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PREFACE

The Initial Impetus for this thesis came from a
suggestion by Prof. Karl Deutsch, my thesls supervisor,
that | look more closely at the prediction of national
assimilation and political mobilization, by use of the
Deutsch-Solow model; his comments have been of major
help to me with all the empirical work on nationalism,
and in revising the original structures of Chapters (V)
and (VI1). The earlier work reported in section (ii) of
Chapter (VI) was carried out under his supervision and
support, through a research project funded by the
Cambridge Project. | have been surprised more than
once by the sensitivity and receptiveness of his
intuition, in suggesting areas of research which looked
unworkable at first but which led in the end to useful
and surprising innovations. The opinions expressed in
Chapter (V), however, remain my own responsibility,
particularly in their more bull-headed aspects.

Professor Mosteller, in the Harvard Statistics
Department, has helped by introducing me to current
work on robust estimation, by suggesting the use of
simulation tests, and by monitoring the general content
of the first four chapters. Professors Anderson and

Bossert, of the Committee on Applied Mathematics, and
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Professor Dempster, of the Harvard Statfistics
Department, have helped me to find a more orderly way
of presenting the mathematical Ideas here, help which
was sorely needed in the summer of 1973. To the
Cambridge Project, and its sponsors at ARPA, must be
given thanks, not only for all the computer time used
in this research and in its documentation, but also for
the opportunity to translate some of these ideas from
theory into operational systems without the extensive
delays more common in such research; without their
support, this research could never have been brought to
a state final enough to allow Its continuation.

The personal and financial conditions which led to
the completion of this thesis were rather complex, and
debts are owed to more individuals than should properly
be cited here. Certainly | have a strong debt to my
parents in this respect; a debt to Richard Ney, whose
{deas on the stock market financed a large part of my
activity in this period; a moral debt to Prof. Nazlli
Choucri, of M.1.T., who, in a brief discussion in the
spring of 1973, encouraged me to continue this work; a
debt to a colleague, Gopal Krishna, for helping me see
more clearly that the psychological hurdles | faced at
first were not totally unique; a debt to Dr. Karreman,

of the Bockus Research Institute, who, in one of those
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1960's programs to encourage high school students,
connected with the Moore School of Electronics at the
University of Pennsylvania, got me started asking
questions about the phenomenon of intelligence,
questions which led me to the dynamic feedback concept,

which was applied only later to formal statistics.
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SYNOPS1S

This thesis provides a broad, coherent exposition
of a new mathematical approach to soclial studies and to
related fields.

This work began as an attempt to apply the
classical techniques of statistics and econometrics to
the Deutsch-Solow model of nationalism, In order to
turn this model into a workable tool for predicting the
political future. In the course of this effort, It
became clear that the usual statistical methods do a
poor job in fitting dynamic models to real-world data,
{f we judge these models by their abillty to make good
predictions across time. |t also became clear that
newer and better methods would not be feasible,
economically, unless we could invent less expenslive
algorithms, too. Thus the goals of thls theslis are
five-fold: (1) to describe new ways of fitting models
to data; (11) to define new algorithms which make
these methods feasible; (iii) to Introduce evidence for
the superiority of these methods, both for real-world
and for simulated data; (iv) to discuss the
applications of these ideas, in broad terms, to soclial
and even biological sclences; (v) to discuss the new

work on nationallism which has led us in these
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directions.

Let us beglin with the first three goals.

We have studied not one, but two, new approaches
to fitting models to data. First, we generalized the
work by Box and Jenkins, on "ARMA" processes, on "mixed
AutoRegressive Moving-Average processes.'" Chapter
(111) discusses the mathematics of this approach, in
detail. It shows how an ordinary, multivariate
autoregressive process, observed by way of "nolsy'" data
(i.e. data measured with random measurement errors or
conceptual distortions), becomes a "yvector ARMA
process.'" It then shows how to apply "dynamic
feedback" to estimate the coefficients of such
processes, at much lower costs than were possible
previously; the resulting computer brogram Is now
available to the public through the MIT Cambridge
Project Consistent System. In Chapter (V), we discuss
why we considered this approach important for
quantitative political science.

In studles of simulated data, the ARMA approach
generally ylelded only half as much error as regression
did, in estimating the coefficients of a simple model;
It was more efflicient in making use of 1imited data and
it led to less systematic bias, both. However, with

real-world data, the ARMA approach did little better
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than regression in making long-term predictlions; the
error distributlion curves for ARMA are only about 10%
smaller than those for regression, and the curves are
uniformly close to eacﬁ other.

After re-examining these empirical results and the
theory of maximum likelihood Itself, we formulated a
new, more radical and more successful approach to the
fitting of models. In essence, the idea is to maximlze
long-term predictive power directlv, over the known
data, Instead of maximizing formal 1llkellhood.
Formally, this ldea rests upon the apriorl expectation
that many soclal processes are governed by relatively
deterministic underlyling trends, obscured both by
measurement noise and by transient deviations of great
complexity. The qualitative, political basis of this
{dea Is discussed in Chapter (V). Sections (vii) and
(x1) of Chapter (11) discuss the statistical basls.

The "measurement-nolse-only'" approach strongly
outperformed both ARMA and regression, over both
real-world and simulated data. |t outperformed ARMA
most strongly In our most complex simulated processes,
which seem most representative of the real world.
According to our error distribution graphs, the new
method cuts in half the errors in long-term predictions

of real-world variables; the biggest reductions occur
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with those variables, such as natlional assimilation,
and with those cases, near the middle of the
distributions, for which the simple models of the first
half of Chapter (V1) can do an adequate job of
prediction.

These empirical results for our new approach came
from special computer programs, which explolted the
simplicity of the models under study. In Chapter (11},
we discuss how the algorithm of 'dynamic feedback" can
be used to estimate more general
"measurement-nolise-only" models, at minimal cost,
especlally for models which are very Intricate,
nonlinear and nonMarkhovian; we also discuss how the
algorithm can fit more conventional models, can
optimize policy, and can perform "pattern analysis" - a
dynamic alternative to factor analysis. 'Dynamic
feedback'" 1s essentlally a technique for calculating
derivatives inexpensively, for use with the classic
method of steepest descent. In section (iv) of Chapter
(111), and in section (1i1) of Chapter (VI), we discuss
how our experience here with steepest descent has led
us to new ways of adjusting the "arbitrary convergence
weights" of steepest descent; these methods speeded up
the process of convergence by a large factor. The

Appendix to Chapter (11) discusses extenslions of these
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methods, for the general, nonlinear case.

From a practical point of view, the applications
of such mathematical ldeas in the soclal sclences
rémaln controversial. The extreme positions of
"behaviorism" and "traditionallsm" remain popular;
divisions still exist between quantitative and verbal
studies of social behavior. |In Chapter (V), we
describe how our mathematlical tools might fit in, in
the broader context of soclal studies and political
declslon-making. From a utilitarian and Bayesian point
of view, we suggest a methodological approach
intermediate between '"behaviorism" and
“erraditionalism," in which the different frameworks
might be integrated more closely with each other. In
sketching out the possibilities for such an integrated
framework, we also point out that the algorithms of
Chapter (11), taken as part of "eybernetics," have a
direct value as paradigms, to help us understand the
requi rements of the complex information-processing
problems faced by human socleties and by human bralins.
We also mention possible applications to other fields,
including ecology.

Finally, Chapter (Vl) presents our empirical and
analytic work on nationalism.

In sections (i11) and (i11), we discuss our success
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in making long~term predictions of national
assimilation and mobilization, by use of the
Deutsch-Solow model. Table VI-8, for example, glives the
average errors in predicting the percentage of
population assimilated, over time periods on the order
of thirty vears; these errors are uni formly distributed
between 0% and 2%, except for four outliers (20% of all
cases) at 2.68%, 3.08%, 3.09% and 6.21%. The fallures
of these predictions are also informative; they give us
a picture of those external factors which really do
have the power to divert the processes of assimilation
and mobilization from a steady course. We have
tabulated the predictions of the "robust" method for
the years 1980, 1990 and 2000; these predictions are
subject to caveats discussed in section (iil).

In section (1v), more complex models of
nationallism are synthesized, by drawing together ideas
from the literature on this topic and ldeas from social
psychology. The future possibilities of these models,
in verbal and quantitative analysis, are sketched out
briefly. These models attained high levels of
"statistical significance," and led to noticeable
improvements in long-term prediction, in emplirical
tests described in section (v); however, these tests,

based on classical estimation routines, are regarded as
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brellmiﬁary. The communications concepts of section
(iv), as applied in section (v), also yielded an
explanation of one of the Inconsistencies observed with
"gravity models" In previous research; thls explanation
was valldated empirically.

The MIT Cambridge Project has begun Implementing

the algorlithms of Chapter (11).
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(1) GENERAL INTRODUCTION AND SUMMARY

The original purpose of this research was to apply
the classical techniques of statistics and econometrics
to the Deutsch=Solow model of nationalism, In order to
turn this model into a workable tool for predicting the
political future. |In the course of this research, it
became clearer and clearer that the usual statistical
methods do a poor job in fitting dynamic models to
real-world data, if we judge these models by thelir
ability to make good predictions across time,
Furthermore, it became clear that newer and better
methods would not be feasible, economically, unless we
could also develop new, less expensive algorithms.

Thus the goals of this thesis have heen five-fold:
(i) to describe new ways of fitting models to data;
(11) to deflne the new algorithms which make these
methods feasible; (iii) to Introduce evidence for the
superiority of the methods (see Table 1V-1, on Page
IV-34, and the graphs which start on Page VI-3);

(iv) to discuss the applications of these ideas, In
broad terms, to social and even biological sciences
(v) to discuss the new empirlcal work on nationalism
which has led us in these directions.

Let us begln by discussing the first three goals.
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Strictly speaking, we have studied not one, but
two, new approaches to fitting models to data, in
political science. The first approach was essentially
an extenslon of work by Box and Jenklns, on "ARMA"
processes, on ''mixed AutoRegressive Moving-Average
processes.'" Chapter (111) discusses the mathematical
statistics of thls approach, in detall, It begins by
polnting out that an ordinary, multivariate
autoregressive process, observed by way of data which
were not measured perfectly accurately (i.e. measured
wlth random measurement errors or conceptual
distortions), turns into a "vector mixed autoregressive
moving-average process.'" It then proceeds to show how
the algorithm of "dynamic feedback,'" discussed in
Chapter (11), can be applied to estimate the
coefficients of such a process, at a lower cost than
was possible with previous methods; the resulting
procedure has been tested, and made available to the
general user, as part of the MIT Cambridge Project
Conslstent System. In Chapter (V), we discuss why this
approach seemed important to us, in quantitative
polltical sclence..

In studies of simulated data, this approach did
quite a blt better than the best form of regression.

In Table 1V-1, on Page 1V-3L4, one can see that the
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average estlmates ("av') produced by '"arma," for the
coefflclents of a simple model, were much closer to the
true values than were those of ''reg,'" In the twelve
cases studled; thls Implles much less systematlc blas.
Also, the dlspersion of the "arma" estimates was about
half as much as that of "reg,'" on the whole; this
Implles less random error In estimation, or, in other
words, greater practlcal efflciency In making use of
limited data. However, in studies of real-world data,
the long-term predictions by this method were only
slightly better than those by regression; for example,
In Figures VI-1 through Vi=4, on Pages VI-L4 through
VI-7, one can see that the error distribution curve for
""ARMA" {s only ahout 10% smaller In area than that for
"Regresslon,!" and that the curves are uniformly close
to each other.

After re-examining the empirlical results of this
research, and the concepts of maximum 1ikellhood
themselves, we have arrived at a new, more radical and
more successful _approach to the fltting of models. In
essence, the idea is to maximlze long-term predictive
power dlirectly, over the known data set, instead of
maximlzing formal 1lkellhood. Formally, this ldea rests
upon the aprlori expectation that many social processes

are governed by relatively deterministic underlying
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trends, obscured both by measurement noise and by
translent deviatlons of a very complex sort. The
qualitative, political basls of this idea is discussed
In Chapter (V). The statistical basis is discussed In
sectlions (vIi) and (xi) of Chapter (Il).

The "measurement-noise-only'" approach performed
much better than both ARMA and regression, on both
real-world and simulated data, In Table 1V-1, "ext" Is
markedly superior to "arma" In estimating coefflcients;
in the text of Chapter (1V), we note that this
superiority is greatest for the simulated data
generated by the more complex processes (11 and 12),
processes which may be more representative of the real
world. In Figures VI-1 through Vi-4, the
"measurement-noise-only" approach, described as the
"robust!" approach, had much lower distrlbutlions of
error than ARMA or Regresslion did, in long-term
prediction. |If one allows for the spread of the
vertical axis in these graphs, one can see that the
"Robust!" method cuts the long-term predictlon errors In
half, roughly; the blggest reductions occur with those
varlables, such as natlonal assimllatlon, and with
those cases, near the middle of the distributlions, for
which the simple models of the flrst half of Chapter

(V) can do an adequate job of predictlon.
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The empirical results for the "robust" method were
all based on special computer programs, designed to
take advantage of the simpliclity of the models under
study. In Chapter (11), we dlscuss how the general
algorithm of "dynamic feedback" can be used to estimate
such "measurement-noise-only'" models, at a minimal
cost, especlally for models which may be very
intricate, nonlinear and nonMarkhovlan; we also
discuss how the algorithm can be used to fit more
conventional models, to optimize policy, and to perform
"pattern analysis" - a dynamlc alternative to factor
analysis. The techniaue of "dynamic feedback' Is
essentially a technique for calculating derivatives
Inexpensively, to be used with the classic method of
steepest descent. In section (lv) of Chapter (111), and
In section (111) of Chapter (VI), we point out how
practlical experlence with steepest descent in this
context has led us to new ways of adjusting the
Marbitrary convergence welghts'" of steepest descent;
these methods appear to have the power, in normal,
practical situations, to speed up the process of
convergence by a large factor. In the Appendix to
Chapter (11), we mention a few generalizatiions of
these‘methods, which may be helpful in the general,

nonllnear case.
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From a practical polnt of view, the appllications
of these and other mathematlical approaches in the
soclal sciences remaln a subject of dlispute. The
extreme posltions of '"behaviorism'" and "traditionalism"
remaln popular: a dlvislion still tends to exist
between quantltative and verbal studies of social
behavior. |In Chapter (V), we describe the way that our
mathematical tools might fit In, in the broader context
of social studies and political decision-making. From
a utllitarlan and Bayesian point of view, we suggest a
methodological approach Intermedlate between
"hehaviorism" and Ytraditionalism," In which the
different frameworks might be Integrated more closely
with each other. |In sketching out what such an
Integrated framework might look 1ike, we also polnt out
that the algorlthms of Chapter (11), taken as part of
"eybernetics,!" may have some direct value as paradigms,
to help us try to understand the requirements of the
complex informatlon-processing problems faced by human
socleties and by human bralns. We also mention the
possibillty of applylng these approaches to other
flelds, such as ecology.

Finally, In Chapter (Vl), a few substantive
concluslons emerge from our empirical and analytic work

on nationalism. The relatlve success of our long-term
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prediction of national assimilation and mobilization,
as shown in Tables VI-8 and VI-9 in section (i1) of
Chapter (V1), is of some substantive iInterest; note,
for example, that in predicting the percentage of
population assimilated, over periods of time on the
order of thirty to forty years, that the errors are
uniformly distributed between 0% and 2%, except for
four outliers (20% of all cases) at 2.68%, 3.08%, 3,00%
and 6.21%. The exact sources of weakness in these
predictions are also of interest, Insofar as they give
us a picture of those external factors which really do
have the power to divert the processes of assimilation
and mobilization from a steady course. In Tables VI-21
and V1-22, in section (i1i1) of Chapter (VI), we have
listed the predictions of the '"robust" method for the
years 1980, 1990 and 2000; these predictions are
subject to caveats discussed In the text of that
section. Both in sections (ii) and (il1), all
predictions are based on the Deutsch-Solow model, with
minor modifications.

In section (iv), more complex models of national
assimilation and mobilization are synthesized, by
drawing together ideas from the literature on this
topic and ideas from social psychology. The future

possibilities of these models, in verbal and
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quantitative analysls, are sketched out briefly. In
sectlion (v), a prellminary test of the models Is
described. The main methodological conclusion of
Chapter (V1) is that the available tools for
time-series analysis cannot cope adequately with the
level of complexlity represented by such models;
however, In the prellminary tests, the models attalned
a high level of '"statlstical stgnificance," and did
have a notlceable value In improving long-term
prediction. The communications concepts of section
(ilv), as applled In section (v), also had the spinoff
of suggesting a rational explanation of one of the
incons istencies observed with "gravity models,' In
previous research; this explanation was validated
empirically.

In concluding this Introduction, it would seem
approprlate to describe what might come out of this
work, in the future. However, these possibllitles are
discussed In enough detail in each of the separate
chapters. Stll11, 1t should be of general interest that
the programming of the general algorithm of Chapter
(11) is already underway at MIT, as part of the
large-scale "DATATRAN" project on Multics, and Is
schedujed to be available to the soclal sclientist In

1974,
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(II) DYNAMIC FEEDBACK, STATISTICAL ESTIMATION AND

SYSTEMS OPTIMIZATION: THE GENERAL TECHNIQUES

(1) INTRODUCTION

In recent years, social scientists and ecologists have become
interested more and more in the use of mathematical models
to describe the dynamic laws of the systems they study. Karl Deutsch
and Robert Solow, for example, have proposed(1l) the following model
to predict the size of the assimilated population, A, and the

unassimilated population, U, in a bilingual or bicultural soclety:

dA
at - aA + bU
(2.1)
qu
at cU,

where "a", "b" and "c" may be treated as constants, at least for
medium lengths of time, The constant "b" represents the rate of
assimilation, as a fraction of the people yet to be assimilated,
per unit of time; "a" and "c" represent the natural growth rates
of the assimilated and unassimilated populations, respectively,

Mathematical models may serve two general purposes in the
soclal sciences, On the one hand, they may be used as a tool in
verbal reasoning, as a technique for formulating one's assumptions
apd their consequences very clearly and very coherently;

they may be used to construct paradigms, which, like metaphors,
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may be very useful but which are not meant to be taken literally,

The "prisoner's dilemna" paradigm(2) is a good example of such

a model, On the other hand, mathematical models may be used to make
actual predictions of variables which can actually be measured;
economists, for example, have long been in the business of predicting
the GNP, as a number, from the use of equations(3) originated by

Keynes and Samuelsen, These equations offer different predictions

for the GNP, depending on one's assumptions about government spending
and tax rates; thus they can be used, not merely in prediction, but
in helping the government to choose a policy for spending andvtaxation
which will maximize the real GNP,

Our major concern in this thesis is with the second type of
model - predictive models, like the Deutsch-Solow model above,
Given such a medel, the social scientist would want to ask three
questions: (1) how likely is it that the model is true, empirically? ;
(11) how can we measure the values of the constants in the model? 3
(111) if the model is true, but if certain policy-makers could change
some of the constants or even control some of the variables directly,
what should they do in order to get the “best" results? The first two
questions concern the problem of estimation, the core of classical
statistics, The third question falls roughly into the area now called
"control theory”. All three questions can be answered, by use ef
existing methods, but only for certain restricted classes of models.

Our main objective in this chapter is to present a more general
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method, to allow us to answer these questions for any explicit
model, of any complexity, at a minimal cost in terms of computer
time, More precisely, if a user specifies his model in terms of
equations built up out of elementary operations and functions,

known to a standard computer package, then our method could give
this computer package the power te answer the three questions above,
at a minimal cost, As more data become available in the soclal
sclences and in ecology, and as models are developed which reflect
the true complexity of the seclal systems themselves, the need for
~such a general method may grow greater and greater,

In this chapter, we plan to explain the dynamic feedback method,
by building up examples of its most important applications; these
examples will grow in complexity until, in section (xii), we present
the general algorithm explicitly. Thus we will start out in
section (11i) by showing how to reduce the cost of conventional
nonlinear estimation, In section (iv), we will show how the dynamic
feedback method can cope with simple models with "memory"; even
simple models ef this type are difficult to handle by other metheds,
In sections (v) through (vii), we will discuss the basic problem of
induction, as seen by the statistician, This material prepares us for
the discussion of more advanced applications in later sections and
also in Chapter (III). In particular, in section (vii), we will

propose a new, "robust" approach to estimation, which, even for
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simple models, calls for the use of the dynamic feedback method;

later, in section (xi), we will specify exactly which "models with
memdry" are used in this approach, and in Chapters (IV) through (VI)
we will discuss the evidence that this approach is worthwhile,

In section (xiii), we will discuss the problem of estimation with
complex noise models, In section (ix), we will discuss a radically
new concept, "pattern analysis,” for dealing with situations where
the nonlinearities and complexities of a process defy the use of
straightforward estimation; the applications of this concept would
include problems now dealt with by factor analysis or by pattern
recognition techniques, Once a person has finished estimating a model,
he may then wish to go on to use this model in fermulating policy;
in section (x), we will show how the dynamic feedback method can be
used at that stage, too, to help one maximize the utility function
of one's choice, Finally, in the Appendix, we will mention a few
technical procedures, which can help speed up the convergence of a

computer routine based on the dynamic feedback method,
(11) ORDINARY REGRESSION

Let us begin by discussing the first two questions listed on
rage II-2, from the viewpoint of classical maximum likelihood theory,
How would we ascertain the "truth" of a model like the

Deutsch-Solow model, equations (2.1), if we were given the values



Page II-5

of "A" and "U" every year for some nation, from 1901 to 19737

If we were given the values of the constants, a, b, and ¢, then we
could simply solve these equations, starting from the known values
of A and U in 1901, In order to avoid having to solve a differential
equation, we could rewrite the model in a simpler, but equivalent,

form:
A(t+l) = klA(t) + sz(t)

(2.2)
U(t+l) = kBU(t),

where "U(t)" means the value of U in the year t, and where

kl' k2 and k3 are all constants, In either case, we could predict

A and U for 1902 through 1973, by starting from our knowledge of

A and U in 1901, and using our model, We could compare the predictions
of the model against the observed data, And we would discover that
equations (2,2) are simply false, as written; there would always be
some difference between our predictions and the data, while the
equations (2,2) do not allow for any such error, Equations (2,2) are
completely deterministic, This complaint may seem like quibbling,

but it is central to the clasasic concepts of statistics, In practice,

admittedly, one may be more interested in the predictive power of a

simplified model, rather than its formal statistical truth; however,
in section (vii), we will be able to discuss this possibility as an
extension of the more classical approach discussed here, At any rate,

to construct a model which has some hope of being "true”, in the
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social sciences, we need to express the idea that there will be
a certain amount of unpredictable random noise in the system we are

studying. Thus we might rewrite equations (2.2) to get:

A(t+l) = klA(t) + sz(t) + b(t) (2.3a)

U(t+l) = kBU(t) + ce(t), (2.3b)

where b(t) and ¢(t) are random error terms, obeying:

Y
1 'Z(E)
p(b) = w5 °
A
L HE? (2.4)
p(c) = —— e
~Zic

In other words, we do not know what b(t) and c(t) will be in advance;
the probability that b(t) will equal some particular value, b, is
given by p(b) in the formula., Strictly speaking, since "b" is a
continuous variable, p(b) is actually a probability density functionj
one may think of it as the probability that b(t) lies between "b",
and a nearby point, "b+db", divided by the size of the interval(4),
db, These functions for the probability of b and c are simply the
classic bell-shaped curve, or “normal distribution," The constants
in front of the "e" are there, te make sure that the probabilities of
the different values for b add up to one, when the formula is
integrated, The constants "B" and "C", like the constants "kl", "kz”

and "k3", need to be specified before our model is complete,
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According to this elementary model, the probability of b (or ¢)
is highest when b (or ¢) is zero; in other words, it is highest
when the exponent is zero, instead of a negative number, When b gets
to be a large number, positive er negative, in proportion to B,
the exponent gets to be a large negative number, and the probability
falls off very quickly, It should be emphasized that this simple
model of noise, while standard, is far from the only possibility
in this case; in section (vii), we will mention a few other
possibilities,

Once we have decided to formulate such a simple model,
at least to start with, classical statistics can tell us exactly
how to measure its "likelihood of truth" for any combination of
and k

the constants kl, k In sections (v) and (vi), we will

2 3°
discuss in more detail how it is possible for some statisticians
to arrive at such strong statements; for the moment, however,

we will relegate the theoretical abstractions to a footnote(5),
Even on a very concrete level, one can get a feeling for the

power of the classical approach,

Looking back at equations (2.3), we may define;

R(t+1) = K A(L) + KU(t)
’L?(t+1) - k3U(t)

“A(t+1)" is simply the best prediction one could make for A(t+),
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at time t, given our knowledge of A(t) and u(t), and given our

model, From equations (2.3), we get:

b(t) = A(t+l) - A(t+1)

(2.5)
o(t) = u(t+1) - D(e+1),

Intuitively, one would expect that a model which gives us

"good" predictions,'ﬁ. would be likelier to be true than

a model which gives us "bad" predictions; one would expect that

bigger errors, b and c, would imply a lower probability that the

model is true, Indeed, when we look back at equations (2.4),

-the oniy probability functions we have with this model,

we can see that larger values of b and c would imply a lower

probability, More exactly, as we look at these equations, we

can see that the probabilities of these errors really depend

upon (%)2 and (%)2 - i,e the size of the square of the error,

As part of eur model, we assume that the errors at different times

are all independent of each ether, Thus in order to combine

all the different probabilities fer different times, t,

into one overall probability, it is legitimate to multiply them

all together; this has the effect of telling us to add up all

the exponents, the square error terms, (%)2 and (%)3

to get an overall meaéure of the probability of the model,

Therefore we can measure the total effective size of the errors

in equatioen (2,3a) by:

L= P A - L3 )

< Bt



rage ll=y

In order to pick the best values of k1 and kz, in our model,

we do not have to account for the other part of the error,

the 02 term, since our choice of k1 and k2 does not affect
equation (2,3b), Indeed, to pick the best values of k1 and k2,
in equation (2,3a), we do not even have to worry about the value
of B, since B does not appear in that equation; thus we can

simply try to minimize:

2
L= E (d(t)) (2.6)
t
Similarly, in equation (2,.3b), we can pick k3 by minimizing the

analogous function:

L= & (e(t)?
<

Notice that we now seem to have two separate measures of truth,
for (2.3a) and (2,3b) treated as independent equations,

Formally speaking, we have found that the maximization of
likelihood for the composite model, (2.3) and (2.4),

can be decomposed into the maximization of likelihood for

(2,3a) and (2.3b) as separate equations, attached to the

top and bottom equations of (2.4), respectively,

This decomposition is due to the simplicity of the original model;
it would not be valid for many more complex models, In section (vi),
we will present more details of this decompesition with ordinary
regression; in Chapter (III), however, we will focus on a class of

standard statistical models, the "vector ARMA" models, for which
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such a decomposition is impossible, and for which
an equation-by-equation estimation procedure cannot have statistical
consistency,

Even in the simple case here, however, we have yet to specify
how to pick k1 and k2 to minimize "L", in equation (2.6).
Let us begin by substituting into (2,6) the value of b(t) from

equation (2,3a):

L= Z(A(tﬂ) - klA(t) - sz(t))Z (2.7)
t

Our problem, again, is to minimize L as a function of k1 and k2,

while treating the measured data series, A(t) and U(t), as fixed,

From basic calculus, we know that a function has its minimum,

for variables k1 and kz, only at a point where its derivatives

with respect to k1 and k2 both equal zero, In other words, if the

derivative of L with respect to k1 were not zero, but, say, +10,
this means that L will change whenever we change ki' and that

the change in L will equal 10 times the change in ki' roughly,
for small changes in k,s thus, 1f we change k1 by -1/100, then

L would change by about -1/10, proving that it hadn't yet reached

a minimum at our original choice of k, and k,, Thus we can try to

1

find values for k1 and kz such that the  derivatives of L

with respect to both of these parameters will equal zero,
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Differentiating, we get:
Z?—% (A(z#1) - klA(t) - 1(211(1;))2
t
Z 2(A(t+) - klA(t) - k2U(t)%{A(tﬂ)-klA(t)-sz(t))
¢

S 2(At41) - kA(t) = KU(R))(-A()
t
o -2 D (AGtHIAR) = Ky (A())F - KU()ARD)),
€

which we will try to set to zero, And we get a similar expression

for %%—; putting them together, we get two algebraic equations:
2

ZA(tﬂ)A(t) = k4 Z(A(t))z +k22U(t)A(t)
t
2 A(tH)U(L) = ZU(t)A(t) + k :(U(t))
t

We can calculate these sums by looking at our data; we can selve
these simple simultaneous equations for the variables k1 and k2
exactly, by classical algebra, or by using programs avallable on
any computer, The procedure above is the procedure of classic
“multiple regression,

All of this reasoning, however, supposes that we decide to look
at a very simple model, like equation (2.3a), It also assumes that
the "errors”, b and ¢, follew a normal distribution, There is nothing

to stop us from using the same calculating procedure in cases where
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we do not expect the noise to be normal; from a classical point of
view, this may still be equivalent to accepting the normal
distribution as part of one's "simplified model,” but the effects
of such a "simplification" are far from obvious apriori,(6).

What happens, however, if we move on to consider a more complex
model? What would happen if we decided to change equation (2,3a)
i1tself? For example, in equation (2,3a), we assume that the rate of
assimilation, k2, is constant in any given country, In reality, we
know that this is unreasonable, If the "unassimilated” outnumber the
"assinilated” by a large majority, they may feel very little pressure
at all to assimilate; on the other hand, if they are a tiny isolated
group, dependent on an economic world which is mostly "assimilated",
then their rate of assimilation is likely to be higher than it
otherwise would be, There are other factors involved, but, holding
those facters censtant, our model is likely to be "truer” and better
if it accounts somehow fer the power of percentage dominance,

How could we revise equation (2.3a) to express this kind of
effect? First of all, we need to find some kind of measure of
"percentage dominance,” The simplest and most obvious measure is
simply the difference between the percentage of the population
which is assimilated and the percentage of the population which
is unassimilated, In order to avoid having to multiply everything

by 100, let us look instead at the difference between the fraction
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which is assimilated and the fraction which is not, The fraction

of the population assimilated equals, by definition, the ratio
between the number of people assimilated, A(t), and the total
number of peeople, A(t)+U(t); thus it equals A(t)/(A(t)+U(t)).

The fraction unassimilated equals U(t)/A(t)+U(t); the difference
between the twe equals (A(t)-U(t))/(A(t)+U(t)). Somehow, we

wish to express the idea that an unassimilated person is more likely
to assimilate if the "percentage dominance” of the assimilated
population is larger, If we recall that k2 was defined as the rate
of assimilation per unassimilated population per unit of time,

we may simply postulate that k2, instead of being constant,

will be larger if "percentage dominance", as defined above, is larger,
For simplicity, we may consider the idea that k2 is directly

proportional to percentage dominance:

ky(t) = kg ALELE (2.8)

This time, ké is assumed to be constant. While the actual

relation between k2 and percentage domlnance is not likely to be
quite this simple, this equation still gives us some expression of
the important qualitative idea that there is a strong and consistent
positive connection between the two, To generate an explicit model
of assimilation, we may substitute this equation back into (2.3a):

A(t)-U(¢
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The second term on the right is an "interaction term,” nonlinear
in A and U, A great deal of fuss has been made about this kind of
nonlinearity, with terminology such as "curvilinear regression™,
"polynomial regression"”, and even "spectral regression” often
used, (7). However, this kind of situation is fairly easy to deal

with, We can solve for b(t), as before, to get:

L= Z (A1) - kyA(e) - 5 (AU (o) 2

t (2.10)
As a function of k1 and ké, this is really the same kind of
expression as (2,7), with "U(t)" replaced by a more complicated

expression which we might call "U'(t)":

The derivatives with respect to k1 and k2 are the same, with a few
"prime"” signs interjected, and we wind up with the same

algebraic equations to solve and almost the same sums to calculate,
(We have to sum up (U'(t))2 and U'(t)A(t) instead of U(t)2 and
U(t)A(t),) In practice, one would normally begin by calculating
the variable "U'" from one's existing data, and injecting it into
a standard regression package to calculate the sums and solve

the equations; in a computer package such as TSP, one could compute
U' from one's previous data by use of the command "GENR"(generate),

and issue a regression command (OLSQ) with U' and A as independent
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variables, What is essentlial in this example is that we
continue to express A(t+l) as a linear combination of
other variables, which are defined as specific functions of

the available data,

(11i) NONLINEAR REGRESSION AND DYNAMIC FEEDBACK

However, if we want to move on to more interesting models of
social phenomena, we will often find that we have to estimate
constants which do not simply multiply an expression we already
know how to calculate, like U'(t); we will find that there are
constants on the "inside" of the model, For example, in equation (2,8)
we sald that kz is directly proportional to the dominance of A over U
as a fraction of the total population, How do we know that it is
a matter of direct proportlionality? k2 is the rate of assimilation,
per unassimilated person per unit of tine, as originally
defined in equation (2,3), In equation (2.8), if U is 25% of the
population, then %i% will equal 4; if U is almost O, then ﬁi% will
equal 1, Thus we assume that the rate of assimilation will always be
twice as much in the latter case, as compared with the former case,
But how do we know it is only twice as much? It might be four times
as much, After all, the pressures on a tiny community, near 0%, may be

much, much larger than en a community near 25%, which may be large

enough to protect its own members, and to give them economic



Page II-16

opportunities almost as great as they would find after assimilation,
A-U U2 o (AU)3

So instead of A ve might have written (A+U) . )

Even without considering more complicated possibilities, it would be

interesting to try to measure just how strong these effects are that

we have béen talking about; we may write:

£)=U(t) U
ky(t) = k3 (ﬁ(t -!-U(t))

where k , 1ike ké, is a constant we would like to estimate,

To turn this into an explicit model of assimilation, we substitute

into (2.3a):

K
A(t41) = kyA(t) + X5 (ﬁ(: ;g(: ) *u(t) + b(t)  (2.11)

We can solve for b(t), to get:
2 (v(1))?
-c

-Z(A(t+1)-k1A(t)-k2(§§-'§))-;U”i(%> ) P (2.12)

When we differentiate L, and try to set the derivatives to zero,

as before, we find a very unpleasant set of equations emerging:

k
AA(EH) =k Q. (A(4))2 + K ZA(“(%) *u(t)
t

U(t)A(t+1) = k ZA(t)U(t)(ﬁ-%—}%;%%l)) "

tiy Z(U(t)(ﬁ(:yfg :) f
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| k
0= ( 2(A(tH) - KAL) - ké(ﬁ(t :g(: ) *u(t))

k
A(1)-U(£) % A(+)-U(%)
A(t)+U(t)) log 3 ()7 (t) ))

* ( kéU(t)(
(Note that we use the asterisk to lndicate multiplication, as in
FORTRAN, ) To solve these three equations as functions of kl‘ ké and

k, is not only a difficult exercise in algebra; it would appear to be

2
impossible, There are many equations in algebra for which there simply

exist no "closed" solutions - no solutions which can be expressed
in terms of the ordinary "vocabulary” of mathematics,(8).
Thus, in order to devise computer routines to handle this

contingency, we must use routines which give numerical approximations

L
to the constants kl’ k2 and 4; we must estimate kl,k2 and k4 by a
numerical technique of successive approximations, rather than an exact
solution, This is the classic problem of “"nonlinear estimation,”
A similar problem can even arise when dealing with more sophisticated
linear models,

There are two well-known methods for dealing with the problem of
nonlinear regression, The simplest, and perhaps the best, is the
method of “steepest descent,” (9)., When we try to maximize L,
as a function of kl' k2 and k )0 We may not be able to solve for
oL o, ~ =0 and 3L = (), However, if we start off with
ok, 3k2 3k,
reasonable guesses for all of the constants, k 1? k2 and k 10 then we

can differentiate (2.12), plug in our guesses, and see 1f the
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derivatives happen to equal zero; if so, chances are good that

we have guessed the best values, (With classic regression, when we
had two simple equations in two unknowns, k1 and k2, there would
only be one solution in the usual case, and there would alWways be a
minimum for L; therefore, we could be fairly certain that the
derivatives were zero only at the minimum, With very complex
formulas, we simply have no way of being sure about this,)

If the derivatives are not zero, then we can guess new values for
our constants, values which will make L smaller, If-%%— is positive,

1
then we can decrease L by decreasing klg if.%%— is negative, then we

can decrease L by increasing kl‘ If%%l- is clise to zero, then

kl is probably close to its best value; 1f'%%q- is far away from zero,
then k1 is probably further off, Thus we can create a new guess,
kl(n+1), better than the old guess, kl(n), by changing k; in

proportion to .%%—. but in the opposite direction:
1

k1(n+1) = kl(n) - é%%; ’
where C is some positive constant, and where we calculate the
derivative by using our old guesses, kl(n), ké(n) and ku(n).
We also calculate the derivative and then the new guess for
ké and ku, each, Once we have our new guesses for kl' ké and ku,
Wwe can go back to (2.12), to see if we really have gotten a smaller

value for L, If we have, then we can start again from our new

guesses, to check the derivatives, etc, If not... then C must be
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too big., If C is small enough, the definition of the derivative
assures us that L can be predicted as well as we like by leoking
at just the first derivative; therefore, for some C small enough,
we know that our new guesses will have a smaller L than our old
guesses, If we find ourselves making C smaller and smaller, from
guess to guess, then we may eventually quit, when C is so small that
we aren't changing the constants very much, Hopefully, this will mean
that our approximations are very close to the ideal values,
In the Appendix to this chapter, we will suggest a few ways to
speed up the convergence of this classical technique,

As we look back at equation (2,12), it is clear what our biggest
problem is in actually doing all this work: we have to calculate
the derivatives of a very complicated-looking expression, L,
and we have to calculate the exact numerical values of these
derivatives for many different values of the constants k1. ké and ku.
Even worse, there is the question of who the "we" is who will do all
the work, in most cases, Classical regression can be done automatically
for the social scientist, at a low cost, by a computer program; the
social scientist need only load in his data, and specify his choice
of variables, Whe is to do the differentiating here? The soclal
scientist? In BMD, one of the biggest computer packages for use in
social science and biology, there is only one '"nonlinear regression®

routine, added into the X-Supplement(10) available June 1972;
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this routine requires the social scientist to write his own

FORTRAN programs both for the function A(t+l) and for all its
derivatives, It is reasonable to ask a soclal scientist to
understand the logic behind a formula like (2,11); it seems

rather unreasonable to ask him to carry out elaborate
differentiations, and write and debug his own FORTRAN progranms,

for every such model he chooses to investigate, Alse, this approach
could become expensive in terms of computer time, too, depending en
the user's ability to devise low-cost ways of calculating his
derivatives., There is a second possibility: the user could be asked
to specify a FORTRAN program to calculate A(t+l), as a function

of A(t), U(t), Ky k! and k, 3 the program would then go on to

2 4
calculate the derivatives numerically, by changing_k1 a little bit,
and seeing what happens to A(t+1), At each time, for each constant,
the computer would have to carry out calculatiéns as expensive as
calculating A(t+1); with many constants, this could multiply the cost
many-fold, In the two nonlinear regression reutines easily available
in Cambridge, besides BMD - TSP-CSP(11) and Troll/1(12) - the social

scientist has a more convenient way to get his work done, In these two

systems, he need dnly specify his model in terms of a "formula", like:
A(t+1) = kixA(t) + R*U(L)*(((A(L)-U())/(A(L)+U(1)))**kt)
This is the same as (2,11), but with FORTRAN conventions used to

make it possible to put everything on one line, and with error terms
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Actual Variable Variable Category Ma jor Minor
Number Source Source
(Address)
A(t+1) 13 sum 12 11
klA(t) 12 product 3 1
A()-U(t) Ky
1
sz(t)(A e ) 11 product 10 4
NORION"
U<t)(x%¥%:ﬁ%€%) 10 product 9 2
A()=U(t) Xy
Gty ’ power ° °
A(t)=U(t
AC)A0(t) 8 ratio ? 6
A(t)-U(t) 7 difference 1 2
A(t)HU(t) 6 sum 1 2
k4 5 parameter - -
k2 4 parameter - -
k1 3 parameter - -
u(t) 2 given - -
A(t) 1 given » -

Table II-1: Table of Operations for Equation (2,11)
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left implicit, (Single asterisk means multiplication, double means
raising to a power,) This formula then gets translated by the
computer into a list of simple expressions, This list of
expressions would normally look something like Table II-1,
with the explanation column on the left removed; such a list is
called a "Polish string." The categories of operation allowed
on such a list depend on the arbitrary choices of the systems
programmers, In some systems, there are function names reserved
for user-supplied FORTRAN subroutines; in other systems, there are
functlions corresponding to model neurons, for use in statistical
pattern recognition; et cetera, It is already possible for a
computer to calculate the symbelic derivatives of a formula by
manipulating formulas which have been broken down like this;
however, that process becomes quite expensive, if we have many
parameters to differentiate against,

The easiest way to calculate these derivatives is by a simple

use of dynamic feedback, Now we know that:

Le @ (b(t))?
t

oL 2 2
& g S (o))

To calculate %%—, we need only calculate 5?—( (b(t))z) for each time,
1 1

and add up these derivatives over time, We want to know the effect

on the error, (h(t))z, of changing, say, k;, while we keep our data
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(i.e. A(t),A(t+1),U(t)) constant, and while we keep the other
parameters (ké,k“) constant, In Table II-1, let us define the
“"ordered derivative” of (b(t))2 with respect to variable number i
to be the change we get in (b(t))2 in proportion to the change

in variable #i, when we hold all the previous variables constant,

Fbr.S%I (b(t))z, this defiﬂ}tion doesn't give us anything new;
the ordered derivative,i;%I (b(t))z, is the same as the ordinary
partial derivative, s%z (b(t))z. But for the other variables,
it gives us something new to calculate,

Now: suppose we ask, in changing variable #7 by a small amount,
what will the total effect be on (b(t))?? Changing variable #7,
we Will have a direct effect on only one varilable, later in the

system, variable #8, (See Table II-1,) Thus if:

5=k vy
where "d" is a small number, where X7 is variable #7, and where

"X'" is the value after our changes, We will produce the

following direct effect on later variables:

! X, +d
A S 2|
X3 X X Xg + X, (Xg held constant. )

If we are calculating backwards from the top of the table, we
+

already know SXC ((b(t))z); we already know the ratio between
8

(b(t)*)2~(b(t))? and X}=Xg. Let us call that ratio, or derivative,

8.
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"38". Thus we know, for small values of g, that if Xé=X8+g, that

b'2 = b2 + SBg. Now we just found out, for small d, that if

X = X, +d, thatX'=X8+—d=;thus if we write g = <% ,

8 X6 X6
we know that this change in X8 will lead to a total change in
(b(t)) of Sy~ i . (Before, when we measured Sg, We assumed that X7

would be held constant. However, when we vary X7, and hold the
earlier variables constant, there is no way that this change can

affect anything later on, except by way of X8.) Thus we deduce:

S
5, = 22

7 Xy
In more sophisticated language, this is an example of:

+ fg
.O—Q;ub(m?-) - (?3( ((o(£))°) >%x

where fg is the function Xg = 8(X7,X6) = X, . Now let us consider

a more complicated example, In Table II-i, X2 has a direct effect on
three variables higher in the table - xio,x7 and Xé. When we start to
vary X2, we have to account for the total effect of all three of the

changes it introduces directly on these other variables, Thus we get:

Bflo + S.a.iz + 803_#9

0, T 6°3%,

= Smx9 + 87(-1) + sb(+1)'

Of course, Xz is simply U(t); the reader, differentiating (2,12)

with respect to U(t), would also arrive at three terms, equal to
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the three terms here, but the work involved would be rather
tedious, To make it explicit how we begin this downwards calculation,

let me point out how to get 8131

o+
513 = sAgy (o))
+
= smay () - Ren) )?)

= -2(A(t+1) - R(t+1))

One way to operationalize all this is to start from the top,

and, for every variable, look at all of its direct connections to
variables higher up. An easler way, in practice is to pass down
from the top all the information to variables below them and also
directly connected to them; the effect is exactly the same, but the
order of computations is easier to deal with, We can start out,

in our example, by setting S1 through S12 to zero, and plugging in

S,, as above, At 813, we note that we have a "sum"; thus we add

13

13 12
Xy, on (b(t))z. Then we are done; we go down to S,,. At S;,, We know

S,, to S,, and to Sll' to account for the direct effect of x12 and of
that all the later effects of X12 have already been added into 812'
and that our value for 812 has been completely calculated, At 512,

we encounter a product, x3x1. Thus we add 812X3 to Si' and 512X1 to
SB' We go down to Sil' We encounter another product. We add 811X10 to
Su, and Su)(,\L to SlO' We go down to SiO' And so on, At the end, we

really look only at S5, Su and 33' the derivatives we wanted for the
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steepest descent method, The mathematical basis of these operations
is the theorem, for a set of ordered functional relations

Xy=fy (X _10%y _peeeaXy), thats

+. +
o, o, 3y
’
Xy — Xy 0%
et
a theorem to be discussed in section (xii), For each line

(2,13)

of the 1list, as we go down, we have only two calculations to perform
at most, one for the "major source” and one for the "minor source";
thus the total number of calculations needed for each time, t,

-will equal only 2nx, vwhere n, is the total number of variables

on the list, The total cost will be anT, across all times, to get
all of the derivatives we want, regardless of how many parameters
there are, Notice that to go up the list, starting from U(t) and
A(t), requires one calculation per line of the list; thus the total
cost, merely to compute all thc'ﬂkt+1) for a given model, will equal
nxT, the same order of magnitude, I assumed, above, that we had
already carried out this latter calculation, so that the values of
the "Xi" were already known; given that we have to find L for each
guess, not just the derivatives of L, there is no extra cost in

first calculating the "X,"™ and L.

i
In practice, one can imagine three ways that a systems
programmer might want to use the generalized form of the dynamic

feedback method, First of all, he might simply write a subroutine,
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to do the calculatiens specified above directly, on the table of
operations fer some model, Second of all, he might write one
subroutine to look at one table of operations, and to specify the
calculations required by the dynamic feedback method for this
table, in another table of eperations; he might write a second
subroutine te prune away all unnecessary and redundant operations
from this table, The relative advantages of these methods would
depend heavily on the characteristics of the model being studied,
on the number of time periods and calculations of derivatives to be
performed, and even on machine characteristies, Finally, one might
imagine the possibility that the operatlons on a table like

Table II-1 will someday be grouped into "strata," groups of
operations that can be performed in parallel, on a computer

capable of parallel processing, On such a machine, one could perform
the operations at a given set of "Si"' in parallel, using the
same procedures as above, so long as none of the corresponding "Xi”
depend directly on each other as input sources; in short, one could
use any system of stratification which was adequate for calculating
the Xi. This possibility is restricted, however, by the requirement
that several processors would have to be able to add something to
the same machine word (Si for "i" on the next lower stratum), at the
same time, with the result that this word would be increased by the

sum of all the numbers added,
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(iv) MODELS WITH MEMORY

Now: with a firm mathematical basis for these procedures,
equation (2,13), we can extend tham still further, The models we have
discussed so far have all been rather conventional "Markhovian"
models; in other words, they give us a prediction of A(t+l) as a
function of A(t) and U(t), We could add in A(t-1) and U(t-1) as
dependent variables, without changing much, because we would still
have a distinct table for every time "t giving'ﬁ(t+1) as a function
of a manageable number of variables, Suppose, however, that we have
~a model with "memory," In economics, for example, there is a model
of consumer behavier which states that consumers spend money, not in
proportion to their current income, but in proportion to the

permanent income(13) which they expect to average in their lifetimes;

the model states that the perceived permanent income is adjusted
slightly, from year to year, in response to actual income,
Thus we get a model:

Cc(t) = lep(t) + b(t)

(2,14)
Yo(4) = (1-ky))Y (t-1) + k)Y, (t),

where "C" is consumption, "Yp" is permanent income, "YA" is actual
annual income, and "b(t)" is an error term, Note that statistics
will normally be available here for "C" and for "Yﬂ", not for YP.

However, this is still what we would call an "explicit" or
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“phenomenological” model, Given estimates for Yp(t). and data
for YA(t), the model tells us exactly how to calculate Yp(t+1)
and how to predict C(t)., To calculate the Yp(t), for all times t,
and to make predictions for the C(t), we need to start off,
at time t=l, with some estimate of YP(O); this estimate we can treat
as an external constant ef the model, like k1 and k2' to be estimated
by the statistician (us). (From YP(O) and YA(i), equation (2,14b)
tells us how to calculate Yp(l); then we can calculate YP(Z) from
Yp(i) and YA(Z), then YP(B) from Yp(Z) and YA(B), ete, )

To minimize the sum of the errors squared, L, is much harder
in this case than with our complicated-looking model in equation (2.11),
To calculate.%%; here, it is not enough to set up separate tables,
like Table TI-1, for each time t, and add up the 5%1- (b(t)?).
Equation (2,14b) establishes a connection between the unknown
variables, YP. at all different times, However, wWe can set up a
large table to include all the different values of Yp(t) and C(t)
across different times; this will be like taking the separate tables
for each time t, tables like those implied by Table II-1, and putting
them together inte one large table, In this large table, we can show
the relations that exist across time, Suppose that we have data
for "C" and "YA" from time 1 to time 4, We get a big table,
as shown in Table II-2, on the next page.

With a given set of constants - YP(O). k, and k, - and with a
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Actual Variable Variable Operation Ma jor Minor

Number Category Source | Source(s)

L 37 sum 36 28,20,12
(b(#))? 36 product 35 35
b(u)gc(u)-kiyp(u) 35 | difference 34 33
C(4+) 34 input - -
kti(h) 33 product 32 1
Yp(#) (see 2,14Db) 32 sum 31 29
kY, (&) 31 product 30 2
YA(M') 30 input - -
(1-k2)Yp(3) 29 product 24 4
(5(3))? 28 product 27 27
b( 3)-C(3)-k1Yp( 3) 27 difference 26 25
c(3) 26 input - -
kti(B) 25 product 24 1
YP(B) (see 2,14D) 24 sum 23 21
k,Y,(3) 23 product 22 2
Y,(03) 22 input - -
(1-32)Yn(2) 21 product 16 4

Table II-2: Table of Operations for Equations (2.14),
(top section)
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Actual Variable Variable Operation Ma jor Minor

Number Category Source | Source
(b(2))? 20 ~ product 19 19
b(2)=C(2 )-kiYP(Z ) 19 difference 18 17
c(2) 18 input - -
kti(z) 17 product 16 1
YP(Z) 16 sum 15 13
szA(Z) 15 product 14 2
YA(Z) 14 input - -
(1'k2)Yp(1) 13 product 12 n
(b(1))? 12 product 11 11
b(1)=C(1)-k ¥ (1) 11 difference | 10 9
c(1) 10 input - -
kIYp(I) 9 product 8 1

Table II-2: Table of Operations for Equations (2.14),
(middle section)
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Actual Variable Variable Operation Ma jor Minor
Number Category Source | Source
Yp(l) 8 sum 7 5
kZYA(i) ? product 6 2
YA(i) 6 input - -
(1-k, )YP(O) 5 product 3 4
1—k2 4 difference 0 2
YP(O) 3 parameter - -
k2 2 parameter - -
ky 1 paranmeter - -
1 0 input - -

Table II-2: Table ef Operations for Equations (2,14),
(bottom section)
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given set of data, we can calculate "forwards in time", or upwards
in this table, to calculate every one of the "actual variables,"”

L

including L, the total error, To calculate SE—, we can calculate
1

backwards, just as we did before with Table II-1, from the top of
the table to the bottom., This time, however, it is easier to see

where to start:

S .,I.L.éé-i
37 ¥y, ?l

This time, with L itself on top, instead of (b(t))z,

we get a simpler result at the end:

3L _ L
S1"‘ax1 3k,

oL
2 X, ok,

Q'L L
537 8%, T R (0)

exactly the quantities we need to apply the steepest descent method,
For each line of the table, except for the top, there are only two
sources, or no sources; thus to go back from the top line to the

bottom line requires only two operations per line, at the most,

For a very large table, with n lines for each time t, and with T
periods of time, this amounts to nxT lines, and 2nxT operations

in all, to get all the derivatives of L. Remember that to go up
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the table, to calculate L, we had to carry out one operation

per line -~ nxT operations in all, No matter how complex the model,
if the functicnal relations across time are explicit enough that
they can be put into formulas which the computer can translate
into a table, like Table II-2, then "dynamic feedback” can be used
to calculate all the derivatives, in one pass,

As a practical matter, one may wonder just how explicit is
"explicit enough”, In general, the procedure above allows us to
calculate the derivatives backwards down any ordered table of
operations, so long as the operations correspond to differentiable
functions, In order for us to use this method, then, the primary
requirement is that we be able to specify the model well enough

to construct such a table, This is the same reguirement that applies

vhen we wish to use a model forwards in time, to make a prediction

of the future, without having te solve a complex set of nonlinear
algebraic equations in every time period, In general, in the existing
computer packages (including FORTRAN compilers), any formula

expressed in the following form can be parsed into a table of operations
(a "Polish string") generating the variable Xi(t) from operations
performed on the arguments:

Xi(t) = fi(arguments),

where "fi“ is a function made up by nesting baslic operations known to
the computer package; for example:

Xi(t) = W(t-1)*Y(t-1) + k + sin(Z(t-1)),



Page II-35

In order for a set of such formulas to be converted into a table

of operations, we need only find an ordering of the variables to be
computed, "Xi(t)”. such that the arguments used in calculating Xi(t)
are calculated before Xi(t) itself is; the table of operations to
calculate Xi(t) can simply be inserted on top of the table already
built up to calculate variables earlier in the causal ordering,

If the arguments of "fi" included only constants, parameters and
values of variables at "t-n", for all fi, with '"n" always greater
than zero for endogenous variables, then this requirement would be
satisfied automatically, Otherwise, an brdering of the variables
Xi(t) would have to exist, with the later expressed as functions of
the earlier, Global things to be calculated, such as the sum of a
utility function or a loss function over time, can always be inserted
on top of the table of calculations, so long as we specify formulas
for calculating them as a function of sums across time or the like,
Indeed, even if one had a set of implicit equations, so that one had
to use algebraic solution methods instead of explicit calculation

in order to carry out a simple prediction of the future from given
parameters, then one could easily calculate the matrix of partial
derivatives for those equations, to be used in conjunction with the
algebraic solutions generated for prediction, to allow one to carry out
dynamic feedback estimate; however, simulations of this sort are

both expensive, and outside the major realm of interest here,
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Parenthetically, one might note that there is a certain
difference between the operations needed to specify the generation
of a random number, and the operations needed to calculate the
associated loss function, Estimation by dynamic feedback requires
the specification of loss functions, In the case where the
unobserved randem numbers are generated by a rather complex process,
the translation between the two forms of specification may not be
easy. However, if the losses one is concerned with are the
discrepancies between the actual and predicted values of Inown
’variables, the specification of an explicit loss function should
present no problem to the user of a computer package, The
corresponding model would be suitable for predicting the future,
but may not be quite as suitable for stochastic simulations of
the future, in some cases, In such cases, however, the method of
pattern analysis, to be discussed in sectlon (ix), may help

reduce the distance between the two forms of specification,

(v) NOISE, AND THE CONCEPT OF THE TRUTH
OF A MODEL, IN STATISTICS

Up until now, we have avoided one other aspect of statistical

estimation: the problem of noise models, In our old model, in

equations (2,3) and (2.4), we assumed a simple equation to predict

A(t+1), and a simple bell-shaped curve for the distribution of the
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errors, b(t). In the last thirty pages or so, we have considered
more and more complex models to predict things, However, we have
stayed with the old idea of minimizing the square of the error,
an idea based upon the o0ld bell-shaped normal distribution,
We have begun in this way only with great reluctance, and only
for the sake of exposition, In fact, if we admit that most processes
in human society and ecology do contain important elements of
randomness, then we must admit that equation (2.4) is just as much
a part of our original medel as equation (2.3). Equation (2.4) is
not an "assumption which must be proven true before we can use
classical techniques”; like equation (2,3) itself, it is part of a
simple, approximate model, to be evaluated for its predictive power,
Unfortunately, there has sometimes been a tendency in social science
and ecology to formulate ever more complicated models to predict
things, without an explicit model of the random element; the "errors"
are sometimes regarded as something unpleasant, that one faces up to
at the end of one's research, after one has formulated a model of
what is interesting.

Statisticians, on the other hand, have long since passed
the stage of "minimizing least squares" or of *minimizing error”
in general, We mentioned, earlier, the idea of measuring the
“probability of truth” of a model, We mentioned the problem of

how to estimate the probability of truth of a model, given
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a set of data observations, The traditional "maximum likelihood"
school of statistics, as represented by Jeffreys and Carnap(i4),

and the more recent Bayesian schools, both agree that this is

simply a problem in conditional probabilities: how do we estimate
the probability of the truth of a model, conditional upon our
having made a certain set of observations? Formally, the conditional
probability of A given B, p(A|B), is defined to equal

p(A and B)/p(B); from this follows Bayes' Law:

p(alB) = P(BP]IE.B)P(A)

Statisticians have applied this law to deduce:

p(data Imodel )p(model)
-_-g%data) (2.15)

p(model|data) =
This equation does not say that the "data" and the "model" have to be
expressed in purely mathematlcal terms; as a result, the equation
has led to enormous controversy both among statisticians and among
philosophers, It is a general equation telling us how to determine
the probability of truth of any sort of theory; thus, its relevance
to social and natural science goes well beyond the question of
statistical methods proper, The calculations on the right involve
two terms of real interest - p(data\model) and p(model), The term
p(data) is the same for all models, and does not help us to evaluate

the relative probabilities of truth of different models, except

perhaps indirectly(15). The term p(data\model) represents what
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statisticians have traditionally focused on: how well the data "fit"
the model, defined as the probability that these particular data
would have been generated if the model were true, The term p(model)

refers to the probability of the model before any data have been

observed at all; it is our apriori probability distribution,

The philosopher Immanuel Kant long ago asserted that "empirical

jnduction” is impossible, without some system of apriori assumptions

(the "apriori synthetic") with real information content to them(16);

the choice of "p(model)" would constitute such a system of assumptions,
More recent philosophers, such as Carnap and Jeffreys(17),

 have tried to preserve the more popular attitudes of pure empiricism

and positivism, by suggesting that p(model) should be "equal"

(apriori) for all different models, Thus p(datalmodel) would be the

only term left to consider, in measuring probabilities of truth.

Their suggestions have been carried over to the field of statistics,

where they are now oxrthodox practice(18). This approach is normally

referred to as the "maximum likelihood approach,” In more recent years,

however, many members of a new school of statisticians, the Bayesians,

have grown in their opposition to this orthodox procedure, They have

pointed out that "p(model)=k", with the same "k" for all models,

is a very strong assumption, Jjust as strong as any of the alternatives,

In most practical problems, the social scientist would have some

reason to expect some models to be likelier than others, even before
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he runs his statistical analysis, Thus they suggest that a user
of statistical programs should be asked to specify his apriori
probability distribution as the first step of any statistical
analysis(19); then the computer program can account for both
p(model) and p(data model), in picking out the model with the
highest probability of truth, From a broader perspective,
one might say that the Bayesians are proposing a procedure for
allowing the social scientist te account for two different kinds
of data - statistical data, and verbal data he has from other
sources, This still leaves open the question of where his initial
p(model) should come from, a question which we can avoid in this
context, (20),

The Bayesians may be right in principle, but in practice
the orthodox procedures may remain a sensible way to design
computer statistical packages. The social scientist, when he reads
the output of a computer, would normally expect that this output
reflects only the ability of different models to fit the actual datas
in deciding what he finally believes about the world, he can then
account for his verbal data, This does require that he understand
what "standard errors"” mean, in ordinary regression, so that he can
get some idea of the varlety of models consistent with the statistical
data, It also suggests that a direct printout of the relative

probabilities of truth of different models, over the given data,
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would be a useful feature to have, In brief, it requires the
development of an intultion regafding the relation of mathematies
to social processes, an intuition strong enough to sustain the
balanced assessment of probabilities, This does place a burden on
the social scientist, On the other hand, the extreme Bayesian
alternative - to ask a social scientist to encode his intuition
into a few normal distributions, and to ask for a more complete
faith in what cemes out of a computer - would seem to place a
much heavier burden on the social scientist, It would tend to
de-emphasize the learning experience which usually occurs at

the end of a statistical analyslis, when the social scientist tries
to relate all the things which came out of the computer to what

he knows in the real world; if this experience is what develops

a balanced intuition in the first place, it should not be given

a diminished role, In Chapter (V), we will discuss in detail the
importance of this type of experience to the actual application of
statistical methods in the soclal sciences, Furthermore, the verbal
knowledge of a social scientist will not normally fit a simple
distribution, Even if it did, few "intultive decision-makers" can
express their intuition at all reasonably in terms of probabllity
distributions, even in simple cases, without extensive training

in that task,(21). While there is more that could be said on both sides
of this particular issue, the orthodox approach would seem quite

adequate for the purposes of the present context,
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The dynamic feedback algorithm, which we are discussing in this
paper, can actually be applied to Bayeslan estimation as easily
as to conventional estimation, In our examples and in our applications
we will follow the more orthodox procedures, However, we will refer
back, on occasion, to the concept of "prior probabilities” when
this is appropriate,

In concluding this section, we might note, for the sake of the
mathematiclian, that equation (2,15), when used in statistics, is

normally used to give the probability distributions of a continuous

family of models, rather than a discrete probability. Strictly
speaking, such distributions are not even functions; they are
actually "measures”, and they would normally be written as the
product of a function times an explicit measure, like "d6", where
"g" is a parameter of the model, In equation (2.15), however,

the choices of measure used for the data cancel out; thus it is
not of intrinsic importance, so long as we are consistent in the
units we use to record the data, The cholce of measure for the
model is one more aspect of the problem of specifying p(model),
an aspect discussed by the sources referred to above, In general,
however, one would not expect the maximum likelihood choice of
parameters to be affected very strongly by the choice of measure,
unless the standard error for these parameters indicated a large

uncertainty and probably a low statistical significance in any case,
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(v1) ORDINARY REGRESSION AND THE MAXTMUM
LIKELIHOOD APPROACH

Back in section (ii), when we discussed how to measure
the "probability of truth" of the Deutsch-Solow model,
we glossed over the basic questions discussed in section (v).
In section (ii), we found ourselves discussing two different
"measures” of the probability of truth, one for equation (2,3a)
and another for equation (2,3b); all the rest of our discussion
focused on equation (2.3a), an equation to predict a single
variable, A(t+1). When discussing a single equation, to predict
a single variable from known data, it makes some kind of sense
simply to add up all the square errors (‘b(t))2 across time, and use
the sum as a measure of how good the equation is, However, what
do we do 1f there are two equations and two sets of errors?
How do Wwe combine the two different error terms to measure the
validity of the model as a whole? With the Deutsch-Solow model,
we could pick out the best values for kl and k2 without answering
these questions, because the two equations were essentially
independent, and because we assumed that the two error terms,
"b" and "c", each had their own probabllity distributions
independent of each other, (Equation (2.4),) But we had to
avoid the question of how to measure the validity of the model

as a whole, Now, using the concepts of section (v), we can come back
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to answer this question, Let us define the relative probability
of truth, P, of any model, as:

P= p(data,model),
the probability that we would have observed the data we have
observed, if the model were true, More precisely, this
"probability" is actually a probability density, as are the
other "probabilities" in this section, For simplicity,
let us assume, with the Deutsch-Solow model, that we only have
data for three years, 1958, 1959 and 1960, in one country,

Writing out the data explicitly, we are trying to measure:

P = p(A(1960),U(1960),4(1959),U(1959),A(1958),U(1958)f nodel),
which, by classic probability theory, equals the product:
P = p(A(1960)]U(1960),A(1959),U(1959),4(1956),U(1958), mode1)
* p(U(1960)[A(1959),U(1959),A(1958),U(1958),mode1)
* p(A(1959)§U(1959),4(1958),U(1958),mode1)
* p(U(1959)fA(1958),U(1958),model)
* p(A(1958),U(1958)|model).
Now our model, equation (2.3), predicts A(1960) as a funetion of
A(1959) and U(1959); once these data are given, the other data will

not affect the probability of A(1960) as given by the model,
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Similarly for U(1960), etc,; thus we can simplify our expression:

P = p(A(1960)|A(1959),U(1959),model)

* p(U(1960) |U(1959),model)

* p(A(1959) |A(1958),U(1958),model)

* p(U(1959)]U(1958),model)

* p(A(1958),U(1958)| model).

Once we are given values for A(1959) and U(1959), how do we

determine the probabilities of the possible values for A(1960)7
The most likely value of A(1960), according to equations (2.3)
and (2.4), is the one with b(1960)=0, 1.e. A(1960) = A(1960),
which equals klA(1959)+k2U(1959). But any value for A(1960) would be
consistent with equations (2,3), for some value of b, Values of
A(1960) far away from A(1960), however, would imply large values of b,
which, according to equatlons 62.4), are not as likely as small values
of b, To determine the probability of any given A(1960), given
A(1959) and U(1959), we need only look at the probability of the
value of b needed to generate the combination,

b(1959)=A(1960)-k, A(1959)-k,U(1959). Thus:

p(A(1960)lA(1959).U(1959).mode1) = p(b(1959),model)

L b(1959) 2
1 -2( B )
e

A\ 2
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And similarly for A(1959), U(1960) and U(1959), Thus we get,
in summary:
P = p(b(1959)| nodel) * p(v(1958)|model) * p(e(1959)|moded)
* p(c(1958)|model) * p(A(1958),U(1958)|nodel),

which, by equation (2.4), equals:

_L(M)Z _}_(_1_)_&25_8_)_)2 _.;(91.]_-9.52).)2
e T =
{2 J2nB vZne
- c§12582)2
* Q{%%e e © ) x p(a(1958),U(1958)| model)

What do we do about the last term, representing our earliest
data point, 19587 The usual practice 1s simply to ignore the final
term on grounds that it is difficult to compute, and contributes
only one time-point worth of infermation; for long series of data,
the importance of one extra point of information grows very small,
In the social sciences, the argument for eliminating this term
grows even stronger, This term, as usually interpreted(22),

requires us to compute the probabllity that we would have started off

at a data point equal to (A(1958),U(1958)), if this initial data had
been generated by the Deutsch-Solow model operating for an infinite
length of time before the start of the available data. Normally,

in the soclal sciences, one picks the start of one's data serles for
one of two reasons: (1) one is trying to find a model to describe

events in a given historical period, and one does not expect the
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model to be valid before the start of one's data series;

(11) the data are not avallable before a certain time, usually
implying that some aspects of the social system were different
beforehand, Furthermore, if one's model is not "stationary",
as few stationary processes are, then the usual procedure for
computing this term breaks down in any case,

On this basis, we get a relative probablility density:

JZ2nB ~21B 420 C ¥ne ’

which reduces to:

2 2 2 2
_p(bU92))" , (pUB)) , (eU99)) , (U8R

P =

P = ;;Eizzg e
The interesting part of this formula is the exponent, the part which
depends on b and ¢, In order to maximize p with respect to kl' ké
and ku, we try to bring the negative number in the exponent as
close to zero as possible, This number is essentially the sum of
the errors squared, exactly what we tried to maximize before,
Once we have done this, it is well-known that we can maximize P

by picking B and C to equal the root-mean-square average of b

and ¢, respectively,
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(vii) THE NEED FOR SOPHISTICATED NOISE MODELS

In general, there is little reason to belleve that the classic
normal distribution, of equations (2.4), will be a good model of
the noise element in all social processes, Mosteller, for example,
has pointed out that "flukes" occur fairly often iIn real social
data.(23)., There may be many processes which normally plod along
in a predictable sort of way, governed by a noise process b(t)
which fits a normal distribution and which never gets to be very
large; every once in a while, however, the process may be hit by
a fluke, which leads to changes much larger than one would have
expected in the normal course of events, Suppose that "pl" is the
probablility, at any time, of getting a fluke, Then the probability

distribution for b(t) may actually fit this kind of equation:

-4 L B

e + p,¥*
L ams,

p(b) = (1-p1)‘12*‘1\B
vwhere B1 is much larger than B, This equatlion states that most of
the time - (1-p1) of the time, to be precise - b will fit the same
bell-shaped curve as before; however, when a "fluke" occurs,

b will fit a much broader bell-shaped curve, leading to much larger
values for b, One way to account for these effects is to use this

probability formula explicitly, instead of the usual normal

distribution, in one's noise model; it may be impossible to
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estimate "Bl" accurately, but, if flukes are a serious problem,
it may still be possible to estimate kl and k2 more accurately,
and to show when "P" is larger for this kind of medel,

Another source of noise, rarely handled explicitly in social
science, 1s "measurement neise,"” In our discussion above, we
talked about "A(1959)" and'"A(1960)" as if we had available exact
data for the true levels of assimilation in those years, We may have
data, but there is good reason to believe that errors of different
sorts occurred in the collection of this data, Even if the data were
"perfect”, in the sense of giving us a perfect measure of who speaks
what language when, for example, they may still not be giving us a
perfect measure of the underlying concept of assimilation, as
governed by equations (2,3), Let us define "U(t)" as the true size
of the unassimilated population, and "U'(t)" as the measured size of
the unassimilated model, Then we might modify equation (2,3b)
by writing:

U(tl) = k3U(t) + c(t)

(2.16)
U'(t+l) = U(t+l) + d(t+l),

where "c" is the noise going on in the process itself, and where
"d" is the measurement noise, The "process noise,"” "¢", is a random
factor in the actual process (top equation) which determines the

objective evolution of the real variable we are interested in, U,
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through time, The "measurement noise", "d", does not affect the

objective reality, U, but only adds a factor of distortion to our
measurement of U, our U';U'-U, the difference between the measured
value of U and the true value of U, equals the measurement error, d,
Even if U' did represent an objeciive variable in its own right, but
a variable different from the one we really postulate to govern the
dynamics, then this mathematical structure would still apply.

Given that we do not know the true value of U(t) at any times t,
this model is not an "explicit" model; it does not tell us directly
how to estimate U'(t+l) from earlier data available, (Note that the
noise term, "c(t)", makes it impossible to calculate later values of
U(t) from an estimate of U(0).) However, Box and Jenkins(24) have

shown that this model is equivalent to the explicit model;
U'(t+l) = k3U'(t) + f(t+l) - kuf(t),

where "f" is a noise process fitting a normal distribution,

This model has a kind of “memory term” in it, kuf(t), and may be
estimated by use of the dynamic feedback method, as discussed in
section (iv), In Chapter (III), we will describe how this method can
be speclalized to deal with models of this general sort, with

any number of dependent variables, Economists, like Cochrane and
Orcutt, have developed techniques to deal with some of the

secondary consequences of measurement nolse, like the problem of
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serial correlation; however, in their original article(25), these
authors have made it quite clear that the general problem of
measurement nolse is beyond the scope of their techniques,

This idea can be taken even further, if we wipe out the
term for "process noise," and allow for the possibility of
measurement neise only, In equation (2,16), this would mean
eliminating the term c¢(t), while retaining d(t+l) and the other
terms of the model; this would make (2,16) an “explicit" model,
with memory U(t), similar to our example of section (iv).
At first glance, this procedure sounds both unrealistiec, and totally
inferior to the procedures of the paragraph above., Process noise
does exist in mest social and ecological processes; as long as we can
account for process noise and measurement noise both, why should we
limit ourselves to the second possibility only?

Let us begin by seeing what this process really entails,
If we assume that there is no process noise at all, then we can
start out from our initial estimates (or data) for our variables,
and solve our equations exactly to yleld a stream of predictions
for later data, right up to the end of our data set; these
predictions account only for the data in the initial time-period,
Notice that this is exactly what we were thinking of doing,
early in section (ii), before we introduced the more "sophisticated"
concept of ordinary regression, Also, note that this is what

Jay Forrester's techniques(26) for "dynamic systems analysis"
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tend to involve, even though he prefers to judge the final fit of

his models by eye rather than by computer, Above all, note that

the practical value of social and ecelogical models usually lies in
their ability to predict the situation at distant times, without
requiring knowledge of intervening times in the future, (This includes,
of course, the ability to predict the results of different policies,)
Using our new procedure, we evaluate models by their ability to

yleld good predictions across long periods of time, not by their
abllity to predict across the smallest possible period of time;
therefore, we will generate models and coefficients better suited to
the practical demands which will be placed on them, In order to estimate
such models, we will have to resort to the dynamic feedback

techniques of section (iv) above, The prior unavailability of suech
techniques offers at least some justification for the apparent
disregard of empirical data in some of Forrester's more interesting
work(27); however, if these estimation routines should become
available soon at the Cambridge Project Consistent System, a more
empirical analysis of these issues will become possible,

In short, the practical reasons for disregarding process noise
can be very strong, at times, From a theoretical point of view,
however, the reasons are not so obvious, If we start with a given
statistical process, governed by a given set of equations, then

those equations themselves are the best possible basis for prediction,
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whether across one period of time or many, Thus "truth” implies
predictive power, When we have a given set of data, the maximum
likelihood method allows us to make use of all the information
avallable - not just one measure, like long-term predictive power
over the given data -~ to find the parameters and model closest
to being “true,"”

The difficulty in thils argument is that "closeness te truth,”
unlike "truth"” itself, can be measured in many different ways,
The Bayesian school of thought has begun to argue that this point,
- too, should be accounted for in practical statistical routines(28);
however, their concepts of "loss function" do not fully encompass
the concept of "long-~term predictive power" here, As a practical
matter, most models in the soclal sciences and in ecology are
simplified, approximate models, which we do not expect to be "true"
in any absolute sense; we only expect tham to approach truth, er,
more realistically, we expect them to give us predictions similar
in a broad way to what we would predict if we knew the full truth,
Even when these models contain a hundred variables or so, they will
8t111 be hundreds of times simpler than the complete systems which .
they represent, If there were an infinite quantity of representative
data avallable, and if we had to choose between a limited set of

models, none of which are "true" in an absolute sense, then the model

which performs best, on, say, predicting across ten years of time,
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over this data, can also be expected to give us the best predictions
of the future ten years hence, In order to estimate such a model,

we should indeed try to minimize the errors across ten years,
instead of following the conventional likelihood approach,

In other words, if we wish to carry out an estimation which is
"robust" -~ an estimation which will give us good predictions despite
the oversimplifications of one's model - then a direct maximization
of predictive power is appropriate; that is exactly what our

"measurement noise only" approach entails.

In reality, we will have to accept limits both upon our choice of
models and upon the size of our data, We will have two sorts of
information to use in evaluating the predictive powers of our models:

(1) the long-term predictive power as measured directly over the

avallable data; (1i1) general information about the "truth" of our
model, as given by the maximum likelihood formulas, The first
information is a direct measure of what we want to know, On the other
hand, we only have a certain limited amount of this kind of
information, in our data, The second information does tell us
something about how close our model is to "truth", which in turn
tells us something about predictive power, When our total information
is limited, statistical theory recommends that we make use of all the
information at our disposal, including both the "hard" and the

"soft," Our problem, then, is ene of a more practical nature:
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which of the two sources of information should we emphasize,
when we want to build a model suitable for medium=-term and
long~-term prediction?

General guidelines for dealing with this problem will have to
come from experience, experience with both ordinary procedures
and with the new procedure suggested here, It should be clear,
however, that the relative importance of process noise and
measurement noise will vary from case to case, A direct comparison
of the methods, say, in predicting the second half of one's data
from the first half, would probably be desirable, in most cases,
When the major flaw in one's existing model lies in its inability
to describe measurement noise accurately, then one would suspect
the possibility that the unexplained portion of that measurement
noise would be organized enough to be partly "predictable" from
one's process variables and noise; this would lead to distortion
of the parameters of the process proper, For models which have
this problem, the best way to improve predictive power may be to
avoid this distortion, by making sure that measurement noise is not
falsely attributed to the precess equations (i.e. to process noise)s
by falling back on a "measurement noise only” model, in which
process noise does not exist at all, one can eliminate this
distortion entirely, Once again, as noted on the previous page,

the "measurement noise only" approach involves no distortion at all,
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insofar as it maximizes leng-term predictive power, directly;

its weakness lies in the lack of formal statistical efficiency,
When process nolise is very large, and the neglect of process noise
would appear to seriously weaken one's ability to make full use

of one's data, then it would still be possible to compromise,

by the relaxation methods to be discussed in section (xi);

these methods, by allowing process nolse, but by making it

much more "expensive” to attribute randomness to process noise

than to measurement noise, may reduce the false attribution

of the latter to the former, while preserving an adequate level of
statistical efficiency, It is concelvable that in soclal science,
as in hard science, there will someday be a viable distinction
between "practical” statistical work, where prediction is most
important, and "theoretical" statistical work, where "truth" as such
turns out to be a more effective gulde to finding new variables and
terms to use in one's models, However, once again, the practical
values of these techniques will have to'emerge from empirical work,
The empirical work of this thesis, in Chapters (IV) and (VI), does
provide a strong indication that the "measurement noise only"
approach is superior to the pure maximum likelihood approach, in the
soclal sciences; this indication has been strong enough to totally
reverse our own initial blas in favor of the classical approach,
Still, the empirical studies here are only the beginning of a long

process,
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Finally, let us consider one other situation where the
conventional approach to noise is inadequate: the case of
"ideal types." Very often, in social science, we run across
variables 1ike "Republican President” and "Democratic President"
which do not tend to vary across a continuous spectrum; they
tend to be sihply "true" or "false," The error in predicting
such variables would not follow a normal distribution, but the
problem need not be overwhelmingly difficult., On the other hand,
we often find societies falling into certain distinct
"ideal types"(29), such as "traditional"”, "developed" and
"transitional”; we may find that a whole collection of other
variables -~ political stability(30), aggressiveness, economic
growth, etec, - depend heavily on which ideal type a society falls
into, As an extreme example, let us imagine that there are three
"ideal types" a natlon might fall into, and that we have been
studying four soclal variables which are all really determined

by the current "ideal type":

Type Type Type

1 2 3
Variable 1 1 0 1
Variable 2 0 1 1
Variable 3 1 0 0
Variable 4 0 1 0

Table II-3: Hypothetical Example of "Ideal Types".
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If we predict that variable one will equal one, and discover that

1t actually equals zero, then this last plece of information tells us
exactly what to expect for variables two, three and four, If we
already made predictions for variables two, three and four, then

we would also know now exactly what errors to expect in these
predictions, Thus there is a connection, though complex, between

the "errors" in predicting different variables, If our example

had been somewhat more complex, with a lot of nonlinearity, and

a certain amount of freedom to deviate from one's ideal type,

it is clear that the correlations between the prediction errors

of different variables could become hopelessly complex,

According to maximum likelihood theory, as sketched briefly in
section (v), it is important to minimize the "right" measure of
error, even when we estimate the coefficients we intend to use in
making predictions of this process, The "right" measure is supposed to
correspond to the actual noise process going on, If it does become
important, in practice, that we do have such an accurate measure of
error, and if the actual noise process is as complex as above,

then we face serious difficulties in estimating any parameters at all.
In our simple example, we could escape from these difficulties,

by carrying out a simple factor analysis to detect the ideal types;

then we could go on to study the ideal types only, and disregard
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the original four variables. However, in the general case, a linear
technique like factor analysis may not be enough; also, we may still
want to consider the original variables, to account for whatever
independent variation they have, In any case, it is clear that the
conventional model of independent errors, following a normal
distribution, cannot deal effectively with this kind of situation,
The "measurement noise only" technique could conceivably reduce
the difficulties here, but one would still expect a better model
to emerge, if one could account for the complex interrelations
of the process variables more explicitly,

In summary, in order to produce a "true" model of a social
process, which is also capable of ylelding good predictions,
one must have an accurate model both of the "predictive part”
(1ike equations (2,.3)), and of the "noise part" (like equations (2.4));
otherwise, the standard techniques of statistical estimation may
¥ield unrealistic estimates of both, If one pursues an unbalanced
approach, giving more weight to the "predictive” part than to the
"noise" part, one may soon find oneself in a situation where the
inaccuracies in one's noise model are so large that any improvements
in the "predictive" part are reflected by little improvement,
if any, in the statistical likelihood of one's model, The "models
without process noise" discussed above can, at the very least, serve

as detectors for this kind of difficulty,
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(viii) HOW TO ESTIMATE EXPLICIT
SOPHISTICATED NOISE MODELS

Suppose that we had decided to make the Deutsch-Solew model
for assimilation more sophisticated, not by working on the
"predictive” part, but by working on the "noise" part; suppose that
we decided to account for the possibility of "flukes," as discussed

above, Then we might write the model:

A(t+l) = kiA(t) + sz(t) + b(t+l)

_upy2 VLY (2.17)
p(b) = (1-p;) 2~ o 1 + pl*-l—- e %(31)
yZn B Y2UB,

Our problem is to try to maximize "P”, which, as in the case of

ordinary regression, will equal the product:

P = p(b(2))p(b(3))p(b(4))ess P(D(T)),
where T is the last time period for which we have data, An easlier way

to approach this is by trying to maximize the logarithm of P:

L = log P = log p(b(2)) + log p(b(3)) + ... + log p(b(T)).
We are trying to pick out the best possible values for the parameters
kl’ k2, B, B1 and Pye As before, we can try to do this by using
"steepest descent"; as before, this means trying to measure the .
derivatives,4§%I etc, As before, in section (iii), we can set up

a table of operations for each time t, which corresponds to a table

which would emerge from a computer program to analyze this model;
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Actual Variable Variable| Operation Ma jor Minor
" Number Category Source | Source
log p(b(t+l)) 32 logarithm | 31 -
p(b(t+l)) : 31 sum 30 25
- -2
U-m) B 30 product 29 16
Y27 B
xbltH) 2
2
e B 29 exponential | 28 -
-%(Eigill)z , 28 product 27 1
(h%ﬂl)z 27 product 26 26
9-(1;;*—1-)- 26 ratio 20 9

b(t+l).2
12 -%('i'gl-‘l)
e

— 25 product 24 13
{2,
-_;_(bg t+1 2)2
2
e By 244 exponential | 23 -
‘%(Eigill)z 23 product 22 1
1
(M—Eﬂl)2 22 product 21 21
1

Table II-4: Table of Operations for Equations (2,17)
(top section)
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Actual Variable Variable | Operation Major Minor
Number Category Source | Source
h&%:il 21 ratio 20 8
1
b(t+1)=A(t+1)-klA(t)-sz(t) 20 difference 6 19
keA(t)+k,U(t) 19 sum 18 17
kiA(t) 18 product 5 11
kéU(t) 17 product 4 10
l-pl
16 ratio 15 14
127 B
1-p1 15 difference 3 7
N2Ti B 14 product 2 9
Py
13 ratio 7 12
27 31
\Eﬁ B1 12 product 8 2

Table II-4: Table of Operations for Equations (2,17)
(middle section)
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Actual Variable Variable JjOperation Ma jor Minor

Number Category Source | Source
kl 11 parameter - -
k2 10 parameter - -
B 9 parameter - -
B1 8 parameter - -
» Y4 parameter - -
A(t+1) 6 given - -
A(t) 5 given - -
U(t) 1 given - -
1 3 given - -
{2“ 2 glven - -
-3 1 given - -

(bottom section)

Teble IT-4: Table of Operations for Equations (2.17)
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~ this table is shown in Table II-4,

We may use such a table, as before, to calculate all the
derivatives required by the steepest descent method, We may
compute 7§§I log p(b(t+l)), etcetera, by inserting 532=1, and
working down the table as before to compute all the derivatives,
The error model was complicated; therefore, the table is long,
We can compute g%; simply by computing g%z-log p(b(t+l)) for
all times t, from 1 to T-1, and adding up all the results;
this would be the same sort of operation as in section (iii),
In brief: if our model of error is complicated, but explieit,
then dynamic feedback can be used to estimate the parameters of
our model, Notice, if there had been two variables to predict,
A(t+l) and U(t+l), that the two error terms b(t+l) and c(t+l)
would appear somewhere in the middle of the table; if
p(b(t+l),c(t+l)) were a function of both errors, a very complicated
but explicit function, we could still have put together a table
like this and used dynamic feedback, Also, if there were "memory"
in the model, we could merge all these tables, for different times t,
Just as we did in section (iv), Nete, however, that when the models
become extremely complex, the choice of the initial guesses for our
constants, to be used with the steepest descent method, becomes
inereasingly important; bit by bit, this problem becomes a sub ject

worthy of attention in its own right, as our models grow in complexity,



Page II-65

(1x) PATTERN ANALYSIS

When ideal types or other systematic patterns are present,
as in our example in section (vii), then it may be very difficult to
formulate a good explicit model of noise, accounting for all the
interrelationships between the errors in the predictions of different
variables, A more natural way te handle such situations is by finding
out what the ideal types are, and trying to predict them instead of
predicting our original variables, In order te do this, we must try
to find a way to describe the data at time t+1 in terms of a limited
number of "ideal type" variables, Our description should be "complete",
in the sense that we can regenerate the original data at time t+l1 from
knowing the ideal types, with minimum error., In the case of simple or
only moderately complicated systems, with limited data available, we
may use this approach as a way to reduce the number of variables, as
we do with factor analysis, More generally, if we find that we have a
large set of variables, heavily interconnected in a nonlinear way, we
may try to find a set of "fundamental variables which govern the
behavior of all the original, more superficial variables, in a more
independent, more linear and more comprehensible manner, The formulas
which we use to estimate such variables might be considered to be
"pattern detectors" or "feature detectors”, in the language of
pattern recognition, With a complex nonlinear system, the number

of fundamental variables might actually be larger than the
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original number of variables; however, 1t would still be much

smaller than the number of possible system configurations,

Let us imagine that we start out with a set of variables
to study, xl.....xi,...,xn, forming a vector,_ir We are looking
for another set of variables, Rl""'Rm’ forming a vector,ja
which "governs" the vectorsi?in the sense that 1t accounts for all
the cross-correlation between the different components of‘ja
(More precisely, it accounts for the cross~correlation in the
random disturbances applied to the different components of-iz)
At every time t+l, we wish to define these variables, Ri(t+1),
as functions of the data at time t+1,-§kt+1). More generally,
we may allow them to be functions of-f(t) and-g(t) also; this
would allow us to detect dynamic patterns, involving such
phenomena as population growth or physical motion.,

Thus we may define:

R, (t+1) = £, (K(t+1), X(t), R(t)),

In trying to "find" or to '"define" the fundamental variables, Ri’

our goal is to adjust the parameters of the functions fi to

fit the verbal requirements implied by our discussion above,

These requirements involve the dynamic relations of the Ri
and Xi variables; thus we can fit the parameters of the functions fi
only within the broader context of fitting a dynamic model of the

entire process,
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The first of the requirements we must meet is that the Ri(t+1),
unlike the original Xi(t+1), are generated by independent stochastic
processes, Our dynamic model must include a descripuion of each of
these processes, Thus it must specify the probabllity distribution

- -y
for each variable, Ri(t+1), as a function of R(t) and X(t); it must
maintain the assumption that these probability distributions are

independent of each other, Thus we may write:

p(ry (+0)| K0y B(2) = g (g (441), X2, F0)

These functions, €y like the functions fi' are part of our model,
Rather than assume that we start out withkthe "correct"” gq0 We will
try to adjust the parameters of the functions gy and the parameters
of the functions fi' both, in order to make the model as a whole
fit the data as well as possible; this procedure will presumably
ad just the functions fi to fit as well as possible the assumption of
independence, which is built into this model,

Finally, we have a second verbal requirement to meet,
We require the ability to regenerate the Xi(t+1) back again from
3;(t+1), with minimum possible error; as before, we can also allow
the use of information from .ﬁ(t) and —)'('(t) in this procedure,
In setting up equations to predict the Xi(t+1), from known values
of ?(t+1),7(t) and -ﬁ(t), we are effectively just extending our

dynamic model to predict a new set of variables, We want the value of
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.I?(t+1) to account for all the interdependence of the variables,
Xi(t+1); thus, once the value of'ﬁ(t+1) is known, we want to be able
to predict all of the Xi(t+1) independently of each other, Thus we
want to extend our dynamic model to describe the probability
distribution of each variable, Xi(t+1), as a function of i?.(t+1), -l;(t)
and'?(t)t Wwe want to maintain the requirement that each of these
probability distributions is independent of all the others, Thus we
may write:
p(Xi(t+1)l R(t+1), R(t), X(t)) = hi(xi(t+1),'§(t+1),'ﬁ(t),Y(t))

These functions, hi' like the functions 8y and fi' are part of our
model, In adjusting the parameters of all these functlons, to fit the
data, we will hope to adjust the parameters of the fi to fit the
assumptions of independence both for the &y and for the hi'

Our objective, then, is to estimate the functions fi’ gy and hi'
50 as to maximize the likelihood of this model as a whole, In order to

do this, we could calculate the likelihood as we have with other models:

p(Y(t+1)\')?(t),h'(t),model) - p(k'(t+1)\'ﬁ(tﬂ),'f(t),ﬁ'(t).model)
* p(?(tﬂ)\;(t),i'(t),model)
(Notice, in this equation, that we do not have to integrate over
all possible values of -I?(t+1), on the right, because the Ri(t+1)
have been defined as definite functions of the other varlables here;

it is as if they were components of -)?(t+1), or, from another point of
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view, as if their probability distribution contingent on X(t+1),
R(t) and.ikt) Wwere a Dirac delta function which we have already
integrated implicitly,) This yields a likelihood measure for

a complete set of data:
L= 2 t0e s |Fe), Te)
»,
= ;>_ ( z log hy (X, (t+1), Rt+1), X(t), R(t)

t ¢=
+ i log &, (R, (t+1), A1), K(t)))
¢S
= E ( i log hi(xi(t+1)o ?(i(t):ﬁ(t» ;(.(t)o ﬁ'(t))
T ¢S

v S0 &, (5, R0, Ae )y e, Fe)

P

Using this likelihood function, we may construct tables,
analogous to those used in section (1ii) for log p, to let us
calculate the derivatives of likelihood with respect to all of
our parameters, in the functions fi’ &8s and hi' Thus, once again,
we may use the method of steepest descent to maximize likelihood.

It should be emphasized, however, that the 1likelihood function
spelled out in the equation above was based on substitutions which
were, in some ways, arbitrary, From a formal point of view,
the functions fi’ €y and hi are somewhat redundant as model
specifications; thus we have a certain amount of leeway in deciding

how to combine them, When, as above, the functions h1 are adjusted



Page 11-70

in such a way that the "fi" are considered to be fixed but effectively
-y
unknown functions, and in such a way that E(t) and X(t) are directly

available to the h, as arguments, then the resulting model will,

i
as a whole, be at least as good as a simple model specifying the
Xi(t+1) as independent functions of E?t) and-;(t): in other words,
even if the Ri(t+1) are totally ignored, a model fit in this way
can achieve, at a minimum, the level of fit that would be achlieved
by a conventional model assuming independence, In order to get
maximum value from this technique, however, one would want to adjust

’the definition of the "fi" to increase the actual 1ikelihood of the
model as a whole, evaluated in terms of the observed data,-??t+1),
by themselves, It is likely that the constraint of having to assume
independence at all levels, in order to minimize cost with a large
number of variables, might not be consistent with achieving an
absolute maximum of likelihood by this more strenuous criterion,
Also, 1t is far from obvious that the procedure above is the best
procedure for measuring likelihood, even subject to that constraint.
The concepts of time-series analysls discussed elsewhere in this
thesis required considerable theoretical and empirical work, both,
before the pros and cons of specific algorithms began to seem clear;
pattern analysis, which is a more subtle and potentially more

powerful technigue, will require at least as much development, beth

theoretical and empirical, to become useful in the future, Theoretical
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studies of the linear special case may be of particular value in
the early stages of this development.

Even at this stage of research, however, it seems clear where
the applications of pattern analysis will lie, Pattern analysis is
essentially a generalization of the idea of factor analysis to the
nonlinear dynamic case., The dynamic power of a proposed "principal
factor" would appear to be a better measure of its impertance than
the variance it account for in static cross-sections; when
time-serles data are avallable, pattern analysis would appear to be
a clearly superior strategy for evaluating the same set of parameters
as with faetor analysis. With many variables, or long time-series,
the nonlinear feature may also turn out to grow in importance;
statistical pattern-recognition, or satellite-collected data, may
both provide major applications for the possibility of nonlinearity
here, In such highly complex systems, the massive number of
variables may make the assumption of independence a necessity, both
in terms of computational cost and in terms of avolding models with
more degrees of freedom than one could hope to estimate; pattern
analyslis may be essential to prevent excessive reductions of medel
likelihood as a result of that assumption, Also, with such systems,
note that one does not have to restrict one's computer package to
estimating functions - fi' gy and hi - whose form has been specified

in advance by the user, One can provide an option for the computer to
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try out new tables of operatlons, automatically, by pruning out

terms which contribute little and by evaluating the improvement in
likelihood frem adding new terms, chosen essentially at random,
Finally, one should note that the assumption of independence

may be especlially valuable on machines which allow parallel processing;
the one-to-one association between functions fi and functions By
corresponding to the same components of‘ig may be of major

importance in making pattern analysis operational on such machines,

(x) OPTIMIZATION

In sections (1i1) and (iv), we saw how dynamic feedback can be
used to minimize error; later on, we saw how it could be used to
maximize probability, In general, the method of steepest descent
can be used to minimize or maximize any function we please, so long
as we can calculate all the derivatives, Dynamic feedback lets us
calculate the derivatives, so long as our system of formulas is
explicit, Therefore: the dynamic feedback method can be used to
minimize or maximize other things besides error,

Suppose, for example, that we have a simple model of the US
economy, something like this:

C(t+l) = klc(t) + sz(t+1)
Y(t+l) = a,P(t+) (2,18)
P(t+1) = P(t) + kj(P(t) - c(t))
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In this case, we are not trying to evaluate or estimate a model,
We assume that the model has already been tested, and that ki' k2

and k. have already been estimated by some kind of statistical

3
procedure, "C" here represents consumption; "Y" represents persenal
income; “P" represents production, With optimal government policy,

all preduction capacity will be channelled to either consumption

or to some kind of investment; "al", the rate of taxation, determines
how much goes to each, Our problem here is to find the "best” level for
"a,". Suppose that we define "best" to mean the level of a, which
maximizes consumption in the long term, Suppose that we start from

a known position in year 1, and want to maximize the sum of

consumption over the next three years, Then we may define our

utility function, "U", to equal C(2)+C(3)+C(4). We may set up

the table of calculations, shown in Table II-5 over the next few

pages, which defines how "U" is to be calculated up from the

parameter and the constants of this problem, In order to maximize

U by the me#hod of steepest ascent, we need only calculate é-g-;,

the derivative of U with respect to the parameter we have to control,

We may calculate the derivatives of U=X29, as before, by using

the method of dynamic feedback on the table of operations, Table II-5,

We may start with 529= g%ﬂ_ = 1; then, if we calculate derivatives
29
down the table, as before, 51 will equal ou « Our original model

93,

was very simple in this example; however, it should be clear that
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Actual Variable Variable} Operation Ma jor Minor

Number Category Source | Source

U = C(2)+Cc(3)+C(4) 29 sum 28 21,14
o) = k, C(3)+k, Y (%) 28 sum 27 26
k16(3) | 27 product 21 L
sz(u) 26 product 25 3
Y(4)=a1P(4) 25 product 24 1
P(5)=P(3)+k3(P(3)-c(3)) 24 sum 23 17
k3(P(3)-C(3)) 23 product 22 2
P(3)-c(3) 22 difference 17 21
c(3) = k10(2)+k2Y(3) 21 sum 20 19
k,C(2) 20 product 14 4

-4

sz(3) 19 product 18 3
¥(3)=a.,P(3) 18 product 17 1
P(3)=P(2)+k3(P(2)-C(2)) 17 sum 16 10
kB(P(z)-C(Z)) 16 product 15 2
P(2)-C(2) 15 difference 10 14

Table II-5: Table of Operations for Equations (2,18),
(top section)
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Actual Variable Variable 1 Operation Ma jor Minor
Number Category Source Source
c(2) = k1C(1)+k2Y(2) 14 sum 13 I 12
#
kic(1 ) 13 product 7 l 4
b
sz(Z) 12 product 11 I 3
e L l
Y(z)nalp(z) 11 product 10 1
_
P(2)=P(1)+k3(P(1)-C(1)) 10 sum 9 5
kB(P(l)-C(l)) product 8 2
F“I
P(1)=-c(1) 8 difference 5 7
c(1) 7 given - -
o
Y(1) 6 given - -
|
P(1) 5 given - P
o
kl L given - -
k2 3 given - -
e
k3 2 given - -
g NI
a4 1 parameter - -

Table II-5: Table of Operations for Equations (2,18),
(bottom section)
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even a complicated nonlinear model, involving many centrol
parameters, could be translated into a table like Table 11-5, by
computer, if the model is "explicit" in the sense of section (1iv).

In our example above, we have described a problem which does not
quite fit the standard format used most often in control theory,
It is a problem in what we would.prefer to call "systems optimization"
or "dynamic systems optimization," Problems of this type have been
discussed by Jacobson and Mayne(31), as a device for overcoming some
of the difficulties of optimization under conditions of uncertainty;
in the social sciences, however, this formulation may have substantive
advantages over the more standard formulation, which are worth pointing
out here,

In the case above, for example, we tried to prick the best possible
value for "al", a constant in the nation's taxation system,
In standard control theory, one would usually look at al(t). the
taxation rate at each time, and try to find the best possible schedule
of tax rates for different years, In principle, the second way is
better, but only if it is feasible, politically, to change the tax
rates up and down every year. In practice, governments trying to
follow conventional Keynesian policies, adjusting tax rates every year,
have encountered serious political problems and problems of timing;
thus there has been great interest in “automatic ad justment ™

factors(31), and in other system parameters which can be adjusted to
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improve economic performance without forecing us to change policy
too often, Thus "systems optimization"” has something worthwhile
to offer the policy-maker, above and beyond its mathematical
convenience,

The methods here could also be used in conventionai control
theory problems, In our example, we could try to pick the best
values for the three parameters, a(2), a(3) and a(4), by putting

all three at the bottom of our table, and calculating back

;2?2) ’ 52%57 and é%%tj . Jacobson and Mayne(32) have shown how
steepest ascent methods, very simlilar to ours, can also be used in
cases where noise terms appear in the model, The dynamic feedback
method allows us to calculateé%%; » In cases where the dynamic laws
of the system are arbitrarily complex, and where the interconnections
in time may stretch over several time-periods; it allows us to
exploit the internal structure of the model, as spelled out in a
table, in order to calculate back all the derivatives in one pass,
at a cost much lower than with separate differentiations, Otherwise,
however, the methods discussed by Jacobson and Mayne for making use
of %?g; y In systems optimization, are very general, and do not

require further elaboration here,
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(xi) THE METHOD OF “"RELAXATION" WITH
MEASUREMENT-NOISE-ONLY MODELS

In section (vii), we have discussed the possibility of
"measurement-noise-only" models, which are at the opposite pole
from the usual regression models, which may be characterized as
"process-noise-only" models, Between these two poles is a whole
spectrum of more moderate techniques, Let us suppose that one has

a simple model of some process, defined by the equations:
Xi(t+1) = fi(Xl(t).... Xn(t)) i=1,n (2,19)

Using the classical regression approach, we would tack on a normal
noise term, ai(t), to the end of these equations, to arrive at

the stochastic model:
Xy (441) = £, (X (t)aeen X (£)) + 24 (2)
We would estimate the parameters in this model by trying to minimize

the square errors:

L, = Et (%, (441) = £, (5, (t)reen X (2D%, (2.20)

after we substitute in for the measured values of Xi(t+1) and Xj(t).
In effect, this would imply minimizing the square error for |

predictions over one interval of time,

With the measurement-noise-only models, we would normally
include, in the list of parameters to be estimated, the values of

Yi(O), vwhere Y, is defined as the "true" value of X,. Using
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equations (2,19), we can predict the "true" value of Xi(l), Yi(l)'
from our estimates of the Yi(O), and predict Yi(2) from the
predictions of Yi(i), et cetera, Using these long~term predictions,

N~
Yi(t), we can try to minimize the errors:

e 2 ) - 1,0 SR (an)
T

From the viewpoint of maximum likelihood theory, these predictions,
?;(t), may be viewed as the "estimates" of Yi(t), derived from the
estimates ?i(O) and from the assumption that equations (2,19) are
exactly true, with no noise, for the true values, Yi(t)'

How can we find a viable compromise between (2,20) and (2,21)?
In (2,20), we use the measured value, Xi(t), to estimate the true
values, Yi(t)' for use as the arguments of fi; in (2.21), we use
estimates, ?i(t), based solely on updating our estimates for Yi(t-l),
i.e, Qi(t-i), by use of (2,19), The obvious compromise is to estimate
Yi(t) by something half-way between the measured values, Xi(t),
and the estimates of Yi(t) which result from updating our estimates of

Yi(t—l). Thus we may define new estimates, Zi(t), of Yi(t), by

Zi(t) = (1-r)fi(Z1(t-1),... Zn(t-l)) + rXi(t). (2,22)
Using these estimates, we may attempt to minimize the loss funection:

e 2
Ly = Z (X, (t41) = £, (5 (t)yeen Z_(£)))%  (2.23)
t
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The Zj(O), like Yj(O), would be parameters to estimate, The constanf
“r" may be called the "coefficient of relaxation”; it is a kind of
interest rate which, when large, implies a greater concern for
short-term prediction than for long-term prediction.

Note that the structure of equation (2.22) looks similar to
that of a filtering system, designed to yleld a posterior
estimate of the "true" value of.i: given both a prior expectation
and an actual measurement. In the field of engineering, a great deal
of work has been done on the problem of designing an optimal filtering
system, to deal with vectors, i: which result from noisy measurements
of a linear process which has been completely specified in advance,
It is well-known that the best way to update one's estimates, in this
situation, is not by the independent equations (2.22). but by the

matrix equations of the "Kalman filter"(33):

) = FF(t-1)) + k() RAUt)-HEIF(Z(t-1))),
where X and H are time-varying matrices determined by:

K(t) = P(t)HT(t)R'l(t)

p(t) = (02(t) + BT (£)R T (£)H(2))

M(+1) = F(£)P(£)ET () + G(1)at)e (t),
and where H, R, G and Q are all characteristic matrices of the linear
process, a process which may be specified:

-)?(t) = H(t)?(t) +'§(t)

2,24
T(¢+1) = c(2)T(t) + (L), (2.24)
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with R and Q@ the covariance matrices of the noise vectors'ﬁ'andlg,
respectively, The details of these equations are beyond the range of
our discussion here, One should note that the linear processes of
equation (2,24) are essentially the same as those we will discuss
early in Chapter (III); it will be shown in that chapter that processes
of that general sort can be dealt with exactly by use of the "ARMA"
approach, whose practical limitations will be discussed in Chapters
(IV), (V) and (VI), However, even if the Kalman filtering equations
were derived for a limited class of linear processes, one might expect
them to be an improvement over equations (2,22), on the theory that
they ean be used to perform the same function, somewhat more
rationally, as part of our system of robust estimation, In this case,
one would adjust the matrices H, R and Q in an ad hoc sort of way,
Just as one would adjust the relaxation constant, "r", rather than
estimate them all beforehand by use of the maximum likelihood
technique on some version of the simple equations (2.24), However,
this use of the Kalman filter brings three difficulties with it,
which make it a subject for future research rather than present
systems design: (1) the need to adjust three matrices, H, R and Q,
automatically, requires a much greater development of the theory of
robust estimation than does the need te adjust a single constant, r,

by hand; (ii) the sheer complexity of the Kalman equations would impose
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heavy costs on the systems programmer; (iii) even given a rational
approach to estimating the matrices H, R and Q, one would presumably
need a huge quantity of data to estimate so many parameters, in

addition to all the parameters of one's model,

(x11) THE ORDERED DERIVATIVE AND
DYNAMIC FEEDBACK

The traditional formalism used for dealing with partial
derivatives was evolved to deal with the problems of geometry
and of physical science, In those fields, one normally deals with
functions defined over a fixed set of coordinate variables;
even when one changes one's choice of coordinates, one is usually
making a c¢learcut shift from one set to a second set, In the social
sclences, however, one normally deals with a complex web of
functional relations and variables, This web will often have a

causal ordering assoclated with it, Thus when we say that

xt+1=f(yt,zt), we not only mean that a relation exists between the

variables Yy 2 and X4t ve also tend to mean that the variables Yy

t

11} "
and zt cause xt+1

"later" than Yy and Zye We will often be interested in asking

to equal what it does, and that X441 is causally

what changes will follow, later, if we change a given variable by

a small amount at a given time, Clearly, this question calls for us

to calculate some kind of partial derivative, In order to deal with
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this kind of situation, as easily as we now deal with situations
in physical science and gecmetry, we need to define a new formalism
for this kind of partial derivative,

Let us begin by imagining that we have a well-ordered set of
variables, Xy Xopees X9 with each variable Xy obeying a

functional relation:
X o= £y(xy g0 Xy paeee Xp)
Let us define a new set of functions, Fi' recursively:
(1) F (X 0% 49X orees X)) = X
(11) Fy_q(xq 9%y orere xl)
= F S (0 g% peeee X))o Xg_go%y preee %)

(In other words, "F," expresses x asa function of the variables

i
Xy oKXy _qreseXps arrived at by substitution into higher Fj's.)

Let us define the ordered derivative of xn as follows:

3 M

Xy oxy

n>121,

where the derivative on the right is evaluated by traditlonal

procedures, holding constant all the variables Xy qreee Xqo
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We may further define;

n 0 < 5 <
- 1€15
%y ox, 0
Theorem:
n
9F s A%, 9 c 194 3<n
= ——— e g or

%y A%y Oy 1< 1% 3

K=yt

We can prove this, for any given i and n within the acceptable range,
by inductioen on j downwards from jen-1 (down to j=i), Let us begin
by considering the initial case, j=n-1, In this case, our general
claim reduces to:

BFn-l - B.‘hxn .afn
Bxi axn axi |

From our definitions of Fn and of Fn-l’ this reduces immediately to:

2’xi ) bxn -8(—1. '
which is clearly true,
Now, to complete our proof, we need only prove the formula
for 321 and 2 1ys on the assumption that it is true for j+1<n,

Let us begin by going back to the definition of ij

Fj(xj’xj-i"' 'xi) = Fj+1(fj+1(xj’xj-1'".xi)'xj".'xl)
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In order to make this more explicit, we may write it as follows:
Fj(xj’xj-l""xl) = Fj+1(sj+1’sj’sj-1"“ s;)
where sj+1 = fj+1(xj,xj_1....x1)

Sy = Xy ififj.

By the conventional chain rule for partial differentiation:
3\

2 (p )) = (2(F ., ( 2O
'axi( s X Xgagreee®y PENANN T Rt o A Eag - P
LA
1£189
Now for k S j, our definitions of 8, as a simple function of the Xy
s
clearly tell us that ~§£ equals 1 if k=i, and zero otherwise,
9%y s, of

For k=j+1, our definition tells us that: ?;;k = j;ﬁti .
i i

Thus the sum on the right in the equation above may be evaluated

to give us a new equation:

OF. .,y
-S)—(j = (33_-:?_’_; (Fj““l(sj‘*'l"“ Si)))'gff:-

+ ’SE; (Fj+1(sj+1s- "Sl))

* Given that our remaining derivatives with respect to the sy do not
involve the expression "xi" anywhere, and given that the 8y have been
defined in such a way as to equal the x‘j for 1 S i S jHl, the value

n,n

of these expressions will not change if we substitute in the letter "x
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for every occurrence of the letter "s", Thus we get:

?_F‘j_ DF]+1 3fj+1 + 3F +1

My gy Oy it

Now from the induction hypothesis we were given that:

Fy ¥ 3

d — o5 9%
From our definition of the ordered derivative, this is merely:

a_Fj B-‘-xn )f‘3+1 - bx Bf

3%, = axj+1 ax X, ax
Kt

+

bxn.____ls
=t ) 2%, 9%
)

which establishes our contention for the case j, and which,

by induction, proves the contention as a whole,

Corollary 1: If 1, $i <n:

+ +
5 >
X bx
i - i
Kzctl
This follows immediately from setting j=i in our theorem, and

exploiting the definition of the ordered derivative,

Corollary 2: If 1 S i S_ ioz

b+xn BFiO = 3+xn of "
AT EEC I

k:io'\-l
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Notice that Fi (xi ....xl) is the function which expresses x,
0 0
as a function solely of the "external parameters,"” Xy through Xy
0
If X, represents something like "likelihood", L, and if the

"external parameters" represent constants of the model and fixed

data, then F‘1 expresses likelihood as a function of these
0
parameters, When we are trying to maximize likelihood "as a function

of these parameters,” we are trying to maximize L expressed as Fi .
0
llaL 7"

Thus, w?pn we ask about Si_ s in that context, we are really asking
1

Notice that the concept of "ordered derivative” does not
really depend upon the exact cholce of order xl,xz....xn.
Suppose that ”xi" is really "simultaneous” with Xy 410 Xqqpr e e Xp g0

in the sense that it is not really an argument of the functions

fi+1’fi+2""fk-1' Then, in our chain rule above,
the derivative ,5;1 is zero for j of i+l through k-=1; thus the
i

actual value of the ordered derivative, as given by those formulas,
will not be affected by our arbitrary decision to treat these variables
as 1f they were "later" than Xy in the causal ordering, The ordered
derivative would appear to be defined with respect to the general
causal ordering, a weak ordering of our lattice of variables, rather
than the strong numerical order chosen to represent it, For our
purposes, however, it is not necessary to establish such generality,

since we need only justify a calculating procedure based upon the

definite numerical ordering chosen for our tables,
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As a practical matter, all of the "working back" of derivatives
cited above might be carried out by one standard computer subroutine,
called on by simple "main programs" within ene's computer package
to carry out estimation and optimization for models of all different
sorts, Other possibilities have been mentioned briefly in section (111),
Model specification could be allowed either in terms of standard
TSP formulas, or in terms of Forrester-style "DYNAMO" expressions,

The standard subroutine(s), set up to allow optimal control
calculations, would, in principle, also allow maximum=-likelihood

estimation of "hidden variables" in implicit models; however, the use

of this provision should probably not be encouraged, except in those

cases where a theoretical understanding exists of its potential value,
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APPENDIX: VARIATIONS ON THE STEEPEST ASCENT METHOD
FOR EFFICIENT CONVERGENCE

The discussion of the dynamic feedback method throughout
this chapter depends on the assumption that the derivatives
calculated by this method can be used as the input to the
steepest ascent method, in minimizing or maximizing various types
of functions, In practice, however, we have found great difficulties
in getting adequate convergence with the classical steepest ascent
method, in our early experiments with ARMA estimation, to be
discussed in Chapter (III), This experience seems to be in line with
the general impressions of other people in the community who have
used the method. It is possible, however, to bring the convergence
rate up to reasonable standards by use of "variable metric techniques"
and related methods,

In section (1ii), we alluded briefly to the constants "C" to be
used in the steepest ascent method; in our discussion, there was never
any reason to require that "C" be the same for all of the parameters,
2. In the "variable metric" approach, one simply chooses different

constants, Ci’ for different parameters, Thus one would write:

(n+1) | _(n) U an)
ay ay +Ci'aai @,

This equation specifies that our n-plus-first estimate of the

parameter a, will equal our nth estimate, plus Ci times the
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derivative with respect to ay of the funection, U, which we are
trying to maximize. (The derivative is calculated, of course,
from our current set of estimates,?i(n).) This approach has become
fairly popular , in some quarters,

Ideally, if one had all the second derivatives available,

one might use the classic Gaussian method:
-1 >
-Z(n+1) o ‘;(n) - 2 1@7U).

s
where "VYU" is the vector ggf- and "A" is the matrix of the second
2 i

derivatives,‘5;j§2~ . To pick the constants, "C,," above, one might
1

i.
try to pick them to form as close an approximation as possible
to the Gaussian equation here, Thus one might try to approximate:
32
1 ba
In order to generate a low-cost, order-of-magnitude estimate, Si,
2 '32
of (a 2) a 2

down our table% of operations:

3’
E & )S*+( )S). (2.25)

JTetd

), one might carry out another feedback calculation

where Sj is the ordered derivative of U with respect to xj,
as computed by the procedures of section (1i1), and the rest of
the notation here comes from section (xii). The term on the left side

of the expression to be summed preserves the sign of the "estimated”
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second derivatives, as we go down from the SE to S;. The term

on the right, however, risks a change of sign; it might elther be
eliminated, or else cut off to equal zero whenever it trles to
go too far in an abnormal direction, if we choose to avoid this
risk, Note, in the case of a maximization problem, that the
normal sign for the second derivatives is negative,

If we write:

. ¥*
Cy w/Si’

then, if the n-plus-first estimate turns out to be inferior to
the nth, we can simply reduce the unsubscripted constant "w" and
try again, This method i1s guaranteed eventual convergence to a
local maximum, as we adjust "w" back and forth, for exactly the
same reasons that the classical method is guaranteed convergence
as "C" is adjusted back and forth; given that we have imposed
measures to keep the signs of the S{ negative, we may invoke the
definition of the derivative, just as we did in section (iii),

In the case of ARMA estimation, a similar though more specialized
approach has turned out to be quite successful, While we have not
run across this particular form of the variable metric approach
in the literature, we have heard rumors that something similar may

have attracted attention elsewhere in statistics; however, it would be

difficult to believe that equation (2,25), itself, which is based on
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a procedure related to dynamic feedback, has been used in this
general form, |

In situations where the number of variables is great, and
many iterations are required in any case, one can imagine an
additional provision, "convergence learning,” to try to make the
constants Ci better approximations to the choice which would lead

to the fastest convergence, One may set:

C, = -8, /St,

in) seems to be moving

systematically in one direction from estimate (n) to estimate,

(n)
i

One might, for example, multiply Gi by 1+C, for some positive C,

when b—U— calculated at ?(nﬂ) has the same sign as %2,—
i

Bai

calculated at'ﬁ&n); one might divide it by 1+C when the signs are

where "91" is increased when the parameter a

and where it 1s decreased when a seems to be oscillating,

opposite, As before, if the sign of 01 is positive, one is still
assured of eventual convergence to a local maximum, Insofar as

each of these factors, "6, ", is essentially an adjustment factor
for our approximation of ( 22), we might even use it in (2,25),

to divide those terms in ou: summation on the right which involve
entries, Xj’ in our table of operations, which use the parameter a,

as a “"source variable,”

In order to define these procedures in more detail, it would be
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necessary to have some way to evaluate the many alternative
possibilities in these directlons; insofar as these procedures are
all aimed at the practical goal of speeding up convergence,

it would seem best to evaluate them by way of practical experiments,

when the necessary computer routines become available,
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FOOTNOTES TO CHAPTER (II)

(1) Deutsch, Karl W,, Nationalism and Social Communications ,
MIT Press, Cambridge, Mass, 1966, revised second edition,
Appendix V. Note that we have used the letter "U" instead
of "D", in the revised version of the model., Also note that
several versions of this model have appeared in print,
The version here, in all fairness, was actually taken directly
from Hopkins, Raymond and Carol, "A Difference Equation
Model for Mobilization and Assimilation Processes", 1969,
unpublished; a copy of this paper was provided to us by
Prof, Deutsch, and described as containing the final revision
of the model, This revision appears, in difference equation
form, in Hopkins, Raymond, "Projections of Population Change
by Mobilization and Assimilation"”, Behavioral Science, 1972,
p.25% ., The reasons for the revisions to earlier versions
are described in Hopkins, Raymond, "Mathematical Modelling
of Mobilization and Assimilation Processes", in
Mathematical Approaches to Politics, edited by Hayward Alker,
Karl Deutsch and Antoine Stoetzel, Elsevier Publishing Co,,
NY, 1973, p. 361,

(2) Rapoport, Anatol, Fights, Games and Debates, U, of Michigan Press,
Ann Arbor, Mich,, 1961, Second Printing, p. 173.
The "prisoner's dilemna", in its original form, is a simple
two-person game in which each player has two options to choose
from: to betray or not to betray the other player to the
police, If neither player is betrayed, both pay a slight
penalty (a small jail sentence), If one is betrayed, then
he pays a heavy penalty, but the other escapes all penalty.
If both betray each other, both pay a fairly heavy penalty,
The structure of this game has been used as a paradigm for
certain arms races, in which the self-interest of each player,
paradoxically, may lead both into a competition in which
both of them enjoy less security and have less money left over
than if both had shown restraint,

(3) Even the most elementary models used in economics tend to be used
to generate tangible numerical prediction; see, for example,
Ecenomics : An Introductory Analysis, by Paul A, Samuelson,
Fourth Edition, McGraw-Hill, NY, 1958, chapters eleven through
thirteen, More explicit predictive models may be found in
Hickman, Bert G., Econometric Models of Cyclical Behavior,
National Bureau of Economic Research, 1972,
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(4) From a strict mathematical point of view, these "density
functions" are actually "measures" or "distributions”
rather than functions, Thus on p,4, the notation "db"
and "dc" should have followed equations (2,4), for total
rigor, Historically, this issue has not turned out to be
of major importance; see the discussion at the end of
section (v), and the more rigorous discussion in
Box, George E,P, and Jenkins, Gwilym M, Time-Series Analysis:
Forecasting and Control, Holden-Day, San Franecisco, Calif,,
19700 P.274-283-

(5) More precisely, classical maximum likelihood theory specifies
a unique log likelihood measure of goodness of fit, for the
simple model above, including the normal noise distribution
as part of the model,This measure of fit is a speclal case
of what we will describe in more detail in section (vi),
based upon the concepts of section (v), From a conservative
Bayesian point of view, this measure is taken to be the
logarithm of the probabllity of truth of a model, conditional
upon the observed data, assuming a prior probability distribution
which is "flat" when described in terms of the coefficients
of the model as written, and relying on the space of these
coefficients and of the data as encoded to provide us with
the measures over which these probability distributions are
defined,

In a sense, this criterion provides a meaningful estimate
of the relative probability of truth of the coefficlent values
considered, subject to the constraint that the model is
assumed to be "true," for some value of the coefficients,
in whatever sense it is pessible for a statistical model
to be "true," One of our primary objectives in this thesis
is to point out tangible, correctible deficiencies in the
classical idea of looking for "truth" as such, in statistical
dynamic models; in Chapter (V), we will point out that verbal
models and statistical models are subject to similar difficulties,
in basic matters. (Statistical models in a very hard science,
such as pure physics, may be different, however,) '
In section (vii), where the new alternatives are discussed
on a theoretical level, we have been careful to emphasize
that these approaches to the practical prediction of
time-series can be understood as an offshoot of the more
general and more coherent Bayesian philosophy of induction,
as briefly sketched in section (v), The maintenance of this
connection is especially important to the social sciences,
where the Bayesian framework has many applications beyond
those of explieit data analysis; see, for example, Raiffa,

- Howard, Decision Analysis: Introductory Lectures on Making
Choices Under Uncertainty, Addison-Wesley, Reading, Mass,, 1968,
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(6) Once again, ocur discussion has been based on the maximum
likelihood point of view, which will be called into question
in section (vii), For those who are concerned with predictive
power, and not with the likelihood of truth as such,
the success of various noise models depends less on their
"truth" in the process at hand and more on the robustness of
the associated estimation procedure; thus, one may choose to
regard the regression procedure described above as an
independent algorithm, which can be derived from maximum
likelihood theory but which is still a distinct object able
to stand alone, From this point of view, then, the methods
above do not require an assumption of a normal distribution,

(7) Ezekiel, Mordecail and Fox, Karl A,, Methods of Correlation and
Regression Analysis, Wiley, New York, 1959, Third Edition,
chapter six,

(8) Postrikov, Foundations of Galois Theory, Pergamon Press, McMillan,
New York, 1962, p. vii.

(9) Wasan, M,T., Parametric Estimation, McGraw-Hill, New York,
p.161-162, Alternative techniques exist, but the ones listed by
Wasan are second-order - they require the calculation of
second derivatives, which are more numerous than first
derivatives and may be expensive to calculate, The Marquadt
algorithm, the better-known alternative, assumes that the
likelihood function is quadratic, an assumption we will
not make in this thesis, in later sections; also, it incurs
heavy costs in other ways. In the Appendix, we have proposed
a procedure for handling the convergence difficulties cited
by Wasan, for variations on the theme of steepest descent;
in the case of multivariate ARMA(1,1) estimation, at least,
resulting convergence times have been reasonable,

(10) Dixon, W,J, BMD Biomedical Computer Programs: X-Series
Supplement, U, of California Press, Berkeley, Calif,,
June 1972, p,177.

(11) Brode, John, Time-Series-Processor = CSP, available from
Pro ject Cambridge, MIT, 5th floor, 575 Technology Square,
Cambridge, Mass, 02139, A manual for the revised version of
TSP may be forthcoming in the MIT Press,

(12) National Bureau for Economic Research, TROLL/1 Primer, available
c/o 9th floor, 575 Technology Square, Cambridge, Mass, 02139,
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(13) Friedman, Milton, A Theory of the Consumption Function, Princeton
University Press, Princeton, N,J., 1957, p.20-31, Friedman's
discussion here leaves open somewhat the question of how
permanent income is determined; the simplified model we use
as our example assumes a simple exponential learning process,
based on actual income,

(14) The most fundamental source for this point of view is Carnap,
Rudolf and Jeffreys, Richard C,, Studies in Inductive ILoglc and
Probability, U, of California Press, Berkeley, Calif, 1971,
Discussions of its direct applications to statistics may be
found in Box and Jenkins, op, cit, (note &), p.250-252, and in
Kendall, M,G, and Stuart, A., The Advanced Theory of Statistics,
Hafner Publishing Co., NY, Second Edition, 1970, Vol.2, p.150.

(15) However, in the philosophy of sclence, there is occasional
reference to the "cosmological principle"” that we expect
p(data) for the observed data to end up reasonably large,
once a full spectrum of theories has been studies, In other
words, one expects that the observed data will not be an unusual
local coincidence, according to a "true" theory; one expects
that data, as observed from earth, in particular, are likely
to be typical of data observed elsewhere, Such an additional
assumption would not be necessary, or even logical, 1f we felt
that we had p(model) available for the full range of possible
models, along with p(data model), However, when we ask about
the probability that new models, as yet unformulated, may turn
out to be valid, the "cosmological principle” does have
something to tell us,

(16) Immanual Kant, A Critique of Pure Reason

(17) Carnap and Jeffreys, op. cit, (note 14),

(18) See the references of note 14, Also see Wasan, op.cit,,
(note 9) p.150-152; Anderson, R,L, and Bancroft, T.A.,
Statistical Theory in Research, McGraw-Hill, New York,
1952, p,101; Hays, William L,, Statistics for the Social
Sciences, Holt Rinehart and Winston, Second Edition, 1973,
p.B41-842 and 816~821,

(19) Hays, op., cit. (note 18), later chapters; Lindley, D.V.,
"Professor Hogben's Crisis - a Survey of the Foundatlons of
Statistics", Applied Statistics, Vol.7, No.3, 1958,p,186-198;
Raiffa, H. and Schlaifer, R., Applied Statistical Decision
Theory, chapter thirteen; Hogg and Craig, Introduction to
Mathematical Statistics, McMillan, London, Third Edition,
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p.208-209; Wasan, op. cit, (note 9), p.184, definition 5,
and subsequent discussions, (Also Box, G.E., and Tiao, Gey
book coming out,) The two computer programs generally
available in Cambridge for Bayesian estimation are described
in Brode, John, op, cit, (note 11) and in Schlaifer, R.,
yaer's Guide to the AQD Programs, Fart I11, p. 18,

available c/o the Harvard Business School,

(20) In this area, too, the traditional formulation by Carnap and
Jeffreys 1s under question, Shimony, Abner, “"Scientific
Inference"”, in Nature and Foundation of Scientific Theories,
Colodny, ed,, U, of Pittsburgh Press, especially p.1003
Solomonoff, "Mathematical Foundations of Induction”,
manuseript available in 1964 at the MIT Artificial Intelligence
Laboratory, from Prof, Minsky; Barker, Stephen F., "The Role
of Simplicity in Explanation", in Current Issues in the
Philosophy of Science, Felgl and Maxwell, eds., Holt Rinehart
and Winston, 1961,

(21) Alpert, Marc and Raiffa, Howard, "A Progress Report on the
Training of Probability Assessors," avallable in 1971 as an
unpublished manuscript from the office of Prof, Raiffa in the
Littauer Building, Harvard U,

(22) Box and Jenkins, op. cit, (note 4), p., 274, Note that the
"Bayesian estimates" suggested on p.252 of this reference,
and also the approximations suggested on p,277, involve
disregarding this term, with or without small adjustments
elsewhere,

(23) Mosteller, C, Frederick and Rourke, Robert E., Sturdy Statistics:
Nonparametric and Order Statistics, Addison-Wesley, Reading,
Mass,, 1973; Tukey, John W,, "A Survey of Sampling From
Contaminated Distributions", in Contributions to Probability
and Statistics: Essays in Honor of Harold Hotelling,
Olkin, Ingram and G, Sudhish, Wassily Hoeffding, William G,
Madow, Henry B, Mann, eds,, Stanford U, Press, Stanford,
Calif,, 1960, p, 44B-485,

(24) Box and Jenkins, op. cit, (note 4),p,121-124, Qur formula here
is a special case,

(25) Cochrane, D, and Orcutt, G.H., "Application of Least Squares
Regression to Relationships Containing Autocorrelated Error
Terms", Journal of the American Statistical Association,
March 1949, p.34,
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(26) Forrester, Jay W., Industrial Dynamics, MIT Press, Cambridge,
Mass,, 1961,

(27) Forrester, Jay W,, World Dynamics, Wright-Allen Press, Cambridge,
Mass,, 1971; the successor to this book was The Limits to
Growth, by Meadows, D.H. and D.L, Randers, J., and Behrins, W,,
Signet Books, New York, 1972, Third Printing; the lack of
empirical validation, and other important aspects of this
work are discussed in Models of Doom: A Critique of The
Limits to Growth, by Cole, H,S,D., Freeman, Christopher,
Pavitt, X,L.R,, and Jahoda, Marie, Universe Books, New York,
1973, A few alternative approaches are sketched in Chapter (V).

(28) Hogg and Craig, op, cit, (note 19), p. 250-253,

(29) The "ideal types" idea originated with Max Weber; a review of
the early idea may be found in Max Weber's Ideal Type Theory,
by Rogers, Rolf E,, Philosophical Library Inc,, New York,
1969,

(30) Felerabend, Ivo K, and Rosalind L., and Gurr, T,, eds,,
Anger, Violence and Politics, Prentice-Hall, Englewood,
N.J., 1972, p.11k-118,

(31) Jacobson and Mayne, Differential Dynamic Programming,
American Elsevier, NY, 1970, especially chapter six,

(32) Samuelson, op, cit, (note 3), p. 345, begins a discussion of
this topic; his own attitude is more partial to the traditional
Keynesian approach, but his discussion clearly indicates that
automatic ad justment factors have been of great interest to
some economists,

(33) Jacobson and Mayne, op., cit. (note 31),

(34) Bryson, Arthur E, Jr, and Ho, Yu-Chi, Applied Optimal Control,
Ginn and Company, Waltham, Mass,, 1969, p.361,
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(III) THE MULTIVARIATE ARMA(1,1) MODEL;
ITS SIGNIFICANCE AND ITS ESTIMATION

(1) INTRODUCTION

In recent years, the "ARVMA" model for statistical processes
has become very pepular both in industry and in certain parts of the
social science community, This popularity is due rartly to the
landmark book by Box and Jenkins, Time-Series Analysis(1), which
places emphasis on the application of ARMA models to Prediecting
future values of time-series variables, Using their approach,
one fits a separate model to each variable of interest, a model
of the variable as a mixed "AutoRegressive Moving-Averaze" process
of some very complex order; one uses these models, variable by variable,
to make predictions of the future,

Cur emphasis here is quite different, Cur concarn, from the
beginning, was with studying the interaction between different
variables - national assimilation and communications, as deseribed
in Chapter (VI) = rather than with the predietion of time-gseries
in isolation from each other; univariate studies were carried out
only to help us evaluate methods for dealing with the more general
case, With "ecausal analysis" of this sort, where many variables
must be considered together, multiple regression still is the most

popular technique by far,(2), Nevertheless, one of the thecrems of
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Box and Jenkins - that the presence of errors in data~collection
can turn a simple regression process intoc an ARMA process - can be
generalized very easily to the multivariate case, as we will show
below, Thus one might think of multivariate ARMA analysis as
generating the same cocefficients as a multiple regression analysis, but
"corrected” for the effects of measurement errors, In Chapters (IV)
through (VI), we will discuss the empirical work which has convinced
us that such measurement noise is not only common, but may alsoc
have a drastic effect in reducing the quality of predictions of
a model fit by ordinary regression,

In practice, there are twe difficulties with using the
generalization of the ARMA model to the multivariate case,
First, and most important, is the sheer cemputational difficulty
of estimating a full, multivariate ARMA model (a "vector ARMA" model),
Hannan(3), in 1970, described the current techniques in this area
as follows:"Though there are, no doubt, circumstances in whieh
a vector mixed moving-average autoregressive model will give a
much better fit with a given number of constants than either a
moving-average or autoregressive model (i.e, ordinary regression - PJW),
the computational complications are so great that it can be doubted
whether the more complicated model will be used, and we do not feel
that the techniques at the present stage are sufficliently near to

being practically useful to be included in this book," In 1973,
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Prof, George E, Box, of Box and Jenkins, mentioned to us that

the heavy orientation of his own work to the univariate case was due
in large part to such difficulties, In section (111) of this charter,
Wwe Will deseribe how we have been able to apply the dynamic feedback
algorithm, described in Chapter (II), to overcome this difficulty;
in section (iv), we will describe in detail the computer routine,
now avallable to social scientists from Hawaii to Lordon, whieh

we have written to use thls method in estimating multivariate

ARMA processes,

Second, and more persistent, is the difficulty of "too many
degrees of freedom"” with ARMA models, If, in addition to accounting
for many variables at once, we also added "higher-order" terms,
as discussed by Box and Jenkins, the number of parameters in these
models could become hopelessly large; such higher-order models
could be estimated by a variant of cur algorithm below, but the
substantive value of the estimates would be questionable, In practice,
however, our interest in the ARMA model does not lie in its capaecity
for being made ever and ever more complicated; our interest is in
the possibility of accounting rationally for the rroblem of
"measurement noise,” the problem of errors in measuring and indexing
the underlying variables which one is trying to study, Thus we will
restrict ourselves here to considering "white noise” (random neise,

uncorrelated with itself across time but possibly correlated from
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variable to variable at the same time) in the process of
measurement; all of the ARMA models we will discuss are of the
variety which Box and Jenkins would call "ARMA(1,1)" models,
While the degrees of freedom problem makes it impractical

in most cases to consider more complex, more realistic models of
measurement noise, it has been our hope that the difference between
accounting for measurement noise and not accounting for it at all
would be enough to overcome most of the problems of real-worid
prediction, However, as we pointed out in Chapter (I), this hope
has only been partly realized; given the impracticality of adding
too many degrees of freedom to these models, our current opinion
is that the "robust method” described in sections (vii) and (xi)
of Chapter (II) will be crucial to any further progress with the

real-world problems,

Let us now define more precisely what we mean by an "ARMA(1,1)"
model, Box and Jenkins(4) define an ARMA(1,1) process "Zt" as

a stationary process governed by the scalar equation:

z, = ¢ztni +a, - 8a 4, (3,1)

where "at" is a random ncrmal noise process of covariance Oi ’
and where "t" is the time period, (We recall from Chapter (II)
that "random" means that the process has no correlation with
itself across time, or with other processes in the system at

earlier times, )} Also, note that we are treating "t" as a subsecript
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here solely because this is the way it appears in Box and Jenkins,
By contrast, the classic autoregressive model may be written,

in the univariate case;

Xy = A% oA (3.2)

The term "at" in this equation refers to "process noise,"

to a random impulse which will affect the true value of x

at time t, and thereby affect later values of x as well, In practice,
however, the measured data, which we may call "zt", may differ from
the true values of the variable we are trying to study, which

we may call "xt". The difference between the true value and the
measured value, Zy=K,y TAY be called, "measurement noise,”

If we postulate that this measurement neise, like the random impulses

which govern Xy itself, is a random process, then we arrive at

the following modification of the classic regression model (3,2):

X = #X, 4+ Dy
(3.3)

Et g-”X_’; +Ct,

where bt and c, both are normal random normal noise processes with
zero means and with no correlation between each other,

Box and Jenkins(5) have pointed out that any stationary process,
z,» such as the z, of (3.3) or (3.1), may be completely characterized
by knowledge of its correlaticn funection {or, more precisely, its

autocovariance ), Zgy across time:

; 8
Zp = Bz _p).
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This equation states that "Zn" 1s defined to equal E(tht~T)=
"E(tht-T)"’ in turn, is the notation we will use to indicate

the "expected value" or "mean valug" across all times t, of the
product, 242y _mo throughout the statistical process under study,
Box and Jenkins argue(é)}, in the context of discussing general
processes which inelude (3,3) as a special case, that the
autocorrelation function of the "z," in (3.3) has the same
characteristics as that of "zt" in (3.1); therefore, they conclude
that the former statistical process, as a generator of "zt", is
equivalent to a process of the second kind, In other words, a "Zt"
generated by a process such as (3,3) will appear to obey a
phenomenological equation such as (3,1),

More precisely, Box and Jenkins ask us to consider the

following process, in connection with (3,3):
= - = { - g(
i w2y T Pm = (kg ) - A(x ) tey )

=(fxy_ g +by to) ~gx - de

(3.4)

-

=y tep -y
From the randomness of bt and ct, it is clear that the autocorrelation
of this process will be zero for time intervals, T, larger than one,
From this information, and from the Gaussian character of the

process, they conclude immediately that L is itself a simple
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moving average process of order one, representable as:

W = A - Ga gy

for some 91 and some random process ayi 1f we recall the definition of
W, in (3.4), and substitute, we find that our z, from (3.3) oveys
an equation representable as (3,1), Those readers who have difficulty
with this equivalence should refer back to Box and Jenkins,

In the social sciences, however, most dynamic processes of
interest involve more than one variable, Fortunately, it is easy
to generalize the definitions and results above to the multivariate
case, by treating sets of variables as vectors, Thus we can define

a multivariate ARMA(1,1) process as a process which obeys:

+ P (® and P matrices) (3.5)

= B 3
Z &t + 7z fel?

t-1

where "52" is a vector random process, obeying a multivariate

normal distribution(7):

p(é’fc) =

2, (3.6)

1 exp(—gakA
‘J(zﬂ)ﬂdet A

where A is the covariance matrix of this process, where the
off-diagonal terms of A allow us to account for the possibility of
cross-correlations in the noise process, and where n is the

dimensionality of the vectors'gband.zﬂ We can also define a noisy
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time~series regression process as one obeying:

§; thml + bt
(3.7)
- --
2y =Xt T
where "gl" and "EI" are random normal precesses of dimensionality n,
as was "é:" above, with covariance matrices which we will call B and C,

»

If we define "ﬁ%" as ékmgilwl, then the rest of (3,4) goes through
exactly as before, yielding a process with zerc autocorrelation
for T>1, representable, as before, as a simple moving average
process, l.,e, as 3%4Pg;n1= thus Box and Jenkins' argument for
equivalence goes through in its entirety, with equal validity, in the
multivariate case,

Our main concern, in this chapter will be with the estimation
of the coefficients in (3.5) and (3,6), for a given set of data, {%2;.
However, since our interest in (3,5) and (3,6) comes from our
interest in (3.7), it is of interest to see how we could go back,
after fitting a model of the form (3,5), to derive the coefficients
cf an equivalent model of the form (3.7)., In the following section,
we will elaborate on the mathemaiical details of this process,
For the social scientist, however, the most interesting conclusion
from this argument will be the equivalence between "6" in (3,5)

and “€" in (3.7). Thus, the €, ., estimated by the ARMA estimation

ij
program itself may be thought of as "corrected" regression coefficients,
Just as the usual regression coefficlent, bij' is called a

"b coefficient” or "beta coefficient”, our "corrected regression
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coefficlent,” 6, ., may be called a "theta coefficient™; in a

is

similar way, our P, . may be called a "rho coefficient,”

13

(11) THE RECONSTRUCTION OF A WHITE NOISE MODEL
FROM A VECTOR ARMA MODEL

After fitting a vector ARMA(1,1) model, a model of the form
(3.5) and (3,6), how do we derive the coefficients of the equivalent
model of the form (3,7), assuming that an equivalent model does
exist? Recalling that Gaussian stationary processes are completely
characterized by their autocovariance functions(8), we may phrase
this question as follows, For a given value of ©, P and A, in (3,5)
and (3,6), we wish to find values for €, B and C in (3.7), such that
the autocovariance matrices Zn will be the same for the two processes,
for all time increments n, Let us use the notation "8" to represent
the "€" in equation (3.5), and "@" to represent the "6" in (3.7);
these two matrices will turn out to be equivalent to each other,
but for now we must establish the equality,

The autocovariance matrix, Zn’ is defined as being made up of

components, Z .., defined as follows:
nylj

Z g 5=z

n,ij t,izt-n.j)’

where Z, 4 refers to the value of the i-th comporent of the vector'ﬁz,
L
the value of the vector P at time t; from ancther peint of view,

7 may be regarded as the value of the individual variable =z

‘J‘t’i i
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at time t, Note that we have used the same notation here as in
section (i) to define the autocovariance, From this definition,
We may immediately deduce that:

A D

. A
= E‘zt,jzt+n,1) =2, 5

m
Z = Z* for all n.
n -1

Thus if Zr(}a) = Zr(lb) , for our twe processes "a" and "b", for n20,
then the equality will hold for nSO, and vice~versa; thus we need
only consider n20C in determining equivalence,

From the randomness of "é’t", "B.t" and "E:'t", from the causal
strueture of our equations, and from our assumptions about the normal

distributions governing these processes, we have:

S CHECRE I WY S WO (3.8)
(o 1%, 3) = SﬁoBij = 8ot (3.9)
Bley, 1%, 50 = Snofry = 8ol (3.10)
E(at,izt*-n,j) = 0 for nd0 (3.11)
E{bt'izt+n'j) = 0 for n€o0 (3,12)
E(Ct,izt+n,j) = 0 for ndo0 (3.13)
E(bt,ixtm,j) = 0 for nd0 (3.14)
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E(c‘t N t+n,3 0 (3.15)
E(bt,ict+n,j) = 0 (3.16)
Note that "§, .", the Kronecker delta, is defined tc equal 1 if

13
i=3, and zero otherwise,
Let us begin by caleculating the autocovariance matrices, Zn’
for an ARMA(1,1) process as in (3.5). To make our calculations
more explicit, let us transform (3.5) into;

SEEVED S TNRED LRI

J
Let us multiply (3.17) on the right by &y 1o and take the expectation
y)

a

of the resulting equation on both sides:

= B(zy 2y 4) - ‘ZeijE‘%-i,jat,k)

Z PysBlay g 52y g
3

Bay 424 )

which, by (3.8) and (3,11), reduces to:

A

t,1%, k) = Mg = A (3.18)

E(z
Multiplying (3.17) by By g 0 and taking expectations, we get:
1

E(a

t,ia’t-ul,k) = E(Zt,iat-l,k) - ggijE(zt-i,jatul,k)

- ZP 1558, 1,100
)

which, by (3.8) and (3.18), reduces to:

E(Zt,iat“l,k> = (9 + P>A (3019)



rage lil=lg

Now let us multiply (3,17) on the right by & . K for n greater
- 4

than one:
ey 32y, = B2y 52 o) - ?gijE(zt-l,jatnn,k)

- LF g, Pen, i)
J

whieh by (3,8), and by changing the arbitrary origin of our

expectation notation, reduces to:

E( = QE(z

Zt,iat-n,k) t,jat-n+1,k)’

which, by induction starting from (3,19), gives us:

E( en"l(g + P)A n»o (3.20)

Now let us multiply (3,17) on the right by z

fen, k* for n greater
than one:
3 = B V- GR
L(at,izt-n,k) B2y 1% en, k! " OBy B )
- PE(at~1,jzt-n,k)'

which, by (3.8) and by change of origin in expectation, reduces to:

z_ =8z , n>1

n
(3.21)
7 = e”"izl n>1
Multiplying (3,17) by 2y q 0 Ve gets
4
3 = B P> . { 3
Blay y%iay,5) = Bloy 42 ) = 8 Blayy 2y 1)

- F E(at-l,jztwi,k)'
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which, by (3,11) and (3,18), reduces to:

Zy = 6Z, + PA (3.22)

Multiplying (3,17) by 2 g0 We get:
]

E( ) = E( ) - 8 E(z

2¢,1%1, 3 Zt,1%, 3 t=1, 3%tk

- P E(at_i.jzt’k)'

which, by (3.18), (3.19) and our definitions, reduces to:
A=z~ e(zf) - P ({8 + P)A)T,

which by substitution from (3,22) reduces to:

A=z, - QZOGT - @APT - PAGT - PAPT (3.23)

Equations (3.21) and (3.22) are clearly enough to determine the Z,
for n greater than zerc, given A, P, © and ZO'

From the stationarity of the process (3.5), we know that the
true variance matrix of fé; does exlst, and must satisfy (3.23),
Just as it is consistent with all the equations from which (3.23)
has originally been derived, From the stationarity of (3.5) and
{3.7), we may also deduce that both £ and © have the property
that there exist no nonzero matrices M such that M = QMGT or M = ﬁMﬂT,
(9). It is worth noting, however, that this property, which we will
make use of here, involves a much weaker assumption than that of
stationarity, (10), At any rate, from this property, we may deduce

that the solution, Zys to (3.23), is unique; if there had been two
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distinct solutions, Z. and Zé, then M = Z.-Z) would be a nonzerc

0 6 "0

matrix violating our assumption for ®. At any rate, glven our
restriction on 6, equations (3,21), (3.22) and (3.23) are
sufficient to define the matrices Zn as functions of &, P and A,

Now let us calculate the autocovariance matrices as functions

of By C and §, Let us rewrite (3,7):

g1 T X,1 T :E:Qijxtml,j (3.24)
J

t

Cp,1 T Fp,i T %4 (3.25)

Let us multiply (3,24) by b and take expectations:

B(by 4by ) = B(xy yby o) = € (x4 oy ),

which, by (3,10) and (3,15), reduces to:

) = B,. = B.. (3.26)

&( i3 Ji

¥ 1Pk

Let us multiply (3,24) by b .y for n greater than zero:

t=n,x

E( = B(

- - i 3
%4, 1%-n,k’ xt,iotmn,k) g “(xt-l,jbtan,kf'

which, by (3.9), by changes of time origin and by induection, reduces
to1

i) s n . hY =

E’(Xt,ib‘t"'n,k) g ﬁ‘(x‘t,ib‘t,k/ gnB! (3-2?)
where the last step comes from substituting (3,256).

Now let us multiply (3.,24) by Xy o g for n greater than zero:
v=lly

B(by 3%4n, i) = BOxy 3%y ) = F B(Xy 1, Fpen, i)
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which, by (3.14) and by induction, reduces to:
Bx, ,x, ) =@Bx, ,x ) =¢% (3.28)
t'i ‘t‘l’l.k t’i t'k 0 ‘

Multiplying (3.24) by X,

we get:

ok’
Bby g%y i) = Blxy g%y o) = # B(x 4 5% 1)

which by (3,26) and (3,28) reduces to:

RN T N

X, =@ (§X.)" +B = gX g +B (3.29)
¢ 0 0

Now let us shift to considering (3,25), multiplying it by

Xy p,k» TOF 1 greater than or equal to zero:

’ - v VN oo W " 3
Bley s%pun, i) = Bloy 3%y i) = Blxy 3%y o o)
whieh, by (3.15) and (3,28}, reduces to:
Y = = n 20"
E(zt,ixt—n,k} Xl’l ¢ xo' (3oJ0)

Multiplying (3.25) by c, o We get:
1

& = B(zy gep i) = E(xy sep 1)

3\
,1%,k’
which, by (3,10) and (3,15), leads to:

3 (3.31)

E(zy g0 y) = By = Bpy

Multiplying (3.25) by Z, 10 We get:
n

b == ] Yo ”

“(Ct,izt,k) Blay 124y E(xt,i“t,k)’
which by (3,31) and (3.30) gives us:

Zn = 0+ X (3.32)

0 0
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Maltiplying (3.25) by z s for n greater than zero, we get:

't“’l’l,k

Bley 32y n ) = Boy 2y o ) = BOx g2 0 50

which by (3.13) and (3.30) reduces to:

z, = #'%, n' PO (3.33)

Now: cur problem is to find @, B and C given ©, A and P,
Assuming that the Zn are nonsingular, eguaticns (3,33) and (3,21)
clearly tell us:

g =8 (3.34)
To findB, let us begin by left-multiplying equation (3.22)

by Gm1m¢-1:

-1, -1
e Zl Z0 + © "PA,

From (3.33) and (3.34), this reduces to:

. -1
XD = Z0 + 8 "PA

Let us left-multiply this by 6, right-multiply it by €,
and subtract the results from the original equation:

K. - @K 6% =7 ~ 62.6% + e rpa - pagl
0 0 0 0

Substituting in from (3,23) and (3.29), we get:

i

B = A + GAPL + PAOL + PAP. + 9 'PA - PAGL

= A + GAPL + PAPY + e‘lPA (3.35)

To find C, let us left-multiply (3.32) by 6, right-multiply
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the result by QT, and subtract the result from (3,32) proper:

v ear ol oo anaT oy ol
Zy = 8548 = C - 608 + X, - 6X6,

which by (3.29) reduces to:

, T n. oeat
Zy = ©L8 = C - 606" + B,

which by (3.35) and (3.23) gives us:

A + GAPT + PAGT + PAP! = Z, - QZOQT

= 0 - 0007 + (A + GAPT + PAPT + &7 pa),

whieh reduces to:

rae’ = ¢ - 6ce? + 67 pa,

which can be sclved by:

C=- e 'Fa, (3.36)

As with equation (3,23), our assumptions about © lead to uniqueness
in this sclution, in the same way,

In summary, equations (3,36), (3,35) and (3,34) give us the
values of {#, B and C necessary to the construction of a model of
the form (3.7), equivalent to a process known to £it (3,5) and (3,6)
for a given set of ceefficients &, P and A, These values, however,
nay yet be insufficient; in cother words, there may be no values of C,
B and @ able to yield an equivalence, Box and Jenkins' argument,
cited earlier, states that processes of the form (3,7) will always

have equivalents of the form (3,5); they did not state the converse,
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If 6, P and A, in equation (3.36), should require that "C"

not be a positive symmetric matrix - what a variance matrix is
supposed to be - then we may conclude that our estimates of

6, P and A contradict the hypothesis that the process at hand

fits a model of the form (3.7), For the purpose of actual

social science modelling, equation (3,34) tells us that "e"

coming out of ARMA estimation can not only be used in forecasting,

but can also be treated as a description of the underlying social
dynamics, #; therefore, we have decided, in our statistical Programns,
to concentrate on the task of estimating this © matrix, and the

other ARMA coefficients, rather than adding routines to operationalize
(3.35) and (3,36)., The terms "beta coefficient” and "b coefficient”
are already widely used, in describing the matrix elements of
ordinary regression; therefore, ocur computer routines call the gij
"theta coefficients”, to emphasize the parallel with regression,
The "Pij" are called "rho coefficients,” and the "Aij" are simply

called "error covariance,”
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(11i) THE ESTIMATION OF MULTIVARIATE
ARMA PROCESSES

kow let us move on to the central gquestion ¢f this chapter:

the estimation of multivariate ARMA(1,1) processes, As we pointed out
in section (i), it seems rather clear that technigues for
multivariate ARMA estimation have not, in the past(11), been
reduced to a computational cost approaching that of classical
regression, One might have imagined that some kind of spectral
techniques might exist in parts of the literature which Hannan and
Box and Jenkins are unaware of, However, Jenkins is co-author
of one of the classic textbooks on the application of spectral
methods to statistics, and has been fully aware of such recent
developments as the fast Fourier transform(12); Hannan's book(13)
also indicates a full awvareness of the possibilities for spectral
anzlysis,

Box and Jenkins, in their Time-Series Analysis, do present(i4)
a technique for the estimation of ARMA processes, This technigque,
while described in univariate terms, is phrased in such a way that
it extends very easily to the multivariate case; we will find,
however, that the exitension involves costly computations, They begin
with the maximum likelihood technique, as deseribed in Chapter (II);

in other words, they set themselves the task of maximizing:

L = log p(cbservations' model ),
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4 in equation (3.1) can be

calculated as functions of 6,, ¢ and 2y by use of the equation

They note, on p.210, that the "a

itself, and that the %@é contain all the information we have

available about Sgé}, given Ql, ¢ and ay; thus they put:
L= log P(ai"'aT\gl’ By aﬁfo 0‘2).

where "T" is the last time-period for which data are available,

Glven that a, is a normally distributed random variable, they get:

t
T
10@2“ P(at \ 91 !f‘!aiscz)
3

]

L(919¢'5~{s62)

2
a

- 15{\'(;:% 5 ) (3.37)
o \ e exp( P (3.3

a,

1 2
k=Tlg @ - — a
a 202 t

a ¢

i

(k is a constant)
In the multivariate case, we need only use the multivariate

normal distribution, (3.6), for ;‘.t’ to get an equivalent expression:

oA W . T ; T, =
L(6,P,4,2F) = k ~ 5 log det A - .%Zt?tA 1‘52 (3,38)

They note, in (3.37), that the term "Zai" is a function only of
of &, # and af, not of G‘Z, and that we can go on to minimize
this term without congideration of sz. Also, they have a rather
elaberate discussion, on p,211 and 502, about finding "good" values

for a{, or for estimates of prior data used to predict aif*; our oOwn
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interpretation is that the "best" empirical value for ai is simply
the value of maximum likelihood(15) for the data given, and that
the best procedure is simply to append ai to the list of parameters
to be estimated, In any case, as Box and Jenkins point out, the choice
of procedure here should make little difference, for long or moderate
time-geries,

At this point, with two parameters to estimate - 6, and g -
Box and Jenkins suggest that the barameters be lumped into a
coefficient vector, Ez to be analyzed by the general methed of
"nonlinear estimation”, discussed verbally on p,231 and defined
specifically on p,504 as the Marquardt algorithm, The first step
of this algorithm is to construct seme initial estimate,ﬁiy of the
coefficient vector, ig. The second step is to calculate the ay and L
for this value,'gb, by using the dynamic equation, (3.1), With T
periods of time t, this implies on the order of T calculations;
if we use the multivariate dynamic equation, (3.5), with n variables
and Cn terms to be calculated and added per variable, this implies
an calculations per time period, anT caleulations in all,
("C" will be used throughout this discussion as an arbitrary
proportionality constant, ) The third step is to caleulate the
derivatives:

=

08,

» Tor all k and t,

5
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by differentiating (3.1) to get an iterative equation:

[

T B ) et
'abk laBk

4y 9

o o 2G 3

(From a formal point of view, thelr differentiation is straightforward,

because the "at", "at_l", 91 and ¢ are all considered here to be

functions of'gﬂ all the differentiations are carried out with respect
to this vector,'gt The set of observed data, {zg&, is a constant
parameter throughout this entire analysis.)

In the multivariate case, we must recall that any coefficient Bk
may affect any component, at,i' of the error vecter, indirectly,

and we will see that the iterative equation below for caleulating

these derivatives does not allow us to limit our attention to, say,

Q aT,~19
—(2,A "a
aBk t

requires us to compute:

)3 thus the generalization of Box and Jenkins' method

aat, 1

aBk sy for all k, 1 and t,

by using the iterative rule which comes from differentiating (3.5)
in the same way as we differentiated (3.1) above:
D2y - . da
O t,d _ 2 C iy, . p, (m=ted)
’aBk . %Bk t=1,3 i ij aﬂk
J J

08 5 .
- (5?3;‘1)%1, ; (3.40)

L d

J
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For sach actual Bk in & or P or elsewhere, this eguation will still
regqulire Cn2 calculations for any pericd of time t, to handle all the

possible combinations of 1 and j, Thus with an coefficients B, , and

k.
Cn2 calculations per time period per coefficient, and T time periods,
this leads to a grand total of CnuT calculations, And this is only
the beginning,

The next step, in the general nonlinear estimation routine,
as discussed by Box and Jenkins on p.232, is to go back to our
likelihood funection, (3,37) or (3.38), and substitute in a first-order

Taylor series for a, or B, in terms oi‘?ﬁ In the multivariate case,

t t
this gives us the major term:

aa
Z Z@t.i - (320 a7 G
9\5 t
<Y Ferdo, 5,
m m

leading to a generalized form of the matrix which Box and Jenkins
unfortunately call "A":

aat L ,-1 éat .

v, aBk 1J ’me

G,Q)'e

For the Cnu combinations of k and m, the calculation of this matrix

£
requires the summation of nzT terme per combination, and CnOT

calculations in all, By summing the products of the two terms on the
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right, over j, for all i, t and m, we may reduce the cost down to
CnST. But at this point, the simplifications stop; an "M" of these
dimensions, with these properties, is clearly central to the
algorithm presented in Box and Jenkins, We could go on to discuss
further details of the Marquardt algorithm in the multivariate case,
but the number of calculations required - Cn5 T - is already large
enough to contrast strongly with the new algorithm we will present
below,

Now: how do we arrive at a less expensive algorithm to
accomplish the same objectives?

To begin with, we will build our new algorithm on a well
established foundation, the classic method of steepest ascent;

we will maximize L(G,P,%,A) by writing:

1 n L
B£n+ ) o Bi(< ) + W gk%}; ’ (3.41)

where W is an arbitrary scale factor to be adjusted during
maximization, and where &x is an arbitrary positive "metrie factor”
to be applied to Bk' We will include &, P and ’é’l as components of'g

however, we will not include A, Starting from a givenglgo). A(O) and

w, we will first compute g%;. Then we will compu'te-B.P. From ﬁ:ﬁz’
alone, equation (3.5) allows us to compute all the {5:}, from times
t=1 to t=T, It is a well-known fact, for a given set of data, {E?C;,
that the maximum likelihood estimate "A" of the covariance matrix

generating this data as a random process of zero mean, will simply be
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the observed covariance of the {?2%:
2
| PSR 3 * "
Ajs = F . &, 1245 0

Thus for a given B', we can maximize the likelihood function (3,38)
vy finding the t&%‘, and picking A' accordingly, For thils combination,
we will immediately be able to estimate L(A';§7}, by equation (3.38),
If L(A',B') is less than L(A(o):g(o)), we may reduce w in half and
try again, Eventually, for w small enough, we may be sure that
14", T 210,52 a9 20, 4 = 3L (,(0)3(0)y 4o,
by the definitlon of the derivative, We may then set B' to be the new
73(0>, and A' to be the new A( >. As a practical matter, if
L(A',E’):£>L(A(O}:B(O)), We may increase the value of W, to speed
convergence, Also, while it would complicate the logic above to
change By while changing w, it would not hurt to chocse a new value
8y while estimating gi';,

At any rate, this procedure clearly allows a steady improvement
in our cheice of A and ﬁ: up until a local maximum is attained -

I A

i.e, until aBk % 0., The steepest ascent method, like other variational
algorithms, including the Marguardt algorithm, does not have the
capaclty to insure that local maxima are also global maxima,

In principle, this means that supplementary routines of varying
complexity may be added to the baslc algorithm, In practice, we will

follow Box and Jenkins by placing emphasis on reasonable initial

estimates oi‘izﬁ we will discuss this, and the practical problem
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of speeding up convergence, in section (iv),

We face one real theoretical problem in converting the
steepest ascent method into a useful algorithm for ARMA estimation -
how to caleulate the derivatives ;iak at an acceptable cost,

The mest elegant way to solve this problem is by the direct

application of the ordered derivative concept mentioned in Chapter (II),
or at least to apply related concepts; however, in order to avoid

the use of unfamiliar mathematics, and in order to make our derivation
self-contained, we will use a more conservative, algebraic derivation
here,

Let us begin by recalling that "at’i" in eguation (3.5) can be
considered to be a function oﬁ‘ga, 6 and P, insofar as (3.5) allows
us to solve for the‘ﬁ% by repeated application, In fact, it is
simple for us to write ocut this sclution explieitly, for times t
greater than one:

- s L(t-m), » ‘i:-ia
- 2 R@ v e )+t (3.42)
m:l
The validity and uniqueness of this solution can be proven easily
by induction; for t=2, this expression reduces to (3.5) with t=2;
for t+l, equation (3,5) gives us:

-lp ..,,*
T gz(t+-1) g+ PR,

and, if we substitute in from (3.42) for 2;, as the induction
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hypcthesis allows us to, we get:

o > tem > ot=le
Bhal ™ Ppat F O(4yg)q T E( le (262, 4) 7 78)
&

t
- - . dtlem - & t®
Zyaq + Gb(t+1)m1 + ZF .g.mﬁ-ezm 1/ + P Ay
£

which reduces to (3.42) for the case t+l, Thus, if we think of "é’t"
as a shorthand for the algebraic expression (3,42), it is clesr that
we can make use of (3,40} above, and of the similar equation which

comes from differentiating (3,38):

a2 (3 L)
®, %, *t 145, 5

’ ‘)Siﬁ
= - (_,.z_m\ -3 ”1(3mma’t 1y
2 %, o At 38, )’

hiit unt

which, by the symmetry of A, equals:

Z< ita, (3.43)

th
It will alsc be convenient for us to write out (3,40)

a.ndbm, :

explicitly for the cases B m@m kmrr 1,

k

P,
= LRy ) - 8ivtia,s (o)

ra

& .
- ,<D~§-—~t‘“1 5 - 8. (3.45)
A i3 Prs ixr"t=-1,s -
h

024 5 L
= e F .'________:’ .Q’é
T Z gD (3.46)
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Now let us define a new variable, Wy o5 by induetion:
ol

Tyi ZAi"! A7, 3
(3.47)

RS S
£,1 7 T Aija‘t,j E Wi+, 5T

J
is really "iwa in the notation of Chapter (II),)

aat i

ii

w

#

W

(Note that w, .
tyl

He now olainm that:

Y :
.. T T2 Mtrftel,s (5.46)

t=2
(In Chapter (II), this would follow frem a direct application

of the chain rule for ordered derivatives, equation (2,13),
without reference to (3,44) or (3.45).) This claim can be proven,
by proving the more general proposition which follows, and by

considering the special case m=l:

T
a —;I "1-.) = W .

t=wm timtl
3,
Y 1‘3 -
¢
{(For m=1, recall that,ga is an externally supplied parameter, not
affected by €, In the case m=T, the first sum of the right will be
held simply to have zero ternms,) Differentiating the term on the left,

as we did with (3,43), we can simplify this new proposition:

3% 1=l L +Z 2
- g A w
ij ted “i,rt-1,s 4 m,iﬁé;;m
timti ¢

t=m lvu
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We will prove this by induction en m, downwards from the case m=T,

For m=T, this expression reduces to:

3% 1 -1 .aaT i
Za Aifry T Z"T,i’&@rs ‘
¢

0’,
substituting in for W g from (3,47}, this is equivalent to:
[ ]

L Z Zim”a@ X
i d

which clearly holds true, Now we try to prove (3.49) for TY le,
on the assumption, provided by the induction hypothesis, that

it is true for m+l, We note, for m&T, that:

05, 5 A”l Qa i -
’6 15,9 7 7 3. ia teJ

twm b tamtl "-»5
Z ‘b 1" my »
‘N

which by the Induction hypethesis is equivalent to:

- ‘ a“im A-la = o
j :a@rs 137t, 3 itr*ﬁml 8

t.nz

o Y11
b . z O2ni1 1 E oL
m+1 i a j ™y J
L ¢ 3
which, by substitution from (3,44), equals:

T

% .

- Zwt,rztnl,s * Zwm+i,1( v sirzm,s "zpijﬁ::s )

wmid k)
22 o

5-3 my 5’
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aa

- g} wt,r%toi,s - m+1 ¥ m,s ZZ m*i i i,_;ae
- % At
iiaem 135%m, 3

= Oiwt,rztal,s Z )z( Pij mt+i, 1”7 ij m,,,)

timby
which, by (3.47), equals:

i t r t"'»‘-)s Y m,i ’

timad
proving (3,49), as required in induetion, for the case mj
with the induction complete, (3,49) is proven, and the speclal case
(3.48) follows immediately,
In a similar vay, we claim that:
B D N (3.50)
L RSN
the proof of this claim is exactly the same as that of (3.48), above,
if we replace all instances of ”Grs" by "Prs"' cf "z" by "a", and of
references to (3,04) by references to (3,45),
Our final claim is that:

P, bl (3.51)
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This comes out as a special case of:

~

for m=1, This follows from induction, teo, by the exact same proof

used for (3,49), but with "6.," replaces by "a, ", with references
- LS )

to (3.44) replaced by references to (3,46), and with references to

Zt«l replaced by zerces,,, i,e, with these terms left out,

In short, equations (3.49), (3.50) and (3,51) will give us
all the derivatives we need, to operationalize (3,41), once we have

computed the "w, ," in eguation (3.47), Equations (3,49), (3.50) and

ty i
(3.47) each require us to carry out an computations, for every
period of time t, and (3,51) requires us to carry out fewer,

Thus the total number of computations required, to get all of the

derivatives, is anT per iteration, This is substantially less than

the Cn5T per iteration of the Box and Jenkins method; for an "n"

(number of variables) of about ten, it implies a thousand-fold
reduction of cost, Alsc, we may recall that it requires CnQT
iterations even to solve for the'ai, given {Eig, A(O) and-g(o);
thus the cost of our method here is on the order of the theoretical
minimum, Even classical regression costs on the order of anT

operations per analysis(16); thus the technigue above brings
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ARMA{1,1) analysis down into the range of costs aceceptable to those

who now can afford multiple regression,

(iv) DESCRIPTION OF CCMPUTER RCUTINE
TO ESTIMATE ARMA PROCESSES

Our primary goal, in applying the dynamic feedback method
to the problem of ARMA estimation, was to construet an cperating
computer program for use with social science data, This program was
written as a new command, "ARMA", in the "TSP" (Time-Series Processor)
package for economists, which in turn is a major subsystem of the
MIT Cambridge Projeet Consistent System for social scientists;
through TSP, the program has been available for several months
to anyone with access to the MIT Multies machine (built by Honeywell ),
which, as part of the ARPA computer network, can be used directly
from all types of computer consoles in a variety of cities from
Honolulu, to Washington D,C,, to London, England, Donald Sylvan,
working with Frof, Bobrow at the University of Minnesota, has made
extensive use of this routine to evaluate the impact of American aid
programs overseas, The usage of this program is documented in the
current TSP manual(i7); our concern in this section is with
the mathematics behind the prosran,

In order to convert the algorithm of section (1ii) into a

working computer program, it was necessary for us to go back and deal
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with a number of more practical issues,

To begin with, how do we choose the values for "w" and "gk"
in (3,41) to give us enough progress per iteration to make the
reductions in cost we have cited meaningful? Wasan(18) has pointed to
this difficulty as the central problem in using steepest ascent in
ordinary problems of statistical estimation, We did encounter
this difficulty in some of our earlier tests, but quickly found
a simple interpretation of the problem and a solution,

In essence, the problem is one of scaling, Suppose that Wwe have
two variables - say, world population and average births per femalse -
to be called “21" and “zz", respectively, and to be used in predicting
each other's future values, Let us suppose that about 10% of the
value of each variable can be explained by the value of the other
variable in the preceding year, Then the maximum likelihood value
for @12, for our data, will be a number in the billions; 912,
when maltiplied by a "22" which is much lese than one, must lead to
a product, @1222, on the order of billions, 921, by similax logic,
must be on the order of billicnths, A change on the order of unity
in 912 will have very little effect on L, because it represents such
a smail fraction of the current value of 912 or of Zys Thus g%f;
will be extremely small, even if 912 has been misestimated by, say,

10%, On the other hand, a very small change in 921, much less than

unity, could still double the value of 621, and thus lead teo a very
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large effect on L; thus ig%f; will be a very large number, if 921
has been misestimated by, say, 10% or so, Looking at (3.41), we can
see what the result would be without the "gk" terns: 912, which
requires a huge change in absolute terms, would be changed very
little, while 921, which requires a small change, would be changed by
a much larger amount, Balanced improvement in the two coefficients
would be impossible, One might imagine the possibility of imbalanced
growth - that "w" might be made very small at first, that €., would

21
converge to its own optimum, where it would generate a zero derivative,

and that "w" could then grow enough to allow €,, tc move to its

12
optimum, However, in general, the coefficlients in a statistical model

are not so completely independent of each ether, If the optimum of 921
depends at all en the estimaie of 912, then our first small changes

in 6,, will lead tc enormous derivatives from &

iz 21
the system again before there is a chance for "w" te build up encugh

agalin, destabilizing

to allow a large increase in 912. Thus, at least when the scaling
problem is severe, the hope of imbalanced growth is not an answer to
the danger of slow convergence,

The solution of this problem was rather straightforward for
ARMA estimatlion; we simply scaled the variables of the problem
according to a common scale, More precisely, we achieved the same

effect by setting:

2 2
- o,
&y for Qrs = 5 8 for Prs = K;; s
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where "@" refers to the standard deviation, On a more sophisticated
level, what we are doing here is trying to maximize the expected
pregress per iteration, in light of our pricr probabilistic
knowledge about L, We do not expect the units of measurement

of the variables to tell us anything about their relative influence
on each other; therefore, we demand a choice of "gk" which insures
that a change of units will have no effect on our algorithnm,

More generally, these variances give us an idea of the expected
order of size of a coefflecient, and we set "gk" to keep the changes
in line with the expected ratios between sizes and derivatives,

To handle the case of B, = a, _, therefore, we write a rough

k 1,r
but reascnable expression:

8, = max( T(1-F_JA_, A_)

By changing 4 vy a certain amount, we are changing a; . in
1 ?

units proportional to 13 thus our formula for &y is like our formula

for the &1 with Qrs' except that " s" is replaced by "1", If Prr
equals one, then this effect will take place on all the at,r’
and the analogy is exact, Ctherwise, if Prr is smaller, the derivative
with respect te al,r of L will be much smaller, evern when the optimal
size of al,r is still just as large; thus we propose a large B9

in that case, Note, as "AQO)" is recalculated in every major
iteration, the formulas above encourage us to recalculate the ”gk“

at the same time, In Chapters (IV) and (VI) we have ineluded

a brief discussion of the success of this general procedure with
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the estimations we have carried out; in the Appendix to Chapter (II)
we have suggested ways of generalizing the procedure for use with
general, nonlinear models,

The choice of "w" requires a similar exercise in prior
estimation. At each step, our program looks at three essential
pleces of data - L(A(O),gw)), L(A',-lg’) and Z(B}'{-B}({O))g—;— .

3 k
Assuming that L is essentially quadratic, and that the current choice
of w is "right" (i,e. that L(Aﬁ,Eﬁ” is the maximum of the quadratiec
distribution), the program "expects” that L(A';ﬁ?) will be better
than L(A(O);ﬁ(o)) by exactly half what the gradient would appear to
indlcate, If this expectation is correct, then the program concludes
that B' is not only acceptable, tut also that there probably is
little polnt in exploring further in the same direction; it sets
3;(0)457. A(o) to A', and begins a new major iteration, If L(A',ge)
is worse, then, by the guadratic assumption, we have overshot by
at least a factor of two; w should be cut in half, and a nQW'EF.tzied
accordingly., In order to be a bit more conservative have specified
in our program that w will be reduced by 40%, if the actual gain
is less than 25% of what is indicated by the gradient, If L(A',Ei? is
better than 75% of what is indicated by the gradient, our guadratic
assumption tells us to deuble w, In an earlier version, we Were more
conservative here, and required 10C%; however, convergence was slow

in some cases, and we reduced the requirement to 87%, which has proven

i)
adeguate, In the intermediate range, when B' is deemed acceptable for
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the start of a new major iteration, w is still changed somewhat,

for the sake of the next iteration; w is multiplied by twice the
actual gain, LA', D) - L(al97 2090} divided by the gain predicted
by the gradient, At the other extreme, if w appears to be far off,
the program will multiply w by & or by .3 in each minor iteration;
nore precisely, if w appears to be too small to let us set'§<o}¥g',
even after w has just been doubled within the same major iteration,
or if w appears to be too large after having just been cut to 60%,
then a larger change will be iried in the next minor iteration,
Flags are set in the program, to force it 1o stop changing w,

as seoon as it starts changing w in opposite directions within the
same major iteration; in such cases, our procedures above insure that
either the last B' or the one before it gave an L(A‘,ﬁ') mich better
than L(A(O>,§{O)), and our program will set'ﬁ(c) te this new 3‘ for
the next major iteration, For reasons similar to those mentioned

in the previous paragraph, w is initialized at 1/T,

At each step, the program prints out L, as defined in equation
(3.38), and the direction of change of w, After five major iterations,
or after L appears to have stabilized to within ,01, whichever
comes first, the program stops, and asks the user if he wishes to
continue; if not, it prints out the analysis so far, and transfers
to another program to carry out simulation studies of his model,

In the current version described above, five major iterations have

usually been enough for a close approximation, for analyses of actual
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soclal science data; for safety, however, we have generally used

ten in our own analyses., {Once L is about 0,1 away from its

maximum, then the current set of coefficlent estimates has almost

as high a probability of exsct truth - 90% as high - as the

maximum likelihood set itself; thus 0,1 is a conservative upper limit
to how much accuracy it makes sense to ask for,) Unfortunately,

the changes above were made plecemeal over a number of runs on
different data, with the final improvements existing only in the
basic subroutine incorporated inte the MIT version., This routine has
a more effective procedure for generating initial estimates than

we used with our earliest test data; thus the direct comparison,
before and after, would overstate somewhat the relative merits

of the current system, In the Appendix to this Chapter, we have
provided a numerical example of convergence results before and after
these procedures for convergence Were introduced,

The fundamental purpose in using ARMA estimation, as we have
deseribed it, is to improve upen classical multiple regression, Thus
we have declded to use multiple regression itself, to provide the
initial estimates,-g(o). Not only are these likely to be reasonable
estimates, in terms of their general order of size and in terms of
the size of the biggest terms; they alsc provide us with an assurance
that our ARMA model will either represent an improvement upen

multiple regresslon, or, in some cases, will confirm multiple regression,
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Our subroutine has been written tc allow other initial estimates,
but the main program now available at TSP does not make use of
this option, Originally, we used the regression coefficients that
come from a standard model ineluding regression constants;
our results on Norway, in section (v) of Chapter (VI), were based on
that system, With the constants, one introduces a greater degree of
freedom into the regression models, to offer a more interesting
(though perhaps artificial) comparison agalinst the ARMA models,
which do not include that degree of freedom, However, in order to
insure convergence under all circumstances, we have eliminated the
regression constants in the MIT version; users of that system still
have the freedom, in any case, te obtain regression constants based
on constant terms by using other modules in the same system or even
by another run of the ARMA command, Both the MIT versiom, and our
private versicn used on the Norway data, print out all the ARMA
estimates and regression coefficients, along with the standard
deviations of the variables (to assist in interpretation) and
the likelihood values for both models, The signifiecance of the
various coefficlents can be estimated by looking at the likelihood
of the models which result when the coefficients are removed from
the model,

Several other options have been added, to extend this algorithm

somewhat, First of all, there is now provision for "exogenous
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t-1
could have been replaced systematically by "Gyt_l", where 8 is

variables,” In the discussion above, the expression "6z

now a rectangular matrix, and where Vgt inecludes bhoth Zynt
and a few other components; none of the eguations above would have
had to be changed in form, Our program, in its current form,

allows both endogenous and exogenous variables,

Second, there is provision to allow the user to dictate
apriori that certain components of © will be constrained to equal
zero, This is done simply enough, by setting their initial values
to zero, and constraining (3,41) to apply only to the other
components of 6, Thus L 1s maximized as a function of the other
compeonents, subject to this constraint, The basic subroutine allows
this for any coeffieient, but, in the MIT version, we have limited
this to those eij for which yj is an exogenous variable,

Third, there is provision to give the user some ability,
at least, to handle nonstationary processes, Box and Jenkins(1i9)
discuss at great length the prominence of nonstationary processes
in practical statistics; they point out the value of introducing
some kind of careful procedure for dealing with nonstationary
rrecesses, even if the procedure must have a less rigorous
foundation than the usual statistical processes, in order to give
the social scientist confronted with such processes an alternative

other than either giving up or using an inappropriate tool, However,

the procedures they introduce(20) involve processes which tend to grow
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T.

as tx, for some comstant k, By contrast, the commonest processes of
growth in the sociel sciences would appear to be those of exponential
growth, processes which may come out of a dynamic relation like that
of equation (3,5), but with a choice of "&" large enough to allow
growth, The concept of maximum likelihood, as discussed in

Chapter (II), does not réquire a "€" that generates a stationary
process; thus at first glance, the special procedures suggested by
Box and Jenkins might appear irrelevant, However, our estimation
procedure has depended on equation (3.6), not just on (3.5) and the
1ikelihood concept, Eguation (3.6) implies that the average size of
the random compenent of our process remains the same across tinme,

If we were analyzing a two~hundred~year series of data on the US GNP,
for example, this would imply that a $10 billion error in our
predictions for 1790 from 1789 should be treated as a smaller matter
than an $11 billion error in our predictions of 1973 from 1972,

a $10 billion error would always be regarded as less significant
than an $11 billion error, regardless of the year in which the error
occurred, In practice, the measurement errors and random fluctuations

both are likelier to be a fixed percentage of the variable itself -

o]

NP = than to be a fixed independent process, To handle this kind
of situation, we have intreduced an option, "ARMAWT", to deal with

a model of error slightly different from (3,6):

_a a Y
pla,) = L exp( - *Z —tal Ay Shdy
J(zﬂ)“ det A . tyd 7Y T,

5‘5
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which is simply the normal distribution for the n-dimensional
vector i;f‘i » and which requires us to caleulate Aij as the
cevariance'of this vector, In practice, however, the simulation
studies of Chapter (IV) sugsest that the ordinary ARMA command
generally performs at least as well as ARMANT, even for most of
the nonstationary processes studied,

Finally, provisicn has been made for the possibility -
mentioned in Chapter (II) - that the available data would consist,
not of one string of observations across time for our variables,
but of a whole set of such strings; a general model of the process
of population growth, for example, might encourage us to develop
a model for application to data-series invelving the same variables
across many different countries, In order to handle this posslbility,
we can use (3,41) as before, but must note:(1) :a-'an Sa"—, across
all the data strings, will simply equal their sum &cr65° all the

individual data=strings; (ii) each datanstrinp, S, will require its

s)

own a for initialization; (iii) ~—z§j- will, of course, egual the
'
value of i&?¢-calculated in string 1 S. (Note that this example
1,r

might be a good candidate for the use of "ARMAWT", to prevent the
analysis from being dominated by nations of large population,,.

unless such welghting is actually desired, )
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APPENDIX: NUMERICAL EXAMPLE OF THE BEHAVIOR
CF DIFFERENT CONVERGENCE PROCEDURES

All of the ARMA estimations reported in Chapters (IV) and (VI)
were based upon the final form of our algorithm, making use of the
special convergence proesdures described in section (iv), However,
before we installed these procedures, we carried out a number of
tests on the preliminary version of the ARMA routine, oﬁ simple
made-up data sets, in order to check out the accuracy of the routine,
One of these simple test series was used before we introduced the
rossiblility of different "gk" for different "Lk", as in equatlion
(3.41); thus we can see the effect of adding our new convergence
procedures by comparing the old test results against a new analysis
of the same series, The data series in question is a simple
univariate series of length seven -~ 1,0, 1,2, 1.2, 1,3, 1.5, 1.4, 1,0 =

fit to the model Zt = @z, +a, + Pa a4 This series does not fit

+1 t t -1

well to a simple arithmetic progression; thus the "distance" from
the regression model to the ARMA model turns out to be falrly great;
the series is a relatively severe test of convergence possibilities,
(The cost per iteration is low, because the series is short, but the

progress per iteration in log probability, as a percentage of the gap

in log probability, is extremely slow,) Our initial test ocutput



Page III-4i

was a string of numbers, which we may arrange in a table:

Ya jor Theta LegP logp Change
Iteration i N at of
Number %HO} ) (0 E’,A' W
1 8204 -.8925 -,2017 0
1 0 L] 1' 6138 “’1
LRl ({31 LIX 1] .2602 "'1
2 1,0049 1,6138 1,5624 0
LN LAl e 1. 6571 "’1
98¢ 819t tess '0325 -1
3 . G7U6 1.6571 1.6773 0
L . G843 1,6773 1,6849 0
5 . 9849 1,6849 1,7004 0
LR RE 19 LI ] 1. 7162 1
(IR (12 1] LLX ] 1.8176 2
LIRL] 08 99 e 2.337l+ 2
(1R (IR0} LA “8, 8156 2
" 158 "o 3.614'85 _.1

Table ITl-1: Example of Convergence Results With Early
Version of the ARMA Estimation Routine
"Change of w" means the value of "ntest”, a number indexing

the source of the current.g?. If the w used in ggezfze:rs.mt;ing'ﬁ'i was
taken directly from the last major iteration, "0" is used; if w
was cut by 40% in the previcus minor iteraticn within the same
major iteration, a "-1" is used; and so on, as one might expect from
our description in section (iv). Note that the calculations implied
by this table include five computations of the gradient of
likelihood, and fourteen computations of likelihood (average errors)
for sample coefficient vectors'gf.

There follows the script of a TSP session based on the same

data-series, The ordinary user, to get into TSP, would have to
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sign in on the MIT Multics, then enter the consistent system,
and then issue the command "tsp:x" or "tspr:x”; in our own

directory, we only needed to issue the command "ispr" directly:

tspr (us)
T 23:25 4,916 § ,33 (tsp)
data$ (us)
T 23:25 ,965 §$,07 (tsp)

smpl 1 7§ load oldtsté 1 1,2 1,2 1,3 1.5 1,4 1,08 end$ (us)

smpl vector (tsp)
17 (tsp)
T 23126  ,581 $0,05 (tsp)
arma oldtstd end$ (us)
it,no, 1, from logp= 1,616 ( tsp here on down)
Ojnewlogp= 1,709
~ilinewlogp= 2,281
it,ne, 2, from logp= 2,281
Osnewlogp= -12,660
-1 snewlogp= 1,500
-2 ;newlogp= 2,864
linewlogp= 3,468
1lsnewlogp= -2,119
1inewlogp= 3,468
it.no, 3, from logp= 3,468
O3newlogp= ~47 638
~iinewlogp= -30,132
~2 inewlogp= 3,396
~2inewlogp= L,032
1inewlogp= L 706
1inewlogp= =0, Oy
1snewlogp= 4,706
it.,no., 4, from logp= 4,706
Osnewlogp= ~22 4527

Table II1I-2: Sample Session With Convergence Results For
Final Version of the ARMA Estimation Routine (top secticn),
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-1inewlogp= -11,374 (tsp)
~2 3newlogp= 3,865
-2 ;newlogp= 4,895
it,no. 5, from logp= 4,895

Csnewlogp= 5.114

isnewlogp= 5,249
continue? étsp}
yves us)
it,no, 1, from logp= 5,249 (tsp)
Osnewlogp= -11,615

-1jnewlogp= 3,343

~2 jnewlogp= 4,928
~2 ynewlogp= 5.381

it,ne, 2, from logp= 5,381

O;newlogp= 5,445

it,no, 3, from logp= 5445

Ojnewlogp= 5,542

it,no, 4, from logp= 5, 542

Osnewlogp= 5204

-1 snewlogp= 5,537
-2 snewlogp= . 586
it.no, 5, from logp= 5,586

Osnewlogp= 5,636

1;newlogp= 5,684

23newlogp= 5,846

continue? (tsp)
yes (us)
it,no, 1, from logp= 5,846 (tsp)
Uinewlogp= ~21,319
-1 inewlogp= -12,058
~2 jnewlogp= 1,427
=2 snewlogps 5.825
~2 ;newlogp= 5,968
1teno, 2, from logp= 5,968

Osnewlogp= 6,005

it,no., 3, from logp= 6,005

Osnewlogp= 6,021

13newlogp= 6.037

2;newlogp= 5,127

2 jnewlogp= 6,020

2inewlogp= 6,127

Table TII-2: Sample Session With Convergence Results For
Final Version of the ARMA Estimation Routine (middle section)
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it,no, 4, from logp= 6,127 (tsp)
O;newlogp= U7
-13newlogp= 4,054
=2 snewlogp= 6,046
-2 ynewlogp= 6,147
it.,no, 5, from logp= 6,147
O;newlogp= 6,162
continue? (tsp)
ves (us
it,no, 1, from logp= 6,162 (tsp)
Osnewlogp= 6, 184
it,no, 2, from logp= 6,184
Osnewlogp= €,197
~1snewlogp= 6,203
it,no, 3, from logp= 6,203
Osnewlogp= 6,202
-1snewlosp= 6,219
it,no, 4, from logp= 6,219
O;newlogp= 6,235
it.ne, 5, from logp= £.235
Osnewlogp= 6,249
continue? (tsp)
no (us)
logp= 6,249( 1,616) (tsp)
predicting oldtst
indep,var, theta rho reg, coeff, error rms
oldtst « 9722708 1,636800 0,98203e-02 1,276715
reg error = O,36896e~01 (tsp)
continue? (tsp)
no (us)
continue with simulation? (tsp)
yes (us)

Table 1II-2: Sample Session With Convergence Results For
Final Version of the ARMA Estimation Routine (bottom section)
After this, we went on to check out the simulation routine,

and other routines in TSP, to make sure that all was working correctly,

Note that the convergence information would not have been printed out
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in so much detail if we had turned on the "output some" flag,

Notice that the variance of the error with the ARMA model -
.0098203 ~ was quite a bit smaller than the variance of the error
with fegression - ,036896, This is a good index of the distance
between the two models, It is interesting that the economic cost
of using ARMA analysis -~ measured in iterations - would appear to be
less when it turns ocut to be unnecessary, when the distance is small;
the number of iterations can get large, mostly in the case where
the benefit from using ARMA analysis is also large, We have
deliberately used many iterations in this recent run, to confirm
that convergence was reasonable after ten major iterations or so,
in this difficult special case, Our earlier test run was continued for
only five major iterations, as shown in Table III-1; however,
in these five lterations, it covered roughly the same distance,
in increasing logp, that our new system did in the first two,

More signifiecantly, the old routine showed major signs of floundering,
and one has the impression that its final breakthrough was partly

a matter of luck, The new routine moved systematically towards
convergence, Note, also, that the problem of scaling is not

unusually great in thils case; the varlables P and 2y need scaling
vis~a~vis ©, but with long multivariate time-series cne expects

a far greater scaling problem, and a more dramatic need for the new

procedures suggested in section (1v), and in the Appendix to Chapter (II),
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FOOTNOTES TO CHAPTER (IIT)

(1) Box, George E,P, and Jenkins, G,M,, Time Series Analysis:
Forecasting and Control, Holden-Day, San Francisco, Calif,,
1970,

(2) In prineiple, this statement might call for a statistical survey
1tself, although for those familiar with the usual procedures
in social science it is an understatement., The MIT computing
center, which now serves both MIT and Harvard, has put out
a brief survey of statistical procedures available to its users
on the IBM 370, in its publication AP-77, This survey lists six
avallable statistical packages - the Statistical Fackage for
the Social Sciences, Data-Text, Econometrie Software Package,
the (IBM) Scientific Subroutine Package, P-STAT (Princeton
statistical package), and the BloMeDical package, Five of the
six include "multiple regression"; ESP, the sixth, would appear
to contain the same provision under the term "simple linear
regression,” Bayesian statistics are not ineluded in any of
the listings, Nonlinear least squares is present only in BMD,
(We suspect, however, that ESP - a cousin of TSP - might
have this capability by new, ) Moving average models are not
mentioned, Spectral analysis is not mentioned as such;
the X Supplement to the BMD manual indicates its presence
in the more recent version of that package, but in none of
the others, This probably gives as accurate indieation of
the dominance of regression analysis in actual work in
the soclal sciences,

(3) Hannan, E,J.p Multiple Time~-Series, Wiley and Sons, New York, p.39%

(%) Box and Jenkins, op, eit., p.,76
(5) Box and Jenkins, op.cit., p.30 (bottom of rage )

(6) Box and Jenkins, op, elt,, p.121-124, Consider the case
qlnqzml ’ dmo.

(7) Box and Jenkins, op, eit., equation (A7.1.9), D.260.
(8) See note 5,

(9) One way_of expressing th% idea of stationarity is that the norm
of €', and thus of (87)", will become arbitrarily small for u
sufficlently large; in particular, let us choqﬁe an n for
which these norms are less thannen%h If M=eMe~, then, by
substitution and induction, M=€ Mel", If M is nonzero, then
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there must exist some vector, ¥, of unit length, for which
" is of nonzero length; let us pick the unit vecter ¥ for
which the length of V¥ is a maximum, (Given that the matrix M
is of finite dimension, zt least one such veector must exist, )
Then our assumptions clearly tell us that the length of M7
would be greater than the length of QﬂM@Tnﬁz contradicting
our matrix squality,

(10) Consider, for example, © = kI, where k is not +1 or -1, and where
I is the identity matrix, If k is larger than +1, this ©
would correspond te a highly nonstationary process, Yet
this € stlll meets our requirements, If Mﬂ@MGl, then, by
substitution, M=k°M; this cannot happen Tor the "k" we
have mentioned, for a nonzerc M, Indeed, it would appear
that our assumption could only be violated for that
infinitesimally small proportien of matrices € which
have elgenvalues exactly equal to 1 in absclute value,
If this were proven, it is conceivable that our reasoning could
be extended even to that set of matrices by some sort of
limit theorem; however, such possibilities go beyond the scope
of our discussion here,

(11) It has been pointed out to us that R,L, Kashyap, in the area of
engineering, has suggested a procedure for the "estimation"
of models of the form of equation (3,7), in "A New Method of
Recursive Estimation in Discrete Linear Systems", in IEER
Transactions, AC-15, #1, p,18=25, "Estimation" in this article
is different from what a statistiecian would call estimation;
the article concerns itself with the use of a model of the
form (3,7), with coefficients already determined, to predict
future values of "z" and the like, Nevertheless, another
article vy Kashyap in the same journal, "Maximum Likelihood
Tdentification of Stochastic Linear Systems”, does present
a general method of approach which could be extended to yield
an algorithm similar to our own for estimating processes of
the form (3,5) above, Kashyap's general algorithm is
considerably weaker than ocur own or Jacobson's, discussed in
Chapter (II), insofar as it applies only to linear processes,
(n page 26, he discusses the possibility of using a representation
for his statistlcal processes invelving a "moving average error';
however, he uses a form of moving average with considerably
more degrees of freedom than the form used in statistical
theery, and comes to the conclusion that such a representation
is impossible, A study of the relation between his parameters
and ours might yield a solution procedure, like ours
discussed in section (i1); alternatively, the same genersl
approach might have been used from the beginning on our own
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representation, Wasan (see note 18 below) has pointed out
the importance of adding a rational procedure for handling
"w" and "g ", an issue which Kashyap does not discuss,
before one can claim to have a workable algorithm in the
field of statistics, Kashyap alsc mentions a notion of
“constrained derivative," which looks like a precurscr of
the "ordered derivative” of Chapter (II), but based upon
notions of variational calculus; the concept, as he uses it,
does not include his "lambdas” as a set of constrained
derivatives, while they correspond very clearly to ordered
derivatives in our own system,

(12) Jenkins, G,M, and Watts, D,G.,, Spectral Analysis, Holden-Day,
San Francisco, Calif,, 1968, p,313 includes reference to
the Cooley-Tukey fast Fourier algorithm, developed in 1965,

(13) Hannan, op, cit,, p,32-106, p,127-136, and the greater part of
p.245-405,

(14} Box and Jenkins, op. cit,

(15) Strictly speaking, our estimate of p(ai) should include
reference to the general probability of the z,. which
we would deduce, etc, However, as we point ou% later
in the text, our estimation procedures are not very
sensitlve o the assumption of stationarity; to account
for this extra piece of information, z., becomes rather
doubtful when nonstationarity is involVved, and when z
represents the beginning of a process previocusly A
governed by different dynamics, As in section (vi) of
Chapter (II), we have decided that "perfection’ on this
point would not be worth the cost, especially in light of
Box and Jenkins' similar loose approach to the point,

(16) With n dependent variables, and n independent, one must
compute tWo n by n covariance matrices, with each term
requiring T multiplications and summations, in conventional
regression, When the estimation of such a model is caxried
out by the separate estimation of n simple regression
equations, directly from raw data, one computes an n+l by n+l
matrix n different times, implying an even greater cost,

(17) The vest, most recent description is available in
Brode, John, Werbos, Faul and Dunn, Elizabeth,
TSF in the Datatran language, available in draft form
from the Cambridge Project, 5th Floor, Technolegy Square,
Cambridge, Mass,; discussions are underway regarding the
publication of this manual through the MIT Press,
The command language has been changed, to increase flexibility,
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(18) Wasan, M,T,, Parametrie Estimation, MeGraw-Hill, New York,
19?01 L. 151"152 o

(19) Box and Jenkins, op, cit,, especially p,85-9%,

(20) Box and Jenkins, op, cit,, p.87 (bottom) and p,113 {top).
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(1V) SIMULATION STUDIFS OF TECHNIOUES OF
TIME-SERIFES ANALYSIS
(7)) INTRODUCTION
Most of the discussion in this thesis about the
disadvantages of multiple regression - the classical
mainstay of time-series analysis - has emerged from the
study of concrete data in political science. One might
ask, however, whether our discussion applies to other
sorts of time-series, in economics or ecology or
elsewhere. Our verbal discussions, in section (vii) of
Chapter (11) and in Chapter (V), suggest that the
superiority of the "ARMA" approach and of the "robust"
approach are due to special characteristics of the data
we have studied; in particular, this superiority may be
due to the presence of complex measurement noise. While
measurement noise may be almost universal In the social
sciences, it would still be very interesting to get
some kind of tangible idea about how much measurement
noise, of what kind, and where, leads to how big of a
failure of ordinary regression. Indeed, in section
(vii) of Chapter (rt), in discussing the trade-off
between the maximum likelihood approach, as represented

by ARMA estimation, and the "robust approach", we
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emphasized that some weight should be given to the
findings of each approach, and that there is no
universal prescription for what these weights should be
in all cases; even if a universal prescription is
impossible, however, a number of clear concrete
numerical examples may help us greatly in building up
an intuitive map of the tradeoffs.

Simulation studies can provide us with these
examples. Indeed, with simulation studies it is
possible to generate hundreds of sample time~-series,
all standardized, all based on known types of
statistical process; time-series in the real world
rarely offer such tidiness, and rarely allow us to feel
so secure in our interpretations. Fven the possibility
of unique, erratic events can be accounted for, 1f we
insert terms for erratic types of random disturbance
into the simulation process, as we will describe below.,
In principle, one could even simulate unique,
all-encompassing shifts, in which one is asked to
predict the behavior of a time-series which will, in
the future, obey a different system of dynamic laws
from those it has obeyed in the past; however, it is

not reasonable to expect any statistical routine to
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pass this last test, in its most general form.
Nifficulties of this last sort, in the real world, can
only be minimized by intelligent human use of
statistics, as we will discuss in Chapter (V).

Our goal in this chapter, then, is to begin the
process of mapping out the domains in which different
techniques of time-series analysis are appronriate, as
indicated by the analysis of simulated data. The
territory to be mapped out, in princinle, is very vast;
it includes all the statistical processes and models,
multivariate and nonlinear and highly complex, which
could ever be relevant to the social or natural
sciences. Thus we have no choice, here, but to try and
pick out a subregion of this territory, small enoush to
be manageable but large enoush to illustrate the
qualitative factors most important in our discussion.

Our goal, more precisely is to compare the ability
of different estimation techniques to fit the
coefficients of a simple model, in such a way that it
predicts effectively the hehavior of an "unknown"
process which may actually be more complex than what
the model itself can express completely. In social

science, in general, we presume that a true, complete
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description of the actual processes going on would
contain far too many parameters to be estimated from
the available data. We will focus on the prohlem of
estimating the simplest model we can think of, of

relevance to social science:
Z(t+1) = c7(t) (4.1)

Sample time-series, "Z'", of length 200, have bheen
generated by simulating the results of more complex
processes; then, for each sample time-series, Z, we
have compared the ability of each of our hasic
estimatfon techniques to come up with a good value for
"¢, 1t should be noted that ordinary linear
multivariate estimation problems are simplv the
extension of this example to the case where 7Z is a
vector and ¢ is a matrix.

In section (iii), we will see that the studies
which we have carried out generally supnort the
conclusions outlined in Chapter (1); howaver, hefore we
can describe these results, it is necessarv to define

in detail precisely what studies were carried out.



Page |v-5

(ii) PEFINITION OF STUDIES CARRIEN NUT

The main results of these tests are summarized in
Table 1V-1, at the end of this chapter; secondary
results are summarized in Table V=2, and the raw
computer output Is tabulated at length in Tables V-3
and IV=-L., In order to explain precisely what these
tables mean, we must define:(i) what the twelve more
complex processes are, that we use in simulating sample
time-series; (ii) what the six estimation techniques
are, that we use to estimate "¢" from the first 100
observations of each sample time series;(iii) what the
criteria are that we use to evaluate these estimates,

The complex processes used in simulation were all
chosen to be "compatible" with (4.1), in the sense that

(4.1) could do an adequate joh of prediction if the

constant "¢’ were chosen appropriately. This implies a
constant average rate of growth for the variahle "7',
Thus we decided to focus our attention on twelve
processes that generate a single observed time-series,
Z, on the basis of homogeneous linear equations,

In our verbal discussion, we have placed great

emphasis on the possihility of "measurement noise" or

"transient noise", as distinct from "process noise" or
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"objective randomness". This has led us to focus on
processes which generate an '"ohserved" (or
"superficial") variable, Z, as the result of two
subprocesses: (i) an "inner", or "ohjective", process,
which determines the evolution of the "true" or

"'variable, "X", over time;(ii) an "outer'",

"underlying'
or "measurement", process, in which Z, the "measured
value'" of X (or an "index of X'"), is determined, by

superimposing some noise factor over the true value

of X. Z, and only Z, was later made availahle to the

estimation routines. (Strictly speaking, this situation
is merely a special case of the more general situation,
where one can obhserve directly only a subset of the
variables of dynamic significance.) The first six of

these processes we determined by equations of the form:

XCt+1) = (1.03)X(t)(1+P(t))
(4,2)
Z(t) = X(£)(1 + M(t))

"P(t)" and "M(t)" were both "noise processes'" of
various sorts; "P(t)" represents "objective" or
"process noise'", while "M(t)" represents "transient" or

"measurement noise'. Note that we chose a 3% natural
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growth rate, per time period, for X and Z; this would
seem rather typical for economic and social science
data.

The equations generating P(t) and M(t) were
different for each of these six processes, In essence,
they were chosen from three different noise processes,
A, B and C. "A" was a normal random process of mean
zero and of variance one:

| -5A@))

P(A(L)) = —=—=e (4.3)

N

Thus "A" is a simple classical noise process, based on
a bell-shaped curve. To generate "B", we would first
generate a random number, '"A", as above., Then, with
probability .95, we would set B=A; however, in 5% of
the cases, chosen at random, we would set B = 10A, This

implies a probability distribution:

e
L) <L (B
-qs- e 1‘8(0 ) + '05 e I(T‘é-) ( ll- . ]4 )

p(B(t)
n( ) =t ol

""" is generated by a "distribution with outliers."
To generate "C(t)", a more complex noise process, we
would first generate R(t); then we would generate 8(t),

another random variable, by nicking 8(t)=1 with
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probahility 20%, or by setting 8(t) to a numher chosen
at random from a uniform distribution between 0,2 and
0.2 in all other cases; we would then generate C(t) via

the equation:

C(t) = (1- 8(t))e(t-1) + uB(t)IP(L) (h.5)

This procedure for generating £(t) is an attempt to
express the idea of noise which "may or may not

' whose correlation

correlate with itself across time,'
itself, (1-8(t)), can change randomly with time.
Equation (4.5) was further modified by the use of an
occasional cutoff, which we will describe below.

The choices used in processes one through six, for

insertion into equations (4.2), may be summarized:

Process 1 (and 7): P(t) .05A ; M(t) =0

]

Process 2 (and 8): P(t) = ,05A ; M(t) = ,15A
Process 3 (and 9): P(t) = ,058; M(t) = ,15A

(4.6)
Process &4 (and 10): P(t) = ,05A ; M(t) = ,15PR
Process 5 (and 11): P(t) = ,05A ; M(t) = ,05C
Process 6 (and 12): P(t) = ,0N5R; M(t) = ,05¢C

Five and fifteen percent errors were chosen on grounds
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that they seem "typical'"; computer time was not
available to replicate this study for different values
of these parameters. It should be noted that the
appearance of "A" twice with Process 2, above, does not
mean that the same random number, A(t), was used in
both processes; in general, evary time that we needed
a random number for a new application, we invoked a new
call to "random'", the random numhber generator of the
Project Cambridge TSP-CSP system. |In equation (4.2),
one should also note that an unrealistic change of sign
could occur if P(t) should ever equal -1 or less; this
would be a very rare event, with the systems we have
specified, but even one such incident would persist
throughout an entire simulated time-series, making it
totally unrealistic as a representative of
social-science time-series, Similarly, while
measurement errors are occasionally quite gross for
social science variables, it is unrealistic to imagine
someone getting the sign wrong for such variables as
GNP or population. Thus for P(t) and M(t) both we
instituted a cutoff of =-.75; values less than this were
set equal to the cutoff, (No simulations were run

without a cutoff; thus it is possible that the cutoff
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was never actually invoked,) A more elegant procedure,
mathematically, might have been to use épand M instead
of (1+P) and (1+M) In equation (4.2). "However, major
and enduring crashes do sometimes occur in those social
science variables subject to erratic behavior; for
example, phenomena such as zero or negative population
seem to be avoided as a result of extraordinary
processas different from those onerating on normal
populations. Thus, on grounds of realism, we decided to
use cutoffs instead of a more elegant approach. Also, a
cutoff of =-15. was used for the value of B(t) inserted
into equation (4.5), on grounds that this would prevent
the possibility of invoking a cutoff several times in a
row on M(t),.

The choices ahove, in brief, give us a chance to
look at the four possibilities of no measurement noise,
of simple measurement noise, of medium-complex
measurement noise, and of complex measurement noise,
all in the presence of simple process noise; they also
let us look at simple measurement noise and complex
measurement noise, in the presence of medium-complex
process noise. Processes 1 and 2 closely resemhle the

processes for which simple regression and ARMA models,
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respectively, should be ideal, in theorv. The extreme
case of zero process noise, the case which should be
most favorable to the "robust approach'", was not
included, on grounds that we are interested in
evaluating that approach under more normal, mixed
conditions. In order to account for the possibility of
more complex processes, without violating homogeneity,
we introduced Processes 7 through 12 based on the
following equations, which yield a growth rate of 1.6%

(from the linearized difference equation) :

XCt+1)=(.38X(t)+.35X(t~1)+,3X(t~-2))(1+P(¢t))
(4,7)

ZOt) = X() (1 + M(t))

The choices of P(t) and M(t) here were identical to
those with Processes 1 through 6, as indicated in
equations (4.6), and the same cutoffs were used.

For each of the twelve processes defined above,

ten sample time-series, "Z1" through "710", were

zenerated. Then, in order to estimate "c" in equation
(4.1), for each of those sample time-series, we used
the three general techniques discussed throughout this

thesis: (1) classical regression; (ii) the "ARMA"
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approach; (iii) the "robust approach'"., The most
conventional way of estimating "c¢", for the model
(4.1), is to use a standard regression program to do a

maximum likelihood estimation of the related model:

Z(t+1) = cz(t) + k + a(t), (4.9%9)

where "k" is a constant to be estimated, and "a(t)" is
a normal random noise process. In practice, this
amounts to doing a least-squares estimation, as in
section (ii) of Chaper (11); one hopes that "k', which
is expected to be zero, will he estimated as something
close to zero. This technique, regression with a
constant term, is abbreviated as "reg+k'" in our tables.
A bhetter way of using classical regression, to

estimate "'c¢' in (4.1), is to use a simpler model,

without the meaningless constant term:

Z(t+1) = cz2(t) + a(t) (4.9)

This kind of regression can be performed automatically
in the Time-Series-Processor system. This technique,

regression without a constant term, is abbreviated as

reg' in our tables.

Corresponding to these two simple regression
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models are two simple ARMA models. According to our
result in the beginning of Chapter (111), the
correspondence is more than just one of similarity; the
ARMA models below are the generalizations of (4,8) and
(4.9) to account for the possibility of "white noise"
in the process of data measurement. Model (4.8)

corresponds to:

Z(t+1) = cZ(t)+a(t)+Pa(t-1)+k, (4,10)

which can be estimated directly in the Project
Cambridge Time-Series Processor, by use of the command
"ARMA", described In the later part of Chapter (I111),
This technique for estimating "c" we abbreviate as
"arma+k'" in the tables at the end of this chapter,

Model (L4.9) corresponds to:

Z(t+1) = cZ(t)+a(t)+Pa(t-1), (4,11)

which can also be estimated by the command "ARMA"; this
technique for estimating "c" we will ahbreviate as
"arma" in the tables at the end of this chapter,
Finally, the estimation algorithm described in Chapter

(111) allowed us to write another command, ARMAWT, to

estimate the model:
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Z(t+1) = cZ(t)(1l+a(t))+Pa(t-1)z(t-1) (4,12)

This command, mentioned briefly in Chanter (111}, is
essentially equivalent to estimating (4.11), with the
assumption that the noise process, "a(t)" in (4.11), is

determined as a percentage of the actual variable, as

in (4.2), rather than a process of constant mean and

variance., This technique for estimating ¢, we
abbreviate as "armawt' in the tahles at the end of this
chapter.

Finally, we had to find a "robust procedure' for
estimating c, drawn from the discussion of section
(vii) of Chapter (11). In the pure case of zero process
noise, these procedures require us to estimate the
initial "underlying" values of the variabhles measured,
and the coefficients of the model, by directly
minimizing the average errors of long-term predictions
made with this model., In other words, for the estimated
initial values, and a given set of coefficients, one
makes a full set of predictions for the variables of
interest, without ever making use of the measured
values of the variahles at intermediate times; one

uses the average error in these predictions,

nredictions which are generally long-term predictions,
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as one's criterion of fit; one uses the method of
steepest descent, or a related procedure, in order to
pick coefficients and initial estimates to minimize the

total error in these predictions. (A "relaxed" version

of these procedures would allow a little bit of
allowance to be made for intermediate measured values,
in predicting more distant time periods.)

The full multivariate, nonlinear version of this
procedure, based on the dynamic feedback algorithm of
Chapter (11), was not available at the time these
simulations were carried out. MHowever, for equation
(4.1), there is a measurement-noise~-only model which is

much easier to estimate than is usually the case:

X(t+1) = cX(t)
(4.13)

)]
Z(t)=X(t)ea'(t A X(£)(1 + a(t))

If the measurement noise, a(t), is on the order of 10%
or less, the approximate equality here will be very

. . at
good, according to the Taylor expansion of e . In

order to estimate X(0N) and ¢ in this model, one can

transform (4,13) algebraically to deduce:



Page 1V-16

20t) = x(0)cted®

(4.18)

log Z(t) = t log c + log X(0) + a(t)

in order to pick the constants, log ¢ and log X(0), to
maximize the likelihood of this model, according to
standard maximum likelihood theorv, one need only
perform a simple regression of 1log Z(t) against the
independent variable "t'" and a constant term. A special
routine to perform this operation, called "GRR" (fARowth
Rate), was added to the Project Cambridge Time-Series
Processor in January 1974, Note that this routine

e and X(N) in exactly the same way as the

estimates
old routine "EXTRAP" did, in the work reported in
Chapter (V1).

Finally, after the simulation processes and the
estimation techniques are defined, we face the problem
of measuring how well the estimation techniques
actually perform, We have used two different criteria.
First, there is the criterion of predictive power,

measured explicitly., For each combination of

time-series (out of 12 X 10 = 120 sample time-series)

and of estimation technique, we used the value of "c¢",

as estimated for the first 100 time-periods, to try to
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predict the values of the variable Z over the remaining
100 periods. For each such set of predictions we
calculated four measures of error: (i) r.m.s. (root
mean square) average percentage error in predicting
periods 101 through 110; (ii) r.m.s. average percentage
error in predicting periods 101 through 125; (iifi)
r.m.s. average percentage error in predicting periods
101 through 150; (iv) r.m.s. average percentage error
in predicting periods 101 through 200, (Also, a set of
predictions was made, from period 1, to periods 1
through 100.) The exact results of these tests are
shown in Table V-4, for every sample time-series.

Let us define in a bit more detail how these
predictions were arrived at. For the regression models,
(4.8) and (4.9), we inserted the known value of z(100),
and the estimates of ¢ and k, and the most prohable
value for a(100) (i.e. zero), in order to predict
z(101); this prediction for Z(101) was reinserted,
along with a(101)=0, to give us a prediction of Z(102),
which in turn was reinserted, etc. For equation (4.9),

this has the same effect as inserting the estimate of

c" into (14.1), and using (4.1) to make the forecasts.

With the ARMA models, equations (4.10), (4.11) and
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(4.12), almost the same procedure was used. The
measured value of Z(100) was inserted to give the first
prediction, the prediction of Z(101); a(100) through
a(199) were set to zero. However, the ARMA equations
also refer to a(t-1); thus, in the very first round, in
predicting 72(101), the value of a(99) has to be
accounted for: for a(99), we use the estimated value
which was generated by the ARMA estimation procedure
which had been used on periods 1 through 100. With
equation (4.11), as with equation (4.9), this has the
same effect as inserting the estimate of "c" into
equation (4.1), starting from the predicted value of
7(101). '"Percentage error' was defined, in general, as
a percentage of the average of predicted and actual
values, on grounds that this is a good intelligible
approximation to exponential error in the normal range,
and that it does not nlace overemphasis on outliers,
A1l of these decisions were made, not at the time of
simulation, but at the time when the TSP cormmand "ARMA"
was written; at the time of simulation, we specified
the initial time and the number of periods to predict,
and the ARMA (ARMAYT) command carried through the

decisions described in this paragraph by itself, (¥hen
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the full nonlinear algorithm of Chapter (11) is
operationalized, however, we will be able to let the
user choose his own index of prediction error,
according to what he considers important to
policy-makers in his own particular domain of interest,
With ARMA, a linear system, it was necessary to make a
general choice for all users, based on mathematical
rather than substantive considerations.) With the
univariate robust approach, there are two reasonable
bases for prediction. One is to use (4.14) directly,
assuming that a(l101) through a(200) equal zero; we
abbreviate this method as "extl", (This corresponds to
our old "EXTRAP" procedure, described in Chapter (V1);
also, it corresponds to using (4.1), starting from the
estimated value of X(N) as the initial value of Z(n).)
The other is to use the estimated value of ¢ in (4.1),
inserting the measured value of Z(100) into this
equation; we abbreviate this as "ext2". The r.m.s.
average errors are computed as with the "ARMA'" model,
automatically, by the command GRR.

Table 1V-h is a bit too complex to be assimilated
directly by the intuition., Thus we have summarized the

major results of Table IV-L4, regarding prediction
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errors, in Table 1VY-2, For each of the twelve simulated
processes described in equations (4.2) through (4.7),
each of the seven prediction techniques described
above, and each of the four prediction intervals, we
have calculated the average prediction errors across
the ten sample time-series. More precisely, to avoid a
picture distorted by outliers, we have tahbulated the
worst (biggest) of the errors out of the ten, and the
average across the remaining nine. The rows containing
the average values, for different prediction
techniques, are labelled "av'": the rows containing the
maximum errors are labelled "max'". Also, in column
eight, we 1ist the "dispersion" of the errors of the
best technique, defined as the average over the nine
better sample time-series of the ahsolute value of the
difference between the error in each sample series and
the average error,

A quick scan of Tahle IV-2 indicates a general
tendency of "ext2" to be superior substantially to
regression; in some cases,'ext2" and "arma" are
approximately equal, while in other cases "arma" and
regression are approximately equal. A more detailed

scan reveals three difficulties with these measures of
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predictive power. At long time intervals, errors get
so high that it is hard not to worry about the effects
of our percentage-taking procedure, and hard to feel
fully comfortable about the significance of the
averages; this difficulty may not be as real as it
seems, but it is worth noticing. A more serious
difficulty is the tendency of all prediction techniques

to do equally well at very short time intervals, with

most of our processes. With short-term predictions,

the effects of different estimates of ''c'" have not had
time to build up; thus all of the predictions are close
to each other, relative to the very large short-term
fluctuations our simulated processes impose. It is the
medium and long-term predictions which separate the
sheep from the lambs. This reminds us of certain
schools of thought in the stock market, who compare the
short~term fluctuations of stocks to a roulette game,
and who claim that superior analysis makes money only
by pointing out longer-term trends. With complex,
large-scale multivariate processes in the social
sciences, however, one might expect the fluctuations to

look a bit smoother through time, even though the

measurement noise problem remains. A few of our twelve
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processes do show significant differences between
estimation techniques in the ten-year prediction tests;
these processes may he more representative of the
social sciences. A third difficulty is the limitation
of having only ten sample time-series per analysis.

In Table 1¥Y-1, we have used a second criterion to
measure the success of different estimation techniques.
We have looked directly at the values of "c¢", as
estimated by the different models, With simulation
studies, unlike studies in the real world, we can be
sure that the '"true'" value of ¢ is the same for all the
samples of a given process; this is what makes a direct
comparison possible, With a direct comparison, one does
not worry about having one's conclusions randomized by
the effects of random fluctuations in later periods of
time, in a limited numher of sample time-series; the
actual prediction errors in Tabhle V-2 may be
interpreted a3as a noisy measurement of the quality of
the estimates of "¢". Indeed, in most studies of
political and economic phenomena, people tend to be
interested in the validity of the coefficients, '"c¢",

and only vaguely aware of the connection between the

validity - even in the short-term - and the long-term
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predictive power of the resulting model. (This attitude

would be quite reasonable when it is a choice between

focusing on the validity of '"c¢", or focusing on
short-term predictive power. An accurate model of the
effects of government policy might reduce prediction
error by only 20%, in comparison with a null model, if
short=-term fluctuations are large enough, in accord
with the pattern described in the paragraph ahove;
however, this 20% would include 100% of the effects
which the decision-maker can have on the situation.)
For all these reasons, the estimates of
evaluated directly for accuracy, appear to be the hest
criterion to use in evaluating the estimation
techniques here. The exact estimates of "c" for each
sample time-series are shown in Tahle V-3, In Table
IV-1, we have summarized this information, for easier

interpretation, For each estimation technique, and each

simulated process, we have calculated the average value

of the estimates of '"c¢'", across all ten sample

time-series. We have also calculated the "dispersion'

of these estimates, the average value of the absolute

value of the difference bhetween the estimate of ''¢c" for

a given sample time-series and the average estimate
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across all ten samples. The rows labelled "av" give the
average; the rows labelled "disp" give the dispersion.
These calculations were made with the help of a hand
calculator, directly from Table IV-4. (Note, however,
that the version of Table IV-4 in this chapter has been
rounded off, to save space; the calculations were made
from the unrounded original.)

Unfortunately, the noise components of our twelve
processes, while "unbiased" in the sense of an
arithmetic average, do produce a negative shift in the
average rate of growth. In order to give some sort of
measure of the '"true'" rate of growth, we have taken the
geometric average of the estimates of '"c'" by "GRR";
this appears in the "av" rows, in column seven, of
Table IV-1. Following the logic of section (vii) of
Chapter (I1), we would contend that the "true average
rate of growth' might even be defined as the expected
"estimate" or "observation'" of the rate of growth, c,
based on fitting an exponential curve such as (4,13)
implies, over an infinitely long sample of the process
in question. (For column seven, we use a data sample
ten times as large as that used with any of the

specific estimates.) The potential difficulty with the
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"robust" technique is not with consistency, the ability
to converge to the value most useful in long-term
prediction when wunlimited data are available, but
efficiency, the ability to make full use of the 1imited
data available, as recommended by the maximum
likelihood technique. (More precisely, the maximum
likelihood method, as sketched out in section (v) of
Chapter (I1), claims to point to the estimates of

maximum probability, conditional upon all information

in the observed data.) If simple regression does
outperform the robust method, one would expect it to do
best for simulated processes which fit a regression
model; one would expect the (geometric) average of the
estimates of "c" to be equally good for both methods,
but one would expect the dispersion to be less with
regression, because regression, in exploiting more
information per sample of data, can converge more

quickly to its asymptotic estimates.
(iii) DESCRIPTION OF RESULTS

In short, in examining Table IV-1, we can sort out

two different sources of error in using our estimation

techniques: (i) systematic bias, the gap between the
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average estimate and the "true" estimate, as indicated
in column seven and in the estimates of all the better
techniques; (ii) inefficiency, the inability to
converge quickly to the asymptotic estimates, as
indicated by the dispersion of the estimates across
different sample time-series. (In all of what follows,
we emphasize that the '"true" estimate is being defined
as the estimate which leads to the best predictions.)
Classic maximum likelihood theory would claim total
efficiency as its prime advantage over the robust
approach, as discussed above; thus the dispersion
errors are of particular interest.

Looking carefully at Table IV-1, we immediately
observe a startling fact: 1in nine out of the twelve
simulated processes, the '"robust method" outperforms
every other method, even in terms of dispersion.
Regression without a constant term does better than the
robust approach for only two processes, in terms of
dispersion : Processes 1 and 7, the simple processes
with no measurement noise at all, following a
regression model almost exactly; even in these very
special cases, the dispersion with the robust method is

only slightly larger. Even with Process 1, the ARMAWT
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technique outperforms regression by a larger margin
than that of regression over the robust approach, which
comes in as third. With Process 7, the simple ARMA
technique is best, Process 8 is the only other process
for which the robust approach is not superior; in that
case, where the measurement noise is "white'", the
situation discussed in section (i) of Chapter (111),
the simple ARMA model does a bit better than the robust
approach, but both of these two do substantially better
than the others. Even with Process 2, where the process
and measurement noise are again both "white", the
robust approach is ahead. In seven out of the eight
remaining processes (all but Process 3), the robust
method outperforms all the other methods, except for
the simple ARMA models, by at least a factor of two, in
all cases.

In summary: even in the domain of statistical
efficiency, where the maximum likelihood methods should

have their greatest advantage, the robust method enjoys
substantial superiority - i.e. dispersion errors less

than half the size - in all but the simplest cases,
where the advantages of the other methods, where they
exist, are slight.




Page 1V-28

In the domain of systematic bias, where we expect
the robust approach to enjoy its greatest advantage,
the criteria available are unfortunately less
objective. The estimated growth factors, "c", are all
less than (1.03) and (1.016), the growth factors
inserted into the original sets of processes, due to
the expected watering~-down effect of random noise,

With every one of the twelve processes, however, our
estimate of the "true" value of ¢, in column seven of
Table V-3, is either closer to the original growth
factor than are any of the six average estimates, or
else within .0002 of whichever of those estimates is
closest; this tends to support the value of our
estimate in column seven.

Looking at Table 1V-1, we see very clearly a
strong negative bias, in all the averaged estimates of
c, which are from simple regression. In five out of the
twelve processes, regression has estimated a pegative
rate of growth, for processes which we know at least to
have a positive rate of growth; thus the very sign of
the trends in these processes are reversed. In four of
the remaining processes, regression gives a growth rate

of less than 1%. The size of these bias errors is much
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£reater than the average dispersion errors, which, we

have noted, were already Quite a bit larger than those
gtmgmw:mﬁhgm;mgﬁmm
added together, the overall errors in coefficient
estimates are considerably worse than a mere factor of
two for regression, in comparison with the robust
approach. If we look more closely at the three

processes most favorable to regression, in terms of
bias error, we find that in two of them the bias error
is still larger than the average dispersion error, and
that in the third the bias error is still larger than
1%, i.e. larger than 35% of the actual growth rate.
The estimates of "c", with a constant term present,
are, as one might expect, still worse than those of
simple regression. The ARMAWT analysis also performs
disappointingly poorly, with negative growth rates for
all but four of the processes; in this case, it is
theoretically possible that a hidden bug in programming
was involved, insofar as cross-checks against existing
programs were not possible, but a simple lack of
robustness would seem to be a more likely explanation.
The contest between the ARMA and the robust methods

is closer, and more interesting. After doing the
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analyses of political data, reported in Chapter (VI),
we were frankly surprised at how much better the ARMA
method did here. In one process - Process 8 - the ARMA
model had the same average estimate of "“¢" as the
robust approach did, and a smaller dispersion error;
thus, for this one process, the robust approach was
actually somewhat inferior to the ARMA approach. On the
other hand, as we have noted, process 8 was defined in
terms of pure white noise; most social science
variables, like the ones studied in Chapter (VI), may
be more like processes 11 and 12, or much further in
the same direction, in terms of complexity. In four out
of the twelve processes, the ARMA and robust approaches
gave average estimates of "¢" within .0005 of each
other; this tends to reinforce the validity of these
estimates as an indication of the "true'" growth rate.
Only for two of the processes was the bias error of the
ARMA estimate larger than 1%, relative to the estimate
in column seven. In general, the bias errors of the
ARMA estimates were less than their dispersion errors.
On _balance, the robust approach did better, only
because the dispersion errors of the ARMA estimates
were substantially larger than the errors of the robust
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approach for the majority of our processes, especially
the more complex processes. (For the twelve simulated
processes, in order, the ARMA dispersion errors, as a
fraction of the robust method errors in Table V-1,
equalled 1.03, 1.16, 1.54, 2.29, 2.55, 2.13, .84 ,.80,
1.15, 1.21, 4.18 and 1.83,)

In Table 1V-1, we have included one other piece of
information, of relevance to our discussion in Chapter
(111). We have included a description of the number of
major iterations required before convergence, with our
algorithm for ARMA estimation. In the ARMA
estimations, we allowed for ten major iterations before
stopping the routine. In the seventh column, in the
"disp" rows, we list, first the number of iterations
actually required, on the average, before the
likelihood scores converged to within 0.1 of their
final value. (i.e. The posterior probability of the
estimates was at least 90% of the posterior probability
of the "most likely" estimates finally converged to.)
This average was taken gonly for those sample
time-series in which such convergence was attained
before the last iteration. Second, after a colon, we

list the number of sample time-series, out of the ten,
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in which the 0.1 level of convergence was achieved only
on the last iteration or later. In most cases,
convergence was achieved well before the last
iteration. In those processes where convergence was
slower, such as processes 8, 2 and 10, the final
estimates of '"c¢c" do not appear to have suffered as a
result; indeed, the negative bias of the initial
estimates obtained from regression was overcome more
completely in these processes than in the others.
Again, the cost of the ARMA estimation, in terms of
iterations, was highest precisely in those cases where
the payoff of the approach was also greatest.

Finally, we should say a little about Table IV-2.
Here again, the competition is mostly between the
robust approach - ext2, more exactly - and the simple
ARMA approach. The errors in short-term prediction tend
to be watered down and randomized, due to the sheer
size of the unpredictable short-term fluctuations, as
discussed a few pages back. A closer look at Table V=3
shows that these prediction errors are affected heavily
by outlying time-series. Otherwise, the ARMA technique
appears to do a little better here, relatively, than it

n

does with its estimates of "c'"; also, the differences
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between all the estimation techniques are watered down,
with only a few examples of ratios of two in average
error. On balance, however, Table I1V-2 appears to

follow the conclusions for Table V-1 fairly closely.
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Process 1
Timespan extl ext2 reg+k arma+tk reg arma armawt disp
10 av 11.7 7.8 8.4 8.2 8.0 7.9 7.4 2.4
""max 29.1 12.2 23,1 23,1 21.6 21.6 21.1
25 av 13.7 10.2 15.2 15.0 13.4 13,5 12,2 2.5
""max 33.2 18.7 37.7 38.7 33.4 33.5 31.6
50 av 23.7 18.1 28.4 28.3 24.9 24,8 22.7 6.1
""max 38.8 35.3 66.2 66.2 56.9 57.1 53,2
100 av 32.1 26.3 57.0 56.8 45,7 45,0 41.7 8.6
""max 53.9 59.4 104. 104. 87.0 88.6 82.2
Process 2
10 av 20 21 32 22 27 18 22 3.1
"max L8 37 58 36 53 31 33
25 av 22 23 53 33 45 24 32 h.b
""max 55 Ly 88 61 80 L8 55
50 av 29 29 an 438 69 33 50 7.6
""max 76 60 116 102 106 80 97
100 av 36 36 120 72 103 L0 95 14,5

max 104 81 149 138 144 105 140

Table IV~-2: Prediction Errors as Defined in Section (ii)
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Process 3
Timespan extl ext2 reg+k arma+tk reg arma armawt disp
10 av 52 25 32 22 34 22 39 5.1
""max 93 51 77 52 62 46 106
25 av 77 51 61 50 6u L6 90 10.6
""max 109 96 112 81 103 8L 167
50 av 98 77 76 78 91 73 122 15.4
""max 139 134 143 114 13L 121 184
100 av 111 97 100 100 116 107 134 22.2
""max 165 161 165 148 165 146 189
Process L
10 av 30 17 20 17 18 17 24 6.6
"'max 42 113 110 33 145 32 100
25 av 33 22 33 24 27 22 41 3.9
"max 56 119 129 35 172 32 150
50 av 37 28 57 35 L3 26 65 8.7
""max 63 125 149 63 186 49 176
100 av Ly Ly 95 62 77 39 101 15.3

ma x 91 132 170 119 193 100 188

Table 1V-2: Prediction Errors as Defined in Section (ii)
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Process 5
Timespan extl ext2 reg+k arma+tk reg arma armawt disp
10 av 26 19 19 20 20 20 34 5.1
""max 60 57 78 71 89 69 102
25 av 29 24 29 28 27 28 58 5.8
""max 61 65 83 82 114 78 141
50 av 32 29 L3 Ly 38 39 86 9.8
"max 75 82 124 125 156 128 172
100 av 51 46 90 82 66 61 126 10.8
"max 85 87 154 155 179 161 136
Process 6
10 av 31 22 24 24 27 28 29 8.3
"'max 109 43 45 L7 56 55 73
25 av 38 32 41 b1 Ly bl 63 8.2
""max 104 55 85 90 112 111 133
50 av 57 L7 66 67 66 65 95 1n.3
"M"max 119 81 116 123 148 147 166
100 av 82 70 98 97 93 91 136 13,7

""max 140 116 157 162 174 174 184

Table 1V~-2: Prediction Errors as Defined in Section (ii)



Timespan

10 av

lll!max

25 av

”l!max

50 av

llll"max

100 av

l”lmax

10 av

""max

25 av

llllmax

50 av

"Hmax

100 av

H"max

Table 1V-2:

extl

20.0
17.1
29.8

17
31
17
33
21
L

62

Process 7

ext2 reg+k arma+k

6.7 7.5
9.9 15.9
7.8 12.6
12.4 26.3
10.6 23.0
21.4 46.9
13.8 51.0
32.7 83.5
Process 8
21 37

38 55

22 54

35 74

24 75

41 89

28 106

53 120

5.
12.

8.
21.
15.
36.
37.
61.

22
L3
30
58
by
79
70
113

5
5

reg
6.9
13.2
9.6
19.0
14.1
31.9
24,0
54.9

27
L9
L0
69
63
93
103
135
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arma armawt disp
5.2 5.1 .9
10.0 8.4
6.7 6.6 1.7
1.6 13.9
11.4 11,2 2.8
21.4  20.9
18.8 18.4 3.8
31.6 37.3

17 19 2.1

17 22 2.8
30 37
21 31 3.0
34 62
26 57 2.8
36 101

Prediction Errors as Defined in Section (ii)
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Process 9
Timespan extl ext2 reg+k arma+tk reg arma armawt disp
10 av 28 21 32 19 28 16 25 3.8
""max 39 L5 69 53 60 27 81
25 av 41 36 52 34 51 28 50 5.5
"""ma x 62 56 87 75 96 45 128
50 av 51 L6 Gl L6 76 36 72 9.0
""max 81 78 110 101 178 69 163
100 av 58 57 91 76 118 55 93 1.8
""max 109 98 139 122 160 85 182
Process 10
10 av 19 14 24 15 16 1y 21 6.7
""max 29 114 78 53 135 28 80
25 av 23 17 Ly 25 26 18 38 5.4
""max 30 120 90 76 162 26 133
50 av 24 20 67 39 Ly 19 60 3.3
""max 33 123 106 95 180 28 166
100 av 27 27 101 70 77 25 93 6.1

""'max 52 127 131 124 190 L7 183

Table 1V-2: Prediction Errors as Defined in Section (ii)
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Process 11
Timespan extl ext? reg+k arma+k reg arma armawt disp
10 av 21 20 21 21 20 21 39 5.1
""max 55 57 56 54 86 61 108
25 av 24 23 33 30 29 27 70 h.7
"max 66 66 65 68 103 93 158
50 av 26 26 52 L6 39 35 102 9.1
""max 62 75 92 95 149 140 180
100 av 36 35 91 84 65 52 143 8.7
""max 75 74 118 120 175 170 190
Process 12
10 av 22 20 21 20 22 21 24 5.5
""max L9 34 31 31 33 33 75
25 av 28 27 39 35 35 3y 54 6.4
""max Ly L7 53 60 80 58 134
50 av 39 35 57 56 55 L3 89 7.8
""max 61 66 94 25 118 74 169
100 av 51 49 80 81 8L 66 124 7.1

max 80 75 128 122 116 111 185

Table I1V-2: Prediction Errors as Defined in Section (ii)



Z1
72
Z3
Zy
Z5
Z6
Z7
Z38
Z9

Z10

1
Z2
Z3
Zy
Z5
Z6
z7
Z8
Z9

1210

ext
1.019

1.026

1.034
1.023
1.024
1.0253
1.029
1.032
1.025

1.014
1.026
1.025
1.020
1.032
1.032
1.027
1.022
1.034

1.030

Table

Process 1

reg+k
1.016
1.011
1.029
1.002
1.001
1.021
1.016
1.016
1.011
1.026

arma+k
1.016
1.010
1.031
1.002
1.000
1.021
1.016
1.015
1.014
1.026

Process 2

.896
.967
1.001
.959
.957
.959
. 940
1.000
.950
.968

[V-3:

.98L
1.007
1.033
1.026
1.028
1.001

.998
1.052
1,004

1.027

reg
1.018
1.019
1.030
1.014
1.012
1.023
1.021
1.022
1.020

1.026

.995
1.020
1.020
1.002

.992

.99L

.99L
1.024

.990
1.005

arma
1.018
1.019
1.031
1.014
1.012
1.023
1.021
1.022
1.022
1.026

1.024
1.022
1.031
1.029
1.033
1.030
1.015
1.037
1.018
1.028

Page

armawt |

1.015
1.020
1.031
1.015
1.016
1,021
1.022
1.024
1.023

1.024

.994
1.015
1.006
1.002
1.008
1.009

.998
1.003

1.017

1.012

Estimates of Growth Factor,

C

Iv-41
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Process 3

] ext reg+k arma+k reg arma armawt|
Z1 1.006 .905 .998 .986 1.015 .876
Z2 1.029 .932 1.017 .986 1.031 .988
Z3 1.024 .926 .955 .967 .982 .883
ZL 1,030 -972 1,017 1.008 1.023 1.009
Z5 1.003 .760 841 .959 .979 .783
Z6 1.032 .928 .978 .984 1,006 .987
Z7 1.027 .932 .988 .994 1,018 .998
Z8 1.014 .895 .987 .988 1.020 .889
Z9 1.025 .901 1.020 .989 1.022 .997
Z10 1.009 1.030 1.050 1.032 1.038 . 964

Process 4

Z1 1.020 1.017 1.037 1.025 1,031 1.011
Z2 1.028 .766 1,015 .898 1.034 .890
Z3 1.022 -991 1.005 1.010 1.015 1.004
ZL 1.028 -968 1.030 1.004 1.031 .990
Z5 1.026 .929 1.002 .987 1.022 1.006
Z6 1,028 .980 .992 1.006 1.011 .997
Z7 1.033 -988 1.019 1.011 1.025 1.p20
Z8 1.034 1,036 1.050 1.038 1.045 1.020
Z9 1.028 .978 1.011 1,010 1.024 1.013

1Z10 1.023 1.029 1.042 1.030 1.034 .962 |

Table 1V-3: Estimates of Growth Factor, "c"



Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Z1
Z2
Z3
Zh
Z5
Z6
z7
Z8
Z9
1210

ext
1.023
1.021
1.035
1.026
1.020
1.035
1.020
1.028
1.029
1.037

1.023
1.020
1.016
1.025
1.045
1.029
1.035
1.053
1.004

1.030

Table

Process 5
reg+k arma+k
1.011 1.013

.835 .905
.993 1.011
.998 1.007
.992 .994
.926 .916
1.015 1.018
1.013 1.013
1.005 1.008
1.031 1.034
Process 6
1.016 1,015
1.002 1.013
.935 .950
1.022 1.014
.980 .982
1.060 1.066
.890 .388
1.050 1.047
.938 .951
1.042 1.043
Iv-3:

reg
1.020

943
1.014
1.025
1.014

.983
1.023
1.022
1.018
1.037

1.021
1.024
.999
1.032
1.002
1.053
.952
1.053
.999

1.039

arma
1.022

.984
1.021
1.030
1.015

.979
1.024
1.022
1.020
1.039

1.021
1.027
1.006
1.029
1.003
1.056

.953
1.052
1.003
1.040

Page
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.987
.908

1.010
.967
.887
.986
.994

1.020
.918

1.052
.903
.977

Estimates of Growth Factor,

!

Hcll

1V-43



Z1

3
Zy
Z5
Z6
Z7
Z3
Z9
Z10

Z1
Z2
Z3
A
Z5
Z6
Z7
Z8
Z9
1210

ext
1.010
1.014
1.016
1.018
1.012
1.013
1.012
1.015
1.017
1.013

1.008
1.013
1.014
1.010
1.016
1.017
1.014
1.012
1.018

1.016

Table

Process 7
reg+k arma+k
.989 .99
.998 1.002
1.002 1.011
.990 .997
.987 .993
1.001 1.009
1.002 1.004
.998 1.006
.988 1.004
1.005 1.008

Process 8
.673 740
. 906 .969
.933 1.017
. 834 .914
. 884 .979
.897 1.012
847 .992
.8L4 .981
.889 .957
.883 942

Iv=-3:

reg
1.009
1.011
1.014
1.009
1.007
1.011
1.012
1.013
1.010
1.014

.980
1.002
1.004

.988

.985

.987

.986

.994

.985

.993

arma
1.010
1.012
1.016
1.011
1.009
1.012
1.012
1.015
1.014
1.013

1.011
1.011
1.n16
1.014
1.018
1.016
1.010
1.014
1.015
1.014

Page
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1.008
1.012
1.016
1.013
1.009
1.011
1.012
1.014
1.015
1.012

.996
1.007

.999
1.002
1.013
1.004
1.004
1.002
1.006

1.009

Estimates of Growth Factor,

llcll

1v-4y



Z1
Z2
3
Zy
Z5
Z6
Z7
Z8
Z9
Z10

Z1

Z2

4
Z5
Z6
z7
Z8
Z9
1210

ext
1,008
1.016
1.015
1.016
1.004
1.018
1.015
1.011
1.013

1.006

1.011
1.015
1.011
1.015
1.014
1.015
1.018
1.018
1.014

1.012

Table

Pro
reg+k
.786
.834
.839
.883
475
.863
. 835
734
. 7453
.892

cess 9
arma+k
1.003
1.014

.961
.951
.619
.958
1.000
.886
.833
.973

Process 10

.958
.662
.936
.867
.851
.937
. 925
.971
.903
.958

1V=3:

.983
.791
.973
.940
.987
.987
.986
1.005
1.001

.985

reg

.978
.978
.967
.994
.966
.981
.987
.973
.979
.998

1.008
.929
1.002
.988
.986
1.000
.997
1.008
.998
1.008

arma
1.012
1.017
1.001
1.014
.999

1.014
1.015
1.010
1.016
1.01%
1.009
1.017
1.021
1.014
1.015

Page

armawt |

.966
1.0009
.972
1.005
.932
1.000
1.006
.924
1.009

.988

1.006
<914
1.002
.987
1.011
.985
.978
1.007
1.003
.950

Estimates of Growth Factor,

llcll

IV-45



Z1
72
3
ZL

Z6
Z7
Z8
Z9

Z10

Z1
Z2
Z3
A
Z5
Z6
Z7
Z3
Z9
1210

ext
1.013
1.012
1.023
1.014
1.008
1.020
1.012
1.015
1.017
1.019

Table

Process 11

reg+k
.968
.731
.967
.916
.870
.831
.964
.968
.971
. 996

arma+k
.975
.849
.988
.935
.879
.791
.978
.991
.976
.999

Process 12

.980
.938
.839
. 943
946
1.018
.834
1.017
.764
.995

1v-3:

.987
.978
.874
.962
.971
1.028
.891
1.027
.822
1.007

reg
1.007
oLy
1.003
1.004
.990
.959
1.009
1.010
1.006
1.015

1.008
1.008
.988
1.006
.993
1.023
.96L
1.027
.993
1.013

arma
1.009
.985
1.012
1.011
.993
.950
1.011
1.012
1.008
1.017

1.010
1.016
1.000
1.015
1.002
1.025

.990
1.032
1.008

1.018

Page

armawt |

.972
.888
.973
.957
.953
.828
.998
.994
.839
.997

.997
.966
.867
.973
.981
1.001
. 941
1.012
.971
.949

Estimates of Growth Factor,

"C"

1V-46



Page 1V-47

Process 1 : Predicting Z(101)-Z(110) from Z(100)
|method Z1 72 73 Z4 Z5 26 Z7 28 79 710]

extl 11 14 10 29 22 6 9 5 25 5
ext2 12 8 12 12 8 6 6 6 7 5
reg+k 11 10 12 23 14 6 L 10 € 4
arma+k 10 8 12 23 15 5 Lo 11 h I
reg 11 8§ 12 22 13 6 L 9 5 h
arma 11 7 12 22 13 5 5 9 L b
armawt 9 g 12 21 11 5 5 8 L b

Predicting Z(101)-Z(125) from Z(100)
extl 11 23 15 33 16 9 11 9 24 5

ext2 13 11 13 11 19 9 8 14 8 5
reg+k 11 10 12 38 38 11 5 27 21 b
arma+k 10 9 13 38 39 11 5 28 17 5
reg 12 7 13 33 32 10 6 23 15 4
arma 12 6 13 34 34 11 7 23 12 5

(521

armawt 8 6 13 32 28 12 7 21 11

Predicting Z(101)-Z(150) from Z(100)
extl 24 19 24 36 23 8 27 30 39 23

ext2 25 10 22 8 20 8 24 35 22 23
reg+k 20 37 19 66 49 9 11 60 30 22
arma+k 20 36 21 66 50 10 12 61 23 21
reg 24 25 20 57 38 8§ 18 51 18 22
arma 24 24 21 57 4o 9 20 52 13 20
larmawt 16 21 21 53 30 11 21 48 12 26 |

Table |V-k4: Errors in Prediction & Miscellany



Page 1V-428

Process 1 : Predicting Z(101)=-2(200) from Z(100)
[method Z1 72 Z3 ZI4 Z5 Z6 77 28 79 Z10]
extl 23 20 50 53 26 13 24 S4 35 44
ext?2 240 26 47 24 19 13 21 59 19 44
reg+k 27 84 40 104 83 22 33 102 80 43

arma+k 27 84 46 104 86 22 32 104 70 41
reg 24 63 43 87 61 16 21 87 55 42
arma 24 62 46 87 64 17 21 89 46 39
armawt 31 55 45 80 45 25 20 82 39 3g
Predicting Z(1)-2(100) from 2(1)
extl 12 8§ 12 16 11 9 8 6 11 13
ext2 12 10 39 20 11 16 25 9 20 17
reg+k 16 27 21 51 30 23 14 39 42 14
arma+k 15 30 35 51 31 20 16 40 38 13
reg 12 47 42 103 56 12 37 31 76 16
arma 12 47 39 104 59 12 35 33 (8 15
armawt 22 39 41 98 39 12 33 25 61 23
Iterations and Significance of ARMA vs. regression
its/ak 0 1 1 0 3 3 3 1 3 1
its/a 0 1 3 0 3 3 3 1 3 1
its/aw 3 2 1 & 6 by 2 1 6 4y
p/ak .49 .00 .05 .50 .25 .01 .15 .42 .02 .26
| p/a .49 .00 .05 .50 .23 .01 .14 .43 .02 .26 |

Table IV-4: Errors in Prediction & Miscellany



Page 1V-49

Process 2 : Predicting Z(101)-Z(110) from Z(100)
|method Z1 72 23 4 715 Z6 27 Z8 729 Z10|

extl 4g 15 8 26 24 22 29 27 18 11
ext2 18 12 22 16 25 37 23 37 18 14
reg+k 40 16 15 28 45 58 44 30 4O 33
arma+k 22 17 22 18 26 36 22 35 22 11
reg 20 12 19 20 42 53 39 36 34 25
arma 18 13 21 19 28 19 18 31 19 11
armawt 33 31 11 15 23 33 28 21 15 20

Predicting Z(101)~Z(125) from Z(100)
extl 55 14 21 34 26 22 26 22 15 19

ext2 21 12 37 22 19 37 24 44 19 17
reg+k 76 25 19 62 66 88 73 28 78 53
arma+k 37 22 43 14 27 53 38 61 43 16
reg 39 12 31 43 61 80 65 45 71 35
arma 18 13 41 15 32 20 27 48 33 16
armawt 55 37 14 36 23 50 50 20 28 26

Predicting Z(101)-Z(150) from Z(100)
extl 76 21 20 55 34 25 25 28 22 33

ext2 41 19 36 44 20 30 29 60 18 27
reg+k 116 53 28 105 98 111 107 27 112 80
arma+k 73 42 51 20 32 63 66 102 62 26
reg 81 23 27 83 94 103 101 63 106 50
arma 24 23 47 18 43 23 47 80 43 27
larmawt 97 52 34 76 44 60 86 24 39 32 |

Table IV~4: Errors in Prediction & Miscellany
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Process 2 : Predicting Z(101)-2(200) from 2(100)
Imethod Z1 72 723 Z4 7Z5 76 727 Z8 Z9 710}
extl 104 21 23 90 32 24 30 26 50 31
ext2 73 20 30 81 20 25 30 60 39 25
reg+k 149 96 78 148 141 147 142 50 143 131

arma+k 118 76 58 40 28 107 105 138 91 22

reg 129 37 31 131 141 144 140 66 144 104

arma 33 30 48 32 43 22 74 105 55 24

armawt 140 76 86 127 96 103 127 74 52 110
Predicting Z(1)-2(100) from Z(1)

extl 26 18 18 22 18 20 25 21 18 21

ext?2 26 25 19 28 18 21 33 32 18 47

(7]
~

reg+k 47 58 62 54 75 81 61 80 85
arma+k 66 50 24 67 44 78 36 180 67 22
reg 91 52 33 76 142 137 142 38 148 134
arma 60 39 33 56 19 21 79 83 75 38
armawt 34 64 95 85 108 101 132 86 78 116

Iterations and Significance of ARMA vs. regression
its/ak 10 3 8 10 10 10 10 8 g 10
its/a 4 1 4 L 10 10 6 6 b 9
its/aw 7 6 7 L 8 9 9 b 5 7
p/ak .00 .20 .00 .00 .00 .01 .00 .00 .00 .00

| p/a .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 |

Table IV-4: Errors in Prediction & Miscellany
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Process 3 : Predicting Z(101)-2(110) from Z(100)
|me thod Z1 72 73 I4 725 Z6 77 I8 19 710}

extl 90 16 84 34 34 65 48 83 16 93
ext2 17 44 26 30 21 16 38 51 14 23
reg+k 43 66 26 14 18 36 14 77 42 28
arma+k 17 17 29 18 16 17 22 52 23 35
reg 26 62 50 18 42 38 20 62 23 29
arma 12 15 46 20 23 14 27 4O 20 31
armawt 84 36 98 14 120 27 18 106 34 29

Predicting Z(101)-2(125) from Z(100)
extl 107 34 108 98 48 67 91 96 44 109

ext2 43 61 55 96 4O 35 83 67 45 28
reg+k 87 106 48 58 40 73 40 112 69 26
arma+k 43 43 49 81 39 55 58 77 43 42
reg 66 103 67 74 73 80 52 93 47 27
arma 31 29 58 84 47 50 69 53 43 33
armawt 115 83 141 70 167 70 50 153 52 80

Predicting 2(101)-Z(150) from 2(100)
extl 137 52 139 120 49 52 139 118 95 122

ext? 92 71 86 118 36 53 134 94 98 42
reg+k 132 132 56 52 40 119 75 143 52 30
arma+k 93 62 55 94 40 103 104 114 83 69
reg 121 134 82 77 110 129 92 131 41 33
arma 73 49 58 101 67 95 121 77 87 48
larmawt 173 117 168 74 184 121 92 177 46 126 |

Table 1V-4: Errors in Prediction & Miscellany
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Process 3 : Predicting Z(101)=-Z(200) from Z(100)
|method Z1 72 73 Z4 Z5 26 Z7 Z8 729 Z10|
extl 165 77 132 122 68 43 164 127 120 142
ext2 141 70 75 119 85 77 161 105 124 79
reg+k 165 142 88 85 77 157 68 163 70 49

arma+k 143 51 88 77 77 148 111 139 102 109

reg 161 153 143 64 157 165 84 159 68 54
arma 124 83 126 90 134 141 146 79 109 76
armawt 187 136 185 61 192 161 90 189 58 142
Predicting Z(1)-Z(100) from Z(1)
extl 60 20 43 21 43 31 22 42 18 42
ext2 69 64 95 25 62 43 22 43 30 60
reg+k 68 67 78 71 43 74 67 54 62 129
arma+k 85 34 75 32 43 59 59 54 71 148
reg &5 165 137 113 135 162 135 120 145 130
arma 93 26 115 45 90 132 53 45 24 143
armawt 184 160 178 108 190 160 127 185 129 132
lterations and Significance of ARMA vs. regression
its/ak 9 10 b 5 7 9 10 10 10 3
its/a 2 9 2 6 3 3 9 4 7 2
its/aw 3 9 6 9 5 8 9 9 10 L
p/ak .00 .00 .18 .00 .24 .00 .00 .00 .00 .15

| p/a .00 .00 .12 .00 .03 .00 .00 .00 .00 .16 |

Table IV-4: Errors in Prediction & Miscellany
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Process 4 : Predicting 2(101)-7Z(110) from Z(100)
|method 21 Z2 723 Z4 75 Z6 Z7 728 Z9 Z10]

extl 34 30 8 29 26 42 42 38 29 32
ext? 7 113 g 31 5 15 29 22 29 10
reg+k 7 110 19 24 30 27 11 20 35 9
arma+k 6 25 15 31 9 18 23 13 33 11
reg 5145 15 23 24 25 16 19 30 9
arma 5 26 13 32 19 16 25 14 29 9
armawt 12 100 18 27 7 23 18 31 36 40

Predicting Z(101)-7(125) from Z(100)
extl 43 35 12 23 30 53 56 42 25 38

ext2 18 119 13 26 13 15 42 31 25 17
reg+k 17 129 37 41 61 40O 14 28 45 16
arma+k 10 35 28 29 14 29 27 25 31 24
reg 12 172 28 26 54 34 15 28 30 17
arma 9 26 22 31 21 22 32 25 24 19
armawt 31 150 36 48 20 39 21 46 37 87

Predicting 7Z(101)-Z(150) from z(100)
extl 60 39 17 31 25 50 63 44 33 38

ext?2 35 125 19 35 15 17 49 31 31 21
reg+k 36 149 65 73 100 77 47 26 64 25
arma+k 11 50 47 39 40 63 24 26 28 48
reg 23 186 47 46 100 66 26 23 31 26
arma 9 20 35 43 18 43 30 20 22 34
larmawt 60 176 62 82 54 79 19 65 36 130 |

Table IV-4: Errors in Prediction & Miscellany



Process
{method
extl
ext?2
reg+k
arma+k
reg
arma

armawt 1

Predicting Z(1)=-2(100)

extl
ext?
reg+k
arma+k
reg
arma

armawt

Ilterations and Significance of ARMA vs.

its/ak

its/a

its/aw
p/ak

| p/a

Table

M
Z1
90
70
7h
17
50
19

05

16
16
54
25
29
58
53

10
3
L

.00
.00

Page

Predicting Z(101)-Z2(200) from Z(100)

Z2 713 Z4
49 35 25
132 36 27
170 113 130
83 90 30
193 388 107
17 67 3k
188 108 138

29 23 18
36 29 28
76 52 74
55 47 18
186 52 98
37 32 23
186 74 130

9 7 10

10 3 10

6 3 3

.00 .00 .00
.00 .00 .00
IV-L: Errors

Z5
30
L3
145
100
149
L6
112

16
22
66
57
135
19
89

10
.00
.00

Z6 727 18
38 91 38
34 79 35
129 87 41
119 22 87
118 43 47
100 4o 72
132 17 68
from Z(1)
23 18 16
45 19 18
41 73 57
33 42 190
127 105 22
112 50 49
142 70 78

7 8 5
2 5 6
9 9 6
.00 .00 .00
.00 .00 .00

Z9 710]|
4o 55
37 33
113 22
55 72
66 24
19 41
64 161
15 17
22 18
63 53
31 76
99 47
29 66
81 162

regression

10 9

7 1
10 6
.00 .00
.00 .00 |

in Prediction & Miscellany

V=54
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Process 5 : Predicting Z(101)-7Z(110) from Z(100)
Imethod 21 72 73 I4h Z5 76 727 718 79 710}

extl 28 33 60 19 41 33 20 21 13 29
ext?2 19 57 33 23 23 21 6 17 16 15
reg+k 21 78 17 15 29 48 5 11 14 14

arma+k 20 71 19 16 29 &0 11 14 15

~N D

reg 19 89 21 22 24 42 13 14 15
arma 18 69 22 23 24 43 7 13 14 15
armawt 35 102 22 24 4o 78 L 6 83 16

Predicting Z(101)-Z(125) from Z(100)
extl 21 61 56 23 36 36 22 13 20 29

ext? 18 65 30 22 19 20 21 16 27 40
reg+k 18 83 29 21 33 79 19 15 13 35
arma+k 17 77 20 17 32 82 20 15 13 38
reg 17 114 21 21 22 72 22 13 16 39
arma 18 78 18 25 22 76 23 13 16 42
armawt 48 138 18 61 59 133 18 25 141 18

Predicting Z(101)-Z(150) from Z(100)
extl 17 64 75 32 51 29 23 21 22 29

ext? 16 82 52 20 33 25 20 19 30 ui
reg+k 21 124 45 50 70 13 19 34 31 35
arma+k 17 120 26 36 68 125 20 34 29 42
reg 14 156 27 20 45 122 24 23 19 45
arma 15 128 24 25 42 125 26 23 18 50
larmawt 86 170 26 109 107 167 21 54 172 36 |

Table 1V-4: Errors in Prediction & Miscellany



Process 5

imethod
extl
ext2
reg+k
arma+k
reg
arma

armawt

extl
ext?2
reg+k
arma+k
reg
arma

armawt

lterations and Significance of ARMA vs.

71 72

L8 63
L3 87
71 153
65 150
49 179
L6 161

139 185

Predicting

28 36

28 453
54 63
53 62
30 176
28 145

135 184

its/ak 2 8
its/a 2 3
its/aw 8 9
p/ak .40 .03

| p/a .39 .01
Table 1V=-4:

76
L6
31
154
155
159
161
184

Z7 18
66 39
54 41
67 90
56 91
L3 68
39 68
75 115

Z(1)-2(100) from Z(1)

Z3 Zh4 75
85 55 84
62 32 68
100 105 122
59 86 119
61 34 89
33 26 8L
27 154 152
29 24 35
76 25 L8
74 79 59
58 80 59
68 26 67
50 30 62
75 151 149

8 1 1

b 1 1
10 10 9
.02 .41 45
.00 .37 U3
Errors

L6
L7
83
83
159
162
184

1

1
10
bl
U7

27 22
54 41
42 57
38 57
L3 29
Lo 29
76 81

2 0
2 0
7 6
.20 .50

.18 .50

Page

Predicting Z(101)-Z(200) from 7Z(100)

Z9 z710]|
27 32
36 50
71 33
65 45
36 51
31 60
186 106
37 20
52 20
79 97
79 92
49 20
L6 24
185 111

1 1
1 1
9 6
42 .38
41 .37

regression

I

in Prediction & Miscellany
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Process 6 : Predicting Z(101)-7(110) from Z(100)
|me thod 21 72 13 Z4 75 726 727 1% 79 710}

extl 29 42 16 26 50 23 109 22 36 35
ext? 26 21 11 28 7 30 15 17 4O 43
reg+k 26 15 16 27 29 43 21 16 27 45
arma+k 26 17 12 23 28 47 21 14 28 L6
reg 25 22 5 30 26 41 56 17 35 45
arma 25 22 7 28 26 43 55 16 37 U5
armawt 30 18 67 12 31 23 73 16 4l 22

Predicting Z(101)-Z(125) from Z(100)
extl 42 36 35 46 58 28 104 28 34 35

ext2 36 25 31 30 17 55 22 30 44 53
reg+k 41 15 56 29 55 85 52 28 26 63
arma+k 42 20 51 30 53 90 52 27 27 65
reg 38 29 38 31 50 80 112 30 38 62
arma 38 30 33 29 u4& 83 111 29 42 62
armawt 52 58 129 58 59 43 133 29 101 37

Predicting Z(101)-Z(150) from Z(100)
extl 57 58 69 81 75 35 119 4O 36 63

ext2 50 60 56 52 4O 64 33 28 41 81
reg+k 60 56 109 51 89 116 67 28 36 98
arma+k 61 56 105 65 88 123 67 29 34 100
reg 53 63 88 4O 82 107 148 28 34 96
arma 54 65 75 43 77 112 147 28 39 96
|armawt 78 101 166 118 97 46 165 28 149 69 |

Table 1V-L: Errors in Prediction & Miscellany



Process 6 Predicting
Imethod Z1 72 I3 I
extl 68 48 66 102
ext2 63 47 51 73
reg+k 85 63 135 74
arma+k 87 45 131 99
reg 70 58 112 42
arma 71 67 87 55
armawt 112 151 184 157

extl
ext2
reg+k
arma+k
reg
arma

armawt

Iterations and Significance of ARMA vs.

16
31
45
L6
25
23

32 33 22
54 38 22
85 51 90
90 50 87
68 99 49
80 74 35

52 146 185 138

Its/ak 1

its/a 1

its/aw 8

p/ak .40

| p/a 40
Table

Iv=4:

1 2 1

1 1 1

5 8 10
.37 .39 .43
.35 .29 .45
Errors

Page

Z(101)-Z(200) from Z(100)

Z5
113

86
126
125
118
114
137

31

57
101
100
128
126
139

Z6
92
114
157
162
152
155
86

18
18
190
190
108
116
50

Z7
140

66
101
101
174
174
183

L3
54
88
88
175
175
182

Z8
52
65
56
L7
68
61
62

Predicting 2(1)-Z(100) from Z(1)

Lo
L6
150
151
L7
Ly

L

AL
92
69
100
98
83
72
176

42
50
50
51
L5
L6
178

2
2

Z10|
102
116
139
141
135
136
159

25
74
96
90
108
109
140

regression

2

2
10
.0L
.05 |

in Prediction & Miscellany
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Process 7 : Predicting Z(101)-Z(110) from Z(100)
Imethod Z1 72 73 74 75 76 Z7 728 79 Z10|

extl 7 9 6 15 11 5 6 L 13 L
ext?2 10 6 8 9 7 6 7 7 L 6
reg+k 6 L 11 16 12 6 6 11 8 L
arma+k L 5 9 13 9 6 L 6 3 L
reg 9 5 9 13 9 5 7 8 5 5
arma 6 5 7 10 7 5 5 b 5 b
armawt 5 5 7 8 7 6 5 b 5 b

Predicting Z(101)-Z(125) from Z(100)
extl 7 12 8 17 9 6 7 6 13 4

ext2 11 8 7 9 12 6 9 10 6 6
reg+k 6 6 10 26 26 12 5 23 22 5

arma+k 6 6 6 20 21 9 5 14 8 6
reg 9 5 7 19 19 7 8 15 11 6
arma 5 5 7 14 15 7 6 6 5 Iy

armawt 5 5 8 10 14 8 6 8 5 5

Predicting Z(101)-Z(150) from Z(100)
extl 13 10 13 19 12 5 1 17 20 13

ext?2 17 7 11 7 12 5 15 21 10 11
reg+k 10 23 16 44 35 18 6 7 35 21
arma+k 8 20 7 36 27 9 5 33 12 20
reg 14 10 8 29 21 7 15 32 14 10
arma 12 9 11 21 15 6 12 18 g8 13
farmawt 7 8 12 15 14 g 11 21 g8 17 |

Table IVY-4: Errors in Prediction & Miscellany



Process 7
Imethod 21 72
extl 13 11
ext?2 14 13
reg+k 48 58
arma+k L2 50
reg 15 27
arma 13 25
armawt 20 23

Predicting

extl 7 5

ext?2 9 6
reg+k 16 14
arma+k 13 10
reg g8 19
arma 7 16
armawt 12 14

lterations and Significance of ARMA vs.

its/ak 9 7
its/a 3 4

its/aw 3 2

p/ak .00 .00
| p/a .00 .00
Table V=4

Z3 Zu 15
26 28 13
23 12 11
27 74 62

7 61 51
13 44 34
22 30 22
24 18 22

Z(1)-2(100)

7 9 6
26 10 7
12 23 17

6 20 17
35 53 26
20 41 16
22 30 16

Page

Predicting 2(101)-Z(200) from Z(100)

Z6 27 28 79 Z10]
8 12 30 18 24

g8 13 33 g 21
b1 28 84 76 46
20 25 61 40 41
15 13 55 37 20
10 11 32 11 24
16 11 37 10 23
from Z(1)

5 5 5 7 7

12 14 7 9 11
19 10 20 23 13
11 6 18 17 7
g8 15 19 44 11
7 14 5 21 10
7 14 7 19 17

regression

9 7 9 9 7 10 9 8

L 3 2 L 3 2 3 3

5 6 3 3 2 5 L 2
.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 |
Errors in Prediction & Miscellany

V=60
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Process 8 : Predicting Z(101)-Z(110) from Z(100)
[method Z1 722 13 I4 75 716 Z7 28 Z9 Z10}|

extl 31 16 9 19 21 21 18 23 18 11
ext2 18 11 22 18 30 38 25 33 19 16
reg+k w7 27 16 38 48 55 42 32 39 40
arma+k 43 24 18 23 22 20 16 21 26 27
reg 23 11 17 24 43 49 39 26 30 26
arma 18 20 18 17 21 18 14 21 15 13
armawt 27 25 11 15 19 25 18 22 16 17

Predicting Z(101)-7Z(125) from Z(100)
extl 33 14 17 21 19 18 17 19 15 14

ext? 19 14 32 19 25 35 25 33 19 16
reg+k 62 47 25 61 62 74 58 49 66 59
arma+k 58 33 31 46 24 19 19 18 45 39
reg 46 12 21 46 61 69 60 20 58 39
arma 19 19 30 14 22 16 15 21 14 14
armawt 37 27 14 21 16 31 24 21 24 19

Predicting Z(101)-Z(150) from Z(100)
extl 4y 19 17 32 23 20 18 20 18 21

ext? 25 18 32 30 22 29 27 41 16 18
reg+k 83 74 52 86 80 89 78 60 87 75
arma+k 79 55 35 75 39 19 32 20 64 54
reg 87 29 19 82 91 93 92 24 89 58
arma 23 25 34 16 28 19 21 31 14 16

larmawt 62 38 27 43 18 37 39 22 34 19 |

Table 1V-4: Errors in Prediction & Miscellany
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Process 9 : Predicting Z(101)-7Z(110) from Z(100)
|method Z21 722 73 Z4 Z5 726 Z7 Z8 729 Z10 |

extl 39 16 29 19 22 34 27 39 16 47
ext? 12 45 15 25 15 18 24 4O 15 27
reg+k 4Ly 59 28 21 13 34 22 69 4wk 26
arma+k 13 15 23 15 13 16 19 53 37 20
reg 23 60 34 15 31 34 14 58 17 23
arma 11 15 20 15 15 9 21 24 14 27
armawt 38 18 34 14 52 12 17 81 19 20

Predicting Z2(101)-7Z(125) from 2(100)
extl 50 24 51 50 31 37 54 46 30 62

ext? 21 56 34 56 26 29 51 47 32 24
reg+k 72 85 38 31 25 59 34 87 62 62
arma+k 25 24 32 27 25 43 41 75 54 37
reg 57 96 57 32 58 68 28 89 41 28
arma 17 21 30 44 25 27 45 31 30 23
armawt 78 35 53 33 98 37 37 128 31 Lk

Predicting Z(101)-Z2(150) from Z(100)
extl 73 31 68 59 26 31 81 60 42 70

ext? 46 60 45 66 26 39 78 60 50 24
reg+k 103 103 36 41 28 91 30 110 56 86
arma+k 54 31 30 27 28 77 60 101 47 58
reg 105 127 91 39 102 112 27 178 54 4l
arma 3, 28 27 L9 27 47 69 43 L4k 22

larmawt 126 45 83 29 143 69 52 163 32 72 |

Table IV=-4: Errors in Prediction & Miscellany



Process 9

[method Z1
extl 109
ext2 87
reg+k 139
arma+k 100
reg 151
arma 68

armawt 164

Predicting Z(1)-2(100)

extl 33
ext?2 Ly
reg+k Lo
arma+k 36
reg 108
arma 56
armawt 134

| terations

Page

Predicting 7Z(101)-Z(200) from Z(100)

2 13
33 61
L5 4O
114 83
31 78
155 145
36 69
39 139

18 28
L0 49
42 50
18 44
153 141
18 53
55 145

and Significance of

L 75
58 42
65 55
81 67
66 67
72 151
W3 67
37 173

18 26
18 33
L5 28
Ly 28
107 134
21 30
68 165

its/ak 10 10 10 10 9

its/a 5 10 5 7 6

its/aw 6 10 9 9 10

p/ak .00 .00 .00 .00 ,09

| p/a .00 .00 .00 .00 .00
Table IV-L4: Errors

Z6 77 I8 79 Z10|
28 101 62 53 86
52 98 62 63 40
128 32 128 71 114
119 65 122 63 94
153 58 160 105 75
79 85 43 58 31
112 54 182 35 86
from Z(1)

22 18 25 16 27
24 25 27 18 31
47 41 37 37 36
36 29 36 38 39
143 129 137 136 40
60 24 26 16 72
99 61 175 30 79

ARMA vs. regression

10 10 10 10 10

8 10 6 10 3

6 10 2 10 b
.00 .00 .00 .00 .00
.00 .00 .00 .00 .00 |

in Prediction & Miscellany
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Process 10 : Predicting Z(101)-Z(110) from Z(100)
|method Z1 722 73 I4 75 726 17 18 79 Z10|

extl 18 28 6 25 15 21 23 21 29 18
ext2 6 114 L 27 6 16 14 17 29 10
reg+k 15 78 18 32 28 26 14 30 37 17
arma+k 10 53 14 27 7 11 9 16 29 12
reg 7 135 g 22 18 22 7 22 28 10
arma 6 26 5 25 16 g 19 11 28 10
armawt g 80 11 29 g 25 19 21 33 39

Predicting Z(101)-7Z(125) from Z(100)
extl 24 30 g8 19 18 27 30 30 22 25

ext?2 12 120 6 22 12 15 20 28 23 17
reg+k 38 90 38 54 50 38 33 51 52 39
arma+k 25 76 27 41 20 19 10 30 24 25
reg 15 162 17 32 42 31 15 35 27 19
arma 10 26 9 21 19 13 26 24 22 16
armawt 19 133 20 44 12 46 44 36 33 87

Predicting Z(101)-Z(150) from Z(100)
extl 32 28 13 25 15 26 33 28 21 27

ext2 19 123 11 29 11 17 23 25 23 21
reg+k 66 106 62 73 72 61 62 78 67 59
arma+k 47 95 47 60 44 37 25 37 19 37
reg 27 180 33 58 78 52 42 46 35 25
arma 12 21 15 27 16 22 28 18 19 21

larmawt 33 166 36 71 12 83 88 48 35 131 |

Table IV-4: Errors in Prediction & Miscellany



Process 10 :

fme thod Z1 72
extl 52 31
ext?2 L0 127

reg+k 106 131
arma+k 88 124
reg 55 190
arma 25 20
armawt 63 183

Predicting

extl 11 28
ext?2 12 31
reg+k 27 47
arma+k 30 48
reg 19 177
arma 21 28
armawt 26 182

lterations and

its/ak 10 10
its/a 5 10
its/aw L 10
p/ak .00 .00

| p/a .00 .00
Table V-4

Z3 ZI4 Z5 726 Z7 18
22 19 18 20 51 23
19 22 25 26 42 22
97 110 111 100 89 105
83 102 92 78 b4 41
66 113 129 92 73 5i
28 21 18 47 43 30
69 122 34 132 134 58
Z(1)-2(100) from Z(1)

16 17 13 17 18 14
18 22 17 24 18 14
33 43 38 30 44 40
30 40 28 16 43 40
48 110 115 88 101 52
17 18 14 49 18 19
45 111 19 133 143 59

Significance of ARMA vs.

10 10 10 9 10 10

L 10 10 3 10 9

6 9 10 b 9 3
.00 .00 .00 .00 .00 .00 .
.00 .00 .00 .00 .00 .00
Errors in Prediction & Mi
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Predicting Z2(101)-Z(200) from Z(100)

Z9 710]|
23 32
25 23
97 97
31 72
71 42
19 18
58 163
15 15
15 15
38 31
27 36
88 29
16 23
59 165

regression

10 10
10 9
10 3
00 .00
.00 .00 |

scellany
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Process 11 : Predicting Z(101)-Z(110) from Z(100)
Imethod 71 22 723 ZI4 Z5 26 Z7 78 79 710}

extl 22 28 55 14 28 32 10 18 15 21
ext?2 18 57 29 26 21 23 6 23 18 14
reg+k 24 56 13 18 36 45 8 14 18 12
arma+k 23 54 17 16 36 48 6 14 17 11
reg 19 86 18 20 228 46 5 19 16 12
arma 18 61 20 21 26 50 5 19 15 13
armawt 35 108 13 29 47 103 6 9 93 13

Predicting Z(101)-2(125) from 2(100)
extl 18 66 47 16 26 31 17 17 19 28

ext?2 18 66 23 26 18 19 19 21 27 38
reg+k 26 63 35 45 48 65 24 16 18 22
arma+k 23 63 24 38 47 68 21 15 17 24
reg 17 103 24 18 38 84 17 17 16 33
arma 17 67 19 20 34 93 18 17 17 35
armawt 53 144 63 73 84 158 20 23 150 17

Predicting 2(101)-7(150) from Z(100)
extl 14 55 62 20 36 27 17 17 22 23

ext2 16 75 40 24 27 18 22 21 32 35
reg+k 43 89 50 75 72 92 39 35 38 23
arma+k 37 87 32 69 72 95 31 32 35 21
reg 16 149 31 24 72 131 18 18 17 27
arma 13 109 24 18 64 10 20 17 16 31
|larmawt 95 172 99 122 131 180 31 51 176 40O |

Table IV-4: Errors in Prediction & Miscellany



Process
|method
extl
ext?
reg+k
arma+k
reg
arma

armawt 1

Predicting Z(1)-2(100)

extl
ext2
reg+k
arma+k
reg
arma

armawt 1

lterations and Significance of ARMA vs.

11
Z1
34
32
88
82
49
40
L3

23
23
36
36
L0
30
L3

its/ak 2

its/a 1

its/aw 2

p/ak .28

| p/a .22
Table

Page

Predicting Z2(101)~-2(200) from Z(100)

Z2
Ly
4
111
109
175
4L
187

Z3 74
75 32
53 26
90 112
62 108
59 55
25 29
147 162

37 28 25
b4 74 25
47 54 4
46 51 43
172 60 60
126 41 31
186 160 162

8

.05
.00

V-4 :

.00 .38

.00 .23

Errors

Z5
Gh
55
110
110
122
112
167

33
b3
40
Lo
111
100
168

L8
.39

Z6 77 28 79 710}
43 37 23 27 23
27 31 22 37 35
118 91 84 77 56
120 83 78 7 48
165 41 41 34 23
170 33 35 24 29
190 85 106 188 98
from Z(1)

43 21 20 33 16
47 41 33 44 16
60 28 37 53 48
61 27 36 52 46
165 53 25 uw& 25
171 43 25 41 18
188 97 87 188 103

W24
.39

.11
.08

.23

.19

.39
.34

regression

.Ll3
40 |

in Prediction & Miscellany
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Process 12 : Predicting Z(101)-2Z(110) from Z(100)
|method Z1 72 23 I4 25 26 77 I8 19 Z10|

extl 22 36 10 15 30 20 49 9 27 29
ext2 22 23 12 29 12 23 13 19 29 3b
reg+k 26 6 22 13 31 24 25 14 31 28
arma+k 25 8 18 16 24 28 19 19 27 31
reg 23 20 6 24 29 26 33 17 25 32
arma 22 18 7 30 20 28 18 20 27 33
armawt 28 18 75 13 32 14 49 9 31 25

Predicting 2(101)-Z(125) from Z(100)
extl 27 29 28 33 33 25 44 19 28 26

ext2 26 30 31 30 13 47 14 28 36 37
reg+k by 27 45 47 53 52 52 22 36 27
arma+k 41 11 42 40 41 60 44 28 31 33
reg 32 25 34 30 49 55 80 26 28 35
arma 30 27 29 31 33 58 48 31 35 39
armawt 47 50 134 57 61 28 105 21 48 68

Predicting Z(101)-7(150) from Z(100)
extl 35 54 L2 59 46 32 61 22 26 33

ext?2 33 66 35 40 28 53 28 25 28 48
reg+k 66 62 83 94 80 62 62 25 49 27
arma+k 61 54 81 85 68 77 54 25 43 39
reg 4y 60 78 55 80 69 118 23 37 45
arma 41 66 52 34 56 74 67 30 29 53
larmawt 71 89 169 114 99 32 145 41 93 118 |

Table IV-L4: Errors in Prediction & Miscellany
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1v-70

Predicting Z(101)-Z(200) from Z(100)

Process 12
Ime thod Z1 722 I3
extl b2 40 37
ext2 40 58 29
reg+k 101 86 98
arma+k 9y 64 97
reg 64 46 111
arma 57 65 63
armawt 108 142 185

Predicting Z(1)-Z(100)

extl
ext?2
reg+k
arma+k
reg
arma

armawt

14
26
30
31
20
18

25
35
45
51
28
438

29
30
39
38
106
62

Zh
74
52
128
122
82
40
155

20
20
40
39
43
24

Z5 26 Z7 18 79 Z10]|
71 49 80 38 61 L8
49 75 45 51 50 64
108 92 86 27 92 33
96 116 80 47 87 ub
116 104 157 43 90 59
79 111 107 64 44 75
141 29 173 55 14k 168
from Z(1)
23 16 33 30 22 24
33 16 39 34 25 34
60 52 58 82 27 47
55 48 57 75 29 50
117 44 165 31 59 30
89 54 134 43 31 43
77 173 77 128 164

69 144 186 143 139

lterations and Significance of ARMA vs. regression

its/ak 2

its/a 2

its/aw 3

p/ak .1k

| p/a .11
Table

7
2
2

.07
.03

V=14

7 7

2 2

3 2
.29 .26
.08 ,11
Errors

5

.06

in Prediction & Miscellany

.37

.00

.03

10

19
.00

.00

N

.07
.05 |
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(V1) NATIONALISM AND SOCIAL COMMUNICATIONS:

A TEST CASE FOR MATHEMATICAL APPROACHES

(i) INTRODUCTION AND SUMMARY

In the previous chapter, we have emphasized the
importance of carrying out statistical research within
the context of a broader analytic effort. The
substantive goal of this thesis, however, in political
science, was to carry through an analytic point of
view, already developed by Karl Deutsch, and formulated
mathematically with the assistance of Robert Solow(1l).
In the first phase of this research, carried out in
1971, we attempted to develop the original
Deutsch-Solow model as a predictive model of national
assimilation and political mobilization; more
precisely, we attempted to predict such indicators of
national assimilation as language or ethnicity (see
Table VI-24), and such indicators of social
mobilization as urbanization or literacy (see Table
Vi-23). (Note that these indicators were suggested
originally by Karl Deutsch, not as operational
definitions of nationalism, but as usable series of
numerical data with some sort of correlation, albeit

noisy, with the underlying concepts he has discussed.)
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Even though the Deutsch-Solow model seems very
simple, from the mathematician's point of view, the
existing statistical routines turned out to be unable
to cope effectively with even this level of complexity.
Because of this result, which we found rather
surprising at first, we found it necessary to abandon,
in this context, the more ambitious goal of predicting
long=-term political trends by way of more interesting,
complex models. We have, instead, developed two
distinct strands of thought - one methodological and
the other substantive ~ which may be prerequisites to
success in the more ambitious undertakings of the
future. Even in their present form, however, these two
strands do offer predictions and insights,
respectively, of some relevance to the decision-maker
concerned with nationalism.

First of all, we have developed a new methodology
for statistical analysis, the "robust method' of
section (xi) of Chapter (Il), able to deal effectively
with prediction over time. This method emerged from the
study of the Deutsh-Solow model and of similar simple
models. In sections (ii) and (iii) of this chapter, we
will describe the empirical results, based on the
Deutsch-Kravitz data from more than a dozen nations,

which led us to this new approach. These results



Page VI-3

LEGEND TO FIGURES VI-1 THROUGH VI=b&

The figures on the next four pages describe the
average percentage errors which we found when making

long-term predictions of our four variables - the sizes
of the mobilized, underlying, assimilated and
differentiated populations - in a variety of different

cases, by use of different estimation techniques. In
each '"case" (i.e. a nation and a choice of data to
study in that nation), we calculate the
root-mean-square ('"RMS'") average of the errors in the
predictions made to all different years for which data
were available; this may be thought of as taking an
average across different intervals of prediction. For
each of our three basic techniques - regression, ARMA
and the robust method (GRR or EXTRAP) - and for each
variable, we have drawn a curve which represents the
distribution of average error size from case to case.
These distribution curves are like the distribution
curves for college board scores; to find out how bad
the errors were for the 20th percentile down from the
top, we look at 20% on the horizontal axis, and then
look up at our curves to see how high the prediction
errors go, in the vertical direction. Notice that the
vertical axis is spread out at the bottom, and
compressed at the top, to allow us to fit the whole
curve on one page; it is still correct, however, when a
curve is exactly halfway between, say, 50% and 70%, to
conclude that the error was exactly 60%. Thus in
comparing the area under different curves, it is
important to note that the horizontal line at "5%"
should be thought of as the base of the graph, in
regions where the error percentages are between 10% and
50%, in order to compensate for the spreading out at
the bottom.

The distributions for regression, ARMA and GRR
were drawn from Tables VI=-15 through VI-20, from the
columns labelled "Uni." and "extl". They all represent
predictions based on the reduced form of the
Deutsch-Solow model, equations (6.1) and (6.2) with the
"bD" and "fU" terms removed, for the same cases,
defined in Tables VI-23 and VI-24. The definitions of
these procedures may be found in section (iii). The
distributions for EXTRAP, described in section (ii),
were based on the same model, but a siightly different
set of sample cases (i.e. data was not interpolated,
because it was not necessary to do so with this
program); see Tables VI=-8 and VI-9 for the original
figures.



T F T | -
| N
I-a \H
> »
m 4 -
- - — o & 1
M B B o g | = ~
" P T e
= | 5 ¢ e o \loL i
. S el | ia N T
b Rl s it | v - T >
A : 1 SN
fm. & -4 ) !M >
T a R { EREDE -
- : : ’ | @ B
B 4 N _ard)
PTRRR e - qo g
- = ey
L ik - e BT
: L | n
T ‘ : abw, £s
2 L " e
Pt O L] oans
N ! ) - Fanm. W 4 glm\
- i b B ol Py
i \ - a ol b
NN NN | HERE Tl 8- BE AL
- ! i J g, g 4 L]
3 g i) S8
- ] Y
* ] \ lu L
(Y < ml r= b
| =i -
M X o Bk =] m
EX IR o
A, » M ‘ —_ :\‘I.AMr\“Mljh
,, - ol W P . . —
ﬁ\ - ..* MR 1] .n.u.
| - LI ) S SRR
| : RIS ERRE - ladh :
ﬁ LS o= J.m\ ”
. - I Rk Y
| ESN RNER K Iy
bt |
=
_ LR o BN L& i
) o ; . ¥ TRy
: S M .,n) mw.w ‘Mo. m § N




Fr

s

v

)

|
-

d?;_g&&n

(Rebust)

e

'y ; it
) | £
A Yn : : o =
1 _ Y -y i 1
1 % 4 “ 3 T E . .
i . 3 | i
: : . b
% o
% 5
} " 5 .m(
— @ .| % N > ! 3
, EL .N g
- i | .,1.
M : - 5 ;
H 4 .H |
. ] i
on F
L X m‘\
| 3 x B
a «
N % 8




.)ldwjgfg,:

ves Errors in'
1t qs, 1n PereentageS.

Peroantileéﬂ

-See -

%

aa%ﬁjw;wij‘
n- Long-Term Predieti@ns af
Legend 5 Pagg 5

Y¥i3‘- .




j
00%
|
[
r
|
|

e ‘ el

4.
i g M LR K (i

i
™
2
I

-~

s-of

:
|
|
t
¥
!
i
|
|
cas
!

i
3
|
I
2
]
|
]
T
]

P e, e

b
g
F 1
ot
|
:
toi
;
|
|
i
|

i ¢ ]
1’
o
red
-3

T
|
1
i
o
4

|
|
.}?ﬁ‘
|
[
|

A“.ﬂ'

£
¥
IV'
*
T
|
]
T
L
t

2

e

A€

|
of
F
Vi
7
|
7
e
[Taee
|
I
|
\

|
| i
] !
}f
™ =‘ o
¥
&

1
Iy
/L
N 44,

a5

|
N
*RBH
|
L
o
¥
>
|
|
{ I
9rs In leng
AAJ- ,!IVF‘
L] L
1] L]
RN ;]\
i o
N
\ L

-
1
T
]
]
]
]
]
T

’!
%Tﬁ?mmén

LA X1

1
|

NS
Erra

swa.r%_ .
&

ens,
=
T
b
:
|
1
]

I

i
1
T
T
i
|
1

2e7

!
|
1
bution

v

T
!
1
|

Rt
o
yh Ax
BALE

Distx
e
IS
P

L i
‘Q‘k .
N
1
s
I
!

i

=

30%




Page VI]|-§

appear to indicate that prediction errors are cut in
half, for prediction over about five or six "units" of
time, following whatever "units" - years, decades or
five-year intervals - were used in the original data
collection. (Note that all nations were studied for
which sufficient data were available from Deutsch and
Kravitz, who, in turn, limited their collection effort
only by the requirements that a nation must have a
significant problem of national assimilation and that
the data must be easily available in the Harvard
libraries.) Although these indications have been
rather strong, one should still be warned that strict
statistical generality and uniformity have not been
possible in this case, due to the 1imited supply of
data per nation and due to limitations of existing
computer software routines; thus the use of judgement
is required to interpret these results. Chapter (I1V),
by contrast, has been written to provide a test of the
various methods which avoids such real-worild
difficulties. (See Table I1V-1, on page IV=34.) In
Figures VI-1 through VI-L, we have graphed the
distribution of prediction errors for the three methods
tested by comparable procedures over the
Deutsch-Kravitz data:(i) classical regression; (ii) the

ARMA technique of Chapter (l11); (iii) the robust
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method. In Figure 1V-1, which gives the curves for
predicting the assimilated population - for which the
comparison between methods is exact - one can see that
the robust method yields errors distributed uniformly
between 0% and 7%, except for three or four (i.e.
probability 20%) "fluke" cases. In predicting the
percentage of population assimilated - which is not
directly affected by random population loss in war or
the 1ike - Table VI-9, on page VI-23, shows a uniform
error distribution with the robust method between 0%
and 2%, with four "flukes" at 2.68%, 3.08%, 3.09% and
6.21% errors. Insofar as much of the data here has been
encoded in terms of decades, these prediction errors
refer to periods of time on the order of thirty or
forty years, for the most part.

In Tables VI-21 and VI-22, we have tabulated the
predictions of the robust method for assimilation and
mobilization in the countries studied, for the vears
1980, 1990 and 2000. It must be emphasized, however,
that the model used in generating these predictions -
unlike the more complex models discussed below - is not
suitable for evaluating the effects of policy in
changing what the numbers will equal in those years;
furthermore, these predictions require care in their

Interpretation, as we will discuss in section (iii).
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In sections (ii) and (iii), we will elaborate on the
details of the statistical methods which led to all
these tables and graphs. Also, in keeping with the
general philosophy expressed in Chapter (V), we will
mention some substantive impressions and hypotheses
which emerged after inspecting the predictions
generated by the robust approach; a more quantitative
study of these hypotheses may be appropriate for future
research.

The second strand of our research into nationalism
was more substantive in nature. We went back to the
original reasoning of Karl Deutsch, in Nationalism and
Social Communications(2), and formulated a model of the
assimilation process which more fully articulates the
vision expressed in that book; this model, by
describing the forces which can speed up or slow down
national assimilation, can be of direct value to the
policy-maker who wishes to do one of these two things.
Such a more complete articulation, however, required
the addition of intranational '"communications terms,"
whose evaluation in turn required detailed data on
assimilation and communications data at a subnational
level. Furthermore, the models involved were strongly
nonlinear; before we can carry out valid long-term

prediction based on these models, our work elsewhere in
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this thesis suggests that we will have to wait until
the full nonlinear version of the "robust method" is
available in a standard computer package such as T.S.P.
(Indeed, the full analysis of interaction terms between
comparable subunits across time also requires a novel
approach to statistical data management as well;
however, the Janus subsystem at the MIT-Harvard
Cambridge Project may be able to overcome this further
difficulty.) Insofar as communications terms are
actually necessary, to account for the changing rates
of assimilation crucial to Deutsch's verbal discussion,
we have concluded that reliable predictions based on
that discussion will have to await another round of
research. In the meantime, however, we have used the
standard regression techniques, and the new ARMA
techniques discussed in Chapter (111), in order to
evaluate our new communications approach, in a test
case - Norway - for which intranational data were very
plentiful.

According to the conventional measure of
statistical significance, the "ARMA" communications
model, based on migration data as an index of
communications, outperformed all the other models so
well that there is less than one chance in a million

billion that this superiority was due to a coincidence.
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The conventional measure of statistical significance
depends on short-term predictive power, on the quality
of predictions over one "unit" of time. (In this case,
one "unit" means one year ahead into the future.) In
long-term prediction of the percentage of population
assimilated, the ARMA communications model made errors
which were only about 10% less than the errors with the
best competing models. (In this case, "long-term"
errors are the average errors over all possible
intervals of prediction from one to thirty years into
the future; the averages are based on the
root-mean-square, "RMS", averaging procedure, which
places greater weight on the largest errors and thus on
the longest prediction intervals.) However, given the
large, diverse data base available, this 10% reduction
would appear to be just as significant as the reduction
in error in short-term prediction.

In section (v), by looking at the final two
studies of the Norway data, and also by comparing them
with our earlier, less perfect studies of the same
data, we have been able to extend further our
discussion of the regression method and the ARMA method
as such. In particular, the significance scores of
ARMA models do indeed seem to be more sensitive to the

quality of the substantive part of the model and to the
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quality of the data involved (i.e. flukes) than are
those of regression models. On the other hand, the ARMA
method shows only a modest improvement over regression
in reducing the size of errors in long-term prediction
(again, about a 10% reduction in error size),
particularly if one's model and data are good to start
with; this reinforces our conclusion, from

sections (ii) and (iii), that the estimation of model
parameters, for use in the long-term prediction of real
social data, is better done by way of the 'robust"
approach.

Finally, in our study of Norway data, we have
looked into the possibility of using "gravity models'",
to reconstruct the networks of interregional
communication for years in which no data were
available. These models, in standard form, do not allow
one to express or explain the changes in communications
patterns which underly the effects of modernization, as
discussed by Deutsch and interpreted in section (iv).
Thus we have generalized the simple gravity model of
internal migration, in order to remedy this defect, and

have established the validity of this generalization.
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(if) INITIAL STUDIES OF THE DEUTSCH-SOLOW MODEL

Before plunging into the mathematical details of
our work on the Deutsch=-Kravitz data, let us begin with
a general description of the studies we have carried
out. These studies fall into two subcategories. In
this section, we will discuss our initial studies, in
1971, in which our sole objective was to make use of
existing methods and existing models - primarily the
Deutsch-Solow model -~ in order to make concrete
predictions of national assimilation and political
mobilization. Given that we did not expect to generate
or evaluate any new methods as such, and given that the
software packages available to us then did not allow
long-term forecasting for a linear model structured
like the NDeutsch-Solow model, we set up special purpose
computer programs of our own, tailored to this
particular problem alone. Each of these programs
included an estimation part, to estimate the constants
of the Deutsch-Solow model for each nation
individually, and a prediction portion, to make
long-range predictions. Three programs were used,
based on three methods of estimation, in order: (i)
the Hopkins programs(3) ;(ii) standard regression;

(ifii)the "robust method."



Nation and
Base Years
Cevion
1891,1901,'11

Thai land
1925%,'36,'47

Malaysia
1911,'21,'31

Cevlon
1919x*,'36%,'53

Scotland
1881,1814%,'47

USSR
1928,'42%,'56

Malaysia
1931, '44%,'57

Canada
1941,'s51, '61

Philippines
1936%,'48,'60

Quebec
1941,'51,'61

Argentina
1930%,'45%,'60

Czechoslovakia
1900,'10, '20+*

India
1881, '91,1901

Argentina

1870%,'92%,1914

Predicted Values

Year Mobil.
1921 1471
1851 3guy
1958 19926
1951 891
1961 1258
1885 602
1902 885
1815 0
1970 101331
1914 0
1905 188
19138 269
1901 3138
1931 4838
1900 870
1924 2960
1901 1972
1931 2058
1915 5863
1900 5575
1930 5396
1940 4828
1911 30210
1941 0
1936 17743
1958 79683

Ass im.
2791
h166

3045
LOo6L

1302
1815

994
1316

2653
5670

1205
3287

746
1903

5012
1857

5960
5588

294756
0

10879
24650

Table VI-1: Sample of Results from
A1l data measured in thousands of people.
Asterisk represents estimates from ESTIMATES.
Mobil.= mobilized population; Assim. =

exact definition of both in Table VI-10.
"%ZError" is a crude percentage, from figures listed.

Actual

Year
1921
1953
1960
1947
1957

1881
1901

1821
1965
1914

1911
1921

1901
1931

1903
1918

1901
1931

1914
1892«

1930
1937

1911
1941

1930«
1960

DELTA

Page VI=-15

Values
Mobil. Assim.
1537 2770
45009 5209
18381
835 2428
1425 3126
394 1698
773 2141
697 .
121600 .
25800 .
193 1368
292 1569
2014 3711
5572 7000
1003 3219
3139 3977
645 1212
1814 2292
4157 5511
1857 2733
7850 7340
8020 7500
28482 217197
49792 270187
6914 8625
14758 17440

assimilated;

"’Error"
Mob. Ass.

0.76
20.0
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Nation Data-base Foa g RM f S.E. P of
of f f
Ceylon 1811-1921 .999 ,834 1.000 -.26 241 .3
Cyprus 1881-1931 ,999 .996 .999 -,082 .095 .4
Taiwan 1960-1966 .999 .999 .999 .051 146 .7
USSR 1950-1965 .999 ,703 .999 .84 .206 ,02
Finland 1800-1960 .996 .988 .996 .002 .030 .9
USA 1790-1960 .995 ,998 .995 . 1g3 112 .15
Japan 1920-1940 .440 .307 .995 2.73 .310 .01
Finland 1958-1967 .993 .g97g .994  ,581 .532 .3
Quebec 1851-1961 ,992 .,917 .994 1,13 745 |15
"o 1901-1961 .981 .885 .993 3.03 1.27 .05
Finland 1880-1960 .992 .9§S .992 ,036 .128 .75
Canada 1851-1961 .989 .983 ,991 -85 .632 .2
USSR 1922-1931 ,986 .991 .990 .281 167 .1
USA 1880-1960 .986 ,989 .987 1.03 1.24 .45
Canada 1901-1961 .974 ,992 .933 -1.96 1.56 .2
Belgium 1880-1930 .,952 .318 .972 -4.54 3,85 .3
India 1881-1941 .969 .902 .970 =-.1 .2 o7
Japan 1920-1960 .923 .,519 .948 .874 .576 .15

Table VI-2: Regression Statistics for Mobilized and
Underlying Populations. "f" is the estimate of fy,
the rate of mobilization, in the regression model,
(6.6). The "S.E. of f" s the standard error of f,
the conventional measure of the likely size of errors
in the estimate of f. "P of f" is the probability
that an estimate of f this large, or larger (of
either sign) would have happened by coincidence, for
an f which is zero, according to conventional theory.
"g" is the estimate of g2, the natural growth factor
of the underiying population, minus the rate of
mobilization, in equation (6.6); it is also a close
approximation to the autocorrelation of the size of
the underiying population.Ry is the multipie
correlation coefficient between the predictions of
(6.6) for mobilization and the actual values; rm is
the autocorrelation of mobilization. Data definitions
in Table Vi-10; cases listed in order of RM here.
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Nation Data-Base a c RA b S.E. P of
of b b
Taiwan 1956-1965 1,000 ,997 1.000 -.031 .065 .6
Quebec 1901-1961 ,998 .938 1.000 -1.7 .406 .01
Cyprus 1881-1931 .999 .991 .999 -1.91 1.41 .2
USA 1790-1960 .,998 .971 .999 3.489 .927 .01
Israel 1951-1967 .998 .969 .99¢& -1.29 1.20 .3
USA 1880-1960 .994 .934 ,998 9.939 3,11 .01
Finland 1880-1960 .996 .464 .996 -.57 .69 45
Taiwan 1946-1965 .994 ,999 ,996 .10&4 .049 .05
Israel 1951-1960 .994 ,999 ,994 ,795 3.90 .85
Canada 1901-1961 .972 .981 .991 .815 .326 .05
Belgium 1880-1930 .915 .915 .942 .391 L4214
India 1881-1941 ,863 .976 .922 2.44 1.67 .15
Ceylon 1881-1921 .814 .994 .8L47 .376 .862 .7
Table VI-3: Regression Statistics for Assimilated and

Differentiated Populations.

by, the assimilation rate,
(6.5).
the usual
estimate of b,
estimate of b this

The "S.E.

of b'"

llbll

is the estimate of
in the regression model,
is the standard error of b,
measure of the likely size of errors
"p of b"

the

is the probability that an
targer or larger (of either sign)

would have happened by coincidence if b is actually
zero, according to conventional theory. "c" is the
estimate of cy, the natural growth factor of the

dif ferentiated population minus the assimilation rate
as in equation (6.5). Rq is the multiple correlation
coefficient, between the predictions of (6.5) for
assimitation and the actual values; rp is the
autocorrelation of assimilation. Data definitions

in Table VI-10; cases listed in order of Ry here.
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Pct. Error

Nation Data-Base Base Error Error Median Error Pct.
Year Model Uni. Size Model Uni.
Taiwan 1960-1966 1960 b 5 3340 .120 .,150
Cyprus 1881-1931 1901 .18 .12 L8 375 ,250
Ceylon 1881-1921 1901 19 9 773 2.46 1.16
Indi a 1881-1941 1901 792 697 28500 2.78 2.45
Belgium 1880-1930 1900 171 53 3846 4,45 1,38
Finland 1880-1960 1880 31 40 642 4.83 6,23
Canada 1901-1961 1911 149 524 5572 2.67 9.40
Japan 1920-1960 1930 3739 2680 20022 18.7 13.4
USA 1790-1960 1830 1550 1780 12000 12.9 23,2
Finland 1800-1960 1800 193 123 642 30.1 19.2
USSR 1950-1965 1965 64000 1000 78500 81.5 1.28
Canada 1851-1961 1871 2609 347 2644 98,7 13.1
Japan 1920-1940 1930 10336 5482 20022 51.6 27.4
Quebec 1901-1961 1911 703 211 710 99.0 29.7
USA 1880-1960 1880 9850 L4610 12000 82.1 138.4
USSR 1922-1931 1924 19000 huge 78500 24.2 huge
Finland 1958-1967 1958 824 607 642 128. 94,5
Table Vi=4: Long-Term Prediction Errors with SERIES
In Predicting Mobilization. In each case, i.e. a row

in this table,
the "full" Deut

the "fU" term removed)
over the '"data-base'.
real data in the "base year"

made to all
(See Table V|-
of the predict
in thousands
for the full model,

median mobilization,
"median percentage error,"
and downwards bias are mentioned

in the

we hav

Then,

whose

the coefficients of equations (6.6),
sch-Solow model, and of the
Univariate ("Uni.") form of this model (i.e.
. were estimated by regression
starting from

with

predictions were

years for which we had data
10 for data definitions.) The median
ion errors, across the vears, is shown
two columns on the left, first
then the univariate; from the

e calculated a rough
limitations

in the text.

in that case.



Nation Data-Base
Taiwan 1960-1966
Canada 1901-1961
Belgium 1880-1930
Finland 1880-1960
Ceylon 1881-1921
Cyprus 1881-1931
India 1881-1941
Canada 1851-1961
Finland 1958-1967
USA 1880-~1960
Finland 1800-1960
Quebec 1901-1961
Japan 1920-1940
USA 1790-1960
Japan 1920-~1960
USSR 1950-1965
USSR 1922-1931
Table VI-5:
In Predicti

i.e. a row in the table,
the Deutsch-Solow
regression over the '"data-base.
"univariate" version is the sam
Deutsch~-Solow model,

population.) Then, fr
vear", predictions were made to
in that case.(See Table VI~10 for data
) The median of the prediction

(6.6),

we had data
definitions.

across the vyears
median size of the underlying

calculated a rough "
downwards bias

Base
Year

1860
1911
1900
1880
1901
1901
1901
1871
1958
1880
1800
1911
1930
1830
1930
1965
1924

Median Medi an

Error

4

11

40

35

39
3.9
5785
102
81
1760
150
75
3906
La70
7220
39000
L5560

Size

8562
4805
3184
2529
2793
208
274518
3645
2529
33000
2529
1017
L6358
33000
46358
109200
109200

ng the Underlying Population. In
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Long=Term Prediction Errors with SERIES

each case,

the constants of equations
were estimated by

model

is tabulated

is mentioned

" (Note that the

e as the fulil

in predicting the underlying
om real data in the "base

all vears for which

errors,

in thousands; from the
population, we have

median percentage error," whose
in the text.
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Median Median Pct. Error
Hation Data-Base Base Error Error Median Error Pct.
Year Model Uni. Size Model Uni.

Taiwan 1956-1965 1955 9 9 €99 1.00 1.00
Cyprus 1881-1931 1901 2 3 199 1.01 1.51
Israel 1951-1967 1960 21 25 1859 1.13 1.34
Israel 1951-1960 1953 25 37 1859 1.34 1.99
Quebec 1901-1961 1911 L1 52 2270 1.81 2.29
Finland 1880-1960 1880 51 61 2754 1.85 2,21
Taiwan 1946-1965 1955 14 22 899 1.56 2.45
Belgium 1880-1930 1900 56 76 2705 2,07 2.81
India 1881-1941 1901 3531 9170 216249 1.63 4,24
Ceylon 1881-1921 1901 56 32 827 6.78 3.87
Canada 1901-1961 1911 582 205 5381 10.8 3.81
USA 1790-1960 1830 7960 5338 38496 20.7 13.9
USA 1880-1960 1880 253207 3660 38496 658. 9.51

Table VI-6: Long-Terms Prediction Errors with SERIES
In Predicting Assimilation. In each case, i.e. a row
in this table, the coefficients of equations (6.5),
the "full" Deutsch-Solow model, and of the Univariate
form of this model (i.e. (6.5) with the "bD" term
removed), were estimated by regression over the
"data-base." Then, starting from real data in
the '"base year", predictions were made to all
years for which we had data in that case. (See Table
VI-10 for data definitions.) The median of the errors
in prediction, across the vears, is shown in the two
columns on the left, in thousands, first for the full
model, then the univariate; from the median values of
assimilation, we have calculated a rough "median
percentage error," whose downward bias is discussed
in the text.



Nation Data-Base
Israel 1951-1960
Ceylon 1881-1921
Taiwan 1946~-1965
Taiwan 1956-1965
Cyprus 1881-1931
India 18381-1941
Belgium 1880-1930
lsrael 1951-1967
Finland 1880-1960
Quebec 1901~-1961
Canada 1901-1961
USA 1790-1960
USA 1880-1960
Table VI-7:
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Base Median Median Pct.
Year Error

1953
1901
1855
1955
1901
1901
1900
1960
1880
1911
1911
1830
1880

1

29
87
101
1
1542
83

5

11
19
L0o3
920
5563

Size

230
2739
8175
8175

57
85803
L4336

230

393

605
4996
6491
6491

Error

J43h
1.06
1.06
1.24
.75
1.80
1.91
2.17
2

3

8

Pt

.80

Long-Term Prediction Errors with SERIES

in Predicting the Differentiated Population.
in the table, the

In each case, 1i.

a row
constants of the Deutsch~Solow model,

(6.5), were

estimated by regression over the data-base. Then,

from real data in the base vyear,

we made predictions

for all years for which we had data in that case.
(See Table VI-10 for data definitions.) The median

of the prediction errors,

across the vears, is

tabulated in thousands (here, univariate predictions
are same as full model
size of the differentiated population, we have

calculated a rough "median percentage error", whose

downwards bias

is mentioned

predictions);

from the median

in the text.
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Nation Data-Base Mobil, Under. %Mobil.
Error Error Error
Tatwan 1960-1966 Y Ny .17%
India 1881-1941 9.5% 3.4% .57%
Ceylon 1881~1953 2.8% 3.4% .57%
USSR allx 2.5% h,1% .80%
Malaysia 1911-1957 5.1% 3.3% .81%
C.S.S.R. 1900-1937 2.5% 2.9% .83%
Belgium 1880-1931 5.3% .9% 1.09%
Israel 1952-1967 1.8% h,uy% 1,18%
Finland % 1880~1960 6.1% 6.1% 1.86%
Canada 1901-1961 6.6% h.6% 2.01%
Quebec 1851-1961 6.8% 5.1% 2.18%
USSR 1950-1965 3.2% 6.5% 2.23%
Argentina 1869-1960 12.2% 17.8% 2.28%
Quebec 1901-1961 5.1% h,1% 2.36%
Canada 1851-1961 11.0% 4L.9% 2.38%
USA 1790-1960 61.7% 28.8% 2.72%
Cyprus**x 1881-1960 21.8% 8.3% 3.73%
Philippines 1903-1960 6.1% 3.9% 3.77%
Finland all« 9.3% 11.8% 3.79%
USA 1880-1960 11.5% 25.6% 3.98%
Finland 1958-1967 5.2% 340.3% 5.08%
Japan 1920~1960 16.6% 12.2% 6.38%
USSR 1922-1931 30.2% 72.7% 8.03%
Finland 1800~-1960 23.8% 24.0% 8.18%
Scotland 1821-~-1961 24,0% uL0.6% 10.05%
Japan 1920~-1940 27.3% 22.2% 10.24%
Table VI-8: RMS Average Errors of Predictions of

Mobilized and Underlying Populations,

by EXTRAP.

In each case (except **), we have given the average
of the percentage errors as averaged across
predictions to every vear for which we had data.
(See Table VI-10 for data definitions.) The three

columns, in order, give:(i) average of the percentage
errors in predicting mobilized population; (ii) the
average of percentage errors in predicting underlying
population; (iii) the average of the absolute errors
in predicting the percentage of population which is
mobilized. Cases listed in order of the latter.

* - ynion of all data-bases shown in this table.

** - test years only include data-base proper.

*x%x - Errors less than 2% uniformly for runs
made over early data, used by SERIES.



Nation

Japan
Scotland
Israel
India
Israel
Canada(B)
Cyprus
Quebec (A)
Belgium
Finland
Canada(A)
USA
Ceylon
QQuebec (B)
C.S.S.R.

Philippines

Malaysia
Taiwan
Taiwan
USA
Argentina

Data-Base

1948-1965
1891-1963
1951-1966
1881-1941
1951-1959
1931-1961
1881-1960
1901-1961
1880-1947
1880-1960
1901-1961
1790-1960
1881-1963
1931-1961
1300-1937
1903-1961
1911-1957
1956~-1965
1946-1965
1880-1960
1869-1960

Assim, Diff.
Error Error
.9% 4,3%
L, 4% L,0%
1.0% 1.1%
b,.0% L,1%
1.4% 3.6%
L,6% .9%
2.0% 6.4%
2.9% 6.6%
L.6% 3.3%
1.9% 10.5%
5.2% 2,8%
27.3% 16.4%
8.8% 6.3%
.8% 5.8%
1.1% 5.8%
5.7% L,0%
3.3% 5.5%
18.1% . 1%
38.3% . 1%
10.7% 14.5%
5.0% 37.2%

%Assim,
Error
033
L14%
.16%
.37%
.39%
.57%
.61%
.75%
.80%
1.04%
1.10%
1.11%
1.12%
1.22%
1.41%
1.68%
2,05%
2.68%
3.08%
3.09%
6.21%
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Table VI-9: RMS Average Errors of Predictions of
Assimilated and Differentiated Populations,by EXTRAP,
In each case, we give the average of the percentage

errors, averaged across predictions to

which we had data. (See Table VI~-10 for data

every year for

definitions.) The three columns, in order, give:
in predicting
(i1) the average of the

(i) average of the percentage errors

assimilated population;

pércentage errors in predicting the differentiated

absolute errors

population; (iii) the average of the

percentage of population which is
Cases listed in order of the latter.

in predicting the
assimilated,
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Argentina:M=Urban.(b); A=Ethnicity (average of series).

Canada:M=Urban.; A=English~Speaking Only (DELTA);
=Ethnicity British Isles (SERIES);
=Not French Ethnicity (EXTRAP A);
=Not French-Speaking Only (EXTRAP B).

Ceylon:M=Literacy; A=Buddhist, except in SERIES, where
A=Hindu. (Comparison of univariate models
still possible by symmetry.)

Cyprus:M=Urban.; A=Greek Orthodox (SERIES);
=Not Moslem (civilian) (EXTRAP)

CSSR=Czechoslovakia:M=Urban.; A=Ethnicity Czech.
(Deutsch estimates;Bohemia,Moravia,Silesia only.)

Belgium:M=Urban.; A=French-Speaking Only
Finland:M=Urban.; A=Finnish=-Speaking
lndia:M=Urban.; A=Hindu. Deutsch population estimates.
Israel:M=Urban.; A=Total Jews

Japan:M=Urban.; A=Not Korean. 5-year data interval.
Malaysia:M=Urban,; A=Malayan Ethnicity
Philippines:M=Literacy; A=Visayan Ethnicity.
Scotland:M=Urban.; A=Speaks No Gaelic
Taiwan:M=Urban.; A=Mainland Chinese
Thajland:M=Literacy

USA:M=Urban.; A=White

USSR:M=Urban.

Table VI-10: Indices of "M"(Mobilization) and of
"A"(Assimilation) From the Deutsch-Kravitz Data
Used For Runs Reported in Tables VI-1 to VI-9.
"Urban." means "Urbanization."
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With each of the first two programs, it required
no more than a glance at the computer outputs of
predicted versus actual values, and of the estimated
values of the constants, in order to see that something
was not working according to plan. (See Tables iv=-1,
and Vi-4 through VI-7. The latter group of tables seem
to imply that assimilation was much easier for SERIES
to predict than was mobilization. However, in the
actual year-by-year printouts, the difference was less;
the use of "median error" appears to exaggerate the
difference.) 1t looked as if the main objective of
these early studies - the construction of reasonable
predictions - was not going to be possible. A more
detailed examination of the regression statistics
convinced us that bad estimates of the constants of the
Deutsch-Solow model were at fault, not the model
itself, for the large size of the errors; the
statistics also hinted very strongly that the bad
estimates might be due to the random inaccuracies -
"measurement noise" - which afflict all normal sources
of data in the social sciences.

At this point, we were very lucky to be unable to
do what we wanted to do, and to be restricted to a
method which our recent work has shown to be much

better. We wanted to carry out estimation based on the
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Deutsch-Solow model, with terms added to reflect the
presence of '"white noise'" in data collection, in
addition to terms reflecting randomness in the process
itself; however, we were able to account for "white
noise' in data collection only by dropping one
substantive term in the Deutsch-Solow equations, and by
dropping the terms which allow for randomness in the
assimilation and mobilization processes themselves.
Thus we unintentionally were using a special case of
the "measurement noise only'" method, the 'robust
method" discussed in sections (vii) and (xi) in
Chapter (11). This special case is essentially
equivalent to an advanced form of curve-fitting and
extrapolation. The predictions of this method were
guite good, as we have discussed in the Introduction
and illustrated in Figures ViI-1 through Vi-4; the
graphs for this method are based on Tables VIi-8 and
Vi-8, on Pages VI-22 and VI-23, Having found a method
suitable for our purpose, we then modified our computer
program to calculate root-mean-square average
percentage errors for the predictions of this model.
Now let us look more closely at the mathematics of
these three sets of studies. All three studies were
based upon variations of the revised version of the

Deutsch-Solow model(4). This model includes two
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equations for the process of national assimilation:

éﬁ% = aA + bD
(6.1)
gg = cD,

dt

where A represents the assimilated population and D
represents the differentiated population. The first of
these equations states that the rate of growth of the
assimilated population, A, with time, is equal to the
sum of two different terms. The first of these terms,
"aA", refers to the natural growth of the assimilated
population through births and deaths. It is assumed
that "a" is effectively constant, for our purposes; in
other words, it is assumed that births and deaths
average out to a fixed percentage of the population
itself, The second of these terms refers to increases
in the assimilated population, due to unassimilated
people being assimilated. It is assumed that '"b" is

effectively constant; in other words, it is assumed

that the number of people assimilated per unit of time
averages out to be a fixed percentage of the number of
unassimilated people still available. Finally, in the

bottom equation, a single term - "eD" - is enough,

mathematically, to express the total effect of both
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such assumptions on the growth rate of the
differentiated population. Also, the "uniqueness' of
different countries is acknowledged by acknowledging
that "a', "b" and "c" will be different in different
countries., The Deutsch-Solow model for political

mobilization is virtually identical:

m= eM + fU
at

(6.2)
%—"' gl,

where M is the mobilized population, U the underlying
population, "e" the natural growth rate of the
mobilized population, "f" the rate of mobilization as a
fraction of the underlying population, and "g" a
constant analogous to '"c¢'", above. Deutsch(5) and
Hopkins(6) have discussed in great detail the ability
of the model to capture the essence of certain portions
of the history of nationalism. In section (iv) of this
chapter, we will suggest ways in which larger aspects
of this history may be captured by extending this
model; in that section, and in Chapter (11), we discuss
ways in which we can go beyond the initial simplifying
assumption that '"a'", "b" and '"c¢" are constant.

Mathematically, equations (6.1) imply that there
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exist constants a, ., b: and Cy such that:

ACt+1) alA(t) + baD(t)
(6.3)

D(t+1)

ch(t).

This time, instead of talking about the instantaneous
rates of growth of population, we are talking about the
total growth over one unit of time, from time "t" to
time "t+1". The actual unit could be a year, five
years, a decade, or anything else we choose. "ad”
represents the natural factor of increase of the
assimilated population over one unit of time; thus, an
annual population growth of 3% per year would imply

ay = 1.03. "b," represents the fraction of the
differentiated population which are assimilated per
unit of time, adjusted slightly for their own natural
increase during the period in which they are
assimilated. "ci" represents the natural growth factor
of the differentiated population minus the fraction of

the people assimilated. In a similar manner, equations

(6.2) imply that:

M(t+1) eiM(t) + flU(t)

(6.0t)

U(t+1) giu(t)
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In order to make actual predictions of
assimilation and mobilization data by use of equations
(6.3) and (6.4) above, the major substantive problem is
that of estimating the values of the '"constants'" ay ,
bl' Cy. di' ey and fl’ (In order to be more precise,
instead of calling these things "constants'", we will
refer to them hereafter by the mathematical term,
"parameters'"; a '"parameter" is assumed to be fixed
within a given process - e.g. assimilation in one
nation - but may vary from process to process and may
also be treated as a kind of unknown variable.) In our
initial work in 1971, we used three different methods
to estimate these parameters.

First of all, we tried to use the Hopkins
method(7). The Hopkins method is based on the
assumption that equations (6.3) and (6.4) are exactly
true, for the measured values of the variables in every
country, for the right values of the parameters. Thus
if we know D(t+1) and D(t) for some time t, then we can
solve for cy, a@s an unknown, in the bottom equation of
(6.3). In a similar way, we can solve for all the other
parameters , by use of simple algebraic equations, if
we know the values of A, D, M and U at three

consecutive times, In order to solve for these
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parameters, and to carry out predictions on the basis
of the resulting estimates, we simply made use of the
original Hopkins programs, DELTA and ESTIMATES.
Fourteen runs were made, on data from eleven nations,
selected from the Deutsch-Kravitz data. The results are
shown in Table VI-1. These predictions appear to be
extremely poor; a quick examination of the table will
make it clear why further effort was not invested in
this approach. Indeed, from the point of view of a
statistician, as discussed early in Chapter (l1), one
would not expect to achieve much success with the false
assumption that (€.3) or (6.4) are exactly true. Even
more emphatically, one would expect that the use of all
the data available would give us better estimates of
the parameters, than would a series of only three
time-points, given that the model may be "true" only in
a statistical sense.

Our next step was to estimate the parameters a,,
bi' Cq.€4, fy and 8y by use of the classic statistical
method, by multiple regression. More precisely, we fit

a regression model of the form:

ACt+1)

[

aaA(t) + byD(t) + k1 + n(t)
(6.5)
D(t+1)

ch(t) * kg ot m(t),
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where "n(t)" and "m(t)" are error terms which we try to
minimize, and where the parameters "a,", "by" and "c,"
have the same interpretation as "ai", "b1" and "CL"'
The "constants terms", kl and k,, were added because
they tend to be standard in regression studies;
otherwise, however, this model is essentially just
another way of interpreting the Deutsch-Solow model,

(6.1) or (6.3). In like manner, we fit a regression

model of mobilization:

MOt+1) = eyM(t) + foU(E) + ky + n(t)
(6.6)

UCt+1)

glU(t) + kq + m(t)

In addition, we computed a number of standard
regression statistics, to go with these models. These
included the "autocorrelations' of A, D, Mand U (e.g.

the correlation coefficient of A(t) against A(t+1));

they included the probability of the proposition that
by and fy - the rates of assimilation and mobilization
- might be zero, as measured by standard statistical
significance tests; they included the correlations
("multiple R") between the actual and predicted values
of A(t+l); etc. Statistics of this sort are usually

reported as the final results of studies on
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quantitative political science, as if they themselves
were conclusive. Thirty-one runs were made, on twelve
nations, again on the Deutsch-Kravitz data. The
results are summarized in Tables VI-2 and VI-3.

Looking at these tables, we can see that the
values of R, the correlations between the predictions
of our model for A(t+1) or M(t+1) and the actual values
of A(t+1) or M(t), tend to be very close to 100%. Thus
one would expect these regression models to have
unusually great predictive power. Also, b, and ey, the
rates of assimilation and mobilization in (6.5) and
(6.6), tend to be very large; this hints that all terms
of the Deutsch-Solow model are justified and
maesurable, quantitatively. However, the
autocorrelations, "M and rp, also tend to be very
large. Given the short length of the data series, this
would imply that there is not much information
(residual variation) here about those components of
ACt+1) and M(t+1) which cannot be predicted from
knowledge of A(t) and M(t) alone; indeed, the "standard
errors" of by and f, turned out to be very large,
implying large expected errors in the estimation of
these parameters. Even so, in a number of cases, by and
fy were significantly different from zero, despite the

large standard errors, enough to validate the
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importance of the cross-terms, b, D(t) and faU(t).
(Note that "significantly different from zero" means

that there was a low brobability that they could

actually be zero, according to the usual significance
measure. When by is estimated to be large, but the
estimation error appears to be larger yet, then the
true value of by might just as well equal zero.) When
b1 or f; is not significantly different from zero, but
still apparently large, and when both R,1 and q Or RA
and 'a are near to 100%, one would expect both the
regression model and the autocorrelation model (i.e.
(6.5) with the bD term removed, or (6.6) with the fU
term removed) to have unusually great predictive power,
For our purposes, however, it was not enough
simply to look at the regression statistics. The
multiple correlation coefficient, RA' is a reasonable
measure of our ability to predict A(t+1) from knowledge
of A(t) and D(t), with the help of equations (6.5);
however, true long-range prediction entails the ability
to predict A(t+T) from A(t) and D(t), without knowledge
of intermediate values of A and D, for
time-differences, "T", which may be very large. In
order to carry out and test such predictions, based on
equations (6.5) or (6.6), for all possible values of

"T", we wrote a special-purpose program, SERIES, in



Page V!=-35

FORTRAN. In each test case, for assimilation or
mobilization in one country, SERIES computed the
standard regression statistics, shown in Table VI-2 or
VI-3, and estimated the parameters of model (6.5) or
(6.6). The model (6.5), with the error terms removed,
corresponds to a unique real differential equation of

the form:

aA": a3A + b}D + k;

at

%= CzD + k6

(6.7)

Note that these equations are essentially the same as
the original Deutsch-Solow equations for assimilation,
(6.1), with only a couple of constant terms added.
SERIES would begin by using regression to estimate a,
bl' ;. k1 and ky in (6.5); then, by solving the
corresponding equations, (6.7), it could calculate the
values of ay ., b;, c3, ke and k6 corresponding to those

estimates; finally, by using Its solution of (6.7), it
could then predict A(t+T) and D(t+T), for any T, even T
which are not whole numbers, from the initial data,
A(t) and D(t), at any time-period, t. For comparison

purposes, SERIES also carrled out a parallel set of

estimations and predictions, based on (6.5) and (6.7)
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with the bD terms removed. This corresponds, in effect,
to assuming that assimilation is proportional to the
population already assimilated, when we try to predict
the assimilated population. The procedures to predict
M(t+T) and U(t+T), based on (6.6), were essentially
identical to those described above for A(t+T) and
D(t+T).

Thirty=-one runs were carried out with SERIES,
based on data from twelve countries, selected from the
Deutsch=Kravitz data. In each country, SERIES actually
printed out the prediction and error for every
individual vear; however, it would be impossible to
reproduce all that output here. Thus in Tables Vi-i
through V!I-7, we have listed the median errors, in
numerical and percentage form, for each run. From a
formal statistical point of view, Tables VI-15 and
Vi-18, to be discussed in section (iii), gives a more
standard measure of the validity of the regression
method as such. However, these earlier results do
retain some interest.

Looking at Tables Vi-4 through Vi-7, we can see
that SERIES did at least a plausible job of prediction.
The median errors run to ten to fifteen percentage
points, for prediction periods on the order of a

half-century. The contrast with Table V!-1 is quite
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clear. In only one case - the case of mobilization in
the USSR - do the Hopkins programs appear to outperform
SERIES, in predicting one test-year (1920). However, in
that case, the model used by SERIES was fitted to a
data-base much further away from the test vyear,
relative to the length of the data-base itself, than
was the data-base used with the Hopkins routines;
furthermore, the data base used with the Hopkins
routines, in this case, included only one time point on
the early side of World War 11, a war which appears to
have had a major effect in perturbing the population of
the USSR. A perfect comparison, of course, is
impossible, since the Hopkins routines by nature
require a more limited data-base than that of SERIES;
however, the overall performance of the Hopkins
routines, over the cases tested, was clearly inferior
to the overall performance of SERIES. With both
regression models - the full model, and the model with
bl or f; removed - the predictions made from a smaller
data-base held up fairly well over a later test-range,
in comparison with predictions made from a longer
data-base.

On the other hand, the full model (including b, or
fy) performed worse, not better, than the reduced

model. |f a better estimate of b‘ or f} would improve
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the predictions of the models (6.5) or (6.6), then one
must conclude that the estimates produced by regression
are worse than the estimates produced by arbitrarily
setting by and fy to zero; if we believe, from apriori
knowledge and from Tables VI-2 and VI-3, that b, and fL
are substantially different from zero, and that the
data do give us some knowledge about this difference,
then we must conclude that regression does a poor job
of accounting for the existing evidence regarding the
values of these parameters. lInsofar as a simple model,
like (6.5) or (6.6), is too difficult and compliex for
classical regression to handle, then the development of
more complex and more realistic models would indeed

require new techniques. Furthermore, the predictions of

both the simple and complex models, while reasonable,
were not nearly as good as the high values of "R" and
"y" seemed to portend. Therefore, in attempting to
generate good predictions, we decided to waste no more
effort on this fruitless approach.

Finally, in the third of our initial studies, we
considered the possibility that the deficiencies of the
regression models were due to measurement noise
problems, as discussed in Chapter (V). Indeed, in
Tables VI-2 and VI-3, one can see that the

autocorrelations - r - do not seem to be much higher
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for data measured by years than for data measured by

decades; this implies that the predictability of the

underlying process in not much less over longer time
intervals, and that the gap between the observed
correlations and a perfect correlation of 100% may be
largely due to data measurement error.(8). [If the
"ARMA" techniques discussed in Chapter (I1!1) had been
available at this time, to fit all the parameters in
the full model, (6.3) and (6.4), we would have used
them; fortunately, however, we had no choice but to
use a different method, which has turned out to be
superior.

In order to make some allowance for measurement
error, we found ourselves forced to eliminate the
cross-terms in the original Deutsch-Solow model,

equations (6.1), to get:

gzé= an

jg%=cq0

In predicting the differentiated population, this is

(6.8)

equivalent to the original model; in predicting the
assimilated population, this is equivalent to assuming

that the number of people assimilated per unit of time
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is proportional to the number already assimilated, and
that ay incorporates the sum of the effects of natural
growth and assimilation. We found it necessary to
assume that these equations are exactly true, for the
true, underlying values of "D" and "A". By making these
strong assumptions, we were able to cope with the
possibility that the recorded values of A(t) and D(t),
which we will call A'(t) and D'(t), are different from
the true values, A(t) and D(t). We can express this

possibility by writing:

A'(t)

ACt) + m(t)A(t)
(6.9)

D'(t) D(t) + n(t)D(t),

where m(t) and n(t) are random error terms which we try
to minimize. Notice that we decided to minimize the
measurement errors as a percentage of the true values,
rather than minimize thelr absolute values; when the
population values grow by a large factor, it seems
reasonable to expect that the absolute size of the
measurement errors will grow along with them. This
model, which makes allowance for measurement noise
only, is a simple application of the

"measurement-noise-only'" approach, the "robust
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approach" discussed in section (vii) of Chapter (11).
In this simple case, for m(t) and n(t) much less than
one (e.g. about 10%), the use of this model reduces to
the use of sophisticated curve-fitting. More exactly,
equation (6.8) and (6.9) imply a close approximation(9)

to the simple regression models:

log A'(t) = kg + agt + m(t)
(6.10)

log D'(t) = k? * cyt + n(t),

where k1 and k%' like ay and c‘, are parameters to be

estimated, defined as:

log A(O)

k4
(6.11)

~
1]

log D(0)

After using simple regression to estimate these
parameters, we may go on to use equations (6.10) to
predict A and D at other times:

k-,“"aq,t
e

A(t)
(6.12)
ks+cqt

D(t) e

The procedure used in predicting mobilization by this

method is exactly analogous. For the third of our
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three initial studies, we wrote a FORTRAN program,
EXTRAP, to fit such a model to the Deutsch-Kravitz
data; forty-seven runs were carried out over seventeen
nations, as shown in Tables VI-8 and VI-9. The large
number of runs were possible because EXTRAP, unlike
SERIES or DELTA, did not require that the data-base
used in fitting the model involve measurements at
regular intervals only; equations (6.10) do not refer
to a standard interval of time-separation, between '"t"
and "t+1".

The results from using EXTRAP are shown in
Tables VI-8 and VI-9, on Pages VI-22 and Vi-23; the
root-mean-square ("RMS") average percentage errors in
predicting the various populations - assimilated,
mobilized, underlying and differentiated - have been
graphed, and shown in Figures VI=1 through VI-k,.

From these graphs, it is clear that EXTRAP
performs surprisingly well. In the case of
assimilation, the prediction errors were uniformly
distributed between 0% and 7% in 80% of the cases; in
20% (four) of the cases, they were much larger. A
case-by-case reexamination of the outlying 20%
suggested to us that unusual factors - war, or chronic
depopulation for economic reasons - were at work on all

components of the population, in these cases; for
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example, Russia, Japan and Cyprus, when predicted from
before World War Il to after, were prominent among the
outliers. Thus we suspected that the percentage of
assimilation given by the model might be substantially
more reliable in such cases. Indeed, when we tabulated
the error in predicting the percentage assimilated or
mobilized, shown in the rightmost columns of

Tables V1-8 and VI-9, the performance of the model
looks still better. |In the case of assimilation, there
was a uniform distribution of error between 0 and 2% in
80% of the cases; in the remaining four outliers, the
percentages of error were 2.68%, 3.08%, 3.09% and
6.21%. Looking at the choices of "data-base' and "base
vear" indicated in these tables, we can see that these
predictions were made over fairly long intervals of
time; in 25 out of 47 cases, the total interval, from
the earliest data-base year to the last test year, was
at least 60 years. It strikes us as significant,
however, that the mobilization process is less
predictable than the assimilation process by these
methods; one might suspect that mobilization is more
easily influenced by the fluctuations of variables not
accounted for in any of these simple models, variables
such as economic development, and that it is less

rigidly governed by inertia.
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The performance of EXTRAP was not only good; it
was substantially superior to the performances of the
regression method and of the ARMA method. (10). In
Figures VI-1 through VIi-4, the error distribution of
EXTRAP is substantially lower than the distributions of
all other routines, except for "GRR". GRR is a slightly
altered form of EXTRAP, written to allow an exact
comparison of the robust method against the other two
methods - regression and ARMA - in the more recent
phase of research. The curves for the ARMA and
regression method, shown in these graphs, are based
upon the same reduced form of the Deutsch-Solow model,
equations (6.8), that were used with EXTRAP; the
details will be mentioned in the next section. The
curves for the robust method - EXTRAP and GRR - are
lower or equal to the other curves essentially across
all of the probability distributions, from the worst
10% to the best 10%. On the whole, they look about
one-half the size of the other curves, in true area;
they are particularly low in the critical region, from
the fortieth to the eightieth worst percentiles, in
which prediction errors are large enough to cost
heavily to the decision-maker, but normal enough that
they can be reduced.

In comparing Tables VI-8 and VI-9 against
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Tables VI-3 through VI-7, one can also see that EXTRAP
was superior to our old regression procedure, SERIES,
which was based upon the full Deutsch-Solow model. The
contrast is particularly graphic when one inspects the
computer outputs of predicted versus actual values for
individual years. Unfortunately, these outputs are far
too lengthy to be included here; thus we must content
ourselves to note that the comparison between EXTRAP
and SERIES was consistent with the pattern which has
been established more objectively by the more recent
studies of section (iii). Tables VI-8 and VI-9 use a
"high'" measurement of error, which tends to place
greater weight on the largest errors in one's sample;
Tables VI-4 through VI-7 use a "low" measurement of
error, median error. Thus the superiority of EXTRAP is
greater than indicated by a direct comparison of the
tables. (SERIES would have been expanded, to include a
printout of R.M.S. average error, if its predictions
had been competitive enough to justify further work.)
Still, Tables VI-4 and VI-6 do allow us to see that the
reduced form of the Deutsch-Solow model, equations
(6.5) and (6.6) with the "bD" and "fU" terms removed,
performs better than the original form of these
equations, with regression, when the same measure of

error is used; thus the inferiority of the former to
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the robust method, as shown in section (ii1), implies
an even greater inferiority of the latter. Also, a
direct comparison of the printouts indicated a similar
or worse performance by this early regression
procedure, relative to that of the newer regression
procedure which we have described in our graphs; it
indicated an inferiority to EXTRAP by at least a factor
of two. For example, in Table VIi-9, EXTRAP looks
especially bad in predicting the US differentiated
population; however, looking at the printout from
EXTRAP, for 1790-1960, a median error of 230 shows up,
versus 920 for SERIES. As percentages of the median
size of the differentiated population, these numbers
correspond to 3.5% and 14.2% respectively. In Table
Vi-7, SERIES looks especially good in predicting the
differentiated population of Finland; in the printouts,
however, EXTRAP shows a median error of 8.0, versus 11
for SERIES. (i.e. 2.0% and 2.8% errors, respectively,)
Thus Tables VI-8 and VI-9 provide a stiff test of the
ability of EXTRAP to predict the future, over long
time-intervals. They include several tests of
prediction from a model fit to one data-base, to later
and earlier sets of data.

From the substantive point of view, it is

especially interesting to note what sort of situations
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have been hardest for EXTRAP to deal with. Japan,
Cyprus and the USSR have the largest recorded errors.
An inspection of the actual printouts suggests that
they all fit the growth patterns predicted by EXTRAP
quite well, except for a break-point in World War I[1I.
At World War |1, the curves shifted by a constant
factor, but, except for the resulting change in scale,
they seemed to continue on as before the war. This
situation is reminiscent of a linear system, affected

" (i.e. a transient shock),

by a ""delta function impulse
in the mathematics of engineering and physics; the
effect of the shock is to move the system abruptly from
one configuration to another, but the same dynamic
equations continue to govern the system after the shock
as before it. Prof. George E. Box, in a brief visit to
Harvard, mentioned to us that his group is working on a
form of "intervention analysis'" which would be suitable
for the statistical study of such discontinuities.,

The errors in Scottish "mobilization' appear
related to the much-discussed '"rural depopulation'" of
Britain, an issue comparable to the issue of Appalachia
in the US. The errors in Scotland appear to depend on
the inclusion of data from a full century and a half, a

period encompassing different economic trends. Errors

were also large, on occasion, when a short data-base
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was used to develop a model for predicting over much
larger intervals of time (e.g. in Finland); this
observation reinforces our emphasis on using a
data-base which is large in actual time, as discussed
in Chapter (V). Looking at these two extreme cases -
Finland and Scotland - one would be tempted to suggest
that the ideal length of the data~base, per case of
data, is somewhere in the middle, somewhere on the
order of only twice the interval of time over which one
is trying to predict. However, as in section (vii) of
Chapter (11), we must distinguish between gualitative
improvements in one's models, and guantitative
estimation of the coefficients of a model which has
already been specified and which one knows to be
oversimplified. Here we are dealing with the latter
problem; with the former problem, we suspect that the
longest possible data-base would be desirable.

In two other cases - the USA and Argentina -
moderately large errors may be related to changes in
both birth rates and death rates in different ethnic
groups, during the periods studied; as with Scotland,
one might consider these errors symptomatic of too long

a data-base, for the simple model under consideration.
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(iii) LATER STUDIES OF THE DEUTSCH-SOLOW MODEL

Let us begin our discussion here from a general
point of view, as in the previous section, and hold
back the mathematical details until after the overall
pattern is clear.

After the work discussed above, it was clear to us
that we had run up against a general methodological
problem, which goes well beyond the requirements of the
Deutsch-Solow model itself. Therefore, in order to cope
with this problem, we wrote a new computer routine,
"ARMAY, discussed at length in Chapter (111), for
inclusion in a standard computer statistical package
for the social scientist (i.e. the Cambridge Project
"Time Series Processor'", "T.S.P."). According to
classical maximum likelihood theory, the basis of our
arguments in Chapter (111), this routine should have
been the answer to the problem of simple "measurement
noise." Included in this routine was a provision to
test the long-term predictive power both of a
regression model and of the corresponding ARMA model.
Generality, however, required us to remove the
special-purpose differential equation solving used in
SERIES and in EXTRAP, a provision which had allowed us

to cope more exactly with the Deutsch-Solow model and
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Nation and fa LogP LogP LogP
Data-Base f#0 ARMA  ARMA
Max. Uni.
USSR (1) .006 2.4 11.4 11.8
USSR (3) .030 4,2 8.7 9.8
Argentina (2) .612 6.1 8.2 9.0
C.S.S.R. .316 .6 10.2 9.0
lialaysia -. 046 6.8 5.7 8.3
USA (2) .083 .5 7.9 8.3
Cyprus .315 2.9 12.6 8.1
India -.142 3.8 7.4 7.0
Philippines .087 .2 6.7 6.6
USA (1) .027 1.0 7.0 6.5
Ceylon -.013 .3 6.2 6.1
Taiwan -. 044 1.7 10.6 6.0
Canada ~-.035 .1 4.8 4.8
Israel (2) .292 7.8 4,0 4,6
USSR (2) -.047 1.6 .2 4.5
Finland (1) -.157 .3 L.5 h.h
Quebec .005 .0 4.5 3.8
Argentina (1) . 860 1.9 7.3 3.5
Finland (2) -.008 L 8.0 3.5
**%* LogP (ARMA Uni.) Significant Above This Line **#*
Israel (1) .493 5.6 6.3 1.8
Finland (3) -.037 1.2 h.9 b
Japan .419 .1 3.2 b
Belgium .16k 3.1 h.6 .07

Table VI-11: Statistics Concerning Regression for
Mobilized and Underlying Populations.
"fq'' is the value of "fa", the rate of mobilization,
in equations (6.4), as estimated by ordinary
regression. "LogP" is the standard, classical
statistical measure of the relative likelihood of one
model in comparison with another; it represents the
natural logarithm of the odds in favor of the truth
of the model we are interested in, compared with
some other model, if we assume that both models had
an equal chance of being true apriori.(See section
(v), Chapter (V).) Thus if LogP is 4.6 or more, then
the odds are better than 100 to 1 that our model is
better. In the first of these columns, we compare
equations(6.4) against (6.14), to get the probability
that f is not zero; in the second, we compare the ARMA
"Maximum" model (i.e.(6.18) adapted to mobilization)
against the regression version of the model,
to see if ARMA is better; in the third, we compare
the ARMA version of (6.14)("Univariate")
against regression. For LogP of 6.9 or more, odds are
1000 to 1 or better; for LogP of 3, 20 to 1.



Nation and bg
Data-Base

Ceylon -1,853
Argentina .977
C.S.S.R. .137
Malaysia .311
USA (2) 2.698
Finland .038
Canada 1.945
USA (1) 2,054
israel (1) 4,215
Scotland (2) 8.343
Scotland (1) 1.471
QQuebec .365
Israel (2) 3.963
India 1.466

*
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LogP LogP LogP
b#0 ARMA ARMA
Max. Unt.

6.3 8.4 11.6
1.9 9.2 7.8
.4 10,7 7.1
1.5 7.9 6.9
9.0 9.6 6.3
0.0 6.2 5.9
3.1 8.3 5.7
3.1 3.4 5.3
14,3 7.5 5.3
1.9 .y 4.8
1.1 .3 h,7
2.4 7.2 4,3
13,1 3.9 3.7
1.5 5.9 3.3

* LogP (ARMA Uni.) Significant Above This Line =*

*

Philippines -.627
Taiwan (4) -.077
Taiwan (3) .021
Cyprus -.507
Taiwan (2) -.136
Taiwan (1) -.107
Belgium -.220

.9 L.bh 2.6
1.7 2.2 2.1
2.1 1.9 1.8
3.2 .5 1.3
1.4 L.b .8
1.1 .8 .8
2.8 5.7 .5

Table VI-12: Statistics Concerning Regression for the
Assimilated and Differentiated Populations.
"bg'" is the value of '"bg', the rate of assimilation,
in equation (6.15), as estimated by ordinary
regression. "LogP" is the standard, classical
statistical measure of the relative likelihood of one
model in comparison with another; it represents the
logarithm of the odds in favor of the truth

natural

of the model

some other model,
an equal chance of being true apriori.(See section

(v), Chapter (V).) Thus if LogP is 4.6 or more, then
the odds are better than 100 to 1 that our model is

better,

In the fir

we are interested in, compared with

if we assume that both models had

st of these columns, we compare

equation(6.17) against (6.17), to get the probability
that b is not zero; in the second, we compare the ARMA
"Maximum" model against the regression version(6.18),

to see if ARMA

is better; in the third, we compare

the ARMA version of (6.16) and (6.17)("Univariate')
against regression. For LogP 6.9 or more, odds are
1000 to 1 or better; for LogP of 3, 20 to 1,



Hation and f
Data-Base

israel (1) 499
Belgium .164
Cyprus . 232
Israel (2) .325
Finland (3) -.037
Taiwan -. 0Ll
Malaysia -. 046
Argentina (1) .852
Argentina (2) .613
Finland (2) -.012
India -, 142
Japan .089
USSR (3) .030

*

Rho
Mobil.

LogP
f#0

=
[wo)
L]

1.63
-1.13
-1.19

746
-1.517
-1.641
-1.518
-1.329
-1.72
-1.008
~1.687

.325

. 565
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* LogP Significant Above This Line

*

USSR (1) .007
C.S5.S.R. .316
USA (1) .030
USSR (2) -. 047
Cevlion -.012
Quebec .000
Philippines .083
Finland (1) -.158
USA (2) .08
Canada -,036

Table Vi-13:

.650
-2.204
.629
«530
-1.096
-1.25
-1.517
-1.27
.64
.360

N
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Rho
Under.

.182
.03
=1.424
.20k
.317
1.710
-1.440
1.819
1.780

1.229

ARMA Models for Mobilization Processes.

"fq'" is the rate of mobilization in equations (6.4),
as estimated by the ARMA method.

Vi-11,

"LogP", as in Table
is the classical measure of the probability

that f is actually nonzero, despite the uncertainty

of estimation;
to calculate LogP.

LogP here

in this table, we use the ARMA models
is the naturail

logarithm of the odds in favor of the proposition

that f is not zero.

LogP is 3 or more,
coefficient,

When LogP is 4.6 or more,
odds are 100 to 1 or better that f
the odds are 20 to 1.
discussed in the text, which tends to be

the
is nonzero; when
"Rho" is a

nonzero when data collection or other measurement
errors are large ( rho=1 is very large); when rho is

zero,

the ARMA model

reduces to a

regression model.



Nation and
Data-Base

(1)
(2)

I srael
Israel
USA (2)
Belgium
Canada
Quebec
C.S5.5.R.
India
Ceylon
Malaysia
Argentina

x

bg LogP Rho
b#0 Assim.
4,215 19.7 -.006
3.959 13.3 .583
2.673 12,2 -1.09
-.219 8.1 -1.35
1.946 5.7 1.926
.348 5.4 =1.09
.139 L,1 =1.310
1.453 b,1 -1.150
-1.855 3.6 -1.148
.309 3.5 =2.142
.977 3.4 3.14

* LogP Significant Above This Line

*

Philippines

Cyprus
Taiwan (3)
Taiwan (4)

Scotland (2)

USA (1)
Taiwan (1)

Scotland (1)

Finland
Taiwan (2)

Table Vi-14;

-.632 2.7 =-1.02
-.507 2.3 .0L3
021 2.2 .017
-.076 1.7 -.079
8.351 1.3 ~-1.634
2.042 1.2 -. 141
-.107 1.1 . 799
1.597 .7 1,686
.055 .3 1.407
-.137 0.0 5.0

Rho
Diff.

-1.15
bl
1.155
-.323
1.205
1,383
-1.399
1,416
1.620
-1.326
1.761

*
*
*

-1.292
.336
.373
402

-.32L

-1.15
.339
.025
.057
.360
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ARMA Models of the Assimilation Process.

"bg" is the rate of assimilation in equation (6.15),
as estimated by the ARMA method.

vi-12,
that b

of estimation;
to calculate LogP.

is the classical
is actually nonzero,

Log

logarithm of the odds

that b

errors are large (rho=1
the ARMA model

zero,

is nonzero.
odds are 100 to 1 or better that b
LogP is 3 or more,
coefficient,

di scussed

When LogP

P here

"LogP", as in Table

measure of the probability
despi te the uncertainty

in this table, we use the ARMA models
is the natural

in favor of the proposition

is 4,6 or more,
is nonzero; when

the odds are 20 to 1. "Rho"

the

is a

in the text, which tends to be
nonzero when data collection or other measurement
large);: when rho is

is very

reduces to a regression model.
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Nation and Mobil. Mobil. Mobil. Under. Under.
Data-Base (6.18) (6.15) (6.17) (6.18) (6.16)
Max. Model Uni. Max. Uni.
Taiwan .26 .23 .73 .19 .84
USSR (3) 1.24 1.28 .85 1.32 1.32
USSR (18B) .84 .83 . 95 .82 L.4y
USSR (2) 8.40 7.54 1.88 1.08 b
Finland (3) .99 .95 2.58 .70 2.37
Ceylon 5.08 5.27 3.86 3.42 3.73
C.S5.S.R. 2.52 2.65 3.91 3.89 3.65
USSR (1A) 1.58 1.58 8.39 .65 L., u6
Quebec 8.60 8.22 12.88 8.52 7.42
India 17.45 241.48 21.02 8.09 5.10
Malaysia 8.29 11.66 22.20 5.80 4,43
Japan 33.09 34,64 22.86 29.74 18.98
Israel (1) 7.18 10.28 24.90 24 .55 8.31
Belgium 4L.29 4,31 28.94 .85 3.99
Canada 93,73 99.59 29.11 10.07 19.43
Philippines 14,60 14,67 34,11 5.69 12.18
Israel (2) 31.56 5.60 34,82 52.89 49.91
Finland (1) 10.02 8.57 4Ly,95 508.77 16.98
Cyprus 17.49 18.00 54.67 6.66 17.62
Argentina (1) 11.61 11.45 57.01 7.23 54,93
Finland (2) 59.99 51.32 83.91 100.64 L5.94
Usa (1) 63.83 67.97 89.00 388.89 64.05
Argentina (2) 14.09 13.02 100.25 16.86 42.58
USA (2) L7.04 45,85 133.14 91.21 116.66

Table VI-15: RMS Averages of Percentage Errors With

Long-Term Predictions of Mobilized and

Underlying Populations, Based on Regression.

In each case, the four models used were fitted to
the "data-base" defined in Table VI-23, and
predictions were made from the '"base vyear" to all

later years for which we had data; the errors listed
here are averages, in each case, across all such test

years. The five columns give errors with four
different models; these models are the equivalent
(i.e. have the same structure, with mobilization
switched for assimilation, etc.) of the equations
whose numbers are listed in the column headings.
"Mobil." means "Mobilized"; "Under." means
"Underlying'". "RMS" means "Root-Mean=Square"
(i.e. Averages taken as the square root of the
arithmetic average of the scuares.)



Hation and
Data~Base

Taiwan

USSR (3)
USSR (1B)
USSR (2)
Ceylon
C.S.S.R.
Finland (3)
luebec

USSR (1A)
Philippines
Cyprus
Japan

India
Canada
ifalaysia
Israel (1)
Belgium
Israel (2)
Argentina (
Finland (1)
USA (1)
Finland (2)
Argentina (
USA (2)

Mobil. Mobil. Mobil. Under.
(6.18) (6.15) (6.17) (6.18)
Max. Model Uni. Max.
43 .22 .72 .10
1.19 1.18 .86 1.31
.85 .85 1.00 .85
8.52 6.82 1.38 1.11
5,22 2,27 1.48 3.43
2.77 2.63 2.38 3.36
.97 .79 2.55 .66
6.72 5.59 6.41 5.22
1.78 1.47 8.92 48
14,96 11.53 12,60 L,81
17.53 16.35 17.01 6.66
33,37 38.07 18.91 33.74
16.22 55.83 22.22 6.60
57.82 93.74 22.42 12.24
5.70 1.29 22.70 6£.50
9.34 8.57 24,04 24,09
4,32 3.44 29.05 .87
29,24 6.05 33.65 54,85
1) 11.69 8.84 51.11 11.64
9.65 11.43 53.63 24L1.79
63.76 61.76 81.05 481.04
14,29 16.59 84,78 7.04
2) 12.86 7.65 96.40 8.18
53.79 46.19 135,70 110.62
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Under.
(6.16)
Uni.

<49
l1.40
3.64
<47
2.81
3.77
2.41
6.92
3.90
2.83
6.u7
19.23
3.21
8.82
2.69
7.33
3.98
L7.S4
Le. 74
16.62
53.27
55.10
h2.75
113.57

Table VI-16: RMS Averages of Percentage Errors With
Long-Term Predictions of iobilized and Underlying

Populations,
In each case,

Based on the ARMA Method.
the four models used were fitted to
the "data-base' defined in Table VI-23,

and

predictions were made from the "base vear'" to all

later years for which we had data;
in each case,
The five columns give errors from four

here are
years.
different
(i.e.

avera S,

models;

across all

the errors

listed
such test

these models are equivalent

whose numbers are listed

"Mobil." means '"Mobilized";

"Underlyi

ng'.

averaging was used,

have the same structure, with mobillization

switched for assimilation, etc.) of the equations

in the column headings.

"Under." means
"RMS" means that "Root-Mean Square'



Hation and
Data~Base

Taiwan

USSR (3)
Finland (3)
Ceylon

USSR (2)
C.S5.S.R.
Malaysia
Quebec
Israel
India
Belgium
Canada
Finland (2)
Philippines

(2)

Argentina (1)

Cyprus
Japan

Argentina (2)

USA (2)
Israel (1)
Finland (1)
USA (1)

Mobil.

extl

.59
.99
1,17
1.82
2,34
3.50
4,69
5.83
8.06
8.72
3.34
10.42
13,99
14,35
16.91
17.95
13.63
24,16
32.25
39,94
57.22
35.23

Mobil.

ext?

.78
1.76
2.42
2.08
3.42
L,14
6.61

11.47
29,19
10.31
15.63
24,16
34,76
29.90
23.10
18.77
18.96
42.12
46.03
33.84L
53.28
89.70

Under,

extl

.99
.75
1.33
3.11
.77
3.83
3.31
5.06
8.46
3.64
1.83
4,78
10.65
L,.94
15.26
7.35
12.89
13.21
24,96
21.54
28,20
89.65

Under.

ext2

1.49
1.49
2.69
4,01
.96
4.26
hL.74
9,83
50.83
3.68
4,52
13.40
21.36
9.40
24.63
7.39
17.54
21.22
52.04
12.57
2L .48
84.u5

Page VI=56

Table VI-17: RMS Averages of Percentage Errors With

Long-Term Predictions of Mobilized and Underlying
Populations, Based on the Robust Method (GRR).
In each case, equations (6.2) with the "fU" term
removed were fitted to the ''data-base'" defined in
Table VI-23, and predictions were made from the

later vears for which we had data;

“"hase year'" to all

the errors

listed here are
across all such test vyears.

averages,

in each case,

"Mobil." means "Mobilized"; "Under.'", "Underlying".
"aextl" is the variety of robust method used by
EXTRAP, described in section (ii); "ext2" is another
variety mentioned in section (iii) and tabulated

only for the sake of formal completeness.

"RMS" means that '"Root-Mean-Square' averaging

was used.
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Nation and Assim. Assim, Assim. Diff. Diff.
Data-Base (6.18) (6.15) (6.17) (6.18) (6.16)
Max. Model Uni. Max. Uni.
Taiwan (3B) .36 2.98 .73 2.89 7.62
Taiwan (2) 2.96 3.30 1.36 13,35 27.13
C.S.S.R. 1.67 1.35 1.79 6.87 5.92
Taiwan (1) 3.81 5.37 2.48 17.66 25.81
Taiwan (L) .95 .90 2.85 23,90 161.4s5
Taiwan (3A) 1.18 25,29 3.23 25,20 156,78
Finland 4L.60 L.49 4b.82 14,17 17.41
India 6.12 3.91 5.82 7.25 8.80
Scotland (2) 2.97 2.93 6.29 6.89 21.34
Cyprus 1,43 2.14 6.59 4,51 21.94
Scotland (1) 3.34 3.24 6.72 3.26 6.27
Canada 12.59 5.97 12.28 13.84 24,86
Malaysia 3,72 3,81 12.50 3,72 9.18
Belgium 6.47 9.80 12,98 3,58 6.08
Quebec 2.68 2.39 15.64 12.07 31.2
Argentina 41.78 13.64 16.91 145,39 122.23%
Cevylon 11.15 192.41 17.49 7.31 15.07
Philippines 27.55 36.40 20.91 22.40 8.47
Israel (1) 1.95 1.95 21.69 8.06 3.37
USA (1) by, 11 5.11 L, b0 71,54 69.92
Israel (2) 30.00 3.48 46.56 33.47 23,70
USA (2) 39.04 7.99 97.61 45.61 2h .41

Table VI-18: RMS Averages of Percentage Errors With
Long-Term Predictions of Assimilated and
Differentiated Populations, Based on Regression.

In each case, the four models used were fitted to the
"data-base" defined in Table VI-24, and predictions
were made from the "base vear" to all later vears
for which we had data; the errors listed here are
averages, in each case, across all such test vears.
The five columns give errors from four different
models used in predictions; these models correspond
to the equations whose numbers are listed in the
column headings. "Assim." = Assimilated; "Diff." =
Differentiated. "RMS" means that "Root-Mean-Square"
averaging was used.
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Nation and Assim. Assim. Assim, Diff. Diff.
Data-Base (6.18) (6.15) (6.17) (6.18) (6.16)
Max. Model Uni. Max. Uni.
Taiwan (38B) .37 2.99 .76 2.97 3.04
Taiwan (2) 3.72 4,81 1.31 13.68 22.64
C.S.S.R. 1.41 1.24 1.78 6.92 5.59
Taiwan (1) 3.52 5.48 2.50 17.61 21.08
Finland 2.91 2.36 2.66 17.65 17.51
Taiwan (4) .95 .90 2.8 23.93 157.16
Taiwan (3A) 1.18 25,834 3,15 25,24 167.19

Scotland (1) 3.31 L.6h 5.08 3.50 6.03
Scotland (2) 2.69 4L.09 5.11 15.49 17.05

India 3.47 2.82 5.77 2.72 12,48
Cyprus 1.34 2.11 6,96 4.69 24,37
Malaysia 3.28 3.56 8.24 3.66 3,55
Canada 14,20 5.63 10,32 14.72 17.54
Belgium 4.65 1.99 13.22 2.97 5.48
Quebec 2.31 1.79 14.87 11.97 25,87
Ceylon 10.37 2.78 19.95 .01 19.61
Philippines 28.01 14.39 21.60 21.31 3.98
Israel (1) 1.76 1.76 22.43 3.30 8§.79
Argentina 41.89 13,83 22.67 145.30 151,99
Israel (2) 30.12 3.55 37,86 33,77 31.25
USA (1) by, 03 5.72 55.80 71.45 61.96
USA (2) 40.80 11.05 96.40 46.28 62.30

Table VI-19: RMS Averages of Percentage Errors With
Long-Term Predictions of Assimilated and
Differentiated Populations, Based on ARMA ilethods.
In each case, the four models used were fitted to the
"data-base'" defined in Table VI-24, and predictions
were made from the "base vear'! to all later vears
for which we had data; the errors listed here are
averages, in each case, across all such test years.
The five columns give errors from four different
models used in prediction; these models correspond
to the equations whose numbers are listed in the
column headings. "Assim." = Assimilated; "Diff." =
Differentiated. "RMS" means that "Root-Mean-Square"
averaging was used,



Nation and
Data-Base

Taiwan (3B)
Taiwan (3A)
Taiwan (4)
C.S.S.R.
Cyprus
Taiwan (1)
Finland
Scotland (2)
Scotland (1)
Malaysia
Taiwan (2)
India
Quebec
Argentina
Belgium
Philippines
Canada
Israel (2)
Ceylon

USA (2)
Israel (1)
Usa (1)

Table VI-=20:

Differentiated Populations,
Method (GRR).

here are averages,
years. ""Assim.,'"=Assimilated;

Assim.

extl

.37
.75
1.65
1,75
2.03
2.25
2.27
3.30
3.42
4L.05
4,12
4,19
L.67
4.95
5.23
5.74
6.21
6.92
7.43
18.38
37.56
62.82

Assim,
ext?

.06
3.5k
3.71
1,79
3.01
1.94
6.03
8.67
9.01
6.20
3.69
L.25

12.15
L.96
6.67

11.44

14,80

4L1.69
7.29

34,22

29.76

59,97

Diff.
extl

29.71
47,03
45,004
5.73
6.01
154,54
9.438
10.33
3.12
h,71
149.89
3.78
20.12
38.74
3.70
4,26
2.61
L,34
5.63
15.91
9,41
68.33

Diff.
ext2

53,74
134,42
130,92
7.54
9.85
130.61
15,89
15.48
7.74
8.13
125.87
4,80
31.83
66.85
3.72
h.47
15.26
5.82
7.73
35.95
9.17

69.10
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RMS Averages of Percentage Errors With
Long-Term Predictions of Assimilated and

in each case,

Based on the Robust
In each case, equations (6.8) were
fitted to the 'data-base' defined

in Table Vi~-24, and
predictions were made from the "base vear" to all
later years for which we had data;the errors listed
across all such test

"Diff."=Differentiated.

"extl" is the variety of robust method used by

EXTRAP, described
variety mentioned

was used.,.

in section (ii); "ext2"
in section (iii) and tabulated
only for the sake of formal completeness.
"RMS" means that '""Root-Mean-Square' averaging

is another



Nation and
Data-Base

USA (2)
Israel (2)
Finland (2)
Cyprus

CSSR=*
Malaysia
Japan

Ceylon
India(+Pak.)*
Taiwan

USSR (3)
Argentina (1)
Argentina (2)
Philippines
Canada

Quebec
Belgium

Table VI-21:

Mobilization

1980 1990 2000
275, 407, 602.
4L.98 9.08 16.6
3.02 3.80 4.78
L5 171 .202
11.4 12.3 13.3
3.89 6.01 9,30
136. 207, 313.
11.2 15.6 21.8
75.4 84,0 93.4
7.24 11,3 17.8
255, 419. 687.
30.6 44,1 63.6
31.5 u49.1 76.5
30.4 46.4 70.7
23,5 32.4 44,38
6.90 9.31 12.6
7.80 8.88 10,1
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Underlying Pop.

1980

80.6
.572
2.71
.615
2.24
7.28
31.1
4.15
419.
13.4
141,
7.28
9.86
18.7
6.49
1.47
3.10

1390

95.1
.638
2.94
.703
2.11
.70
29.7
h.39
by,
17.7
170.
8.58
11.7
21.6
7.05
1.54
3.11

Predictions of Future Mobilized

2900

112,
.713
3.13
.803
1.99
19.4
28.3
L.63
L67.
23.2
204,
10.1
13.8
24,9
7.66
1.61
3.12

and

Underlying Populations, by the Robust Method(GRR).

"ext2" used;
A1l figures

see discussion
in millions;

in text.
definitions

in Table VI-23.

* - Base vear for predictions was before 19590,

Note that 1974 populations for

India,

Pakistan

and Bangladesh total more than 650 million,



Nation and
Data-Base

USA (2)
Israel (2)
Taiwan (3B)
Taiwan (L)
Canada

Quebec

Ceylon
Finland
Malaysia
CSSR+*
India(+Pak.)=*
Cyprus
Scotland (1)
Scotland(Z2)#**
Argentina
Philippines
Belgium

Table VI=-22:

Assimilation

1980

25k,
b.u3
1u.4
17.5
21,7
7.20
9.25
5.02
L.67
10.1
329.
.638
5.43
5.45
30.1
9.87
3.44

1990

321.
7.12
18.5
24,0
26.6
9.16
10.9
5.55
5.56
10.8
346,
782
5.61
5.61
39.5
25.2
3.61

2000

405,
11.5
23.9
32.9
32.6
11.7
12.8
6.13
6.62
11.56
36L.
.363
5.80
5.76
52.0
32.9
3.80
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Differentiated

1980

35.5
.699
45,2
18.5
4,53
L.701
4,54
.34h7
5.6k
3.08
165,
.128
.055
L02p
4,22
24,1
7.43

1990

4L2.8
1.01
286.
90.1
5.19
.697
5.22
.352
7.28
3.01
179.
142
LOub
239p
5.41
30.0
8.09

2000

51.6
1.53
1315
439,
5.96
694
5.01
.356
9.40
2.94
185,
.157
.039
142p
6.94h
37.1
5.82

Predictions of Future Assimilated and

Differentiated Populations, by the "ext2" version of

the Robust Method (GRR).
in millions,
"Assimilated"

All figures

Definitions of

See discussion
except

in text.

in Scotland.

in Table VI-24,

* - Base vear for predictions was before 1950,
too few for millions.

*x - "p" ysed to mean 'people';
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Nation and Mobilization Years Model Gap In Base
Data=-Base Definition |Is Fitted To Years Year
USA (1) urbanization 17%80-1870 10 1870
(2) "o 1790-1960 10 1790
Israel (1) Bl 1948-1957 %% 1 1957
(2) nn 1948-1967*% 1 1948
Finland (1) hu 1300-1880 10 1880
(2) nu 1800~-1960 10 1800

(3) tn 1958-1967 1 1958

Cyprus "" 1381-1961«* 10 1901
C.S.S.R. e 1900-1940=* 10 1900
Malaysia n 1911-1961* 10 1911
Japan n 1320-1960 5 1920
Cevlon literacy 1881-1951 19 1881
India(+Pak.) urbhanization 1881-1941 10 1881
Taiwan nn 1960~1966 1 1960
USSR (1A) " all below 1 1924
(1B) n all below 1 1953

(2) He 1922-1931 1 1924

(3) i 1950-1965 1 1953

Argentina (1) (Table VY1-10) 1869-1960=* 22.75 1869
(2) 1literacy (b) 1869-1960% 22.75 1369

Philippines literacy 1903-1961=* 14,5 1803
Canada urbanization 1851-1961 10 1351
Quebec nn 1351-1961 10 1851
Belgium " 18360-1960=* 10 1860

Table V1-23: Definition of Mobilization Variables and
Spans of Years Used For Runs Described in Tables
Y1-11 through VI-22. A1l long=-term predictions were
made from data in the "base vear', up to the end of
the continuous string of observations of which it is
a part, in the Deutsch=Kravitz data. "Gap In Years"
is the interval between observations.

* - interpolated data; N not artificially enlarged.
** - heavily interpolated. (8 years actual data
spaced out into 20-year string.)
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NMation and Assimilation Years Model Gap In Base
Data-Base Definition Is Fitted To Years Year
USA (1) White 1790-1870 19 1870
(2) "” 1760~1960 10 1790
Israel (1) Jewish 1948-1957 1 1957
(2) nn 1948-1967 1 1948

Taiwan (1) Taiwanese 1946-1955 1 1955
(2) Hot Mainlanders 1946-1955 1 1955

(3A) Taiwanese 1946~-1965 1 1946

(3B) nn 1346-1965 1 1955

(4) Not Mainlanders 1946-1965 1 1946

Canada Not French=0Onilyv 1901-1961+ 10 1301
Quebec Hot English-0Only 1901-1961=* 10 1901
Ceylon Buddhist 1881-1961* 10 1901
Finland Speak Finnish 1880-1960 10 1830
Malaysia (no choice) 1911-1961% 10 1911
C.S.S5.R. Ethnicity 1900-1940%* 10 1300
India(+Pak.) Hindu 1581-1941 19 1881
Cyprus Not Mosiem 1881-1961+* 10 1881
Scotland (1) Speak No Gaelic 1891-1961=* 10 1891
(2) Speak English 1891-1961=* 10 1891
Argentina Ethnicity 1869-1960* 22,75 1869
Philippines Visavan 1903-1961* 14,5 1803
Belgium Speak French 1850-1950«* 19 1850

Table VI-24: NDefinition of Assimilation VYariables and
Spans of Years Used For Runs Described in Tables
VI-11 through VI-22. A1l long-term predictions were
made from data in the "base vear', up to the end of
the continuous string of observations of which it is
a part, in the NDeutsch-Kravitz data. "Gap in Years"
is the interval between observations.

* - jnterpolated data; length of data sample not
artificially enlarged.
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the Deutsch-Kravitz data.

When we applied the ARMA routine to the
Deutsch-Kravitz data, using several different versions
of the Deutsch-Solow model, we found consistently
that:(i) according to the usual measure of statistical
significance, the "ARMA" models were indeed superior to
the corresponding regression models, with "p" - the
probability that this was a mere coincidence - less
than .01 in most cases (see Tables VI-11 and VI-12);
(ii) in terms of long-term predictive power, the ARMA
models did pot do very much better than the regression
models; they led consistently to a reduction in the
size of prediction errors, but only by about 10% of the
error sizes at best. (The slight differences in error
distributions between the two methods are visible in
Figures VI-1 through Vi-4.) The second of these two
results was also corroborated by our results in Norway,
to be discussed in section (v).

There are two immediate corollaries to these
results. First, that the usual significance measure is
not a good index of long-term predictive power, at
least not for models which correspond to the same
choices of variables. Second, that the "robust method",
which performed much better than regression in our

initial research, is superior to the ARMA method as
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well, in terms of long~term prediction. (See
Figures VI-1 through Vi-&4, on Pages VI=3 through Vi-7.)
In order to document the second corollary more
concretely, we have also made use of GRR (GRowth Rate)
- a revised form of EXTRAP, for robust estimation in
the univariate linear case - to establish an exact
correspondence between the three methods, for the
assimilation and differentiation data; more precisely,
in Figures VIi-1 and Vi-2, we have graphed the error
distributions for all three methods, as methods of
making predictions based on the same substantive model,
equations (6.8), and as tested over the same sample
cases of data drawn from the Deutsch-Kravitz data. 1n
these graphs, the superiority of the robust method is
clear, for both the GRR and EXTRAP versions. From the
simulation studies of Chapter (1V), one might suspect
that this superiority is due in part to the overlaps
between the data-bases over which our models are fit
and the years over which they are tested. However, we
have included a few examples of a time-series split in
half, with the model fitted to the first half and the
predictions made to the second half. (See Tables VI-23
and VI-24, lsrael, Taiwan, USA and Finland are the
prime examples, because they are the cases where

adequate data was available for such a splitting.)
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These examples do not seem markedly different from the
other cases studied; unfortunately, these examples are
too few to allow a definitive conclusion. We will see,
however, that the ARMA model for equations (6.8) has
more free parameters to estimate than do either the
regression or the robust methods. When the supply of
data Is very limited, an overlap between the data
samples used for fitting and testing would tend to
overstate the relative performance of the model with
more parameters. (lt is standard practice, for example,
to try to correct for '""degrees of freedom" in one's
model, when the data are quite limited; this subject,
however, is a Pandora's Box, which we will not open
here.) In short, the strong superiority of the robust
method over the ARMA method, in these studies, is
probably not due to any bias in the details of our
procedure.

Before we go more deeply into the mathematical
details of these studies, the political scientist might
be curious about the projections of the future by the
models we have looked at, for some of the countries
where they have worked well in the past. In
Tables V1-21 and VI-22, we have listed the predictions
of the robust method (GRR) for the future, in the

countries we have studied. The uses of these numbers
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are for the reader to decide for himself; our
authorship of the numbers in no way implies that our
opinions about their use are any better than anyone
else's. However, these opinions are probably worth
recording here, at least to provide the reader with a
straw man to debate with.

When one first glances at these tables, a few wild
numbers immediately grab the eye. How, for example,
could the Republic of China (Taiwan) be expected to
have 1,800,000,000 inhabitants in the year 2000? (See
Table V1-22.) Then, if one has a little serendipity,
one will note that only a few million of these are to
be "Taiwanese'", that about 450 million are to be
mainland Chinese, and that the rest would appear to be
neither. Visions spring to mind of a collapse of the
People's Republic, of a return to the mainland by
Chiang's son, and of the expansion throughout fhe weak
nations of Southern Asia by this new, fascistic
nationalistic regime. It would be amusing to study the
pros and cons of the possibility of such a scenario.
However, the simple models we have used do not "know'"
about (do not account for) the complex factors which
might make such a scenario possible; while it is
possible for a model to "know'" about such factors

implicitly, we suspect that these models are too simple
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even for that, in the example at hand. A simpler
interpretation of these wild numbers is that the
predictions of this model, in the future, will be very
much like the predictions in the past; they will
contain a handful of wild outliers, and a larger number
of surprisingly accurate predictions of the percentage
of assimilation. It is fortunate that we can spot some
of the outliers so easily in advance, simply by using
our general knowledge that some of the predictions are
absurd.

In the other cases, we would tend to follow the
procedures suggested in Chapter (V). We would place
greater faith in predictions based on a model estimated
over a long data-base - as in Finland - as opposed to
predictions based on a lot of data restricted to a
shorter period of time (e.g. Taiwan or lIsrael);
indeed, the absurdity of the latter predictions offers
some tangible evidence for our point of view. We would
try to ask in each case: "What does the model really
'know' about? At what dynamic level could one observe
the effects of the forces which will be important in
the future? Given those factors which | know about, and
given the subset of those which cannot be subsumed
under something which the model accounts for, how would

| adjust these predictions?" Questions of this sort
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lead one to a different approach to applied political
science, as we have discussed in Chapter (V).

In some sense, the predictions of these simple
models are based on the continuation of the trends
which have existed for a long time in the past. It is
often comforting for a decision-maker to assume that
his administration will somehow be free, at little
cost, from the momentum of such trends; indeed, when
one is harassed, as most decision-makers are, it is
easy to "miss the forest for the trees', and to
overestimate the implications of short-term reverse

fluctuations. The predictions of this model, in some

sense, show the decision-maker what the forest looks
like. It is still up to him to use his judgement, to
decide whether his administration is truly, objectively
l1ikely to perform much differently from those which
have dealt with the same problems in the past. Even in
concrete terms, these predictions imply no dramatic
shift in the percentages of assimilation in the
countries studied; a strong upsurge of the Visayans is
predicted in the Philippines, and Chinese with recent
roots in the mainland are projected to become a
majority of the population of Taiwan, but these are the
only exceptions.

A few of our readers might also be interested in
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the predictions of the regression and ARMA models, in
some of the countries where they have worked well in
the past. These projections are too voluminous to be
duplicated here(ll), but their fine details are
probably unreliable in any case.

In Canada and Quebec, as a whole, the model
predicts little change in the relative balance of
French and English speakers, to the year 2000. (This
would appear to contradict the separatist claim that
the French language would die away without special
political measures to bolster it. On the other hand, it
implies that French Canadians will remain a political
force to be reckoned with. In Canada and in Quebec, our
models did better in predicting the longer periods of
time, rather than the shorter; the "10% errors" listed
in the Tables are mostly from transient deviations from
the trend predicted by the models.) A large increase in
urbanization is predicted for Quebec, which, in
practice, might shift the assimilation trend more to
the advantage of French speakers. In Ceylon, a large
increase in literacy is projected. In Scotland, a
further large decrease in the knowledge of Gaelic is
predicted. (If knowledge of Gaelic were a good
indicator of political behavior, this would imply that

recent signs of a revival of Scottish nationalism are
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misleading and transient; however, the connection
between linguistic nationalism and political
nationalism may not be simple in this case, any more
than in the case of Ireland.) In Japan, a huge urban
population - 200~odd million - was forecast; however,
from the limitations cited in section (ii), it should
be emphasized that political and economic factors may
cross the threshold of being able to upset this
prediction. (In Japan, as in Canada, the errors
reported in Tables VI-16 and VI-19 were essentially
transient.) In Cyprus and Taiwan, the ARMA models
predict little change in the balances between the
different factions.

Now let us look more closely at the mathematical
details. Our primary interest was in the original
Deutsch-Solow model - equations (6.1) and (6.2) - and
in the reduced form of this model, with the "bD" and
"fU" terms eliminated. (e.g. equations (6.8).) Instead
of working with the Deutsch-Solow model directly, in
terms of differential equations, we worked with the
finite-difference equations which the model implies,
equations (6.3) and (6.4); to refresh the reader's

memory, let us recall what equations (6.3) looked like:

A(t+1) = aiA(t) + bln(t)
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D(t+1) = ciD(t),

where aq is the natural factor of growth of the
assimilated population, where bg is the rate of
assimilation per unassimilated person per unit of time,
and where cq is the natural factor of growth of the
differentiated population minus bg. In like manner, the
reduced form of the Deutsch-Solow model, with the "bD"
and "fU" terms removed, leads to a reduced form of the

finite-difference equations:

A(t+1) = agA(t)
(6.13)
D(t+l1) = cgD(t),
and:
M(t+1) = egM(t)
(6.14)
Uu(te+1) = ggU(t).

In predicting the differentiated population, (6.13) is
equivalent to (6.3); in predicting the assimilated
population, (6.13) is equivalent to assuming that the
number of people assimilated per unit of time is

proportional to the number already assimilated. It

should be emphasized that this reduced form of the
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Deutsch-Solow model was studied for the sake of its
mathematical simplicity, not for the sake of any hope
that it would be superior to the original model on
substantive grounds. (In section (v), we will discuss
regression models based on what appears to be an
intermediate assumption, that the number assimilated

can be explained partly as a constant percentage of the

overall population; however, the ARMA models to be

discussed in that section achieved greater empirical
success than these regression models, even though they
lacked such a constant term.)

In section (ii), we already described how we
applied the "robust method" to the reduced form of the
Deutsch-Solow model. Our new routine, GRR, estimates
the parameters of that model in exactly the same way,
except that it works only on a continuous series of
data spaced at regular intervals. In order to use
classical regression on equations (6.3) and (6.13), we
added an "error term", n(t), to each, and attempted to

fit the regression equations:

A(t+l) = aGA(t) + béD(t) + n(t) (6.15)
D(t+1) = céD(t) + n(t) (6.16)
A(t+1) = a7A(t) + n(t) (6.17)
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The terms "n(t)" represent the various random
disturbances which we invoke to explain the actual
errors we experience in predicting A(t+1) and D(t+1)
from the known values of A(t) and D(t), by use of our
models. The equations for mobilization were exactly
parallel in their structure. For each of the
forty-five cases of assimilation and mobilization
studied, taken from seventeen nations, each of these
three equations was estimated separately by use of the
T.S.P. command ARMA. (More precisely, the three
equations, in order, were analyzed by issuing the
commands: "arma assimilated on differentiated$ends$",
"arma differentiated$ends$", and "arma assimilated$end".
Note that variables which are named after the keyword
"on" are treated as "exogenous,'" as variables to be
used in making predictions but not themselves to be
predicted by use of the equations at hand.) In
addition, since it was impossible to simulate more than
one set of equations at the same time, we estimated the

set of equations:

A(Ct+1)

[}

(6.18)

D(t+1)

caD(t) + dsA(t) + m(t),
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where "m(t)" is also a random disturbance; this set of
equations represents the combination of (6.15) and
(6.16), with an extra term added solely for the purpose
of creating a "complete set" of equations that fits the
"vector ARMA" framework discussed in Chapter (111).
(This set of equations was estimated by the command
"arma assimilated differentiated$end", or, in the case
of mobilization, by "arma mobilized underlying$ends$".)

In Chapter (l11),we have emphasized that there is
a correspondence from any regression model, to an ARMA
model which says the same thing but which also allows
for the possibility of measurement error; for example,
(6.15) is equivalent to:

ACt+l) = an(t) + qu(t) + n(t) + Pn(t-1),

(6.19)

where "P" may be called a "rho coefficient". Notice
that the '"rho coefficient" does not multiply a
substantive variable in this problem; rather, it
multiplies the previous value of the same disturbance.
(Elsewhere, of course, we have used the same letter,
"n", to refer to different random processes.) From an
intuitive point of view, it is simply a measure of the

presence of ''measurement noise," of collection errors

in the available numerical data vis-a-vis the original
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underlying concepts, as we have discussed in

Chapter (111). When rho is small, this implies that
the regrssion model (i.e. the same model without the
rho term) is fairly close to the "truth"; more
precisely, It implies that tractable aspects of
measurement noise will have little effect on one's
estimation. When rho is large, this implies that
measurement noise is substantial. The four computer
commands mentioned above were sufficient, not only to
estimate the four sets of regression equations above,
but also to estimate automatically the equivalent ARMA
equation in every case. For each model estimated, LogP
significance scores were printed out; the differences
between these LogP scores, for two models being
compared with each other, gave us the LogP scores
reported in Tables VI~-11 through Vi-14, The "rhos"
reported in these tables for the '"Maximum'" model

(i.e. (6.18) or the equivalent for mobilization) were
actually the diagonal terms of the rho matrix, "P", of
Chapter (I111),.

As part of the ARMA command, an automatic
simulation facility was also available. After the
regression and ARMA models were estimated over a given
set of years (a '"data-base"), simulations could be made

from any given year ("base year") into the future.
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Actual data for "endogenous variables", for variables
which the model can predict, are taken only from the
base year; predictions are made, further and further
into the future, by being compounded on other
predictions. After the predictions are done, they are
checked against real data. Thus the predictions are
true long-term predictions. (The percentage errors are
calculated as a percentage of the average of the
absolute values of the predicted and actual values, and
are averaged together by root-mean-square averaging.)
However, in equation (6.15), the differentiated
population is not internal to the equation; thus the
predictions made in that case are not true long-term
predictions, for our purposes.

In using GRR, to make and evaluate predictions
similar to those made by ARMA, we used two different
techniques. One of these techniques, exactly parallel
to EXTRAP (and thus to "extl" discussed in
Chapter (1V)), has been used in Figures VI-1 through
VI-4; the other, the same as "ext2" in Chapter (1V),

starts from the real data in the base vear, and uses

its estimates of a, c, e and g in equations (6.13) and
(6.14) to compound predictions of the future. Error
percentages were calculated by the same formula as with

ARMA,
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In brief, with all of these techniques - ARMA and
GRR - data were used, spaced at regular intervals, for
fitting the model; then, from a base year, predictions
were made to later periods of time, also by regular
intervals, with the same formula used to measure
percentage error. Given that the original data were not
available at regular time intervals, an interpolation
routine, "INTS", in TSP was used to create equivalent
data at regular intervals, by geometric interpolation;
except in the case of Israel, however, the data periods
interpolated to were quite close to the original data
periods. (In Israel, data were collected annually, but
missing data occurred rather randomly, and
interpolation was to an annual series.)

The results from these runs are shown in Tables
VI-15 through VI-20. We have already discussed the
broader implications of these results. A more detailed
inspection of the statistics in these tables tends to
reinforce those implications, particularly the
implications of weakness on the part of the classic
maximum likelihood methods (regression or ARMA). Note,
for example, that the usual measure of statistical
significance gives greater emphasis to the superiority
of the ARMA models over the regression models than it

does to the values of the cross-coefficients - "b" and
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"f" - which represent the rates of assimilation and
mobilization, This would seem almost to imply that it
is more probable that assimilation and mobilization are
not happening, than that the regression model is as
good as the ARMA model, if we accept the classical
measure at face value.

In terms of minimizing long~term prediction
errors, however, the complex, expanded form of the
Deutsch-Solow model, equations (6.18), which includes
the cross-coefficients, did better than the univariate
models, (6.16) and (6.17); this applies to both the
ARMA and regression forms of these models, in whatever
combination, implying that the cross-terms really were
more important in terms of actual prediction errors
than the difference between ARMA and regression.
Admittedly, however, our prediction tests may have been
biased in favor of models with more parameters in them.
Still, in acknowledging this bias, one must go on to
observe that the univariate robust method -~ based on
far fewer parameters than the ARMA variation of (6.18)
- still did better in long-term prediction than either
form of (6.18); given that our tests were biased in
favor of the latter, the superiority of the robust
method is clear.

Also, if we look at the values of the '"rho
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coefficients", "P", in Tables VI-13 and VI-14, we again
see that the standard statistical analyses here come
out strongly in favor of the ARMA method. As we
mentioned above, the estimated value of rho is a good
measure of how different the APMA model is from the
corresponding regression model; the regression model
corresponds to the special case where the "rho"
coefficients are all set to zero. The rho coefficients
do indeed seem to be very different from zero; this
would seem to indicate that the processes here strongly
require the additional terms provided by the ARMA
model. This phenomenon would hint that the mediocre
predictive power of the ARMA models may be due to a
lack of the quantity of data needed, in each case, to
estimate the ARMA coefficients precisely enough.
However, the Norway results of section (v) will show
that more data per case are not enough to overcome the
problem. Also, if we look at the regression and ARMA
estimates, both, of the constants "b'" and "f" in our
models (Tables VI-11 through VI-14), we find many
values which look unrealistically high, especially when
we stick to the intuitive interpretations of them as
"assimilation rates" (e.g. USA, with 267% of all blacks
turning white per decade); we know that such

assimilation rates are unrealistic, largely because we
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know that they would lead to absurd predictions if

extended over a few time periods. If we suspect that

the true values of these rates would be far smaller,
then, according to the usual significance measure, we
must admit that the measured values are "significantly
different" from zero to about the same extent that they
are "significantly different" from their true values.
In other words, the error is quite significant; it is
not likely to be a coincidence, due to a small quantity
of data. Rather, we would say that the error is due to
a conventional criterion for likelihood estimation

which emphasizes, in practice, only short-term

predictive power. If we admit that huge, bad estimates
of the cross-coefficients lead to unrealistic

predictions when extended over enough time-intervals,

then we imply that a different approach to estimation,
based on the direct maximization of long-term
predictive power, would give us smaller and more
realistic estimates. Insofar as the estimates of these
coefficients are artificially inflated by the maximum
likelihood approach, it is quite possible that the same
process affects the '"rho'" coefficients.

Also, the variability of the signs of the '"rho"
coefficients tends to imply, from the mathematics at

the beginning of Chapter (111), that many of these
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large values for the "rho'" coefficients are due to
something else besides pure measurement noise. In
quaﬁtitative political science, one often reads
statements such as,'"Measurement noise with this data
would tend to invalidate the regression coefficients:
however, such noise would tend to understate the
strength of the real connections; therefore, the
effects demonstrated here are, if anything, more valid
than regression would indicate." |f there is a strong
possibility of effects which move rho coefficients in
the opposite direction from what measurement noise
would indicate, then regression may just as easily be
overstating the strength of major coefficients. Thus
we find, empirically, yet another weakness in the
conventional approach to evaluating models,

Finally, from a technical point of view, one may
note that almost all of the results in these tables
were achieved after ten "major iterations'" of the
algorithm of Chapter (l11). In most cases, convergence
proceeded rather steadily, starting out with large
movements of coefficient estimates, but proceeding to
smaller movements systematically and quickly;
convergence was good, most often, after five
iterations. In a few cases, however, the total gain in

log likelihood relative to regression looked
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suspiciously low, when we reviewed the computer output.
Ten of the assimilation runs were carried out over
again, through many iterations. In all cases but two,
it was verified that the routine had indeed converged
within ten iterations; indeed, the convergence was
generally better than expected (subsequent progress in
log likelihood on the order of 0.01), probably because
these were cases where the original regression models
required little improvement.

On the other hand, there were two exceptions:(i)
the application of equations (6.4) (upper equation
only) to data on urbanization in Cyprus; (ii) the
app]ication of equations (6.18) to data from 1790 to
1870 on white and nonwhite populations in the US. In
both cases, the computer printout from the first ten
iterations gave a very clear picture of "imbalance", a
convergence problem described in section (iv) of
Chapter (111). (Very crudely, this problem results
from the danger that an estimation system based on
first derivatives will be too responsive to some
parameters, in comparison with others, and will
therefore oscillate so much in response to the former
that it makes little headway in dealing with the
latter.) In these cases, the general multiplicative

factor, used to determine the size of adjustments in
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each minor iteration, was decreased, then increased,
then decreased, then increased, by very large factors,
in a suspiciously regular wave-1ike pattern. In the
other cases of small initial movement, by contrast, the
multiplicative factor changed very little after the
first few iterations, and changed almost entirely in
the downwards direction when it did change. (The
adjusted data from Cyprus show up in the Tables.
However, the adjusted data for this run in the US do
not.) The convergence algorithm we have used has

"imbalance" in almost all cases; however, the

avoided
cases which remain do point up the value of further
improvements in convergence procedures, as part of the
effort to operationalize the algorithms of

Chapter (11). Also, they are worth noting for those who

would wish to actually use the command "ARMA" in

TSP-CSP,



Page VI-85

(iv) NATIONALISM, CONFORMITY AND
COMMUNICATIONS TERMS:
AN EXTENSION OF THE DEUTSCH MODEL

The original goal of this research was to follow
up on the suggestions of Karl Deutsch, in Nationalism
and Social Communications, to begin the development of
a predictive, quantitative theory of nationalism. These
suggestions included a specific mathematical model -
the Deutsch-Solow model - which provided the major
focus of the work above. They included the suggestion
that the use of the dominant national language be used
as an index of national assimilation. They also
included a number of verbal propositions, presented as
"suggestions for future research;" these propositions
represent an effort to draw together known verbal
relations, bit by bit, into a more coherent dynamic
theory, capable of making predictions if only the data
were available. By the reasoning of Chapter V), we
believe that this makes them of great substantive
interest in their own right. Given that we hoped to
exhaust the possibilities of the simple Deutsch-Solow
model at an early stage of this research, we have gone
back to these earlier propositions, in order to draw

them together into a mathematical expression both more
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complete and more capable of significant generalization
to other problems in political science.

In Chapter 6 of Nationalism and Social

Communications, Karl Deutsch presents his main argument
that the birth of nationalism may depend on the

relative rates of national assimilation and political

mobilization, particularly on the latter, more volatile
variable.(12). He points out that a moderate-to-slow
rate of mobilization will tend to keep the
unassimilated groups in the minority, in the cities and
in the schools; therefore, those of them who do move to
the cities may be assimilated more quickly. A rapid,
sudden mobilization, on the other hand, may make the
unassimilated groups close to half of the population;
they may therefore become more self-conscious as a
group, and far less likely to feel the need to
assimilate themselves to the old status quo. Conflict
may result. The Solow model, which assumes that the
rate of assimilation (per unassimilated person) is
constant, cannot account for this kind of variation.
Thus the Solow model does not articulate Deutsch's
critical insight into the origins of nationalism.

In order to express the idea that the rate of
assimilation in any area (urban or rural) depends on

how much the differentiated are outnumbered by the
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assimilated, we may form a model like this:
ACt+1) = A(t) + k(A(t) - D(t))ID(L),
(6.29)
for ACt) > D(t),

where A(t) is the percentase of population assimilated

at time t, where D(t) is the percentage of population
differentiated (i.e. unassimilated) at time t, and k is
a constant. In essence, this model states that the

percentage of the differentiated who are assimilated in

any year will not be constant, as in the Solow model,
but will be proportional to the numerical percentage
dominance, (A(t)-D(t)), of the assimijlated population
over the differentiated population. In the first hal¥f
of Chapter (11), we have discussed a number of
refinements which could be made to this simple model.
Stanley Lieberson's study of bilingualism in Canada has
shown that the effects of local "percentage dominance"
are of overwhelming importance(13) in predicting rates
of bilingualism and linguistic assimilation; he has
shown that fairly smooth curves result when one plots
local percentage dominance against language change,
implicitly holding constant the overall national
linguistic and cultural environment. Even in its simple
form, however, equation (6.20) does express the idea of
percentage dominance as a determinant of the rate of

assimilation.
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In order to improve further on equation (6.20),
let us consider two other gualitative factors which
also need to be accounted for. First of all, let us
look at demographic factors. Lieberson, in Language and
Ethnic Relations in Carada, has emphasized(14) two
competing forces which can affect the fate of a
minority language:(i) the economic and percentage
dominance of the majority language (English), which
encourages people to assimilate awav from the minority
language (French); (ii) the "revenge of the cradle,"
the high birthrate of the rural, provincial people who
speak the minority language. In this study, we have
tried to avoid dealing with the demographic factors

directly. By applyving (6.20), not to the nation as a

whole, but to the urban or rural part of one provincial

area at a time, we can expect less difference between
the birthrates of the two language groups. If the model
is expressed in terms of percentages of people speaking
different languages, then the overall birthrates need
not be estimated. In order to go on to predict the

nationwide percentages of language use, we would have

to predict population, first, in each region, and then
convert our predictions of percentages of language use
in each region to predictions of numbers of language

speakers in each region. In brief, this model treats
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bopulation growth in each region as an exogenous

variable. The primary reason for doing so is simply

that this variable has been studied in enormous detail
elsewhere, and that it would take enormous work for us
merely to duplicate a portion of those studies here; we
have looked at the variable, briefly, but we have tried
to keep it a different issue, for our limited purposes
here.

Second of all, the model, as written, defines
"percentage dominance'" merely as "A(t)-D(t)", the
percentage by which the majority language dominates the
minority language. In reality, percentage dominance
consists of two different variables - percentage

dominance within each locality or region, and

percentage dominance nationwide. The first variable

encourages regionalism. For example, it encourages
people in Quebec to speak French only, while
encouraging people in the rest of Canada to speak
English only; it makes the regions more and more
distinct from each other, and it reinforces the
conflict between them. On the other hand, the second
variable encourages people in all regions to conform to

a national norm.
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Local vs. Regional Language-Dominance as a Dynamic

Factor.

How could we predict which of these two processes
will become dominant, the regional or the national? One
way to deal with this question is by trying to
formulate an abstract theory of language-domi nance
pressure. lle can try to formulate a theory which does
not rely on (arbitrary) political abstractions, like
the boundary lines between administrative regions. In

the spirit of Nationalism and Social Communications, we

can focus instead on the nationwide network of
communication flows. For any given individual inside
such a network, the language pressure he experiences
depends simply on the balance between the two languages

as a percentage of his communications, past and

future.(15).(These communications should be weighed, in
principle, by their psychological salience. Also, the
"natural" level of communication between two people or
two regions may sometimes be a more accurate measure of
language pressure than the actual level, if the latter
differs from the former due to a mutual inability to
communicate; a desire to communicate, unfulfilled, can
sometimes provide an incentive to learn the other
person's language.)

Translating this to the level of regional
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variables, we may write the model as:

Pa(t) = E Csa (As(t) - D&(t))
J (6.21)

ACErl) = Aj(t) + D (1) * F(P;(L)),

where "P;(t)" represents the percentage dominance of
the majority language as experienced in region number i

' represents the flow of

at time t, where "Cj¢'
communications between region i and region j (actually,
to region number i, from region j, as a percentage of
the total communications to region i), where the
summation in the upper formula is to be taken over all
regions j if possible, and where we have borrowed the
asterisk from computer terminology as a sign of
multiplication. In the lower formula, we have written
"F(P;(t))", instead of just "Pe(E)!", to reflect our
observation above that, in equation (6.20), we could
have replaced the expression "A(t)-D(t)" by a more
complicated function of the percentage dominance.

Let us look briefly at the implications of this
model, for a "typical" nation passing through the
stages of political development. Let us suppose that
the nation starts out as a "traditional" country,

mostly rural, heavily dependent on sedentary

agriculture. In such a country, one would expect that
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the vast peasant majority would have few
communications, if any, outside their own region; the
economics of such a region would provide little
incentive and little opportunity for the average man to
communicate with other regions. On the other hand, the
urban and literate subsections of such a country would
still have many communications outside their own area,
particularly with the merchants and literati of other
cities. Our model would therefore predict that regional
language pressure would be overwhelmingly dominant over
national language pressure, for the illiterate
majority. Therefore, the spoken language will sustain a
fragmentation into a host of regional dialects(16). On
the other hand, the written language of the elite will

experience heavy long-distance language pressure, at a

national or even international level; it will tend to
coalesce into a uniform national or even continental
language. A1l of this assumes a fairly stable and
well-divided class structure.

However, as economic growth begins, and rural
people become mobilized, a conflict will develop
between their original dialects and the national
language of the cities they move to. The written
language will come into a head-on collision with the

spoken system of languages. As the communications
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network grows more and more integrated, and more
extensive for the average man within each nation,
national pressures will grow more important for the
average man; thus there is likely to be a growth in
national assimilation and uniformity, at the level of
the spoken language. On the other hand, if any of the
regional dialects "capture'" a cohesive center of
mobilized population, such as a city, before they are
assimilated to the national language (i.e. extremely
rapid mobilization occurs), then this city may exert
its own language pressure on the surrounding rural
population and towns. The widespread, modern
communications links acting on this city will
strengthen the hold of its dialect, and perhaps lead to
a political separatism which then outlaws extensive
communications between this region and other regions.
If there were one dominant city, such as a London or a
Paris, in a large area, then this city, once
"captured", may set a new national linguistic norm. If
there were a number of competing cities, however, one
might expect a greater persistence of local dialects,
converging perhaps by a process of mutual adjustment of
the language norms themselves, if the norms were close
to each other, but not by assimilation as such, until

one of the cities does succeed in dominating the
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network of communications; thus a greater level of
fragmentation would be predicted. Note that the average
distance of communications in the new modern network
may actually be less than that of the old elite
network; thus the new written language may indeed be
more restricted, geographically, than the language of
the old elite. A1l of these predictions seem broadly
consistent with the phenomena discussed in Chapter 6 of

Nationalism and Social Communications.

Finally, one may note that the use of
communications terms, as in equations (6.21), can be
generalized to other aspects of the problem of
nationalism, and even to social psychology on a wider

scale. It would be inappropriate, in this context, to

discuss all of these future possibilities. However,

from a practical point of view, these models are only a
small beginning in the quantitative theory of
nationalism; much of their value lies in the
possibilities that they point to for future research.
In order to realize this value, let us sketch out some

of these possibilities explicitly.

Some Operational Dimensions of Nationalism:

Narcissism, Stereotyping and Aggression.

The Deutsch-Solow model and the models discussed
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above involve the gorigin of nationalism, the origin of
systems of national identification. However, it is also
interesting to ask how nationalism, once born, can grow
to become a motive force behind militarism, chauvanism,
and the like. Indeed, one may regard '"nationalism" as
consisting of seven clusters of variables, only one of
which concerns identification directly: (i) affiliation
with a "nationality"; concretely, this would entail a
clustering at the national level of language norms,
cultural symbols, etc.; (ii) the sharing of '"tacit
norms'"(17) that make cooperation possible in situations
of mixed conflict and cooperation; when these norms
tend to be close or identical among people of the same
nationality, but very different for those of different
nationality, then "community'"(18), by Deutsch's
definition, exists precisely at the national level;
(iii) the overestimation of the power level of one's
own nation ("narcissism'", in the language of the
psychiatrist); (iv) the underestimation of the power
levels of other nations (stereotyping); (v) the
intensity of positive emotional commitment to one's own
nation (utility attributed to the "success'" of one's
nation; this may be the resultant of both "rational"
and "irrational" (narcissistic or neurotic)

attachments); (vi) the intensity of emotional
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commi tment, positive or negative, to other nations
(utility attributed to their "success'"); (vii) the
glorification of militaristic, nationalistic behavior
for its own sake.

"Nationalism," by this definition, would appear to
be a crucial cause of international violence. The
likelihood of international violence would appear to
depend on the ability to compromise in any given
perceived game - which we would associate with cluster
(ii), above(19) - and in the perception by the
participants that compromise is desirable. Insofar as
war involves a massive destruction of resources, at
least when modern nation-states are involved, one would
normally expect it to be far away from what an
economist would call "Pareto optimal;" one would expect
that a compromise would exist, far superior for both
sides than the actual outcome of the war. If the
participants overestimate the gains they would achieve
by war, however, they may not be able to appreciate
beforehand that any particular compromise would be more
desirable. Also, if they attach a positive value to
hurting their adversary, then they may feel that their
own material losses in war would be balanced out by the
losses of their adversary. These misperceptions, which

may lead to war, are associated with clusters (iii)
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through (vi), above. In practice, the breakdown of
bargaining between nations will often depend on some
"spark'", 1ike the assassination of an Austrian archduke
or the sinking of the Maine; however, long before the
spark appears, there may be a prolonged period of cold
war, in which the ability to compromise gradually
decreases and peace becomes ever more precarious.
Students of conflict who dismiss the sticky,
"irrational" factor of nationalism, and focus solely on
objective conflicts and capacities, may be helpful in
encouraging more objective, less nationalistic and more
peaceful policies by the major powers today; however,
by neglecting a primary cause of past conflicts, they
may reduce the applicability of their historical
studies.

One may note, furthermore, that the concept of
"nationalism'" above is important, not only to the
simple variable of war-vs-peace, but also to the
possibility of bargains on a higher level, to maximize
joint production in ways which would have been
impossible without cooperation. Trade agreements are
only one part of this picture. In the limit, if nations
were fully adept at such negotiation, they could
achieve the same joint efficiency and productivity that

a unified world government could, if they do not place
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a strong negative intrinsic value on each other's basic
welfare. On a lower level, such a gradual improvement
in coordination has been crucial, in the past, in the

fusing of subnationalities into larger nations(20).

Toward More General Models.

In order to predict the variables which make up
nationalism, one may try to extend equation (6.20) to
deal with continuous psychological variables. Even in
dealing with language, we found it necessary at times
to talk about changes in the language norms themselves,

as continuous variables, rather than simple adherence

to one norm or another.(21). Given a continuous
variable, X} which represents some arbitrary cultural
norm, such as the pronunciation of a certain vowel, we
may try to express the idea that an individual will
change his own norms in response to the norms of those
he communicates with. As a first approximation, we get

an equation analogous to (6.20):

L Z Cii (X = X)) (6.22),
dt

where "Xi" is the value of the variable X (a norm) for

person number i, and where C}L represents the strength
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of communication between person number i and person
number j. In a sense, the term on the right is a
"reinforcement" term impinging on person number i.

In practice, however, when we deal with questions
like nationalism and fundamental personal values, it is
unrealistic to imagine conformity as the only mechanism
at work. Somehow, a more general approach must be
formulated.

One might hope, at this point, that social
psychologists, while neglecting nationalism per se(22),
would have formulated more satisfactory models for the
flow of ordinary psychological variables, models which
would predict the seven variable-clusters of
nationalism as one special case. In the conflict
literature, however, the concepts one normally sees
from social psychology tend to involve very specific
variables, such as frustration, aggression and status
inconsistency. A fascinating exception to this
generalization is the article by Schwartz on
prerevolutionary society, in the Feierabend
anthology(23). Schwartz's approach involves the heavy
use of approach-avoidance diagrams, with nodes
representing clusters of psychological variables and
with signs attributed to connecting lines which

represent associations between clusters.
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Approach-avoidance theory allows him to predict the
likely trends in the level of association - plus or
minus - between two clusters of variables, and also in
the "distance" between them. The same rules for
determining these trends could be applied when more
objects of thought are brought into the model; also,
they might be applied to other phases of social
psychology, such as the variables making up
nationalism. Beyond its capacity for being generalized,
Schwartz's approach has one other virtue: it evokes a
detailed picture of the human, psychological feeling of
the societies he describes, a picture which he
validates in detail from verbal descriptions, yet a
picture both sharper and clearer than the usual verbal
summaries.

More generally, following up on Schwartz's
approach, one might hope to work towards open-ended
mathematical models of human behavioral psychology,
models capable of achieving greater and greater
accuracy as one accounts for more and more variables,
within the same mathematical structure, a structure
which nonetheless makes substantive predictions. This
possibility may be compared with the possibility of
predicting weather, by using a set of differential

equations rewritten into the form of difference
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equations, so that predictions may be made based on
knowledge of the initial conditions only at a fixed set
of weather stations on a national grid. As one expands
the number of weather stations, and makes the grid ever
finer, one can make better and better predictions,
using the same differential equations as one started
with. If one described the "initial conditions" of a
human mind in terms of some sort of network structure,
and if one's equations specified how to predict the
future of any mental network from its present state,
then a similar flexibility should be possible in social
psychology.

In the 1imit, as one allows the hypothetical

.

initial values of all the

possibility of knowing the
psychological variables in someone's mind, one would
hope that one's model would approach equivalence to a
general cybernetic model of human intelligence and
motivation. On the other hand, if one allowed only for
very limited knowledge, one would hope that one's
social-psychological model would help one choose the
aggregate variables of greatest predictive power in
making concrete predictions. In the middle-range, one
may have to encompass the studies by political
scientists such as Sheldon Kravitz(24) on larger-scale

psychological structures, as revealed in the voluminous
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data of public political statements. Any of these
constraints is difficult enough to satisfy by itself;
the combination goes well beyond the range of the
present discussion.

Given that it may take a long time for anyone to
construct such high-level models, and a long time to
learn how to deal with them, a lower-level
generalization of our simple communications model may
have some value as an intermediate step. lInstead of
starting from a full-fledged model of individual
psychology, let us consider a simple equation, drawn
essentially from Minsky and Selfridge(25), to describe
the changes of a psychological variable, X, under the

influence of a "reinforcement' variable, E:
X(t+l) = (1 - B8)X(t) + BF(t) (6.23)

In essence, E measures the individual's feeling, after
the fact, of what X "should" have been, vis-a-vis his
experience at time t. If experiences of E occur at a
certain frequency, F, we may approximate this by a

differential equation:

Axr— kF(E-X) (6.24)

P <)

This model of individual psychology would leave
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out the crucial fact of interaction between different

psychological variables; in practice, for example, a
strong irrational narcissism on the psychiatric level
may provide a pressure towards greater overestimation
of the potency of one's nation as well., Again, a
thorough description of such interactions would be very
complex. However, one may make a simplification based
on the idea of cognitive dissonance. If Xe is the value
of X one would "expect", or at least find most
plausible, based on one's current psychological state
with regard to other variables, and if C Is the level
of confidence with which one feels this expectation,

then one might generalize (6.24) to:

§§= le(E—X) + sz(Xe-X). (6.25)
In a sense, we have added a new source of
"reinforcement" to X, or a new '"pressure' on the
individual's psychological state.

Finally, it is easy to synthesize this simplified

model of individual psychology with (6.22):

éég= k1Fi(E£'XZ) + sz;(Xei -X¢)

+ ky 2 C3i (X3-X7) (6.26)
d
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With the help of a moderately complex model of

individual psychology, one might predict C; and Xeul 1N
a very complex way from one's knowledge of the other
psychological variables applying to person number i;
however, this, by itself, would not require us to
change the final coupling terms, on the far right of
our equation. Thus the model here can be extended in a
fairly straightforward way, building on the work of
personal (vs. social) psychologists.

Also, one could develop the model further by
learning which measures of Cji are most appropriate,
when. For example, one might explore the hypothesis
that Cj; includes only close family communications, for
X which represent basic emotional attachments, in
communities which have adapted to a combination of
intense conflict and extensive ordinary commmunications
for centuries. Or one might explore the hypothesis that
tacit norms for cooperation depend most heavily on
"C;i "' measured in terms of constructive bargaining (or
other mutual coordination of effort) rather than simple
trade or general communications; this hypothesis, if
validated, would imply that the reduction of
nationalism, and the stabilization of peace, depends
critically on efforts by nations to achieve joint

benefits from concrete joint activities going beyond
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simple trade and ordinary cultural exchanges.

Given that the model above is highly linear, it
does pot require us to fall back on the even worse
approximation of predicting the "average man'", as if
all people in a given nation were the same; it would
allow us to deal with the flow of psychological
variables by mathematics quite similar to those
well-established for problems such as heat flow. For
example, if national narcissism led to uniform values
for C and Xe (e.g. a high estimate, Xe, of relative
national strength) in a nation, and if there were many
levels of communication separating the decision-makers
and the people who experience the raw data directly
(i.e. realistic E, with a high level of F), one would
expect a simple geometric decline in the level of Xg-=X
with increasing distance of communication; with a deep
enough hierarchy, the perceived variable, X, may
reflect only the prejudices of the nation, the Xe, and
have no reality content at all. Thus one would predict
a form of "groupthink"(26), based on large-scale
communications effects.

In other cases, however, it may be more
appropriate to treat a national communications system
as a conglomerate of distinct subsystems (e.g. elite,

burghers and masses in nineteenth-century Germany, or
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workers and industrialists in modern Japan); this is
especially important when one considers domestic
conflicts, which may lead in turn to revolution and to
messianic nationalism as part of a common pattern.
Given a description of a communications system,
conglomerate or continuous or a mixture of the two, and
given the exogenous data, equation (6.26) would be
fairly manageable in providing predictions of the
continuous psychological variables of one's choice.
Panel survey studies would be possible, to refine the
model or provide the data for future predictions, when
aggregate national data are inadequate. Classical
models of history and of conflict may fit in, by
helping us to predict the variables left exogenous in

(6.26).

In brief: the concept of communications terms has
led us to a generalization - equations (6.21) - of the
Deutsch-Solow model of assimilation and political
mobilization. In section (v), we will discuss the
empirical tests we have given this model in Norway.
This generalization of the Deutsch model, while limited
in the present context, offers numerous possibilities

for important extensions in the future.
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(v) ASSIMILATION AND COMMUNICATION:

THE CASE OF NORWAY

Broadly speaking, the investigation of variants of
equation (6.21), by use of the approaches discussed in
Chapter (111), has led to results similar to those of
sections (ii) and (iii) of this chapter. The power of
communications terms, and of ARMA models, vis-a-vis
simpler regression models, has been validated, both in
terms of statistical likelihood and in terms of
long-term predictive power. The validation has been
more significant here, due to the larger quantity of
data, but the actual improvements range about 10% in
terms of reducing the size of errors. Also, when
"outliers'" are present, the ARMA models appear much
worse in terms of their formal likelihood than do the
regression models, though they retain a superior
capacity for long-term prediction. Erratic noise, in
the form of '"ratchet effects," which occur erratically
like simple outliers but then persist, does not appear
to reduce the modest superiority of the ARMA
techniques. In this research, a substantive
explanation has also been verified for some of the

inconsistent results reported with "gravity models'" to

predict communications intensities; gravity models were
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used to allow us to construct three extra indices of
communications within Norway.

In order to test out equations (6.21),
statistically, we needed to find a case history with
the following characteristics: (i) extensive data on
language preference, region by region, distinguishing
between urban (mobilized) subregions and rural
subregions; (ii) data on the matrix of communications
between one region and another region, not aggregated
in the form of "total communications entering'" or the
like; (iii) significant variation across time in a
large number of regions in the percentage of language
use. Four countries were considered as interesting
possible case histories early in this study - Canada,
Belgium, Finland and Norway. (Various parts of the
British Isles and Africa also seemed promising, but not
on the basis of data available at Harvard libraries.)
A11 four have extensive data, commonly available, on
language usage. |In Canada, however, the data commonly
available are aggregated at the level of provinces;
except for New Brunswick, most of the provinces of
Canada have been consistently close to the extremes of
100% French or no French. In Belgium, the censuses of
language were separated by long intervals of time,and

the geographical divisions appeared to be just as
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sharp, on the whole, as in Canada; the slight
variations in Brussels and in Brabant were not enough
to change this picture. Of the two remaining
countries, Norway had much better data on
communications variables.

The data from Norway turned out to be quite good
for statistical purposes. Einar Haugen(27), in his book
on language problems in Norway, has shown a map, giving
the percentage use of the minority language, Nynorsk,
in schools in Norway, in the three years 1931, 1945 and
1957, in each of the eighteen provinces of Norway. The
data for Oslo (consistent avoidance of Nynorsk) do not
appear on the map, but can be reconstructed from the
Norwegian Official Statistics which constitute our own
source of data; thus we can add in Oslo, to arrive at
nineteen major regions in Norway. |f we ask how great
the gap was, in each region, between the maximum
percentage of Nynorsk taught in these three years, and
the minimum percentage, we find that these variations
across time have been quite substantial. 1In only six
of the nineteen has there been no variation; in the six
with the highest variation, the average variation was
by 28.5%; in the middle seven, the average was
12 1/7 %. (For example, in Oppland, one of the largest

provinces on the map, the percentage use of Nynorsk was
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15% in 1931, 44% in 1945, and 40% in 1957, vielding a
maximum variation of 29%.) Thus in predicting the
variations of language use across time, we are not
predicting a dummy variable. Given that the equations
in our models all attempt to predict language use at
time t+l, controlling for the independent variable of
language use at time t, the different averages of
language use in different provinces do not water down
the effective size of the data sample. In Haugen's map,
it also seems clear that the greatest reductions in the
use of Nynorsk were concentrated in "intermediate"
provinces, or, more generally, provinces which have a
significant Nynorsk population but which have a high
percentage of communications with non-Nynorsk regions.
(Some of the northern provinces, which are far from all
the populated parts of Norway, have very strong
communications with Oslo, on a relative basis,
according to our migration data.) In this study, the
use of percentage variables instead of numerical totals
helped insure that the results are not dominated by a
handful of large subregions.

Data was available in Norway from 36 regions
(urban and rural parts of each province, considering
Oslo as the urban part of Akershus and the city of

Bergen as the urban part of Hordaland), for every vear
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from 1938 to 1969(28). If we treat all 36 strings of
data as sample strings, each with N=31, each generated
by the same general process (i.e. governed by the same
equations and coefficients), the effective N of the
overall sample was 36 X 30 = 1080. (30, not 31, because
of the time lags; each string contains 30 pairs of data
of language use at time t and language use at time
t+1l.) Data were also available on: (i) migration from
each subregion to each other subregion in the three
vears 1966, 1967 and 1968(29); (ii) outgoing
long-distance telephone calls, total, from 1938 to
1957, by year and by subregion(30); (iii) total
letters posted, in 1938-1940 and 1944-1968(31); (iv)
births, deaths and marriages from 1938 to 1968(32);

(v) real income, from 1938 to 1968(33); (vi) other
information on population, crime rate and rate of
welfare payments not used in this study(3h).

Initially, in coding this data, we were confronted
with two interesting choices:(i) whether to define the
subregions of each province as "urban'" vs. "rural", or
to define them as the collections of townships which
happened to be defined as urban or rural, in an
arbitrary base year, such as 1958; (ii) what to do
about the one case of zero data, the case of Finnmark

(the northernmost part of the entire mainland of
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Scandanavia), where no languages at all were used in
schools during World War ||, apparently because schools
were shut down. In a normal statistical study, one
would tend to account for the limitations of multiple
regression, and choose definitions for one's variables
in order to make them as manageable and as predictable
as possible. The moving of townships from the rural to
the urban category often had a "ratchet" effect,
producing an appearance of change by jerky movements
instead of just continuous gbservable movements. In
this case, however, the original concepts of Karl

Deutsch clearly called for urban vs. rural percentages,

not for geographical subregions; also, it was important
to the evaluation of the statistical technique to see
if it was as sensitive to ratchet effects - which would
appear to be quite common in politics - as multiple
regression is; finally, the data on urban vs. rural
language use were relatively accessible, while the
consistent use of a fixed group of townships would have
required approximately fifteen additions and checks for
each of 1110 subregion-years, for each of ten variables
or so. With Norwegian postal data, an aggregation of
this sort was unavoidable, given that the data were
available on a township basis but not on an urban vs.

rural basis for most years. In the case of Finnmark, we
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decided, implicitly, to set the assimilated-percentage
variable to zero, in the war years, in the first of our
runs, partly as a test of the statistical method.
(Finnmark has consistently used no Nynorsk; i.e., it
has been 100% assimilated.) This had the effect of
introducing a few substantial outliers into the data;
this fact turned out to be quite interesting in the
runs which followed.

Nine good runs were carried out to predict
Norwegian language data, after the prototype version of
the "ARMA" program was fully checked out, and the data
in the computer checked for consistency with the
original data-sheets. The years 1939-1967 were chosen
as the main focus of study, to avoid calibration
problems with different variables. The first seven runs
were carried out on the original data, with outliers
existing in Finnmark. By and large, these runs were
rather disappointing.

In the first run, ARMA tried out two simple models
to predict the percentage, A, of language assimilation

in Norway:

A(t+1) = bA(t) + ¢ + a(t), (6.27)

where a(t) is a random noise term to be minimized, and:
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A(t+1l) = BA(t) + a(t) + Pa(t-1), (6.28)
where both terms on the right are noise terms,
indicating the presence of more complicated noise.
Notice, with the regression model, (6.27), we have
included a constant term, c, while the ARMA model,
(6.28), described in the notation of Chapter (111),
does not include a constant term. Thus both models have
the same number of coefficients to estimate. With the
prototype version of ARMA, the constant term was
consistently included in the regression model, and
deleted from the ARMA model, to insure that models of
the same general level of complexity were being
compared.

The results of the first run were relatively
disappointing. The regression model received a
likelihood score ("LogP'", in the notation of Table
VI-11) larger than that of the ARMA model, based on the
standard normal distribution test described in Chapter
(111); the gap in scores was equal to 7, indicating
odds of é7=1100 to 1 against the ARMA model being
better than the regression model, empirically. (See
section (v) of Chapter (11) for a more thorough
discussion of the traditional concepts here.) Given the
large data set, this meant that the percentage of

variance explained - él - was 99.49% for the regression
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model, versus 99.48% for the ARMA model. In a test of
long-term prediction, however, the ARMA model did
better, as our reasoning in Chapter (V) might have
indicated. The regression model had average percentage
errors of 14.9%, versus 14,1% for the ARMA errors.
Note that we define the 'percentage error," in any
vear, as the gap between the prediction and reality,
expressed as a percentage of the averages of the
prediction and reality; note also that these errors
were averaged by the root-mean-square ("R.M.S.'")
method. The "absolute errors'" in predicting the
percentage of assimilation averaged out to 28% for the
ARMA model, and 39% for the regression model; the huge
figures are due to occasional wild predictions,
building up geometrically from 1939 to 1968.

Note that a 2% reduction in square error, from
1 - .9948 to 1 - .9949, is considered highly confirmed
by the usual 1ikelihood test, with a sample this large;
the larger reductions in long-term prediction errors by
the ARMA routine would appear to be even more certain

in their validity. Indeed, it seems much more

suspicious in some ways to discuss the reduction of
very small errors - about .50% - than to discuss the
reduction of more substantial errors. In theory, the

classical likelihood measure is enough to account for
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such "multicollinearity," but even so such situations
have often turned out to cause problems for
statisticians. Note that the presence of
multicollinearity would presumably be much worse than
here, for processes which one would hope to find more
predictable in the long-term; the inability of
classical approaches to perform well under such
circumstances is one more reason to favor a new
approach. An approach which attempts directly to
minimize the more substantial errors in long-term
prediction would appear to be much safer. Also, as in
section (iii) of this chapter, it is critical that
formal statistical likelihood and predictive power have
not gone hand-in-hand in their evaluations of the

different models available.

In later runs, we hoped that the ARMA models would
do better in terms of statistical likelihood. After
all, the constant term in the regression model could
reflect a trend away from Nynorsk, a trend which could
be explained by communications terms and other terms,
so that the value of a constant term as a surrogate
variable would disappear when they are accounted for.
Also, for reasons described in sections (v) and (vi) of
Chapter (11), we hoped that the ARMA model would be

more sensitive to terms of realistic importance,
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increasing in likelihood by more than the regression
model does when such terms are included.

In the second run, we decided to introduce a
communications term. In Norway, we had only one

explicit measure of communications from each province

Lo each other province available - average migration
from 1966 to 1968. Given that population data were not
fully available from 1939 to 1967, and given that
intraprovincial communications are presumably not
well-measured by internal migration data directly, we

used the following simplified model:

A (ERL) = coAi(E) + cu 2 Mjp (Aj(E) = D (E)
v

* cg(SElAL(E)=D(E))+Sx(AF(L)=D%(L)))S,,
(6.29)

where Mj; represents migration from region number j to
region i, where S; represents the sum over j of Mj.,
and where the asterisk refers to variables in the
region complementary to region i. (i.e. Az is the
percentage of assimilation, measured in the same
province as region i, but in the rural part, if

region i is urban, or in the urban part, if region i is

rural.) In principle, Mj; should have been divided by

the population of region i, but this was not only



Page VI-118

impossible, it was of limited potential importance in a
nation with provinces of comparable population. In
retrospect, it might have been better to start out with
the full, more complex model, (6.21), even in these
early investigations; however, due to the difficulties
and potential controversy in estimating the shape of
F(Dé), it was decided that priority should be given to
the simpler formulation at this stage.

At any rate, the model written out above -
(6.29) - did not perform especially well, with our
initial Norway data, according to the usual statistical
tests based on short-term prediction. In terms of
statistical likelihood, the regression model in this
run did no better than the regression model of our
earlier run, without communications terms. (Gaps in
likelihood less than one point, as discussed at the
base of Table VI-11, were not recorded, due to the
implication of no significance in such differences in
apparent performance.) In other words, the extra terms
did not appear to add anything. The estimate of "C3"
here, as in all the other runs carried out on this
model and its analogues, was too small for the computer
output formats to cope with. "cz", however, was on the
order of 1%. Again, the regression model was superior

to the ARMA model, with a gap of likelihood scores of
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5.65, indicating odds of 280 to 1 favoring the
regression model. The ARMA communications model had a
slightly higher likelihood - by 1.5 - than the simple
model (6.28), indicating odds of 4.5 to 1 in its favor:
however, these are not exactly overwhelming odds. The

R of the ARMA model was .9948, versus .9949 for the
regression model, just as before.

In long-term prediction, however, from 1939 to
1967, the ARMA model did increase its margin of
superiority; its R.M.S. average percentage errors were
13.4%, versus 14.7% for regression, while its absolute
errors were 27% versus 39%. The communications term,
even if poorly estimated, clearly added something to
longer-term prediction. With a different estimation

approach, oriented towards predictive power instead of

maximum likelihood, the gain provided by the
communication terms might have been considerably
larger. Also, with the original model, (6.21), the
intermediate provinces of Norway, instead of the
minimum-Nynorsk provinces, might have been singled out
more effectively as likely areas of large-scale
assimilation; again, the predictive power of the model
might have been enhanced.

In the third run, as an alternative hypothesis, we

considered the possibility of using real income as a
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variable to predict language:
A(t+1l) = clA(t) + cgnY(t), (6.30)

where Y(t) represents the real income in a region, and
where we have not written out the noise terms. In
terms of likelihood theory, the performance of this
model was gxactly the same as that of (6.29), as
described above. In long-term prediction, however, it
did not do quite as well. The ARMA R.M.S. average
percentage errors were 14.1%, and absolute errors 28%;
the regression percentage errors were 14.,9%, absolute
errors 39%. These results are closer to those of the
univariate models, (6.27) and (6.28), in quality, than
to the results with (6.29). In principle, however, the
relative potential of the two models in long-term
prediction will not be clear until a new type of
estimation system is available.

In the remaining runs on our original data, we
decided to explore communications indices other than
that of simple migration. Two other measures of
communication - telephone calls and volume of mail -
were available; however, these were only available on a
province-by-province basis. We faced the problem of
how to reconstruct the matrix of communications from

each province to each other province. This problem has
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often been faced elsewhere in regional science(35) and
in sociology, and resolved by way of a "gravity" model.
The original gravity model, proposed by Stewart, would
estimate province-to-province telephone communications,

for example, as follows:

T, T

’e = ‘ J

C"J Cogr_, (6.31)
¢

where T; and T} are the total volumes of telephone
communication (or other communications variables, such
as migration) in each province, and where ré3 is the
distance between provinces. A modified version, studied
by Galle and Taueber(36), and discovered to have a

multiple correlation of between 89% and 93% between

prediction and reality, is as follows:

Crt = C b, (6.32)

where k is an unknown exponent to be estimated. (Note
that the correlation here, with a cross-sectional
model, is stronger in its implications than a 90% would
be in a predictive time-series model, insofar as a
cross-sectional study makes sense here.) Curiously
enough, while equation (6.32) has been successful in

empirical tests, the parameter "k" has varied a great
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deal in its estimated value; Galle and Taueber report
that k was equal to .62 for interurban migration in the
US in 1935-1940, but only .42 for the same data as
measured in 1955-1960.

In order to estimate the likeliest value of "k"
for interregional communications in the case of Norway,
it was necessary to fit the model (6.32) to the only
region-to-region communications data available - again,
the migration data. A direct fit of (6.32) would have
required the use of nonlinear regression; however,

equation (6.32) can be transformed as follows:

1og Ci"

j log Ti - log T: = a - k log r,;¢

J €y’
(6.33)

where the entire left side of the equation forms the
dependent variable, and where "a" and "k" can be
estimated by multiple regression.

As long as we were carrying out such a regression,
however, it seemed appropriate to test out a new
explanation for the reduction in "k" from .62 to .42 as
measured in the United States by Galle and Taueber. It
is fundamental to the communications theory of
nationalism, as described in section (iv), that there
has been a historic rise in the strength of

long~-distance communications, relative to
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shorter-distance communications, at least for the
average man. Using equation (6.32), we may compute the
ratio of communication across a long distance, Ry, to
the communications across a shorter distance, RO'
between regions of equal size (TZ the same for all

regions):

- : R

-+ = (R)k = (39)k

: % (o)
(Ro)k (6.34)

For given distances, RO and Rl' the terms involving Co

and T;, etc., cancel out; thus the only way this ratio

can get larger, for a given comparison of distances, is
if k gets smaller. (e.g. A small variable to the
zeroth power will equal 1, which is the maximum this
ratio can approach under the stated conditions.) Thus
it is critical to our communications theory that k
should tend to decrease in time, as the result of some
aspect of '"modernization'"; the most obvious aspect of
"modernization" to consider is the economic factor, the
increasing income of people relative to the cost of

communication. Thus we decided to test the model:

k(t) = ¢

1 czy(t), (6.35)
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where Y represents the real income of a region. Also,we
decided to consider the possibility that a term
representing social proximity (urban vs. rural
similarity of regions) should be accounted for. Thus,

in the final regression equation, we decided to test:

log Mks = log M53 - log S; - log Q;
= Cgp "~ Cq log ot cpY log rey * czu,;‘;,
(6.36)
where Ues is defined to equal one if both regions are
rural or both urban, but zero if they differ; a measure

of distance was obtained from the World Atlas(37); S¢

is defined as with (6.29). Note that Y(t) - real income
in the subregion from which migration occurs - was not
a surrogate for time in this regression, since the
regression was based on a combination of two 36 X 36
matrices of total migration in the close-by vears 1967
and 1968; the primary variation in real income was

between subregions. The covariance matrix produced is
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shown in Table VI-25:

$a > ’ L
Uu Y log r log r log M

0 ¢ i)
Uy .251 .017 -.012 .072
Y log ry .017 1.299 .286 .135
log ry; -.012 .286 .875  -.549
log Méj .072 .135 -.549  1.062

Table VI-25: Gravity Model Correlations

Inverting the three-by-three matrix in the upper left
of this table, and multiplying the inverse by the
vector formed by the three upper numbers of the
rightmost column, we can compute the standard

regression coefficients for (6.36):

cy = .24
Cq = .26
c, = .70,

all with the expected signs, and all clearly very
significant for the large N we have considered and for
the variances displayed in Table V1-25. Thus our
income hypothesis appears to have been validated rather
strongly. This same regression analysis was also used
to construct an approximate measure of communications
for one of the other communications variables available

in Norway, telephone communications; however, C , was
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deleted from the regression equation, and Cyq thereby
reduced to .67, due to the computational difficulty of
calculating the full index, as based on different
values of the income variable across time.

In the fourth run on Norwegian language data,
equation (6.31) was used to reconstruct the matrix of
telephone communications, Cii' to replace Mij in
equation (6.29). The vears 1939 to 1957 were used as a
data-base. Once again, the regression model did better
than the ARMA model in terms of log likelihood, with a
gap of 3 points, implving odds of 20 to 1 in favor of
the regression model. The dl of the regression model
was .9941, versus .9940 for the ARMA model; this was
substantially worse than our earlier runs. On the other
hand, this was substantially worse than our earlier
univariate runs, encompassing a subset of the
independent variables here; this signals us that the
data in the period 1939 to 1957 average out to be more
difficult to predict than the previous data-base, 1939
to 1967. Indeed, these years contain all of the wartime
"outliers" mentioned above, in Finnmark. In light of
these difficulties, the model did relatively well in
long-term prediction. The R.M.S. average percentage
errors were 13.7% and 14.,1% for the ARMA and regression

models, respectively; the R.M.S. average absolute
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errors were 35% and 40% for the two models,
respectively. Perhaps a later run without outliers
would have given a much better picture.

In the fifth run on Norwegian language data, we
studied the same model as in the fourth run; however,
this time we used equation (6.36), adapted to predict
telephone communications, to reconstruct a matrix of
telephone communications. The Rl and the likelihood
scores turned out to be the same as in the fourth run,
except that the ARMA model gained very slightly in
likelihood - by one point; the odds against this being
a coincidence are only 3 to 1, according to likelihood
theory - not a substantial confirmation. The results
of this run seemed sufficiently bad, with ﬁh still low,
that simulations were not carried out.

In the next run on Norwegian language data, postal
data were used, with equation (6.36), to construct an
index of communications, to replace MiS in equation
(6.29). The regression model performed better than the
ARMA model, with a gap in likelihood of 9, implying
odds of é? = 8100 to 1 in favor of regression. The éx
of the ARMA model was .9958, versus .9959 for the
regresson model. At first, these high values of ﬁl

seemed rather encouraging. However, the data period

used for this analysis was 1945 to 1967, due to the
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absence of postal data in three of the war vears; this
implied that the outliers in Finnmark were avoided. In
our seventh run, as a corrective, we re-evaluated the
simple univariate model, equations (6.27) and (6.28),
over the same time-period; the results were the same as
with the postal model - implying that nothing was
gained by adding these communications terms - except
for an insignificant one-point decrease in the
likelihood of the ARMA model.

After these seven runs were completed, a careful
review was carried out, first of the ARMA models, and
then of the communications models. Another run was
carried out on a different set of data - on births,
deaths and marriages as a single set of variables. In
that case, the ARMA model outperformed the regression
model by 339 points, by the usual likelihood measures,
implying an astronomically high probability of its
superiority. In conventional language, this gap of 339
points implies that,'"the ARMA model was confirmed with
a p less than lddoo ."" Concretely, the ARMA model had
an ﬁl of .975 in predicting the marriage rate, versus
.85 for regression; also, the variance of the errors in
predicting the death rate was reduced by 10%.
Unfortunately, the computer refused to calculate a full

table of predictions for this case, because the table
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was too long; however, the ARMA model did not seem
notably superior to the regression model in that
portion of the predictions which the computer did print
out.

In order to explain the mediocre performance of
the communications models, we looked very closely,
province by province, at the direction and shape of the
errors made by the ARMA communication models (from run
number 2) in long-term prediction. There did not seem
to be a notable tendency for errors to be biased in one
direction in any special group of provinces, except for
the "intermediate province" group which the
communications terms should have been able to
distinguish; however, there did seem to be a very
strong tendency for the predictions to be
systematically low, everywhere. With constant terms, of
course, this would not have been expected. Still, the
independent variables in equation (6.29) were close
enough to being able to represent constant trends,
upwards, that it seemed very strange that such a bias
would develop. A series of intuitive arguments
convinced us that the outliers in Finnmark, extendin
for a handful of years in both urban and rural
Finnmark, could add a degree of apparent randomness,

enough to bias the coefficients substantially. Given
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that Nynorsk had never been used at all in schools in
Finnmark, we felt it would be best to change the data,
so that in al] years the variable "A" (percentage
assimilated) would equal 100% in Finnmark.

After these changes, two runs were carried out,
both highly successful. The first run duplicated our
original first run, based on equations (6.27) and
(6.28). This time, the R* for the ARMA model was
.9988, versus .9987 for the regression model. The ARMA
model had a likelihood score of 35.46 points higher
than the regression model, implying odds of 2.5 million
billion to 1 against its superiority being a
coincidence. Both models, of course, were doing
astronomically better than any of the models discussed
above. In simulation, however, the picture was a bit
mixed, though still improved on the whole. The R.M.S.
average percentage errors were 9,.9% for the ARMA model
and 9.4% for the regression model; the absolute errors
averaged to 20% and 27%, respectively.

The second new run duplicated the second old run,
in using equation (6.29) as a model. The superiority
of the ARMA model grew larger, when a more complete
substantive model was used, just as we had hoped
earlier; the gap in likelihood grew to 42.51, implying

odds of 3 X 10'7 to 1 in favor of the ARMA model. With
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the regression models, the addition of communications
terms produced only a slight gain in likelihood - 2
points - but with the ARMA model, the gain in
likelihood was 9.03 points, implying a very significant
improvement. (Significant at the level of "p =
.00011," in conventional terminology.) One may note
that the coefficient of the main communications term
was .0067 for the ARMA model, versus .0054 for the
regression model, both about right for a recurrent
feedback term. With a better substantive model, the
ARMA model improved much more in its long-term
predictive power, too, than the regression model did.
The average percentage errors were 8.6% for the ARMA
model, versus 9.0% for regression; the absolute errors
averaged to 17% for the ARMA model, versus 25% for
regression. Between the two measures, it is reasonable
to say that the ARMA model here, as elsewhere, displays
on the order of 10-15% less error in long-term
prediction than the regression model does. Also, as we
pointed out at the beginning of this section, when
outliers are removed, the ARMA models are very much
superior to the regression models in terms of formal
statistical likelikood. These statements remain true
despite the '"ratchet" effects - similar to outliers,

but persistent - which we mentioned earlier in this
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section.
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FOOTNOTES TO CHAPTER (VI)

(1) Deutsch, Karl W., Nationalism and Social
Communications, MIT Press, Cambridge, -Mass., 1966,
revised second edition. Chapter 6 contains the
main argument leading up to the mathematical
model; Appendix V contains the mathematical model,
and a verbal description of it.

(2) ibid.

(3) Hopkins, Raymond, "Projections of Population Change
by Mobilization and Assimilation," Behavioral
Science, 1972, p.254. The programs were made
available to us by Prof. Deutsch at the Harvard
Department of Government.

(4) Deutsch, Karl W., op. cit., Appendix V. Note that
several versions of this model have appeared in
print. The version here, in all fairness, was
actually taken directly from Hopkins, Raymond and
Carol, "A Difference Equation Model for
Mobilization and Assimilation Processes', 1969,
unpublished; a copy of this paper was provided to
us by Prof. Deutsch, and described by him as
containing the final revision of the model. This
revision appears, in difference equation form, in
Hopkins, Raymond, "Projections of Population
Change by Mobilization and Assimilation",
Behavioral Science, 1972, p.25h4. The reasons for
the revisions to earlier versions are described in
Hopkins, Raymond, "Mathematical Modelling of
Mobilization and Assimilation Processes'", in
Mathematical Approaches to Politics, edited by
Hayward Alker, Karl Deutsch and Antione Stoetzel,
Elsevier Publishing Co., New York, 1973, p.381.

(5) See note 1.

(6) Hopkins, Raymond, '"Mathematical Modelling of
Mobilization and Assimilation Processes', in
Mathematical Approaches to Politics, edited by
Hayward Alker, Karl Deutsch and Antione Stoetzel,
Elsevier Publishing Co., New York, 1973,
especially p.381.

(7) See note 3. More precisely, we used the Hopkins
routines directly, on sample cases suggested to us
by Prof. Hopkins and on a few others.
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(8) In Chapter (V), we noted that the correlation

across n intervals of time, when both process
noise and measurement noise might be present,
would equal $2r™, where ¢ is the correlation
involved with measurement noise, and r is the true
correlation across time of the process underneath,
When this figure changes very little with
increases in '"n'", but is substantially different
from 1 for various values of n, then it would seem
that r is very close to 1 and that ¢ is not.

(9) The approximation here is that exp(l+a) is

(10)

approximately equal to l+a, with only about .5%
error when "a" is about 10%. More precisely, if we
take the exponential function of both sides of the
equations (6.10), and substitute in from (6.12),
the approximation rule cited here brings us back
to (6.9).

Strictly speaking, there is one major
qualification one might make to this statement.
When making a prediction, one usually starts from
a given base year, and applies the differential
equations to that year as an initial condition.
This would correspond to adjusting kg and kg here,
to fit a given year exactly. One can expect to do
better, if one somehow averages different base
years to get an estimate of the underlying
reality, and uses that estimate to make
predictions from. Admittedly, part of the
advantage in our "extl"(EXTRAP) extrapolation
probably lies in doing just that. If there were a
consistent change in the rate of growth of these
variables, through time, and if one were using
extrapolation models to predict the same period of
time as the one they were fitted to, this would
lead to an unfair advantage for the extrapolation
models; the extrapolation models would be
centered at the middle of the process, but the
ordinary models would be centered at the initial
extreme. However, every one of the extrapolation
runs here was accompanied by a run testing the
predictive power of the hypothesis of a t-squared
term in (6.10); these runs gave no support to the
idea that factors involving a simple second
derivative could be responsible for the advantages
of extrapolation. The ability of extrapolation to
average out extreme values measured in the same,
early periods of time is not "unfair," insofar as
it reflects an advantage available to those trying
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to predict the future from an extensive data-bank
from the present and past.

The computer printout here was left in the custody
of Prof. Karl Deutsch, Harvard Dept. of
Government. The computer printouts from section
(ii) were also left in his custody, in 1971.

These two groups of output are approximately one
foot thick, put together. For every run reported
here, they include predictions and reality for
every year, past and future, for which predictions
were made.

Deutsch, Karl W., op. cit., Chapter 6.

Lieberson, Stanley, Language and Ethnic Relations
in Canada, Wiley, New York, 1970. See p.47, 48,
183-187 for relatively smooth graphs emerging from
scatter-plots.

ibid. Lieberson focuses strongly on the issues of
language '"retention,' by those brought up in one
language, as opposed to '"demographic factors." On
p.35, he states that,"!t is far more correct to
describe the Canadian scene as an equilibrium
based on counterbalancing forces." On p.50 and
p.51 he emphasizes, first, that English has been
dominant in terms of "retention'" or assimilation,
but then, that the "revenge of the cradle'" has
been central to French language maintenance. On
p.225, he defines a variable, '"communications
advantage," quite similar in spirit to the
"language pressure in communications'" discussed
here; in the subsequent verbal discussion, he
implies that this variable is central to
"retention" phenomena.

Deutsch, Karl W., "Mathematics of the Tower of
Babel", in "Nation and World", in Contemporary

Political Science: Toward Empirical Theory,
McGraw-Hil11, 1967.

Strictly speaking, one must also try to explain
the origins and convergences of such dialects,
instead of merely the decision by individuals to
jump from one dialect to another. Equation
(6.26), which can deal with the idea of dialects
getting closer or further away as a result of
communication, is conceptually quite close to the
model here. Yet one is still faced with the
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problem of explaining how divergence in dialect
can come about. |If the speech in each region were
subject to random drift, or to systematic
pressures based on interregional differences in
speech equipment, then a low level of
interregional communications, in our model, would
imply little damping of such drift. An increase in
communications would imply a greater pressure for
convergence, and a damping out of future drift.
Note that such phenomena would also apply if there
were a dramatic increase in communications between
two regions with enough internal communications to
resist assimilation as such; the growth of
"franglais" is an interesting example.

Schelling, Thomas C., The Strategy of Conflict,
Oxford U. Press, New York, 1963. (Copyright 1960.)

p.104: "But where do the patterns (of potential
compromise) come from? They are not very visibly
provided by the mathematical structure of the
game, particularly since we have purposely made
each player's value system too uncertain to the
other to make considerations of symmetry,
equality, and so forth, of any great help. (i.e.
of help in analyzing Schelling's paradigms for
games of mixed conflict and common interest.)
Presumably, they find their patterns in such
things as natural boundaries, familiar political
groupings, the characteristics of states that
might enter their value systems, gestalt
psychology, and any cliches or traditions that
they can work out for themselves in the process of
play..." p.151: "... the introduction of
uninhibited speech may not greatly alter the
character of the game, even though the particular
outcome is different..." In short, tacit norms,
before the introduction of explicit bargaining,
are crucial to the existence of possible "patterns
of convergence." On p.113-114, Schelling hammers
home the point that mathematical "solutions' to
nonzerosum games do not provide a realistic
alternative to his own theory of tacit norms,
discussed on p.99-111. In a sense, one might argue
that the idea of "solving' for a unique or optimal
static equilibrium may apply only to games similar
to those originally discussed in such terms by Von
Neumann and Morgenstern (note 39 of Chapter (V));
as in economics, there may be situations where
dynamic factors cannot be easily encompassed
within such a static description. At any rate,
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(22)

(23)

(24)

(25)

(26)
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Schelling's discussion, applied elsewhere by him
to real political analysis, strikes us as fairly
convincing.

Deutsch, Karl W., Nationalism and Social
Communications, MIT Press, Cambridge, Mass., 1966,
revised second edition, especially p.96-97. Also,
Deutsch et al, "Political Community and the North
Atlantic Area'", in lInternational Political
Communities, Anchor Books, New York, 1966, p.1l7.
In the latter reference in particular, the concept
of "community" is defined in terms of an ongoing
ability to communicate and respond in
decision-making processes of a continuous sort.

See note 17.
See note 18, particularly the second reference.
See note 16.

Deutsch, Karl W., Nationalism and Social
Communications, MIT Press, Cambridge, Mass., 1966,
revised second edition, p.26.

Feierabend, Ivo K. and Rosalind L., and Gurr, Ted
R., eds., Anger, Violence and Politics: Theories
and Research, Prentice-Hall, Englewood Cliffs,
NO‘J.’ 1972.

Kravitz, Sheldon, A Theoretical Model For the
Analysis and Comparison of ldeologies, Ph.D.
dissertation, May 1972. Available c/o Widener
Library, Harvard U., Cambridge, Mass.

Minsky, Marvin and Selfridge, Oliver G., "Learning
in Random Nets", in Information Theory, Fourth
London Symposium published by Butterworths, 88
Kingsway, London W.C.2., U.K., p.339. In
discussing this formula, Minsky and Selfridge
consider only the cases E =1 or E = 0 per
episode, but the generalization does not appear
very difficult. These authors, in turn, refer to
Bush, R.R. and Mosteller, F., Stochastic Models
for Learning, Wiley, New York, 1955, as a basic
source.

"Groupthink'" as a small-group phenomenon has been
widely discussed as a result of Janis, lrving,

%ig;ims of Groupthink, Houghton-Mifflin, New York,
973,
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(28)

(29)

(30)

(31)
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Haugen, Einar, Language Conflict and Language
Planning: The Case of Modern Norwegian, Harvard U.

Press, Cambridge, Mass., 1966. Map on p.229.

The primary source for this data, as with the data
reported below, was the Norwegian Official
Statistics series, commonly available in U.S.
libraries. The Norwegian name is '"Norges
Offisielle Statistikk!"; when author designations
are required, the '"Central Bureau of Statistics"
or "Sentrai..." is usually appropriate. School
data for Jan. 1970 may be found in the 1972
"Arbok" (Yearbook), which also appears as
Rekke=-X11, number 274, Data on the use of
languages in elementary education were used, as on
p.335 of that copy of the Arbok. The language use
data for earlier years were taken from the earlier
Arboks, back to 1939, In some years, when the
urban/rural breakdown was not available, we used
the Skolestatistik issues of the N.0.S. Every
number(issue) in the N.0.S. series includes a list
of the numbers and topics of other recent issues;
also, on the front or back cover are listed the
numbers of previous issues on the same topic.
(Thus, in the 1972 Arbok are listed the Rekke and
number of all previous Arboks.) Language use in
elementary schools is essentially a matter of
local choice; Haugen, op. cit., gives a few
details of the process of language choice. We
decided, in our computer runs, to recalibrate the
time periods of the data; thus, language use in
force in schools in January 1950 was taken to be
an index of actual language use in 1949, given the
lags involved in changing policy in the schools.

Sources: N.0.S., op. cit., Rekke XIl, No. 233;
Rekke A, No. 24u4; Rekke A, No. 292. Original
statistics were further broken down by sex, but
aggregated for this study.

N.0.S., op. cit., Rekke X!, No. 298 for the most
recent data, and previous items in the same topic
series. Note that Rekke X111, No. 232, while not
containing the appropriate breakdowns by urban and
rural, does provide definitions in English.

H.0.S., backwards from Rekke X!l, No. 198.
Aggregated according to the urban/rural
definitions of townships spelied out in the
Skolestatistikk series.
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(32) N.0.S., op. cit., backwards from Rekke XI1,
No. 220. Some aggregation required in earlier
years over sex, etc, In 1967, Rekke X1, No. 244
was used.

(33) N.0.S., op. cit. For income, Rekke A, No. 363,
used for 1968 on back. ("Municipal Total Income,"
from Table IA. In early years, some aggregation
required; however, the column names were uniform
enough that it was not too difficult to
reconstruct the same aggregations as used by the
H.0.S. authors in later years.) In Rekke XI!1,
Hos. 245 and 252, an index of consumer prices was
found, for the entire period. (i.e. An historical
table was available.) The average size of the
ratio, normalized to units appropriate for
statistics, was on the order of unity.

(34) These data include data on criminal convictions -
easily avallable In this period, starting back
from the Arbok; data on heads of households on
welfare, continued back in the Statistical Monthly
over the entire period; data on population, not
generally available in recent years with the
desired breakdown, but in the Arbok when
available.

(35) Isard, Walter, Methods of Regional Analysis: An
Introduction to Regional Science, MIT Press,
Cambridge, Mass., 1966, Chapter 11. On p.500,
reference is made to Stewart and Zipf, the two
fathers of the idea; on p.506, a concept of social
distance is mentioned, similar in spirit to "Ug";
on p.507-510, empirical results are discussed.

See also Deutsch, Karl W. and lIsard, Walter,
"Toward a Generalized Concept of Distance",

Behavioral Science, Nov. 1961.

(36) Galie, Owen R. and Taueber, Karl E., "Metropolitan
Migration and Intervening Opportunities", American
sociological Review, No. 31, Feb. 1966, table on
P.8. Note that these authors are essentially
critics of the gravity model; thus their results
are particularly interesting. For other work in
this area, see note 35.

(37) World Atlas, Moscow, 1965, p.57. A large map of
Norway, with major roads indicated, was used.
Distance was measured with a centimeter ruler, for
the most direct major route by road; however, if




Page VI=-140

this should exceed the absolute distance by L0% or
more, then the direct distance plus 40% was used.,
For distances from an urban area, either there was
one major city, or several which could be
averaged. For rural distances, it was assumed that
population density was even throughout each
region; averages were estimated on that basis. All
of the data here was punched on cards, and read
into the MIT Multics machine; the punched cards
and code sheets may be made available to future
users through the office of Prof. Deutsch, if
there Is interest in so doing.
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(V) GENERAL APPLICATIONS OF THESE 1DEAS:
PRACTICAL HAZARDS AND NEW POSSIBILITIES

(i) INTRODUCTION AMND SUMMARY

Fierce debates continue to rage between those who
would study behavior "with mathematics" and those who
would study it '"by traditional means.'" These debates,
by drawing attention to the extremes, have obscured
many of the serious hazards and many of the most
important applications of mathematical approaches in
government and in psychology. In extending the
mathematical approaches further, we have a special
responsibility to discuss the new applications and the
continuing hazards which may result.

We will begin, in section (ii), by presenting the
viewpoint of the practical decision-maker, who has not
used mathematical methods so far, for good reasons, All
of this chapter will be organized around the
difficulties which he faces; other possible users of
our ideas - the social scientist, the psychologist and
the ecologist - will be mentioned within more 1imited
contexts. In section (iii), we will suggest a common
framework for evaluating verbal and mathematical tools,

both, based upon the common goal of prediction; within
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this framework, the mathematical methods have a role to
play, at least in principle, both for what they tell us
directly and for what they tell us about common abuses
of verbal methods. For those who prefer to deal in
concrete examples, rather than abstract generalizations
about methodology, we have included a number of
relevant examples, mostly in the footnotes. Also, at
the end of this section, we will describe in detail how
this framework has motivated the development of new
mathematical procedures described in the other chapters
of this thesis.

In section (iv), we will go from principle to
practice; we will discuss specific ways in which
statistical methods may be used, in close relation with
verbal methods, and he of significant value in real
prediction efforts. This discussion will not be based
upon the well~-known philosophy of logical positivism,
but on the more recent philosophy of Bavesian
utilitarianism (see sectijon (v) of Chapter (11)), the
philosophy which underilies the actual mathematical
developments we have discussed; at any rate, the
utilitarian approach helps keep us focused on the value
of our methods to serious policy-makers. 1In this
section, we have also tried to crystallize out our own

experience with the nunerous ways in which statistical
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research can turn out to be useless and misleading for
the policy-maker, if it is done in a cavalier manner;
our suggestions are not a definitive answer to all of
these difficulties, but at least they may help.
Finally, in section (v), we point out that the
central role of human psychology in politics seriously
limits the possibilities of naive empiricism, both
verbal and mathematical, Statistical studies, like
verbal research of the purely empirical variety, may be
unable to transcend these limits. However, the
mathematical ideas discussed in Chapter (11), along
with other offshoots of the Bayesian approach, can be
applied in a different way, to help overcome these
limitations in a way which words alone cannot; to
illustrate this point, we will mention specific
possibilities for using these ideas in the future to
cope with and explain the phenomenon of intelligence,

whether in human societies or in human brains.

(ii) THE LIABILITIES OF MATHEMATICAL METHODS
IN PRACTICAL DECISION-MAKING

Let us start out by reconsidering our tacit
assumption that methematical methods do have some use,

after all, in political science and in political
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decision-making. Many people have questioned this idea
in the past few decades, and many more may have felt
strong private reservations about the idea. While we
clearly can be expected to reaffirm the value of
mathematical methods, on the whole, we also believe
that the traditional complaints against mathematical
methods do contain real information which the user of
such methods should not ignore.

In particular, let us try to express the
reservations about mathematical methods which might be
held by the active political actor, Practicing
diplomats and politicians have often found that their
margin of success depends on their ability to seize
upon unique twists in the political or psychological
environment, twists which allow the individual to
escape the seemingly uncontrollable tide of events that
one would expect a mathematical model to extrapolate.
Sometimes this involves the ability to establish
channels of serious communications between different
political groups, channels which can grow in importance
once they have been established. Sometimes this
involves the ability to seize upon an economic or

military advantage. Caesar's Gallic Wars are a classic

example of the latter sort of imagination, evading

Lanchester's Laws at every turn(l); Liddell Hart, in



his classic text on milijtary strategy(2), has
emphasized that such imaginative approaches have been
decisive in wars throughout history. In both cases, one
achieves a greater "benefit" within a given "cost
constraint'", not by being tight and precise about
budgeting one's resources, but rather by preserving the
detachment and the freedom one will need in order to
seize upon whole new options, which may open up a whole
new frontier of possibilities. Political creativity in
this form is difficult enough to encompass within any
scholastic context, let alone the context of
mathematical models; therefore, political scientists
who have a strong attachment to this process would
naturally tend to be skeptical of mathematical models.
More generally, successful political actors, like most
successful professionals, would tend to believe that
they stretch their minds to the limit, in order to
arrive at their policy decisions; they may conclude
that the sheer complexity of their own decision-making
militates against the prediction of its outcome by
mathematical systems which account for far less
information content. Furthermore, it is also likely
that a large part of this information, even when
accessible to the political scientist, may be encoded

in a verbal form which militates against its being
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accounted for by mathematical models.

(iii) PREDICTION: A COMMON GOAL FOR VERBAL
AND MATHEMATICAL SOCIAL SCIENCE

These difficulties can be dealt with on several
different levels, Let us begin on the simplest level,

The difficulties above point to the impossibility
of constructing mathematical models which will predict
exactly what will happen in politics, in detail, in the
short-term and in the medium-termn. However, these
difficulties have also been enough to make it
impossible for any human being, political actor or
otherwise, to predict exactly what will happen in all
of politics, in the short-term or medium-term., A
traditional political scientist or mathematician might
deduce at this point that "true prediction", in the
sense of exact prediction, is impossible in political
science. Therefore, in order to assure himself that he
is involved in serious work, he may restrict his
attention to propositions which meet an Aristotelian
test of "truth", such as statements about historical
documents(3) or abstract theorems which he can prove by
rigorous deduction. Very few political actors,

however, feel that they would want to turn away from



the difficult but primary question of predicting the
differences in outcome between the different actions
they could take. These predictions may always include
factors of uncertainty, but the political actors would
find it interesting enoush to reduce this uncertainty
as rmuch as possible, in any possible way. Thus, insofar
as political scientists are concerned with developing
objective insights of the maximum possible value to
their consumers, the political decision-makers at all
levels, their wultimate concern would be with the
development of effective probabilistic theories to
predict political and social systems.

There are five points worth noticing about our
emphasis on prediction here. First of all, this
emphasis does not restrict itself to the overtly
mathematical phases of political science. The
development of "predictive models'" - mathematical or
verbal, or even analogue for that matter - is a general
concept, which can be used to guide historical research
as easily as It guides statistics. Many of the "orand
theories" of political history, including especially
the theories of Spengler(4), Toynbee(5), Turner(f),
Hegel(7), and Marx, were designed to help people
"understand" history in terms of a verbal dynamic model

which could also be used to predict the future.



Traditional approaches to research in political
science, however, might tend to "develop" such theories
by adding complex strings of qualifications, and by
forcing an elaborate, perfect Aristotelian fit of the
weaker, more specialized propositions which emerge. Our
own approach would ask that political scientists
continually return to the main qQuestion, to the ability
of their theories, with the disclaimers removed, to
predict the broad first-order trends In the major, most
obvious variables of political history.

Second, our emphasis on prediction can be
justified on deeper grounds than those of satisfying
those who pay for the bulk of the political research.
Following the philosophy of utilitarianism, one might
simply regard political science itself as one
particular phase of political activity; one might even
suggest that its major justification for existence, in
the long term, is its ability to contribute to
constructive political activity. This takes us back
to the primary need of the decision-maker to predict
the results of his actions, at least on a probabilistic
basis. On the other hand, even if one were willing to
accept the ethical principle that truth should be
pursued for its own sake, as an ultimate goal equal to

or higher than the goal that of human welfare, one
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still faces the problem of defining what this "ultimate
truth" would consist of. One might suggest that
ultimate truth, if it does exist in political science,
lies not in the changeable facts of current
happenstance, but rather in the less changeable dynamic
laws which lead from one set of circumstances to
another; in physics, for example, the dynamic field
equations are considered the highest scientific truth,
while the codification of the wave-function of the
universe is not an object of serious study.

Admittedly, our knowledge of the dynamic laws, unlike
the laws themselves, is likely to be changeable for a
long time, in political science as iIn physics;

however, it would be meaningless to speak about the
advancement of knowledge as a worthwhile goal, were
there not such a possibility for change and expansion
in the state of knowledge., There are those who would
question, in varying degrees, the primacy of the most
abstract dynamical equations even in a field like
physics; however, even the ""shenomenological approach',
in that field, involves the construction of powerful,
generalized predictive statements, statements about
what to expect after setting up experiments of
different types(2).

Many times in political science, the concepts of
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"causation" and "explanation'" have been cited as forms
of truth worth pursuing(9). The statement that

"A caused B" may be translated roughly into the
statement that, "A occurred before B, and the dynamics
of the system were such that B would not have occurred
if A had not occurred when it did, ceteris paribus."
Once again, the critical question to answer is that of
the dynamic laws which govern political systems.

Beyond the goals of social utility and "ultimate
truth", the political sclentist might also pursue the
goals of cultural enrichment and entertainment. These
goals are often cited as a justification for extreme
traditionalism in political science. Whether these
goals are now being pursued effectively by all of those
who cite them is a difficult matter to judge, well
beyond the range of the present discussion. However, a
large part of the "cultural enrichment" involved would
appear to involve the learning of lessons about human
psychology, about what patterns of thought and behavior
one might predict on the part of human beings or human

groups in unusual circumstances, in other cultures,

Third of all, one should note that our emphasis on
prediction as the ultimate goal of political science

does not imply that work of a more descriptive nature
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should simply be abandoned. Using statistical methods,
for example, one must first collect a set of data,
before one can fit or test a model. After one has fit a
verbal or statistical model to a given set of
first-order data, one can then go back to the original
sources of information to specifv the strengths and
weaknesses of one's model in more detail, with greater
accuracy; even if one cannot modify one's model easily
to handle the exceptions, one can try to express the
information embodied in the exceptions in a more
compact, more abhstract form, to make 1ife easier for
those who wish to make predictions or to modify the
current models in the future.

In brief, we are suggesting that descriptive
research be viewed as a means to an end, with the end
being prediction. A direct and total assault on the
objective of prediction may indeed be a poor strategy
for achieving this end. However, our success is likely
to be even less, if we do not keep the basic objective
fixed firmly in our minds. Every once in a while, it
is important to bring together the various
propositions, mathematical and verbal, which one
believes to be useful in prediction, and see how
effective (and consistent) they really are in coping

with the overall picture. When there are major new
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defects or possibilities apparent at the general level,
it Is important to take note of them, at that level, so
that they can be used as a guide for more specialized
research in different branches of political science.

Descriptive work may not only help provide the
basis for evaluating dynamic models of politics; it may
also help those who wish to predict politics, by
telling them what the current states of the systems are
to which they would like to apply the dvnamic laws.
The longer the policy horizon, however, the more
important it is to use more general dynamic models,
instead of assuming some sort of simple extension of
present trends and conditions as gauged by descriptive
studies. Finally, while prediction may be advocated as
the primary goal of objective political science,
normative political science remains another matter.

One may note, in this connection, that the attempt

to maximize accuracy in description, by itself, leads

naturally to a number of uncoordinated, specialized
efforts, focused in depth on different primary sources

of information(10). 1In predicting complex dynamic

systems, in contrast, one finds oneself led to focus

first of all on the interactions between the primary

subsystems, at an aggregate level. Thus in order to

make "interdisciplinary research" a reality in the
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social sciences, it is essential that the ideal of
predictive power gain at least as much credence as the
ideal of descriptive finesse, in the detailed conduct

of actual studies,

Fourth of all, one should note that our emphasis
on prediction does not require a reduction in the risgor
of thought, even if it does require that we go beyond
the Aristotelian concepts of truth versus falsehood as
ascertained by traditional uses of deductive logic. The
mathematical theory of prohability, and the Bayesian
theory of inductive logic, have long provided a
rigorous basis for handling models which do predict the
future but which avoid the determinist's pretense of
absolute certainty., Aristotelian statements, which
tell us that a proposition is simply true (probability
one) or false (probability zero) are simply a subset of
the statements which can be expressed in rigorous
probabilistic fashion. In either case, the statements
that we make may well be inaccurate, if they are
founded on faulty information; the language of
probability, however, at least lets us express
precisely how much confidence we do have in a
proposition, instead of forcing us to say nothing or to

exclude totally a real but less probable contingency.
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When social trends will depend on long-lasting but
uncertain and novel phenomena, the language of
probability encourages us to escape the fallacy that
definite optimistic or pessimistic predictions are
somehow more informative than the truth. (See, for
example, footnote (6).)

To the statistician, all these concepts have long
been obvious. In verbal research, however, the
classical Aristotelian procedures have remained
dominant. Only in recent years has the "Bayesian
school" begun to educate verbal decision-makers in the
use of probability theory as a generalized language of
thought(11l). In section (v) of Chapter (11), we have
emphasized the point that the Bavesian approach to
inductive reasoning can be applied to inductive
reasoning as a whole, not merely to reasoning about
quanti tative variables. When, in verbal research, one
finds oneself dealing with the behavior of quantitative
variables, such as the degree of popular discontent,
etc., one may even go so far as to discuss the '"degree
of fit", the "degrees of freedom" and the "exogenous
variables" of one's verbal model, on the understanding
that one is expressing one's model in verbal terms only
because of the lack of hard data; even then, one may

want to draw together the elements of one's model, and



Page V~15

express them in increasingly mathematical terms, even
if the parameters cannot be easily measured, in order
to make its meaning more and more explicit, and in
order to improve its "coherence", i.e. its completeness

and its consistency.

Finally, and most importantly, our emphasis on

prediction has been the driving force behind both our

empirical research, and our conclusion that
conventional routines for time-series analysis are
inadequate. The empirical work on political science
in this thesis was motivated almost entirely by the
attempt to convert the Deutsch-Solow equations,
mentioned in Chapter (11), into a useful tool for the
prediction of national assimilation and political
mobilization. We started out years ago by testing out
the Hopkins routines(12), which try to estimate the
coefficients of the Deutsch-Solow model from only three
data points, on the assumption that the Deutsch
equations are totally "true" in the Aristotelian sense;
it came as no surprise to us that the resulting
predictions were rather poor.

Our next step was to try out time-series multiple
regression, the mainstay of "econometrics'"(13), of

"path analysis'(14), and of "causal analysis"(15) and
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so on. It was easy enough to measure assimilation and
mobilization coefficients which were significantly
different from zero, and multiple correlation
coefficients larger than ninety percent; these results
were well within the range of what are regarded as
"successful conclusions™ in most quantitative political
research today(16). However, our emphasis on
prediction led us to look a bit more closely at these
results; we wrote a new program, SERIES, to estimate
the regression models, and then to test their ability
to predict data across long intervals of time,
intervals comparable to those tested with the Hopkins
program. The errors, while less than those of the
Hopkins programs, were still unacceptably large. A
simple curve-fitting procedure, by contrast, was able
to make predictions with less than half as much error,
averaging to about 4% error over periods of time on the
order of a century; this average encompasses a number
of cases wherein the model was fitted to data in one
period of time, and used to predict data in later
periods,

Walter lIsard, in his classical studyvy of
methodology in regional science(17), has made strong
statements against the ability of regression models to

predict the future; while his arsument is phrased in
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theoretical terms, the wide coverage of his studies
would imply an empirical basis for his conclusions,

The Brookings Institute has also reported major
difficulties in the use of regression in forecasting;
they found that these difficulties could be reduced by
the use of an "adjustment" factor not too different in
spirit from our simple curve-fitting procedure(18).
Thus the empirical basis of these conclusions goes well
beyond our own examples.

In our recent phase of empirical political
research, we began with the hope that this weakness of
regression, in estimating predictive models, could be
understood within the classical and elegant framework
of maximum likelihood theory, as described in section
(v) of Chapter (11). Instead of questioning the
classical procedures of statistics, we hoped to apply
these procedures to more sophisticated models. In
Chapter (111), we have noted that "white noise" in the
process of measuring data can turn an ordinary
"autoregressive process'" into a "mixed autoregressive
moving-average process.!" According to statistical
theory, multiple regression is a good way to estimate
the former process, but a bad way to study the latter.

A simple diagram can show how bad this problem

might become, in practice. Given a single variable, z,
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which has a true correlation of ¢ with itself across
time (i.e. z(t) with z(t+1)), and a correlation of r
with the measurements, x, that are made for z, we find
that the correlation between x(t) and x(t+l) is due to
an indirect path of correlations:

z(t+1) L. x(t+1)

z(t) L — x(t)

Figure Y-1: Pathways of Correlation With Noisy Data

If we make the simplifying assumption (a big one) that
the process is not any worse, that there is no
correlation between x(t) and x(t+1l) independent of this
pathway, then classical theory tells us that the
correlation between x(t) and x(t+1) will equal r times
$ times r, i.e. Fl¢. If regression were used to predict
x(t+1) from x(t) (the observed data), the regression
coefficient would equal the simple correlation
coefficient, ;1¢, instead of the number é; yet when
predictions are made over longer intervals of time,
then @4, the coefficient of the underlying process in
the real world, is the proper basis for prediction(19).
This example would also appear to point to the idea
that simple "path coefficients'" which are not effective

in prediction are not likely to represent the true
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underlying relations, either.

If r - the correlation between the true variable
and the measurements of the variable - were about 95%,
then the observed regression coefficient (Fl¢ =
(.95)(.95)¢) would be about 10% smaller in size than
the right regression coefficient (4) for use in
long-range prediction. Furthermore, since this 10%
error would represent a general shift in the value of a
coefficient, one would expect that the use of the
regression model would lead to errors which accumulate
at the rate of ten percent per time period; it is easy
to see how this phenomenon alone could vitiate the
predictive power of regression. In the case of a
single variable, this 10% error applies to a single
large correlation coefficient; therefore, one can hope
that regression will at least preserve the sign of this
coefficient intact. In the case of many variables,
however, the 10% error would apply to a correlation
matrix; small but critical cross-terms, on the order of
*5%, might conceivably have their signs reversed, due
to the spurious effects related to other, larger terms
in the same matrix, After all, the importance (and
much of the detectability) of such "feedback terms"
lies precisely in their ability to accumulate and

determine the long-term behavior of the system; it is
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precisely the long-term behavior which we find poorly
accounted for by regression.

In order to account for such effects, within a
classical statistical framework, we have devised a new
algorithm to estimate mixed autoregressive
moving-average processes ("ARMA" processes) at a
manageable cost. We have applied this new algorithm to
the old Deutsch-Kravitz data on assimilation and
mobilization in a dozen or so nations, and we have also
applied it to new data on linguistic assimilation in
Horway. In both cases, statistical theory indicated
that the ARMA model was better than the old regression
model; it indicated only a small probability, far less
than 1% in almost every run, that the improvement was
due to coincidence. However, when we went on to apply

the test of prediction, we were quite disappointed. The

ARMA model did indeed reduce prediction errors, in
comparison with regression, by about 10% of the
original root-mean-square average of the errors, in the
case of our largest data sample; yet this is still far
less than the 50% reduction achieved earlier with
extrapolation.

The success of extrapolation would appear to
indicate that the underlying processes are still more

deterministic than either the regression or the ARMA
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models were able to discover. Apparently, the
measurement noise and transient fluctuations were too
complicated for a "white noise" model to cope with., In
retrospect, it seemns clear that one should have
expected precisely such a situation, in the case of
both this and most other data in political science. The
solution to such difficulties, in the classical
philosophy of maximum likelihood, is for us to pose
ever more complicated higher-order models of process
noise and measurement noise. (With some other
data-series, however, the ARMA model, or even the usual
regression model, might be adequate.) However, the
rmultivariate ARMA model already contains a large enough
number of degrees of freedom; to double or triple the
number of coefficients to estimate would put a heavy
burden on all but a few very large data sets, while
still compensating for only moderate complication in
the noise process.

The success of simple extrapolation points to a
more practical approach to prediction. It points to the
possibility of '"robust" estimation, of estimation
techniques which can perform well despite any
oversimplifications in one's original model(20); a
good performance, in this context, means that the

coefficients of the model are estimated in such a way
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that the model will have maximum predictive power, In
section (vii) of Chapter (11), we have suggested that
simple extrapolation is "robust" - more robust than
ARMA estimation, even apriori - because it is based on
a simple "measurement noise only model," a statistical
model built to extract the deterministic underlying
trends (if they exist) from a process afflicted by a
complex pattern of transient noise and measurement
error; we have pointed out that the general dynamic
feedback procedure of Chapter (11) can be used to
estimate more general models of this type,
economically., (It is also possible to make some
allowance for process noise in an ad hoc way(21), but
the best way to make such allowance while preserving
robustness is unclear; there might be no general
theoretical answer to this question.) We have also
discussed another new technique in Chapter(ii),
"pattern analysis', to draw out more direct
measurements of the underlving dynamic variables.

In brief: our emphasis on prediction has led us to
the conclusion that statistical methods based on the
concept of maximum likelihood alone are inadequate in

practical empirical research. It has led us to the

theoretical conclusion that predictive power itself
needs to be maximized more explicitly in the model
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estimation techniques available to behavioral

scientists. In Chapter (11), we have suggested ways to
build new systems on this principle. These systems are
scheduled to be available as part of the Time-Series
Processor package, designed for social scientists, in

1974 at Project Cambridge, M. t.T.

(iv) POSSIBILITIES FOR STATISTICS AS
AN EMPIRICAL TOOL 1IN

REAL-WORLD PREDICTION

Now let us come back and look more closely at the
questions we started from in section (ii); let us
reconsider the worries of the political actor about the
use of mathematical approaches. We have dealt with
these worries so far on a very basic level, on the
level of defending the concept of predictive theories
in the social sciences. We have emphasized the point
that the explicit statistical techniques we have
proposed are merely one tool among many in constructing
such theories. We have implied that the choice between
these techniques for constructing theories, and the
verbal and Bayesian techniques, should be decided on a

case~-by=-case and even studv-hv-study hasis, based on
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the ideal of predictive power, rather than decided by
any apriori fiat in favor of one approach or the other;
we have implied that statistical analyses should merge
into other analyses, mathematical and nonmathematical,
in such a way that political science is divided up
according to interfaces between substantive issues
rather than interfaces between methodological schools
of thought.

A1l of these comments, while controversial within
the domain of political science, would seem rather
bland and basic to many real political actors. Most
political actors would be quite willing to try any
methodology that "works", at any time, without getting
too commi tted to one methodology or another. What
worries them is a question on another level: can we
expect statistical methods to "work" very often, in
practice?

In principle, this question can only be answered
af ter the fact, in each case. However, there are a
number of reasonable guesses one might make, based on
past experience, as to the most likely areas of
fruitful statistical research in the future, in
political science.

First of all, we may expect to be surprised in the

future, by statistical methods having a larger range of
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application than one might expect apriori. Given that
our present emotional expectations are built upon
verbal techniques which have been thoroughly used and
thoroughly developed, while our statistical techniques
are only now being perfected and have barely begun to
be used to construct predictive models, we may expect
that the development of statistics will demonstrate a
much greater value than one's intuition would indicate
today.

Second, we may expect statistics to provide the

' for operational political

basic "reality testing'
theories of the quantitative type or the verbal
analytic type. A simple regression analysis may make a
poor test of a verbal "hypothesis', if interpreted
naively. However, a full statistical analvysis of a
given set of variables will give a much larger quantity
of information, information which the analyst should
not gloss over, either in his work or in his written
reports; if, in fact, it is difficult to make a
connection between one's verbal theories and the
aggregate, statistical behavior of the variables these
theories pretend to explain, then one has much to learn
in trying to explain the difficulty. Oftentimes, an

"obvious' verbal theorv will turn out, though true in

the abstract, to require major qualification in terms
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of what it tells us to expect to find in concrete data.
When government policy is concerned with the concrete
results themselves, these qualifications may turn out
to be of central importance.

The classical theory of full-employment
equilibrium, for example, depended on the idea that the
supply of savings would increase with higher interest
rates, just as the supply of any other commodity
increases when a higher price is offered(22). Empirical
studies have not refuted this idea; however, they have
shown that the predictive power of interest rates in
predicting savings is extremely small, while the effect
of income variables, cited by Kevnes, has turned out to
be very large(23). Keynes himself was able to observe
these effects by analytic methods alone, but major
governments were very slow to change their established
viewpoints despite his arguments(24); the statistical
studies, by confronting people directly with the trends
which had persisted up to the current day, may have
been a crucial form of "reality testing' on this issue.

Third, one may hope that statistics will help
illuminate the slow and stubborn trends which underly
social phenomena. It has often been suggested that the
most visible variables in politics - the turmoil, the

vearly ups and downs in economies, alliances and wars -
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are all superficial ripples riding on a deeper current.
Economists have often discussed a '"technological"
increase in production capacity per capita, an increase
which continues during recession and boom at virtually
the same rate, an increase which is not fixed but which
varies slowly according to uncertain causes over long
periods of time. Almost any discussion of the
"production function" includes reference to this
"autonomous" or "technological™ term(25). Sociologists
like Max Weber(26), philosophers like Hegel(27) or
Marx, and historians like Spengler(28), Tovnbee(29) and
even McNeil(30) and Eisenstadt(31) have all discussed
such trends. Even in our simulation studies in Chapter
(1V), we found that errors in short-term predictions
were reduced far less by sophisticated analysis than
were errors in medium-term and long-term prediction.

Political actors, in the short-term, are compelled
to immerse themselves in details too small and too
unpredictable to be dealt with effectively by
statisticians., But the effectiveness of political
actors also depends on their "historical vision", on
their ability to judge the results of their life's work
on the subsequent tide of events; long-term trends may
be more deterministic, and more susceptible to

mathematical analysis. In order to sort out these



Page VY-28

underlying trends, one must somehow adjust for the
existence of a great deal of short-term fluctuation.
This short-term fluctuation would typically have a very
complex and changeable pattern of autocorrelation; thus
a complete model of the '"measurement noise" process is
doubly infeasible, and one must face up to the need for
"robust" procedures, as described in section (iii)

above and in section (vii) of Chapter (11).

After a "robust" analysis, one may find that some
variables tend to follow deterministic laws, over time,
but that others still involve a great deal of apparent
randomness. In this case, one might expect that the
political actor would have his greatest personal effect
on history by trying to changse the latter variables -
which can be changed - and by aiming only indirectly at
the former variables. Also, by knowing where events
would be headed if he acted like the average political
actor, an informed political actor may judge the
importance of taking unusually intense actions to break
out of the existing trends. Furthermore, if there
should turn out to be a "crossroads" of possibilities
ahead ("bifurcation", in mathematical language), such
that the choice of possibilities ahead would produce

very long-lived effects, while other implications of



Page V=29

present policy would be washed out in time by random
noise, one might well choose to organize one's entire
policy around the goal of moving down the right road,
even if this means focusing one's attention on
variables which are harder to affect.

In practice, there are serious difficulties in
using statistics by themselves in dealing with this
third objective. Statistics might do well in predicting
the stress which will pull at the fabric of various
societies; it will not do as well in predicting the
ability of local political leaders to cope with the
stress. Still, to know the causes and the magnitude of
the stress would be interesting in any case. But there

is a bigger difficulty with using statistics here. The

deeper historical trends can be analvzed best if we

make use of the longest possible relevant data series;

vet much of our historical data base, as described by
Toynbee and McNeil, involves information about
civilizations which have not left us a largze supply of
statistical data series.

In some cases, a large supply of recent data may
be enough. It may even seem superior to historical
data, on grounds that it reflects exclusively modern
phenomena which one would expect to continue in the

future; for example, certain aspects of population
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dynamics may be dealt with reasonably enough from
recent data, especially insofar as the future will
depend heavily on the impact of recent phenomena such
as large-scale female literacy. On the other hand, if
there is any truth at all in the findings of Toynbee
and Spengler, then the central trends of history may
include regular rises and declines(32), regular
curvatures, which would be much harder to observe in
short data-series - even short representative
data-series - than in very long data-series. Thus the
long data-series do much more than increase the number
of observations and improve the accuracy of our
estimates of parameters; they give us the power to deal
with important gualitative effects, with whole new
terms in the model, which might otherwise be missed.

Furthermore, one might expect that the future
would represent a dynamic domain just as different from
the present, as the present is from the past; in order
to predict this domain, it may be more rational to look
for regularities which have extended from the distant
past to the present, and extrapolate them, rather than
extrapolate models specific to the dynamic domains of
the present. 1f, in some cases, history were dominated
by large, infrequent and apparently irreversible

changes, as in technology, then a longer data-base
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would be even more essential, to give us an adequate
sample to represent the varieties of such changes and
configurations in the past; only in this way can we
hope to deal with the further changes which, under this
assumption, would dominate the future. (This does not,
of course, entail building models tailored to shorter,
well delimited periods in ancient history, as
unrepresentative and restricted as recent history.)
Also, to deal with the possibhility that the human race
might be entering a new domain of experience, totally
different from any of its past history, one might
simply extend the basic context of one's analysis still
further, to include the more general history of species
on this planet and the patterns of evolution revealed
therein. The biological example of the trilobites,
which became totally extinct after overspecialization,
does not have a full-scale parallel in the human past;
this particular example has been mentioned often in the
popular press, but there may be other aspects of
biological history more general and even more relevant
to our own future(33). In general, it would appear
futile to try to predict the fine details of a complex,
natural system such as human society before we can
construct first-order models which can cope with a

general review of the aggregate behavior of this system
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across the whole of the available data-base.

All of these visions of history emphasize that
rapid periods of expansion, lasting for decades or
millenia, have existed often enough in the past, and
have been terminated often enoush by the growth of
counter trends; they emphasize that an analysis of
social dynamics, based onlv on the data available in
recent decades, may lead to a totally false picture of
the possibilities which lie ahead, This difficulty
certainly applies to verbal theorizing, just as much as
to statistics; with verbal theorizing, however, the
historical data are far more extensive for those who
are willing to examine them. While we would not agree
with the exact details of the theories of Spengler and
Toynbee, we would consider it all the more important to

describe and explain the phenomena they have discussed.

Finally, statistical methods may help on another
level - as a paradigm to guide verbal research, both in
general and in specific cases. We have emphasized
throughout this chapter the value of verbal research,
conceived as an attempt to do with verbhal data what
statistical research does with mathematical data. Yet
even in statistics, where the methods used are spelled

out explicitly in advance, we have seen that the
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popular methods of analvsis can be quite unrealistic
and deceptive. It would seem unreasonable to expect any
more, apriori, from verbal research. iIndeed, we have
been able to compare the two forms of research in
respect to three issues: the emphasis on prediction,
the willingness to deal with the longest possible
time-series, and the willingness to accept noise as
part of predictive theories; in all three cases,
especially the first and most basic, classic verbal
political science - with a handful of notable
exceptions - does not appear to have grounds to claim
superiority in its attitudes, at least not in the parts
of the literature with which we are familiar(3t).

In this situation, the methodological advances in
statistics - which are well-defined, and which can be
consolidated - can be of major value in educating the
verbally-oriented political scientist. The concept of
stochastic predictive theories may seem reasonable in
the abstract to the verbal political scientist;
however, when he tries to translate this idea into a
strategy for his own research, it would not be
surprising if the difficulty of doing so brought him to
withdraw back to Aristotelian procedures. Indeed, the
classic attempt to track down the long-term "causes" of

historical events is, as we have mentioned above, very
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closely linked to the search for dynamic models.
However, the concept of ''cause'" is a weak enough
paradigm that historians have often found themselves
forced to admit "multicausality'"(35), and then to
withdraw into more descriptive, more "objective"
questions. Furthermore, historians have often admitted
themselves to be intrigued by the Y“great 'what if'
questions of history", such as, "What would have
happened if the Spanish Armada had won in 1588?"; vyet
such questions = which clearly call for the use of some
kind of predictive model - have been dismissed as
speculative(36).

In short, there would appear to be a need for a
more durable paradigm in analytic verbal research. |If
verbal social scientists can become more and more
familiar, on an intuitive level, with the concrete
methods of statistics, in coming to grips with concrete
data, then they may be able to develop a clearer and
clearer picture of what it means to search for robust
predictive models, mathematical or verbal. Also, they
may be expected to learn to appreciate the value of
treating quantitative variables as such, even in verbal
discussion, rather than reducing them to such
possibilities as "high" and "low"(37).

The value of statistical methods as a paradigm for
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verbal research may be especially great in those cases
where statistics can deal explicitly with some, but not
all, of the historical data of interest. One can
imagine two ways in which this value would be felt, as
statistics are brought to bear on those data which are
available,

First of all, those people doing the statistical
research would have to choose a set of variables to
use, in developing predictive models. When predicting
a system like a missile, made up of five major
subsystems or so, one's primary concern in making
medium-term predictions is with the "overall system,"
with the system made up of the interactions between the
five major subsystems. Similarly, when asking for
long-term prediction of a statistical system, made up
of five clusters of heavily intercorrelated systems of
variables, one would normally start out by aggregating
each of the clusters, by use of factor analysis,
pattern analysis or other procedures, and then studying
the relations between the aggregate variables. To try
to predict where a missile will go, by predicting what
each of the subsystems would do in total isolation from
each other, is to ignore the most important functional
relations., Statistical analysis, by drawing us away in

concrete cases from a fixation on the internal dynamics
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of specialized subsystems, may help bring us back to
studying the broad structure of interfaces and multiple
subsystems which is crucial to even a first-order
prediction of human societies. Then, when researchers
go back to look inside the subsystems, we may hope that
they will focus more attention on those questions about
the interfaces which appeared important at the global
level, The "unity of science'" may be a debatable
proposition when applied to predictive models of, say,
biological systems and astronomical systems. However,
when one is trving to predict a single, highly
integrated system, the need for interdisciplinary unity
becomes overwhelming, When small feedback terms from
one subsystem to another can have overwhelming effects
in determining system behavior, it is essential to try
to measure the aggregate behavior directly.

Iin the next phase, after the statistics have
pointed to concrete interdisciplinary effects, human
verbal knowledge can go on to explain and to qualify
these conclusions. One might, on verbal grounds,
regard the conclusions as misleading, as
oversimplified, or as one-sided in their emphasis; in
any case, however, even to discuss these conclusions
intelligently, one must try to discuss, on the basis of

verbal knowledge, why one would expect certain
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correlations and certain dynamic patterns to work out

as they do. One would have to discuss the "true"
dynamic relations between different subsystems, in
order to express what one feels are wrons with the
statistics. One would be tempted to engage in
"hypothetical" or M"analytic" modelling - to suggest
what would have happened to the statistics if one had
included, as hard data, certain variables for which
hard mathematical data do not happen to exist. One
would focus one's attention on the variables of central
interest, rather than lose oneself in a morass of
unrelated higher-order vicissitudes. In brief, one
might acquire the momentum necessary to launch into a
full-scale verbal dynamic analysis, without crashing
back under the weight of pure classical traditions.
Before we close this discussion of the value of
statistics to political analysis, it may be worth
noting that important applications mav also exist in
politics proper. Early in Chapter (11), we mentioned
the possibility of a growth in ecological and
sociological models, based on the vast accumulation of
data by earth satellites. Many of the difficulties
cited above - particularly the dominance of verbal data
over quantitative data - would not apply in this case;

also, our emphasis on feedback effects and
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interdisciplinary research would apply more than ever.
Given the importance of world balances of agricultural
production and population, given the dangers of
ecological catastrophe through high stress and
imbalance in such systems, and given the possibilities
here for treaties to set up a coordinated global system
to monitor and help control these systems from space,
the practical political scientist would have good
reason to think about these applications, This is
doubly true, insofar as the development of these

applications may be far from automatic.

(v) BEYOND NAIYVE EMPIRICISM: ADAPTING
OUR IDEAS TO FILL THE GAP

LEFT BY STATISTICS

Now let us return once more to our starting point,
to the worries of the political actor about using
mathematics. (See section (ii).) We have dealt with
these worries on two levels: (i) the level of
defending the notion of prediction; (ii) the level of
describing the practical applications of statistical
modelling to political prediction. We have emphasized

the empirical approach, in both verbal and statistical
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research.

On another level, however, the political actor
might question the idea that empirical approaches are
enough, when the subjects of one's investigation are
intelligent human beings. In particular, the political
actor would have to reconcile the use of objective
methods to predict other actors, while preserving the
sense of free will in making his own decisions. On a
primitive level, this paradox poses no difficulties at
all to the political actor; it is easy to conjure up
the image of a fast-dealing political hack, working for
a city machine, gleefully pushing people around as if
they were bhuttons on a pin-ball machine. At a more
advanced level, politicians find that they can predict
people better and influence their actions more
constructively by exploiting empathy, by using their
own reaction patterns as a kind of analogzue model to
predict the reactions of others. Thus there are the
old, persistent adages:"If you want to predict what a

man will do, try to put yourself in his shoes,"

and,
"If you were a ... what would you do?" This procedure
is particularly effective when the political actors
come from the same background as the people they are

predicting, when their background is cosmopolitan, or

when their reaction patterns are defined at a general
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enough level to make it easier to imagine how another
person would really respond to a situation very
different from that of the political actor himself.
(Empathy may also be used, of course, as a tool in
thinking of approaches one might borrow from others in
coping with one's own problems.) When a political actor
oscillates between thinking about others
"subjectively", in terms of empnathy, and thinking about
them "objectively'", in terms of predictive empiricisn,
a conflict emerges, long before the use of statistics
as such arises. Rationality, and the acknowledgement
of others' capacity for rationality, would appear to
allow no escape from this conflict; as long as we have
two distinct sources of information from which to
predict the behavior of people, we must live as best we

can with the conflicting predictions, while trving to

reconcile them by concrete improvements in the concepts
we use on both sides.

Predictive statistical models, like empirical
verbal models, cannot directly express the insights
derived from "empathy'"; in particular, they cannot
express the insights derived from acknowledging the
intelligence of other human beings(38). This limitation
may be of enorrous importance to the practical

political actor. On the other hand, the related



Page V=41

mathematical concept of maximizing a cardinal utility
function expresses the idea of human intelligence, more
vividly and more precisely than the usual verbal
formulations. The arguments of Von Neumann(39) and of
Raiffa(u4n) in favor of this concept require little more
than logical consistency on the whole, in the ultimate
values that the individual pursues; while the serious
political actor would normally admit that he sometimes
acts stupid, and sometimes acts at cross-purposes
against himself, especially when limitations on time
and on knowledge constrain his detailed
decision-making, he would rarely consider such mistakes

as a matter of fixed or deliberate policy. Often, when

.

the political analyst would accuse him of indulging in
irrationality, he would have a counterargument of his
own, based on the knowledge and concepts available to
him at the time of his decision.

If we agree with Raiffa, then, that the
maximization of cardinal utility is "valid" as a
foundation for most political decision-making, we find
ourselves led to important conclusions about political
analysis too. First of all, we find ourselves
re-emphasizing the point that verbal research may bhe
regarded as an attempt to perform valid statistical

inference, accounting for data which is less structured
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and less manageable than the usual statistical
time-series. Within Raiffa's framework, the basic
questions one asks are quantitative in nature; e.g. -
"If we carry out action A, how rnuch will it cost, how
riuch do we gain, and what are the probabilities that we
will succeed?" More generally, Raiffa would have us
ask,"1f we carry out action A, starting from situation
B, what is the distribution of probabilities attached
to the different possible levels of cost and to
different possible outcomes? How much do we expect to
galn from each of the possible outcomes, if our
subsequent strategy is optimal?"

In each case, we do the best we can to estimate
these guantities on the basis of the available verbal
information; thus the research carried out on that
information, is carried out for the purpose of
extracting the most accurate possible statistical
information, We also account for the intelligence of
other actors. We also account for more direct
quanti tative evidence, whenever we can find it. From
most sources of information, we expect to get
probabilistic indications of various kinds, never
certainties. Through practice, we may hope to learn
more and more the art of formulating accurately the

interrelated patterns of statistical implications of
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our verbal knowledge, and to reduce the losses in
transiation which always intervene in going from raw
observation to decision.

Second - and more important - the concept of
utility maximization offers us an idealized model of
intelligent decision-making, for use in the prediction
of other political actors. At first glance, this
concept may sound rather culture-bound. However, the
concept of utility function is very generalized in the
range of concrete behavior it can include. One can
imagine all sorts of different utility functions. One
can imagine many different levels of knowledge and
aptitude brought to bear in maximizing utility
functions. One can even imagine different levels of
basic cognitive structure, as suggested by Piaget(4l)
and by ego psychiatrists(42), levels which one may hope
either to remember or to advance to. One can imagine
states of short-term psychological disequilibrium,
where a political actor does not yet take the actions
best suited to maximizing his utility function,
because, on some level, he has not yet become aware of
the possibilities. (The detection of such disequilibria
is particularly Important to political actors whose job
is to persuade others to change their course of

action.) Thus, starting from the concept of utility
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maximization, one can approach empirical reality bit by
bit, by using both empathy and empirical data to add
qualifications to one's view of other actors as ideal
decision-makers. Even as one adds qualifications,
however, one can continue to insist that all
interpersonal differences in personality be analyzed in
terms of the current state parameters of a system which
obeys the same general dynamic laws as one's own mind,
and which is capable of changing its state parameters
as a result of the general learning capability shared
by all humans(43).

From a theoretical point of view, the choice of
starting point is not a matter of mere bookkeepping; it
defines one's implicit "prior probability"
distribution, as described in section (v) of Chapter
(11). From a practical point of view, this procedure
can help us avoid rigid stereotypes of other political
actors; it can help us remember that they, too, have a
capacity for change, and that the likely directions of
change are not entirely random. In any case, this
procedure allows us to make use of both major sources
of information, information derived from empathy and
information derived from more objective data. This
procedure also suggests that the procedures mentioned

in section (x) of Chapter (11) for utility maximization
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might be used, not just as a technique for analyzing
decision-making systems, but as the basis for
substantive models of such systems.

The use of utility maximization as a model of
decision-making has already led to a number of
practical applications, notably in game theorv and in
microeconomnics. The concept of ideal utility
maximization predicts the behavior of an actor
conditional upon the information that he has available
to him; thus it may lead to an implicit model, a model
defined in terms of variables which are not directly
observable to other actors. In terms of behaviorist
attitudes, this is a major liability, insofar as it
makes it much more difficult to predict behavior
concretely; on the other hand, such implicit models may
allow us to infer something about the hidden variables
from the overt behavior.

In the case of microeconomics, one does not
attempt to predict the actual levels of steel
production, etc., at least not in the early stages of
research; instead, one defends the proposition that the
levels of steel production will be equal to whatever
level is necessary in order to maximize some kind of
utility function, if the decision is made by an economy

which enjoys perfect competition{il), (Strictly
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speaking, however, economists now tend to avoid the
concept of 'social utility function'", on grounds that
they can deduce similar conclusions from weaker
versions of the same criterion.) One might well have
attacked this theory, in its early stages, as an
unscientific - though mathematical - exercise in
propaganda. However, as the theory was developed, it
turned out to be a powerful framework for evaluating
the jinefficiencies produced by situations of lImperfect
competition in the real world(45); it has been used to
analvze the effects of taxes and labor laws(LG) on
econonic efficiency; it has led to the development of
Lieberman's principles of economic organization(47),
now a mainstay of the Soviet economy(48).

Microeconomics, initially an isolated and essentially
unempirical theory, has turned into a powerful
mathematical framework for analysis, a framework
allowing the useful bringing together of vast
quantities of empirical data, a framework important to
both the prediction and the comprehension of economic
phenomena.

Yet all of this success was based on a static
concept of utility maximization, a concept of optimal

equilibrium, related to the classic concepts of

Lagrange(49). 5ince then, Norbert Wiener(50) has
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discussed the more modern, more powerful dynamic
theories of maximization, which he would consider a
substudy of '"'ecvbernetics.'" He has suggested that this
body of theory be applied to the human brain(51). Karl
Deut$ch(52) has gone on to suggest that cvybernetics may
also be applied to political science. Considering the
power that a primitive, static concept of maximization
has had, over decades, in economics, these suggestions
would appear to make a great deal of sense.
-Unfortunately, these ideas are caught between the
"mighty opposites'" of modern methodology - the
behaviorists, who would demand quantitative empirical
proof that the initial model predicts all the variables
in detail, and the traditionalists, who would not have
patience with the mathematics. Also, in the last few

yvears, the relevant phase of ''cybernetics' has been

" We have discussed the value

renamed '"control theorv,
of "control theory" (i.e., of optimization techniques)
in Chapter (lIl) as a tool in analvzing social systems;
however, control theory may also be used itself as a
normative model, of the processes which allow human
societies - or even the human brain itself - to
function. (See note (53) for more concrete

possibilities.) As with microeconomics, one will expect

to find that the real systems involve imperfections and
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approximations to the optimum,{(54), However, one may
also find it interesting to be able to see where these
imperfections are, and to appreciate the capacities
that human beings and political societies ~ like
economies - do have, to cope with data on a scale far
beyond the capacity of present-day computers. Insofar
as one agrees with the traditionalist that the human
being is still the most relevant unit of analysis in
politics, one can trvy, in the future, to expand the
interface between cybernetics in psvchology and
cybernetics in political science.

In summary, we have concluded that the
mathematical methods outlined in Chapter (11) can
indeed be applied to political science, but that they
should always be considered as only one branch of a
more complex, integrated system of analysis, oriented
towards the goal of prediction; the Rayesian
philosophy of utility maximization and conditional
probabilities could play a central role in organizing
this system of analysis, but the behaviorist philosophy
of total empiricism does not have the power to account
for major parts of this system, parts which appear

essential in the last part of this chapter.
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FOOTNOTES TO CHAPTER (V)

(1) One might take up considerable space discussing
this particular point. Traditional Lanchester's
Laws for ancient warfare indicate an equal number
of deaths on both sides, regardless of
concentration; thus, they tend to imply no
possibility of strategy in such warfare. On the
other hand, the '"Laws" usually have the disclaimer
"ceteris paribus" attached, implying equal levels
of material and social "technology." If "social
technology" includes superior strategic ability on
the part of a commander, like Caesar, then the
laws become a poor guide for the would-be superior
strategist. We have limited our statement here to
the claim that Caesar won his victories by evading
Lanchester's Laws, by avoiding the necessity for
attrition or perhaps by exploiting the loopholes
in the laws, rather than invalidating them; this
much, at least, seems fairly clear to us from
Caesar's account itself.

Liddell=Hart, in his classic military
textbook, Strategy (Praeger, NY, Second Edition,
1967), cites (p.338) Caesar's llerda campaign,
Cromwell's Preston campaign, and a few others, as
the classic bloodless victories; he goes on to
write, on p.339:"While such bloodless victories
have been exceptions, their rarity enhances rather
than detracts from their value - as an indicator
of latent possibilities, in strategy, and grand
strategy. Despite many centuries' experience of
war, we have hardly begun to explore the field of
psychological warfare. From a deep study of war,
Clausewitz was led to the conclusion that - 'All
military action is permeated by intelligent forces
and their effects.'"

(2) Liddell-Hart generally prefers to talk about the
"indirect approach" and the '"unexpected" more than
the use of imagination, but clearly the former
require the latter. Hart writes (ibid) on p.342:"A
more profound appreciation of how the
psychological permeates and dominates the physical
sphere has an indirect value. For it warns us of
the fallacy and shallowness of attempting to
analvze and theorize about stratesy In terms of
mathematics. To treat it quantitatively, as if
the issue turned only on a superior concentration
of forces at a selected place, is as faulty as to
treat it geometrically..." Also, on p.162, in the
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section "Conclusions fron Twenty-Five Centuries",
Liddel1-Hart discusses the characteristics of the
more usual, bloody victories:", .. scanning, in
turn, the decisive battles of history, we find
that in almost all the victor had his opponent at
a psychological disadvantage before the clash took
place... most of the examples fall into one of two
categories,,, described in the words ‘'lure'! and
'trap'." See also note 1. The full weight of
these objections will not be dealt with until
section (v) of our text.

(3) In writing this, and remembering some of the
interesting generalizations we had heard from pure
verbal political science, it was difficult to
overcome the selective memory and face up to the
overall methodological views still prominent in
the field. But a quick review soon set our memory
straight., For example: "It should bhe noted that
the emphasis here is on deduction, not on
induction. In the words of another participant in
the seminar, Professor S.E. Finer, we are making
an attempt at 'describing the political
possibilities, ' Considerabhle emphasis should be
put on the word 'describing': we remain in the
humble sphere of description and do not attempt to
rise to the more lofty one of speculation." (p.L40
of "General Methodological Problems", by Gunnar
Heckscher, in Comparative Politics, Eckstein,
Harry and Apter, David E., eds., Free Press of
Glencoe, 1963.) In historical research, the
problem is more serious, as: "y principles and
methods of research and writing were largely
worked out unconsciously, through listening to
excellent teachers and following the best
models... The historian has both the right and the
duty to make moral judgenents. He should not
attempt to prophesv, but he may offer cautions and
issue warnings." (p.tli=45, Vistas of Historyv,
5amuel Fliot Morison, Knopf, NY, 1964.) One may
ask what the warnings are supposed to be based on,
if not on probabilitles of undesirable events
condi tional upon certain policy decisions; also
one may question whether methodological decisions
ought to be based on unconscious factors. See also
notes 10 and 36,

(L) Spengler, Oswald, The Decline of the West, Knopf,
NY, 1926, translated from the 1918 original by
Charles Atkinson, p,106-107: "The aim once
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attained - the idea, the entire content of inner
possibilities, fulfilled and made externally
actual - the Culture suddenly hardens, it
mortifies, its blood congeals... This - the
inward and outward fulfillment, the finality, that
awaits every living Culture - is the purport of
all the historic "declines", amongst them that
decline of the Classical which we know so well and
fully, and another decline, entirely comparable to
it in course and direction, which will occupy the
first centuries of the coming millenium but is
heralded already and sensible in and around us
today - the decline of the West," p.109-110:
"Every Culture, every adolescence and maturing and
decay of a Culture, every one of jts intrinsically
necessary stages and periods, has a definite
duration, always the same, always recurring with
the emphasis of a symbol."

(5) Toynbee, Arnold J., A_Studvy of History, abridgement

of Volumes 1-VI, Oxford U. Press, NY, First
American Edition, Fourth Printing, 1947,
P.24L:"The problem of the breakdowns of
civilizations is more obvious than the problem of
their growths. Indeed it is almost as obvious as
the problem of their geneses, The geneses of
civilizations call for explanation in view of the
mere fact that this species has come into
existence and that we are abhle to enumerate
twenty-six representatives of it - including in
that number the five arrested civilizations and
ignoring the abortive civilizations. We may £0 on
to observe that, of these twenty~six, no less than
sixteen are now dead and buried." P.245:"If we
accept this phenomenon as a universal token of
decline, we shall conclude that all the six
nonllestern civilizations alive today had broken
down internally before they were broken in upon by
the impact of Western civilization from outside...
For our present purposes it is enough to observe
that of the living civilizations every one has
already broken down and is in process of
disintegration except our own." P.253=254:"The
metaphor of the wheel in itself offers an
illustration of recurrence being concurrent with
progress,.,. Thus the detection of periodic
repetitive movements does not imply that the
process itself is of the same cyclic order as they
are. 0On the contrary, if any inference can
historically be drawn fron the periodicity of
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these minor movements (such as the rise and
decline of Graeco-Roman civilization), we may
rather infer that the major movement which they
bear in mind is not recurrent but progressive."
(Comments in parentheses inserted by us.) Also,
in various places, Toynbee emphasizes both
scholastic rigidity and corruption as symptoms of
decaying civilizations; he hints at a different,
less charitable explanation of the common
methodological difficulties we have mentioned in
the text. However, even if Tovnbee's explanation
has some truth in it, a reduction in the cost of
adhering to good methodology should still
facilitate rmore worthwhile research.

(6) Turner's theory is well-known as an attempt to
articulate the factors which caused American
progress in the last few centuries; however, it is
not only interesting in its own right, but is an
example how such ideas can be useful sometimes to
those trying to decipher more general laws of
history, which, in_turn, may be useful to present
policy-makers. Walter Prescott Webb, in "The
Frontier and the L0O0D-Year Boom", p.136, writes in
comment on Turner's ideas:"Assuming that the
frontier closed about 1899, it may be said that
the boom (in all of Western civilization) lasted
approximately four hundred vears. It lasted so
long that it came to be considered the normal
state, a fallacious assumption for any boon. It
is conceivable that this boom has given the
peculiar character to modern history, to what we
call Western civilization." (Article by Webb
located in Tavlor, George R., ed., The Turner

Thesis: Concerning the Role of the Frontier in
American History, Heath Co., Lexington, Mass.,
Third Edition, 1972. Webb goes on to suggest that
the search for '"new frontiers" is essentially an
irrational, desperate attempt to preserve a dying
enterprise; however, his assumption that new foci
of economic development cannot be found does not
allow for some of the possibilities of
technological progress over the next few decades.
Over centuries, the limits of the earth itself may
be expected to prevent unlimited growth; on the
other hand, when one speaks in terms of centuries,
one cannot entirely rule out the possibility of
developing economic activities hevond the planet
earth itself. Certain aspects of economic and
technological growth depend on large numbers of
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independent random disturbances, which, on the
whole, may accumulate and be subject to accurate
prediction by statistical procedures or the verbal
equivalent; however, the historic development of
nuclear power, for example, or the future
possibilities of elementary particle physics and
nonequilibrium (nonlocal) thermodvnamics (see note
51), involve a more sweeping form of prior
ignorance, which translates into probabilities far
from one or zero and whose values may change
according to government or even individual
decisions. At any rate, it is possible that the
ideas mentioned by Webbh may have application to
other parts of the historical data base, beyond
the West.,

(7) Hegel, “"The Philosophy of History", excerpted in
The Philosophy of Hegel, Carl Friedrich, ed.,
fodern Library, NY, 1954, p.21-22: "The Principle
of development contains further the notion that an
inner destiny or determination, some kind of
presupposition, is at the base of it and is
brought into existence. This final determination
is essential. The spirit which has world history
as its stage, its property and its field of
actualization is not such as would move carelessly
about in a game of external accidents, but is
instead the absolute determining factor."
p.23:"Wor1d history presents therefore the stages
in the development of the principle whose memory
is the consciousness of freedom..." Stages then
listed.

(8) Schwinger, Julian, Particles, Sources and Fields,
Addison-Wesley, Reading, Mass., 1970, Preface,
especially paragraph two of preface, The most
phenomenological approach in basic physics, the
"S-matrix" approach, restricts its attention to
describing the S-matrix. This matrix is defined as
the matrix which predicts all scattering results,
for all possibhle scattering experiments in
high-energy physics;these, in turn, constitute the
vast majority of high-enersy data.

(9) In quantitative political science, the obvious
reference here is to Blalock, Hubert M, Jr.,
Causal Inference in Nonexperimental Research, U.
of North Carolina Press, Chapel Hill, 1964,
Hayward Alker also recommends: Simon, Herbert,
Models of Man, Wiley, NY, 1957, Part i, and Dah1,




(10)

(11)
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R.A., "Cause and Effect in the Study of Politics
and Discussion", in Cause and Effect, D. Lerner
ed., Free Press, Hew York, 1965,

H.R. Trevor=-Roper, the noted traditional historian
(and antagonist of Toynbee), writes, on p.vi., of
Historical Essavys, Harper and Row, NY, 1966: "It
is perhaps anachronistic to write of a historian's
philosophy. Today most professional historians
'specialize'. They choose a period, sometimes a
very brief period, and within that period they
strive, in.desperate competition with
ever-expanding evidence, to know all the facts.
Thus armed, thev can comfortably shoot down any
amateurs who blunder or rivals who stray into
their heavily fortified field; and, of course,
knowing the strength of modern defensive weapons,
they themselves keep prudently within their own
frontier., Theirs is a static world, a Maginot
Line, and large reserves which they seldom use;
hut they have no philosophy. For a historical
philosophy is incompatible with such narrow
frontiers." Note 36 and note 3 are also
interesting in this connection; also, Pages V=34
and V=35 of our text consider interdisciplinary
effects in somewhat more detail,.

Raiffa, Howard, DRecision Analvysis: Introductory

Lectures on Making Choices Under Uncertaintv,
Addison-Wesley, Reading, Mass., 1968. This book,

at least, is clearly intended to communicate to a
broader community. The philosophical foundation of
this view of probability is described in Kyburg,
Henry E. Jr., and Smokler, H.E., eds., Studies in
Subjective Probability Wiley, NY, 1964. Anatol
Rapoport has criticized the abuse of probabilistic
concepts by decision-makers who do not fully
understand them; see his Strategyv and Consclence,
Harper and Row, New York, 1964, especially Chapter
10. HNevertheless, a false estimate of uncertainty
may be less dangerous than a forced choice of
absolute certainties; Raiffa, in a memo
co-authored with Marc Alpert, has discussed in
detail the problem of educating and "calibrating"
decision-makers (i.e. compensating for their
overconfidence), to estimate probabilities more
realistically. (See "A Progress Report on the
Training of Probability Assessors,'" available in
1971 as an unpublished manuscrint from the office
of Prof. Raiffa in the Littauer Building, Harvard
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U.) Still, Rapoport's comments on the hazards of
mathematical approaches are well worth noting, for
those who would want to use such approaches.

The programs EYAL, DIFF and DELTA of Raymond
Hopkins were made available to us by Prof.
Deutsch, Dept. of fovernment, Harvard. They have
been described in Hopkins, Ravmond, "Projections
of Population Change by Mobilization and
Assimilation," Behavioral Science, 1972, p.25hL.

Johnston, J., Econometric Methods, McGraw-Hill,
NY, 1972, Second Edition, p.ix: "The purpose of

this book is to provide a fairly self-contained
development and exploration of econometric
methods... It is divided into two parts. Part 1
contains a full exposition of the normal
regression model. This serves as an essential
basis for the theory of econometrics in Part 2."

it was surprising to find the phrase 'path
analysis'" so rare in books up to 1973, In 1971, we
discussed the subject at length with Prof. Alker,
at MIT, one of the main exponents of this
approach, with Prof. Raymond Tanter then of the
Center for Research in Conflict Resolution at the
University of Michigan, and with students taking
"nath analysis'" as a subject in the
inter-University Consortium for Political
Research. In all cases, it was clear that 'path
analysis'" was intended as a kind of refined
"causal analysis'", using regression coefficients
(or time-series regression coefficients, in the
sophisticated versions?) as indices of the size
and direction of influence. Simon, Blalock and
Roudon have also been associated with "path
analysis," in discussions at various universities,

See Blalock, note 9, Simple corretation was
usually used in "causal analysis' based on
Blalock; this is the univariate special case of
regression analysis.

As an arbitrary example, picked from a good
anthology of papers in this field, consider
Singer, J. David, ed., Quantitative International
Politics, lInsights and Evidence, Free Press, NY,
1968, tables of results on p.278-281, p.1l12,
p.152-153, p.199, p.205, p.65, p.232, Statistical
significance scores ("p'") here often run to ".05",
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or even to as poor as '",10%,

Isard, Walter, Methods of Regional Analysis: An

introduction to Regional Science, MIT Press,
Cambridge, Mass., 1963, Third Printing, p.22.

Duesenberry, J.S., Fromm, G., Klein, L.R., and
Kuh, E.H., eds., The Brookings Model: Some Further
Results, Rand-McNally, Chicago, 1969, p.296-297,
The full regression model, justified by solid
significance indications, did not perform as well
as a ''condensed'" - dramatically reduced ~ model,
at first. Then "adjustments" were applied, which
dramatically improved the fit; these adjustments
seemed to entail multiplving each coefficient by a
constant, suitable to adjust the predictions of
each variable to the right level in the first-half
test data. On p.298 they caution, even still,:

"If the model does indeed suffer from omission of
important but slowly-changing variables, then it
is probably not very useful for long-run analysis
or projection.'" Estimating or adjusting
coefficients to maximize predictive power
directly, over the trial data, is the essence of
our proposal in sections (vii) and (xi) of Chapter
(11) of this thesis.

From Chapter (1i1), "#" is simply the matrix '"8"
in the univariate case; given past error levels,
a(t-k), it is the best basis even for predicting
x(t+1). However, looking at x(t+n) from x(t)
only, we get a long path of correlations
multiplying out to N .. thus to get the
optimal prediction of x(t+n), one multiplies one's
prediction of x{(t+n-1) by 4.

See note 19 of Chapter (l1) of this thesis.

See section (xi) of Chapter (i1) of this thesis,
for a way to introduce a kind of "interest rate'
or "discount factor", to predictions of more
distant times in the future. Such procedures may
be unavoidable when a small amount of process
noise does exist, and does accumulate through
time.

McCracken, Harlan L., Kevnesian Economics In the
Stream of Economic Thought, Louisiana State
University Press, 1961, p.51: "Perhaps one of the
finest contributions Kevnes made to economic
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theory and economic policy has been on the subject
of investment. According to previous classical
analysis, savings, investment, and the rate of
interest all fitted into the standard pattern of
demand, supply and price. A high rate of interest
increased savings and decreased investment, while
a low rate of interest decreased savings and
increased investment, so it was a function of
price - the rate of interest - to gravitate to the
equilibrium point where saving equalled
investment. There would be no such thing as
over-saving or underinvestment (i.e. depression),
as they were continuously being brought into
balance by an automatic regulator.

For Keynes classical interest theory was in
error at two basic points. First, while a priori
reasoning leads to the natural conclusion that a
high rate of interest stimulates saving and a low
rate reduces saving, a posteriori evidence..."
Comments in parentheses our own.

Gardner Ackley describes equivalent ideas in
lacroeconomic Theory, McMillan, NY, 1961, (Twelfth
Printing 1967) p.154-155: '"Wicksell's analysis
(the classical analysis)... gave us, as has been
stressed, a rudimentary theorv of the aggregate
demand for goods. This demand consists of two main
divisions: consumer demand and investment demand.
Each of these demands was conceived to be
interest-elastic: the lower the interest-rate, the
greater the investment demand; and the greater the
consumer demand, too (the latter idea is, of
course, merely a restatement of the idea that
saving depends negatively on the interest rate)...
If either type of demand declined, the resulting
fall in the rate of interest would stimulate them
both, and shift resources to the one which had not
declined. If, however, for any reason
(particularly expansion or contraction of the
money supply by the banks) the rate of interest
were prevented from performing this regulatory
function, aggregate demand... would be altered...
But if wages and prices should not decline
(enough)... Workers would become unemployed, and
real as well as money income would be cut."

The history of these studies is rather complex.
The major initial study, by Simon Kuznets,
National Income: A Survey of Findings, NRER, NY,
1946, uses technical language difficult to
summarize here, Elizabeth W, Gilbey, the Economics
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of Consumption, Random House, HY, 1968, p.25:"In
attempting to test this hypothesis, contradictory
results arose from the use of time-series and
cross-sectional data. Simon Kuznet's study of
data going all the way back to 1870 showed that
the percentage of aggregate income saved had in
fact remained constant in the United States."
(The contradiction involved the distribution of
saving across households.) A more recent survey is
Patinkin, Money, lInterest and Prices, Harper and
Row, NY, Second Edition, 1965, p.651-664,
Patinkin discusses largely the '"wealth effect'",
hased on the "Pigou effect'", a more recent attempt
to resurrect classical ideas; on p.656 and 657
Patinkin cites numerous studies which measure
wealth as real assets times interest rates. On p.
663 he describes his own results for "beta' and
"alpha', the former which he equates with
"YL"(income), and the latter, at the top of p.
659, defined as beta times interest rate. Thus
the latter results explicitly measure the
hypothesis that interest rates affect the
percentage of income saved, while the former do
measure something closely related: also, the
studies of Goldsmith cited by Patinkin reaffirmed
the idea of a "constant saving-income ratio."
Patinkin describes his own studies, and some of
the previous studies, as showing large and
significant effects by variables derived from
interest rates; however, the actual regression
coefficients of alpha ran to .04-.08, at the most,
much smaller than the coefficients of beta, which
was already a larger number to begin with,

Many would identify the "liberal" Roosevelt with
the "liberal" Keynes., However, US GNP data
indicate rather strongly that the main recovery
from the NDepression coincided with major military
spending Induced, not by economic theory (though
Keynes' theory might have recommended it, given no
alternative spending options on the same scale),
but by World War 11. Keynesian theory, in many
respects, was not fully accepted in the US until
John Kennedy became president., Schlesinger, Arthur
F., A Thousand Days, Houghton-Mifflin, Roston,
1965, p. 1005: "The (taxcut) bill made slow
progress through Congress. Public reaction at
first was muted. Kennedy used to inquire of the
professors of the Council what had happened to the
several million college students who had
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presumably been taught the new
economics...Still... on September 25, 1963, the
worst was over... The Yale speech had not been in
vain; and the American government, a generation
after General Theory, had accepted the Keynesian
revolution.” Regarding Kevnes and Roosevelt,
Schlesinger has written, in The Age of Roosevelt,
Houghton-Mifflin, Boston, 1966, Vol.,1l!, p. 236:
"The First New Deal, in the main, distrusted
spending. |lts conservatives, like Johnson and
Moley, were orthodox in their fiscal views and
wanted a balanced budget; and its liberals, like
Tugwell and La Follette, disliked spending as a
drug which gave the patient a false sense of
well-being before surgery could be completed,"
P.b03: "Shortly after Roosevelt's inauguration
(1933) Keynes spoke once again in a brilliant
pamphlet called 'The Means to Prosperity.'! Here he
argued with new force and detail for public
spending as the way out of the depression.
Employing the concept of the 'multiplier?,
introduced by his student...'" p.u0kL:
"'"Unfortunately, ' Keynes wrote in April 1933, 'it
seems impossible in the world of today to find
anything between a government which does nothing
at all and one which goes right off the deep
end!"'" p,405: "... on May 28, 1934, Keynes came to
tea at the White House. The meeting does not seem
to have been a success." p.4h06: ",,.to Frances
Perkins Roosevelt complained strangely, 'He left
a whole rigamarole of figures. He must be a
mathematician rather than a political economist.'"

Solow, Robert M., "Technical Change and the
Aggregate Production Function', Review of Economic
Statistics, 1957, p.312-320., Solow writes:"Not
only is delta A over A (the percentage increase in
the autonomous term) uncorrelated with K/L, but
one might almost conclude from the graph that
delta A over A is essentially a constant in time,
exhibiting more or less random fluctuations about
a fixed mean." Looking at figure 3, one notes a
possible exception to this, which Solow admits iIs
a very tentative conclusion: the growth of this
term might have actually been faster, slightly,
during the depths of the depression (actually,
lagging it by three years in the graph), than
under normal conditions.
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Essays in Sociology, from Max Weber, introduced by
Talcott Parsons. Weber's concept of
"rationalization'", as a trend extending from the
"!'Concept' of Plato" to the “cage'" of modern
machine civilization, does armount to a long-term
vision of history.

See note &4,
See note 5.

McNeil, W.H., Ihe Rise of the lest, Mentor, NY,
1965, Aside from the title, the themes are a bit
too complex to summarize here. Many of them are
reminiscent of Turner, note 6. Throughout the
book, however, McNeil does keep returning to the
theme of human societies adapted to the pastoral
niche as providing the soil on which new
civilizations may develop or to which old
civilizations may spread, as the old heartland
decays.

Eisenstadt, S.N., The Political Svstems of
Empires, Free Press of Glencoe, 1963. Chapter 2
attempts to explain the '"universal states" of the
Toynbee and Spengler theories, almost the same
societies.

S5ee notes 4 and 5,

Lorenz, Konrad, 0On Aggsression, Harcourt Rrace and
World, NY, 1966, translated by M. Wilson. This
source is already popular among some political
scientists. Just as relevant may be Simpson,
George Gaylord, The Maijor Features of Evolution,
Columbia University Press, NY, 1953, p.391: "The
populations making a quantum shift (e.g. evolution
of human intelligence) do not lose adaptation
altogether; to do so is to become extinct. It is
also clear that the direction of change is

adaptive, unless at the very beginning... Yet the
very fact that selection pressure is strong can

only be a concomittant of movement from a more
poorly to a better adapted status. Selection is
not linear but centripetal when adaptation is
perfected. It is the 'stabilizing selection'...
The quantum change is a break-through from one
portion of stabilizing selection to another." The
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Indian caste system, or the early Caribbean system
of Carib predators and Arawaks, are interesting
examples of centripetal development among humans
in relatively static ecologies/economies. p.392:
"Quantum evolution usually is and at some level it
may always be involved in the opening or so-called
'explosive'! phase of adaptive radiation. The
relative rapidity with which a variety of
adaptation zones are then occupied seems quite
inexplicable except by a series of (?) and also,
of ten, successive quantum shifts into the varied
zones. The rates thereafter slow down."

See notes 37, 3 and 10. Also: Aron, Raymond, Main
Currents in Sociological Thought, Vol. I, Basic
Books, 1965, translated by Harold Weaver, p.bh:
"American sociologists, in my own experience,
never talk about laws of history, first of all
because they are not acquainted with them, and
next because they do not believe in thelr
existence."

The "multicausal approach' has appeared in
historical research, if our memory is correct, but
the sociologists = who find it harder to retreat
into simple narrative - have spoken much more
about the idea. See, for example, Vernon, Glenn
M., Human Interaction: An_lIntroduction to
Sociology, Ronald Press, NY, 1965, p.30 and
p.30-81 especially. See also Maclver, Robert M.,
Social Causation, Ginn and Co., Boston, Mass.,
1942,

Trevelyan, G.M., An Autobiography and QOther
Essavys, Longman, Green and Co., 1949, London,
p.91: "The endlessly attractive game of
speculating on the might-have-beens of history can
never take us very far with sense or safety. For
if one thing had been different, everything would
thenceforth have been different - and in what way
we cannot tell,.,. As serious students of history,
all we can do is to watch and to investigate how
in fact one thing led to another in the course
actually taken. This pursuit is rendered all the
more fascinating and romantic because we know how
very nearly it was all completely different.
Except perhaps in terms of philosophy, no event
was 'inevitable.'" Historians have often discussed
the "turning points,' times when the susequent
course of events would have been very different if
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small events had worked out differently; see, for

example, Handlin, 0Oscar, Choice or Destiny:
Turning Points in American History, Atlantic
Monthly Press, Boston, Mass., 1954. However, as
the last two chapters of this example make clear,
it is usually not considered acceptahle to imagine
just how the subsequent events might have been
different, concretely.

(37) It has been suggested that differences in behavior
of "high" and "low" situations may make such a
treatment valuable, or that an actual division of
the world into "hizh" and "low'" makes it
desirable. However, just because our sample is
weak in the middle range of the spectrum, we do
not have to conclude that we have to break our
sample into smaller subsamples, capable of
supporting less detailed analysis. If there is
some qualitative difference in behavior in the
different zones, this difference in behavior may
be tied to a smooth continuum of different
behaviors, as one moves from one pole to the
other. Even if a clearcut threshold effect does
exist, then, in order to explain this effect,
operating on a set of continuous variables, we
would normally study the discontinuous
implications of the continuous interactions of the
original continuous variables. Exceptions may
exist, but, in more cases than one might expect
apriori, it is better to treat continuous
variables as such, even if they have strange
properties.

(38) Strictly speaking, it would be more accurate to
say that verbal or mathematical models derived
from external empirical data alone do not
incorporate the information, both quantitative and
structural, to be derived from accounting for the
mutual underlying resemblance of different human
brains. Once one's "empathy" has led one to
postulate a certain model structure, one can, of
course, try to translate this model into a related
empirical model for empirical estimation; even
then, however, the empirical test would only
account for one of two sources of validation.

(39) Von Heumann, John and Morgenstern, Oskar, The

Theory of Games and Economic Behavior, Princeton
). Press, Princeton, NJ, 1953, p.15-33.
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See note 1.

Flavell, John H., The Developmental Psychology of
Piaget (including Foreword by Piaget), Van

Nostrand, Princeton, NJ, 1963,

The most popular reference would be Frikson, Erik
H., lnsight and Responsibility, Norton, NY, 1964,
P.111-134, The school of ego psychiatrists is much
larger, but less mapped out than manv other fields
for the wandering political scientist; the concept
of stages, while often present, often requires
digging out. Another reference, less transparent
but also influential: Hartmann, Heinz, Ego
Psvchology and the Problem of Adaptation,
international Universities Press, NY, translated
by D. Rapoport, 1958. One advantasge of these
approaches is that they can be more easily
compared with cybernetic views, emphasizing human
intelligence.

One must make allowance for a few state
parameters, however - such as metabolic,
respiratory and hormone levels - which are less
often subject to learning. Sex and intelligence
may both be affected by such variables. However,
to say that learning may proceed faster or slower
does not invalidate a person's ability to learn,
in most cases. 0On the behavioral level,
flexibility remains critical, particularly when we
are speaking of heads of state and the like, who
are rarely literal imbeciles,

The reference from Triffin, in note 45, curiously
enough, implies quite strongly that "our
textbooks' have emphasized these points about
perfect competition. Ferguson, C.E.,
Microeconomic Theory, lrwin Series in Economics,
IMlinois, 1969, Revised Edition, Third Printing:
methodological introduction refers to the “extreme
aprioristic" school of microeconomists, "“prominent
since John Stuart Mil11"; much of the rest of this
text deals with the classic theory of perfect
competition and its later developments.

Triffin, Robert, Monopolistic Competition and
General Equilibrium Theory, Harvard University

Press, Cambridge, Mass., 1956, p.5: "For most of
Professor Chamberlain's and Mrs. Robinson's
readers, this is the basic distinction between
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monopolistic (or imperfect), and pure (or perfect)
competition, 1If the sales curve of the firm is
perfectly elastic, we are concerned with pure
competition. If, on the contrary, the curve is
tipped, competition is taken to be monopolistic or
imperfect... The substitution of the equation of
marginal cost and marginal revenue for the less
general and less elegant equation of marginal cost
and price has been the main contribution of
monopolistic competition theory to the 'pure
economics' of our texthooks."

Ferguson, C.E., op.cit., Chapter 1k,

Lindblom, Charles E., "The Rediscovery of the
Market", especially p.kul, in

Readings in Fconorics, Paul A, Samuelson, ed.,
McGraw-Hi11, MY, 1970, Sixth Edition.

Lindblom's article, note 47, provides some
evidence on this point. in the fall of 1973, an
article appeared in the New York Times indicating
that more than 90% of Soviet consumer industries,
at a mininmum, had been converted to the Lieberman
system. The HNew York Times Index at this writing
was complete up to August 15, 1973; it listed a
major article on the front page, June 3, 1973,
elaborating on how thoroughly the conversion has
been made, and at any rate quoting Pravda on
Soviet condemnation of those who oppose the new
methods. While the same Pravda article was
discussed briefly on June 6, p. 23, in the
Washington Post, we were unable to find the Times
article in its indexed location at Harvard, or in
nearby locations that we looked at. However,
subsequent copies of the lndex should clarify
these points.

See Samuelson, Paul A., Foundations of Economic
Analvsis, Harvard University Press, Cambridsge,
Mass., 1947, Lagrange multipliers are used in
maximizing a fixed function, subject to static
constraints. These multipliers correspond,
essentially, to prices.

Wiener, Norbert, Cvbernetics, or Control and
Communication in the Animal and the Machine, MIT
Press, Cambridge, Mass., 1961, Second Edition.
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Wiener, Norbert,'Perspectives in Cybernetics," in
Wiener, Norbert and Schade, J. P., eds.,
Cybernetics of the Nervous System, Elsevier
Publishing Co., Amsterdam, Ny, 1965. In this
article, Wiener emphasizes the statistical
subdivision of cybernetics, in particular, as the
portion of cybernetics most worth pursuing. This
is quite close to our suggestions here, insofar as
the mathematics of Chapter (11) tend to be part of
the statistical subdivision, but Wiener's specific
suggestions are very different from our own, in
terms of the overall explanations they point to
for gross behavior; Wiener emphasizes patterns of
resonance among multiple sources of radiation, an
idea which could conceivahly relate to our
technique of pattern analysis, but the connections
do not appear simple. Wiener goes on to suggest
strongly that the new statistics developed to deal
with the analysis of time-series (one-dimensional
phenomena) for living systems may sormeday be
extended to statistical physics (four-dimensional
phenomena, thermodvnamics) and provide a
revolutionary new understanding of the
possibilities for maintaining order in
equilibrium,

Deutsch, Karl W., The Nerves of Government, Free
Press, Glencoe, 1966, p.xxvi: "In the main, these
pages offer notions, propositions and models
derived from the philosophy of science, and
specifically from the theory of communication and
control - often called by Norbert Wiener's term
"eybernetics'" - in the hope that these may prove
relevant to the studv of politics, and suggestive
and useful in the essential development of
political theory that will be more adequate - or
less inadequate - to the problems of the later
decades of the twentieth century."

A few brief hints may be in order here, to
indicate the existence of specific possibilities.
If one presumes that some sort of inborn
"rainforcement' mechanism provides the brain with
a current measure of a cardinal utility function
to maximize, then section (x) of Chapter (I1)
indicates the optimal way to adapt an elaborate
behavior-generating network, to maximize this
function, conditional upon the availability of a
network model of the "external'" environment. This
involves the passing back of "ordered
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derivatives'", a quantitative piece of information,
represented by some physical information flowing
backwards along the same network which overtly
carries only gross, direct behavior-generating
information (electrical impulses); the
microtubules, which criss-cross almost all
neurons, could well be implementing a hidden
network of cherical feedback of this kind, carried
back from cell to cell to cell, originating in the
hypothalamus and epithalamus (effectively in the
pituitary and pineal, whose exact rules of
operation we would not pretend to know at this
point.). Network models to predict the external
environment, as in Chapter (I1), could be
generated (“estimated") by a similar mechanism,
based on measuring nredictive accuracy at some
sites like the glomeruli of the thalamus. (This
hypothesis vields the empirical prediction that
certain states of chronic insensitivity and
rigidity in behavior governed by the cerebrum
would be replaced by normal cerebral learning, if
only the inputs could get as far as the glomeruli;
this could be accomnliished either by nerve growth
factors, synthesized to enhance the growth of
random connections from the hypothalamus or
epithalamus to the glomeruli, or even by learning
procedures which take full advantage of the
microscopic bootstrap process which develops new
connections to the glomeruli under normal
conditions. This prediction is not only testable,
but also of potential practical value.) The giant
pyramids of the cerebral cortex might be
performing pattern analysis, as in section (ix) of
Chapter (11); the duality of the functions f-sub-i
and g-sub-i, in generating and predicting the same
pattern-description variahle, may well correpond
to the dual poles of these cells, The time factor,
of course, requires that all of these ideas only
be approximations; still, they may have some
suggestive value even In experimentation.

See the discussion by Herbert Simon on
"optimizing" and '"satisficing,' in Lazarsfeld,
Paul F., ed,, Mathematical Thinking in the Social
Sciences, Free Press, Glencoe, 111,, 1954,

A deeper understanding of Simon's observations
would require, of course, a more general framework.



