differentiated population of Finland; in the printouts, 

however, EXTRAP shows a median error of 8.0, versus 11 

for SERIES. (i.e. 2.0% and 2.8% errors, respectively.) 

Thus Tables VI-8 and VI-9 provide a stiff test of the 

ability of EXTRAP to predict the future, over long 

time-intervals. They include several tests of 

prediction from a model fit to one data-base, to later 

and earlier sets of data. 

From the substantive point of view, it fs 

especially interesting to note what sort of situations
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have been hardest for EXTRAP to deal with. Japan, 

Cyprus and the USSR have the largest recorded errors. 

An inspection of the actual printouts suggests that 

they all fit the growth patterns predicted by EXTRAP 

quite well, except for a break-point in World War I1!. 

At World War It, the curves shifted by a constant 

factor, but, except for the resulting change in scale, 

they seemed to continue on as before the war. This 

situation fis reminiscent of a linear system, affected 

by a "delta function impulse" (i.e. a transient shock), 

in the mathematics of engineering and physics; the 

effect of the shock is to move the system abruptly from 

one configuration to another, but the same dynamic 

equations continue to govern the system after the shock 

as before it. Prof. George E. Box, in a brief visit to 

Harvard, mentioned to us that his group is working on a 

form of "intervention analysis" which would be suitable 

for the statistical study of such discontinuities. 

The errors in Scottish "mobilization" appear 

related to the much-discussed "rural depopulation" of 

Britain, an issue comparable to the issue of Appalachia 

in the US. The errors in Scotland appear to depend on 

the inclusion of data from a full century and a half, a 

period encompassing different economic trends. Errors 

were also large, on occasion, when a short data-base
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was used to develop a model for predicting over much 

larger intervals of time (e.g. in Finland); this 

observation reinforces our emphasis on using a 

data-base which is large in actual time, as discussed 

in Chapter (V). Looking at these two extreme cases - 

Finland and Scotland - one would be tempted to suggest 

that the ideal length of the data-base, per case of 

data, is somewhere in the middle, somewhere on the 

order of only twice the interval of time over which one 

is trying to predict. However, as In section (vii) of 

Chapter (11), we must distinguish between qualitative 

improvements in one's models, and quantitative 

estimation of the coefficients of a model which has 

already been specified and which one knows to be 

oversimplified. Here we are dealing with the latter 

problem; with the former problem, we suspect that the 

longest possible data-base would be desirable. 

In two other cases - the USA and Argentina - 

moderately large errors may be related to changes in 

both birth rates and death rates in different ethnic 

groups, during the periods studied; as with Scotland, 

one might consider these errors symptomatic of too long 

a data-base, for the simple model under consideration.
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(ifi) LATER STUDIES OF THE DEUTSCH-SOLOW MODEL 

Let us begin our discussion here from a general 

point of view, as in the previous section, and hold 

back the mathematical details until after the overall 

pattern is clear. 

After the work discussed above, ft was clear to us 

that we had run up against a general methodological 

problem, which goes well beyond the requirements of the 

Deutsch-Solow model itself. Therefore, in order to cope 

with this problem, we wrote a new computer routine, 

"ARMA", discussed at length in Chapter (til), for 

inclusion in a standard computer statistical package 

for the social scientist (i.e. the Cambridge Project 

"Time Series Processor", "T.S.P."). According to 

classical maximum likelihood theory, the basis of our 

arguments in Chapter (Itt), this routine should have 

been the answer to the problem of simple "measurement 

" Included in this routine was a provision to noise. 

test the long-term predictive power both of a 

regression model and of the corresponding ARMA model. 

Generality, however, required us to remove the 

special-purpose differential equation solving used in 

SERIES and in EXTRAP, a provision which had allowed us 

to cope more exactly with the Deutsch-Solow model and
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Nation and fa LogP LogP LogP 
Data-Base F#0 ARMA ARMA 

Max. Uni. 
USSR (1) -006 2.4 11.4 11.8 
USSR (3) -030 4.2 8.7 9.8 
Argentina (2) -612 6.1 8.2 9.0 
C.S.S.R., -316 -6 10.2 9.0 
Malaysia ~. 046 6.8 5.7 8.3 
USA (2) -083 5 7.9 8.3 
Cyprus 2315 2.9 12.6 8.1 
India -. 142 3.8 7.4 7.0 
Philippines -087 ~2 6.7 6.6 
USA (1) ~027 1.0 7.0 6.5 
Ceylon -,013 a) 6.2 6.1 
Taiwan -.044 1.7 10.6 6.0 
Canada -.035 aL 4.8 ues 
Israel (2) -292 7.8 h.0 4.6 
USSR (2) -.047 1.6 4.2 4.5 
Finland (1) -.157 3 4.5 ue& 
Quebec -G05 0 ues 3.8 
Argentina (1) -860 1.9 7.3 3.5 
Finland (2) -.008 4 8.0 3.5 
*** LogP (ARMA Uni.) Significant Above This Line *** 
Israel (1) 2493 5.6 6.3 1.8 
Finland (3) -.037 1.2 4.9 4 
Japan ~419 ol 3.2 4 
Belgium - 164 3.1 4.6 07 

Table Vi-11: Statistics Concerning Regression for 
Mobilized and Underlying Populations. 

"fq'' is the value of "fq", the rate of mobilization, 
in equations (6.4), as estimated by ordinary 
regression. "LogP" is the standard, classical 
statistical measure of the relative likelihood of one 
model in comparison with another; fit represents the 
natural logarithm of the odds in favor of the truth 
of the model we are interested in, compared with 
some other model, if we assume that both models had 
an equal chance of being true apritori.(See section 
(v), Chapter (V).) Thus if LogP is 4.6 or more, then 
the odds are better than 100 to 1 that our model is 
better. In the first of these columns, we compare 
equations(6.4) against (6.14), to get the probability 
that f is not zero; in the second, we compare the ARMA 
"Maximum" model (i.e.(6.18) adapted to mobilization) 
against the regression version of the model, 
to see if ARMA is better; in the third, we compare 
the ARMA version of (6.14)("Univariate") 
against regression. For LogP of 6.9 or more, odds are 
1000 to 1 or better; for LogP of 3, 20 to 1.
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Nation and bg LogP LogP LogP 
Data-Base b#Q ARMA ARMA 

Max. Uni. 
Ceylon “1,853 6.8 8.4 11.6 
Argentina ~977 1.9 9.2 7.8 
C.S.5S.R, ~137 ~-4 10.7 7.1 
Malaysia ~311 1.5 7.9 6.9 
USA (2) 2.698 9.0 9.6 6.3 
Finland 038 0.0 6,2 5.9 
Canada 1.945 3.1 8.3 5.7 
USA (1) 2.054 3.1 3.4 5.3 
israel (1) 4.215 14.3 7.5 5.3 
Scotland (2) 8.343 1.9 Hoy 4.8 
Scotland (1) 1,471 1.1 4.3 4.7 
Quebec - 365 2.4 7.2 4.3 
Israel (2) 3.963 13,1 3.9 3.7 
India 1.466 1.5 5.9 3.3 
* * 

* LogP (ARMA Uni.) Significant Above This Line * 
* ¥* 

Philippines -,627 9 4,4 2.6 
Taiwan (4) -.077 1.7 2.2 2.1 
Taiwan (3) -021 2.1 1.9 1.8 
Cyprus -.507 3.2 5 1.3 
Taiwan (2) -.1356 1.4 uk 8 
Taiwan (1) -.107 1.1 8 8 
Belgium -.220 2.8 5.7 25 

Table VI-12: Statistics Concerning Regression for the 
Assimilated and Differentiated Populations. 

"bg" is the value of "be", the rate of assimilation, 
in equation (6.15), as estimated by ordinary 
regression. "“LogP" is the standard, classical 
statistical measure of the relative likelihood of one 
model in comparison with another; it represents the 
natural logarithm of the odds in favor of the truth 
of the model we are interested in, compared with 
some other model, if we assume that both models had 
an equal chance of being true apriori.(See section 
(v), Chapter (V).) Thus if LogP is &.6 or more, then 
the odds are better than 100 to 1 that our model is 
better. In the first of these columns, we compare 
equation(6.17) against (6.17), to get the probability 
that b is not zero; in the second, we compare the ARMA 
"Maximum'! model against the regression version(6.18), 
to see if ARMA is better; in the third, we compare 
the ARMA version of (6.16) and (6.17)("Univariate") 
against regression. For LogP 6.9 or more, odds are 
1000 to 1 or better; for LogP of 3, 20 to 1.
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Nation and f LogP Rho Rho 
Data-~Base f#0 Mobil. Under. 

israel (1) -499 10.1 1.63 ~182 
Belgtum - 164 7.7 -1.13 03 
Cyprus ~ 232 7.4 -1,19 “1,424 
Israel (2) 2325 7.2 7746 204 
Finland (3) -.037 6.7 3-1.517 ~317 
Taiwan ~, 044 6.3 -1.641 1.710 
Malaysia -. 046 6.2 -1.518 -1.440 
Argentina (1) ~852 5.8 -1,329 1.819 
Argentina (2) -613 5.3 ~-1.72 1.780 
Fintand (2) -.012 4.9 -1,.009 ~733 
india -.142 Ke2 1.687 -1.447 
Japan -089 3.1 2325 - O64 
USSR (3) -030 3.1 565 1.296 
* * 

* LogP Significant Above This Line * 
* * 

USSR (1) -007 2.0 ~650 ~712 
C.S.S.R. - 316 1.8 -2.204 -2,257 
USA (1) -030 1.7 -629 1.529 
USSR (2) -.047 1.3 -530 -1.085 
Ceylon ~.012 -6 -1.096 -1.230 
Quebec -000 -6  -1.25 -,201 
Philippines -083 4 -1.517 -1.643 
Finland (1) -,158 -4 1,27 ~.162 
USA (2) -08 2 64 1.196 
Canada -.036 el » 360 1.229 

Table VI~13: ARMA Models for Mobilization Processes. 
"fg" is the rate of mobilization in equations (6.4), 
as estimated by the ARMA method. "LogP", as in Table 
Vi-11, is the classical measure of the probability 
that f is actually nonzero, despite the uncertainty 
of estimation; in this table, we use the ARMA models 
to calculate LogP. LogP here is the natural 
logarithm of the odds in favor of the proposition 
that f is not zero. When LogP is 4.6 or more, the 
odds are 100 to 1 or better that f is nonzero: when 
LogP its 3 or more, the odds are 20 to 1. "Rho" is a 
coefficient, discussed in the text, which tends to be 
nonzero when data collection or other measurement 
errors are large ( rho=l is very large); when rho is 
zero, the ARMA model reduces to a regression model.



Nation and bg 
Data-Base 

Israel (1) 4,215 
Israel (2) 3.959 
USA (2) 2.673 
Belgium -.219 
Canada 1.946 
Quebec ~ 348 
C.S.S.R. 2139 
India 1.453 
Ceylon -1.855 
Malaysia ~309 
Argentina -977 
x 

* LogP Significant Above Thi 
* 

Philippines -.632 
Cyprus -.507 
Taiwan (3) .021 
Taiwan (4) -.076 
Scotland (2) 8.351 
USA (1) 2.042 
Taiwan (1) -~.107 
Scotland (1) 1.597 
Finland -055 
Tatwan (2) -.137 

Table Vi-14: 

LogP Rho Rho 
b#0 Assim. Diff. 

19.7 -.006 <-1,15 
13.3 -583 ~441 
12.2 <-1.09 1.155 
8.1 -1.35 ~.323 
5.7 1.926 1.205 
5.4 -1.09 1.383 
4,1 -1.310 -1.399 
4,1 -1,.150 1.416 
3.6 -1.148 1.620 
3.5 -2.142 -1,326 
3.4 3.14 1.761 

* 

s Line * 
* 

2.7 1.02 -1.292 
2.3 043 336 
2.2 -017 373 
1.7 -.079 2402 
1.3 1.634 ~.324 
1.2 ~.141  -1.15 
1.1 .799 339 
.7 1.686 2025 
.3 1.497 ~057 

0.0 5.0 - 360 
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ARMA Modets of the Assimilation Process. 
"be" is the rate of assimilation in equation (6.15), 
as estimated by the ARMA method. 
Vi-12, 
that b 
of estimation; 

"LogP", as in Table 
is the classical measure of the probability 
is actually nonzero, 

to calculate LogP. 
logarithm of the odds 
that b 
odds are 100 to 1 or better that b 

is nonzero. 

LogP is 3 or more, 
coefficient, discussed 

LogP here is the natural 

When LogP 

the odds are 20 to l. 

despite the uncertainty 
in this table, we use the ARMA models 

in favor of the proposition 
is 4&6 or more, 

is nonzero; when 
Rho! 

in the text, which tends to be 

the 

is a 

nonzero when data collection or other measurement 
errors are large (rho=l 

the ARMA model zero, 
is very large): when rho 

reduces to a regression model, 
is



Hation and 
Data-Base 

Taiwan 
USSR (3) 
USSR (1B) 
USSR (2) 
Finland (3) 
Ceylon 

C.S.S.R. 
USSR (1A) 
Quebec 
India 
Malaysia 
Japan 

Israel 

Belgium 
Canada 
Philippines 
Israel (2) 
Finland (1) 
Cyprus 

Argentina (1) 
Finland (2) 
USA (1) 
Argentina (2) 
USA (2) 

(1) 

Table VI-15: 

Mobi] 
(6.18 
Max. 

- 26 
1.24 
84 

8.40 
-99 

5.08 
2.52 
1.58 
8.60 

17.45 
8.29 

33.09 
7.18 
4,29 

93.73 
14.60 
31.56 
10.02 
17.49 
11.61 
59.99 
63,83 
14.09 
47.04 

- Mobil. Mobit. Under. 
) (6.15) (6.17) (6.18) 

Model Uni. Max. 
223 73 19 

1.28 285 1.32 
83 95 . 82 

7.54 1.88 1.08 
»95 2.58 70 

5.27 3.86 3.42 
2.65 3.91 3.89 
1.58 8.39 -65 
8.22 12.88 8.52 

241.48 21.02 8.09 
11.66 22.20 5.80 
34,64 22.86 29.74 
10.28 24.90 24.55 
4.31 28.94 85 

99.59 29.11 10.07 
14.67 34.11 5.69 
5.60 34.82 52.89 
8.57 44.95 508.77 

18.00 54.67 6.66 
11.45 57.01 7.23 
51.32 83.91 100.64 
67.97 89.00 388.89 
13.02 100.25 16.86 
45.85 133.14 91.21 

Long-Term Predictions of Mobilized and 
Underlying Populations, 
in each case, 

the "data-base" defined 
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Under. 

(6.16) 
Uni. 

~ 84 
1.32 
HOu4 
o44 

2.37 
3.73 
3.65 
446 
7.42 
5.10 
443 

18.98 
8.31 
3.99 

19.43 
12.18 
49.91 
16.98 
17.62 
54.93 
45.94 
64.05 
42.58 

116.66 

RMS Averages of Percentage Errors With 

Based on Regression. 
the four models used were fitted to 

in Table Vi-23, and 
predictions were made from the “base year" to all 
later years for which we had data; 

here are averages, 
years, 

different models; 

(i.e. 

in each case, across alt 

the errors listed 

such test 

The five columns give errors with four 
these models are the equivalent 

have the same structure, with mobilization 
switched for assimilation, etc.) of the equations 
whose numbers are listed 
"Mobil." means "Mobi lized"; 
"Underlying". 
(i.e. 

in the column headings. 
"Under.'' means 

"RMS" means "Root-Mean-Square'! 

arithmetic average of the scuares.) 
Averages taken as the square root of the
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Nation and Mobil. Mobil. Mobil. Under. Under. 
Data-Base (6.18) (6.15) (6.17) (6.18) (6.16) 

Max. Model Uni. Max. Uni. 

Taiwan 243 ~22 72 .10 ~49 
USSR (3) 1.19 1.18 86 1.31 1.40 
USSR (1B) 85 85 1.00 85 3.64 
USSR (2) 8.52 6.82 1.38 1.11 ~47 
Ceylon 5.22 2.27 1.48 3.43 2.81 

C.S.S.R. 2.77 2.63 2.38 3.36 3.77 
Finland (3) ~97 ~79 2.55 -66 2,41 
Quebec 6.72 5.59 6.41 5.22 6.92 
USSR (1A) 1.78 1.47 8.92 48 3.90 
Philippines 14.96 11.53 12.60 4,81 2.83 
Cyprus 17.53 16.35 17.01 6.66 6.47 
Japan 33.37 38.07 18.91 33.74 19.23 
India 16.22 55.83 22.22 6.60 3.21 
Canada 57.82 93.74 22.42 12.24 8.82 
Malaysta 5.70 1.293 22.70 6.50 2.69 
Israel (1) 9.34 8.57 24.04 24,09 7.33 
Belgium 4,32 3.44 29.05 87 3.98 
Israel (2) 29.24 6.05 33.65 54.85 47.94 
Argentina (1) 11.69 8.84 51.11 11.64 46.74 
Finland (1) 9.65 11.43 53.63 241.79 16.62 
USA (1) 63.76 61.76 81.05 481.04 53.27 
Finland (2) 14.29 16.59 84.78 7.04 55.10 
Argentina (2) 12.86 7.65 96.40 8.18 42.75 
USA (2) 53.79 46.19 135.70 110.62 113.57 

Table VI-16: RMS Averages of Percentage Errors With 
Long-Term Predictions of Mobilized and Underlying 
Populations, Based on the ARMA Method, 
In each case, the four models used were fitted to 
the "data-base" defined in Table VI-23, and 
predictions were made from the "base year" to all 
later years for which we had data; the errors listed 
here are averages, in each case, across all such test 
years. The five columns give errors from four 
different models; these models are equivalent 
(i.e. have the same structure, with mobilization 
switched for assimilation, etc.) of the equations 
whose numbers are listed in the column headings. 
"Mobil." means "Mobilized"; "Under." means 
"Underlying". "RMS" means that "Root-Mean Square" 
averaging was used,



Nation and 
Data-Base 

Taiwan 
USSR (3) 
Finland (3) 
Ceylon 
USSR (2) 

C.S.S.R. 

Malaysia 
Quebec 
Israel (2) 
India 
Belgium 
Canada 
Finland (2) 
Philippines 
Argentina (1) 
Cyprus 

Japan 
Argentina (2) 
USA (2) 

Israel (1) 
Finland (1) 
USA (1) 

Table Vi-17: 

Mobil. Mobil. 
extl 

59 
99 

1.17 
1.82 
2.34 
3.50 
4,69 
5.83 
8.06 
8.72 
8.84 

10.42 
13.99 
14.35 
16.91 
17.95 
18.63 
24.16 
32.25 
39.94 
57.22 
85.23 

"hase year" to all 
the errors listed here are 

across all such test years. 

ext2 

78 
1.76 

2.42 
2.98 

3.42 
& 14 
6.61 

11.47 
29,19 
10.31 
15.63 
24.16 
34,76 
29.90 

23.10 

18.77 
18.96 

42.12 
46.03 

33.84 
53.28 
89.70 

RMS Averages of 

Under. 

extl 

99 
75 

1.33 
3.11 
77 

3.83 
3.31 
5.96 
8.46 
3.64 
1.83 
4.78 

10.65 
4,94 

15.26 
7.35 

12.89 
13.21 
24.96 
21,54 
28.20 
89.65 

Under. 
ext2 

1.49 
1.49 
2.69 
h,O1 
.96 

4. 26 
ue7h 
9.83 

50.83 
3.68 
4,52 

13.40 
21.36 
9.40 

24.63 
7.39 

17.54 
21.22 
52,04 

12.57 
24 48 
84.45 
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Percentage Errors With 

Long-Term Predictions of Mobilized and Underlying 

Populations, Based on the Robust Method (GRR). 

In each case, equations (6.2) with the "fU" term 

removed were fitted to the "data-base" defined in 

Table V1I-23, and predictions were made from the 

later years for which we had data; 

averages, in each case, 

"Mobil." means "Mobilized"; "Under.", "Underlying". 

Nextl" is the variety of robust method used by 

EXTRAP, described 

variety mentioned in section (iii) and tabulated 

only for the sake of formal completeness. 

"RMS" means that “Root-Mean-Square" averaging 

was used. 

in section (ii); Next2" is another
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Nation and Assim. Assim. Assim. Diff. DIff. 
Data-Base (6.18) (6.15) (6.17) (6.18) (6.16) 

Max. Model Uni. Max. Uni. 

Taiwan (3B) 36 2.98 73 2.89 7.62 
Taiwan (2) 2.96 3.80 1.36 13.35 27.13 
C.S.S.R. 1.67 1.35 1.79 6.87 5.92 
Taiwan (1) 3.81 5.37 2.48 17.65 25.81 
Taiwan (4) 295 90 2.85 23.90 161.45 
Taiwan (3A) 1.18 25,29 3.23 25.29 156.78 
Finland 4.60 BOW 4.82 14,17 17.41 
india 6.12 3.91 5.82 7.25 8.80 
Scotland (2) 2.97 2.93 6.29 5.89 21.34 
Cyprus 1.43 2.14 6.59 u.5l 21.94 
Scotland (1) 3.34 3,24 6.72 3.26 6.27 
Canada 12.59 5.97 12.28 13.84 24.86 
Malaysia 3.72 3.81 12.50 3.72 9.18 
Belgium 6.47 9.80 12.98 3.58 6.08 
Quebec 2.68 2.39 15.64 12,07 31.2 
Argentina 41.78 13.64 16.91 145.39 122,23 
Ceylon 11.15 192.41 17,49 7.31 15.07 
Philippines 27.55 36.40 29.91 22,40 8.47 
Israel (1) 1.95 1.95 21.69 8.06 8.37 
USA (1) u4he1i1 5.11 HEGO 71,54 69.92 
Israel (2) 30.60 3.48 46.56 33.47 23.70 
USA (2) 39.04 7.99 97.61 45.61 24.41 

Table VI-18: RMS Averages of Percentage Errors With 
Long-Term Predictions of Assimilated and 
Differentiated Populations, Based on Regression. 
In each case, the four models used were fitted to the 
"data-base" defined in Table VI-24, and predictions 
were made from the "base year" to all later vears 
for which we had data; the errors listed here are 
averages, in each case, across all such test years. 
The five columns give errors from four different 
models used in predictions; these models correspond 
to the equations whose numbers are listed in the 
column headings. "Assim." = Assimilated; "Diff.'!! = 
Differentiated. "RMS" means that "Root-Mean-Square!! 
averaging was used.
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Nation and Assim. Assim. Assim. Diff. Diff. 
Data~Base (6.18) (6.15) (6.17) (6.18) (6.16) 

Max. Model Uni. Max. Uni. 

Taiwan (38) 37 2.99 76 2.97 8.04 

Taiwan (2) 3.72 4.81 1.31 13.64 22.64 

C.S.S.R. 1.41 1.24 1.78 6.92 5.59 

Taiwan (1) 3.52 5.48 2.50 17.61 21.08 

Finland 2.91 2.86 2.66 17.65 17.51 

Taiwan (4) 295 .99 2.84 23.93 157,15 

Taiwan (3A) 1.18 25,84 3.15 25.24 167.19 

Scotland (1) 3.31 4.64 5.98 3.50 6.03 

Scotland (2) 2.69 4.09 5.11 15.49 17.05 
India 3.47 2.82 5,77 2.72 12.48 
Cyprus 1.34 2.11 6.96 4.69 24.37 
Malaysia 3.28 3.56 8.24 3.66 3.55 
Canada 14.20 5.63 10.32 14.72 17.54 
Belgium 4.65 1.99 13.22 2.97 5.48 
Quebec 2.31 1.79 14.87 11.97 25.87 
Ceylon 10.37 2.78 19.95 8.01 19.61 
Philippines 28.01 14.39 21.69 21,81 3.98 
Israel (1) 1.76 1.76 22.43 8.30 8.79 
Argentina 41.89 13.83 22.67 145.30 151.99 
Israel (2) 30.12 3.55 37,386 33.77 31.25 
USA (1) 403 5.72 55.80 71.45 61.96 
USA (2) 40.80 11.95 96.40 46.28 62.30 

Table VI-19: RMS Averages of Percentage Errors With 
Long-Term Predictions of Assimilated and 
Differentiated Populations, Based on ARMA Methods. 

In each case, the four models used were fitted to the 

"“data-base" defined in Table V!I-24, and predictions 
were made from the "base year' to all later years 
for which we had data; the errors listed here are 
averages, in each case, across all such test years. 
The five columns give errors from four different 
models used in prediction; these models correspond 
to the equations whose numbers are listed in the 
column headings. "Assim." = Assimilated; "Diff." = 
Differentiated. "RMS" means that "Root-Mean-Square" 
averaging was used,



Nation and 
Data-Base 

Taiwan (38) 
Taiwan (3A) 
Taiwan (4) 
c.S.S.R. 
Cyprus 
Taiwan (1) 
Finland 
Scotland (2) 
Scotland (1) 
Malaysia 
Taiwan (2) 
India 
Quebec 
Argentina 
Belgium 
Philippines 
Canada 
Israel (2) 
Ceylon 
USA (2) 
Israel (1) 
USA (1) 

Table VI-20: 

Differentiated Populations, 
Method (GRR). 
fitted to the "data-base" defined 

here are averages, 
years. "Assim. "=Assimilated; 

Assim. 
extl 

237 
75 

1.65 
1.75 
2.03 
2.25 
2,27 
3.30 
3.42 
4,05 
4.12 
4.19 
4.67 
4.95 
5.23 
5.74 
6,21 
6.92 
7.43 

18.38 
37.56 
62.82 

Assim, 
ext2 

66 
3.54 
3.71 
1.79 
3.01 
1.94 
6.03 
8.67 
9.01 
6.20 
3.69 
4.25 

12.15 
4.96 
6.67 

11.44 
14.30 
41.69 
7.29 

34,22 
29.76 
59.97 

Diff. 
extl 

29.71 
47,03 
B5,O4 
5.73 
6.01 

154.54 
9.48 

10.33 
3.12 
4.71 

149.39 
3.78 

20.12 
38.74 
3.70 
4,26 
8.61 
434 
5.63 

15.91 
9.41 

68.33 

Diff. 
ext2 

53.74 
134.42 

130.92 
7.54 
9,85 

130.61 
15.89 
15.48 
7.74 
8.13 

125.87 
4.80 

31.83 
66.85 
3.72 
4.47 

15.26 
5.82 
7.73 

35.95 
9.17 

69.10 
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RMS Averages of Percentage Errors With 
Long-Term Predictions of Assimilated and 

In each case, 

in each case, 

Based on the Robust 

equations (6.8) were 
in Table Vl-24, and 

predictions were made from the "base year" to all 
later years for which we had data;the errors listed 

across all such test 
niff "=sDifferentiated. 

"extl'' is the variety of robust method used by 
EXTRAP, described 
variety mentioned 

was used, 

in section (ii); "ext2" 
in section (iii) and tabulated 

only for the sake of formal completeness. 
"RMS" means that "Root-Mean-Square" averaging 

is another



Nation and 
Data~Base 

USA (2) 
Israel (2) 
Finland (2) 
Cyprus 
CSSR* 
Malaysia 
Japan 

Ceylon 
India(+Pak. )* 
Taiwan 
USSR (3) 
Argentina (1) 
Argentina (2) 
Philippines 
Canada 
Quebec 
Belgium 

Mobilization 
1980 

275, 
4.98 

3.02 
2145 

11.4 
3.89 

136. 
11.2 

75.4 

7.24 

255, 
30.6 
31.5 
30.4 
23.5 

6.90 

7.80 

1990 

407. 
9.08 
3.80 
-171 
12.3 
6.01 
207. 
15.6 
84.0 
11,3 
419. 
4he1 
49.1 
46.4 
32.4 
9.31 
8.88 

2009 

602. 
16.6 
4.78 
2202 
13.3 
9.30 
313. 
21.8 
93.4 
17.8 
687. 
63. 
76. 
70. 
au, 
12. 
10. m

o
m
 

c
o
~
 
u
o
 

Underlying 
1989 

80.5 
~572 
2.71 
~615 
2.24 
7.28 
31.1 
4.15 
419. 
13.4 
Tul. 
7.28 
9.86 
18.7 
6.49 
1.47 
3.10 

1999 

95.1 
.638 
2.94 
-703 
2.11 
§.79 
29.7 
4.39 
Wu, 
17.7 
170. 
8.58 
11.7 
21.6 
7.05 
1.54 
3.11 

Table VI-21: Predictions of Future Mobilized 
Underlying Populations, by the Robust Method(GRR). 

Next2" used; 
All figures 

see discussion 
in millions; 

in text. 

definitions 
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Pon. 
2900 

112, 
.713 
3.18 
803 
1.99 
10.4 
28.3 
4.63 
467. 
23.2 
204. 
10.1 
13.8 
24.9 
7.66 
1.61 
3.12 

and 

in Table VI-23. 

* = Base year for predictions was before 1959. 

Note that 1974 populations for India, Pakistan 

and Bangladesh total more than 650 million.



Nation and 
Data-~Base 

USA (2) 
Israel (2) 
Taiwan (3B) 
Taiwan (4) 
Canada 
Quebec 
Ceylon 
Finland 
Malaysia 
CSSR* 

India(+Pak.)* 
Cyprus 
Scotland (1) 
Scotland(2)** 
Argentina 
Philippines 
Belgtium 

Table VIl-22: 

Assimilation 
1980 

254, 
B43 
14.4 
17.5 
21.7 
7.20 
9.25 
5.02 
4.67 
10.1 
329. 
-638 
5.43 
5.45 
30.1 
9.87 
3.44 

1990 

321. 
7.12 
18.5 
24.0 
26.6 
9.16 
10.9 
5.55 
5.56 
10.8 
346. 
742 
5.61 
5.61 
39.5 
25.2 
3.61 

2000 

4O5. 
11.5 
23.9 
32.9 
32.6 
11.7 
12.8 
6.13 
6.62 
11.6 
364. 
363 
5.89 
5.76 
52.9 
32.9 
3.80 
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Differentiated 
1980 

35.5 
.699 
45.2 
18.5 
4,53 
~701 
4.54 

~ 347 
5.64 
3.98 
165, 
-128 
2955 
402p 

4.22 
24.1 
7.43 

1999 

42.8 
1.01 
286, 
90.1 
5.19 
597 
5.22 
352 
7,28 
3.01 
179. 
~ 142 
946 
239p 
5.41 
39.0 
8.09 

2000 

51.6 
1.53 
1815 
439. 
5.96 

.694 
5.01 

~356 
9.40 
2.94 
195, 
.157 
~039 
142p 
6.94 

37.1 
§.82 

Predictions of Future Assimilated and 
Differentiated Populations, by the "ext2" version of 
the Robust Method (GRR). 

in millions, All figures 

See discussion 
except 

in Table VI-24, Definitions of "Assimilated" 

in text. 
in Scotland. 

* - Base year for predictions was before 1959. 

too few for millions. xx - "yp" used to mean "people";
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Nation and Mobilization Years Model Gap In Base 
Data-Base Definition Is Fitted To Years Year 

USA (1) urbanization 1790-1870 10 1870 

(2) mn 1790-1960 10 1790 

Israel (1) ue 1948-1957#« 1 1957 

(2) ne 1948-1967+** 1 1948 

Finland (1) mn 1809-18890 10 1880 
(2) me 1800-19690 10 18090 
(3) we 1958-1967 1 1958 

Cyprus we 1881-1961 19 1901 
C.S.S.R. ne 1900-1940* 10 1990 
Malaysia nu 1911-1961+ 10 1911- 
Japan mn 1920-1960 5 1920 

Ceylon literacy 1881-1951 19 1881 
India(+Pak.) urbanization 1881-1941 10 1881 
Taiwan uu 1960-1966 1 1960 
USSR (1A) we all below 1 1924 

(1B) mit all below 1 1953 
(2) tee 1922-1931 1 1924 

(3) wn 1950-1965 1 1953 

Argentina (1) (Table Vi!-10) 1869-1960+* 22.75 1869 
(2) literacy (b) 1869-1960* 22.75 1869 

Philippines literacy 1993-1961* 14.5 1903 
Canada urbanization 1851-1961 10 1851 
Nuebec mu 1851-1961 19 1851 

Belgium me 1869-1950* 10 1860 

Table V1I-23: Definition of Mobilization Variables and 
Spans of Years Used For Runs Described in Tables 
Vl-11 through VI-22. All long-term predictions were 
made from data in the "base year", up to the end of 
the continuous string of observations of which it is 
a part, in the Deutsch-Kravitz data. "Gap !n Years"! 
is the interval between observations. 

* - interpolated data; N not artificially enlarged. 
** - heavily interpolated. (8 years actual data 

spaced out [into 20-year string.)
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Nation and Assimilation Years Model Gap In Base 
Data-Base Definition Is Fitted To Years Year 

USA (1) White 1799-1879 19 1870 

(2) ne 1790-1960 19 1799 
Israel (1) Jewish 1948-1957 1 1957 

(2) wn 1948-1967 1 1948 
Taiwan (1) Taiwanese 1946-1955 1 1955 

(2) Not Mainlanders 1946-1955 1 1955 
(3A) Taiwanese 1946-1965 1 1946 
(3B) ne 1946-1965 1 1955 
(4) Not Mainlanders 1946-1965 1 1946 

Canada Not French-Only 1901-1961 10 1901 
Quebec Not English-Only 1901-1961+* 10 1901 
Ceylon Buddhist 1881-1961+* 19 1901 
Finland Speak Finnish 1880-1960 10 1880 
Malaysia (no choice) 1911-1961* 10 1911 
C.S.S.R. Ethnicity 1900-1940 10 1909 
India(+Pak.) Hindu 1881-1941 19 1881 
Cyprus Not Mostem 1881-1961* 10 1881 
Scotland (1) Speak No Gaelic 1891-1961* 19 1891 

(2) Speak English 1891-1961 10 1891 
Argentina Ethnicity 1869-1960* 22,75 1869 
Philippines Visayan 1903-1961* 14,5 1993 
Belgium Speak French 18590-1950* 19 1859 

Table V!I-24: Definition of Assimilation Variables and 
Spans of Years Used For Runs Described in Tables 
Vi-11 through VI-22. All long-term predictions were 
made from data in the "base year", up to the end of 
the continuous string of observations of which it is 
a part, in the Neutsch-Kravitz data. "Gap in Years" 
is the interval between observations. 

* - Interpolated data; length of data sample not 
artificially enlarged.
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the Deutsch-Kravitz data. 

When we applied the ARMA routine to the 

Deutsch-Kravitz data, using several different versions 

of the Deutsch-Solow model, we found consistently 

that:(i) according to the usual measure of statistical 

significance, the "ARMA" models were indeed superior to 

the corresponding regression models, with "p'! - the 

probability that this was a mere coincidence - less 

than .01 in most cases (see Tables V!I-11 and V1I-12); 

(ii) in terms of long-term predictive power, the ARMA 

models did not do very much better than the regression 

models; they led consistently to a reduction in the 

size of prediction errors, but only by about 10% of the 

error sizes at best. (The slight differences in error 

distributions between the two methods are visible in 

Figures VI-1 through VI-4&.) The second of these two 

results was also corroborated by our results in Norway, 

to be discussed in section (v). 

There are two immediate corollaries to these 

results. First, that the usual significance measure is 

hot a good index of long-term predictive power, at 

least not for models which correspond to the same 

choices of variables. Second, that the "robust method", 

which performed much better than regression in our 

initial research, is superior to the ARMA method as
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well, in terms of long~term prediction. (See 

Figures VIi-1 through VI-4, on Pages VI-3 through VIi-7.) 

In order to document the second corollary more 

concretely, we have also made use of GRR (GRowth Rate) 

- a revised form of EXTRAP, for robust estimation in 

the univariate linear case - to establish an exact 

correspondence between the three methods, for the 

assimilation and differentiation data; more precisely, 

in Figures VIi-1 and Vi-2, we have graphed the error 

distributions for all three methods, as methods of 

making predictions based on the same substantive model, 

equations (6.8), and as tested over the same sample 

cases of data drawn from the Deutsch-Kravitz data. In 

these graphs, the superiority of the robust method is 

clear, for both the GRR and EXTRAP versions. From the 

simulation studies of Chapter (IV), one might suspect 

that this superiority is due in part to the overlaps 

between the data-bases over which our models are fit 

and the years over which they are tested. However, we 

have included a few examples of a time-series split in 

half, with the model fitted to the first half and the 

predictions made to the second half. (See Tables V1-23 

and V1I-24. Israel, Taiwan, USA and Finland are the 

prime examples, because they are the cases where 

adequate data was available for such a splitting.)
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These examples do not seem markedly different from the 

other cases studied; unfortunately, these examples are 

too few to allow a definitive conclusion. We will see, 

however, that the ARMA model for equations (6.8) has 

more free parameters to estimate than do either the 

regression or the robust methods. When the supply of 

data is very limited, an overlap between the data 

samples used for fitting and testing would tend to 

overstate the relative performance of the model with 

more parameters. (It is standard practice, for example, 

to try to correct for "degrees of freedom" in one's 

model, when the data are quite limited; this subject, 

however, is a Pandora's Box, which we will not open 

here.) In short, the strong superiority of the robust 

method over the ARMA method, in these studies, is 

probably not due to any bias in the details of our 

procedure. 

Before we go more deeply into the mathematical 

details of these studies, the political scientist might 

be curious about the projections of the future by the 

models we have looked at, for some of the countries 

where they have worked well in the past. In 

Tables VI-21 and VI-22, we have listed the predictions 

of the robust method (GRR) for the future, in the 

countries we have studied. The uses of these numbers
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are for the reader to decide for himself; our 

authorship of the numbers in no way implies that our 

opinions about their use are any better than anyone 

else's. However, these opinions are probably worth 

recording here, at least to provide the reader with a 

straw man to debate with. 

When one first glances at these tables, a few wild 

numbers immediately grab the eye. How, for example, 

could the Republic of China (Taiwan) be expected to 

have 1,800,000,000 inhabitants in the year 2000? (See 

Table VI-22.) Then, if one has a little serendipity, 

one will note that only a few million of these are to 

be "Taiwanese", that about 450 million are to be 

mainland Chinese, and that the rest would appear to be 

neither. Visions spring to mind of a collapse of the 

People's Republic, of a return to the mainland by 

Chiang's son, and of the expansion throughout the weak 

nations of Southern Asia by this new, fascistic 

nationalistic regime. It would be amusing to study the 

pros and cons of the possibility of such a scenario. 

However, the simple models we have used do not "know"! 

about (do not account for) the complex factors which 

might make such a scenario possible; while it is 

possible for a model to "“know'' about such factors 

implicitly, we suspect that these models are too simple
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even for that, in the example at hand. A_ simpler 

interpretation of these wild numbers is that the 

predictions of this model, in the future, will be very 

much like the predictions in the past; they will 

contain a handful of wild outliers, and a larger number 

of surprisingly accurate predictions of the percentage 

of assimilation. tt is fortunate that we can spot some 

of the outliers so easily in advance, simply by using 

our general knowledge that some of the predictions are 

absurd. 

In the other cases, we would tend to follow the 

procedures suggested in Chapter (V). We would place 

greater faith in predictions based on a model estimated 

over a long data-base - as in Finland - as opposed to 

predictions based on a lot of data restricted to a 

shorter period of time (e.g. Taiwan or Israel); 

indeed, the absurdity of the latter predictions offers 

some tangible evidence for our point of view. We would 

try to ask in each case: "What does the model really 

"know! about? At what dynamic level could one observe 

the effects of the forces which will be important in 

the future? Given those factors which | know about, and 

given the subset of those which cannot be subsumed 

under something which the model accounts for, how would 

|! adjust these predictions?" Questions of this sort
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lead one to a different approach to applied political 

science, as we have discussed in Chapter (V). 

In some sense, the predictions of these simple 

models are based on the continuation of the trends 

which have existed for a long time in the past. It is 

often comforting for a decision-maker to assume that 

his administration will somehow be free, at little 

cost, from the momentum of such trends; indeed, when 

one is harassed, as most decision-makers are, it is 

easy to "miss the forest for the trees", and to 

overestimate the implications of short-term reverse 

fluctuations. The predictions of this model, in some 
  

sense, show the decision-maker what the forest looks 
  

like. [ft is still up to him to use his judgement, to 

decide whether his administration is truly, objectively 

likely to perform much differently from those which 

have dealt with the same problems in the past. Even in 

concrete terms, these predictions imply no dramatic 

shift in the percentages of assimilation in the 

countries studied; a strong upsurge of the Visayans is 

predicted in the Philippines, and Chinese with recent 

roots in the mainland are projected to become a 

majority of the population of Taiwan, but these are the 

only exceptions. 

A few of our readers might also be interested in
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the predictions of the regression and ARMA models, in 

some of the countries where they have worked well in 

the past. These projections are too voluminous to be 

duplicated here(11), but their fine details are 

probably unreliable in any case. 

In Canada and Quebec, as a whole, the model 

predicts little change in the relative balance of 

French and English speakers, to the year 2000. (This 

would appear to contradict the separatist claim that 

the French language would die away without special 

political measures to bolster it. On the other hand, it 

implies that French Canadians will remain a political 

force to be reckoned with. In Canada and in Quebec, our 

models did better in predicting the longer periods of 

time, rather than the shorter; the "10% errors" listed 

in the Tables are mostly from transient deviations from 

the trend predicted by the models.) A large increase in 

urbanization is predicted for Quebec, which, in 

practice, might shift the assimilation trend more to 

the advantage of French speakers. In Ceylon, a large 

increase in literacy is projected. !n Scotland, a 

further large decrease in the knowledge of Gaelic is 

predicted. (If knowledge of Gaelic were a good 

indicator of political behavior, this would imply that 

recent signs of a revival of Scottish nationalism are
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misleading and transient; however, the connection 

between linguistic nationalism and political 

nationalism may not be simple tn this case, any more 

than in the case of Ireland.) In Japan, a huge urban 

population - 200-odd million ~ was forecast; however, 

from the limitations cited in section (ii), it should 

be emphasized that political and economic factors may 

cross the threshold of being able to upset this 

prediction. (!n Japan, as in Canada, the errors 

reported in Tables VI-16 and VI-19 were essentially 

transient.) In Cyprus and Taiwan, the ARMA models 

predict little change in the balances between the 

different factions. 

Now let us look more closely at the mathematical 

details. Our primary interest was in the original 

Deutsch~Solow model - equations (6.1) and (6.2) = and 

in the reduced form of this model, with the "bp" and 

"FU" terms eliminated. (e.g. equations (6.8).) Instead 

of working with the Deutsch-Solow model directly, in 

terms of differential equations, we worked with the 

finite-difference equations which the model implies, 

equations (6.3) and (6.4); to refresh the reader's 

memory, let us recall what equations (6.3) looked like: 

A(tt+l) = agACt) + bg h(t)
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D€tt1) = c4D(t), 

where aq is the natural factor of growth of the 

assimilated population, where bq is the rate of 

assimilation per unassimilated person per unit of time, 

and where cq is the natural factor of growth of the 

differentiated population minus ba. In like manner, the 

  

reduced form of the Deutsch-Solow model, with the "bp" 

and "fU" terms removed, leads to a reduced form of the 

finite-difference equations: 

A(t+1) = agA(t) 

(6.13) 

D(t+1) = CeD(t), 

and: 

M(t+1) = egM(t) 

(6.14) 

UCt+1) = BeU(t). 

In predicting the differentiated population, (6.13) is 

equivalent to (6.3); tn predicting the assimilated 

population, (6.13) is equivalent to assuming that the 

number of people assimilated per unit of time is 

Proportional to the number already assimilated. It 

should be emphasized that this reduced form of the
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Deutsch-Solow model was studied for the sake of its 

mathematical simplicity, not for the sake of any hope 

that it would be superior to the original model on 

substantive grounds. (In section (v), we will discuss 

regression models based on what appears to be an 

intermediate assumption, that the number assimilated 

can be explained partly as a constant percentage of the 

Overall population; however, the ARMA models to be 

discussed in that section achieved greater empirical 

success than these regression models, even though they 

lacked such a constant term.) 

in section (ii), we already described how we 

applied the "robust method" to the reduced form of the 

Deutsch=Solow model. Our new routine, GRR, estimates 

the parameters of that model in exactly the same way, 

except that it works only on a continuous series of 

data spaced at regular intervals. In order to use 

classical regression on equations (6.3) and (6.13), we 

added an "error term", n(t), to each, and attempted to 

fit the regression equations: 

ACt+1) = agA(t) + beD(t) + n(t) (6.15) 

D(t*1) = cgD(t) + n(t) (6.16) 

ACt+1) = agA(t) + nt) (6.17)
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The terms "n(t)" represent the various random 

disturbances which we invoke to explain the actual 

errors we experience in predicting A(t+1) and D(tt1) 

from the known values of A(t) and D(t), by use of our 

models. The equations for mobilization were exactly 

parallel in their structure. For each of the 

forty-five cases of assimilation and mobilization 

studied, taken from seventeen nations, each of these 

three equations was estimated separately by use of the 

T.S.P. command ARMA. (More precisely, the three 

equations, in order, were analyzed by issuing the 

commands: "arma assimilated on differentiated$end$", 

"arma differentiated$end$", and "arma assimilated$end". 

Note that variables which are named after the keyword 

"on" are treated as "exogenous," as variables to be 

used in making predictions but not themselves to be 

predicted by use of the equations at hand.) In 

addition, since it was impossible to simulate more than 

one set of equations at the same time, we estimated the 

set of equations: 

AC ttl) u 

(6.18) 

DC tt+1) u CgDCt) + dgACt) + mt),
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where 'm(t)" is also a random disturbance; this set of 

equations represents the combination of (6.15) and 

(6.16), with an extra term added solely for the purpose 

of creating a "complete set" of equations that fits the 

"vector ARMA" framework discussed in Chapter (Ill). 

(This set of equations was estimated by the command 

"arma assimilated differentiated$end", or, in the case 

of mobilization, by "arma mobilized underlying$end$", ) 

In Chapter (I11),we have emphasized that there is 

a correspondence from any regression model, to an ARMA 

model which says the same thing but which also allows 

for the possibility of measurement error; for example, 

(6.15) is equivalent to: 

ACttl) = agACt) + bgD(t) + n(t) + Pn(t-1), 

(6.19) 

where "P" may be called a "rho coefficient". Notice 

that the "rho coefficient" does not multiply a 

substantive variable in this problem; rather, it 

multiplies the previous value of the same disturbance,   

(Elsewhere, of course, we have used the same letter, 

"n", to refer to different random processes.) From an 

intuitive point of view, it is simply a measure of the 

presence of "measurement noise," of collection errors 

in the available numerical data vis-a-vis the original
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underlying concepts, as we have discussed in 

Chapter (III). When rho is small, this Implies that 

the regrssion model (i.e. the same model without the 

rho term) is fairly close to the "truth"; more 

precisely, It implies that tractable aspects of 

measurement noise will have little effect on one's 

estimation. When rho is large, this implies that 

measurement noise is substantial. The four computer 

commands mentioned above were sufficient, not only to 

estimate the four sets of regression equations above, 

but also to estimate automatically the equivalent ARMA 

equation in every case. For each model estimated, LogP 

significance scores were printed out; the differences 

between these LogP scores, for two models being 

compared with each other, gave us the LogP scores 

reported in Tables VI-11 through Vi-14. The "rhos" 

reported in these tables for the "Maximum" model 

(i.e. (6.18) or the equivalent for mobilization) were 

actually the diagonal terms of the rho matrix, "P", of 

Chapter (III). 

As part of the ARMA command, an automatic 

simulation facility was also available. After the 

regression and ARMA models were estimated over a given 

set of years (a "data-base"), simulations could be made 

from any given year ("base year") into the future.



Page VI-77 

Actual data for "endogenous variables", for variables 

which the model can predict, are taken only from the 

base year; predictions are made, further and further 

into the future, by being compounded on other 

predictions. After the predictions are done, they are 

checked against real data. Thus the predictions are 

true long-term predictions. (The percentage errors are 

calculated as a percentage of the average of the 

absolute values of the predicted and actual values, and 

are averaged together by root-mean-square averaging.) 

However, in equation (6.15), the differentiated 

population is not internal to the equation; thus the 

predictions made in that case are not true long-term 

predictions, for our purposes. 

In using GRR, to make and evaluate predictions 

similar to those made by ARMA, we used two different 

techniques. One of these techniques, exactly parallel 

to EXTRAP (and thus to "ext1" discussed tn 

Chapter (1V)), has been used in Figures VI-1 through 

Vi-h; the other, the same as "ext2" in Chapter (IV), 

starts from the real data in the base year, and uses   

its estimates of a, c, e and g in equations (6.13) and 

(6.14) to compound predictions of the future. Error 

percentages were calculated by the same formula as with 

ARMA,
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In brief, with all of these techniques - ARMA and 

GRR - data were used, spaced at regular intervals, for 

Fitting the model; then, from a base year, predictions 

were made to later periods of time, also by regular 

intervals, with the same formula used to measure 

percentage error. Given that the original data were not 

available at regular time intervals, an interpolation 

routine, "INTS", In TSP was used to create equivalent 

data at regular intervals, by geometric interpolation; 

except in the case of Israel, however, the data perfods 

interpolated to were quite close to the original data 

periods. (In Israel, data were collected annually, but 

missing data occurred rather randomly, and 

interpolation was to an annual series.) 

The results from these runs are shown in Tables 

VI-15 through VI-20. We have already discussed the 

broader implications of these results. A more detailed 

inspection of the statistics in these tables tends to 

reinforce those implications, particularly the 

implications of weakness on the part of the classic 

maximum likelihood methods (regression or ARMA). Note, 

for example, that the usual measure of statistical 

significance gives greater emphasis to the superiority 

of the ARMA models over the regression models than ft 

does to the values of the cross-coefficients - "b" and
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"ftt ~ which represent the rates of assimilation and 

mobilization. This would seem almost to imply that it 

is more probable that assimilation and mobilization are 

not happening, than that the regression model is as 

good as the ARMA model, if we accept the classical 

measure at face value. 

In terms of minimizing long-term prediction 

errors, however, the complex, expanded form of the 

Deutsch-Solow model, equations (6.18), which includes 

the cross-coefficients, did better than the univariate 

models, (6.16) and (6.17); this applies to both the 

ARMA and regression forms of these models, in whatever 

combination, implying that the cross-terms really were 

more important in terms of actual prediction errors 

than the difference between ARMA and regression. 

Admittedly, however, our prediction tests may have been 

biased in favor of models with more parameters in them. 

Still, in acknowledging this bias, one must go on to 

observe that the univariate robust method - based on 

far fewer parameters than the ARMA variation of (6.18) 

- still did better In long-term prediction than either 

form of (6.18); given that our tests were biased in 

favor of the latter, the superiority of the robust 

method is clear. 

Also, if we look at the values of the "rho
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coefficients", "P", in Tables VI-13 and Vi-14, we again 

see that the standard statistical analyses here come 

out strongly in favor of the ARMA method. As we 

mentioned above, the estimated value of rho is a good 

measure of how different the ARMA model is from the 

corresponding regression model; the regression model 

corresponds to the special case where the "rho!! 

coefficients are all set to zero. The rho coefficients 

do indeed seem to be very different from zero; this 

would seem to indicate that the processes here strongly 

require the additional terms provided by the ARMA 

model. This phenomenon would hint that the mediocre 

predictive power of the ARMA models may be due to a 

lack of the quantity of data needed, in each case, to 

estimate the ARMA coefficients precisely enough. 

However, the Norway results of section (v) will show 

that more data per case are not enough to overcome the 

problem. Also, if we look at the regression and ARMA 

estimates, both, of the constants "b" and "f" in our 

models (Tables VI-11 through VI-14), we find many 

values which look unrealistically high, especially when 

we stick to the intuitive interpretations of them as 

"assimilation rates" (e.g. USA, with 267% of all blacks 

turning white per decade); we know that such 

assimilation rates are unrealistic, largely because we
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know that they would lead to absurd predictions if 

extended over a few time periods. If we suspect that 

the true values of these rates would be far smaller, 

then, according to the usual significance measure, we 

must admit that the measured values are “significantly 

different" from zero to about the same extent that they 

are "significantly different" from their true values. 

In other words, the error is quite significant; it is 

not likely to be a coincidence, due to a small quantity 

of data. Rather, we would say that the error is due to 

a conventional criterion for likelihood estimation 

which emphasizes, in practice, only short-term 

predictive power. If we admit that huge, bad estimates 

of the cross-coefficients lead to unrealistic 

predictions when extended over enough time-intervals, 

then we imply that a different approach to estimation, 

based on the direct maximization of long-term 

predictive power, would give us smaller and more 

realistic estimates. Insofar as the estimates of these 

coefficients are artificially inflated by the maximum 

likelihood approach, it is quite possible that the same 

process affects the "rho" coefficients. 

Also, the variability of the signs of the "rho" 

coefficients tends to imply, from the mathematics at 

the beginning of Chapter (III), that many of these
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large values for the "rho" coefficients are due to 

something else besides pure measurement noise. In 

quantitative political science, one often reads 

statements such as,"Measurement noise with this data 

would tend to invalidate the regression coefficients; 

however, such noise would tend to understate the 

strength of the real connections; therefore, the 

effects demonstrated here are, if anything, more valid 

than regression would indicate." {f there is a strong 

possibility of effects which move rho coefficients in 

the opposite direction from what measurement noise 

would indicate, then regression may just as easily be 

overstating the strength of major coefficients. Thus 

we find, empirically, yet another weakness in the 

conventional approach to evaluating models. 

Finally, from a technical point of view, one may 

note that almost all of the results in these tables 

were achieved after ten "major iterations" of the 

algorithm of Chapter (I11). In most cases, convergence 

proceeded rather steadily, starting out with large 

movements of coefficient estimates, but proceeding to 

smaller movements systematically and quickly; 

convergence was good, most often, after five 

iterations. In a few cases, however, the total gain tn 

log likelihood relative to regression looked
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suspiciously low, when we reviewed the computer output. 

Ten of the assimilation runs were carried out over 

again, through many iterations. In all cases but two, 

it was verified that the routine had indeed converged 

within ten iterations; tndeed, the convergence was 

generally better than expected (subsequent progress in 

log likelihood on the order of 0.01), probably because 

these were cases where the original regression models 

required little improvement. 

On the other hand, there were two exceptions:(i) 

the application of equations (6.4) (upper equation 

only) to data on urbanization in Cyprus; (if) the 

application of equations (6.18) to data from 1790 to 

1870 on white and nonwhite populations in the US. In 

both cases, the computer printout from the first ten 

iterations gave a very clear picture of "imbalance", a 

convergence problem described in section (iv) of 

Chapter (III). (Very crudely, this problem results 

from the danger that an estimation system based on 

first derivatives will be too responsive to some 

parameters, in comparison with others, and will 

therefore oscillate so much in response to the former 

that it makes little headway in dealing with the 

latter.) In these cases, the general multiplicative 

factor, used to determine the size of adjustments in
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each minor iteration, was decreased, then increased, 

then decreased, then increased, by very large factors, 

in a suspiciously regular wave-like pattern. In the 

other cases of small initial movement, by contrast, the 

multiplicative factor changed very little after the 

first few iterations, and changed almost entirely in 

the downwards direction when it did change. (The 

adjusted data from Cyprus show up in the Tables. 

However, the adjusted data for this run in the US do 

not.) The convergence algorithm we have used has 

"imbalance" in almost all cases; however, the avoided 

cases which remain do point up the value of further 

improvements in convergence procedures, as part of the 

effort to operationalize the algorithms of 

Chapter (Il). Also, they are worth noting for those who 

would wish to actually use the command "ARMA" in 

TSP-CSP,
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Civ) NATIONALISM, CONFORMITY AND 

COMMUNICATIONS TERMS: 

AN EXTENSION OF THE DEUTSCH MODEL 

The original goal of this research was to follow 

up on the suggestions of Karl Deutsch, in Nationalism 

and Social Communications, to begin the development of 

a predictive, quantitative theory of nationalism. These 

suggestions included a specific mathematical model - 

the Deutsch-Solow model - which provided the major 

focus of the work above. They included the suggestion 

that the use of the dominant national language be used 

as an index of national assimilation. They also 

included a number of verbal propositions, presented as 

"suggestions for future research;" these propositions 

represent an effort to draw together known verbal 

relations, bit by bit, into a more coherent dynamic 

theory, capable of making predictions if only the data 

were available. By the reasoning of Chapter (V), we 

believe that this makes them of great substantive 

interest in their own right. Given that we hoped to 

exhaust the possibilities of the simple Deutsch-Solow 

model at an early stage of this research, we have gone 

back to these earlier propositions, in order to draw 

them together into a mathematical expression both more
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complete and more capable of significant generalization 

to other problems in political science. 

In Chapter 6 of Nattonalism and Social 

Communications, Karl Deutsch presents his main argument 

that the birth of nationalism may depend on the 

relative rates of national assimilation and political 

  

mobilization, particularly on the latter, more volatile 

variable.(12). He points out that a moderate-to-s low 

rate of mobilization will tend to keep the 

unassimilated groups in the minority, in the cities and 

in the schools; therefore, those of them who do move to 

the cities may be assimilated more quickly. A rapid, 

sudden mobilization, on the other hand, may make the 

unassimilated groups close to half of the population; 

they may therefore become more self-conscious as a 

group, and far less likely to feel the need to 

assimilate themselves to the old status quo. Conflict 

may result. The Solow model, which assumes that the 

rate of assimilation (per unassimilated person) is 

constant, cannot account for this kind of variation. 

Thus the Solow model does not articulate Deutsch's 

critical insight into the origins of nationalism. 

In order to express the idea that the rate of 

assimilation in any area (urban or rural) depends on 

how much the differentiated are outnumbered by the
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assimilated, we may form a model like this: 

A(t+1) = A(t) + k(ACt) - DCt))D(t), 
(6.20) 

for A(t) > DC(t), 

where A(t) is the percentage of population assimilated 

at time t, where D(t) is the percentage of population 

differentiated (i.e. unassimilated) at time t, and k is 

a constant. In essence, this model states that the 

percentage of the differentiated who are assimilated in 

any year will not he constant, as in the Solow model, 

but will be proportional to the numerical percentage 

dominance, (A(t)-D(t)), of the assimilated population 

over the differentiated population. in the first half 

of Chapter (11), we have discussed a number of 

refinements which could be made to this simple model. 

Stanley Lieberson's study of bilingualism in Canada has 

shown that the effects of local "percentage dominance" 

are of overwhelming importance(13) in predicting rates 

of bilingualism and linguistic assimilation; he has 

shown that fairly smooth curves result when one plots 

local percentage dominance against language change, 

implicitly holding constant the overall national 

linguistic and cultural environment. Even in its simple 

form, however, equation (6.29) does express the tdea of 

Percentage dominance as a determinant of the rate of 

assimilation.
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In order to improve further on equation (6.20), 

let us consider two other qualitative factors which 

also need to be accounted for. First of all, let us 

look at demographic factors. Lieberson, in Language and 

Ethnic Relations in Canada, has emphasized(14) two 

  

competing forces which can affect the fate of a 

minority language:(i) the economic and percentage 

dominance of the majority language (English), which 

encourages people to assimilate away from the minority 

language (French); (ii) the "revenge of the cradle," 

the high birthrate of the rural, provincial people who 

speak the minority language. tn this study, we have 

tried to avoid dealing with the demographic factors 

directly. By applying (6.20), not to the nation as a 

whole, but to the urban or rural Part of one provincial 

area at a time, we can expect less difference between 

  

the birthrates of the two language groups. If the model 

is expressed in terms of percentages of people Speaking 

different languages, then the overall birthrates need 

not be estimated. In order to go on to predict the 

nationwide percentages of languare use, we would have 

  

to predict population, first, in each region, and then 

convert our predictions of percentages of language use 

in each region to predictions of numbers of languare 

  

speakers in each regrion. tn brief, this model treats
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Population growth in each region as an exogenous 

Variable. The primary reason for doing so is simply 

  

that this variable has been studied in enormous detail 

elsewhere, and that it would take enormous work for us 

merely to duplicate a portion of those studies here: we 

have looked at the variable, briefly, but we have tried 

to keep it a different issue, for our limited purposes 

here, 

Second of all, the model, as written, defines 

"percentage dominance" merely as "ACt)-D(t)", the 

percentage by which the majority language dominates the 

minority language. In reality, percentage dominance 

consists of two different variables - percentage 

dominance within each locality or region, and 

  

percentage dominance nationwide. The first variable 

encourages regionalism. For example, it encourages 

people in Quebec to speak French only, while 

encouraging people in the rest of Canada to speak 

English only; it makes the resions more and more 

distinct from each other, and it reinforces the 

conflict between them. On the other hand, the second 

variable encourages people in all regions to conform to 

a national norm.
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Local vs. Regional Languaze-Dominance as a Dynamic 

Factor. 

will become dominant, the regional or the national? One 

way to deal with this question is by trying to 

formulate an abstract theory of language-domi nance 

Pressure, We can try to formulate a theory which does 

not rely on (arbitrary) political abstractions, like 

the boundary lines between administrative regions. In 

the spirit of Nationalism and Social Communications, we 

can focus instead on the nationwide network of 

communication flows. For any given individual inside 

such a network, the language pressure he experiences 

depends simply on the balance between the two languages 

as a percentage of his communications, past and 

future.(15).(These communications should be weighed, in 

principle, by their psychological salience. Also, the 

"natural" level of communication between two people or 

two regions may sometimes be a more accurate measure of 

language pressure than the actual level, if the latter 

differs from the former due to a mutual inability to 

communicate; a desire to communicate, unfulfilled, can 

sometimes provide an incentive to learn the other 

person's language. ) 

Translating this to the level of regional
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variables, we may write the model as: 

Pet) = > Coe (A5(t) ~ 050 t)) 

3 (6.21) 

Ac (t+1) = A3(t) + NeCt) * FCP3(t)), 

where "P g(t)" represents the percentase dominance of 

the majority language as experienced in region number i 

' represents the flow of at time t, where "C3¢! 

communications between region i and region j (actually, 

to region number i, from region j, as a percentare of 

the total communications to region i), where the 

summation in the upper formula is to be taken over all 

regions j if possible, and where we have borrowed the 

asterisk from computer terminology as a sign of 

multiplication. In the lower formula, we have written 

"FCP PCH)", instead of just "PeCt)", to reflect our 

observation above that, In equation (6.20), we could 

have replaced the expression "A(t)-D(t)" by a more 

complicated function of the percentage dominance. 

Let us look briefly at the implications of this 

model, for a "typical" nation passing through the 

stages of political development. Let us suppose that 

the nation starts out as a "traditional" country, 

mostly rural, heavily dependent on sedentary 

agriculture, In such a country, one would expect that
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the vast peasant majority would have few 

communications, if any, outside their own region; the 

economics of such a region would provide little 

incentive and little opportunity for the average man to 

communicate with other regions. On the other hand, the 

urban and literate subsections of such a country would 

still have many communications outside their own area, 

particularly with the merchants and literati of other 

cities. Our model would therefore predict that regional 

language pressure would be overwhelmingly dominant over 

national language pressure, for the illiterate 

majority. Therefore, the spoken language will sustain a 

fragmentation into a host of regional dialects(16). On 

the other hand, the written language of the elite will 

experience heavy long-distance language pressure, at a 

national or even international level: it will tend to 

coalesce into a uniform national or even continental 

language. All of this assumes a fairly stable and 

well-divided class structure. 

However, as economic growth begins, and rural 

people become mobilized, a conflict will develop 

between their original dialects and the national 

language of the cities they move to. The written 

language will come into a head-on collision with the 

spoken system of languages. As the communications
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network grows more and more integrated, and more 

extensive for the average man within each nation, 

national pressures will grow more important for the 

average man; thus there is likely to be a growth in 

national assimilation and uniformity, at the level of 

the spoken language. On the other hand, if any of the 

regional dialects "capture" a cohesive center of 

mobilized population, such as a city, before they are 

assimilated to the national language (i.e. extremely 

rapid mobilization occurs), then this city may exert 

its own language pressure on the surrounding rural 

population and towns. The widespread, modern 

communications links acting on this city will 

strengthen the hold of its dialect, and perhaps lead to 

a political separatism which then outlaws extensive 

communications between this region and other regions. 

If there were one dominant city, such as a London or a 

Paris, in a large area, then this city, once 

"captured", may set a new national linguistic norm. If 

there were a number of competing cities, however, one 

might expect a greater persistence of local dialects, 

converging perhaps by a process of mutual adjustment of 

the language norms themselves, if the norms were close 

to each other, but not by assimilation as such, until 

one of the cities does succeed fn dominating the
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network of communications; thus a greater level of 

fragmentation would be predicted. Note that the average 

distance of communications in the new modern network 

may actually be less than that of the old elite 

network; thus the new written language may indeed be 

more restricted, geographically, than the language of 

the old elite. All of these predictions seem broadly 

consistent with the phenomena discussed in Chapter 6 of 

Nationalism and Social Communications. 

Finally, one may note that the use of 

communications terms, as in equations (6.21), can be 

generalized to other aspects of the problem of 

nationalism, and even to social psychology on a wider 

scale. It would be inappropriate, in this context, to 

discuss all of these future possibilities. However, 

from a practical point of view, these models are only a 

small beginning in the quantitative theory of 

nationalism; much of their value lies in the 

possibilities that they point to for future research. 

In order to realize this value, let us sketch out some 

of these possibilities explicitly. 

Some Operational Dimensions of Nationalism: 

Narcissism, Stereotyping and Aggression. 

The Deutsch-Solow model and the models discussed
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above involve the origin of nationalism, the origin of 

systems of national identification. However, it is also 

interesting to ask how nationalism, once born, can grow 

to become a motive force behind militarism, chauvanism, 

and the like. Indeed, one may regard "nationalism' as 

consisting of seven clusters of variables, only one of 

which concerns identification directly: (i) affiliation 

with a "nationality"; concretely, this would entail a 

clustering at the national level of language norms, 

cultural symbols, etc.; (ii) the sharing of "tacit 

norms"(17) that make cooperation possible in situations 

of mixed conflict and cooperation; when these norms 

tend to be close or identical among people of the same 

nationality, but very different for those of different 

nationality, then "community'"(18), by Deutsch's 

definition, exists precisely at the national level; 

(iii) the overestimation of the power level of one's 

own nation ("narcissism", in the language of the 

psychiatrist); Civ) the underestimation of the power 

levels of other nations (stereotyping); (v) the 

intensity of positive emotional commitment to one's own 

nation (utility attributed to the "success" of one's 

nation; this may be the resultant of both "rational" 

and "irrational" (narcissistic or neurotic) 

attachments); (vi) the intensity of emotional



Page VI-96 

commitment, positive or negative, to other nations 

(utility attributed to their "success"); (vii) the 

glorification of militaristic, nationalistic behavior 

for its own sake. 

"Nationalism," by this definition, would appear to 

be a crucial cause of international violence. The 

likelihood of international violence would appear to 

depend on the ability to compromise in any given 

perceived game - which we would associate with cluster 

(ii), above(19) - and in the perception by the 

participants that compromise is desirable. Insofar as 

war involves a massive destruction of resources, at 

least when modern nation-states are involved, one would 

normally expect it to be far away from what an 

economist would call "Pareto optimal;" one would expect 

that a compromise would exist, far superior for both 

sides than the actual outcome of the war. If the 

participants overestimate the gains they would achieve 

by war, however, they may not be able to appreciate 

beforehand that any particular compromise would be more 

desirable. Also, if they attach a positive value to 

hurting their adversary, then they may feel that their 

own material losses in war would be balanced out by the 

losses of their adversary. These misperceptions, which 

may lead to war, are associated with clusters (iii)
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through (vi), above. In practice, the breakdown of 

bargaining between nations will often depend on some 

"spark", like the assassination of an Austrian archduke 

or the sinking of the Maine; however, long before the 

spark appears, there may be a prolonged period of cold 

war, in which the ability to compromise gradually 

decreases and peace becomes ever more precarious. 

Students of conflict who dismiss the sticky, 

"irrational" factor of nationalism, and focus solely on 

objective conflicts and capacities, may be helpful in 

encouraging more objective, less nationalistic and more 

peaceful policies by the major powers today; however, 

by neglecting a primary cause of past conflicts, they 

may reduce the applicability of their historical 

studies. 

One may note, furthermore, that the concept of 

"nationalism'’ above is important, not only to the 

simple variable of war-vs-peace, but also to the 

possibility of bargains on a higher level, to maximize 

joint production in ways which would have been 

impossible without cooperation. Trade agreements are 

only one part of this picture. In the limit, if nations 

were fully adept at such negotiation, they could 

achieve the same joint efficiency and productivity that 

a unified world government could, if they do not place
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a strong negative intrinsic value on each other's basic 

welfare. On a lower level, such a gradual improvement 

in coordination has been crucial, in the past, in the 

fusing of subnationalities into larger nations(20). 

Toward More General Models. 
  

In order to predict the variables which make up 

nationalism, one may try to extend equation (6.20) to 

deal with continuous psychological variables. Even in 

dealing with language, we found it necessary at times 

to talk about changes in the language norms themselves, 

as continuous variables, rather than simple adherence 

  

to one norm or another.(21). Given a continuous 

variable, X, which represents some arbitrary cultural 

norm, such as the pronunciation of a certain vowel, we 

may try to express the idea that an individual will 

change his own norms fn response to the norms of those 

he communicates with. As a first approximation, we get 

an equation analogous to (6.20): 

X; = of e ~ s d =k Che Xi) (6.22), 

J 

where mx is the value of the variable X (a norm) for 

person number i, and where Oe represents the strength
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of communication between person number i and person 

number j. In a sense, the term on the right is a 

"reinforcement" term impinging on person number i. 

In practice, however, when we deal with questions 

like nationalism and fundamental personal values, it is 

unrealistic to imagine conformity as the only mechanism 

at work. Somehow, a more general approach must be 

formulated. 

One might hope, at this point, that social 

psychologists, while neglecting nationalism per se(22), 

would have formulated more satisfactory models for the 

Flow of ordinary psychological variables, models which 

would predict the seven variable-clusters of 

nationalism as one special case. In the conflict 

literature, however, the concepts one normally sees 

from social psychology tend to involve very specific 

variables, such as frustration, aggression and status 

inconsistency. A fascinating exception to this 

generalization is the article by Schwartz on 

prerevolutionary society, in the Feierabend 

anthology(23). Schwartz's approach involves the heavy 

use of approach-avoidance diagrams, with nodes 

representing clusters of psychological variables and 

with signs attributed to connecting lines which 

represent associations between clusters.
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Approach-avoidance theory allows him to predict the 

likely trends in the level of association - plus or 

minus - between two clusters of variables, and also in 

the "distance" between them. The same rules for 

determining these trends could be applied when more 

objects of thought are brought into the model; also, 

they might be applied to other phases of social 

psychology, such as the variables making up 

nationalism. Beyond its capacity for being generalized, 

Schwartz's approach has one other virtue: it evokes a 

detailed picture of the human, psychological feeling of 

the societies he describes, a picture which he 

validates in detail from verbal descriptions, yet a 

picture both sharper and clearer than the usual verbal 

summartes. 

More generally, following up on Schwartz's 

approach, one might hope to work towards open-ended 

mathematical models of human behavioral psychology, 

models capable of achieving greater and greater 

accuracy as one accounts for more and more variables, 

within the same mathematical structure, a structure 

which nonetheless makes substantive predictions. This 

possibility may be compared with the possibility of 

predicting weather, by using a set of differential 

equations rewritten into the form of difference
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equations, so that predictions may be made based on 

knowledge of the initial conditions only at a fixed set 

of weather stations on a national grid. As one expands 

the number of weather stations, and makes the grid ever 

finer, one can make better and better predictions, 

using the same differential equations as one started   

with. If one described the "initial conditions" of a 

human mind in terms of some sort of network structure, 

and if one's equations specified how to predict the 

future of any mental network from its present state, 

then a similar flexibility should be possible in social 

psychology. 

In the limit, as one allows the hypothetical 

possibility of knowing the initial values of all the 

psychological variables in someone's mind, one would 

hope that one's model would approach equivalence to a 

general cybernetic model of human intelligence and 

motivation. On the other hand, if one allowed only for 

very limited knowledge, one would hope that one's 

social-psychological model would help one choose the 

aggregate variables of greatest predictive power in 

making concrete predictions. In the middle-range, one 

may have to encompass the studies by political 

scientists such as Sheldon Kravitz(2k) on larger-scale 

psychological structures, as revealed in the voluminous
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data of public political statements. Any of these 

constraints is difficult enough to satisfy by itself; 

the combination goes well beyond the range of the 

present discussion. 

Given that it may take a long time for anyone to 

construct such high-level models, and a long time to 

learn how to deal with them, a lower-level 

generalization of our simple communications model may 

have some value as an intermediate step. Instead of 

starting from a full-fledged model of individual 

psychology, let us consider a simple equation, drawn 

essentially from Minsky and Selfridge(25), to describe 

the changes of a psychological variable, X, under the 

influence of a "reinforcement" variable, E: 

XCt+1) = (1 - 6)X(t) + BEL) (6.23) 

In essence, E measures the individual's feeling, after 

the fact, of what X "should" have been, vis-a-vis his 

experience at time t. If experiences of E occur at a 

certain frequency, F, we may approximate this by a 

differential equation: 

dX - kKFCE-X) (6.24) 
ae 

This model of individual psychology would leave
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out the crucial fact of interaction between different 

psychological variables; in practice, for example, a 

strong irrational narcissism on the psychiatric level 

may provide a pressure towards greater overestimation 

of the potency of one's nation as well. Again, a 

thorough description of such interactions would be very 

complex. However, one may make a simplification based 

on the idea of cognitive dissonance. If Xe is the value 

of X one would "expect", or at least find most 

Plaustble, based on one's current psychological state 

with regard to other variables, and if C fs the level 

of confidence with which one feels this expectation, 

then one might generalize (6.24) to: 

ae kg FCE-X) + ky C(Xe-X). (6.25) 

In a sense, we have added a new source of 

"reinforcement" to X, or a new "pressure" on the 

individual's psychological state. 

Finally, ft is easy to synthesize this simplified 

model of individual psychology with (6.22): 

aX, - ka FeCEg-Xg) + kyCe(Xgey -X¢) 
dt 

+ ky 2 C5¢ (Xp -Xp) (6.26) 
a
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With the help of a moderately complex model of 

individual psychology, one might predict Cy and Xe in 

a very complex way from one's knowledge of the other 

psychological variables applying to person number i; 

however, this, by itself, would not require us to 

change the final coupling terms, on the far right of 

our equation. Thus the model here can be extended in a 

fairly straightforward way, building on the work of 

personal (vs. social) psychologists. 

Also, one could develop the model further by 

learning which measures of Cig are most appropriate, 

when. For example, one might explore the hypothesis 

that Cie includes only close family communications, for 

Xy which represent basic emotional attachments, in 

communities which have adapted to a combination of 

intense conflict and extensive ordinary commmunications 

for centuries. Or one might explore the hypothesis that 

tacit norms for cooperation depend most heavily on 

"Cyz '' measured in terms of constructive bargaining (or 

other mutual coordination of effort) rather than simple 

trade or general communications; this hypothesis, if 

validated, would imply that the reduction of 

nationalism, and the stabilization of peace, depends 

critically on efforts by nations to achieve joint 

benefits from concrete joint activities going beyond
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simple trade and ordinary cultural exchanges. 

Given that the model above is highly linear, it 

does not require us to fall back on the even worse 

approximation of predicting the "average man'', as if 

all people in a given nation were the same; it would 

allow us to deal with the flow of psychological 

variables by mathematics quite similar to those 

well-established for problems such as heat flow. For 

example, if national narcissism led to uniform values 

for C and Xe (e.g. a high estimate, Xe, of relative 

national strength) in a nation, and if there were many 

levels of communication separating the decision-makers 

and the people who experience the raw data directly 

(i.e. realistic E, with a high level of F), one would 

expect a simple geometric decline in the level of Xe-X 

with increasing distance of communication; with a deep 

enough hierarchy, the perceived variable, X, may 

reflect only the prejudices of the nation, the Xe, and 

have no reality content at all. Thus one would predict 

a form of "groupthink"(26), based on large-scale 

communications effects. 

In other cases, however, it may be more 

appropriate to treat a national communications system 

as a conglomerate of distinct subsystems (e.g. elite, 

burghers and masses in nineteenth-century Germany, or
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workers and industrialists in modern Japan); this is 

especially important when one considers domestic 

conflicts, which may lead in turn to revolution and to 

messianic nationalism as part of a common pattern. 

Given a description of a communications system, 

conglomerate or continuous or a mixture of the two, and 

given the exogenous data, equation (6.26) would be 

fairly manageable in providing predictions of the 

continuous psychological variables of one's choice. 

Panel survey studies would be possible, to refine the 

model or provide the data for future predictions, when 

aggregate national data are inadequate. Classical 

models of history and of conflict may fit in, by 

helping us to predict the variables left exogenous in 

(6.26). 

In brief: the concept of communications terms has 

led us to a generalization - equations (6.21) - of the 

Deutsch-Solow model of assimilation and political 

mobilization. In section (v), we will discuss the 

empirical tests we have given this model in Norway. 

This generalization of the Deutsch model, while limited 

in the present context, offers numerous possibilities 

for important extensions in the future.
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(v) ASSIMILATION AND COMMUNICATION: 

THE CASE OF NORWAY 

Broadly speaking, the investigation of variants of 

equation (6.21), by use of the approaches discussed in 

Chapter (lf!), has led to results similar to those of 

sections (ii) and (iii) of this chapter. The power of 

communications terms, and of ARMA models, vis-a-vis 

simpler regression models, has been validated, both in 

terms of statistical likelihood and in terms of 

long-term predictive power. The validation has been 

more significant here, due to the larger quantity of 

data, but the actual improvements range about 10% in 

terms of reducing the size of errors. Also, when 

"outliers" are present, the ARMA models appear much 

worse in terms of their formal likelihood than do the 

regression models, though they retain a superior 

capacity for long-term prediction. Erratic noise, in 

the form of "ratchet effects," which occur erratically 

like simple outliers but then persist, does not appear 

to reduce the modest superiority of the ARMA 

techniques. In this research, a substantive 

explanation has also been verified for some of the 

inconsistent results reported with "gravity models" to 

predict communications intensities; gravity models were
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used to allow us to construct three extra indices of 

communications within Norway. 

In order to test out equations (6.21), 

statistically, we needed to find a case history with 

the following characteristics: (i) extensive data on 

language preference, region by region, distinguishing 

between urban (mobilized) subregions and rural 

subregions; (ii) data on the matrix of communications 

between one region and another region, not aggregated 

in the form of “total communications entering" or the 

like; (iii) significant variation across time in a 

large number of regions in the percentage of language 

use. Four countries were considered as interesting 

possible case histories early in this study - Canada, 

Belgium, Finland and Norway. (Various parts of the 

British Isles and Africa also seemed promising, but not 

on the basis of data available at Harvard libraries.) 

All four have extensive data, commonly available, on 

language usage. In Canada, however, the data commonly 

available are aggregated at the level of provinces; 

except for New Brunswick, most of the provinces of 

Canada have been consistently close to the extremes of 

100% French or no French. In Belgium, the censuses of 

language were separated by long intervals of time,and 

the geographical divisions appeared to be just as
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sharp, on the whole, as in Canada; the slight 

variations in Brussels and in Brabant were not enough 

to change this picture. Of the two remaining 

countries, Norway had much better data on 

communications variables. 

The data from Norway turned out to be quite good 

for statistical purposes. Einar Haugen(27), in his book 

on language problems in Norway, has shown a map, giving 

the percentage use of the minority language, Nynorsk, 

in schools in Norway, in the three years 1931, 1945 and 

1957, in each of the eighteen provinces of Norway. The 

data for Oslo (consistent avoidance of Nynorsk) do not 

appear on the map, but can be reconstructed from the 

Norwegian Official Statistics which constitute our own 

source of data; thus we can add in Oslo, to arrive at 

nineteen major regions in Norway. If we ask how great 

the gap was, in each region, between the maximum 

percentage of Nynorsk taught in these three years, and 

the minimum percentage, we find that these variations 

across time have been quite substantial. In only six 

of the nineteen has there been no variation; in the six 

with the highest variation, the average variation was 

by 28.5%; in the middle seven, the average was 

12 1/7 %. (For example, in Oppland, one of the largest 

provinces on the map, the percentage use of Nynorsk was
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15% in 1931, 44% in 1945, and 40% in 1957, yielding a 

maximum variation of 29%.) Thus in predicting the 

variations of language use across time, we are not 

predicting a dummy variable. Given that the equations 

in our models all attempt to predict language use at 

time t+1, controlling for the independent variable of 

language use at time t, the different averages of 

language use in different provinces do not water down 

the effective size of the data sample. In Haugen's map, 

it also seems clear that the greatest reductions in the 

use of Nynorsk were concentrated in "intermediate" 

provinces, or, more generally, provinces which have a 

significant Nynorsk population but which have a high 

percentage of communications with non-Nynorsk regions. 

(Some of the northern provinces, which are far from all 

the populated parts of Norway, have very strong 

communications with Oslo, ona relative basis, 

according to our migration data.) In this study, the 

use of percentage variables instead of numerical totals 

helped insure that the results are not dominated by a 

handful of large subregions. 

Data was available in Norway from 36 regions 

(urban and rural parts of each province, considering 

Oslo as the urban part of Akershus and the city of 

Bergen as the urban part of Hordaland), for every year
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from 1938 to 1969(28). If we treat all 36 strings of 

data as sample strings, each with N=31, each generated 

by the same general process (i.e. governed by the same 

equations and coefficients), the effective N of the 

overall sample was 36 X 30 = 1080. (30, not 31, because 

of the time lags; each string contains 30 pairs of data 

of language use at time t and language use at time 

t+1.) Data were also available on: (i) migration from 

each subregion to each other subregion in the three 

years 1966, 1967 and 1968(29); (ii) outgoing 

long-distance telephone calls, total, from 1938 to 

1957, by year and by subregion(30); (iii) total 

letters posted, in 1938-1940 and 1944-1968(31); Civ) 

births, deaths and marriages from 1938 to 1968(32); 

(v) real income, from 1938 to 1968(33); (vi) other 

information on population, crime rate and rate of 

welfare payments not used in this study(34). 

Initially, in coding this data, we were confronted 

with two interesting choices:(i) whether to define the 

subregions of each province as "urban" vs. "rural", or 

to define them as the collections of townships which 

happened to be defined as urban or rural, in an 

arbitrary base year, such as 1958; (ii) what to do 

about the one case of zero data, the case of Finnmark 

(the northernmost part of the entire mainland of
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Scandanavia), where no languages at all were used in 

schools during World War Il, apparently because schools 

were shut down. In a normal statistical study, one 

would tend to account for the limitations of multiple 

regression, and choose definitions for one's variables 

in order to make them as manageable and as predictable 

as possible. The moving of townships from the rural to 

the urban category often had a "ratchet" effect, 

producing an appearance of change by jerky movements 

instead of just continuous observable movements. In 

this case, however, the original concepts of Kar] 

Deutsch clearly called for urban vs. rural percentages, 

  

not for geographical subregions: also, it was important 

to the evaluation of the statistical technique to see 

if it was as sensitive to ratchet effects - which would 

appear to be quite common in politics - as multiple 

regression is; finally, the data on urban vs. rural 

language use were relatively accessible, while the 

consistent use of a fixed group of townships would have 

required approximately fifteen additions and checks for 

each of 1110 subregion-years, for each of ten variables 

or so. With Norwegian postal data, an aggregation of 

this sort was unavoidable, given that the data were 

available on a township basis but not on an urban vs. 

rural basis for most years. In the case of Finnmark, we
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decided, implicitly, to set the assimilated-percentage 

variable to zero, in the war years, in the first of our 

runs, partly as a test of the statistical method. 

(Finnmark has consistently used no Nynorsk; i.e., it 

has been 100% assimilated.) This had the effect of 

introducing a few substantial outliers into the data; 

this fact turned out to be quite interesting in the 

runs which followed. 

Nine good runs were carried out to predict 

Norwegian language data, after the prototype version of 

the "ARMA" program was fully checked out, and the data 

in the computer checked for consistency with the 

original data~sheets. The years 1939-1967 were chosen 

as the main focus of study, to avoid calibration 

problems with different variables. The first seven runs 

were carried out on the original data, with outliers 

existing in Finnmark. By and large, these runs were 

rather disappointing. 

In the first run, ARMA tried out two simple models 

to predict the percentage, A, of language assimilation 

in Norway: 

ACttl) = bACt) + c + a(t), (6.27) 

where a(t) is a random noise term to be minimized, and:
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A(tt1l) = O@A(t) + a(t) + Pa(t-1), (6.28) 

where both terms on the right are noise terms, 

indicating the presence of more complicated noise. 

Notice, with the regression model, (6.27), we have 

included a constant term, c, while the ARMA model, 

(6.28), described in the notation of Chapter (III), 

does not include a constant term. Thus both models have 

the same number of coefficients to estimate. With the 

prototype version of ARMA, the constant term was 

consistently included in the regression model, and 

deleted from the ARMA model, to insure that models of 

the same general level of complexity were being 

compared, 

The results of the first run were relatively 

disappointing. The regression model received a 

likelihood score ("'LogP", in the notation of Table 

Vle-11) larger than that of the ARMA model, based on the 

standard normal distribution test described in Chapter 

(lll); the gap in scores was equal to 7, indicating 

odds of e”=1100 to 1 against the ARMA model being 

better than the regression model, empirically. (See 

section (v) of Chapter (11!) for a more thorough 

discussion of the traditional concepts here.) Given the 

large data set, this meant that the percentage of 

variance explained - R™ - was 99.49% for the regression
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model, versus 99.48% for the ARMA model. In a test of 

long-term prediction, however, the ARMA model did 

better, as our reasoning in Chapter (V) might have 

indicated. The regression model had average percentage 

errors of 14.9%, versus 14.1% for the ARMA errors. 

Note that we define the "percentage error," in any 

year, as the gap between the prediction and reality, 

expressed as a percentage of the averages of the 

prediction and reality; note also that these errors 

were averaged by the root-mean-square ("R.M.S.") 

method. The "absolute errors" in predicting the 

percentage of assimilation averaged out to 28% for the 

ARMA model, and 39% for the regression model; the huge 

figures are due to occasional wild predictions, 

building up geometrically from 1939 to 1968. 

Note that a 2% reduction in square error, from 

1 - .9948 to 1 - .9949, is considered highly confirmed 

by the usual likelihood test, with a sample this large; 

the larger reductions in long-term prediction errors by 

the ARMA routine would appear to be even more certain 

in their validity. Indeed, it seems much more 

      

suspicious in some ways to discuss the reduction of 

very small errors - about .50% - than to discuss the 

reduction of more substantial errors. In theory, the 

classical likelihood measure is enough to account for
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such "multicollinearity," but even so such situations 

have often turned out to cause problems for 

statisticians. Note that the presence of 

multicollinearity would presumably be much worse than 

here, for processes which one would hope to find more 

predictable in the long-term; the inability of 

classical approaches to perform well under such 

circumstances is one more reason to favor a new 

approach. An approach which attempts directly to 

minimize the more substantial errors in long-term 

prediction would appear to be much safer. Also, as in 

section (iii) of this chapter, it fis critical that 

formal statistical likelihood and predictive power have 

not gone hand-in-hand in their evaluations of the 

different models available. 

In later runs, we hoped that the ARMA models would 

do better in terms of statistical likelihood. After 

all, the constant term in the regression model could 

reflect a trend away from Nynorsk, a trend which could 

be explained by communications terms and other terms, 

so that the value of a constant term as a surrogate 

variable would disappear when they are accounted for. 

Also, for reasons described in sections (v) and (vi) of 

Chapter (II), we hoped that the ARMA model would be 

more sensitive to terms of realistic importance,
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increasing in likelihood by more than the regression 

model does when such terms are included. 

In the second run, we decided to introduce a 

communications term. In Norway, we had only one 

explicit measure of communications from each province 

to each other province available - average migration 

from 1966 to 1968. Given that population data were not 

fully available from 1939 to 1967, and given that 

intraprovincial communications are presumably not 

well-measured by internal migration data directly, we 

used the following simplified model: 

Ac (ttl) = cgAi(t) + cy > Mp (Ag Ct) - Dp (td) 

3 

+ eg(SeCA g(t) -De Ct) )+SaCAg(t)-DaCt) So, 

(6.29) 

where Me represents migration from region number j to 

region i, where Sg; represents the sum over j of Myc, 

and where the asterisk refers to variables in the 

region complementary to region i. (i.e. Ay is the 

percentage of assimilation, measured in the same 

province as region i, but in the rural part, if 

region i is urban, or in the urban part, if region i is 

rural.) In principle, Msg should have been divided by 

the population of region i, but this was not only
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impossible, it was of limited potential importance ina 

nation with provinces of comparable population. In 

retrospect, it might have been better to start out with 

the full, more complex model, (6.21), even in these 

early investigations; however, due to the difficulties 

and potential controversy in estimating the shape of 

F(DE), it was decided that priority should be given to 

the simpler formulation at this stage. 

At any rate, the model written out above - 

(6.29) - did not perform especially well, with our 

initial Norway data, according to the usual statistical 

tests based on short-term prediction. In terms of 

statistical likelihood, the regression model in this 

run did no better than the regression model of our 

earlier run, without communications terms. (Gaps in 

likelihood less than one point, as discussed at the 

base of Table VI-11, were not recorded, due to the 

implication of no significance in such differences in 

apparent performance.) In other words, the extra terms 

did not appear to add anything. The estimate of "cg" 

here, as in all the other runs carried out on this 

model and its analogues, was too small for the computer 

output formats to cope with. "co", however, was on the 

order of 1%. Again, the regression model was superior 

to the ARMA model, with a gap of likelihood scores of
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5.65, indicating odds of 280 to 1 favoring the 

regression model. The ARMA communications model had a 

slightly higher likelihood - by 1.5 - than the simple 

model (6.28), indicating odds of &.5 to 1 in its favor; 

however, these are not exactly overwhelming odds. The 

R of the ARMA model was .9948, versus .9949 for the 

regression model, just as before. 

In long-term prediction, however, from 1939 to 

1967, the ARMA model did increase its margin of 

superiority; its R.M.S. average percentage errors were 

13.4%, versus 14.7% for regression, while its absolute 

errors were 27% versus 39%. The communications term, 

even if poorly estimated, clearly added something to 

longer-term prediction. With a different estimation 

approach, oriented towards predictive power instead of 

maximum likelihood, the gain provided by the 

communication terms might have been considerably 

larger. Also, with the original model, (6.21), the 

intermediate provinces of Norway, instead of the 

minimum-Nynorsk provinces, might have been singled out 

more effectively as likely areas of large-scale 

assimilation; again, the predictive power of the model 

might have been enhanced. 

In the third run, as an alternative hypothesis, we 

considered the possibility of using real income as a
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variable to predict language: 

ACttl) = cy ACt) + c2Y¥(t), (6.30) 

where Y(t) represents the real income in a region, and 

where we have not written out the noise terms. In 

terms of likelihood theory, the performance of this 

model was exactly the same as that of (6.29), as 

described above. In long-term prediction, however, it 

did not do quite as well. The ARMA R.M.S. average 

percentage errors were 14.1%, and absolute errors 28%; 

the regression percentage errors were 14.9%, absolute 

errors 39%. These results are closer to those of the 

univariate models, (6.27) and (6.28), in quality, than 

to the results with (6.29). In principle, however, the 

relative potential of the two models in long-term 

prediction will not be clear until a new type of 

estimation system is available. 

In the remaining runs on our original data, we 

decided to explore communications indices other than 

that of simple migration. Two other measures of 

communication - telephone calls and volume of mail - 

were available; however, these were only available ona 

province-by-province basis. We faced the problem of 

how to reconstruct the matrix of communications from 

each province to each other province. This problem has



Page VIl=-121 

often been faced elsewhere in regional science(35) and 

in sociology, and resolved by way of a "gravity" model. 

The original gravity model, proposed by Stewart, would 

estimate province-to-province telephone communications, 

for example, as follows: 

T, Ts 
te os ty 

Ces ‘orn (6.31) 

éj 

where Tj and Tj are the total volumes of telephone 

communication (or other communications variables, such 

as migration) in each province, and where rej is the 

distance between provinces. A modified version, studied 

by Galle and Taueber(36), and discovered to have a 

multiple correlation of between 89% and 93% between 

prediction and reality, is as follows: 

TT 
a = 3 Cio (6.32) 

r. 
J 

where k is an unknown exponent to be estimated. (Note 

that the correlation here, with a cross-sectional 

model, is stronger in its implications than a 90% would 

be in a predictive time-series model, insofar as a 

cross~sectional study makes sense here.) Curiously 

enough, while equation (6.32) has been successful in 

empirical tests, the parameter "k" has varied a great
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deal in its estimated value; Galle and Taueber report 

that k was equal to .62 for interurban migration in the 

US in 1935-1940, but only .42 for the same data as 

measured in 1955-1960. 

In order to estimate the likeliest value of "k" 

for interregional communications in the case of Norway, 

it was necessary to fit the model (6.32) to the only 

region-to-region communications data available - again, 

the migration data. A direct fit of (6.32) would have 

required the use of nonlinear regression; however, 

equation (6.32) can be transformed as follows: 

log CEs 57 log Te - log Ts: =a- k log r;? 
J by’ 

(6.33) 

where the entire left side of the equation forms the 

dependent varfable, and where "a" and "k"' can be 

estimated by multiple regression. 

As long as we were carrying out such a regression, 

however, it seemed appropriate to test out a new 

explanation for the reduction in "k" from .62 to .42 as 

measured in the United States by Galle and Taueber. !t 

is fundamental to the communications theory of 

nationalism, as described in section (iv), that there 

has been a historic rise in the strength of 

long-distance communications, relative to
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shorter-distance communications, at least for the 

average man. Using equation (6.32), we may compute the 

ratio of communication across a long distance, Rq, to 

the communications across a shorter distance, Rg- 

between regions of equal size (T; the same for all 

regions): 

  

“1 RE 
6 a 

R,) 

cena i — /Royk = (% 
(6.34) 
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For given distances, Ro and Ry. the terms involving Cg 

and Te, etc., cancel out; thus the only way this ratio 

can get larger, for a given comparison of distances, is 

if k gets smaller. (e.g. A small variable to the 

zeroth power will equal 1, which is the maximum this 

ratio can approach under the stated conditions.) Thus 

it is critical to our communications theory that k 

should tend to decrease in time, as the result of some 

aspect of "modernization"; the most obvious aspect of 

"modernization" to consider is the economic factor, the 

increasing income of people relative to the cost of 

communication. Thus we decided to test the model: 

k(t) = c, - cyY(t), (6.35) 
1
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where Y represents the real income of a region. Also,we 

decided to consider the possibility that a term 

representing social proximity (urban vs. rural 

similarity of regions) should be accounted for. Thus, 

in the final regression equation, we decided to test: 

log Mt: = log Mz: o} ‘sot log Sg - log Sy 

= Co - C4 log 83 + C¥Y log res + C2 Ue5- 

(6.36) 

where Us; is defined to equal one if both regions are 

rural or both urban, but zero if they differ; a measure 

of distance was obtained from the World Atlas(37); Sf 

is defined as with (6.29). Note that Y(t) - real income 

in the subregion from which migration occurs - was not 

a surrogate for time in this regression, since the 

regression was based on a combination of two 36 X 36 

matrices of total migration in the close-by years 1967 

and 1968; the primary variation in real income was 

between subregions. The covariance matrix produced is
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shown in Table VI-25: 

Ug; Y log ree log rye log M!s ty es i) 

Us .251 .017 -.012 .072 

Y log regs 017 1.299 286 2135 

log ry -.012 286 875 -.549 

log Me .072 2135 -.549 1.062 

Table VI-25: Gravity Model Correlations 

Inverting the three-by-three matrix in the upper left 

of this table, and multiplying the inverse by the 

vector formed by the three upper numbers of the 

rightmost column, we can compute the standard 

regression coefficients for (6.36): 

cz = 24 

Cy = .26 

c, = .70, 

all with the expected signs, and all clearly very 

significant for the large N we have considered and for 

the variances displayed in Table VI-25. Thus our 

income hypothesis appears to have been validated rather 

strongly. This same regression analysis was also used 

to construct an approximate measure of communications 

for one of the other communications variables available 

in Norway, telephone communications; however, Cc, was
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deleted from the regression equation, and Cy thereby 

reduced to .67, due to the computational difficulty of 

calculating the full index, as based on different 

values of the income variable across time. 

In the fourth run on Norwegian language data, 

equation (6.31) was used to reconstruct the matrix of 

telephone communications, Cip- to replace Me in 

equation (6.29). The years 1939 to 1957 were used as a 

data-base. Once again, the regression model did better 

than the ARMA model in terms of log likelihood, with a 

gap of 3 points, implying odds of 20 to 1 in favor of 

the regression model. The Re of the regression model 

was .9941, versus .9940 for the ARMA model; this was 

substantially worse than our earlier runs. On the other 

hand, this was substantially worse than our earlier 

univariate runs, encompassing a subset of the 

independent variables here; this signals us that the 

data in the period 1939 to 1957 average out to be more 

difficult to predict than the previous data~base, 1939 

to 1967. Indeed, these years contain all of the wartime 

"outliers" mentioned above, in Finnmark. In light of 

these difficulties, the model did relatively well in 

long-term prediction. The R.M.S. average percentage 

errors were 13.7% and 14.1% for the ARMA and regression 

models, respectively; the R.M.S. average absolute
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errors were 35% and 40% for the two models, 

respectively. Perhaps a later run without outliers 

would have given a much better picture. 

In the fifth run on Norwegian language data, we 

studied the same model as in the fourth run; however, 

this time we used equation (6.36), adapted to predict 

telephone communications, to reconstruct a matrix of 

telephone communications. The Re and the likelihood 

scores turned out to be the same as in the fourth run, 

except that the ARMA model gained very slightly in 

likelihood - by one point; the odds against this being 

a coincidence are only 3 to 1, according to likelihood 

theory - not a substantial confirmation. The results 

of this run seemed sufficiently bad, with pe still low, 

that simulations were not carried out. 

In the next run on Norwegian language data, postal 

data were used, with equation (6.36), to construct an 

index of communications, to replace Mes in equation 

(6.29). The regression model performed better than the 

ARMA model, with a gap in likelihood of 9, implying 

odds of et = 8100 to 1 in favor of regression. The R* 

of the ARMA model was .9958, versus .9959 for the 

regresson model. At first, these high values of Re 

seemed rather encouraging. However, the data period 

used for this analysis was 1945 to 1967, due to the
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absence of postal data in three of the war years; this 

implied that the outliers in Finnmark were avoided. In 

our seventh run, as a corrective, we re-evaluated the 

simple univariate model, equations (6.27) and (6.28), 

over the same time-period; the results were the same as 

with the postal model - implying that nothing was 

gained by adding these communications terms - except 

for an insignificant one-point decrease in the 

likelihood of the ARMA model. 

After these seven runs were completed, a careful 

review was carried out, first of the ARMA models, and 

then of the communications models. Another run was 

carried out on a different set of data - on births, 

deaths and marriages as a single set of variables. In 

that case, the ARMA model outperformed the regression 

model by 339 points, by the usual likelihood measures, 

implying an astronomically high probability of its 

superiority. In conventional language, this gap of 339 

points implies that,'the ARMA model was confirmed with 

a p less than 1° -'' Concretely, the ARMA model had 

an p> of .975 in predicting the marriage rate, versus 

-85 for regression; also, the variance of the errors in 

predicting the death rate was reduced by 10%. 

Unfortunately, the computer refused to calculate a full 

table of predictions for this case, because the table
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was too long; however, the ARMA model did not seem 

notably superior to the regression model in that 

portion of the predictions which the computer did print 

out. 

In order to explain the mediocre performance of 

the communications models, we looked very closely, 

province by province, at the direction and shape of the 

errors made by the ARMA communication models (from run 

number 2) in long-term prediction. There did not seem 

to be a notable tendency for errors to be biased in one 

direction in any special group of provinces, except for 

the "intermediate province" group which the 

communications terms should have been able to 

distinguish; however, there did seem to be a very 

strong tendency for the predictions to be 

systematically low, everywhere. With constant terms, of 

course, this would not have been expected. Still, the 

independent variables in equation (6.29) were close 

enough to being able to represent constant trends, 

upwards, that it seemed very strange that such a bias 

would develop. A series of intuitive arguments 

convinced us that the outliers in Finnmark, extendin 

for a handful of years in both urban and rural 

Finnmark, could add a degree of apparent randomness, 

enough to bias the coefficients substantially. Given
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that Nynorsk had never been used at all in schools in 

Finnmark, we felt it would be best to change the data, 

so that in alj years the variable "A" (percentage 

assimilated) would equal 100% in Finnmark. 

After these changes, two runs were carried out, 

both highly successful. The first run duplicated our 

original first run, based on equations (6.27) and 

(6.28). This time, the R* for the ARMA model was 

-9988, versus .9987 for the regression model. The ARMA 

model had a likelihood score of 35.46 points higher 

than the regression model, implying odds of 2.5 million 

billion to 1 against its superiority being a 

coincidence. Both models, of course, were doing 

astronomically better than any of the models discussed 

above. In simulation, however, the picture was a bit 

mixed, though still improved on the whole. The R.M.S. 

average percentage errors were 9.9% for the ARMA model 

and 9.4% for the regression model; the absolute errors 

averaged to 20% and 27%, respectively. 

The second new run duplicated the second old run, 

in using equation (6.29) as a model. The superiority 

of the ARMA model grew larger, when a more complete 

substantive model was used, just as we had hoped 

earlier; the gap in likelihood grew to 42.51, implying 

odds of 3 X i0!? to 1 in favor of the ARMA model. With
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the regression models, the addition of communications 

terms produced only a slight gain in likelihood - 2 

points - but with the ARMA model, the gain in 

likelihood was 9.03 points, implying a very significant 

improvement. (Significant at the level of "p = 

-00011," in conventional terminology.) One may note 

that the coefficient of the main communications term 

was .0067 for the ARMA model, versus .0054 for the 

regression model, both about right for a recurrent 

feedback term. With a better substantive model, the 

ARMA model improved much more in its long-term 

predictive power, too, than the regression model did. 

The average percentage errors were 8.6% for the ARMA 

model, versus 9.0% for regression; the absolute errors 

averaged to 17% for the ARMA model, versus 25% for 

regression. Between the two measures, it is reasonable 

to say that the ARMA model here, as elsewhere, displays 

on the order of 10-15% less error in long-term 

prediction than the regression model does. Also, as we 

pointed out at the beginning of this section, when 

outliers are removed, the ARMA models are very much 

superior to the regression models in terms of formal 

statistical likelikood. These statements remain true 

despite the "ratchet" effects - similar to outliers, 

but persistent ~ which we mentioned earlier in this
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section.
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FOOTNOTES TO CHAPTER (VI) 

(1) Deutsch, Karl W., Nationalism and Social 
Communications, MIT Press, Cambridge, -Mass., 1966, 
revised second edition. Chapter 6 contains the 
main argument leading up to the mathematical 
model; Appendix V contains the mathematical model, 
and a verbal description of it. 

(2) ibid. 

(3) Hopkins, Raymond, "Projections of Population Change 
by Mobilization and Assimilation," Behavioral 
Science, 1972, p.254. The programs were made 
available to us by Prof. Deutsch at the Harvard 
Department of Government. 

(4) Deutsch, Karl W., op. cit., Appendix V. Note that 
several versions of this model have appeared in 
print. The version here, in all fairness, was 
actually taken directly from Hopkins, Raymond and 
Carol, "A Difference Equation Model for 
Mobilization and Assimilation Processes", 1969, 
unpublished; a copy of this paper was provided to 
us by Prof. Deutsch, and described by him as 
containing the final reviston of the model. This 
revision appears, in difference equation form, in 
Hopkins, Raymond, "Projections of Population 
Change by Mobilization and Assimilation", 
Behavioral Science, 1972, p.254. The reasons for 
the revisions to earlier versions are described in 
Hopkins, Raymond, "Mathematical Modelling of 
Mobilization and Assimilation Processes", in 
Mathematical Approaches to Politics, edited by 
Hayward Alker, Karl Deutsch and Antione Stoetzel, 
Elsevier Publishing Co., New York, 1973, p.381. 

(5) See note l. 

(6) Hopkins, Raymond, "Mathematical Modelling of 
Mobilization and Assimilation Processes", in 
Mathematical Approaches to Politics, edited by 
Hayward Alker, Karl Deutsch and Antione Stoetzel, 
Elsevier Publishing Co., New York, 1973, 
especially p.381. 

(7) See note 3. More precisely, we used the Hopkins 
routines directly, on sample cases suggested to us 
by Prof. Hopkins and on a few others.
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(8) In Chapter (V), we noted that the correlation 
across n intervals of time, when both process 
noise and measurement noise might be present, 
would equal ¢“r™, where ¢ is the correlation 
involved with measurement noise, and r is the true 
correlation across time of the process underneath. 
When this figure changes very little with 
increases in "n", but is substantially different 
from 1 for various values of n, then it would seem 
that r is very close to 1 and that ¢ is not. 

(9) The approximation here is that exp(lta) is 

(10) 

approximately equal to l+a, with only about .5% 
error when "a" is about 10%. More precisely, if we 
take the exponential function of both sides of the 
equations (6.10), and substitute in from (6.12), 
the approximation rule cited here brings us back 
to (6.9). 

Strictly speaking, there is one major 
qualification one might make to this statement. 
When making a prediction, one usually starts from 
a given base year, and applies the differential 
equations to that year as an initial condition. 
This would correspond to adjusting ky and kg here, 
to fit a given year exactly. One can expect to do 
better, if one somehow averages different base 
years to get an estimate of the underlying 
reality, and uses that estimate to make 
predictions from. Admittedly, part of the 
advantage in our "extl"(EXTRAP) extrapolation 
probably lies in doing just that. If there were a 
consistent change in the rate of growth of these 
variables, through time, and if one were using 
extrapolation models to predict the same period of 
time as the one they were fitted to, this would 
lead to an unfair advantage for the extrapolation 
models; the extrapolation models would be 
centered at the middle of the process, but the 
ordinary models would be centered at the initial 
extreme. However, every one of the extrapolation 
runs here was accompanied by a run testing the 
predictive power of the hypothesis of a t-squared 
term in (6.10); these runs gave no support to the 
idea that factors involving a simple second 
derivative could be responsible for the advantages 
of extrapolation. The ability of extrapolation to 
average out extreme values measured in the same, 
early periods of time is not "unfair," insofar as 
it reflects an advantage available to those trying
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to predict the future from an extensive data-bank 
from the present and past. 

The computer printout here was left in the custody 
of Prof. Karl Deutsch, Harvard Dept. of 
Government. The computer printouts from section 
(ii) were also left in his custody, in 1971. 
These two groups of output are approximately one 
foot thick, put together. For every run reported 
here, they include predictions and reality for 
every year, past and future, for which predictions 
were made. 

Deutsch, Karl W., op. cit., Chapter 6. 

Lieberson, Stanley, Language and Ethnic Relations 
in Canada, Wiley, New York, 1970. See p.7, 48, 
183-187 for relatively smooth graphs emerging from 
scatter-plots. 

ibid. Lieberson focuses strongly on the issues of 
language "retention," by those brought up in one 
language, as opposed to "demographic factors." On 
p.35, he states that,"!tt is far more correct to 
describe the Canadian scene as an equilibrium 
based on counterbalancing forces." On p.50 and 
p.51 he emphasizes, first, that English has been 
dominant in terms of "retention" or assimilation, 
but then, that the "revenge of the cradle! has 
been central to French language maintenance. On 
p.225, he defines a variable, "communications 
advantage," quite similar in spirit to the 
"language pressure in communications" discussed 
here; in the subsequent verbal discussion, he 
implies that this variable is central to 
"retention" phenomena. 

Deutsch, Karl W., "Mathematics of the Tower of 
Babel", in "Nation and World", in Contemporary 
Political Science: Toward Empirical Theory, 
McGraw-Hill, 1967. 

Strictly speaking, one must also try to explain 
the origins and convergences of such dialects, 
instead of merely the decision by individuals to 
jump from one dialect to another. Equation 
(6.26), which can deal with the idea of dialects 
getting closer or further away as a result of 
communication, is conceptually quite close to the 
model here. Yet one is still faced with the
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problem of explaining how divergence in dialect 
can come about. If the speech in each region were 
subject to random drift, or to systematic 
pressures based on interregional differences in 
speech equipment, then a low level of 
interregional communications, fin our model, would 
imply little damping of such drift. An increase in 
communications would imply a greater pressure for 
convergence, and a damping out of future drift. 
Note that such phenomena would also apply if there 
were a dramatic increase in communications between 
two regions with enough internal communications to 
resist assimilation as such; the growth of 
"franglais" is an interesting example. 

Schelling, Thomas C., The Strategy of Conflict, 
Oxford U. Press, New York, 1963. (Copyright 1960.) 
p.104: "But where do the patterns (of potential 
compromise) come from? They are not very visibly 
provided by the mathematical structure of the 
game, particularly since we have purposely made 
each player's value system too uncertain to the 
other to make considerations of symmetry, 
equality, and so forth, of any great help. Ci.e. 
of help in analyzing Schelling's paradigms for 
games of mixed conflict and common interest.) 
Presumably, they find their patterns tn such 
things as natural boundaries, familiar political 
groupings, the characteristics of states that 
might enter their value systems, gestalt 
psychology, and any cliches or traditions that 
they can work out for themselves in the process of 
play..." p.151: "... the introduction of 
uninhibited speech may not greatly alter the 
character of the game, even though the particular 
outcome is different..." In short, tacit norms, 
before the introduction of explicit bargaining, 
are crucial to the existence of possible "patterns 
of convergence." On p.113-114, Schelling hammers 
home the point that mathematical "solutions" to 
nonzerosum games do not provide a realistic 
alternative to his own theory of tacit norms, 
discussed on p.99-111. In a sense, one might argue 
that the idea of "solving" for a unique or optimal 
static equilibrium may apply only to games similar 
to those originally discussed in such terms by Von 
Neumann and Morgenstern (note 39 of Chapter (V)); 
as in economics, there may be situations where 
dynamic factors cannot be easily encompassed 
within such a static description. At any rate,
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(22) 

(23) 

(24) 

(25) 

(26) 
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Schelling's discussion, applied elsewhere by him 
to real political analysis, strikes us as fairly 
convincing. 

Deutsch, Karl W., Nationalism and Social 
Communications, MIT Press, Cambridge, Mass., 1966, 
revised second edition, especially p.96-97. Also, 
Deutsch et al, "Political Community and the North 
Atlantic Area", in International Political 
Communities, Anchor Books, New York, 1966, p.17. 
In the latter reference in particular, the concept 
of "community" is defined in terms of an ongoing 
ability to communicate and respond in 
decision-making processes of a continuous sort. 

See note 17. 

See note 18, particularly the second reference. 

See note 16. 

Deutsch, Karl W., Nationalism and Social 
Communications, MIT Press, Cambridge, Mass., 1966, 
revised second edition, p.26. 

Feierabend, Ivo K. and Rosalind L., and Gurr, Ted 
R., eds., Anger, Violence and Politics: Theories 
and Research, Prentice-Hall, Englewood Cliffs, 
N.J., 1972. 

Kravitz, Sheldon, A Theoretical Model For the 
Analysis and Comparison of Ideologies, Ph.D. 
dissertation, May 1972. Available c/o Widener 
Library, Harvard U., Cambridge, Mass. 

Minsky, Marvin and Selfridge, Oliver G., "Learning 
in Random Nets", in Information Theory, Fourth 
London Symposium published by Butterworths, 88 
Kingsway, London W.C.2., U.K., p.339. In 
discussing this formula, Minsky and Selfridge 
consider only the cases E = 1 or E = 0 per 
episode, but the generalization does not appear 
very difficult. These authors, in turn, refer to 
Bush, R.R. and Mosteller, F., Stochastic Models 
for Learning, Wiley, New York, 1955, as a basic 
source. 

"Groupthink" as a small-group phenomenon has been 
widely discussed as a result of Janis, Irving, 
Victims of Groupthink, Houghton-Mifflin, New York, 
1973
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Haugen, Einar, Language Conflict and Language 
Planning: The Case of Modern Norwegian, Harvard U. 
Press, Cambridge, Mass., 1966. Map on p.229. 

The primary source for this data, as with the data 
reported below, was the Norwegian Official 
Statistics series, commonly available in U.S. 
libraries. The Norwegian name is "Norges 
Offisielle Statistikk"; when author designations 
are required, the "Central Bureau of Statistics" 
or "Sentral..." is usually appropriate. School 
data for Jan. 1970 may be found in the 1972 
"Arbok" (Yearbook), which also appears as 
Rekke-XII, number 274. Data on the use of 
languages in elementary education were used, as on 
p.335 of that copy of the Arbok. The language use 
data for earlier years were taken from the earlier 
Arboks, back to 1939. In some years, when the 
urban/rural breakdown was not available, we used 
the Skolestatistik issues of the N.0O.S. Every 
number(issue) in the N.0O.S. series includes a list 
of the numbers and topics of other recent issues; 
also, on the front or back cover are listed the 
numbers of previous issues on the same topic. 
(Thus, in the 1972 Arbok are listed the Rekke and 
number of all previous Arboks.) Language use in 
elementary schools is essentially a matter of 
local choice; Haugen, op. cit., gives a few 
details of the process of language choice. We 
decided, in our computer runs, to recalibrate the 
time periods of the data; thus, language use in 
force in schools in January 1950 was taken to be 
an index of actual language use in 1949, given the 
lags involved in changing policy in the schools. 

Sources: N.0O.S., op. cit., Rekke XII, No. 233; 
Rekke A, No. 244; Rekke A, No. 292. Original 
statistics were further broken down by sex, but 
aggregated for this study. 

N.O.S., op. cit., Rekke XI, No. 298 for the most 
recent data, and previous items in the same topic 
series. Note that Rekke XI!, No. 232, while not 
containing the appropriate breakdowns by urban and 
rural, does provide definitions in English. 

H.O.S., backwards from Rekke XII, No. 198. 
Aggregated according to the urban/rural 
definitions of townships spelled out in the 
Skolestatistikk sertes.
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N.O.S., op. cit., backwards from Rekke XII, 
No. 220. Some aggregation required in earlier 
years over sex, etc. In 1967, Rekke XIf, No. 248 
was used, 

N.0.5., op. cit. For income, Rekke A, No. 363, 
used for 1968 on back. ("Municipal Total Income," 
from Table IA. In early years, some aggregation 
required; however, the column names were uniform 
enough that it was not too difficult to 
reconstruct the same aggregations as used by the 
N.O.S. authors in later years.) In Rekke XII, 
Nos. 245 and 252, an index of consumer prices was 
found, for the entire period. (i.e. An historica! 
table was available.) The average size of the 
ratio, normalized to units appropriate for 
statistics, was on the order of unity. 

These data include data on criminal convictions - 
easily avallable In this period, starting back 
from the Arbok; data on heads of households on 
welfare, continued back in the Statistical Monthly 
over the entire period; data on population, not 
generally available in recent years with the 
desired breakdown, but in the Arbok when 
available. 

Isard, Walter, Methods of Regional Analysis: An 
Introduction to Regional Science, MIT Press, 
Cambridge, Mass., 1966, Chapter 11. On p.500, 
reference is made to Stewart and Zipf, the two 
fathers of the idea; on p.506, a concept of social 
distance is mentioned, similar in spirit to "Ugj"; 
on p.507-510, empirical results are discussed. 
See also Deutsch, Karl W. and Isard, Walter, 
"Toward a Generalized Concept of Distance", 
Behavioral Science, Nov. 1961. 

Galle, Owen R, and Taueber, Karl E., "Metropolitan 
Migration and Intervening Opportunities", American 
sociological Review, No. 31, Feb. 1966, table on 
p.8. Note that these authors are essentially 
critics of the gravity model; thus their results 
are particularly interesting. For other work in 
this area, see note 35. 

World Atlas, Moscow, 1965, p.57. A large map of 
Norway, with major roads indicated, was used. 
Distance was measured with a centimeter ruler, for 
the most direct major route by road; however, if 
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this should exceed the absolute distance by 40% or 

more, then the direct distance plus 40% was used. 

For distances from an urban area, either there was 

one major city, or several which could be 

averaged. For rural distances, fit was assumed that 

population density was even throughout each 

region; averages were estimated on that basis. All 

of the data here was punched on cards, and read 

into the MIT Multics machine; the punched cards 

and code sheets may be made available to future 

users through the office of Prof. Deutsch, if 

there Is interest in so doing.
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(V) GENERAL APPLICATIONS OF THESE IDEAS: 

PRACTICAL HAZARDS AND NEW POSSIBILITIES 

Ci) INTRODUCTION AND SUMMARY 

Fierce debates continue to rage between those who 

would study behavior "with mathematics" and those who 

would study it "by traditional means." These debates, 

by drawing attention to the extremes, have obscured 

many of the serious hazards and many of the most 

important applications of mathematical approaches in 

government and in psychology. !n extending the 

mathematical approaches further, we have a special 

responsibility to discuss the new applications and the 

continuing hazards which may result. 

We will begin, in section (ii), by presenting the 

viewpoint of the practical decision-maker, who has not 

used mathematical methods so far, for good reasons. All 

of this chapter will be organized around the 

difficulties which he faces; other possible users of 

our ideas - the social scientist, the psychologist and 

the ecologist - will be mentioned within more limited 

contexts. In section (iii), we will suggest a common 

framework for evaluating verbal and mathematical tools, 

both, based upon the common goal of prediction; within
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this framework, the mathematical methods have a role to 

play, at least in Principle, both for what they tell us 

directly and for what they tell us about common abuses 

of verbal methods. For those who prefer to deal in 

concrete examples, rather than abstract generalizations 

about methodology, we have included a number of 

relevant examples, mostly in the footnotes. Also, at 

the end of this section, we will describe in detail how 

this framework has motivated the development of new 

mathematical procedures described in the other chapters 

of this thesis. 

In section (iv), we wil] £0 from principle to 

Practice; we will discuss specific ways in which 

statistical methods may be used, in close relation with 

verbal methods, and be of significant value in real 

Prediction efforts. This discussion will not be based 

upon the well~known philosophy of logical positivism, 

but on the more recent philosophy of Bayesian 

utilitarianism (see section (v) of Chapter (11)), the 

philosophy which underlies the actual mathematical 

developments we have discussed: at any rate, the 

utilitarian approach helps keep us focused on the value 

of our methods to serious policy-makers, In this 

section, we have also tried to crystallize out our own 

experience with the numerous ways in which statistical
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research can turn out to be useless and misleading for 

the policy-maker, if it is done in a cavalier manner; 

Our suggestions are not a definitive answer to all of 

these difficulties, but at least they may help, 

Finally, tn section (v), we point out that the 

central role of human Psychology in politics seriously 

limits the possibilities of naive empiricism, both 

verbal and mathematical. Statistical studies, like 

verbal research of the purely empirical variety, may be 

unable to transcend these limits. However, the 

mathematical ideas discussed in Chapter (11), along 

with other offshoots of the Bayesian approach, can be 

applied in a different way, to help overcome these 

limitations in a way which words alone cannot; to 

illustrate this point, we will mention specific 

possibilities for using these ideas in the future to 

cope with and explain the phenomenon of intelligence, 

whether in human societies or in human brains. 

(ii) THE LIABILITIES OF MATHEMATICAL METHODS 

IN PRACTICAL DECISION-MAKING 

Let us start out by reconsidering our tacit 

assumption that methematical methods do have some use, 

after all, in political science and in political
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decision-making. Many people have questioned this idea 

in the past few decades, and many more may have felt 

strong private reservations about the idea. While we 

clearly can be expected to reaffirm the value of 

mathematical methods, on the whole, we also believe 

that the traditional complaints against mathematical 

methods do contain real information which the user of 

such methods should not ignore, 

In particular, let us try to express the 

reservations about mathematical methods which might be 

held by the active political actor. Practicing 

diplomats and politicians have often found that their 

margin of success depends on their ability to seize 

upon unique twists In the political or psychological 

environment, twists which allow the individual to 

escape the seemingly uncontrollable tide of events that 

one would expect a mathematical model to extrapolate. 

Sometimes this involves the ability to establish 

channels of serious communications between different 

political groups, channels which can grow in importance 

once they have been established. Sometimes this 

involves the ability to seize upon an economic or 

military advantage. Caesar's Gallic Wars are a classic 

example of the latter sort of imagination, evading 

Lanchester's Laws at every turn(1); Liddell Hart, in



his classic text on military strategy(2), has 

emphasized that such imaginative approaches have been 

decisive in wars throughout history. In both cases, one 

achieves a greater "benefit" within a given "cost 

constraint", not by being tight and precise about 

budgeting one's resources, but rather by preserving the 

detachment and the freedom one will need in order to 

seize upon whole new options, which may open up a whole 

new frontier of possibilities. Political creativity fn 

this form is difficult enough to encompass within any 

scholastic context, let alone the context of 

mathematical models; therefore, political scientists 

who have a strong attachment to this process would 

naturally tend to be skeptical of mathematical models. 

More generally, successful Political actors, like most 

successful professionals, would tend to believe that 

they stretch their minds to the limit, fin order to 

arrive at their policy decisions; they may conclude 

that the sheer complexity of their own decision-making 

militates against the prediction of its outcome by 

mathematical systems which account for far less 

information content. Furthermore, ft is also likely 

that a large part of this information, even when 

accessible to the political scientist, may be encoded 

in a verbal form which militates against its being
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accounted for by mathematical models, 

(iii) PREDICTION: A COMMON GOAL FOR VERBAL 

AND MATHEMATICAL SOCIAL SCIENCE 

These difficulties can be dealt with on several 

different levels, Let us begin on the simplest level, 

The difficulties above point to the impossibility 

of constructing mathematical models which will predict 

exactly what will happen in politics, in detail, in the 

short-term and in the medium-term. However, these 

difficulties have also been enough to make it 

impossible for any human being, political actor or 

otherwise, to predict exactly what will happen in all 

of politics, in the short-term or medium-term. A 

traditional political scientist or mathematician might 

deduce at this point that "true prediction", in the 

sense of exact prediction, is impossible in political 

science. Therefore, in order to assure himself that he 

is involved In sertous work, he may restrict his 

attention to propositions which meet an Aristotelian 

test of "truth", such as statements about historical 

documents(3) or abstract theorems which he can prove by 

rigorous deduction. Very few political actors, 

however, feel that they would want to turn away from
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the difficult but primary question of predicting the 

differences In outcome between the different actions 

they could take. These predictions may always fnclude 

factors of uncertainty, but the political actors would 

find it interesting enough to reduce this uncertainty 

as much as possible, in any possible way. Thus, finsofar 

as political scientists are concerned with developing 

objective insights of the maximum possible value to 

their consumers, the political decision-makers at all 

levels, their ultimate concern would be with the 

development of effective probabilistic theories to 

predict political and social systems. 

There are five points worth noticing about our 

emphasis on prediction here. First of all, this 

emphasis does not restrict itself to the overtly 

mathematical phases of political science. The 

development of "predictive models" - mathematical or 

verbal, or even analogue for that matter - is a general 

concept, which can be used to guide historical research 

as easily as It guides statistics. Many of the "erand 

theories" of political history, including especially 

the theories of Spengler(4), Toynbee(5), Turner(6), 

Hegel(7), and Marx, were designed to help people 

"understand" history in terms of a verbal dynamic model 

which could also be used to predict the future,



Traditional approaches to research in political 

science, however, might tend to "develop" such theories 

by adding complex strings of qualifications, and by 

forcing an elaborate, perfect Aristotelian fit of the 

weaker, more specialized propositions which emerge. Our 

own approach would ask that political scientists 

continually return to the main question, to the ability 

of their theories, with the disclaimers removed, to 

predict the broad first-order trends In the major, most 

obvious variables of political history. 

Second, our emphasis on prediction can be 

justified on deeper grounds than those of satisfying 

those who pay for the bulk of the political research. 

Following the philosophy of utilitarianism, one might 

simply regard political science itself as one 

particular phase of political activity; one might even 

suggest that its major justification for existence, in 

the long term, is its ability to contribute to 

constructive political activity. This takes us back 

to the primary need of the decision-maker to predict 

the results of his actions, at least on a probabilistic 

basis. On the other hand, even if one were willing to 

accept the ethical principle that truth should be 

pursued for fts own sake, as an ultimate g£0al equal to 

or higher than the goal that of human welfare, one



Page V-9 

still faces the problem of defining what this "ultimate 

truth" would consist of. One might sugeest that 

ultimate truth, ff it does exist in political science, 

lies not in the changeable facts of current 

happenstance, but rather fn the less changeable dynamic 

laws which lead from one set of circumstances to 

another; fin physics, for example, the dynamic field 

equations are considered the highest sctentific truth, 

while the codification of the wave-function of the 

universe is not an object of serious study, 

Admittedly, our knowledge of the dynamic laws, unlike 

the laws themselves, is likely to be changeable for a 

long time, in political scfence as In physics; 

however, it would be meaningless to speak about the 

advancement of knowledge as a worthwhile goal, were 

there not such a possibility for change and expansion 

in the state of knowledge. There are those who would 

question, in varying degrees, the primacy of the most 

abstract dynamical equations even in a field like 

physics; however, even the "phenomenological approach", 

in that field, tnvolves the construction of powerful, 

generalized predictive statements, statements about 

what to expect after setting up experiments of 

different types(8). 

Many times in political science, the concepts of
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"causation" and "explanation" have been cited as forms 

of truth worth pursuing(9), The statement that 

"A caused B" may be translated roughly into the 

statement that, "A occurred before B, and the dynamics 

of the system were such that B would not have occurred 

if A had not occurred when it did, ceteris paribus." 

Once again, the critical question to answer is that of 

the dynamic laws which govern political systems. 

Beyond the goals of social utility and "ultimate 

truth", the political sclentist might also pursue the 

goals of cultural enrichment and entertainment. These 

goals are often cited as a justification for extreme 

traditionalism in political science. Whether these 

goals are now being pursued effectively by all of those 

who cite them is a difficult matter to judge, well 

beyond the range of the present discussion, However, a 

large part of the "cultural enrichment" involved would 

appear to involve the learning of lessons about human 

psychology, about what patterns of thought and behavior 

one might predict on the part of human beings or human 

groups in unusual circumstances, in other cultures. 

Third of all, one should note that our emphasis on 

prediction as the ultimate goal of political science 

does not imply that work of a more descriptive nature
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should simply be abandoned. Using statistical methods, 

for example, one must first collect a set of data, 

before one can fit or test a model. After one has fit a 

verbal or statistical model to a given set of 

first-order data, one can then go back to the original 

sources of information to specify the strengths and 

weaknesses of one's model In more detail, with greater 

accuracy; even if one cannot modify one's model easily 

to handle the exceptions, one can try to express the 

information embodied in the exceptions in a more 

compact, more abstract form, to make life easier for 

those who wish to make predictions or to modify the 

current models in the future, 

In brief, we are sussesting that descriptive 

research be viewed as a means to an end, with the end 

being prediction. A direct and total assault on the 

objective of prediction may indeed be a poor strategy 

for achieving this end. However, our success is likely 

to be even less, if we do not keep the basic objective 

fixed firmly in our minds. Every once in a while, it 

is important to bring together the various 

propositions, mathematical and verbal, which one 

believes to be useful in prediction, and see how 

effective (and consistent) they really are in coping 

with the overall picture. When there are major new
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defects or possibilities apparent at the general level, 

it is important to take note of them, at that level, so 

that they can be used as a guide for more specialized 

research in different branches of political science. 

Descriptive work may not only help provide the 

basis for evaluating dynamic models of politics; it may 

also help those who wish to predict politics, by 

telling them what the current states of the systems are 

to which they would like to apply the dynamic laws. 

The longer the policy horizon, however, the more 

important it is to use more general dynamic models, 

instead of assuming some sort of simple extension of 

present trends and conditions as gauged by descriptive 

studies, Finally, while prediction may be advocated as 

the primary goal of objective political science, 

normative political science remains another matter. 

One may note, in this connection, that the attempt 

to maximize accuracy in description, by itself, leads 

naturally to a number of uncoordinated, specialized 

efforts, focused in depth on different primary sources 

of information(10). In predicting complex dynamic 

Systems, in contrast, one finds oneself led to focus 

first of all on the interactions between the primary 

subsystems, at an aggregate level. Thus In order to 

make "interdisciplinary research" a reality in the
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social sciences, it is essential that the ideal of 

predictive power gain at least as much credence as the 

ideal of descriptive finesse, In the detailed conduct 

of actual studies, 

Fourth of all, one should note that our emphasis 

on prediction does not require a reduction in the rigor 

of thought, even if fit does require that we go beyond 

the Aristotelian concepts of truth versus falsehood as 

ascertained by traditional uses of deductive logic. The 

mathematical theory of probability, and the Bayesian 

theory of inductive logic, have long provided a 

rigorous basis for handling models which do predict the 

future but which avoid the determinist's pretense of 

absolute certainty. Aristotelian statements, which 

tell us that a proposition is simply true (probability 

one) or false (probability zero) are simply a subset of 

the statements which can be expressed in rigorous 

probabilistic fashion. tn efther case, the statements 

that we make may well be inaccurate, if they are 

founded on faulty information; the language of 

probability, however, at least lets us express 

precisely how much confidence we do have in a 

proposition, instead of forcing us to say nothing or to 

exclude totally a real but less probable contingency.
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When social trends will depend on long-lasting but 

uncertain and novel phenomena, the language of 

probability encourages us to escape the fallacy that 

definite optimistic or pessimistic predictions are 

somehow more informative than the truth. (See, for 

example, footnote (6). ) 

To the statistician, all these concepts have long 

been obvious. In verbal research, however, the 

classical Aristotelian procedures have remained 

dominant. Only in recent years has the "Bayesian 

school" begun to educate verbal decision-makers In the 

use of probability theory as a generalized language of 

thought(11). In section (v) of Chapter (11), we have 

emphasized the point that the Bayesian approach to 

inductive reasoning can be applied to inductive 

reasoning as a whole, not merely to reasoning about 

quantitative variables. When, in verbal research, one 

finds oneself dealing with the behavior of quantitative 

variables, such as the degree of popular discontent, 

etc., one may even go so far as to discuss the "degree 

of fit", the "degrees of freedom" and the "exogenous 

variables" of one's verbal model, on the understanding 

that one is expressing one's model in verbal terms only 

because of the lack of hard data; even then, one may 

want to draw together the elements of one's model, and
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express them in increasingly mathematical terms, even 

if the parameters cannot be easily measured, tn order 

to make its meaning more and more explicit, and in 

order to improve [ts "coherence", i.e. its completeness 

and its consistency, 

Finally, and most importantly, our emphasis on 

prediction has been the driving force behind both our 
  

  

empirical research, and our conclusion that 

conventional routines for time-series analysis are 

inadequate. The empirical work on pollftical science 

in this thesis was motivated almost entirely by the 

attempt to convert the Deutsch-Solow equations, 

mentioned in Chapter (11), into a useful tool for the 

prediction of national assimilation and political 

mobilization. We started out years ago by testing out 

the Hopkins routines(12), which try to estimate the 

coefficients of the Deutsch-Solow model from only three 

data points, on the assumption that the Deutsch 

equations are totally "true" in the Aristotelian sense; 

it came as no surprise to us that the resulting 

predictions were rather poor. 

Our next step was to try out time-series multiple 

regression, the mainstay of "econometrics'"(13), of 

"path analysis"(14), and of "causal analysis"(15) and
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so on. It was easy enough to measure assimilation and 

mobilization coefficients which were significantly 

different from zero, and multiple correlation 

coefficients larger than ninety percent: these results 

were well within the range of what are regarded as 

"successful conclusions" in most quantitative political 

research today(16). However, our emphasis on 

prediction led us to look a bit more closely at these 

results; we wrote a new program, SERIES, to estimate 

the regression models, and then to test their abilfty 

to predict data across long intervals of tine, 

intervals comparable to those tested with the Hopkins 

program. The errors, while less than those of the 

Hopkins programs, were stil] unacceptably large. A 

simple curve-fitting procedure, by contrast, was able 

to make predictions with less than half as much error, 

averaging to about 4% error over periods of time on the 

order of a century; this average encompasses a number 

of cases wherein the model was fitted to data In one 

period of time, and used to predict data in later 

pertods. 

Walter Isard, in his classical study of 

methodology in regional science(17), has made strong 

statements against the ability of regression models to 

predict the future; while his argument is phrased fn
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theoretical terms, the wide coverage of his studies 

would imply an empirical basis for his conclusions. 

The Brookings Institute has also reported major 

difficulties in the use of regression in forecasting; 

they found that these difficulties could be reduced by 

the use of an "adjustment" factor not too different in 

spirit from our simple curve-fitting procedure(18). 

Thus the empirical basis of these conclusions goes well 

beyond our own examples. 

In our recent phase of empirical political 

research, we began with the hope that this weakness of 

regression, in estimating predictive models, could be 

understood within the classical and elegant framework 

of maximum likelihood theory, as described in section 

(v) of Chapter (!11). Instead of questioning the 

classical procedures of statistics, we hoped to apply 

these procedures to more sophisticated models. tn 

Chapter (l11), we have noted that "white nofse" in the 

process of measuring data can turn an ordinary 

"autoregressive process" into a "mixed autoregressive 

moving-average process." According to statistical 

theory, multiple regression {fs a good way to estimate 

the former process, but a bad way to study the latter. 

A simple diagram can show how bad this problem 

might become, in practice. Given a single variable, z,
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which has a true correlation of ¢ with itself across 

time (i.e. z(t) with z(t+1)), and a correlation of r 

with the measurements, x, that are made for z, we find 

that the correlation between x(t) and x(t+1) is due to 

an indirect path of correlations: 

z(t+1) x x(t+1)   

  z(t) c aw X(t) 

Figure V-1: Pathways of Correlation With Noisy Data 

If we make the simplifying assumption (a big one) that 

the process is not any worse, that there is no 

correlation between x(t) and x(t+1) independent of this 

pathway, then classical theory tells us that the 

correlation between x(t) and x(t+#1) will equal r times 

@ times r, i.e. rd, If regression were used to predict 

x(t+#1) from x(t) (the obseryed data), the regression 

coefficient would equal the simple correlation 

coefficient, rig, instead of the number ¢; yet when 

predictions are made over longer intervals of time, 

then ¢, the coefficient of the underlying process in 

the real world, is the proper basis for prediction(19). 

This example would also appear to point to the idea 

that simple "path coefficients" which are not effective 

in prediction are not likely to represent the true



Page V-19 

underlying relations, either. 

If r - the correlation between the true variable 

and the measurements of the variable - were about 95%, 

then the observed regression coefficient (ré¢ = 

(.95)(.95)4) would be about 19% smaller tn size than 

the right regression coefficient (¢) for use in 

long-range prediction. Furthermore, since this 10% 

error would represent a general shift in the value of a 

coefficient, one would expect that the use of the 

regression model would lead to errors whitch accumulate 

at the rate of ten percent per time period; it is easy 

to see how this phenomenon alone could vitiate the 

predictive power of regression. In the case of a 

single variable, this 10% error applies to a single 

large correlation coefficient; therefore, one can hope 

that regression will at least preserve the sign of this 

coefficient intact. tn the case of many variables, 

however, the 10% error would apply to a correlation 

Matrix; small but critical cross-terms, on the order of 

45%, might conceivably have their signs reversed, due 

to the spurious effects related to other, larser terms 

in the same matrix, After all, the importance (and 

much of the detectability) of such "feedback terms" 

lies precisely in their ability to accumulate and 

determine the long-term behavior of the system; ft fs
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precisely the long-term behavior which we find poorly 

accounted for by regression. 

In order to account for such effects, within a 

classical statistical framework, we have devised a new 

algorithm to estimate mixed autoregressive 

moving-average processes ("ARMA" processes) at a 

manageable cost. We have applied this new algorithm to 

the old Deutsch~Kravitz data on assimilation and 

mobilization in a dozen or so nations, and we have also 

applied it to new data on linguistic assimilation in 

Norway. In both cases, statistical theory indicated 

that the ARMA model was better than the old regression 

model; it indicated only a small probability, far less 

than 1% in almost every run, that the improvement was 

due to coincidence. However, when we went on to apply 

the test of prediction, we were quite disappointed. The 

ARMA model did indeed reduce prediction errors, in 

comparison with regression, by about 10% of the 

original root-mean-square average of the errors, in the 

case of our largest data sample; yet this is still far 

less than the 50% reduction achieved earlier with 

extrapolation, 

The success of extrapolation would appear to 

indicate that the underlying processes are still more 

deterministic than either the regression or the ARMA
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models were able to discover. Apparently, the 

measurement noise and transient fluctuations were too 

complicated for a "white noise" model to cope with. In 

retrospect, it seems clear that one should have 

expected precisely such a situation, in the case of 

both this and most other data in political science. The 

solution to such difficulties, in the classical 

philosophy of maximum likelihood, is for us to pose 

ever more complicated higher-order models of process 

noise and measurement noise. (With some other 

data-series, however, the ARMA model, or even the usual 

regression model, might be adequate.) However, the 

nultivariate ARMA model already contains a large enough 

number of degrees of freedom; to double or triple the 

number of coefficients to estimate would put a heavy 

burden on all but a few very large data sets, while 

still compensating for only moderate complication in 

the noise process. 

Ihe success of simple extrapolation points to a 

more practical approach to prediction. It points to the 

possibility of "robust" estimation, of estimation 

techniques which can perform well despite any 

oversimplifications in one's original model(20); a 

good performance, in this context, means that the 

coefficients of the model are estimated in such a way
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that the model will have maximum predictive power. In 

section (vii) of Chapter (I!), we have suggested that 

simple extrapolation is "robust" - more robust than 

ARMA estimation, even apriorf - because it ts based on 

a simple "measurement noise only model," a statistical 

model built to extract the deterministic underlying 

trends (if they exist) from a process afflicted by a 

complex pattern of transient noise and measurement 

error; we have pointed out that the general dynamic 

feedback procedure of Chapter (I!) can be used to 

estimate more general models of this type, 

economically. (It fs also possible to make some 

  

allowance for process noise in an ad hoc way(21), but 

the best way to make such allowance while preserving 

robustness is unclear; there mizht be no general 

theoretical answer to this question.) We have also 

discussed another new technique in Chapter(It), 

"pattern analysis", to draw out more direct 

measurements of the underlying dynamic variables. 

In brief: our emphasis on prediction has led us to 

the conciusion that statistical methods based on the 

concept of maximum likelihood alone are inadequate in 

practical empirical research. It has led us to the 

theoretical conclusion that predictive power itself 

needs to be maximized more explicitly in the model
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estimation techniques available to behavioral 

scientists. In Chapter (11), we have suggested ways to 

build new systems on this principle. These systems are 

scheduled to be available as part of the Time~-Series 

Processor package, designed for social scientists, in 

1974 at Project Cambridse, M.t.T. 

(iv) POSSIBILITIES FOR STATISTICS AS 

AN EMPIRICAL TOOL IN 

REAL-WORLD PRERPICTION 

Now let us come back and look more closely at the 

questions we started from in section (fi); let us 

reconsider the worries of the political actor about the 

use of mathematical approaches. We have dealt with 

these worries so far on a very basic level, on the 

level of defending the concept of predictive theories 

in the social sciences. We have emphasized the point 

that the explicit statistical techniques we have 

proposed are merely one tool among many [In constructing 

such theories. We have implied that the choice between 

these techniques for constructing theories, and the 

verbal and Bayesian techniques, should be decided on a 

case-by-case and even study-~bv-study basis, based on
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the ideal of predictive power, rather than decided by 

any apriori fiat in favor of one approach or the other; 

we have implied that statistical analyses should merge 

into other analyses, mathematical and nonmathematical, 

in such a way that political science is divided up 

according to interfaces between substantive fssues 

rather than interfaces between methodological schools 

of thought. 

All of these comments, while controversial within 

the domain of political science, would seem rather 

bland and basic to many real political actors. Most 

political actors would be quite willing to try any 

methodology that "works", at any time, without getting 

too committed to one methodology or another. What 

worrtes them is a question on another level: can we 

expect statistical methods to "work" very often, in 

practice? 

In principle, this question can only be answered 

after the fact, in each case. However, there are a 

number of reasonable guesses one might make, based on 

past experience, as to the most likely areas of 

fruitful statistical research jin the future, in 

political science, 

First of all, we may expect to be surprised in the 

future, by statistical methods having a larger range of
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application than one might expect apriorfi. Given that 

our present emotional expectations are built upon 

verbal techniques which have been thoroughly used and 

thoroughly developed, while our statistical techniques 

are only now being perfected and have barely begun to 

be used to construct predictive models, we may expect 

that the development of statistics will demonstrate a 

much greater value than one's intuition would indicate 

today. 

Second, we may expect statistics to provide the 

basic "reality testing" for operational political 

theories of the quantitative type or the verbal 

analytic type. A simple regression analysis may make a 

poor test of a verbal "hypothesis", if interpreted 

naively. However, a full statistical analysis of a 

given set of variables will give a much larger quantity 

of information, information which the analyst should 

not gloss over, either in his work or in his written 

reports; if, in fact, it is difficult to make a 

connection between one's verbal theories and the 

aggregate, statistical behavior of the variables these 

theories pretend to explain, then one has much to learn 

in trying to explain the difficulty. Oftentimes, an 

"obvious" verbal theory will turn out, though true in 

the abstract, to require major qualification in terms
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of what it tells us to expect to find in concrete data. 

When government policy Is concerned with the concrete 

results themselves, these qualifications may turn out 

to be of central importance. 

The classical theory of full-employment 

equilibrium, for example, depended on the idea that the 

supply of savings would increase with higher interest 

rates, just as the supply of any other commodity 

increases when a higher price is offered(22). Empirical 

studies have not refuted this idea; however, they have 

shown that the predictive power of interest rates In 

predicting savings is extremely small, while the effect 

of income variables, cited by Keynes, has turned out to 

be very large(23). Keynes himself was able to observe 

these effects by analytic methods alone, but major 

governments were very slow to change their established 

viewpoints despite his arguments(24); the statistical 

studies, by confronting people directly with the trends 

which had persisted up to the current day, may have 

been a crucial form of "reality testing" on this issue. 

Third, one may hope that statistics will help 

illuminate the slow and stubborn trends which underly 

social phenomena. It has often been suggested that the 

most visible variables in politics - the turmoil, the 

yearly ups and downs in economies, alliances and wars -
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are all superficial ripples riding on a deeper current. 

Economists have often discussed a "technological"! 

increase in production capacity per capita, an increase 

which continues during recession and boom at virtually 

the same rate, an increase which is not fixed but which 

varies slowly according to uncertain causes over long 

periods of time. Almost any discussion of the 

"production function" includes reference to this 

"autonomous" or "technological" term(25). Soctologists 

like Max Weber(26), philosophers like Hegel(27) or 

Marx, and historians like Spengler(28), Toynbee(29) and 

even McNeil(30) and Eisenstadt(31) have all discussed 

such trends. Even in our simulation studies in Chapter 

(1¥), we found that errors in short-term predictions 

were reduced far less by sophisticated analysis than 

were errors in medium-term and long-term prediction. 

Political actors, in the short-term, are compelled 

to immerse themselves in details too small and too 

unpredictable to be dealt with effectively by 

statisticians, But the effectiveness of political 

actors also depends on their "historical vision", on 

their ability to judge the results of their life's work 

on the subsequent tide of events; lona-term trends may 

be more deterministic, and more susceptible to 

mathematical analysis. !tn order to sort out these
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underlying trends, one must somehow adjust for the 

existence of a great deal of short-term fluctuation. 

This short-term fluctuation would typically have a very 

complex and changeable pattern of autocorrelation; thus 

a complete model of the "measurement noise" process is 

doubly infeasible, and one must face up to the need for 

"robust" procedures, as described in section (iii) 

above and in section (vii) of Chapter (11). 

After a "robust" analysis, one may find that some 

variables tend to follow deterministic laws, over time, 

but that others still involve a great deal of apparent 

randomness. In this case, one might expect that the 

political actor would have his greatest personal effect 

on history by trying to change the latter variables - 

which gan be changed - and by aiming only indirectly at 

the former variables. Also, by knowing where events 

would be headed if he acted like the average political 

actor, an informed political actor may judge the 

importance of taking unusually intense actions to break 

out of the existing trends. Furthermore, if there 

should turn out to be a "crossroads" of possibilities 

ahead ("bifurcation", in mathematical language), such 

that the choice of possibilities ahead would produce 

very long-lived effects, while other implications of
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present policy would be washed out in time by random 

noise, one might well choose to organize one's entire 

policy around the goal of moving down the right road, 

even if this means focusing one's attention on 

variables which are harder to affect. 

In practice, there are serious difficulties in 

using statistics by themselves in dealing with this 

third objective. Statistics might do well in predicting 

the stress which will pull at the fabric of various 

societies; it will not do as well in predicting the 

ability of local political leaders to cope with the 

stress, Still, to know the causes and the magnitude of 

the stress would be interesting in any case. But there 

is a bigger difficulty with using statistics here. The 

deeper historical trends can be analyzed best if we 

make use of the longest possible relevant data series; 

  

yet much of our historical data base, as described by 

Toynbee and McNeil, involves information about 

civilizations which have not left us a large supply of 

statistical data series. 

In some cases, a large supply of recent data may 

be enough. It may even seem superior to historical 

data, on grounds that it reflects exclusively modern 

phenomena which one would expect to continue in the 

future; for example, certain aspects of population
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dynamics may be dealt with reasonably enough from 

recent data, especially insofar as the future will 

depend heavily on the impact of recent phenomena such 

as large-scale female literacy. On the other hand, if 

there is any truth at all in the findings of Toynbee 

and Spengler, then the central trends of history may 

include regular rises and declines(32), regular 

curvatures, which would be much harder to observe in 

short data-series - even short representative 

data-serfies - than in very long data-series. Thus the 

long data-series do much more than increase the number 

of observations and improve the accuracy of our 

estimates of parameters; they give us the power to deal 

with important qualitative effects, with whole new 

terms in the model, which might otherwise be missed. 

Furthermore, one might expect that the future 

would represent a dynamic domain just as different from 

the present, as the present fs from the past; fn order 

to predict this domain, it may be more rational to look 

for regularities which have extended from the distant 

past to the present, and extrapolate them, rather than 

extrapolate models specific to the dynamic domains of 

the present. If, in some cases, history were dominated 

by large, Infrequent and apparently irreversible 

changes, as in technology, then a longer data-~base
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would be even more essential, to give us an adequate 

sample to represent the varieties of such changes and 

configurations in the past; only in this way can we 

hope to deal with the further changes which, under this 

assumption, would dominate the future. (This does not, 

of course, entail building models tailored to shorter, 

well delimited periods in ancient history, as 

unrepresentative and restricted as recent history.) 

Also, to deal with the possibility that the human race 

might be entering a new domain of experience, totally 

different from any of its past history, one might 

simply extend the basic context of one's analysis still 

further, to include the more general history of species 

on this planet and the patterns of evolution revealed 

therein. The biological example of the trilobites, 

which became totally extinct after overspecialization, 

does not have a full-scale parallel in the human past; 

this particular example has been mentioned often in the 

popular press, but there may be other aspects of 

biological history more general and even more relevant 

to our own future(33). In general, it would appear 

futile to try to predict the fine details of a complex, 

natural system such as human society before we can 

construct first-order models which can cope with a 

general review of the aggregate behavior of this system
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across the whole of the available data~base. 

All of these visions of history emphasize that 

rapid periods of expansion, lasting for decades or 

millenia, have existed often enough in the past, and 

have been terminated often enough by the growth of 

counter trends; they emphasize that an analysis of 

social dynamics, based only on the data available in 

recent decades, may lead to a totally false picture of 

the possibilities which lie ahead. This difficulty 

certainly applies to verbal theorizing, just as much as 

to statistics; with verbal theorizing, however, the 

historical data are far more extensive for those who 

are willing to examine them. While we would not agree 

with the exact details of the theories of Spengler and 

Toynbee, we would consider it all the more important to 

describe and explain the phenomena they have discussed. 

Finally, statistical methods may help on another 

level - as a paradigm to guide verbal research, both in 

general and in specific cases. We have emphasized 

throughout this chapter the value of verbal research, 

conceived as an attempt to do with verbal data what 

statistical research does with mathematical data. Yet 

even in statistics, where the methods used are spelled 

out explicitly In advance, we have seen that the
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popular methods of analysis can be quite unrealistic 

and deceptive. It would seem unreasonable to expect any 

more, apriori, from verbal research. tndeed, we have 

been able to compare the two forms of research fn 

respect to three issues: the emphasis on prediction, 

the willingness to deal with the longest possible 

time-series, and the willingness to accept noise as 

part of predictive theories; itn all three cases, 

especially the first and most basic, classic verbal 

political science - with a handful of notable 

exceptions - does not appear to have grounds to claim 

superiority in its attitudes, at least not in the parts 

of the literature with which we are familiar(3h). 

In this situation, the methodological advances in 

statistics - which are well-defined, and which can be 

consolidated ~ can be of major value tn educating the 

verbally-oriented political scientist. The concept of 

stochastic predictive theories may seem reasonable in 

the abstract to the verbal political scientist; 

however, when he tries to translate this idea into a 

strategy for his own research, it would not he 

surprising if the difficulty of doing so brought him to 

withdraw back to Aristotelian procedures. Indeed, the 

classic attempt to track down the long-term "causes" of 

historical events is, as we have mentioned above, very



Page V-34 

closely linked to the search for dynamic models. 

However, the concept of "cause! is a weak enough 

paradigm that historians have often found themselves 

forced to admit "multicausality"(35), and then to 

withdraw into more descriptive, more "objective" 

questions. Furthermore, historians have often admitted 

themselves to be intrigued by the "great ‘what if! 

questions of history", such as, "What would have 

happened if the Spanish Armada had won fn 1588?"; yet 

such questions - which clearly call for the use of some 

kind of predictive model - have been dismissed as 

speculative(36). 

In short, there would appear to be a need for a 

more durable paradigm in analytic verbal research. If 

verbal social scientists can become more and more 

familiar, on an intuitive level, with the concrete 

methods of statistics, in coming to grips with concrete 

data, then they may be able to develop a clearer and 

clearer picture of what ft means to search for robust 

predictive models, mathematical or verbal. Also, they 

may be expected to learn to appreciate the value of 

treating quantitative variables as such, even in verbal 

discussion, rather than reducing them to such 

possibilities as "high" and "low'(37). 

The value of statistical methods as a paradigm for
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verbal research may be especially great in those cases 

where statistics can deal explicitly with some, but not 

all, of the historical data of Interest. One can 

imagine two ways in which this value would be felt, as 

statistics are brought to bear on those data which are 

available. 

First of all, those people doing the statistical 

research would have to choose a set of variables to 

use, in developing predictive models. When predicting 

a system like a missile, made up of five major 

subsystems or so, one's primary concern in making 

medium-term predictions is with the "overall system," 

with the system made up of the interactions between the 

five major subsystems. Similarly, when asking for 

long-term prediction of a statistical system, made up 

of five clusters of heavily intercorrelated systems of 

variables, one would normally start out by aggregating 

each of the clusters, by use of factor analysis, 

pattern analysis or other procedures, and then studying 

the relations between the aggregate variables. To try 

to predict where a missile will go, by predicting what 

each of the subsystems would do in total isolation from 

each other, is to ignore the most important functional 

relations. Statistical analysis, by drawing us away In 

concrete cases from a fixation on the internal dynamics
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of specialized subsystems, may helo bring us back to 

studying the broad structure of fnterfaces and multiple 

subsystems which is crucial to even a first-order 

prediction of human societies. Then, when researchers 

go back to look inside the subsystems, we may hope that 

they will focus more attention on those questions about 

the interfaces which appeared important at the global 

level. The "unity of science" may be a debatable 

proposition when applied to predictive models of, say, 

biological systems and astronomical systems. However, 

when one is trying to predict a single, highly 

integrated system, the need for interdisciplinary unity 

becomes overwhelming. When small feedback terms from 

one subsystem to another can have overwhelming effects 

in determining system behavior, it is essential to try 

to measure the aggregate behavior directly. 

In the next phase, after the statistics have 

pointed to concrete interdisciplinary effects, human 

verbal knowledge can go on to explain and to qualify 

these conclusions. One might, on verbal grounds, 

regard the conclusions as misleading, as 

oversimplified, or as one-sided itn their emphasis; in 

any case, however, even to disctiss these conclusions 

intelligently, one must try to discuss, on the basis of 

verbal knowledge, why one would expect certain
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correlations and certain dynamic patterns to work out 

as they do. One would have to discuss the "true! 

dynamic relations between different subsystems, in 

order to express what one feels are wrong with the 

statistics. One would be tempted to engage in 

"hypothetical" or "analytic" modelling - to suggest 

what would have happened to the statistics if one had 

included, as hard data, certain variables for whtch 

hard mathematical data do not happen to exist. One 

would focus one's attention on the variables of central 

interest, rather than lose oneself in a morass of 

unrelated higher-order vicissitudes. In brief, one 

might acquire the momentum necessary to launch into a 

full-scale verbal dynamic analysis, without crashing 

back under the weight of pure classical traditions. 

Before we close this discussion of the value of 

statistics to political analysis, it may be worth 

noting that important applications may also exist in 

politics proper. Early in Chapter (1!), we mentioned 

the possibility of a growth in ecological and 

sociological models, based on the vast accumulation of 

data by earth satellites. Many of the difficulties 

cited above - particularly the dominance of verbal data 

over quantitative data - would not apply In this case; 

also, our emphasis on feedback effects and
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interdisciplinary research would apply more than ever. 

Given the fmportance of world balances of agricultural 

production and population, given the dangers of 

ecological catastrophe through high stress and 

imbalance in such systems, and given the possibilities 

here for treaties to set up a coordinated global system 

to monitor and help control these systems from space, 

the practical political scientist would have good 

reason to think about these applications. This is 

doubly true, insofar as the development of these 

applications may be far from automatic. 

(v) BEYOND NAIVE EMPIRICISM: ADAPTING 

OUR IDEAS TO FILL THE GAP 

LEFT BY STATISTICS 

Now let us return once more to our starting point, 

to the worries of the political actor about using 

mathematics. (See section (ii).) We have dealt with 

these worries on two levels: (i) the level of 

defending the notion of prediction; (fii) the level of 

describing the practical applications of statistical 

modelling to political prediction. We have emphasized 

the empirical approach, tn both verbal and statistical
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research. 

On another level, however, the political actor 

might question the idea that empirical approaches are 

enough, when the subjects of one's investigation are 

intelligent human beings. In particular, the political 

actor would have to reconcile the use of objective 

methods to predict other actors, while preserving the 

sense of free will in making his own decisions. Ona 

primitive level, this paradox poses no difficulties at 

all to the political actor; it fis easy to conjure up 

the image of a fast-dealing political hack, working for 

a city machine, gleefully pushing people around as if 

they were buttons on a pin-ball machine. At a more 

advanced level, politicians find that they can predict 

people better and influence their actions more 

constructively by exploiting empathy, by using their 

own reaction patterns as a kind of analozue model to 

predict the reactions of others. Thus there are the 

old, persistent adages:"If you want to predict what a 

"and, man ‘will do, try to put yourself in his shoes, 

"If you were a... what would you do?" This procedure 

is particularly effective when the political actors 

come from the same background as the people they are 

predicting, when their background fs cosmopolitan, or 

when their reaction patterns are defined at a general
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enough level to make it easier to imagine how another 

person would really respond to a situation very 

different from that of the political actor himself. 

(Empathy may also be used, of course, as a tool in 

thinking of approaches one might borrow from others in 

coping with one's own problems.) When a political actor 

oscillates between thinking about others 

"subjectively", in terms of emnathy, and thinking about 

them "objectively", in terms of predictive empiricism, 

a conflict emerses, long before the use of statistics 

as such arises. Rationality, and the acknowledgement 

of others' capacity for rationality, would appear to 

allow no escape from this conflict; as long as we have 

two distinct sources of information from which to 

predict the behavior of people, we must live as best we 

can with the conflicting predictions, while trying to 

reconcile them by concrete improvements in the concepts 

we use on both sides. 

Predictive statistical models, like empirical 

verbal models, cannot directly express the insights 

derived from "empathy"; fn particular, they cannot 

express the insights derived from acknowledging the 

intelligence of other human beings(38). This limitation 

may be of enormous importance to the practical 

political actor. On the other hand, the related



Pare V-h1 

mathematical concept of maximizing a cardinal utility 

function expresses the idea of human intelligence, more 

vividly and more precisely than the usual verbal 

formulations. The arguments of Von Neumann(39) and of 

Raiffa(40) in favor of this concept require little more 

than logical consistency on the whole, in the ultimate 

values that the individual pursues; while the serious 

political actor would normally admit that he sometimes 

acts stupid, and sometimes acts at cross-purposes 

against himself, especially when limitations on time 

and on knowledge constrain his detailed 

decision-making, he would rarely consider such mistakes 

as a matter of fixed or deliberate policy. Often, when 

the political analyst would accuse him of indulging in 

irrationality, he would have a counterargument of his 

own, based on the knowledge and concepts available to 

him at the time of his decision. 

if we agree with Raiffa, then, that the 

maximization of cardinal utility is "valid" as a 

foundation for most political decision-making, we find 

ourselves led to important conclusions about political 

analysis too. First of all, we find ourselves 

re-emphasizing the point that verbal research may he 

regarded as an attempt to perform valid statistIical 

inference, accounting for data which is less structured
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and less manageable than the usual statistical 

time-series. Within Raiffa's framework, the basic 

questions one asks are quantitative In nature; e.g. - 

"If we carry out action A, how much will ft cost, how 

much do we gain, and what are the probabilities that we 

will succeed?" More generally, Raiffa would have us 

ask, "If we carry out action A, starting from situation 

B, what is the distribution of probabilities attached 

to the different possible levels of cost and to 

different possible outcomes? How much do we expect to 

gain from each of the possible outcomes, If our 

subsequent strategy is optimal?! 

In each case, we do the best we can to estimate 

these quantities on the basis of the available verbal 

information; thus the research carried out on that 

information, fs carried out for the purpose of 

extracting the most accurate possible statistical 

information. We also account for the intelligence of 

other actors. We also account for more direct 

quantitative evidence, whenever we can find it. From 

most sources of information, we expect to get 

probabilistic indications of various kinds, never 

certainties. Through practice, we may hope to learn 

more and more the art of formulating accurately the 

Interrelated patterns of statistical tmplications of
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our verbal knowledge, and to reduce the losses in 

translation which always intervene in going from raw 

observation to decision. 

Second - and more important - the concept of 

utility maximization offers us an idealized model of 

intelligent decision-making, for use in the prediction 

of other political actors. At first glance, this 

concept may sound rather culture~bound. However, the 

concept of utflity function is very generalized in the 

range of concrete behavior it can include. One can 

imagine all sorts of different utility functions. One 

can imagine many different levels of knowledge and 

aptitude brought to bear in maximizing utility 

functions. One can even imagine different levels of 

basic cognitive structure, as susgested by Piaget(41) 

and by ego psychiatrists(42), levels which one may hope 

either to remember or to advance to, One can imagine 

states of short-term psychological disequilibrium, 

where a polltical actor does not yet take the actions 

best suited to maximizing his utility function, 

because, on some level, he has not yet become aware of 

the possibilities. (The detection of such disequilibria 

is particularly important to political actors whose job 

Is to persuade others to change their course of 

action.) Thus, starting from the concept of utility
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maximization, one can approach empirical reality bit by 

bit, by using both empathy and empirical data to add 

qualifications to one's view of other actors as ideal 

decision-makers. Even as one adds qualifications, 

however, one can continue to insist that all 

interpersonal differences in personality be analyzed in 

terms of the current state parameters of a system which 

obeys the same general dynamic laws as one's own mind, 

and which Is capable of changing its state parameters 

as a result of the general learning capability shared 

by all humans(43). 

From a theoretical point of view, the choice of 

starting point is not a matter of mere bookkeepping; it 

defines one's implicit "prior probability" 

distribution, as described in section (v) of Chapter 

(!11). From a practical point of view, this procedure 

can help us avoid rigid stereotypes of other political 

actors; it can help us remember that they, too, have a 

capacity for change, and that the likely directions of 

change are not entirely random. In any case, this 

procedure allows us to make use of both major sources 

of information, information derived from empathy and 

information derived from more objective data. This 

procedure also suggests that the procedures mentioned 

in section (x) of Chapter (If) for utility maximization
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might be used, not just as a technique for analyzing 

decision-making systems, but as the basis for 

substantive models of such systems. 

The use of utillty maximization as a model of 

decision-making has already led to a number of 

practical applications, notably in game theory and in 

microeconomics. The concept of ideal utility 

maximization predicts the behavior of an actor 

conditional upon the information that he has available 

to him; thus it may lead to an implicit model, a model 

defined in terms of variables which are not directly 

observable to other actors. tn terms of behaviorist 

attitudes, this is a major liability, ftnsofar as it 

makes ft much more difficult to predict behavior 

concretely; on the other hand, such implicit models may 

allow us to infer something about the hidden variables 

from the overt behavior. 

In the case of microeconomics, one does not 

attempt to predict the actual levels of steel 

production, etc., at least not in the early stages of 

research; instead, one defends the proposition that the 

levels of steel production will be equal to whatever 

level is necessary in order to maximize some kind of 

utility function, If the decision is made by an economy 

which enjoys perfect competition(44). (Strictly
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speaking, however, economists now tend to avoid the 

concept of "social utility function", on grounds that 

they can deduce similar conclusions from weaker 

versions of the same criterion.) One might well have 

attacked this theory, in its early stages, as an 

unscientific - though mathematical - exercise in 

propaganda. However, as the theory was developed, it 

turned out to be a powerful framework for evaluating 

the inefficiencies produced by situations of Imperfect 

competition in the real world(45); it has been used to 

analyze the effects of taxes and labor laws(4&6) on 

econonic efficiency; it has led to the development of 

Lieberman's principles of economic organization(47), 

now a mainstay of the Soviet economy(48). 

Microeconomics, initially an isolated and essentially 

unempirical theory, has turned into a powerful 

mathematical framework for analysis, a framework 

allowing the useful bringing together of vast 

quantities of empirical data, a framework important to 

both the prediction and the comprehension of economic 

phenomena. 

Yet all of this success was based on a static 

concept of utility maximization, a concept of optimal 

equilibrium, related to the classic concepts of 

Lagrangze(49). Since then, Norbert Wiener(50) has
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discussed the more modern, more powerful dynamic 

theories of maximization, which he would consider a 

substudy of "cybernetics." He has suggested that this 

body of theory be applied to the human brain(51). Karl 

Deutsch(52) has gone on to stimgest that cybernetics may 

also be applied to political science. Considering the 

power that a primitive, static concept of maximization 

has had, over decades, {fn economics, these suggestions 

would appear to make a great deal of sense. 

-Unfortunately, these ideas are caught between the 

“mighty opposites" of modern methodology - the 

behaviorists, who would demand quantitative empirical 

proof that the initial model predicts all the variables 

in detatl, and the traditionalists, who would not have 

patience with the mathematics. Also, in the last few 

years, the relevant phase of "cybernetics" has been 

" We have discussed the value renamed "control theory. 

of "control theory" (i.e. of optimization techniques) 

in Chapter (!!1) as a tool in analyzing social systems; 

however, control theory may also be used itself as a 

normative model, of the processes which allow human 

societies - or even the human brain itself - to 

function. (See note (53) for more concrete 

possibilities.) As with microeconomics, one will expect 

to find that the real systems involve imperfections and
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approximations to the optimum.(54). However, one may 

also find [It interesting to be able to see where these 

imperfections are, and to appreciate the capacities 

that human befngs and political societies - like 

economies - do have, to cope with data on a scale far 

beyond the capacity of present-day computers. Insofar 

as one agrees with the traditionalist that the human 

being is still the most relevant unit of analysis in 

politics, one can try, in the future, to expand the 

interface between cybernetics in psychology and 

cybernetics in political science, 

In summary, we have concluded that the 

mathematical methods outlined in Chapter (11) can 

indeed be applied to political science, but that they 

should always be considered as only one branch of a 

more complex, integrated system of analysis, oriented 

towards the goal of prediction; the Bayesian 

philosophy of utility maximization and conditional 

probabilities could play a central role in organizing 

this system of analysis, but the behaviorist philosophy 

of total empiricism does not have the power to account 

for major parts of this system, parts which appear 

essential in the last part of this chapter.
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FOOTNOTES TO CHAPTER (CV) 

(1) One might take up considerable space discussing 
this particular point. Traditional Lanchester's 
Laws for ancient warfare indicate an equal number 
of deaths on both sides, regardless of 
concentration; thus, they tend to Imply no 
possibility of strategy in such warfare. On the 
other hand, the "Laws" usually have the disclaimer 
"ceteris paribus" attached, Implying equal levels 
of material and soctal "technology." tf "social 
technology" includes superfor strategic ability on 
the part of a commander, like Caesar, then the 
laws become a poor guide for the would-be superior 
strategist. We have limited our statement here to 
the claim that Caesar won his victories by evading 
Lanchester's Laws, by avoiding the necessity for 
attrition or perhaps by exploiting the loopholes 
in the laws, rather than invalidating them; this 
much, at least, seems fairly clear to us from 
Caesar's account itself. 

Liddell-Hart, in his classic military 
textbook, Strategy (Praeser, NY, Second Edition, 
1967), cites (p.338) Caesar's !tlerda campaign, 
Cromwell's Preston campaign, and a few others, as 
the classic bloodless victories; he goes on to 
write, on p.339:"While such bloodless victories 
have been exceptions, their rarity enhances rather 
than detracts from their value - as an fndicator 
of latent possibilities, in strategy, and grand 
strategy. Despite many centuries' experience of 
war, we have hardly begun to explore the field of 
psychological warfare. From a deep study of war, 
Clausewitz was led to the conclusion that - 'Al1] 
military action Its permeated by intelligent forces 
and their effects. '" 

(2) Liddell-Hart generally prefers to talk about the 
"tndirect approach" and the "unexpected" more than 
the use of imagination, but clearly the former 
require the latter. Hart writes (ibid) on p.3h2:"A 
more profound appreciation of how the 
psychological permeates and dominates the physical 
sphere has an indfrect value. For it warns us of 

the fallacy and shallowness of attempting to 
analyze and theorize about strategy in terms of 
Mathematics. To treat it quantitatively, as ff 
the {ssue turned only on a superior concentration 
of forces at a selected place, is as faulty as to 
treat it geometrically..." Also, on p.162, tn the
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section "Conclusions fron Twenty-Five Centuries", Liddell-Hart discusses the characteristics of the more usual, bloody victories:",., scanning, in turn, the decisive battles of history, we find that in almost all the victor had his opponent at a psychological disadvantase before the clash took Place... most of the examples fall into one of two categories... described in the words ‘lure! and ‘trap'." See also note 1. The full weight of these objections will not be dealt with until section (v) of our text, 

(3) In writing this, and remembering some of the interesting seneralizations we had heard from pure verbal political science, it was difficult to Overcome the selective memory and face up to the Overall methodological views still prominent tn the field. But a quick review soon set our memory Straight. For example: "It should be noted that the emphasis here is On deduction, not on induction. In the words of another Participant in the seminar, Professor S.E, Finer, we are making an attempt at "describing the political Possibilities, ! Considerable amphasis should be put on the word "describing'; we remain in the humble sphere of description and do not attempt to rise to the more lofty one of speculation." (p.40 of "General Methodological Problems", by Gunnar Heckscher, in Comparative Politics, Eckstein, Harry and Apter, David E., eds., Free Press of Glencoe, 1963.) In historical research, the problem is more serious, as: "My principles and methods of research and writing were largely worked out unconsciously, through listening to excellent teachers and following the best models... The historian has both the right and the duty to make moral judgenents. He should not attempt to prophesy, but he may offer Cautions and issue warnings," (p.uh-45, Vistas of History, samuel Eliot Morison, Knopf, NY, 1964.) One may ask what the Warnings are Supposed to be based on, if not on Probabilittles of undesirable events conditional upon certain policy decisions; also one may question whether methodological decisions ought to be based on unconscious factors. See also notes 10 and 36, 

(4) Spengler, Oswald, The Decline of the West, Knopf, NY, 1926, translated from the 1918 original by Charles Atkinson, p.,106-107: "The aim once
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attained - the idea, the entire content of inner 
possibilities, fulfflled and made externally 
actual - the Culture suddenly hardens, it 
mortifies, its blood congeals... This - the 
inward and outward fulfillment, the finality, that 
awaits every living Culture - fs the purport of 
all the historic "declines", amongst them that 
decline of the Classical which we know so well and 
fully, and another decline, entirely comparable to 
it in course and direction, which will occupy the 
first centuries of the coming millenium but is 
heralded already and sensible in and around us 
today - the decline of the West." p.109-110: 
"Every Culture, every adolescence and maturing and 
decay of a Culture, every one of its intrinsically 
necessary stages and periods, has a definite 
duration, always the same, always recurring with 
the emphasis of a symbol." 

(5) Toynbee, Arnold Je, A Study of History, abridgement of Volumes I-VI, Oxford U. Press, NY, First 
American Edition, Fourth Printing, 1947, 
p.244:"The problem of the breakdowns of 
civillzations is more obvious than the problem of 
their growths, Indeed it is almost as obvious as 
the problem of their fmeneses. The geneses of 
civilizations call for explanation in view of the 
mere fact that this spectes has come into 
existence and that we are able to enumerate 
twenty~six representatives of it - including in 
that number the five arrested civilizations and 
ignoring the abortive civilizations. We may Zo on to observe that, of these twenty-six, no less than sixteen are now dead and buried." p.245:"tf we 
accept this phenomenon as a universal token of 
decline, we shall conclude that all the six 
nonWestern civilizations alive today had broken 
down internally before they were broken In upon by the impact of Western civilization from outside... For our present purposes it is enough to observe 
that of the living civilizations every one has 
already broken down and is in process of 
disintegration except our own," p.253-25h:'The 
metaphor of the wheel in itself offers an 
illustration of recurrence being concurrent with progress... Thus the detection of pertodic 
repetitive movements does not imply that the Process itself is of the same cyclic order as they are. On the contrary, if any inference can 
historically be drawn from the periodicity of
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these minor movements (such as the rise and 
decline of Graeco-Roman civilization), we may 
rather infer that the major movement which they 
bear in mind is not recurrent but progressive." 
(Comments in parentheses inserted by us.) Also, 
in various places, Toynbee emphasizes both 
scholastic rigidity and corruption as symptoms of 
decaying civilizations; he hints at a different, 
less charitable explanation of the common 
methodological difficulties we have mentioned in 
the text. However, even if Toynbee's explanation 
has some truth in it, a reduction in the cost of 
adhering to good methodology should stil] 
facilitate more worthwhile research, 

(6) Turner's theory is well-known as an attempt to 
articulate the factors which caused American 
progress in the last few centuries; however, it is 
not only interesting in its own right, but Is an 
example how such ideas can be useful sometimes to 
those trying to decipher more general laws of 
history, which, in turn, may be useful to present 
policy-makers. Walter Prescott Webb, in "The 
Frontier and the 409-Year Boom", p.136, writes in 
comment on Turner's ideas:"Assuming that the 
frontier closed about 1899, it may be said that 
the boom (in all of Western civilization) lasted 
approximately four hundred years. It lasted so 
long that it came to be considered the normal 
state, a fallacious assumption for any boom. It 
is conceivable that this boom has given the 
peculiar character to modern history, to what we 
call Western civilization." (Article by Webb 
located in Taylor, George R., ed., The Turner 
Thesis: Concerning the Role of the Frontier in 
American History, Heath Co., Lexington, Mass., 
Third Edition, 1972. Webb goes on to sumgest that 
the search for "new frontiers" is essentially an 
irrational, desperate attempt to preserve a dying 
enterprise; however, his assumption that new foci 
of economic development cannot be found does not 
allow for some of the possibilities of 
technological progress over the next few decades. 
Over centuries, the limits of the earth itself may 
be expected to prevent unlimited growth; on the 
other hand, when one speaks in terms of centuries, 
one cannot entirely rule out the possibility of 
developing economic activities beyond the planet 
earth itself. Certain aspects of economic and 
technological growth denend on large numbers of 
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independent random disturbances, which, on the 
whole, may accumulate and be subject to accurate 
prediction by statistical procedures or the verbal 
equivalent; however, the historic development of 
nuclear power, for example, or the future 
possibilities of elementary particle physics and 
nonequilibrium (nonlocal) thermodynamics (see note 
51), involve a more sweeping form of prior 
ignorance, which translates into probabilities far 
from one or zero and whose values may change 
according to government or even Individual 
decisions. At any rate, it fs possible that the 
ideas mentioned by Webb may have application to 
other parts of the historical data base, beyond 
the West. 

(7) Hegel, "The Philosophy of History", excerpted in 
The Philosophy of Herel, Car] Friedrich, ed., 
Modern Library, NY, 195h, p.21-22: "The Principle 
of development contains further the notion that an 
inner destiny or determination, some kind of 
presupposition, is at the base of it and Is 
brought Into extstence. This final determination 
is essential. The spirit which has world history 
as its stage, its property and its field of 
actualization is not such as would move carelessly 
about in a game of external accidents, but is 
instead the absolute determining factor.” 
p.23:"World history presents therefore the stages 
in the development of the principle whose memory 
is the consciousness of freedom..." Stages then 
listed. 

(8) Schwinger, Julian, Particles, Sources and Fields, 
Addison-Wesley, Reading, Mass., 1970, Preface, 
especially paragraph two of preface, The most 
phenomenological approach in basic physics, the 
"S-matrix" approach, restricts its attention to 
describing the S-matrix. This matrix is defined as 
the matrix which predicts all scattering results, 
for all possible scattering experiments in 
high-energy physics;these, in turn, constitute the 
vast majority of high-enersy data. 

  

(9) In quantitative political science, the obvious 
reference here Is to Blalock, Hubert M, Jr., 
Causal Inference in Nonexperimental Research, U. 
of North Carolina Press, Chapel Hill, 1964, 
Hayward Alker also recommends: Simon, Herbert, 
Models of Man, Wiley, NY, 1957, Part 1, and Dahl,
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R.A., "Cause and Effect in the Study of Politics 
and Discussion", in Cause and Effect, D. Lerner 
ed., Free Press, New York, 1965, 

H.R. Trevor-Roper, the noted traditional historian 
(and antagonist of Toynbee), writes, on p.vi. of 
Historical Essays, Harper and Row, NY, 1966: "It 
is perhaps anachronistic to write of a historian's 
philosophy. Today most professional historians 
'specialize'. They choose a period, sometimes a 
very brief period, and within that period they 
strive, fn.desperate competition with 
ever-expanding evidence, to know ali the facts. 
Thus armed, they can comfortably shoot down any 
amateurs who blunder or rivals who stray into 
their heavily fortified field: and, of course, 
knowing the strength of modern defensive weapons, 
they themselves keep prudently within their own 
frontier. Theirs is a static world, a Maginot 
Line, and large reserves which they seldom use; 
but they have no philosophy. For a historical 
philosophy is incompatible with such narrow 
frontiers.' Note 36 and note 3 are also 
interesting in this connection; also, Pages V-34 
and V-35 of our text consider interdisciplinary 
effects in somewhat more detalil. 

Raiffa, Howard, Decision Analysis: Introductory 
Lectures on Making Choices Under Uncertainty, 
Addison-Wesley, Reading, Mass., 1968. This book, 
at least, is clearly intended to communicate to a 
broader community. The philosophical foundation of 
this view of probability is described in Kyburg, 
Henry E. Jr., and Smokler, H.E., eds., Studies in 
Subjective Probability Wiley, NY, 1964. Anatol 
Rapoport has criticized the abuse of probabilistic 
concepts by decision-makers who do not fully 
understand them; see his Strategy and Consclence, 
Harper and Row, New York, 1964, especially Chapter 
10. Nevertheless, a false estimate of uncertainty 
may be less dangerous than a forced choice of 
absolute certainties; Raiffa, fn a memo 
co~authored with Marc Alpert, has discussed in 
detail the problem of educating and "calibrating" 
deciston-makers (i.e. compensating for their 
overconfidence), to estimate probabilities more 
realistically. (See "A Progress Report on the 
Training of Probability Assessors," available in 
1971 as an unpublished manuscript from the office 
of Prof. Raiffa in the Littauer Building, Harvard
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U.) Still, Rapoport's comments on the hazards of 

mathematical approaches are well worth noting, for 

those who would want to use such approaches. 

The programs EVAL, DIFF and DELTA of Raymond 
Hopkins were made available to us by Prof. 
Deutsch, Dept. of Government, Harvard. They have 
been described in Hopkins, Raymond, "Projections 
of Population Change by Mobilization and 
Assimilation," Behavioral Selence, 1972, p.254. 

Johnston, J., Foonometric Methods, McGraw-Hill, 
NY, 1972, Second Edition, p.ix: "The purpose of 
this book is to provide a fairly self-contained 
development and exploration of econometric 
methods... {tt is divided into two parts. Part 1 
contains a full exposition of the normal 
regression model. This serves as an essential 
basis for the theory of econometrics in Part 2." 

It was surprising to find the phrase "path 
analysis" so rare in books up to 1973, tn 1971, we 
discussed the subject at length with Prof. Alker, 
at MIT, one of the main exponents of this 
approach, with Prof. Raymond Tanter then of the 
Center for Research in Conflict Resolution at the 
University of Michigan, and with students taking 
"ynath analysis" as a subject in the 
Inter-University Consortium for Political 
Research. In all cases, it was clear that "path 
analysts" was intended as a kind of refined 
"causal analysis", using regression coefficients 
(or time-series regression coefficients, in the 
sophisticated versions?) as itndices of the size 
and direction of influence. Simon, Blalock and 
Boudon have also been associated with "path 
analysis," in discussions at various unliversities. 

See Blalock, note 9. Simple correlation was 
usually used in "causal analysis" based on 
Blalock; this ts the univariate special case of 
regression analysis. 

As an arbitrary example, picked from a good 
anthology of papers fn this field, consider 
Singer, J. David, ed., Quantitative International 
Politics, Insizhts and Evidence, Free Press, NY, 
1968, tables of results on p.278-281, p.112, 

p.152-153, p.199, 9.295, p.65, p.232. Statistical 
significance scores ("p") here often run to ".05",
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or even to as poor as ",10", 

ftsard, Walter, Methods of Regional Analysis: An 
Introduction to Regional Science, MIT Press, 
Cambridge, Mass., 1963, Third Printing, p.22. 

Nuesenberry, J.S., Fromm, G., Klein, L.R., and 
Kuh, E.W., eds., The Brookings Model: Some Further 
Results, Rand-McNally, Chicago, 1969, p.296-297. 
The full regression model, justiffed by solid 
significance indications, did not perform as well 
as a "condensed" - dramatically reduced ~ model, 
at first. Then "adjustments" were applied, which 
dramatically improved the fit; these adjustments 
seemed to entail multiplying each coefficient by a 
constant, suitable to adjust the predictions of 
each variable to the right level in the first-half 
test data. On p.298 they caution, even still,: 
"If the model does indeed suffer from omission of 
important but slowly-changing variables, then it 
Is probably not very useful for long-run analysis 
or projection." Estimating or adjusting 
coefficients to maximize predictive power 
directly, over the trial data, is the essence of 
our proposal in sections (vii) and (xi) of Chapter 
(ll) of this thesis. 

Frora Chapter (fit), "¢" is simply the matrix "9" 
in the univariate case; given past error levels, 
a(t-k), ft is the best basis even for predicting 
x(t+1). However, looking at x(ttn) from x(t) 
only, we get a long path of correlations 
multiplying out to ™ 2. «thus to get the 
optimal prediction of x(ttn), one multiplies one's 
prediction of x(ttn-1) by @¢. 

See note 19 of Chapter (!1) of this thesis. 

See section (xi) of Chapter (Il) of this thesis, 
for a way to introduce a kind of "interest rate" 
or "discount factor", to predictions of more 
distant times in the future. Such procedures may 
be unavoidable when a small amount of process 
noise does exist, and does accumulate through 
time. 

McCracken, Harlan L., Keynesian Economics in the 
stream of Economic Thought, Louisiana State 
University Press, 1961, p.51: "Perhaps one of the 
finest contributions Keynes made to economic
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theory and economic policy has been on the subject 

of investment. According to previous classical 

analysis, savings, investment, and the rate of 

interest all fitted into the standard pattern of 

demand, supply and price. A high rate of interest 

increased savings and decreased investment, while 

a low rate of interest decreased savings and 

increased investment, so it was a function of 

price - the rate of interest - to gravitate to the 

equilibrium point where saving equalled 
investment. There would be no such thing as 
over-saving or underinvestment (i.e, depression), 

as they were continuously being brought into 
balance by an automatic regulator. 

For Keynes classical interest theory was in 

error at two basic points. First, while a priori 

reasoning leads to the natural conclusion that a 
high rate of interest stimulates saving and a low 

rate reduces saving, a posteriori evidence..." 
Comments in parentheses our own, 

Gardner Ackley describes equivalent ideas in 
Macroeconomic Theory, McMillan, NY, 1961, (Twelfth 
Printing 1967) p.154-155: "Wicksell's analysis 
(the classical analysis)... gave us, as has been 

stressed, a rudimentary theory of the agsregate 

demand for goods. This demand consists of two main 

divistons: consumer demand and investment demand. 

Each of these demands was conceived to be 
interest-elastic: the lower the interest-rate, the 
greater the Investment demand; and the greater the 
consumer demand, too (the latter idea is, of 
course, merely a restatement of the idea that 
saving depends negatively on the interest rate)... 

if either type of demand declined, the resulting 
fall in the rate of interest would stimulate them 
both, and shift resources to the one which had not 
declined. !f, however, for any reason 
(particularly expansion or contraction of the 
money supply by the banks) the rate of interest 

were prevented from performing this regulatory 

function, aggregate demand... would be altered... 
But if wages and prices should not decline 

(enough)... Workers would become unemployed, and 
real as well as money income would be cut.” 

The history of these studies is rather complex. 
The major initial study, by Simon Kuznets, 
National Income: A Survey of Findings, NRER, NY, 
1946, uses technical language difficult to 
summarize here, Elfzabeth W. Gllbey, the Economics
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of Consumption, Random House, NY, 1968, p.25:"In 
attempting to test this hypothesis, contradictory 
results arose from the use of time-sertes and 
cross-sectional data. Simon Kuznet's study of 
data going all the way back to 1870 showed that 
the percentage of agrrepate income saved had in 
fact remained constant in the United States." 
(The contradiction involved the distribution of 
saving across households.) A more recent survey is 
Patinkin, Money, Interest and Prices, Harper and 
Row, NY, Second Edition, 1965, p.651-664. 
Patinkin discusses largely the "wealth effect", 
based on the "Pigou effect", a more recent attempt 
to resurrect classical ideas; on p.656 and 657 
Patinkin cites numerous studies which measure 
wealth as real assets times interest rates. On p. 
663 he describes his own results for "beta"! and 
"alpha", the former which he equates with 
"YL"Cincome), and the latter, at the top of p. 
659, defined as beta times interest rate. Thus 
the latter results explicitly measure the 
hypothesis that interest rates affect the 
percentage of income saved, while the former do 
measure something closely related; also, the 
studies of Goldsmith cited by Patinkin reaffirmed 
the idea of a "constant saving-tncome ratio." 
Patinkin describes his own studies, and some of 
the previous studies, as showing large and 
significant effects by variables derived from 
interest rates; however, the actual regression 
coefficients of alpha ran to .04-.08, at the most, 
much smaller than the coefficients of beta, which 
was already a larger number to begin with. 

Many would identify the "liberal" Roosevelt with 
the "liberal" Keynes. However, US GNP data 
indicate rather strongly that the main recovery 
from the Nepression coincided with major military 
spending Induced, not by economic theory (though 
Keynes' theory might have recommended it, given no 
alternative spending options on the same scale), 
but by World War I!1. Keynesian theory, in many 
respects, was not fully accepted in the US until 
John Kennedy became president. Schlesinger, Arthur 
F., A Thousand Days, Houghton-Mifflin, Boston, 
1965, p. 1005: "The (taxcut) bill made slow 
progress through Congress. Public reaction at 
first was muted. Kennedy used to inquire of the 
professors of the Council what had happened to the 
several million college students who had
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presumably been taught the new 
economics...Still... on September 25, 1963, the 
worst was over... The Yale speech had not been in 
vain; and the American government, a generation 
after General Theory, had accepted the Keynesian 
revolution." Regarding Keynes and Roosevelt, 
Schlesinger has written, in The Age of Roosevelt, 
Houghton-Mifflin, Boston, 1966, Vol. til, p. 236: 
"The First New Deal, in the main, distrusted 
spending. Its conservatives, like Johnson and 
Moley, were orthodox in their fiscal views and 
wanted a balanced budget; and its liberals, like 
Tugwell and La Follette, disliked spending as a 
drug which gave the patient a false sense of 
well-being before surgery could be completed." 
p.403: "Shortly after Roosevelt's inauguration 
(19353) Keynes spoke once asain in a brilliant 
pamphlet called ‘The Means to Prosperity.' Here he 
argued with new force and detail for public 
spending as the way out of the depression. 
Employing the concept of the ‘multiplier', 
introduced by his student..." p.uo4u: 
"tUnfortunately,' Keynes wrote in April 1933, ‘it 
seems impossible in the world of today to find 
anything between a government which does nothing 
at all and one which goes right off the deep 
end! '" p,405: "... on May 28, 1934, Keynes came to 
tea at the White House. The meeting does not seem 
to have been a success." p.406: "...to Frances 
Perkins Roosevelt complained strangely, ‘He left 
a whole rigamarole of figures. He must be a 
mathematician rather than a political economist. !" 

Solow, Robert M., "Technical Change and the 
Aggregate Production Function", Review of Economic 
Statistics, 1957, p.312-3290. Solow writes:"Not 
only is delta A over A (the percentaze increase in 
the autonomous term) uncorrelated with K/L, but 
one might almost conclude from the graph that 
delta A over A is essentially a constant in time, 
exhibiting more or less random fluctuations about 
a fixed mean." Looking at fisure 3, one notes a 
possible exception to this, which Solow admits Is 
a very tentative conclusion: the growth of this 
term might have actually been faster, slightly, 
during the depths of the depression (actually, 
lagging it by three years in the graph), than 
under normal conditions.
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Essavs_in Sociology, from Max Weber, introduced by 
Talcott Parsons. Weber's concept of 
"rationalization", as a trend extending from the 
"'cConcept' of Plato' to the "cage" of modern 
machine civilization, does amount to a long-term 
viston of history. 

See note 4. 

See note 5, 

McNeil, W.H., The Rise of the West, Mentor, NY, 
1965. Aside from the title, the themes are a bit 
too complex to summarize here. Many of them are 
reminiscent of Turner, note 6. Throughout the 
book, however, McNeil does keep returning to the 
theme of human societies adapted to the pastoral 
niche as providing the soil on which new 
civilizations may develop or to which old 
civilizations may spread, as the old heartland 
decays. 

Eisenstadt, S.N., The Political Systems of 
Enpires, Free Press of Glencoe, 1963. Chapter 2 
attempts to explain the "universal states" of the 
Toynbee and Spengler theories, almost the same 
societies. 

see notes & and 5, 

Lorenz, Konrad, On Aggression, Harcourt Brace and 
World, NY, 1966, translated by M. Wilson. This 
source is already popular among some political 
scientists. Just as relevant may be Simpson, 
George Gaylord, The Major Features of Evolution, 
Columbia University Press, NY, 1953, p.391: "The 
populations making a quantum shift (e.g. evolution 
of human intelligence) do not lose adaptation 
altogether; to do so is to become extinct. It is 
also clear that the direction of change is 
adaptive, unless at the very beginning... Yet the 
very fact that selection pressure fs strong can 
only be a concomittant of movement from a more 
poorly to a better adapted status. Selection is 
not linear but centripetal when adaptation is 
Perfected. It is the ‘stabilizing selection’... 
The quantum change is a break-through from one 
portion of stabilizing selection to another." The
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Indian caste system, or the early Caribbean system 

of Carib predators and Arawaks, are interesting 

examples of centripetal development among humans 

in relatively static ecolosies/economies. p.392: 

"Quantum evolution usually is and at some level it 

may always be involved in the opening or so-called 

‘explosive’ phase of adaptive radiation. The 

relative rapidity with which a variety of 

adaptation zones are then occupied seems quite 

inexplicable except by a series of (?) and also, 

often, successive quantum shifts into the varied 

zones. The rates thereafter slow down," 

See notes 37, 3 and 10. Also: Aron, Raymond, Main 

Currents in Sociological Thought, Vol. I, Basic 

Books, 1965, translated by Harold Weaver, p.4: 

“American sociologists, in my own experience, 

never talk about laws of history, first of all 

because they are not acquainted with them, and 

next because they do not believe in thefr 

existence." 

The "multicausal approach" has appeared in 
historical research, if our memory is correct, but 

the sociologists ~ who find it harder to retreat 

into simple narrative - have spoken much more 

about the idea. See, for example, Vernon, Glenn 

M., Human Interaction: An Introduction to 
Sociology, Ronald Press, NY, 1965, p.30 and 
p.80-81 especially. See also Maclver, Robert M., 
Social Causation, Ginn and Co., Boston, Mass., 

1942, 

Trevelyan, G.M., An Autobiography and Other 

Essays, Longman, Green and Co., 1949, London, 

p.91: "The endlessly attractive game of 
speculating on the might-have-beens of history can 

never take us very far with sense or safety. For 

if one thing had been different, everything would 
thenceforth have been different - and in what way 

we cannot tell... As serious students of history, 

all we can do is to watch and to investizate how 
in fact one thing led to another in the course 
actually taken. This pursuit is rendered all the 
more fascinating and romantic because we know how 
very nearly it was all completely different. 
Except perhaps in terms of philosophy, no event 
was ‘inevitable. '" Historians have often discussed 
the "turning points," times when the susequent 
course of events would have been very different if
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small events had worked out differently; see, for 

example, Handlin, Oscar, Choice or Destiny: 

Turning Points in American History, Atlantic 

Monthly Press, Boston, Mass., 1954. However, as 

the last two chapters of this example make clear, 

it is usually not considered acceptable to imagine 

just how the subsequent events might have been 

different, concretely. 

(37) It has been suggested that differences in behavior 

of "high" and "low" situations may make such a 

treatment valuable, or that an actual division of 

the world into "hizh" and "low" makes it 

destrable. However, just because our sample is 

weak in the middle range of the spectrum, we do 

not have to conclude that we have to break our 

sample into smaller subsamples, capable of 

supporting less detailed analysis. If there is 

some qualitative difference in behavior in the 

different zones, this difference in behavior may 

be tied to a smooth continuum of different 

behaviors, as one moves from one pole to the 

other. Even if a clearcut threshold effect does 

exist, then, in order to explain this effect, 

operating on a set of continuous variables, we 

would normally study the discontinuous 

implications of the continuous interactions of the 

original continuous variables. Exceptions may 

exist, but, in more cases than one might expect 
apriori, it is better to treat continuous 

variables as such, even if they have strange 

properties. 

(38) Strictly speaking, it would be more accurate to 

say that verbal or mathematical models derived 
from external empirical data alone do not 
incorporate the information, both quantitative and 

structural, to be derived from accounting for the 
mutual underlying resemblance of different human 

brains. Once one's "empathy" has led one to 
postulate a certain model structure, one can, of 

course, try to translate this model into a related 

empirical model for empirical estimation; even 
then, however, the empirical test would only 
account for one of two sources of validation. 

(39) Von Neumann, John and Morgenstern, Oskar, The 

Theory of Games and Economic Behavior, Princeton 
U. Press, Princeton, NJ, 1953, p.15-33.
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See note l. 

Flavell, John H., The Developmental Psychology of. 
Piaget (including Foreword by Piaget), Van 
Nostrand, Princeton, NJ, 1963, 

The most popular reference would be Erikson, Erik 
H., Insight and Responsibility, Norton, NY, 1964, 
p.111-134,. The school of ego psychiatrists its much 
larger, but less mapped out than many other fields 
for the wandering political scientist; the concept 
of stages, while often present, often requires 
digging out. Another reference, less transparent 
but also influential: Hartmann, Heinz, Ego 
Psychology and the Problem of Adaptation, 
International Universities Press, NY, translated 
by D. Rapoport, 1958. One advantase of these 
approaches Is that they can be more easily 
compared with cybernetic views, emphasizing human 
intelligence, 

One must make allowance for a few state 
parameters, however ~ such as metabolic, 
respiratory and hormone levels - which are less 
often subject to learning. Sex and intelligence 
may both be affected by such variables. However, 
to say that learning may proceed faster or slower 
does not invalidate a person's ability to learn, 
in most cases. On the behavioral level, 
Flexibility remains critical, particularly when we 
are speaking of heads of state and the like, who 
are rarely literal imbeciles. 

The reference from Triffin, in note 45, curiously 
enough, Implies quite stronely that "our 
textbooks" have emphasized these points about 
perfect competition. Ferguson, C.E., 
Microeconomic Theory, Irwin Series in Economics, 
lllinois, 1969, Revised Edition, Third Printing: 
rnethodological introduction refers to the "extreme 
aprioristic" school of microecononists, "prominent 
stnce John Stuart Mill"; much of the rest of this 
text deals with the classic theory of perfect 
competition and its later developments. 

Triffin, Robert, Monopolistic Competition and 
General Equilibrium Theory, Harvard University 
Press, Cambridge, Mass., 1956, p.5: "For most of 
Professor Chamberlain's and Mrs. Robinson's 
readers, this is the basic distinction between
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monopolistic (or imperfect), and pure (or perfect) 

competition. If the sales curve of the firm is 

perfectly elastic, we are concerned with pure 

competition. If, on the contrary, the curve is 

tipped, competition is taken to be monopolistic or 

imperfect... The substitution of the equation of 

marginal cost and marginal revenue for the less 

general and less elegant equation of marginal cost 

and price has been the main contribution of 

monopolistic competition theory to the ‘pure 

economics! of our textbooks." 

Ferguson, C.E—., op.cit., Chapter 14. 

Lindblom, Charles E., "The Rediscovery of the 

Market", especially p.441, in 

Readings in Economics, Paul A. Samuelson, ed., 

McGraw-Hill, MY, 1970, Sixth Edition. 

Lindblom's article, note 47, provides some 

evidence on this point. tn the fall of 1973, an 

article appeared in the New York Times indicating 

that more than 99% of Soviet consumer industries, 

at a minimum, had been converted to the Lieberman 

system. The New York Times Index at this writing 

was complete up to August 15, 1973; it listed a 

major article on the front page, June 3, 1973, 

elaborating on how thoroughly the conversion has 

been made, and at any rate quoting Prayda on 

Soviet condemnation of those who oppose the new 

methods. While the same Pravda article was 

discussed briefly on June 6, p. 23, in the 

W ington Post, we were unable to find the Times 

article in its indexed location at Harvard, or in 

nearby locations that we looked at. However, 

subsequent copies of the Index should clarify 

these points. 

  

See Samuelson, Paul A., Foundations of Economic 

Analysis, Harvard University Press, Cambridge, 

Mass., 1947. Lagrange multipliers are used in 

maximizing a fixed function, subject to static 

constraints. These multipliers correspond, 

essentially, to prices. 

Wiener, Norbert, Cybernetics, or Control and 
Communication In the Animal and the Machine, MIT 

Press, Cambridse, Mass., 1961, Second Edition. 
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Wiener, Norbert,"Perspectives ij Cybernetics," in s in 

Wiener, Norbert and Schade, J. P., eds., 

Cybernetics of the Nervous System, Elsevier 

Publishing Co., Amsterdam, Ny, 1965. In this 

article, Wiener emphasizes the statistical 

subdiviston of cybernetics, in particular, as the 

portion of cybernetics most worth pursuing. This 

is quite close to our suggestions here, insofar as 

the mathematics of Chapter (tl!) tend to be part of 

the statistical subdivision, but Wiener's specific 

suggestions are very different from our own, in 

terms of the overall explanations they point to 

for gross behavior; Wiener emphasizes patterns of 

resonance among multiple sources of radiation, an 

idea which could conceivably relate to our 

technique of pattern analysis, but the connections 

do not appear simple. Wiener goes on to suggest 

strongly that the new statistics developed to deal 

with the analysis of time-series (one-dimensional 

phenomena) for living systems may someday be 

extended to statistical physics (four-dimensional 

phenomena, thermodynamics) and provide a 

revolutionary new understanding of the 

possibilities for maintaining order in 

equilibrium, 

Neutsch, Karl W., The Nerves of Government, Free 

Press, Glencoe, 1966. p.xxvi: "In the main, these 

pages offer notions, propositions and models 

derived from the philosophy of science, and 

specifically from the theory of communication and 

control - often called by Norbert Wiener's term 

"cybernetics" - in the hope that these may prove 

relevant to the study of politics, and suggestive 

and useful in the essential development of 

political theory that will be more adequate ~- or 

less inadequate - to the problems of the later 

decades of the twentieth century." 

A few brief hints may be in order here, to 

indicate the existence of specific possibilities. 

If one presumes that some sort of fnborn 

"reinforcement"! mechanism provides the brain with 

a current measure of a cardinal utility function 

to maximize, then section (x) of Chapter (11) 

indicates the optimal way to adapt an elaborate 

behavior-generating network, to maximize this 

function, conditional upon the availability of a 

network model of the "external" environment. This 

involves the passing back of "ordered
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derivatives", a quantitative piece of information, 

represented by some physical information flowing 

backwards along the same network which overtly 

carries only gross, direct behavior-generating 

information (electrical impulses); the 

microtubules, which criss-cross almost all 

neurons, could well be implementing a hidden 

network of chemical feedback of this kind, carried 

back from cell to cell to cell, originating in the 
hypothalamus and epithalamus (effectively in the 
pituitary and pineal, whose exact rules of 
operation we would not pretend to know at this 
point.). Network models to predict the external 
environment, as in Chapter (11), could be 
generated ("estimated") by a similar mechanism, 
based on measuring predictive accuracy at some 
sites like the glomeruli of the thalamus. (This 
hypothesis yields the empirical prediction that 
certain states of chronic insensitivity and 
rigidity in behavior governed by the cerebrum 
would be replaced by normal cerebral learning, if 
only the inputs could get as far as the glomeruli; 

this could be accomplished either by nerve growth 

factors, synthesized to enhance the growth of 
random connections from the hypothalamus or 
epithalamus to the glomeruli, or even by learning 
procedures which take full advantage of the 
microscopic bootstrap process which develops new 
connections to the glomeruli under normal 
conditions. This prediction is not only testable, 
but also of potential practical value.) The giant 
pyramids of the cerebral cortex might be 

performing pattern analysis, as in section (ix) of 
Chapter (tl); the duality of the functions f-sub-i 

and g-sub-i, in generating and predicting the same 
pattern-description variahle, may well correpond 
to the dual poles of these cells. The time factor, 
of course, requires that all of these ftdeas only 
be approximations; still, they may have some 
suggestive value even In experimentation. 

See the discussion by Herbert Simon on 
"optimizing" and "“satisficing," in Lazarsfeld, 
Paul F., ed,, Mathematical Thinking in the Social 
sclences, Free Press, Glencoe, I11.,., 1954, 
A deeper understanding of Simon's observations 
would require, of course, a more general framework.


