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Foreword 

Regression toward the mean is as inevitable as death and taxes. 
Academic performance, emotional well-being, medical diagnosis, 
investment return, athletic feats, motion picture sales, and any 
other variables you can think of all exhibit regression toward the 
mean. But even more remarkable than the ubiquitousness of regres- 
sion toward the mean is how commonly the phenomenon is misun- 
derstood, usually with undesirable consequences. Social scientists 
incorrectly estimate the effects of ameliorative interventions, sports 
writers misguidedly attribute poor performance to jinxes, and 
snake-oil peddlers earn a healthy living all because our intuition 
fails when trying to comprehend regression toward the mean. Even 
intellectual prowess is not an antidote to this shortcoming. Sir 
Francis Galton is one of those rare geniuses whose name is still 
renowned 90 years after his death. This is, in part, because Galton 
was the first to recognize and provide a label for “regression toward 
mediocrity.” Galton even demonstrated convincingly that individ- 
ual height regresses to the mean across generations. But he got it 
wrong when he tried to explain how regression toward the mean 
operates. 

If someone of Galton’s immense intellectual abilities cannot 
understand regression toward the mean even when looking it 
square in the eye, how can we mere mortals expect to figure it out? 
The answer is, in more ways than one, within your grasp. The ele- 
gant and concise volume you hold in your hands provides a simple 
and comprehensive explanation. This is not to say that under- 
standing the volume’s content will always be easy. The mystery of 
regression toward the mean is not going to be revealed without ef- 
fort on your part. You must be willing to grapple at times with no- 
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x Foreword 

tions that appear to violate common sense. You must be prepared to 
stop on occasion to puzzle over apparent paradoxes. But if you are 
willing to extend yourself just a little, your efforts will be well re- 
warded. If you are a novice in the topic, you will become an expert 
by reading A Primer on Regression Artifacts. If you are already an ex- 
pert, you will learn things you will be surprised you did not already 
know. In either case, you will find that the authors meet you more 
than halfway; they guide your inquiry with ample encouragement, 
engaging illustrations, and good humor. As a result, your reading 
will prove to be both eye-opening and enjoyable. 

Of course, those in the know would expect no less from Don 
Campbell and Dave Kenny. They are two of the preeminent social 
science methodologists of our generation. It is hard to imagine a 
duo that is more capable of making comprehensible a challenging 
methodological topic. 

Under ordinary circumstances, no more need be said about ei- 
ther of the authors because of their stellar reputations. But circum- 
stances are not ordinary and a few more words must be said about 
Campbell in particular. There are few, if any, scholars who have 
had as sustained and profound an influence on research methods in 
the social sciences as Campbell has had. For example, Campbell’s 
separate volumes on quasi-experimentation with Julian Stanley 
and with Tom Cook are the equivalent of the old and the new tes- 
taments of research design. Campbell’s article with Don Fiske on 
the multitrait-multimethod matrix is the single most widely cited 
article in the Psychological Bulletin in the last 50 years. Based on 
such work, Campbell has received virtually every honor that is 
available to a research psychologist. If the Nobel prize were award- 
ed in psychology, he would likely have won that as well. As a re- 
sult, Campbell’s name, like Galton’s, will be revered long after his 
death. Sadly, that time period has already begun, for Don Campbell 
died in the spring of 1996. 

Campbell and Kenny planned the present volume together, 
and they wrote much of it together before Don’s untimely death. 
But Kenny had to finish it alone. The result is a tribute to Kenny’s 
dedication both to Don and to the topic of regression toward the 
mean. Kenny has done both of them proud. 

While Campbell was passionate about all of his work, there 
was no topic he embraced with more fervor than regression toward 
the mean. He never tired of talking about it, and he very much 
wanted others to come to understand it as he did. As a result, Don 
is now smiling. He has seen the publication of the last, and one of 
the most beloved, of his works.
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By now Don has also, I am sure, tracked down Sir Francis and 
the two of them have had many enlivened chats about regression 
toward the mean. If you turn the page, you can listen in on that 
conversation. | know Campbell would be delighted to have you 
join him. Don was one of those special individuals who loved 
everyone he met and who loved to talk to them about science. We 
owe Dave Kenny a tremendous debt of gratitude for so well bring- 
ing to fruition this opportunity for one last visit with Don and the 
ideas he cherished. 

CHARLES S. REICHARDT 

University of Denver





Preface 

Regression toward the mean is an artifact that as easily fools statis- 
tical experts as lay people. The universal phenomenon of regression 
toward the mean is just as universally misunderstood. Regression 
toward the mean is a very subtle phenomenon and easy to miss. 
This primer is replete with examples of how it is overlooked in 
everyday life as well as in statistical analysis. Our purpose is to in- 
crease understanding and comprehension of this concept. 

One reason we decided to write this primer now is that much 
of the recent work on research methodology has downplayed or ig- 
nored the importance of regression toward the mean. For instance, 
the recent edited book on Best Methods for the Analysis of Change 
(Collins & Horn, 1991) does not even include the entry of “regres- 
sion toward the mean” in its index. Some have even argued that re- 
gression toward the mean is an overrated problem (Gottman & 
Rushe, 1993). We were motivated to write this primer because the 
classic contributions by EF M. Lord, Q. McNemazr, L. J. Cronbach, 
L. Furby, and L. G. Humphreys as well as the large body of work by 
the first author (Campbell & Boruch, 1975; Campbell & Clayton, 
1961; Campbell & Erlebacher, 1970; Campbell & Stanley, 1963; 
Cook & Campbell, 1979) are being ignored. 

Regression toward the mean can be approached from many 
points of view: statistics, cognitive psychology, psychometrics, eval- 
uation research, and biology. We will throughout this primer look 
at the concept through these different lenses. We have chosen to 
concentrate on the effects of regression toward the mean on the 
measurement of change in program evaluation research because it 
is the area in which we have worked in the past. We realize that re- 
gression toward the mean applies much more broadly than change 
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XiV Preface 

(Lund, 1989a), but we feel that many of misunderstandings of the 
concept are located in this one area. 

Our emphasis in this primer is on the problem of regression 
toward the mean in scores measured two or more times. Thus, we 
consider issues in the analysis of longitudinal and time-series data. 
A related emphasis in the primer is that very often we are inter- 
ested in evaluating the effect of a treatment or intervention. We 
believe that mistaken conclusions in treatment evaluations some- 
times occur because of a failure to understand regression toward 
the mean. As shown in this primer, ironically it is sometimes the 
“correction” for regression toward the mean that creates the prob- 
lem. 

In the first and most important chapter, we describe the phe- 
nomenon of regression toward the mean in a nontechnical fashion. 
We avoid presenting formulas but instead focus on a graphical pre- 
sentation. The emphasis is on the conceptual and not the mathe- 
matical. The more knowledgeable readers may be tempted to skip 
this chapter, but we strongly encourage them not to do so, as it pre- 
sents the perfect-correlation line, the pair-link diagram, and the 
Galton squeeze diagram; all of these new concepts are featured 
throughout this primer. 

In Chapter 2, we present the mathematics of regression to- 
ward the mean and answer some commonly asked questions about 
the concept. We also generalize regression toward the mean beyond 
the simplifications of the first chapter. Although this chapter is 
more mathematical than the first, we still heavily rely on graphical 
methods. 

The next seven chapters consider regression artifacts, the fo- 
cus of the primer. However, Chapters 6 and 9 do not concern quasi- 
experimental evaluations, and so some may wish to skip those 
chapters. In Chapter 3, we show that when a group of persons are 
measured over time, their average score regresses toward the mean. 
This chapter presents several illustrations of regression toward the 
mean in everyday life, including the so-called sophomore jinx in 
baseball. It also considers the often-ignored problem of misclassifi- 
cation caused by regression toward the mean. 

Chapters 4 and 5 consider regression toward the mean in the 
nonequivalent control group design. In Chapter 4, we show that 
matching of scores on a variable only partially controls for group 
differences. Chapter 5 shows that statistical equating (methods 
that covary out the pretest) is usually not totally successful. 

Chapter 6 focuses on the measurement of change and de- 
scribes regression artifacts in change score analysis. There is no in-
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tervention; we are just trying to identify who changed more. We 
learn that change is a much more difficult topic than might be 
thought. 

The next three chapters consider regression artifacts in more 
complicated situations. Chapter 7 considers regression toward the 
mean in time-series research, and Chapter 8 considers longitudinal 
research. For both of these topics we present several examples. In 
Chapter 9, we review the technique of cross-lagged panel correla- 
tion and discuss its potential uses. 

Finally, in Chapter 10, several common themes are reiterated. 
These themes include the utility of time-reversed analysis, graphi- 
cal presentation of raw data, the importance of design in research, 
and the consideration of plausible rival hypotheses. We also discuss 
how forecasters and prognosticators often fail to take into account 
regression toward the mean. 

We realize that readers have varying backgrounds. We assume 
that all readers have had at least one course in statistics and re- 
search design. We presume some knowledge of significance testing, 
random assignment and selection, reliability, and correlation. 
Moreover, we assume some knowledge about the classical threats to 
validity that were developed by Campbell and Stanley (1963). We 
do occasionally discuss more advanced topics for which complete 
comprehension requires knowledge of multiple regression, time- 
series analysis, structural equation modeling, or multilevel model- 
ing. Even when these topics are discussed, we attempt to present 
them in as nontechnical a fashion as possible. A Glossary of Terms 
is included at the end of this primer so that the reader can study de- 
finitions of new concepts. Issues of significance testing are down- 
played, and more emphasis is given to estimation of intervention 
effects. 

We have tried to reduce the number of formulas in this primer, 
and so we have avoided presenting formulas for statistics that are 
commonly given in standard texts. Chapter 6, the measurement of 
change, has many formulas because many such formulas have been 
proposed. Most of the other formulas that we have presented are for 
the amount of regression toward the mean expected under different 
circumstances. The formulas are not complex and are simple vari- 
ants of the standard regression prediction equation. 

When faced with decisions about how much complexity to al- 
low in our discussions, simulations, and formulas, we have tried to 
opt for the simplest possible model. We have oversimplified the 
cases that we are discussing, but we do so to sharpen the focus on 
the central topic of this primer: regression toward the mean.
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* * *K 

The contents of this primer are part of the extraordinary lega- 
cy of Donald T. Campbell. Tragically, he died in the middle of this 
project. Although he made numerous contributions to many fields, 
he believed that his work on regression toward the mean was one of 
his most important methodological contributions. To quote from 
one of his last papers: “I find myself the most fanatic teacher of the 
problem of regression artifacts .. . and I recommend continued at- 
tention to this problem” (Campbell, 1994, p. 294). 

Don Campbell had many collaborators who worked with him 
or who took his ideas on regression toward the mean and worked 
on their own. Among them were Robert F. Boruch, Keith N. Clay- 
ton, Thomas D. Cook, Albert Erlebacher, William M. Trochim, 
and Charles S. Reichardt. Many of their contributions are repre- 
sented in this primer, and so they should be considered as unnamed 
coauthors. 

In making changes in the manuscript after Campbell’s death, I 
have tried to remain faithful to his point of view. Despite my ef- 
forts, | cannot begin to match the creativity and genius that would 
have been evident had he been able to make the final revisions. I 
do worry that there may have been times that I wrote “we” in this 
primer and Campbell may not have agreed with such conclusions. 
This was a particular concern in Chapters 6, 9, and 10, which were 
entirely written after his death. I have attempted, as best I could, to 
represent his views fairly (and I have asked his past colleagues if I 
have done so). I also know, having written several papers with him, 
that he was very trusting of his coauthors. I have diligently tried to 
finish writing this book as Don would have wanted it. Knowing 
Don, he would have liked, and even been proud of, the final prod- 
uct but would never have allowed himself to be the first author. 

A strong debt of gratitude is due to the many who have helped 
us in this project. Thanks are due to Brian Lashley and Virginia 
Carrow, who assisted in the preparation of this primer. Katherine 
Kenny guided the production and prepared many of the figures. I 
also wish to thank Deborah Kashy, Andrea Piccinin, Thomas Mal- 
loy, Lynn Winquist, Cynthia Mohr, Lee Cronbach, and Dale Grif- 
fin, who provided me with feedback. I want especially to thank 
Charles M. Judd, Charles S. Reichardt, and Dale Griffin, whose in- 
put led to many major changes in the primer. These colleagues of- 
ten challenged me and provoked me to think in new ways. Their 
suggestions considerably improved the presentation. Also helpful 
were presentations given by me at the University of Geneva and
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the University of Kansas. Patrick Quinn, the archivist of the 
Northwestern University library, kindly gave me access to Don 
Campbell’s materials. Finally, I thank Barbara Frankel, Campbell’s 
widow, who has assisted me in countless ways throughout this en- 
tire project. 

Davip A. KENNY 

Storrs, Connecticut
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Graphical Introduction 

Consider the following phenomena: 

Many parents think that punishment improves bad behavior 
and that rewards do not sustain good behavior (Kahneman 
& Tversky, 1973). 

Rookies of the year in major league baseball seem to suffer 
from a sophomore jinx (Taylor & Cuave, 1994). 

Some children assigned to remedial programs do not seem to 
belong in such programs. 

Some very depressed people spontaneously become much less 
depressed. 

The sequel to a movie is usually not as good as the original 
movie. 

High school students who do poorly on their Scholastic Apti- 
tude Tests (SATs) seem to improve remarkably after taking 
an SAT preparation course. 

These and many other phenomena can be explained by regression 
toward the mean. The universal phenomenon of regression toward 
the mean is universally misunderstood. It is a very subtle phenome- 
non and easy to miss. This primer is replete with examples of how it 
is overlooked in everyday life by lay people as well as in statistical 
analyses by experts. The purpose of this primer is to increase under- 
standing and comprehension of this difficult concept. 

In this introductory chapter, we present a nontechnical, large- 
ly graphical description of regression toward the mean. We empha- 
size graphical over algebraic presentation. (The algebra is deferred 
until the next chapter.) We urge readers to follow the discussion in
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the text by creating their own data and drawing their own figures. 
A computer program described in Appendix A can reproduce the 
figures in this chapter. We encourage the reader to access this com- 
puter program. 

The chapter contains many new terms, all of which are re- 
peatedly defined and illustrated. However, readers can refer to the 
Glossary of Terms in the back of the primer to refresh their memo- 
ries. 

To begin to understand the concept of regression toward the 
mean, consider a group of students who take two examinations. 
The essential fact of regression toward the mean can be communi- 
cated in terms of ranks. The student who ranked number one on 
the first exam will almost certainly not rank as high on the second 
exam, evidencing a loss in rank. But the student who ranked num- 
ber one on the second exam will almost certainly have improved in 
status since the first. Comparably, the student ranking lowest at the 
first exam will probably not rank lowest on the second exam and 
the student ranking lowest on the second exam will probably not 
rank lowest on the first. The fact that performance declines for 
those who do the best and improves for those have done the worst 
is an inherent feature of change that has confused and perplexed 
researchers for more than 100 years. 

The first data analyst to be fooled by regression artifacts was 
the person who named it, Sir Francis Galton. In the late 1800s, he 
measured the height of 928 children! and their parents. To make 
female heights equivalent to male heights, he multiplied them by 
1.08. Galton (1886) noticed that tall parents tended to have tall 
children, but the children were not quite as tall as their parents, 
something he called “filial regression toward mediocrity” (p. 246). 
So, for instance, if the parent was 70.5 inches tall, the child tended 
to be 69.5 inches in height. Galton also noticed that short parents 
tended to have short children, but again the children were not 
quite as short as their parents. So, for instance, if the parents were 
65.5 inches in height, their children were on average about 66.7 
inches tall. He reasoned that there must be some sort of biological 
force that made people move toward the mean, and he called that 
force regression (Galton, 1879, 1886). Galton eventually realized 

  
\In the text of his paper, Galton (1886) stated that there were 930 cases; how- 
ever, his Table I includes only 928 cases. Moreover, it is a curious fact that al- 

most always Galton is cited as showing that “tall fathers have shorter sons.” 
Our use of daughters and mothers is not due to political correctness but rather 
because Galton used mothers, fathers, sons, and daughters.
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that regression was not a biological force but an inherent feature of 
change. This realization came about by the counterintuitive step of 
noting that tall children had shorter parents and short children had 
taller parents. It was difficult to believe that the biological process 
of regression operated backward in time. 

In this chapter, we explain in nontechnical terms and without 
any formulas what regression toward the mean is and how to recog- 
nize it. We adopt Galton’s fundamental insight of looking back- 
ward in time. 

FROM THE SCATTER PLOT TO THE 
CORRELATION COEFFICIENT 

Regression toward the mean occurs whenever two variables are im- 
perfectly related. However, it is helpful to illustrate it when the 
same variable is measured at two times. Later, in Chapter 2, we 
consider other applications. To explain the concept of regression 
toward the mean, we use data based on dice rolls.? A roll of one die 
yields a number from 1 to 6. We encourage readers to roll their own 
dice and generate their own data set. 

To begin, two scores, a pretest and a posttest, are generated. 
We first roll two dice to get the underlying true score, or T, which 
will remain the same on both pretest and posttest for each “per- 
son.” This roll of two dice yields a number from 2 to 12. We then 
roll two dice for pretest error, E,, and add this to the true score to 
get the observed pretest score of X. We now roll two dice for 
posttest error,t or Ey. Next we add this to the true score to get the 
observed posttest score, or Y. Consider data from one “person.” If T 
equals 8, E; equals 12, and E, equals 8, then that person’s pretest 
score would be 8 + 12, which equals 20, and the posttest score 
would be 8 + 8, which equals 16. The sum of four dice yields a num- 
ber from 4 to 24. This procedure is repeated 20 times. Table 1.1 pre- 
sents the results of our dice-rolling experiment. 

To achieve an intuitive understanding of regression artifacts, 

  

?Cutter (1976) has shown how dice rolls can be used to illustrate regression 
toward the mean in the classroom. Levin (1982) proposed a modification us- 
ing playing cards. 

>The reader can gain access to the computer program to generate his or her 
own data set by using the information described in Appendix A. 

4Classically, errors of measurement have a mean of 0. We take the liberty of 
having errors with a mean of 7.
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TABLE 1.1. 20 Scores from Rolling Four Dice 
  

  

T E, E, Xx Y 

8 12 8 20 16 
9 7 4 16 13 

11 7 6 18 17 
5 4 7 9 12 
6 8 3 14 9 
9 6 10 15 19 
4 10 4 14 8 

11 12 9 23 20 
11 11 8 22 19 

8 5 5 13 13 
7 6 7 13 14 
7 9 5 16 12 
6 5 2 11 8 
2 10 11 12 13 
6 7 7 13 13 

11 6 10 17 21 
9 6 8 15 17 
8 10 7 18 15 
5 9 5 14 10 
5 4 8 9 13 
  

graphical presentations are employed. The typical form used to pre- 
sent a relationship between two variables graphically is the scatter 
plot or scatter diagram. Most statistics texts only briefly illustrate 
the scatter plot, but it is featured much more frequently in this 
primer. 

Figure 1.1 shows the results of our dice-rolling simulation as a 
scatter plot. The horizontal axis (or X-axis) is the pretest or X (the 
fourth column in Table 1.1). The vertical axis (or Y-axis) repre- 
sents the posttest or Y (the fifth column in Table 1.1). At each 
point in the scatter plot where cases occur, we indicate the number 
of cases at that point. We have circled the plot of the first data 
point in which the pretest is 20 and the posttest is 16. Note that 
there are two observations in which the pretest and posttest are 
both 13. 

For those who know what correlation is, the resulting theoret- 
ical correlation for the simulation is .5. (It takes on this value be- 
cause the true score and error are equally weighted; see Appendix 
A for more details.) However, for the sample data in Table 1.1, the 
correlation coefficient equals .645.
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FIGURE 1.1. Scatter plot of the data in Table 1.1. 

For the remainder of this section, we shift from the case in Fig- 
ure 1.1 and Table 1.1 with 20 “persons” to one with 500 “persons.” 
(A procedure for obtaining the data is described in Appendix A.) 
This large sample size creates more stability for our purely graphical 
computation of the correlation coefficient. The pretest mean for 
this larger sample is 14.15, and the posttest mean is 13.96. The 
standard deviations are 3.50 and 3.57 for the pre- and posttest, re- 
spectively. (The theoretical values are 14.00 for the means and 3.42 
for the standard deviations.) Figure 1.2 presents the histograms for 
the pre- and posttest scores before matching. Both distributions 
show a central peak around 14 and considerable variability. 

Figure 1.3 presents the scatter plot for this data set of 500 “per- 
sons.” For the moment, ignore the boxes around some of the num- 
bers. We adopt the usual convention of presenting numbers in the 
scatter plot to symbolize the number of points. So, for instance, 
there are 9 “persons” who scored 12 on both the pretest and the 
posttest. When there are 10 or more persons at a point in the scat- 
ter plot, we use an asterisk (*) as the symbol. The gradual upward 
trend of the scatter plot indicates that there is a positive association 
between the pretest and the posttest: as the pretest score increases, 
the posttest score increases. 

Figure 1.4 shows a scatter plot, but instead of plotting all 500
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FIGURE 1.3. Scatter plot of 500 “persons” (asterisk indicates 10 or more 
observations).
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FIGURE 1.4. Vertical squeeze plot of 500 “persons.” 

pairs of scores, we plot just 20 or so data points. For the moment, 
let us ignore the lines connecting the points and just concentrate 
on the dark circles that are the plotted points. For each of the 
pretest scores for which there are observations available (4 to 24), 
we have plotted the mean on the posttest. So, for instance, for the 
score of 10 on the pretest, we plot the posttest mean of all those 
scoring 10 at the pretest and that mean is 11.86. Thus, the points 
that are plotted are the posttest means for every pretest score. Be- 
cause scores are collapsed or squeezed on the vertical or Y-axis, we 
refer to the type of plot in Figure 1.4 as a vertical squeeze plot. 

Let us try to understand the rationale of a vertical squeeze 
plot. Given these 500 data points, what is the best estimate of the 
posttest score for each pretest score? We consider first those with a 
pretest score of 23. For these scores, there are only two posttest 
scores, of 17 and 22. We have very little evidence to go on. But the 
average of these two posttest scores, 19.5, is a good guess from these 
sparse data of what a 23 on the pretest will be on the posttest. So, 
we plot that point on the vertical squeeze plot. For pretest scores of 
22, we have more cases, 7 in all. We compute the mean of those 7 
scores and get a value of 19.14 for this mean. For pretests of 17, we
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have drawn a box around the numbers in the scatter plot in Figure 
1.3. The mean of those posttest numbers is 15.26. We continue for 
all values of the pretest. 

We now connect the adjacent points in a vertical squeeze 
plot by a straight line, as is done in Figure 1.4. So we connect the 
points for pretest scores from 6 to 7, from 7 to 8, and so on. If we 
had no scores for 5, we would connect the points 4 and 6. The re- 
sulting curve is a zigzag line that we call the overfitted regression 
line. Given how the data were generated, the “true” regression line 
(i.e., the one that we would obtain if we had a very large sample of 
rolls for each pretest score) would be a perfectly straight line. The 
overfitted regression line is not perfectly straight because of the 
finite sample size of pretest scores. (Appendix A describes how 
a computer program can be downloaded, and the reader can use 
that program to see how the line straightens as the sample size in- 
creases. ) 

In Figure 1.5, we have taken a transparent ruler and drawn a 
straight line that best fits the zigzag line (has more or less equal dis- 
crepancies above and below the straight line, but with little weight 
given to discrepancies where there are very few cases). This is the 
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FIGURE 1.5. Overfitted (jagged) and regression (straight) lines.
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“guesstimate” regression line, and it is shown in Figure 1.5. Alter- 
natively, the least-squares regression line could be computed using 
the standard statistical formula presented in most statistics books 
and it would differ somewhat. However, we are trying to emphasize 
comprehension in this presentation, not computational precision. 
We will very frequently just guesstimate and not precisely compute 
values. By using a guesstimate, we force the reader to look closely at 
his or her data and not to compute mechanically and mindlessly 
some abstract statistical quantity. Of course, in scientific reports 
guesstimates would not be used. 

To move from the linear regression line to the correlation co- 
efficient, we need two more lines to which we compare the regres- 
sion line. These two additional lines are drawn in Figure 1.6 along 
with the guesstimate regression line. The perfect-correlation line, in 
this situation, would mean that the pretest and the posttest took on 
the same value. For example, every pretest 22 had a posttest of 22 
and every pretest 6 had a posttest of 6. To represent this perfect- 
correlation line, we draw a straight diagonal line (45 degrees) from 

              

  

    

24 cr 

21 + Perfect-Correlation Line 

18 NN 

co L 

4 is + 

Bio | 
A. be 

Zero-Correlation Line 
9 pe 

6 5 

3 1 1 i i 1 i a 1 1 i I i 1 4 I 1 I I 1 Ll j 

3 6 9 12 15 18 21 24 

PRETEST 

FIGURE 1.6. Perfect (diagonal), zero (flat), and regression (approximately 
45-degree) lines; solid vertical line, correlation; dashed vertical line, re- 
gression toward the mean.
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the upper-right 24—24 point to the lower-left 4—4 point. In Chapter 
2, we describe how to draw the perfect-correlation line when the 
mean and variance change. 

We also need to draw in what the regression line would be if 
the correlation were zero. For a zero correlation, the scatter plot 
would show a perfectly circular scatter or ball-like structure. A zero 
correlation implies that knowing the pretest gives us no help at all 
in predicting the posttest. For each pretest score, the best guess for 
the posttest is the mean of all posttest scores. The mean of all 
posttest scores would be 14 if we had rolled enough dice to get rid 
of sampling errors. (It is 14 because the most likely roll of two dice 
is 7, and four dice are rolled.) Thus, a posttest score of 14 would be 
the best prediction for pretest scores of 22 or 6, and for every possi- 
ble pretest score. To represent this, we draw a horizontal line from a 
posttest score of 14 on the left vertical axis. Note that the intersec- 
tion of the perfect-correlation and the guesstimated regression lines 
fall on the zero-correlation line. 

The guesstimate regression line in Figure 1.6 lies about 
halfway between the perfect-correlation and zero-correlation lines, 
and so the correlation coefficient is about .50. To get a more precise 
number, we draw a vertical line on the right side of the figure. For 
instance, in Figure 1.6 we drew the vertical line at the pretest value 
of 24. We extend the line from the zero-correlation line to the per- 
fect-correlation line. The total distance of this line (the solid plus 
the dashed vertical line) is 10 points (ie., 24 — 14). The guessti- 
mate line is about 5.5 points above the zero-correlation line (the 
solid line) and is thus 5.5/10 of the way to perfection, and 5.5 di- 
vided by 10 equals .55, a guess of what the correlation coefficient is 
for this data set. Use your own value for the regression line; you will 
not get exactly the same value, but you should get something close 
to .5. The actual correlation computed by the conventional formu- 
la is .525, not all that far from the .55 value that we obtained by 
guesstimation. 

In general, the correlation can be defined as the ratio of the 
vertical distance between the zero and the fitted regression line to 
the vertical distance between the zero-correlation and perfect- 
correlation lines. An alternative and equivalent definition is that 
the correlation equals the ratio of the slope of the fitted line to the 
slope of the perfect-correlation line. Although the correlation 
coefficient is fundamentally based on the notion of the perfect- 
correlation line, such lines are virtually never drawn. However, for 
illustrative purposes we repeatedly draw such lines throughout this 
primer.
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The correlation coefficient is commonly symbolized by r or p 
(rho, a Greek “r”), and a fact not well known is that this r comes 
from the first letter in regression. In actuality, the correlation coef- 
ficient estimates not the regression but rather the amount of nonre- 
gression. The relative distance from the perfect-correlation and the 
guesstimate lines (i.e., the amount of regression) equals 1 — r. In 
this example, the observed regression line has regressed about 45% 
of the way from a perfect relationship. 

The distance from the regression line to the perfect-correla- 
tion line gives the amount of regression toward the mean. Regres- 
sion toward the mean measures how far from perfection the correla- 
tion is. Because the regression line can never be steeper than the 

perfect-correlation line, there is inevitably regression toward the 
mean. Again, we emphasize that the definition of regression toward 
the mean is 

Regression toward the mean = Perfection — Correlation 

So anything that makes correlations less than 1 creates regression 
toward the mean. 

Note that the distance of the regression line from the perfect- 
correlation line is greater for more extreme scores. As can be seen 
by examining Figure 1.6, if the pretest or X is 4 or 24, the regression 
line is about 5 units from perfection and so the amount of regres- 
sion expected is 5 units. If the pretest is 9 or 19, it is about 2.5 units 
from perfection. Finally, if the pretest is 14, the mean, it is right on 
the perfect-correlation line and there is no regression toward the 
mean. As the scores move from the mean, either up or down, the 
distance from perfection (i.e., regression toward the mean) increas- 
es. The more extreme the score, the greater the regression toward 
the mean. 

We hope that the reader has gained some understanding of the 
relation of the correlation coefficient to the regression line (the 
line of best prediction of one variable from another). We hope that 
by visual estimation and graphical procedures, we have increased 
the comprehension than what is more typically achieved by the 
usual computation of a correlation coefficient. However, for a gen- 
eral understanding, this demonstration is limited by the fact that 
we introduced into the process prior knowledge to provide the ap- 
proximate value of the pretest and posttest means, as well as knowl- 
edge that these means were equal and that the variability of pretest 
and posttest was equal. In Chapter 2, we generalize the method and 
such knowledge is not required.
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THE PAIR-LINK AND GALTON SQUEEZE DIAGRAMS 

In our pedagogy, we have repeatedly found that the scatter plot and 
the regression line do not illustrate regression toward the mean 
very clearly. Our students often make elementary errors even after 
repeated exposure to these diagrams. To better illustrate the phe- 
nomenon, we introduce a new type of illustration: the pair-link dia- 
gram. Although others (Wohlwill, 1973) have used similar dia- 
grams, we believe that we are the first to feature it as an alternative 
to a scatter plot. It does, however, bear a close resemblance to a 
“spaghetti plot” in growth-curve analysis. (This is called a spaghetti 
plot because it looks like uncooked pasta tossed on a flat surface.) 

Figure 1.7 shows in a pair-link diagram the same data that 
were presented in Table 1.1 and Figure 1.1. In a pair-link diagram, 
there are two vertical lines: the line on the left refers to the pretest; 
the line on the right, the posttest. Each person is plotted twice. 
The pretest score is plotted on the left vertical axis, and the 
posttest score is plotted on the right vertical axis. These two points 
are connected by a straight line and hence the name pair-link dia- 
gram. Every point in a scatter plot is a line in the pair-link diagram. 

It is helpful to see the equivalence of the two types of dia- 
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grams. Locate the one person who has a pretest score of 20 and a 
posttest score of 16 in both Figures 1.1 and 1.7. As a second exam- 
ple, locate the person (actually two persons) with a 13 on both the 
pretest and the posttest. The reader should confirm in his or her 
own mind that these two diagrams present the same data but in 
very different ways. 

Actually a pair-link diagram is rather similar to a space-time 
or Minkowski diagram in physics. We plot where the person is in a 
“variable space” at the pretest and where the same person is at the 
posttest. Then we connect those two points by a straight line that 
approximates the way in which the person “traveled” through time 
from pre- to posttest. 

Figure 1.8 shows the pair-link diagram with the posttest scores 
averaged or squeezed for the 20 or so possible pretest scores for the 
data set with 500 “persons.” The points on the left are the possible 
pretest scores, and the scores on the right are the posttest means for 
each of these pretest scores. We then draw a line from the pretest 
value to the average value on the posttest. To make clear which 
scores are squeezed or averaged, the arrow at the top of the diagram 
points toward the averaged or squeezed axis. We call Figure 1.8 a 
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FIGURE 1.8. Galton squeeze diagram for the data set with 500 cases using 
pretest to predict posttest.
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Galton squeeze diagram, which is based on the pair-link diagram for 
these data. The Galton squeeze diagram corresponds to the overfit- 
ted zigzag regression line of Figures 1.5 or 1.6, but it much more 
dramatically illustrates regression toward the mean. For each value 
on the pretest, for example, the pretest values of 8 and 20, the aver- 
age posttest value is computed and graphed. When this is done for 
all pretest values, one has the full Galton squeeze diagram. The 
reader should compare this figure with the zigzag overfitted regres- 
sion line of Figures 1.5 or 1.6 by looking at the lines that crossover. 
If there were a perfect picture in Figure 1.8 (i.e., no sampling error), 
none of the lines would cross each other. Note that the lines from 
pretests 6 and 7 do crossover,’ and this corresponds to a departure 
from the regression line in Figure 1.6. 

A Galton squeeze diagram dramatically illustrates the regres- 
sion toward the mean in the data. The more extreme scores change 
more than the less extreme scores. With a Galton squeeze diagram, 
we can actually see the regression toward the mean more clearly 
than we can with a scatter plot. 

It is instructive to consider what a Galton squeeze diagram 
would be for different values of the correlation coefficient. If the 
correlation were zero, all of the lines would theoretically converge 
to a single point, the posttest mean. Figure 1.9A illustrates the pat- 
tern for a zero correlation. All the lines do not converge at exactly 
the same point due to sampling error. The diagram clearly shows 
that there is complete regression toward the mean. If the correla- 
tion were perfect, then the plot would be a set of straight parallel 
lines that do not intersect, as in Figure 1.9B. We defer illustrating 
what the diagram would look like for a negative correlation until 
Chapter 2. 

The first author has previously used idealized Galton squeeze 
diagrams to illustrate regression toward the mean (see Figures 1b 
and lc in Campbell & Stanley, 1963). We name this diagram after 
Galton because this was the form in which he discovered regression 
toward the mean. In place of a pretest, he had a parent’s height; in 
place of a posttest, he had the height of an adult child. He came to 
the biological conclusion that nature was causing the extremes to 
“revert” or “regress” toward the species mean, a conclusion that he 
later retracted when he noticed that regression toward the mean 
occurred backward in time, a topic that we now consider. 

  

5We could smooth the Galton squeeze diagram by plotting not the means but 
rather the predicted “mean” from the regression line. There would be no 
crossovers in such a plot.
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FIGURE 1.9. Galton squeeze diagram (pretest predicting posttest means) 
for (A) a zero correlation and (B) a perfect correlation (N = 500).
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BACKWARD PREDICTION 

It is necessary to examine not only how well the pretest predicts 
the posttest but also how well the posttest predicts the pretest. Fig- 
ure 1.10 presents the overfitted regression line using the posttest to 
predict the pretest, again with the same data set with 500 “per- 
sons.” It might help to reexamine the scatter plot in Figure 1.3. For 
those scoring a 7 at the posttest, we have drawn a box. The mean of 
the scores in the box is 10.54, which is for the 7’s in Figure 1.10. 
Note that the line in Figure 1.10 is much steeper than the one in 
Figure 1.6. However, if the plot were rotated clockwise by 90 de- 
grees, the line would be nearly exactly as steep as the one in Figure 
1.6. We have also drawn in Figure 1.10 both the perfect-correlation 
line and the zero-correlation line. We see again that the regression 
line lies about halfway between the zero-correlation and perfect- 
correlation lines, and so the correlation is about .5. 

It is very important to run the regression analysis in both di- 
rections in time. Few statistics texts point out that there are two, 
not one, regression lines. The correlation coefficient is the same 
predicting in either direction. However, if means or the line are 
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FIGURE 1.11. “Backward” Galton squeeze diagram for the data set with 
500 cases (posttest predicting pretest). 

“guesstimated,” there will be some discrepancy between the two 
guesstimated correlations. The perfect-correlation line is the same 
regardless of the direction of prediction. 

The Galton squeeze diagram can also be time reversed. Figure 
1.11 shows the Galton squeeze diagram predicting from posttest 
back to pretest. The arrow points from posttest to pretest. Note 
that it is essentially, but not exactly, the mirror image of the pattern 
in Figure 1.8. Again, note the crossovers on the Galton squeeze di- 
agram and match them with the larger departures from the linear 
regression line in Figure 1.9. The Galton squeeze diagram shows 
greater “change” backward in time for the more extreme scores. 
The large scores become smaller, and the smaller scores become 
larger. 

BIOLOGY AND REGRESSION TOWARD THE MEAN 

Galton initially viewed regression toward the mean as a biological 
fact. It is the case that biology needs to overcome regression toward 
the mean. Consider what would happen if children inherited the
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exact average of their parents’ attributes. If that happened, then 
eventually, at least biologically, we would all be the same. But na- 
ture needs diversity for natural selection to operate, and so organ- 
isms each have two sets of chromosomes, one of which is passed 
onto their offspring. This form of inheritance prevents species from 
regressing toward the mean and so promotes biodiversity. 

A GOLDEN OLDIE: McNEMAR'’S ILLUSTRATION 

Regression toward the mean is thus not a true process working 
through time but a methodological artifact, a tautological restate- 
ment of imperfect correlation (Campbell & Boruch, 1975). If one 
variable is used to predict another, the predicted score cannot on 
average be more extreme than the predictor. It is fitting that we 
close this chapter with one of the earliest illustrations in social sci- 
ence of this phenomenon, that of McNemar (1940), one of the 
original popularizers of this topic. 

Suppose that the intelligence test scores of all the children in 
an orphanage are measured on two occasions, a year apart. Assume 
that the group mean and standard deviation are basically the same 
at both testings. If one examines the children with initially high 
scores, they will have regressed down toward the mean on a second 
test and will appear to have become worse. Those initially scoring 
lowest will have improved. One may mistakenly conclude that the 
orphanage is homogenizing the population, reducing the intelli- 
gence of the brightest and increasing the intelligence of the less 
bright. However, if one were to look at the extremes on the posttest 
and trace them back to the pretest, one would find that they were 
nearer the mean on the pretest, thus implying the opposite conclu- 
sion: variance appears to be increasing over time. These seemingly 
contradictory findings imply only that the test—retest correlation is 
less than perfect. When correlations are less than 1, there will be 
regression toward the mean. 

CONCLUSION 

The major focus of the chapter is a graphical introduction of regres- 
sion toward the mean. We have used the scatter plot and two new 
graphical methods: the pair-link diagram and the Galton squeeze 
diagram. The pair-link diagram, which contains exactly the same 
information as the scatter plot, consists of two vertical lines, one
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for each variable. An observation is plotted on each line, and a 
straight line connects the two points. A Galton squeeze diagram is 
a pair-link diagram in which the possible scores of one variable are 
connected to the means on the other variable for that possible 
score. 

The chapter also presents a graphical interpretation of the 
correlation coefficient. We introduced two lines that might be 
plotted. The first is the perfect-correlation line, which is what the 
regression line would look like if the correlation were 1. The sec- 
ond is the zero-correlation line, which is what the regression line 
would look like if the correlation were 0. The correlation coeffi- 
cient can be defined as the ratio of the slope of the regression line 
to the slope of the perfect-correlation line. We hope that this has 
provided the reader with a better intuitive understanding of corre- 
lation. 

When the regression line is plotted, the perfect-correlation 
line is hardly ever drawn and is difficult to visualize. The distance 
from the perfect-correlation line to the regression line is the 
amount of regression toward the mean. Thus, the perfect-correla- 
tion line should be drawn if we are to see the amount of regression 
toward the mean. Better than the regression line, the Galton 
squeeze diagram dramatically illustrates regression toward the 
mean. It vividly illustrates that regression toward the mean is 
greater the more extreme the score. 

Finally, regression toward the mean occurs to the same extent 
whether we look backward or forward in time. This is a key fact 
that can be exploited in diagnosing regression artifacts in later 
chapters. Galton squeeze diagrams clearly show this forward and 
backward regression toward the mean. It is difficult to see the re- 
gression in both directions in a graph of the regression line, howev- 
er, because it requires rotating the figure by 90 degrees. With a Gal- 
ton squeeze diagram, the backward and forward diagrams are 
virtually mirror images of each other. If the reader were to learn 
nothing more than how to draw and interpret a Galton squeeze di- 
agram, we would consider the primer to be a success. 

Regression toward the mean is a fact. Because of a less than 
perfect correlation, the predicted score of a variable tends not to be 
as extreme in terms of standard score units than the predictor vari- 
able in standard score units. Over-time correlations are less than 
perfect because people change, and these changes imply that re- 
gression toward the mean is an omnipresent phenomenon. All too 
often the statistical fact of regression toward the mean is given a 
substantive meaning that is unwarranted.
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One of the goals of this primer is to remove the mystery and 
mystique surrounding the concept of regression toward the mean. 
We must admit that at times the concept can be difficult. We shall 
see that sometimes the mistake is made to correct for regression to- 
ward the mean when none should be made. If the reader finds some 
of the concepts in this primer difficult, he or she should take com- 
fort from the fact that some people who ought to have understood 
them had difficulties. Consider the following examples: 

Sir Francis Galton, generally considered one of the real ge- 
niuses of the 19th century (Simonton, 1994), was tricked by 
the phenomenon. 

Smith (1997) described how a Nobel laureate economist was 
fooled by the concept! 

One of us served as dissertation advisor on a project that was 
eventually shown to be a regression artifact (Reichardt, 
1985). 

Mark (1986) describes how a prominent example in Cook and 
Campbell (1979) contains a regression artifact. 

If the renowned Galton as well as a Nobel laureate, and even the 
authors of this primer have sometimes been fooled, the reader must 
be especially vigilant in detecting regression artifacts. 

Next, in Chapter 2, we explore further the concept of regres- 
sion toward the mean and provide a general definition of the con- 
cept. We develop the formal mathematics and answer frequently 
asked questions about the phenomenon. Finally, we generalize our 
graphical method to the case in which the means and variances are 
different for the variables. After that chapter, we begin our search 
for regression artifacts.



  

Mathematics and 

Special Cases 

In the previous chapter, a graphical introduction of regression to- 
ward the mean was developed. We introduced the Galton squeeze 
diagram that clearly illustrates that more extreme scores “change” 
more than less extreme scores. In this chapter we examine regres- 
sion toward the mean more generally and formally. Although we 
present formulas in this chapter, we still keep the discussion non- 
technical and use graphical presentations whenever possible. 

We also consider frequently asked questions about regression 
toward the mean. By answering these questions we hope to broaden 
and deepen the comprehension of the concept. 

GENERALIZATION TO THE CASE WITH 
UNEQUAL MEANS AND VARIANCES 

The graphical approach just presented in Chapter 1 rests heavily 
on the assumption that the two variables, pretest and posttest, have 
the same mean and variance. In this section, we allow for the more 
general case. We also do not presume that the mean is known as we 
did in the last chapter. 

There are two variables, X and Y, which may have different 
means and variances. We focus on regression toward the mean in Y 
as a function of X. However, as was emphasized in the previous 
chapter, we can also look at regression the other way: X regresses 
toward the mean when Y is used to predict it. Regression toward 
the mean is inherently a bidirectional phenomenon. 

We use an extension of the example from the previous chap- 

21
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FIGURE 2.1. Galton squeeze diagram (pretest predicting posttest) for a 

case in which the means and standard deviations differ. 

ter. There we took the sum of two dice as a “true score” and the sum 
of two more dice as “error.” So the same true score was added to 
both pretest and posttest, but a different error score was added. 
Here, we treat the true score as X or the pretest, and the true score 
plus error is treated as Y or the posttest. We generated data for 500 
“persons.” The sample mean of X is 7.00, and its standard deviation 
is 2.45; the mean of Y is 14.06, and its standard deviation is 3.52. 
Quite clearly, the means and the standard deviations of the pretest 
and the posttest differ in that they are both increasing. 

Figure 2.1 presents the Galton squeeze diagram for this data 
set. It appears that there is no regression toward the mean. All of 
the scores seem to be increasing by about 7 points. However, as will 
be seen, there is indeed still regression toward the mean. 

Figure 2.2 contains the overfitted and regression lines using 
500 scores with the true score or X used to predict the measured 
score or Y. Consistent with the Galton squeeze diagram in Figure 
2.1, the regression slope! is near 1. (Parallel lines in a Galton 

  

'If Y is used to predict X, we are using the observed score to predict the true 
score, something we called true-score correction. The regression slope for that 
prediction equation is .5, the reliability of the observed score.
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FIGURE 2.2. Overfitted, regression, zero-correlation, and perfect-correla- 
tion lines when the means and standard deviations differ. 

squeeze imply a slope of 1.) It is difficult, if not impossible, to see 
regression toward the mean in Figure 2.2. In fact, because the slope 
is near 1, it appears that there is no regression toward the mean at 
all. However, if the variances differ, the slope of the perfect-correla- 
tion line is not a diagonal with a slope of 1, but rather it equals 
Sy/Sx. It equals this value for the following reason. Note that if Y = 
X, then sy = Sx. However, if Y = aX, the standard deviations are un- 
equal and, because sy = asx, it follows that the perfect slope or a 
equals sy/sx. So for a perfect correlation of 1.0, the slope equals the 
ratio of the standard deviation of the criterion to the standard devi- 
ation of the predictor. 

For the example data set, this ratio of standard deviations 
equals 3.52/2.45, or 1.44. We have drawn the perfect-correlation 
line in Figure 2.2. Its slope is 1.44 and goes through the point {Mx, 
My}. From the previous chapter, we learned that the correlation co- 
efficient equals the observed slope divided by the perfect slope. For 
the example, we have 1/1.44, which equals .694. Given how the 
data were generated, the theoretical correlation is 1 divided by the 
square root of 2, or .707. The actual correlation is .724.



24 A PRIMER ON REGRESSION ARTIFACTS 

There is an alternative way to determine the perfect-correla- 
tion line that may be easier to understand. We rank order both X 
and Y from smallest to largest. We then plot X against Y; that is, we 
plot the largest score for X against the largest score for Y, the sec- 
ond largest, all the way to the smallest score. We draw a guessti- 
mate line through this plot, and that is an estimate of the perfect- 
correlation line; the slope of that line approximately equals sy/sx. 

We can make the two variables always have the same mean 
and standard deviation by computing standard scores. A standard- 
ized or Z score takes each score and first subtracts the sample mean 
for that variable and then divides this difference by the standard 
deviation of the variable. The result of such a transformation is 
that the new variable, the standardized variable, always has a mean 

of O and a standard deviation of 1. So, if two variables are standard- 
ized, they necessarily both have the same mean and standard devia- 
tion. 

Figure 2.3 presents the Galton squeeze diagram of the example 
data set with both variables standardized. We see that there is re- 
gression toward the mean, although the degree of regression is less 
than what it was in the previous chapter. There is less regression in 
this example because the correlation is much larger, .724 versus 
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FIGURE 2.3. Galton squeeze (pretest predicting posttest) diagram using 
standard scores.
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.903. Once the scores are standardized, extreme scores regress more 
toward the mean than do less extreme scores. 

Let us consider two variables, X and Y, both of which are stan- 
dardized. If we select an extreme score from X (i.e., a score distant 
from the mean of that variable), then the expectation in terms of Y 
is that the scores of that person or group of persons will not be as ex- 
treme (in terms of a standardized score). The degree of regression to- 
ward the mean is determined by how far the regression line is from 
the diagonal line. When scores are standardized, the slope of the re- 
gression line is identical to the correlation coefficient. So regression 
toward the mean occurs whenever the correlation is not perfect. 

FORMAL DEFINITION AND FORMULAS 

In this section, we present the formulas necessary for the exact com- 
putation of the amount of regression toward the mean. The formulas 
may provide some insight into the meaning of the concept. 

We first consider the case in which both X and Y are standard- 
ized: 

Y—-M 
Zy = x 

SX 

and 

X—M 
Zy = v 

Sy 

where Mx and My are means and sx and sy are standard deviations. 
Throughout, to simplify presentation, we drop the subscript i de- 
noting a person. Predicted standardized Y or Z} equals 

Zy = 1Zy 

Regression toward the mean works in both directions, and so 

Lyx = tZy 

To forecast the amount of regression toward the mean when scores 
are standardized, we need simply to know the correlation between 
the scores. 

So, for instance, if it is known that the correlation between
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husbands’ and wives’ marital satisfaction is .60 and it is known that 
a particular husband is very satisfied, say, 2 standard deviations 
above the husband mean, then we would expect his wife also to be 
satisfied, but not nearly as much. Her satisfaction would be .6 times 
2, or 1.2 units above the wife mean. So the wife is very satisfied, 
though much less than her husband. 

To express regression toward the mean in raw scores, we need 
to rearrange the above equation for Y’ (the expected value of Y giv- 

en X): 

Y’= My + 1(Sy/Sx)(X _ Mx) 

Because the regression coefficient in which X is used to predict Y, 
symbolized by byx, can be shown to equal r(sy/sx), we substitute byx 
for r(Sy/Sxx): 

Y’ = My + byx(X — Mx) 

In a similar fashion, we can express the predicted X given Y: 

X’ = Mx + byy(Y — My) 

where bxy can be shown to equal r(sx/sy). So, to forecast the regres- 
sion toward the mean, we need to know the slope and the means of 

both variables. 
For over-time data and for some other applications, it is some- 

times assumed that the means and standard deviations of X and Y 
are the same. If this assumption can be made, the prediction equa- 
tions are: 

Y’=M+r(X—M) 

and 

X’=M +r(Y—M) 

where M is the common mean for X and Y. For many of the illustra- 
tions in the subsequent chapters, we use these equations. 

Note that the above equations can be reexpressed: 

Y’=(l-—r)M + 1X 

and 

X’=(l-r)M+rY
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The predicted score can be viewed as a weighted average of the 
predictor variable and the mean. Note that the weights sum to 1 
(1 — r) + r = 1]. The prediction equation states how much to 
weight what is known about a particular case (X or Y) based on 
what is known about the group (M). The equation states the degree 
to which the overfitted regression line lies between the perfect- 
correlation line and the zero-correlation or perfect-ignorance line 
(see Figure 1.6 in the previous chapter or Figure 2.2 above in this 
chapter). 

One important application of this last set of formulas is called 
the true-score estimate (Cronbach, Gleser, Nanda, & Rajaratnam, 
1972). Of course, the true score is not known, but if we can theo- 
retically regress the true score on the observed score, the resulting 
regression coefficient is the variable’s reliability. So the true-score 
estimation formula is 

Xp = 1x(X — Mx) + Mx 

where Xr is the predicted true score, ry is the reliability of X, and 
Mx is the mean of X. What the correction does is predict what the 
true score would be given the measured score, accounting for the 
fact that the true score and measured score do not have a perfect 
correlation (i.e., there is regression toward the mean). 

The reliability can be viewed as the correlation between the 
test with a parallel measure. A parallel measure is assumed to have 
the same mean and variance as the other measure. To use the true- 
score estimate, previous research must be done so that ry and Mx 
are known. 

To illustrate the use of this formula, if a person’s score is 2 
standard deviations above the mean and the reliability is .75, then 
the estimated true score in Z-score terms is .75 x 2.0, or 1.5. Given a 
normal distribution, the score changes from the 98th percentile to 
the 93rd percentile. Note that the predicted true score is always less 
extreme than the raw score; that is, it regresses toward the mean. 

The variance of predicted true scores is always less than the 
variance of raw scores. The technical name for the reduced vari- 
ance is shrinkage. One reason why true-score estimation is not often 
done is that the correlation between X and X+ is 1. Thus, for many 
analyses, the correction has no effect on the results. Nonetheless, 
as we shall see throughout this primer, true-score estimation can be 
informative. We believe that true-score estimation is the most im- 
portant psychometric formula that is not well known outside of 
psychometrics.
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TABLE 2.1. Regression Formulas for 
Predicted Y and X (Y’ and X’) 
  

Standardized score 
  

Zy = tZy 

Zx = tZy 

Raw score 

Y’= My + byx(X — Mx) 

X’= Mx + byy(Y — My) 

Equal mean and variance 

Y’=M+r(X—-M) 
X’=M+r(Y-M) 

  

True-score estimate 

Xp = Mx + tx(X — Mx) 

  

  

Note. See the Glossary of Symbols for definitions of 
terms. 

To summarize, there are four sets of regression prediction 

equations presented in Table 2.1. In the first, both variables are 
standardized and regression is a function of only the correlation be- 
tween variables. In the second, and most general formulas, the raw 
scores are used. For these equations, the regression slope and the 
means of both variables are needed. In the third set of equations, 
the mean and variances of the two variables are assumed to be 
equal. To determine the degree of regression toward the mean, the 
correlation and the common mean are needed. Finally, if a vari- 
able’s reliability is known, we can use the regression toward the 
mean formula to compute a true-score estimate from the raw score. 
We shall be using the equations in Table 2.1 to compute the degree 
of regression toward the mean in this and subsequent chapters. 

FREQUENTLY ASKED QUESTIONS ABOUT 
REGRESSION TOWARD THE MEAN 

In this section, commonly asked questions about regression toward 
the mean are answered. We suspect that many readers have these 
questions. By grasping the answers to these questions the reader
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may better understand the elusive concept of regression toward the 
mean. 

Question 1: Is it not the case that more extreme scores become 
even more extreme? Do not the rich get richer and the poor get poorer? 

For some variables as they change over time, extreme scores 
may become more extreme. However, the only way for this to hap- 
pen is for the variance of the measure to also be increasing over 
time. Once the variances are equated by standardization, we obtain 
the usual regression toward the mean phenomenon. So if “the rich 
are getting richer and the poor poorer,” the variance in income 
must be increasing over time. 

A related point is that it is possible for all of the scores to be 
increasing over time (see, e.g., Figure 2.1), yet there is regression 
toward the mean. If all the scores are increasing, there must be an 
increase in the mean over time. Once an allowance is made for the 
increasing mean, scores above the mean at the pretest do not in- 
crease as much as scores below the mean. Regression toward the 
mean refers to standardized scores, not the raw scores. 

Question 2: If scores are regressing toward the mean over time, 
does that imply that the variance is declining over time and so there is in- 
creasing homogenization? 

The answer to this question is “No.” Regression toward the 
mean refers not to the actual scores of a measure but to the predict- 
ed scores for that measure. For instance, if the correlation between 
pre- and posttest is 0, then the predicted score on the posttest is the 
mean of the posttest. This does not imply that all people have the 
same score, the mean. There are always errors in prediction, and 
these errors restore the variance. Besides, because regression toward 
the mean occurs in both directions, it is impossible for the variance 
to be both increasing and decreasing over time. Regression toward 
the mean does not imply increasing homogeneity over time. 

Question 3: How does the score “know” the mean, because the 
mean would be different if the sample were defined differently? 

So, for instance, if someone is just above the mean, that per- 
son should regress down toward the mean. But if a few of the small- 
est scores were dropped from the sample, that person would be be- 
low the mean and so now would regress up toward the mean. How 
can the same person both regress up and down toward the mean? 

This is a difficult question, but it is indeed possible for the 
same score to regress both up and down, depending on how the
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sample is defined. In one case the score regresses down, and in the 
other the score regresses up. This seeming contradiction happens 
because regression toward the mean, although usually phrased in 
terms of an individual score, actually refers to the sample of scores. 
So, if the sample changes, the score can regress in a different direc- 
tion. Also regression does not refer to raw change but to standard- 
ized change. Because standardization subtracts out the sample 
mean, the direction of regression might change if the sample mean 
changes. 

Question 4: Is measurement error the only source of regression to- 
ward the mean? 

Very often the claim is made that regression toward the mean 
is entirely due to unreliability. However, any factor that produces 
change (i.e., makes the correlation less than perfect), whether it is 
real change or measurement error, creates regression toward the 
mean. So even measures without any measurement error still show 
regression toward the mean, and it is a mistake to think that regres- 
sion toward the mean is entirely due to unreliability of measure- 
ment. We return to this question in Chapters 5 and 8. 

Question 5: If the relationship is not linear, does that imply that 
regression toward the mean does not apply? 

When we fitted the line in Figure 1.5 in the previous chapter, 
we made the assumption that the line was straight. However, re- 
gression toward the mean does not depend on this assumption. Al- 
though linearity is an assumption in the computation of regression 
and correlation coefficients, linearity is not an assumption of re- 
gression toward the mean, at least in the most general sense of the 
term. 

If the relationship between X and Y is nonlinear (i.e., not a 
straight line), it is possible for some scores actually to regress away 
from the mean. However, it must still be the case that the bulk of 
the scores regress toward the mean and the net result is regression 
toward the mean. 

Consider the data in Table 2.2. The data take the form that 
Y = X? for values of X from 0 to 9, and the functional relationship be- 
tween the scores is said to be curvilinear or quadratic. Table 2.2 also 
presents the standardized or Z scores for both variables. Let us con- 
sider the prediction of Y (i.e., X”) using X. In Figure 2.4, we have 
graphed the relationship using standardized scores and have drawn 
the perfect-correlation line. When scores are standardized, the per- 
fect-correlation line is always an ascending diagonal line (the 45-
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TABLE 2.2. Nonlinearity Example (Y = X?) 
  

  

Xx Y Loy Zy x’ Y’ 

0 0 ~1.43 ~97 1.57 -12 
1 1 -1.11 94 1.67 3 
2 4 ~.79 ~.83 1.98 6 
3 9 ~.48 ~.66 2.49 15 
4 16 ~.16 ~.43 3.21 24 
5 25 16 ~12 4.14 33 
6 36 48 26 5.27 42 
7 49 79 70 6.61 51 
8 64 1.11 1.21 8.16 60 
9 81 1.43 1.79 9.91 69 
  

degree line). We see that there is some regression away from the 
mean (or egression), in that some Y values above the mean are above 
the perfect-correlation line. Because the correlation between X and 
X? is .962, the perfect-correlation and regression lines are virtually 
identical. However, the bulk of the scores regress toward the mean in 
that they are below the perfect-correlation line when they are above 
the mean and above that line when below the mean. Overall, there 
is more regression than egression. 

  -2 1 4 4 i i 1 os 1 1 1 1 1 i 1 1 4 i 1 1 j 

-2 -1 0 1 2 

xX 

FIGURE 2.4. Nonlinearity illustration using standard scores.
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Sometimes regression toward the mean is presented as requir- 

ing the assumption of linearity. It is our view that this requirement 
is unnecessary. If X is used to predict Y, the correlation is hardly 
ever | and a possible source of the imperfect correlation might be 
nonlinearity. As we have emphatically stated, the imperfect corre- 
lation and regression toward the mean are synonymous. 

If the relationship between X and Y is nonlinear, then the re- 
searcher should attempt to model that nonlinearity. However, even 
if the researcher fails to model that nonlinearity, there is still re- 
gression toward the mean. It is true that some scores may egress 
from the mean, but the bulk of the scores still regress toward the 
mean. 

Question 6: Does a negative correlation imply that regression to- 
ward the mean does not hold? : 

In this primer, we concentrate on the case in which the 
pretest is used to predict a posttest. Although there are some very 
rare exceptions (e.g., cycling processes; see Warner, 1998), almost 
always the correlation between these two variables is positive. 
However, correlations that are not test-retest correlations are 
sometimes negative. How do we interpret regression toward the 
mean when the correlation is negative? 

We might be tempted to think that we have regression past the 
mean. That is, pretest scores above the mean tend to be below the 
mean at the posttest, and pretest scores below the mean tend to be 
above the mean at the posttest. In some sense, there is truth to this 
concept of regression past the mean. We again use dice rolls to gen- 
erate 500 “persons,” but this time we generate a theoretical —.5 cor- 
relation. The Galton squeeze diagram is contained in Figure 2.5 
and does seem to indicate regression past the mean. 

However, we believe that “regression beyond the mean” is not 
the most appropriate way to think about a negative correlation. For 
a negative correlation, a perfect correlation is not 1.00 but rather 
~1.00, a descending diagonal line. If X and Y have equal variance, 
then the slope of the line is —1 and goes through the point Mx and 
My. If the variances are different, the slope is —sy/sx and again goes 
through the point My and My. The estimated regression line falls 
between the flat horizontal line and the descending diagonal that is 
the perfect-correlation line for a negative correlation. So regression 
toward the mean is just as meaningful for negative as well as posi- 
tive correlations. 

Figure 2.6 uses the same data as in Figure 2.5, for which the 
correlation is about —.5. In Figure 2.6, we have drawn the overfitted
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FIGURE 2.5. Galton squeeze diagram (pretest predicting posttest) for a 
negative correlation. 
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FIGURE 2.6. Overfitted, regression, zero-correlation, and perfect-correla- 
tion lines for a negative correlation.
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regression line, the estimated regression line, the perfect-correla- 
tion line, and the zero-correlation line. The only difference be- 
tween Figure 2.6 and the ones presented earlier is that the slope of 
the perfect-correlation line is negative. We see that the estimated 
regression line is almost exactly halfway between the zero-correla- 
tion line and the perfect negative correlation line, which is why 
the correlation is —.5. Note also that the farther from the mean the 
score is, the farther the score is from the perfect-correlation line. So 
negative correlations show the typical pattern of regression toward 
the mean. The key is that perfection implies the opposite score, not 
the same score. 

Question 7: How can there be regression toward the mean with a 
dichotomous variable? 

A dichotomous variable is a variable that takes on two values. 
For example, suppose that 100 persons take two tests and each test 
is graded pass or fail. If a dichotomy is scored “O” for fail and “1” for 
pass, the mean of the dichotomy represents the proportion of the 
sample that passed the exam. In Table 2.3, we have a set of counts 
from the two tests. There are four possibilities: pass—pass, pass—fail, 
fail—pass, and fail—fail (with the performance of the first examina- 
tion listed first). Of the 100 students, 80 passed each exam. 

Regression toward the mean is a difficult concept to under- 
stand with a dichotomy, because the mean is generally an impossi- 
ble score for a person. The means in the example are both .8, but 
no one scores .8; a person can score only 0 or 1. However, the mean 
of .8 represents a probability. The regression line creates a predic- 
tion probability that is made for a particular score. Although that 
prediction may not be true of any particular score, it should be true 
of the average score. 

Despite the scores being a dichotomy, there is still regression 

TABLE 2.3. Numbers Passing and Failing Two 

  

  

  

Examinations 

Exam 2 

Exam 1 Pass Fail Total 

Pass 10 10 80 
Fail 10 10 20 
Total 80 20 100 
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toward the mean. Someone who passes the first exam has an 88% 
chance of passing the second examination, whereas someone fail- 
ing the first exam has only a 50% chance of passing the second 
exam. So, for both the person who passes and the person who fails 
the first exam, the expectation is that their performance on the 
second exam should be nearer to the mean than their performance 
on the first exam. 

This case illustrates that the prediction involved in regression 
toward the mean refers not to a particular value but to a theoretical 
value. It is regression toward the mean, not regression toward the 
mode. 

CONCLUSION 

This chapter has taken the concepts introduced in Chapter 1 and 
generalized them. We have also provided the equations for regres- 
sion toward the mean as well as answered some questions about the 
concept. 

First, we have generalized regression toward the mean to the 
case in which the means and the standard deviations are not the 
same for the two variables. The perfect-correlation line is one 
whose slope is sy/sx, where X predicts Y. The means and standard 
deviations can always be made equal by standardizing both vari- 
ables (i.e., giving them both means of 0 and standard deviations of 
1). The Galton squeeze diagram of standardized scores always ex- 
hibits regression toward the mean. 

This chapter has presented the equations for computing the 
amount of regression toward the mean. These equations, which al- 
low the researcher to calculate the exact degree of regression to- 
ward the mean, are used in subsequent chapters. We have also in- 
troduced the true-score estimation formula that states the 
estimated true score given an observed score. 

Additionally, we have addressed commonly asked statistical 
and conceptual questions about regression toward the mean. We 
hope that our answers have helped clear up ambiguity that the 
reader might have about the concept. Regression toward the mean 
does not imply increasing homogenization as is sometimes mistak- 
enly thought. We have elucidated topics that may occasionally 
confuse some readers: nonlinearity, negative correlations, and di- 
chotomous variables. We show for each that regression toward the 
mean occurs. 

We have also shown that the perfect-correlation line is differ-



36 A PRIMER ON REGRESSION ARTIFACTS 

ent when the relationship is negative. In this case the perfect corre- 
lation line is a descending diagonal. 

In the next seven chapters of this primer, we consider how re- 

gression toward the mean can bias the estimate of treatment effects 

as well as the measurement of change. As it progresses, this discus- 

sion increases in its complexity. We begin with the simplest designs 

and move on to more complex designs. We build on the concepts 

introduced in this and the previous chapter. We try to keep the dis- 

cussion as nontechnical as we can, but we also wish to cover the 

material in as much depth as possible.



  

  

Regression Artifacts 
Due to Extreme 
Group Selection 

Beginning with this chapter, we consider pseudoeffects that appear 
to be effects due to some supposed causal variable (e.g., an inter- 
vention) but are nothing more than regression toward the mean. 
We refer to such effects as regression artifacts. We see that these ef- 
fects can be quite subtle yet their ultimate consequences may well 
be dramatic. 

PRE-POST DESIGN AND REGRESSION ARTIFACTS 

One preexperimental research design (Cook & Campbell, 1979; 
Campbell & Stanley, 1963; Judd & Kenny, 1981) is a study of 
changes for a group of treated persons. So, for instance, a group of 
children receive a new educational innovation and the researcher 
measures if their test scores improve. There is no control or un- 
treated group, and the design is commonly called a pre—post design. 
Very often this design is used with a single person. For example, a 
person who suffers an illness all of sudden feels better after receiv- 
ing a certain treatment. 

We view this as a very uninformative research design. Camp- 
bell and Stanley (1963) labeled this design as preexperimental. How- 
ever, we still consider it in detail because it is so prevalent and re- 
searchers, as well as consumers of research, all too often fail to 

37
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consider regression toward the mean as an alternative explanation 

of change. 
A simplifying assumption in this chapter is that if there were 

no intervention effects, the population mean of the group would 
not change over time. This is certainly a very strong assumption 

(for discussions of plausible rival hypotheses, see Campbell & Stan- 

ley, 1963; Cook & Campbell, 1979; or Judd & Kenny, 1981), but it 

is made to sharpen the focus on regression toward the mean. 
Regression toward the mean is always a plausible rival hypoth- 

esis for mean change in the pre—post design. Only when the sample 
mean at the pretest exactly equals the population mean is there no 
regression toward the mean. Statistical theory implies that the 
probability of a sample mean exactly equaling the population mean 

is 0. So standard statistical theory predicts that regression toward 

the mean is inevitable. Just as change of individual scores is gov- 

erned by the regression toward the mean phenomenon, so is 
change in means based on groups of individuals. 

Even random selection of persons does not eliminate the plau- 

sible rival hypothesis of regression toward the mean. A random 

sample from the population does not guarantee that the sample 

mean exactly equals the population mean, just that on average the 

sample mean equals the population mean. The statistical signifi- 

cance test that the average change equals O can be reinterpreted: it 

demonstrates that the amount of change cannot be explained by 

regression toward the mean. What the significance test does is rule 

out the very plausible rival hypothesis that the change is due to re- 

gression toward the mean if it can be assumed that the sample is 

randomly chosen. For the pre—post design, random sampling is re- 
quired for internal as well as external validity. 

It is true that with random sampling, the sample mean should 
not be very extreme. The variance of the mean equals the variance 

of the observations divided by the sample size. So, given a reason- 

able sample size, it is unlikely that the sample mean would be very 

extreme, and extremity exacerbates the degree of regression toward 
the mean. 

However, it is almost always the case that for the pre—post de- 

sign individuals are nonrandomly selected. Nonrandom selection 

tends to create even more extreme groups, and so greater regression 

effects are to be expected. The researcher may often have some in- 

sight about the likely direction of the regression; that is, given re- 

gression, the scores are expected to go up (or down) over time. 

There are several factors that result in choosing extreme persons to 

be in the treatment group. First, many programs attempt to remedi-
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ate a problem and so select persons who are most in need of inter- 
vention. Given regression toward the mean, we would expect these 
people “to improve.” Other programs reward people for their past 
successes, and they select the scores of those who are doing the 
best. Given regression toward the mean, we would expect the 
scores “to decline.” So a remediation program would appear to be 
beneficial, whereas a program that serves the more able would ap- 
pear to be a failure because regression toward the mean was ig- 
nored. 

How do we know whether there is selection of extreme scores? 
In principle, the scores of the entire population would be needed 
and, were they present, we could calculate the relevant parameters. 
We denote the pretest as X and the posttest as Y. Using formulas 
developed in Chapter 2 (see Table 2.1), the mean of the pretest and 
the posttest and regression coefficient relating pretest to posttest 
must be known. The formula for the predicted value of Y given X is 

byx(X — Mx) + My 

If both X and Y are standardized (both have a mean of 0 and a vari- 
ance of 1), the formula for the predicted posttest is much simpler: 

rX 

where r is the correlation between pretest and posttest and X is 
standardized. So if we have a score X and we want to predict Y, we 
need to know Mx, My, and byx. So the amount of the regression de- 
pends on how extreme the scores are and how correlated the 
pretest and posttest are. So, for instance, if it can be assumed that 
persons are one-half a standard deviation above the population 
mean at the pretest and the correlation between pretest and 
posttest is .4, then the prediction is that the mean should be .2 of a 
standard deviation above the mean at the posttest. 

The statistical literature provides more complicated schemes 
for correcting for regression toward the mean (Davis, 1976). How- 
ever, these techniques too require knowledge of the distribution’s 
parameters as well as an assumption that the shape of the distribu- 
tion is normal. 

The researcher virtually never has access to the population of 
scores and so cannot estimate the amount of regression toward the 
mean. If all of the scores are not available (as they hardly ever are), 
the researcher can only guess (though more somewhat sophisticat- 
ed approaches are developed in this chapter as well as in Chapters 7
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and 8). The essential problem with the pre—post design without 
random selection is that the exact amount of regression cannot be 
known. Only when there is a dramatic change in scores can the re- 
searcher be reasonably certain that the change cannot be plausibly 
explained by regression toward the mean. Weak effects are likely to 
be obscured by regression toward the mean. As is shown in this 
chapter, these regression artifacts can be substantial, in some cases 
as large as one-half a standard deviation. 

We can estimate the population mean if we assume that it 
does not change over time (Mx = My = M) and that all the change 
is due to regression toward the mean. The formula! for M is 

My — by,Mx 

1 — byx 

There is an interesting geometric interpretation of this formula: the 
population mean, or M, represents the point of intersection of the 
regression line (X predicting Y) and the perfect correlation line 
(X = Y). We use this formula for the rookie-of-the-year example 

later in this chapter. 
We have assumed throughout the chapter that the extreme- 

score selection occurs only at the pretest or prior to it. Very often 
there is also selection of scores after the pretest and even at the 
time of posttest. This type of selection effect is usually referred to as 
mortality (Campbell & Stanley, 1963; Cook & Campbell, 1979). 
We do not consider this additional complication in this primer. We 
do note that we are in better position to study this type of selection 
because we do have pretest measurements on those who dropped 
out of the study. 

  

EXAMPLES 

If regression toward the mean is an inevitable feature of data, then 
it should translate into everyday observations. We recommend the 
discussions of Gilovich (1991) and Smith (1997) of regression to- 
ward the mean in everyday life; see also the classic discussion of the 
topic by Kahneman and Tversky (1973). Among other topics that 

  

1In Chapters 5 and 8, we discuss the sources of selection. Here we are assum- 
ing that the source of selection is the score itself (a reasonable assumption for 
the rookie-of-the-year example later in this chapter). In some cases, it may be 
necessary to divide by by the pretest reliability.
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Gilovich considers is why parents think that punishment is more 
effective than rewards: because children are punished when they 
perform poorly, they are almost guaranteed to improve over time; 
and because rewards are given when children do well, they are al- 
most guaranteed to do worse. In this section we consider several ex- 
tended illustrations, many of which have not been previously dis- 
cussed by Gilovich (1991) and others. 

All in the Family 

The prototypical example of regression toward the mean, discussed 
in Chapter 1, is parent’s height predicting child’s height. In this 
section, we present several new familial examples. 

A common theme in novels is that children do not live up to 
the standards of their parents. A parent earns billions of dollars by 
developing a great company. He or she later gives the company to 
the children, and they do not achieve the great success of their par- 
ent. Quite clearly earning billions of dollars is an extreme event. So 
regression toward the mean predicts that the child will not be as 
successful as the parent. If we expect regression toward the mean 
for height, why should we be surprised to find it for intelligence, 
creativity, and hard work? 

A related example is a hypothesis advanced about why there is 
so much current controversy about standardized testing. According 
to psychometrician Lloyd G. Humphreys (1986), the campaign 
against standardized testing is led by successful parents whose chil- 
dren do not perform very well on standardized tests. Because of re- 
gression toward the mean, it is all but inevitable that very intelli- 
gent parents will have less intelligent children. These parents want 
their children to have the same societal rewards as they did despite 
the fact that their children are much less intelligent than they are. 
[ronically, these parents are using their superior intelligence to ar- 
gue that intelligence testing is invalid to aid their less intelligent 
children. 

There is another family-related phenomenon that can be ex- 
plained by regression toward the mean. The research evidence very 
convincingly shows that similar people are romantically attracted 
to one another (Epstein & Guttman, 1984). (The one major ex- 
ception is gender: most men prefer women and vice versa.) 
Nonetheless, people persist in thinking that “opposites attract.” 
Perhaps we fail to take into account the regression toward the 
mean effect and that is why people believe opposites attract when
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usually they do not. So, when we observe a very nasty husband who 

is married to a fairly pleasant woman, we mistakenly think that the 

nasty person should be paired with another very nasty person. 

However, even if the correlation is fairly positive, the statistical ex- 

pectation is that the degree of nastiness should not be all that simi- 

lar. Note that if the correlation is .5, the variance in the difference 

between two persons is equal to the variance in the scores. Overall, 

similarity still results in large dissimilarities between particular 

spouses, and the dissimilarity is expected to be greater when one of 

the scores is more extreme. 

The Sophomore Jinx 

One of the most important honors in major league baseball in 

North America is the rookie-of-the-year award. It is awarded to the 

best first-year player in each of the two major leagues. Through the 

years, it has been noticed that, more often than not, the winner of 

the rookie-of-the-year award does not perform as well during his 

second year. Such a phenomenon has been dubbed the sophomore 

jinx or slump. 
Table 3.1 presents the rookie and sophomore batting averages 

from the 39 award winners from 1970 to 1994 who were hitters. For 

those not familiar with baseball, a batting average is the proportion 

of number of times that the batter has a hit (a good thing in base- 

ball). An average of .300 is considered quite good, and below .200 

is considered very poor. The data are also presented in a scatter plot 

in Figure 3.1, and a regression line is drawn. The data do indeed 

seem to indicate a sophomore jinx; using some of the same data, 

Taylor and Cuave (1994) obtained a similar result. In Table 3.1, 

note that 28 hitters declined and only 11 improved. The mean bat- 

ting average for the rookie year is .285 and for the sophomore year 

is .266. For those who worry about statistical significance, a .019 

decline is highly statistically significant [t(38) = -3.49, p < .002]. 

The effect size, using Cohen’s d (Cohen, 1988) and the sophomore 

year as the base, is —.56, which is generally viewed as moderate in 

size. A .019 difference in batting average may seem trivial to some, 

but it can mean a million-dollar salary increase. Although on aver- 

age rookies decline in their performance, there are exceptional 

rookies like Cal Ripkin, Jr., whose average increased 54 points in 

his sophomore year. 
Baseball pundits have given several explanations of the sopho- 

more jinx. One is that in the second year the pressure has been in-
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TABLE 3.1. Batting Averages of Rookie-of-the-Year Award 
Winners for Their Rookie and Sophomore Years 
  

  

Winner? Rookie average Sophomore average 

TMA70 302 251 
EWN71 .260 258 
CCA71 215 292 
CFA72 293 246 
GMN73 300 287 
ABA73 337 233 
BMN74 309 300 
MHA74 323 303 
FLA75 331 314 
ADA77 282 253 
EMA77 283 285 
BHA78 .266 314 
LWA78 285 .286 
AGA79 287 254 
JCA79 285 302 
JCA80 .289 210 
SSA82 282 281 
CRA82 .264 318 
DSA83 257 251 
RKA83 254 215 
ADN84 284 287 
VCN85 267 232 
OGN§85 213 250 
JCA86 .240 257 
BSA87 300 248 
MMA87 .289 .260 
CSA88 271 .260 
WWA88 250 233 
JWN89 293 .263 
DJN90 282 215 
SAN90 .290 217 
JBN91 294 213 
CKN91 281 297 
EKN92 257 247 
PLN92 .290 244 
MPN9Q3 318 319 
TSN93 283 287 
RMN94 306 285 
BHN94 282 .168 
  

“The first two letters represent players initials, the third letter represents 
the major league (A, American; N, National), and the last two numbers 
represent the year.
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FIGURE 3.1. Scatter plot, regression, zero-correlation, and perfect-correla- 

tion lines of the rookie and sophomore years of 39 rookie-of-the-year win- 
ners in major league baseball from 1970 to 1994. 

creased by winning the award and that creates performance anxi- 

ety. A second explanation is that the motivation to play well de- 

clines in the second year. This explanation is clearly explicated by 

the Denver Broncos’ football running back Terrell Davis (Denver 

Post, Monday, September 9, 1996, p. 3D): “People who go for that 

[the sophomore jinx] do well their first year then stop listening to 

people. They start believing their newspaper clips. They did well 

and don’t work hard.”? However, the strongest and most plausible 

account of the jinx is regression toward the mean. Because of 

changes in motivation, ability, experience, and luck, there likely 

will be a decline in performance. 
Can regression toward the mean account for the sophomore 

jinx? To be rookie of the year, the player needs to have an excep- 

tional season: the player must be the best new player in the league. 

We would then expect that the player would not play quite as well 

  

2It turns out that Davis’s performance did not regress to the mean. He rushed 

for 421 more yards in his sophomore season than in his rookie season.
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the next year. So the most likely explanation is regression toward 
the mean. 

In Figure 3.1, we have drawn the perfect-correlation line. We 
have assumed a stationary model; that is, the mean and variance 
are the same during the rookie and sophomore years. We have 
drawn the zero-correlation line so that it intersects where the esti- 
mated slope also intersects the perfect-correlation line. We see that 
the zero-correlation line intersects the Y-axis at the .253 value, and 
we can treat this value as the mean of the population. Given this 
value of the mean, every rookie of the year but two (the smooth- 
fielding Julio Cruz and Walt Weiss) hit better than average, but 14 
of the 39 hitters were below the extrapolated mean during their 
sophomore years. 

The .253 average is about 10 points less than the major league 
average for this period of .263 (Thorn, Palmer, & Gershman, 
1997). We can think of four different explanations for this discrep- 
ancy: 

There is in fact a sophomore slump. 
The distribution of major leaguers is truncated in that the very 

poor players are dropped from their teams. Thus, the distrib- 
ution for rookies is more representative. 

There may be a maturation effect such that younger players 
(i.e., rookies) have lower batting averages. 

Because better hitters have more at bats than weaker hitters, 
the overall average is upwardly biased. 

We think the sophomore slump explanation is not likely because it 
would predict a higher average for the third year and beyond, 
which appears not to occur (Taylor & Cuave, 1994). We believe 
that the last explanation is the most plausible of the four. 

There are relatively few rookies each year, and so rookies’ per- 
formance would not be that extreme. We would expect even more 
regression toward the mean if the analysis were done for each 
league’s most valuable player, because many more players are eligi- 
ble (Harrison & Bazerman, 1995). The more extreme the score, the 
greater the regression toward the mean. 

Editorial Burnout 

It might be thought that only statistically naive lay people fail to 
recognize regression toward the mean. The following illustration
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shows that statistical “experts” are just as subject to this lapse as are 
statistical novices. It is commonly observed that the careers of per- 
sons who become editors of major psychology journals go downhill 
after they have become editors. Usually it is said that the editor was 
burned out because of the heavy workload of editing a major jour- 
nal. The second author of this primer has been repeatedly cau- 
tioned not to take on such an editorship position because it would 
destroy his career. 

We do not know if the same sorts of claim are made for editors 
in other fields besides psychology, but we suspect that they are. Psy- 
chologists fail to take into account the regression toward the mean 
as an explanation. To be chosen as an editor requires that the per- 
son be a very successful researcher. The expectation, given regres- 
sion toward the mean, is that currently very successful researchers 
should become less successful some 5-10 years later. Thus, the sup- 
posed “burnout” of editors is much more plausibly explained by re- 
gression toward the mean. 

Harrison and Bazerman (1995) described the “winner’s curse.” 
Whenever someone is selected from a large pool (e.g., a job candi- 
date is selected from a pool of hundreds of applicants), that person 
is very unlikely to live up to his or her billing. The larger the pool 
from which the editor or job candidate is selected, the greater the 
regression toward the mean—and because we all too often fail to 
adjust for regression toward the mean, the greater the disappoint- 
ment. 

Spontaneous Remission 

Sapirstein (1995) reviewed 19 studies of the effect of psychothera- 
py and drug therapy on depression. In each study, researchers creat- 
ed a no-treatment control condition. For instance, several studies 
used a no-treatment, wait-list control group (i.e., those who were 
waiting to be in therapy). Sapirstein (1995) looked at the “im- 
provement” of these untreated persons. 

Table 3.2 presents the measures of change in each of the 19 
studies. The measure that Sapirstein used is the change in depres- 
sion divided by the pooled standard deviation at both times, a com- 
mon measure of effect size called Cohen’s d. Most of the studies 
used a standard measure of depression such as the Beck Depression 
Inventory. 

Although there is considerable variability in the amount of 
change, the average is —.35 [t(18) = -8.97, p < .001]. According to
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TABLE 3.2. Spontaneous Changes in Depression across 19 Studies 
  

  

Study Change Study Change 

1 ~.97 10 —~.16 
2 28 11 —.48 
3 04 12 —.14 
4 12 13 —.11 
5 —.21 14 —.41 
6 ~.42 15 —1.00 
7 03 16 —.27 
8 ~.34 17 —1.45 
9 —.36 18 —.21 

19 02     
Note. Change measure in standard deviation units. So a score of -.50 means a decline 
in depression of one-half a standard deviation. Data from Sapirstein (1995). 

Cohen (1988), .3 is considered a moderate effect size. So, people 
are becoming much less depressed even when they are not treated 
at all. These people improved on their own without benefit of pro- 
fessionally delivered intervention. Of course, some might have im- 
proved because they obtained nonprofessional psychotherapy from 
friends or family. 

The Sapirstein (1995) review dramatically illustrates regres- 
sion toward the mean. (The other explanations of change—history, 
maturation, and testing—do not seem like plausible explanations 
of the result.) Many people seek therapy when they are having a 
depressive episode. Not surprisingly, being extremely depressed leads 
people to seek out therapy. For many, though certainly not all, the 
depression wanes over time, even without the benefit of therapy. 
Although the improvement is a statistical necessity, people do in 
fact feel less depressed. The improvement is, at least in part, real. 
Although people may improve without therapy, they likely im- 
prove even more with it. So just because this analysis demonstrates 
regression toward the mean, it does not demonstrate that regression 
toward the mean entirely explains the effect of therapeutic inter- 
ventions. 

That people get better without any special intervention has 
been well noted by clinical researchers. It is commonly called spon- 
taneous remission. Even though some investigators have noted that 
spontaneous remission can be explained by regression toward the 
mean, it is not generally recognized by theorists and practitioners. 

Spontaneous changes have been noted in other areas of re- 
search. Consider two such illustrations:
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Andrews and Harvey (1981) have noted that stutterers spon- 
taneously improve without treatment (d = —.19). 

Whitney and Von Korff (1992) have noted that those suffer- 
ing pain experience substantially less pain a year later (a = 
~.58). 

No doubt there are many other examples. 
It seems likely that regression toward the mean leads people 

to believe in the efficacy of scientifically unjustified regimens. Peo- 
ple who improve in health because of consuming snake oil and 
hearing the incantations of holy people no doubt would have im- 
proved without any such “therapeutic” interventions. However, 
the people who do improve attribute their better health to these 
unproven interventions and not to regression toward the mean. 
Many a quack has made a good living from regression toward the 
mean. 

Misclassification of Individuals 

Very often in life, people receive benefits or punishments based on 
their performance on tests. The previously discussed rookie-of-the- 
year award in baseball is one such example. But there are many 
other much more mundane examples. Assignment to special (i.e., 
remedial) or gifted education is often based on the performance on 
a test. Many medical procedures such as surgery are based on bio- 
logical tests. 

Generally, persons are selected for special programs when 
their scores are extreme. We have never heard of a school giving 
an award to a teacher or a student who is average. A common 
definition of an “extreme score” in applied settings is someone 
who scores 2 standard deviations above (or below) the mean on 
a test, a definition that we use. (A better definition would be 2 
true-score standard deviations above the mean.) Given a normal 
distribution, there is about only a 2.5% chance of scoring that ex- 
treme. 

These test scores, like any score, are subject to regression to- 
ward the mean. Moreover, because the scores are selected because 
of their extremity, there should be large amounts of regression to- 
ward the mean. Recall that the farther the score is from the mean, 
the greater the regression. 

Consider the following hypothetical situation: a variable has a
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normal distribution and a test-retest correlation of .80 (the correla- 
tion between two administrations of the test). A .80 correlation 
may seem low, but it is a reasonable value for the test—retest corre- 
lation for many medical tests (e.g., two cholesterol tests taken on 
different days). It is probably fairly close to the test-retest correla- 
tion when there is a short delay and a different but parallel test is 
administered a second time. 

Given that a person scores 2 or more standard deviations 
above the mean on one test, what is the probability that the person 
will score 2 or more standard deviations above the mean on a sec- 
ond test? Given the assumption of multivariate normality and a 
correlation between tests of .80, the probability is only .43. Thus, 
when someone is classified as “exceptional,” most of the time he or 
she would no longer be so classified when retested. We suspect that 
even statistical experts would be surprised by how low this proba- 
bility is. 

There is surprisingly scant recognition of the misclassification 
problem in the applied literature. There are a few notable excep- 
tions. Milich, Roberts, Loney, and Caputo (1980) showed in their 
study of those classified as hyperactive by use of a standard measure 
that only 45% were designated as hyperactive when a second 
test was used. Additionally, Anthony, LeResche, Niaz, Von Korff, 
and Folstein (1982) found that of those who were classified as 
suffering from dementia, 39% were misclassified. Flett, Vreden- 
burg, and Krames (1995) found in their study that 40% of those 
who were initially classified as depressed on the Beck Depression 
Inventory were no longer depressed after retesting. Furlong 
and Feldman (1992) noted that regression toward the mean ac- 
counts for many misclassifications of children with learning dis- 
abilities. 

We can ask the related but more relevant question: given that 
a person scores 2 or more standard deviations above the mean on 
one test, what is the probability that the person’s true score is 2 
standard deviations or more above the mean? The true score is the 
average of all possible scores that the person could receive. Again 
assuming multivariate normality and retest correlations of .80, that 
probability is .58. Given this result, a large percentage of people 
who are classified as gifted, learning disabled, or clinically at risk 
have been improperly classified given that being 2 standard devia- 
tions above or below the mean is the definition. Unreliability of 
measurement implies regression toward the mean, which in turn 
implies misclassification. Extreme scores do not likely remain ex-
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treme very long. The folk wisdom is correct: “When you are at the 
top, the only way is down.” 

Having two tests that are both extreme increases the probabil- 
ity of correct classification, but it does not totally eliminate the 
problem of misclassification. Consider three tests that all correlate 
with each other at .80. If a person scores 2 or more standard devia- 
tions above the mean on two tests, what is the probability that he 
or she will score 2 or more standard deviations above the mean on a 
third test? Given multivariate normality, this probability is .63. The 
probability that the true score is greater than 2 standard deviations 
above the mean if two tests are both greater than 2 standard devia- 
tions above the mean is .86. So, although having two extreme 
scores increases the probability of a correct classification, it does 
not guarantee it. 

Psychometricians have long recognized that the expected 
score, given the observed score, is not as extreme as the observed 
score. As already discussed in Chapter 2, they have developed the 
true-score estimate (Cronbach et al., 1972). What the estimate 
does is predict what the score would be if regression toward the 
mean is accounted for. The formula is rx(X — Mx) + Mx where rx is 
the reliability of measure X. To be able to compute true-score esti- 
mates, previous research must be done so that rx and My are 
known. However, this is likely the case if the test is being used for 
classification purposes. So, for instance, if one’s score is 2 standard 
deviations above the mean and the reliability is .75, then the esti- 
mated true score is .75 x 2.0, or 1.5. The person changes from the 
98th percentile to the 93rd percentile. With shrinkage, it can be 
very difficult for a score to be extreme. Note that if ry is 0, everyone 
is predicted to be at the 50th percentile. Unlike those folks at the 
mythical Lake Wobegan, where everyone is above average, here 
everyone is predicted to be average! 

So, if one is classified “at risk” on the basis of a test, one should 
ask for the estimated true score, not the raw score, when the test re- 
sult is presented. This corrected score provides a more realistic 
measure of the extremity of one’s score. 

Does regression toward the mean imply that we should not use 
tests to classify people? Certainly tests should be used, and when 
properly interpreted they provide essential information. However, 
we should realize that they are fallible. Extreme scores are never 
quite as extreme as they appear. 

The more cynical among us might suspect that certain profes- 
sionals have a vested interest in creating a large group of people
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who appear to be at risk though they are really not; so these profes- 
sionals develop a criterion that overdefines the number “needing 
help” to provide employment for those in their profession. A more 
benign interpretation is that funding sources are unwilling to pro- 
vide assistance unless someone is deemed to be severely at risk. Ser- 
vice providers assure the funding sources that only the very needy 
are being served (the bottom or top 2.5%), whereas in actuality the 
group is not as extreme as it might appear. 

We return to the question of regression toward the mean and 
its role in prediction in Chapter 10. We see again that shrinkage is 
an important tool in making accurate predictions. 

CONCLUSION 

If a subsample of a population is selected, it may appear that the 
group is changing over time; however, that change may not be due 
to an intervention but rather to regression toward the mean. Even 
if the sample is randomly selected from the population, there is still 
regression toward the mean. Random samples have the desirable 
feature of their means being relatively near the population mean 
and so there is less regression toward the mean—but there still is 
some regression. 

It may happen that regression toward the mean may obscure 
the benefits of a successful program. That is, if a group of individu- 
als are above the mean and they are benefiting from the program, 
they might appear not to be changing at all. Conversely, the harm- 
ful effects of an intervention may be missed if the change due to re- 
gression toward the mean counteracts it. 

Regression toward the mean is only one of several plausible 
rival hypotheses of change over time. History, maturation, instru- 
mentation, and testing (see the Glossary of Terms for definitions of 
these rival hypotheses) are potentially plausible explanations of 
“change.” However, regression toward the mean is perhaps the 
most pernicious plausible rival hypothesis because it is universal. 
The attribution of change in interventions is a very perilous process 
when the pre—post design is used. Randomized experiments have 
much to recommend them because they eliminate regression to- 
ward the mean as a plausible rival hypothesis. 

In sum, causal inferences from the pre—post design are prob- 
lematic. Even if we know that history, testing, and maturation hy- 
potheses are implausible, in the absence of random selection regres-
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sion toward the mean is a plausible explanation of the intervention 
effect. Only when the population parameters of the distribution are 
known can statistical corrections for regression toward the mean be 
made. 

In the next two chapters, the design that we consider has a 
control group. We see that even with a control group, regression to- 
ward the mean still creates major interpretive problems.



  

  

Regression Artifacts 
Due to Matching 

We saw in the last chapter that it is problematic to examine how a 
group of persons changes over time and then attribute that change 
to an intervention. The actual cause of that change may be regres- 
sion toward the mean. So, regression toward the mean is a plausible 
rival hypothesis in the pre—post design. In this chapter, we consider 
a second design that also has regression toward the mean as a plau- 
sible rival hypothesis: the nonequivalent control group design! 
with matching. In this type of study, there is a control group, which 
consists of untreated persons, and the pretest is used to “equate” 
groups by matching on that variable. 

In this chapter and the next, we usually assume that persons are 
not randomly assigned to groups. So, if we were to compare the treat- 
ment and control groups on the outcome and were to obtain a dif- 
ference in the means between the two groups, we would not know 
whether that difference was due to the intervention or whether it 
was due to the nonrandom assignment of persons to groups, what 
Campbell and Stanley (1963) called selection. Because of this plausi- 
ble rival hypothesis of selection, the researcher attempts to adjust for 
selection using a second variable called a covariate. Two related 
strategies are used to adjust for the difference between groups on the 
covariate: matching and statistical equating. This chapter discusses 
matching, and Chapter 5 discusses statistical equating. 

  

'We prefer the older and somewhat misleading name for this design of non- 
equivalent control group design to the more modern name of nonequivalent groups 
design (Cook & Campbell, 1979). 

53
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In matching, persons in the treatment and control groups who 
have the same score on the covariate or matching variable are in- 
cluded in the analysis. Those who do not have the same score (per- 
sons for whom there is not a match) are discarded from the analy- 
sis. In this way, the researcher artificially creates “equivalent” 
groups. In this chapter, we assume that the matching is on a pretest, 
but in many cases the matching is on some other variable which is 
categorical (e.g., ethnicity). Also sometimes a multivariate match 
is obtained; for example, persons are matched on age, ethnicity, 
gender, and motivation. 

When matching is usually discussed, it is presented in terms of 
matching one individual in the treatment group with another indi- 
vidual in the control group; that is, there is a one-to-one matching. 
A much more practical approach is to identify all of those persons 
who have the same score on the matching variable in the treat- 
ment and control groups. In this case, there is a many-to-many 
matching. 

Matching can be done prospectively or retrospectively; that is, 
the match can be obtained before the intervention is delivered 
(prospectively) or afterward (retrospectively). Most typically, 
matching is done retrospectively. However it is conducted, match- 
ing almost always results in some loss of data. Matches for some 
treated and control participants cannot be found. Usually it is ad- 
visable to have many more control units than treated units in order 
to match successfully all of the treated units. 

The logic of matching is straightforward. Persons are not ran- 
domly assigned to groups, and so the groups are not equivalent. The 
researcher makes the groups exactly equivalent on the matching 
variable so that the groups are more comparable on the outcome 
measure. The danger of matching is that although the scores are 
more equivalent due to matching, it is unlikely that they are exact- 
ly equivalent. Thus, matching achieves more the illusion of equiva- 
lence than the reality. 

Although we do not recommend matching of individual 
scores, we do recommend something that might be referred to as 
group matching. In selecting a control group, the researcher should 
try to find a group of persons who are demographically and experi- 
entially as similar to the treatment group as possible. So, if persons 
in the treatment group are children who attend a suburban high 
school, then the control children should also be from a suburban 
school. We would not use children who attend an urban school as 
controls. 

Matching with random assignment results in unbiased esti-
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mates of treatment effects. In this situation, persons are first 
matched (prospective matching) and then randomly assigned to 
treatment conditions. Although some early simulation studies 
seemed to show that matching (called blocking in an experimental 
context) is superior to statistical equating (discussed in Chapter 5), 
work by Maxwell, Delaney, and Dill (1984) has clarified the com- 
parison. When the assumptions of statistical equating hold, it is a 
more powerful statistical technique than matching. 

In the analysis of matched data it is necessary to include the 
matching variable as a variable in the statistical analysis. Failure to 
do so would result in a loss of power (Chen, 1967), and so matching 
when improperly done may lead to too many Type II errors.” 

DETAILED ILLUSTRATION OF THE LIMITS OF MATCHING 

We present here a considerable update of Campbell and Boruch’s 
(1975, pp. 213-222) and Campbell and Erlebacher’s (1970) presen- 
tation of regression artifacts due to matching. The reader may wish 
to compare the discussion in this chapter with those articles. Also 
Furby (1973) presented an extended and clear discussion concern- 
ing the limits of matching. 

Figure 4.1 sets up the hypothetical case of two elementary 
schools with student populations that differ in ability where the 
treatment is being given to the less able student population and the 
other group is used as the control. Presented in Figure 4.1 are the his- 
tograms for the two groups at (A) the pretest and (B) the posttest. 
The treatment group’s histogram is denoted by the darker boxes, and 
the control group’s by the lightly shaded boxes. As shown in the fig- 
ure, the mean difference between the two groups and the variance 
within each group remain essentially the same on the pretest as on 
the posttest. In simulating this example, we used the rolls of four 
dice, a method described in Chapter 1 and Appendix A. We used 
the sum of four dice to create 500 treatment participants, and the 
sum of four dice with a 4 added for the 500 controls. Posttest scores 
contained two of the dice from the pretest rolls and two new dice. 
The sample sizes are much larger than in most quasi-experiments, 
but we want to reduce the role of sampling error in the presentation. 

  

2\We assume that matched units are more similar to one another than are units 

that are unmatched. Very rarely it happens that matched units are more dis- 
similar, and in this situation some of our conclusions would need to be re- 

versed.
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the pretest and (B) the posttest.
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Given the parameters of the simulation, the theoretical mean 
of the lower or treated group was set to 14 at both times and to 18 
for the control group. We built into the simulation that the treated 
group scored less than the control group. The theoretical standard 
deviation is 3.42 for both groups and times. The theoretical size of 
the gap between groups is 4 units at both times; in terms of stan- 
dard deviation units, the difference is 4/3.42, or 1.17. given that 
Cohen (1988) defined .8 as a large effect size, this is then a very 
large difference. We created a somewhat unrepresentative example 
to illustrate our points more sharply. A .5 correlation and regression 
coefficient was built into both samples. The statistics from the sam- 
ple data differ slightly from these theoretical values and are pre- 
sented in Table 4.1. That table shows again that the difference be- 
tween the groups at both the pretest and the posttest is about 4 
points. The same data set is used again in Chapter 5. (These two 
data sets can be obtained following the instructions in Appendix 
A.) 

Figure 4.2 presents the data from the treatment group in a 
scatter plot. The parallel diagram for the control group is in Figure 
4.3. Recall that an asterisk symbolizes 10 or more data points. For 
the moment, ignore the box in each diagram. Both diagrams show a 
positive correlation. 

Given only this evidence, one conclusion would be that the 
hypothetical treatment given to the treatment group has absolutely 
no effect whatsoever. There is about a 4-point difference at both 
time points. The status of the two groups, both relative and ab- 
solute, is the same on posttest and pretest. Although this conclu- 
sion involves assumptions that we elaborate in the next chapter, it 
is the correct conclusion, in that it was built into the simulation. 

TABLE 4.1. Basic Statistics for the Example 
  

  

  

Group 

Control Treatment 

Pretest 

Mean 18.21 14.20 

SD 3.66 3.32 

Posttest 

Mean 18.10 14.29 

SD 3.54 3.41 

Correlation 55 49 
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FIGURE 4.3. Scatter plot of pre- and posttest for the control group (aster- 
isk indicates 10 or more observations).
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In contrast to this conclusion, several seemingly more sophis- 
ticated approaches, matching and statistical equating, produce sta- 
tistically significant effects—actually pseudoeffects! Although the 
true effect is 0, both matching and statistical equating yield effect 
estimates of about —2.0. We attempt to illustrate this result in intu- 
itive detail in the case of matching in this chapter and statistical 
equating in Chapter 5. 

Let us consider a rationale for matching: one should be both- 
ered by the conspicuous pretest dissimilarity between the treatment 
and control groups of 4 points and feel that this dissimilarity made 
them essentially not comparable. It might be noted that despite 
this overall noncomparability, the two groups did overlap and must 
therefore contain comparable cases. This would suggest basing the 
quasi-experimental comparison not on the whole data set but only 
on subsets of cases matched on the pretest. Because there is overlap 
in the distribution, we can match scores that are the same at both 
times. So we are adopting a many-to-many matching strategy. Con- 
sider the scores that are 16, as they are on the boundary between 
the two distributions. There are 48 such scores in the control group 
and 49 scores in the treatment group. 

Figure 4.4, a partial pair-link diagram, shows what happens to 
the two sets of 16’s: Figure 4.4A presents the data from the treated 
units; Figure 4.4B, the data from the controls. Each of the two puri- 
fied, compact, and matched subgroups on the pretest spreads out 
widely on the posttest, although each remains within the bound- 
aries of its own group distribution. Because the subgroups on the 
posttest are no longer as pure, extreme, and compact as they were 
on the pretest, their means are being pulled toward the mean of 
their respective whole-group distributions. The posttest means are 
denoted by the wider lines. The control group scores are regressing 
up to 16.90, and the treatment group scores are regressing down to 
15.12. The result is a separation of nearly 2 points in posttest means 
for the matched groups, which has often been mistaken for a treat- 
ment effect. Using the terminology of Campbell and Stanley 
(1963), we conclude that the plausible rival hypothesis of a match- 
ing study is selection by regression. 

We can see the gap between the matched scores when we ex- 
amine the overfitted regression lines in Figure 4.5. Recall from 
Chapter 1 that the overfitted line is obtained by averaging scores 
on the posttest for each possible score on the pretest. We have 
computed these overfitted lines for both the treatment and the 
control groups. Consider a particular pretest score, say, 16, and note 
that the controls outscore the treated units on that measure at the
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posttest: 15.12 for the treated group and 16.90 for the control 
group. Matching indicates a “treatment effect” of 15.12 — 16.90, or 
—1.78. 

Not everyone in the sample can be matched. For the example 
data set, there is considerable overlap in the distributions and most 
of the scores can be matched. However, those scoring 23 and above 
in the control group and 8 or below in the treatment group cannot 
be matched. A total of 62 controls and 18 treated units cannot be 
matched. 

With matching we get numerous measures of the “treatment ef- 
fect,” one for each set of matched pretest values. Each of these is in- 
dicated by the vertical distances between the two lines in Figure 4.5. 
Table 4.2 presents the different estimates of the treatment effect for 
each pretest score for which there are both experiential and control 
scores. The reader should try to find the estimates in Table 4.2 that 
correspond to the vertical distances in Figure 4.5. We see that the es- 
timates range from .44 to —5.80, with the median estimate being 
—1.75. To get an overall estimate of the intervention effect across all 
values of the matching variable, these individual effects are averaged 
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FIGURE 4.5. Overfitted regression lines using the pretest to predict the 
posttest.
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TABLE 4.2. Posttest Means for Each Score on the Pretest 
  

    

  

Treated Control 

Score  Posttest mean n Posttest mean n Estimate 

4 10.00 1 0 

5 12.00 l 0 

6 12.00 4 0 

7 10.00 7 0 

8 10.60 5 0 

9 11.20 25 17.00 2 —5.80 

10 12.62 21 14.00 3 —1.38 

11 13.30 30 12.86 7 44 

12 13.05 62 14.08 12 —1.04 
13 13.54 59 15.25 24 -1.71 

14 13.98 52 15.97 35 ~1.99 

15 14.50 62 16.46 46 —1.96 

16 15.12 49 16.90 48 -1.77 

17 15.86 35 17.59 41 —1.73 

18 16.85 33 17.63 46 —.78 

19 16.77 26 19.23 53 —2.46 

20 17.47 15 19.48 40 —2.01 

21 16.29 1 18.88 43 —2.60 

22 18.67 6 20.13 38 —1.46 

23 0 20.24 21 

24 0 21.21 19 

25 0 21.36 11 

26 0 23.29 7 

2/1 0 25.00 1 

28 0 22.00 3 
  

in a statistically optimal fashion using analysis of variance. Because 
with matching we get many estimates of the treatment effect, we 
could allow for a treatment by matching variable interaction. It 
looks in Figure 4.5 as if the gap between the lines is less when the 
pretest is smaller. This effect is only apparent and not real. When we 
test for the treatment by matching variable interaction, the effect is 
not statistically significant [F(13,892) = .84]. 

Using the analysis of variance and treating the matched scores 
as a blocking variable, the estimate of the treatment effect is —1.73 
and is highly statistically significant [t(905) = 7.90, p < .001; inter- 
action set to 0]. Given how the simulation was created, the match- 
ing estimated “treatment effect” should be —2.00. Due to sampling 
error, there is some underestimation. Regardless, using matching re- 
sults in the mistaken conclusion that the treatment is harmful.
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Figure 4.6 presents the time-reversed overfitted regression 
lines for the treatment and control groups. In the figure, the 
posttest is used to predict the pretest. If Figure 4.6 were rotated 
clockwise 90 degrees, the pattern shown would be virtually identi- 
cal to that in Figure 4.5. If we treat the pretest as the posttest and 
the posttest as the pretest, the “treatment” appears to look harmful. 
By reversing the flow of time we reach the same mistaken conclu- 
sion. In Chapter 10, we exploit the fact that time reversal can be 
used to detect regression artifacts. 

The Galton squeeze diagram, introduced in Chapter 1, makes 
the bias in matching even more apparent. Recall that a Galton 
squeeze diagram is based on a pair-link diagram. Each point in a 
scatter plot becomes a line connecting the two vertical lines, the 
pretest and the posttest. In the Galton squeeze diagram, the lines 
are averaged on the posttest for each pretest value. Figure 4.7 pre- 
sents a combined Galton squeeze diagram for the two groups. We 
have graphed only those scores for which there are at least 15 per- 
sons in both groups. The control group data are shown by dotted 
lines and the treatment group by the solid lines. It shows the diffi- 
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FIGURE 4.6. Overfitted regression lines using the posttest to predict the 
pretest.
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FIGURE 4.7. Galton squeeze diagram (pretest predicting posttest): solid 
lines, the treated group; dotted lines, the control group. 

culty with matching. If the reader measures the divergence of 
matched pretest scores on the posttest, the difference tends to be 
about 2 points. Look carefully at the left side of Figure 4.7. The 
control group (the dotted lines) almost always outscores the treat- 
ment group. 

Thus, the Galton squeeze diagram gives the same answer as 
the analysis of the scatter plot. The two groups are regressing to dif- 
ferent means. So the matched control group scores are improving 
and the matched treatment group scores are declining. As was also 
shown in the scatter plot, the average difference between “equiva- 
lent” pretest scores on the posttest is about 2 points. 

Figure 4.8 presents the Galton squeeze diagram using the 
posttest to predict the pretest. In essence, we are treating the 
pretest as the posttest and the pretest as the posttest. As in Figure 
4.7, the control means are indicated by dotted lines and the treated 
group means by solid lines. To reduce the noise in the figure, we 
have included only those posttest scores where there are at least 15 
persons in each group. This backward Galton squeeze diagram is 
the mirror image of the diagram in Figure 4.7. Looking from right 
to left, the matched control group scores are “improving” and the
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FIGURE 4.8. Time-reversed Galton squeeze diagram (posttest predicting 
pretest): solid lines, the treated group; dotted lines, the control group. 

matched treatment group scores are “declining.” It would seem dif- 
ficult to argue that matching truly makes the groups equivalent. 

DIRECTION OF BIAS 

It is possible to forecast the likely degree of bias due to matching. 
This topic is discussed much more extensively in the next chapter, 
but in this section we anticipate some of those findings. 

We begin with the data that were discarded in the matching 
process—those for whom there were not successful matches. (If all 
persons are matched in one of the groups, then we simply use the 
data from all persons, both matched and unmatched, to compute 
the means described below.) We locate those treated units and 
those control units for whom there were not successful matches. 
We scale the matching variable, the pretest for the example, so that 
its correlation with the outcome variable is positive. Next we com- 
pute the mean difference between the treatment and control 
groups of the unmatched scores on the matching variable. If this 
difference is positive, meaning that the treated group outscores the
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control group, then the likely case is that the treatment effect is 
overestimated. However, if the mean difference is negative, mean- 
ing that the control group scores higher than the treated group on 
the matching variable, then the likely direction of bias is that the 
treatment effect is underestimated. So, for the example, the pretest 
mean of the unmatched controls is 21.24 and the pretest mean of 
the unmatched treated units is 10.72. Thus, the likely (and in fact 
correct) direction of bias is negative. Matching results in an under- 
estimate of the treatment effect. Because the treatment effect is 0, 
underestimation mistakenly makes the treatment look harmful. 

Although the procedure that we suggest usually yields the cor- 
rect conclusion, it is nonetheless possible to construct cases in 
which it is not. The limitations of this simple rule are discussed in 
the next chapter. Despite these limitations, we still feel that what 
we suggest is generally correct. In nonrandomized research, howev- 
er, there is no absolute guarantee, even when sample sizes are large. 

So the key data from a matching study are the scores of those 
who are not matched. What usually gets thrown away and ignored 
is critical information in a matching study. In every matching study 
of which we know, there is no report concerning this essential in- 
formation. If matching is done (something we are very suspicious 
of), we strongly recommend that this information be presented and 
featured in the discussion of the results. As we discuss in Chapter 
10, researchers need to know what is the likely direction of bias of 
the statistical methods that they employ. 

CONCLUSION 

Matching on a variable necessarily but artificially makes the groups 
equivalent. That equivalence is more of an illusion than a reality. 
Although matching can partially equate for the bias due to selec- 
tion, it is typically only partially successful. 

The likely direction of bias given matching can be determined 
by an analysis of scores that were not matched. If matching is used, 
the investigator should calculate and report this likely direction of 
bias, something that is hardly ever done. 

It should be noted that the direction of bias is exactly opposite 
for the pre—post design and the nonequivalent control group design 
with a control group. In the pre—post design, ignoring regression to- 
ward the mean leads to pseudo-treatment effects for compensatory 
programs and underestimates for anticompensatory programs. Just 
the very opposite occurs with matching, and as we extensively
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show this same “effect” with statistical equating in the next chap- 
ter. The problem in the pre—post design is that regression toward 
the mean usually is ignored, which results in bias. However, in the 
nonequivalent control group design, the degree of regression to- 
ward the mean is overestimated when matching is used. 

In the next chapter, we consider statistical equating, which is, 
in essence, only a more complicated version of matching. One 
problem with matching is that many cases might have to be dis- 
carded. With statistical equating, all of the cases can be used. How- 
ever, regression artifacts plague statistical equating as much as they 
plague matching. From the perspective of this primer, both of these 
techniques make the same mistaken assumption.



  

Regression Artifacts 
Due to Statistical “Equating” 

Matching requires that members of the treatment and the control 

groups score exactly the same on the matching variable. Statistical 

equating is like matching, but scores that cannot be matched can 

still be used. For instance, if someone in the treatment group 

scores 20 on the matching variable, there may be no controls who 

score 20. In addition, exact matching is difficult, if not impossible, 

when the treatment variable has many levels (e.g., the number of 

hours of treatment), though caliper or approximate matching is 

possible. 
Statistical equating has the advantage that it uses all of the 

data and multilevel treatments do not present analytic difficulties. 

By using linear approximation, a prediction can be made concern- 

ing what the treatment and the control participants would score 

on the posttest. In matching, a degree of freedom is lost for each 

value of the pretest on which matching is done. Because statistical 

equating assumes linearity, it can be more efficient than matching 

(Maxwell et al., 1984). Despite these advantages of statistical 

equating over matching, the logic of the two methods is essential- 

ly the same. In essence, matching uses the overfitted line to make 

predictions, whereas statistical equating uses the regression line. 

Statistical adjustment can (but probably never should) be used 

when the distributions of the two groups do not overlap. So, for in- 

stance, one might use preschool children as “controls” for an evalu- 

ation of a program for high school children. For such data, match- 

ing is impossible but statistical adjustment can be accomplished. 

This case is a linear extrapolation, whereas in the case in which 

68
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there is overlap is a linear interpolation. Obviously linear extrapo- 
lation is a most perilous endeavor.! 

Statistical equating has become so common that many re- 
searchers do not even realize that they are using the method. This 
chapter makes explicit the limits of the procedure. We hope that 
the reader will view analyses of quasi-experimental evaluations that 
use equating very differently after reading this chapter. 

The variables used to equate groups are commonly called co- 
variates. It is usually assumed that the relationship between the out- 
come and each covariate is linear, or a straight line. The linearity 
assumption should be tested; if nonlinearity is found, more complex 
relationships between the covariate and outcome should be esti- 
mated. To simplify the presentation in this chapter, the covariate is 
a pretreatment measure of the outcome and its relationship with 
the outcome is linear. Moreover, we assume that the slope of the re- 
lationship between the covariate and the outcome is the same in 
both groups (i.e., the covariate does not interact with the treat- 
ment variable). 

We do not review the statistical details for making statistical 
adjustments, as they are presented in most statistics textbooks. Cur- 
rently, the most common way to conduct such an analysis is 
through multiple regression. The covariates and the treatment vari- 
able are entered as variables in a regression analysis. An older alter- 
native analysis is an analysis of covariance, or ANCOVA, and some- 
times researchers compute partial correlation and residualized 
change score analysis (see Chapter 6). These methods are essential- 
ly identical to multiple regression. The advantages of multiple re- 
gression are that it is the most general method, it provides a direct 
estimate of the intervention effect, and there is no need to make 
complicated adjustments for the loss of degrees of freedom. 

Sometimes covariates are included in the analysis to increase 
power. However, the primary use of covariates in nonrandomized 
research is to improve the internal validity of conclusions, that is, 
to rule out the plausible rival hypothesis of selection. Very often 
the inclusion of covariates in the analysis of nonrandomized de- 
signs actually lowers statistical power, especially when there is little 
overlap in the distributions. 

As previously mentioned, we generally assume in this chapter 

  

‘As we discuss later in the chapter, the distributions do not overlap in the re- 
gression discontinuity design, yet this design has internal validity.
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that the covariate is a pretreatment measure of the outcome. Thus, 
the covariate can be called a pretest and the outcome a posttest. A 
pretest—posttest design with a control group is called the nonequiva- 
lent control group design and is the most common quasi-experimental 
design. Moreover, statistical equating is probably the most common 
form of statistical analysis for this design. 

LOOK AT THE “TREATMENT EFFECT” 
ON THE COVARIATE 

It is important, but all too rarely done, to measure the difference 
between treatment groups on the covariate. This seemingly non- 
sensical analysis essentially treats the covariate as if it were the out- 
come by seeing if there is a “treatment effect” before the interven- 
tion is administered. It is absolutely essential to know the direction 
of the difference between groups on the covariate to be able to pre- 
dict the direction of bias in the analysis of the outcome. 

Sometimes there is more than one covariate. In such cases a 
mega-covariate is computed from the regression equation for the 
outcome. Within that equation, there are a sum of terms that are 
used to predict the outcome (e.g., b;X, + b)X + b3X3, where Xj, 
X,, and X3 are covariates) controlling for the treatment variable 
and that composite would then be used as the single covariate for 
the analysis described in this section. 

Rosenbaum and Rubin (1983) have proposed the use of 
propensity scores that can be viewed as a form of a mega-covariate. 
However, in the analysis that they propose, the covariates are com- 
bined to explain the treatment variable, not the outcome. One 
then matches control and treated units on these derived propensity 
scores. We urge treating the propensity score as a mega-covariate to 

determine the direction of bias by the method that we describe be- 

low. 
How to determine the direction of bias is discussed later in 

this chapter, but we can briefly summarize the results of that discus- 
sion here. First, we need to scale the outcome and the covariate. 
Normally the treatment’s goal is to increase the score on the out- 
come. However, if the goal were to reduce the score (e.g., reduce 
addiction), then we would reverse the outcome. Second, the co- 
variate (or mega-covariate) is scaled to correlate positively with the 
outcome variable when the treatment variable is controlled. If the 
“treatment” difference on the covariate is negative (the control 
group mean is greater than the treatment group mean), we refer to
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the program as compensatory, and if the difference is positive (the 
treated units outscore the controls), we refer to the program as anti- 
compensatory. This empirically based definition of “compensatory” 
may conflict with the political or philosophical definition of the in- 
tervention. For instance, a program could be designed as compen- 
satory with the goal of helping those who are disadvantaged, but 
the evaluation may use as a control group those who are even far- 
ther behind. So the evaluation study would be anticompensatory 
even though the program was designed to be compensatory. 

We can now state the likely direction of bias for statistical 
equating as well as matching. If the program is compensatory, the 
effect of the program is likely underestimated. If the program is an- 
ticompensatory, the effect of the program is likely overestimated. 
The rational for this rule is presented later in this chapter. 

It may happen that there is little or no difference between the 
treatment and control group means on the covariate. By little or no 
difference, we mean not only no statistically significant difference 
but also that the estimated effect size of the difference is very small. 
If this was to happen and matching was not used, the finding of no 
difference would be an important fact that would deserve promi- 
nence in the discussion of the internal validity of the evaluation. If 
there were a very small difference between treatment groups on the 
covariate, the problems with statistical equating discussed in this 
chapter would likely be minimal. Matching tries to make the 
groups exactly the same on the covariate by discarding a good deal 
of the data to make it seem as if there is no difference on the co- 
variate. As was explained in Chapter 4, matching creates the illu- 
sion, not the reality, of group equivalence. 

ILLUSTRATION OF THE BIAS IN STATISTICAL EQUATING 

In this section, we show that the problems that we found in Chap- 
ter 4 also apply to statistical equating. We present an intuitive ex- 
planation of how the method of statistical equating works. We shall 
see that despite its statistical sophistication, statistical equating is 
very similar to matching. 

Earlier, we created a quasi-experiment in which the same per- 
sons were measured at two times. We use in this chapter the same 
data that we used in Chapter 4. To review, four dice are rolled, as 
described in Chapter 1. To compute a pretest score, we sum four 
dice to create 500 treatment participants and then sum four dice 
with a 4 added to the scores of the 500 controls. To compute the
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posttest, we save two of the pretest dice and roll two dice and again 
we add four to treatment participants’ scores. Thus, the mean of the 
lower or treated group is set at 14 at both times and 18 for the upper 
or control group. The standard deviation is 3.42 for both groups 
and times. The theoretical size of the gap at both times is 1.17 stan- 
dard deviation units. The basic statistics are presented in Table 4.1. 
(How the full data set can be accessed is described in Appendix A.) 

We first look at the pretest difference and see that it is -4.01, 
which is a very large difference. Because the difference is negative 
(the controls outscore the treated units), the intervention is said to 

be compensatory. 
We first fit parallel regression lines that are shown in Figure 

5.1. The pooled slope equals .519 (very close to the theoretical val- 
ue given the parameters of the simulation of .5). The measured dif- 
ference in elevation between the two regression lines (the vertical 
distance) is a measure of the treatment effect. The method of statis- 
tical equating uses the regression slope within groups to forecast the 
change between the different treatment groups. Because the lines 
are parallel, the vertical distance between the lines is the same for 
all values of the covariate. Using multiple regression, the estimate 
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FIGURE 5.1. Parallel regression lines for treatment and control groups 
fitted by statistical equating (multiple regression).
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of the “treatment” effect is -1.72 and is highly statistically signifi- 
cant [t(997) = —8.00, p < .001]. This estimate is virtually identical 
to the estimate that we obtained from matching (presented in 
Chapter 4). Due to sampling error, it is, however, slightly less than 
the theoretical value of —2.0. 

In this simulation, the true treatment effect was set to 0, but 
statistical adjustment would have produced an “effect” of nearly 2 
units, about the same as matching but perhaps more misleading 
than matching because all of the data were used (rather than just 
the matched cases). 

Ironically, statistical equating fails because it takes too seri- 
ously the problem of regression toward the mean. The method be- 
gins with a 4-point difference between the two groups at the 
pretest. Given regression toward the mean and the fact that the 
variances are the same at both times, a naive view of regression to- 
ward the mean is that the gap between groups should narrow. If 
the two groups were nonrandom samples from one population, 
then the regression toward the mean would imply that the gap be- 
tween groups should narrow. However, the groups are not drawn 
from the same population. Because they are drawn from two differ- 
ent populations with two different means, they are not regressing 
to the same mean. So, given how the simulation was constructed, 
the expectation is that the gap between groups should not widen 
over time. 

A little mathematics might improve comprehension here. In 
our simulation, we assumed that the means and the variances are 
stationary over time. The formula for the degree of regression to- 
ward the mean from Table 2.1 in Chapter 2 is 

M + r(X —M) 

where M is the overall mean of the pretest and the posttest, and r is 
the correlation between pretest and posttest, pooled within groups. 
If we take this formula and apply it to both the treatment group and 
the control group and then subtract, we have 

(Mr — Mc) 

which equals the forecasted posttest difference. Given that the ac- 
tual difference is Mr — Mc, the bias in the statistical equating 
method for the simulation example equals 

(1 —r)(My— Mc)
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The weaker the correlation between the pretest and the posttest, 
the greater is the bias in statistical equating. Note that in the above 
example Mr — Mc equals —4.00 and r equals .5, making the bias 
equal to —2.00, very near the estimated value of -1.72. 

DIRECTION OF BIAS 

Some sort of statistical equating is necessary because the groups are 
not randomly formed, and so it is reasonable to expect the means to 
differ even were there no treatment effect. The fundamental plausi- 
ble rival hypothesis is that of selection. Any mean difference in the 
outcome is due to two different sources: selection and a treatment 
effect. When we adjust the outcome using the covariate (i.e., statis- 
tically “equate”), we attempt to remove the effect of the selection 
component in the outcome. 

Figure 5.2 illustrates what usually happens when statistical 
equating is used. Unlike what we did in the simulation example, we 
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FIGURE 5.2. Illustration of effects of underadjustment for anticompen- 
satory (left diagram) and compensatory programs (right diagram) on mean 
difference on the outcome between the treatment and control groups 
(represented by the dashed line); the total effect (the selection plus treat- 
ment effect) is the same for the true effect and the estimated effect.
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allow for a real treatment effect in the data. Each of the two graphs 
in Figure 5.2 contains the posttest difference between group means 
partitioned into two parts: the treatment effect (the dark box) and 
the selection effect (the lightly shaded box). For both graphs, the 
mean difference between treatment and control groups on the out- 
come variable is designated by the dashed horizontal line. For the 
graph on the left, the effects of selection and treatment are in the 
same direction. This would be an example of an anticompensatory 
program: those who are already advantaged, or perhaps deserving, 
are given a program to help them (e.g., gifted education). For the 
graph on the right of Figure 5.2, the selection and treatment effects 
are in the opposite direction. The treatment effect is indicated by a 
lightly shaded box. This is an example of a compensatory program. 

Although researchers are always hopeful that adjustment is 
successful, the likely effect of statistical equating is underadjust- 
ment; that is, the size of the estimated selection effect using the co- 
variate is smaller than the true selection effect. The justification of 
this expectation is presented below; for the moment, we consider 
just the effects of this underadjustment, as illustrated in Figure 5.2. 
For the evaluation of anticompensatory programs, programs in 
which the treated units outperform the controls, there are overesti- 
mates of effects. To see this, consider the left diagram in Figure 5.2. 
Underadjustment results in an underestimate of the selection effect 
and an overestimation of the treatment effect. 

The right diagram in Figure 5.2 illustrates the effect of under- 
adjustment for compensatory programs—programs in which the 
controls outscore the treated units on the pretest. Because selection 
effects are underestimated, the treatment effect is underestimated. 

It is theoretically possible for overadjustment? to occur: the se- 
lection piece of the posttest is overestimated. When this happens, 
the effects of compensatory treatments are overestimated and anti- 
compensatory treatments are underestimated. However, we believe 
that overadjustment is atypical for reasons that we now elaborate. 

Although statistical equating is likely to produce a less biased 
estimate of the treatment effect than not adjusting at all, it usually 
does not fully equate the groups. The reasons for this chronic un- 
deradjustment are relatively complex, and so we must explain them 
in some detail. The fundamental reason for bias in the estimate of 
the treatment is the failure to measure and control for the variable 

  

*Campbell and Erlebacher (1970) were mistaken in their claim that the un- 
deradjustment always occurs. We are grateful to Lee J. Cronbach, who per- 
suaded both of us that we were wrong.
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that is used to assign persons to treatment groups. Judd and Kenny 
(1981) refer to this variable as the assignment variable, and other 
discussions of this issue refer to the omitted variable problem. 

Let us first imagine that the covariate is the assignment vari- 
able. So, for instance, persons might select themselves into a drug- 
treatment program based on their motivation to no longer be ad- 
dicted: the more motivated enter the program. However, the 
measure of motivation inevitably contains errors of measurement, 
and measurement error in the covariate almost always results in un- 
deradjustment (for the exceptions see the discussion below on 
when equating works; see also Cappelleri, Trochim, Stanley, & Re- 
ichardt, 1991). What measurement error in the covariate does is to 
lower the slope or steepness in the effect of the covariate on the 
outcome. Measurement error in the covariate is said to attenuate re- 
gression slopes. The reader should examine Figure 5.1 again and 
this time imagine the slopes being steeper (remembering to keep 
the slopes going through the point {Mx, My} in each group). It can 
be seen that the gap between the two lines narrows. The presence 
of measurement error results in an overestimation of the treatment 

effect for anticompensatory programs and underestimation of com- 
pensatory programs. 

Various methods for accounting for the biasing effects of mea- 
surement error have been developed. One method is to correct the 
slope by what is called a correction for attenuation: the slope is di- 
vided by the reliability of the covariate? Another method is to 
compute estimated true scores, using a formula very similar to the 
one that we developed in Chapter 2. The details of this approach 
are described in Reichardt (1979) and Judd and Kenny (1981). 

The most common approach to measurement error in a pre- 
dictor variable is to have multiple measures of the covariate and so 
the covariate is treated as a latent variable. A structural equation 
modeling program (AMOS, CALIS, EQS, or LISREL) is then used 
to remove the biasing effects of measurement error. 

We can understand the biasing effects of measurement error in 
terms of regression toward the mean. The covariate is used to pre- 
dict the outcome, and prediction always involves regression toward 
the mean; the degree of regression is, in essence, measured by the 
correlation between the covariate and the outcome. However, the 

  
3Other corrections to the slope have been proposed (see Reichardt’s common- 
factor correction in Cook & Campbell, 1979); however, as we discuss later, 
these corrections are more simply understood as variants of change score 
analysis.
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measurement error in the covariate artificially lowers the correla- 
tion between the covariate and the outcome, and so the degree of 
regression toward the mean is overestimated. 

Measurement error is just part of the underadjustment prob- 
lem. A more serious problem is that the covariate may not be the 
assignment variable. Recall that the assignment variable is the 
variable that brings about the nonrandom assignment of persons 
to conditions. The degree of bias in the estimate of the treatment 
effect depends on the assignment variable causing the outcome 
variable after the covariate is controlled. In Figure 5.3, we have 
drawn a causal model in which the assignment variable causes the 
treatment variable and the covariate. If the covariate mediates the 
effect of the assignment variable on the outcome (so that there is 
no direct effect from the assignment variable to the outcome), 
there is no bias in the estimate of the treatment effect. This direct 
effect is represented in Figure 5.3 by the arrow with the dashed 
lines. 

However, there is bias if the assignment variable affects the 
outcome directly. Whether it is underadjustment or overadjust- 
ment depends on two effects: the effect of the assignment variable 
on the covariate controlling for the treatment variable, and the ef- 
fect of the assignment variable on the outcome controlling for the 
treatment variable and the covariate. Generally these two effects 
are in the same direction (Judd & Kenny, 1981). Although this is 
not guaranteed, it would be much more likely to occur when the 
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FIGURE 5.3. Model of selection underlying statistical equating.
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covariate is a pretest measure. It would seem unlikely that the as- 
signment variable has one effect on the pretest and a different ef- 
fect on the posttest. If the effects are in the same direction, there is 
underadjustment; if the effects are in the opposite direction, there 
is overadjustment. We think it likely that the effects are in the 
same direction, and so the effects of compensatory programs are 
likely underestimated and the effects of anticompensatory programs 
are overestimated. Besides, even in a situation in which there is 
overadjustment, measurement error typically adds to underadjust- 
ment and so can counterbalance overadjustment due to omitted 
variables (Reichardt, 1979, p. 172). 

We suggest the following procedure for researchers who at- 
tempt adjustment using a covariate. We first assume that a larger 
score on the outcome means a “better” outcome. If not, then we re- 
verse the outcome so that larger scores mean less of something bad. 
We next scale the covariate so that its relationship with the outcome 
is positive. Then we measure the mean difference on the covariate 
between treatment groups. If the difference is positive and so the 
treated units outscore the controls, then the consequence of under- 
adjustment is likely a positive bias: the intervention effect is overes- 
timated. If the difference is negative and so the controls outperform 
the treated units, then the consequence of underadjustment is a neg- 
ative bias: the intervention effect is underestimated. This bias may 
lead to the mistaken conclusion that a program was harmful when in 
actuality it has no positive benefit or only a small benefit. Under- 
standing the likely direction of bias is essential when using statistical 
equating. We return to this topic later in this chapter. 

WHEN STATISTICAL EQUATING WORKS 

In elaborate detail, we have explained the bias that occurs when 
statistical equating is used. There are, however, three major situa- 
tions in which statistical equating is effective. 

The first such case is a randomized experiment: persons are 
randomly assigned to treatment groups. For a randomized experi- 
ment, statistical adjustment is unnecessary in terms of internal va- 
lidity, but it may be beneficial through an increase of power. Even 
though statistical equating results in a slight adjustment of the 
treatment effect, there is no need to worry about the biasing effects 
of omitted variables and measurement error in the covariates in 
randomized experiments. The central concern in randomized ex- 
periments is that the covariate should be strongly correlated with
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the outcome. The success of statistical equating in randomized ex- 
periments has led some to think that it is also effective in quasi- 
experimental evaluations. A major point of this chapter is that this 
is a mistaken belief. 

The second case also requires knowledge of the assignment 
process. For the regression discontinuity design (Campbell & 
Thistlethwaite, 1960; Cook & Campbell, 1979; Trochim, 1984), 
the researcher knows what variable is used to form groups. The 
variable used to equate groups is the very same variable on which 
persons were assigned to groups. So, for instance, Mark and Mellor 
(1991) were interested in the effect of being laid off from work on a 
“hindsight bias,” the mistaken belief that the person knew that the 
layoffs were coming. Because seniority is used to determine who 
would be laid off and who would not be, it is the assignment vari- 
able. Mark and Mellor (1991) found less hindsight bias in laid-off 
workers. 

A key assumption of the regression discontinuity design is that 
the functional relationship between the covariate and the outcome 
is known. Generally, the relationship is assumed to be linear, but 
nonlinear effects can be estimated and tested. We also note that 
measurement error in the assignment variable is not problematic. 
The defining feature of the design is that we know what variable is 
used to assign persons to treatment groups. The interested reader 
should consult Trochim (1984) for more details concerning the de- 
sign. 

The third case is one in which the assignment variable is sys- 
tematic, not random, but does not correlate with the outcome. So 
in essence the assignment is random, at least with respect to the 
outcome. Earlier in this chapter, we discussed treating the covariate 
as an outcome. If such an analysis reveals “no treatment effect” on 
the covariate, then we can have confidence that the assignment is 
essentially random with respect to the outcome variable. We must 
realize that finding no treatment effect on the covariate does not 
guarantee that the assignment process is essentially random. It may 
be that the assignment variable causes the outcome but not the co- 
variate. This would be less plausible if the covariate were a pretest 
measure of the outcome. 

ALTERNATIVES TO STATISTICAL EQUATING 

There is a totally different approach to adjustment or equating 
groups. Statistical equating concerns finding the right variables and
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properly estimating their slope with respect to the outcome vari- 
able. An alternative approach is just to accept that there is nonran- 
dom selection and then try to measure its effect using a parallel 
measure that is not affected by the intervention. Then this selec- 
tion estimate is subtracted from the difference between groups on 
the outcome variable. The type of statistical analysis that results is 
called change score analysis. Instead of analyzing the posttest by it- 
self and using the pretest as a covariate, one analyzes the change 
score or the posttest minus pretest. 

Change score analysis, unlike statistical equating, presumes 
that the difference between treatment groups is not attenuated 
over time due to regression toward the mean. Statistical equating 
carefully and precisely estimates the amount of regression toward 
the mean within treatment groups and uses it to forecast between- 
group change that may be inadequate, as we have seen. Change 
score analysis presumes that there is no regression toward the mean 
between groups despite the fact that there is regression within 
groups. Regression toward the mean is inevitable, but all scores 
need not regress to the same mean. 

When we look at group means on a pre- and posttest, we see if 
the gap between groups changes over time. When we look at mean 
changes over time, we implicitly use change score analysis in deter- 
mining whether there are treatment effects. Change score analysis 
seems to be the natural method to use largely because we naively do 
not consider regression toward the mean. 

Despite its strong intuitive appeal, change score analysis has 
been savagely criticized in the literature on a number of grounds 
(e.g., Cohen & Cohen, 1983). One criticism is that the method is 
naive. Change score analysis implicitly weights the pretest by 1, 
whereas statistical equating weights the pretest in a statistically op- 
timal fashion. Another criticism is that the method is inefficient. 
The variance of change scores is virtually always greater than the 
variance of the posttest minus the pretest adjusted by statistical 
equating. Finally, change score analysis has been criticized as very 
unreliable. We return to some of these criticisms in Chapter 6. 

In spite of these criticisms, in the last 10 or so years, change 
score analysis has made an amazing comeback (Wainer, 1991). We 
quote from Rogosa, Brandt, and Zimowski (1982): “In summary, 
the often cited deficiencies of the difference score .. . are more illu- 
sory than real” (p. 735). So, despite these statistical deficiencies, 
change score analysis has a place in quasi-experimental evalua- 
tions. The method has regained the respect that it rightfully de- 
serves.
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Change score analysis, like any other analysis, is not without 
its pitfalls. Its key assumption is that the selection effect in the 
posttest exactly equals the selection effect in the pretest. There 
may be an interaction between selection and maturation: the gap 
between the groups may be widening over time. Simple change 
score analysis presumes that no such interaction exists. If the gap 
widens over time, the effects of compensatory programs are under- 
estimated and anticompensatory program effects are overestimated. 
The opposite happens if the gap narrows. We now discuss two ana- 
lytic approaches to the plausible rival hypothesis of selection by 
maturation interaction. 

Standardized change score analysis (Judd & Kenny, 1981; 
Kenny, 1975a) can be used to control for some forms of the selec- 
tion by maturation interaction. The logic of this analysis is that the 
selection by maturation interaction implies a change in variance: 
there is increasing variance over time. By equating variances at the 

pre- and posttest by standardization, the plausible rival hypothesis 
of selection by maturation would be rendered less plausible. Follow- 
ing Judd and Kenny (1981), we do not recommend a separate stan- 
dardization of the pretest and the posttest, but rather the following 
strategy. The raw pretest is not subtracted from the posttest; in- 
stead, the pretest is first multiplied by sy/sx, where sx and sy are the 
pooled within-group standard deviations of the pre- and posttest, 
respectively.* [The pooled within-group variance equals the mean 
square error from a regression analysis in which the treatment and 
covariates (not the pretest) are entered to predict the pretest and 
posttest. | 

Kenny and Cohen (1980) have suggested a more complicated 
but likely more valid factor than sy/sx by which to multiply the 
pretest. The method is fairly complicated, and so we just outline 
the approach. There must be a set of covariates, demographic vari- 
ables such as age, gender, and ethnicity (but not a pretest). Sepa- 
rate regressions are run for the pre- and posttest with these demo- 
graphic variables as predictors. The change in the coefficients of 
the demographic variables then specifies the amount of change 
needed to weight the pretest. 

Because assignment to groups is not random, we cannot be 
certain about the degree of bias in any analysis. Quasi-experimental 

  
4Recall from Chapter 2 that sy/sx is the perfect-correlation line. In essence, 
this weighting of the pretest acts as if the pretest—posttest correlation were 
perfect, and so it forecasts that there would be no between-group regression 
toward the mean.
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analysis requires assumptions, and the violations of those assump- 
tions become plausible rival hypotheses. 

An obvious question presents itself: when should the re- 
searcher use statistical equating, and when should he or she use 
change score analysis? We have some advice on this issue. First, sta- 
tistical equating should never be used by itself. If it is to be used, 
there should be corrections for measurement error in the covari- 
ates. Also, the analyst must assume that the pretest true score is the 
assignment variable. Change score analysis requires the assumption 
that the pre- and posttest are parallel measures and that selection is 
on a variable that does not change over time. Thus, the difference 
between groups at the pretest can be used as a measure of selection 
effects. If change scores are used, consideration must be given to 
the selection by maturation interaction. 

Ever since Lord (1967) pointed out that statistical equating 
and change score analysis yielded different answers (something 
that came to be called Lord’s paradox), there has been considerable 
debate over which is the appropriate method for analyzing data 
from the nonequivalent control group design. The right answer is 
that neither method is always appropriate, but rather each method 
is appropriate given different assumptions about the assignment 
variable and change over time. The major obstacle is that these as- 
sumptions cannot be easily tested. Moreover, the assumptions 
made by each procedure are very strong and so are unlikely to 
hold. 

EXAMPLES 

We consider two very controversial examples chosen to attract in- 
terest. To soften the political blow of the examples we suggest that 
politically conservative readers read the first example first and that 
liberal readers read the second example first. In both illustrations, 
despite the contrasting political implications, we argue that statisti- 
cal adjustment results in underadjustment. 

Gender Pay Inequity 

We turn our attention to what has become a rather contentious is- 
sue: gender differences in pay. It is a fact that currently in the Unit- 
ed States and many other countries, men earn more than women. 
Certainly part of the gap in pay is due to discrimination. Some em-
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ployers have unfairly assumed that women do not need to earn as 
much as men because they are not the “primary” wage earner. Oth- 
ers have mistakenly assumed that women are less productive than 
men. The sexist assumptions and practices of employers have been 
extensively catalogued. 

However, the entire pay gap is not due to gender discrimina- 
tion. Although not universally true, in many occupations men 
have more seniority than women. Moreover, men enter some jobs 
with greater qualifications. Because of these differences, re- 
searchers have attempted statistically to equate men and women 
on various background characteristics. Although such equating is 
likely to produce a less biased estimate of the gender difference 
(though this is not totally guaranteed), it likely only partially 
“equates” the groups. The reasons for this underadjustment are 
measurement error in the covariates and other variables omitted 
from the analysis. 

The likely bias is that of underadjustment. Because men typi- 
cally (though not always) score more highly than women on most 
of the covariates and because the covariates likely correlate posi- 
tively with income, the likely case is that gender gap in income due 
to discrimination is overestimated. 

Ethnic Differences in Intellectual Ability 

While those who prefer to be politically correct might be very upset 
with the previous example, they should like this one. Research has 
consistently shown that there are differences between whites and 
African-Americans in the United States on standardized achieve- 
ment tests. (If the example makes the reader uncomfortable, it 
might help if Asians are substituted for whites and whites for 
African-Americans.) In attempting to explain this difference, re- 
searchers have attempted to equate the groups statistically by con- 
trolling for parental socioeconomic status and other parental vari- 
ables. Although including these variables in the analysis reduces 
the ethnic difference, differences usually persist between whites 
and African-Americans in standardized achievement tests. The 
presence of these differences has led some to conclude that there is 
a genetic difference between the two groups. It seems to us that a 
regression artifact caused by insufficient equating is the likely 
source of most, if not all, of the remaining difference. There is like- 
ly measurement error in these covariates, and not all of the covari- 
ates have been measured and controlled.
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We believe that the bias in statistical equating for ethnic dif- 
ferences in achievement and intelligence testing is almost certainly 
underadjustment. Whites generally score more highly than 
African-Americans on the covariates. Their parents have better 
jobs, have higher incomes, and have more education. It has been 
well documented that these socioeconomic differences are positive- 
ly correlated with achievement test scores, and so controlling for 
these covariates only partially adjusts for differences between the 
two groups. The most likely case is that the advantage of whites 
over African-Americans in “equated” standardized achievement is 
overestimated. 

CONCLUSION 

We hope that the strong political content of the foregoing exam- 
ples has not distracted the reader from the major point of the chap- 
ter. Statistical adjustment (i.e., “controlling” the effect of the 
pretest in multiple regression), like matching, while often improv- 
ing the comparison between nonrandomly formed groups (vs. total- 
ly ignoring the covariate), does not guarantee that the comparison 
is unbiased. Moreover, we should expect that the correction would 
be only partially successful. Statistical equating creates the illusion 
and not the reality of equivalence. 

It is ironic that statistical equating produces regression arti- 
facts in that statistical equating focuses on the concept of regres- 
sion toward the mean. In essence, the method uses within-group re- 
gression toward the mean to predict the between-group regression. 
The problem, however, is that often scores in the two groups are 
not regressing to the same mean but to two different group means. 
Thus, statistical equating predicts more regression toward the mean 
than actually occurs (Lund, 1989b). 

Although regression toward the mean is inevitable for the en- 
tire sample, it is not a certainty for any subset of scores. We need 
to know why the score is extreme. If the factor that is used to se- 
lect the score does not change, then the score will not regress to 
the mean. For the simulation data set, there is no regression to- 
ward the mean on the selection variable of group membership. 
There is regression toward the mean on other variables (people are 
changing), but those variables were not used to assign person to 
groups. 

Should the researcher attempt statistical adjustment? If done
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with care and thought, adjustment usually improves the validity of 
the difference between groups. However, adjustment rarely, if ever, 
provides exactly the right answer. Statistical adjustment usually re- 
sults in underadjustment, and the researcher needs to expect that 
the estimated treatment effect is likely biased. For compensatory 
programs the bias tends to be negative, and for anticompensatory 
programs the bias tends to be positive. If statistical adjustment is 
the planned strategy, one needs to think critically about the set of 
potential covariates. Once they are selected, one should measure 
them as reliably and as validly as possible. One should consider 
strategies to minimize measurement error and to control for its bias- 
ing effect through a latent variable analysis (i.e., structural equa- 
tion modeling). However, one needs to realize that statistical 
equating is unlikely to provide an unbiased estimate of the treat- 
ment effect. 

We have argued in this chapter that statistical equating usual- 
ly underadjusts for differences on the covariate. Chronic underad- 
justment is very often ignored when conclusions from the research 
are drawn. Warning labels should routinely accompany estimates 
from quasi-experimental evaluations. We suggest the following 
wording: 

The use of this method to adjust for covariates in the absence of 
randomization usually results in underadjustment. Because the 
treated (control) group outscores the control (treated) group on the 
set of covariates, the effect of the intervention likely is larger (small- 
er) than it appears. 

Different messages would be printed depending on the direction of 
the difference between treatment groups on the covariate and the 
covariate’s correlation with the outcome. If there were multiple 
covariates, a mega-covariate would be computed. In the absence of 
warning labels, we urge the reader to determine the likely direc- 
tion of bias. Ideally, the research report ought to contain enough 
information to enable the reader to make such a determination. 
However, sometimes the reader may have to contact the investiga- 
tor to obtain the requisite details. Such information is absolutely 
essential for the intelligent comprehension of the analysis. By 
knowing the likely direction of bias, conclusions derived from the 
statistical analysis can be qualified in a scientifically defensible 
manner. The failure to understand the likely direction of bias 
when statistical equating is used is one of the most serious difficul- 
ties in contemporary data analysis. In modern society we have
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warnings on car mirrors, over-the-counter medicines, and music 

CDs (compact discs). Why should we not have warnings in com- 
puter software? 

In the next chapter, we continue our discussion of change. But 
there we focus not on measurement of program change but on mea- 
surement of individual change.



  

  

Regression Artifacts 
in Change Scores 

In the previous two chapters, we have seen that the analysis of 
change scores, posttest minus pretest, is an alternative to matching 
or covarying on the pretest. In this chapter we consider change 
scores. More has been written about regression toward the mean 
and change scores than any other topic in the regression toward the 
mean literature. Because of this extensive focus, there has been 
considerable psychometric work on the topic. So this chapter vio- 
lates a prime principle of this primer: reliance on graphical presen- 
tation over algebraic formulas. Despite the many formulas in this 
chapter, we present an intuitive understanding of their meaning. 

The focus in this chapter is the measurement of change in in- 
dividuals and the related issue of the identification of persons who 
have changed more. In the previous three chapters, we considered 
the issue of the causes of change, which we, as well as Cronbach 
and Furby (1970), view as very different from the question of the 
measurement of individual change. 

In this chapter, we make the oversimplifying assumption that 
errors of measurement are not correlated over time. An error of 
measurement refers to an irrelevant source of variation. When 
these irrelevant sources are the same or similar over time, errors of 
measurement are correlated. An example of correlated measure- 
ment error would be using the same achievement test at two times. 
It is likely that lucky guesses at one time will be repeated at a sec- 
ond time, thereby creating correlated errors. We refer the reader to 
other sources for the complications brought about by correlated 
measurement errors (Cronbach & Furby, 1970; Williams & Zim- 
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merman, 1977). Although many of the formulas in this chapter 
change, their basic features persist. 

We need to make clear that before change scores are comput- 
ed, the same variable is measured at both times. It is worth quoting 
directly from Lord (1958): 

The test no longer measures the same thing when given after 
instruction as it did before instruction. If this is asserted, then 
the pretest and posttest are measuring different dimensions and 
no amount of statistical manipulation will produce a measure 
of gain or of growth. (p. 440) 

A related issue is that the metrics of the two measures should be the 
same. So, if the metric of the pretest is the percent correct, the 
metric of the posttest should also be the percent correct of items 
drawn from the same pool. If they are not, then “change” is like 
subtracting “apples from oranges.” Sometimes data transformations 
are needed to preserve metric equivalence (Judd & Kenny, 1981). 

CORRELATIONS WITH CHANGE SCORES 

Consider a pretest X, a posttest Y, and the change between the two 
Y — X. We begin with a statistical fact. If the variance in the mea- 
sures is stationary (Sx” = sy’), then the correlation of the pretest 
with change cannot be positive and is almost certainly negative. It 
is a simple matter to show that if the variances of X and Y are the 
same, then the correlation of change, or Y — X, with initial stand- 
ing, or X, is 

V (1-1) 
V2 

where r is the correlation between X and Y. Given stationary vari- 
ance, the correlation between change and initial standing can nev- 
er exceed 0. 

In general the correlation of change with the pretest is 

TSy — Sx 

V (s2 + sy? + 2rSxSy) 

  

Because the denominator must be positive, the sign of this correla- 
tion depends on the numerator. For the correlation to be positive,
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Sx/sy must be less than r. Because r cannot be greater than 1, the 
variance must be increasing over time for there to be any possibility 
of a positive pretest—change correlation. 

When variances are equal and the correlation is less than 1, a 
negative pretest-change correlation is an inevitable consequence 
of regression toward the mean. To see this, reconsider Figure 1.8 
from Chapter 1. It is a Galton squeeze diagram in which the left 
vertical axis refers to the pretest and the right to the posttest. In 
that figure, there is about a .5 correlation between X and Y, the 
means and variances are stationary, and there are 500 cases. The 
slope of lines connecting the two vertical lines reflects the average 
change scores. The Galton squeeze diagram clearly shows that large 
pretest scores are associated with declines in scores, or negative 

change scores, whereas low pretest scores are associated with in- 
creases, Or positive change scores. This resulting pattern implies a 

negative correlation between initial standing and change. 
Whereas change tends to correlate negatively with initial sta- 

tus, change tends to correlate positively with final standing. Thus, 
the posttest tends to correlate positively with a change score. (See 
the Galton squeeze diagram in Figure 1.8.) A good rule of thumb, 
given generally positive correlations, is that measures taken at the 
pretest tend to correlate negatively with change scores whereas 
scores measured at the posttest tend to correlate positively with the 
change score. (This rule follows from the principle of proximal au- 
tocorrelation that is discussed extensively in Chapters 8 and 9.) 

Beginning with an article by Wilder (1950), there has been 
some interest in what has been called “the law of the initial value.” 
In essence, this literature is concerned with the correlation be- 
tween the pretest and the degree of change. Some have claimed 
that the correlation is positive, and others have claimed that it is 
negative. As we and countless others have previously shown, the 
correlation must be negative if the variance does not increase over 
time. Moreover, very often, even if the variance increases over 

time, the correlation between initial standing and change may still 
be negative. Thus, the so-called law of the initial value is not a law 
of nature but a mathematical necessity and a restatement of regres- 
sion toward the mean. 

Sometimes researchers correlate change, or Y — X, not with 
the pretest or the posttest but with the average of the two, or 
(X + Y)/2. The sign of this correlation depends on only the change 
in the variance over time: if the variance is increasing, then the 
correlation must be positive; if the variance is decreasing, then the 
correlation must be negative; if the variance does not change, then
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the correlation must be 0. Thus, the correlation between change 
and average of the two scores is not very interesting substantively. 

The correlation of change with the average does have anoth- 
er, less obvious, use. It can be used to test statistically whether vari- 
ances computed on the same persons are changing over time. 

RELIABILITY OF CHANGE SCORES 

It has been long known that change scores have surprisingly low re- 
liability, even if the components that make up the change score 
have high reliability. If we denote rx as the reliability of the pretest, 
ry as the reliability of the posttest, and r as the correlation between 
the pretest and the posttest, the reliability of the change score can 
be shown to equal 

2 Sx? Ty + Sy? Ty — 21SxSy 

So? 

  

+ sy’ — 21sysy 

which, when the variance is stationary (sx? = sy’), reduces to 

tx + ry — Lr 

2(1 —-r) 

Moreover, if the two reliabilities are equal (rx = ry), the above fur- 
ther reduces to 

Tx — ¥ 

l-—r 
  

So, if the variances are equal, the reliabilities of the measures are 
85, and the test-retest correlation is .75, then the reliability of 
change scores is a paltry .40. (Generally .6 is thought of as the min- 
imal value for acceptable reliability, and some would even consider 
this unacceptable.) It may seem counterintuitive, but as r increases 
the reliability of change scores actually decreases. So, if r = .80 and 
Tx = Ty = .85, the reliability of change scores is only .25. (Note that 
r should be less than or equal to the square root of rxry.) 

This low reliability of change scores seems like a serious prob- 
lem, and for this reason some have recommended never computing 
change scores. Why use as an outcome measure something that has 
a reliability in the 40’s? Researchers began to realize that there was 
less reason to worry after Overall and Woodward (1975) showed
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that in some cases the lower the reliability of change scores, the 
greater the power to detect intervention effects. The embarrassing- 
ly low reliability of change scores is currently not viewed as a prob- 
lem by most psychometricians (Collins, 1996), a view that we 
share. 

The Overall and Woodward (1975) paper is very controver- 
sial. Many psychometricians have attempted to resolve the paradox 
of greater power with lower reliability, and some have argued that 
Overall and Woodward (1975) were mistaken. We find the paper 
by Nicewander and Price (1978) to be the best resolution of the 
controversy. They noted that a change in reliability of a measure 
does not necessarily imply anything about the power of the test. If 
reliability is increased because the error variance decreases and the 
true variance remains the same, then an increase in the reliability 
of the change scores does increase the power of the test. However, 
if the reliability increase is due to an increase in the true score vari- 
ance independent of the treatment effect, then the increased relia- 
bility lowers power. The interested reader should consult Fleiss 
(1976), Humphreys and Drasgow (1989), and Sutcliffe (1980) for 
further discussion of the Overall and Woodward (1975) paper. 

THE MEASUREMENT OF CHANGE 

To illustrate the different measures of individual change, we now 
develop a simple example: imagine that you are president of a small 
company and you have 12 employees for whom there are produc- 
tivity data for the current year (Y) and the past year (X). These hy- 
pothetical data are contained in Table 6.1. The mean across the 12 
persons changes very slightly over time, going from 11.43 to 11.46; 
the variance increases from 2.96 to 3.43; and the correlation over 
time is .549. 

Raw Change 

You, as the company president, want to reward the two workers 
who improved the most. That would seem to be a simple task: you 
compute the change scores and see whose change scores are the 
largest. Using this criterion, the winners are shown in bold in the 
fourth column of Table 6.1: persons J and L. These two persons 
would seem to be the clear winners, but alternative definitions of 
change yield different winners.
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TABLE 6.1. Hypothetical Performances and Four Different Measures of 
Changes of 12 Employees 
  

  

  

Method 

Person x Y | Il Ill IV 

A 12.1 12.1 0 253 —.340 020 

B 11.3 12.9 1.6 1.525 868 1.088 

C 12.2 11.1 —1.1 —.806 —.949 —.122 

D 9.3 10.6 1.3 407 1.696 850 

E 11.7 8.8 —2.9 —2.811 —1.621 —1.948 

F 11.2 12.0 8 685 509 545 

G 12.1 10.3 —1.8 —1.547 —1.257 —1.194 
H 11.4 9.0 2.4 —2.493 —1.219 —1.615 

] 12.1 13.3 1.2 1.453 271 831 

J 10.1 12.1 2.0 1.434 1.660 1.337 

K 15.3 15.2 —.1 1.462 -1.961 008 

L 8.4 10.1 1.7 439 2.341 1.105 
  

Note. Boldface indicates the two persons who improved the most for that method. 
Method I, raw change score; Method II, residualized change score; Method III, “back- 

ward” residualized change score; Method IV, estimated true change score. 

Residualized Change Score 

Because of the inevitability of regression toward the mean, it has 
been suggested that there should be a correction in the change 
score for regression toward the mean. Note that the “raw change 
winners” were both below the mean at the pretest, and so some of 
their gain is, at least in some sense, inevitable. The standard adjust- 
ment is to compute what has been called a residualized change score 
(Dubois, 1957). In essence, this measure “seeks to determine what 
the observed change would have been if everyone had started out 
equal on X” (Rogosa et al., 1982, p. 741). Its formula essentially 
takes the residual from the regression analysis to make predictions 
and so can be viewed as Y — Y’, where Y’ is the predicted posttest 
score from the regression equation (see Chapter 2). The standard 
formula for residualized change scores is 

Y — byy(X — My) — My 

The residualized change score has been in use for decades, and like 
any good idea this measure has been reinvented (Heimendinger & 
Laird, 1983). 

Using this definition of change, the winners are now persons
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B and K, two different winners from those produced by the raw 
change analysis. Note that person B’s score at the pretest is very 
near the pretest mean and so very little of that person’s change is 
attributed to regression toward the mean. Both of the raw change 
winners were below the mean, and so much of their change is at- 
tributed to regression toward the mean. But note that person K’s 
raw score actually declines over time. Yet that person is seen as the 
one with the second greatest residualized change increase. How can 
this be? Person K scored very high on the pretest, 2.13 standard de- 
viations above the mean. We would expect person K to decline by 
about a standard deviation, and that person did decline—but not 
nearly as much as would be expected, given regression toward the 
mean.! 

There is yet another way to measure change. Why use past to 
predict future? Why not use the future to predict the past? The ar- 
gument is in essence to measure change backward. The formula for 
the predicted pretest, given the posttest, is byy(Y — My) + Mx. Be- 
cause the measure X — X’ is “backward,” we should multiply it by 
~—|. The resulting measure of time-reversed residualized change is 

—X + byy(Y — My) + Mx 

This measure, though mathematically permissible, can be difficult 
to interpret. It represents the difference from where the person 
started to where it is forecasted that the person should have started. 
Perhaps it could be said to measure the “you have come a long way 
baby” distance. Using the backward residualized change, the win- 
ners are D and L. Both of these persons have posttest scores near 
the mean; hence, there is little regression in those scores and low 
pretest scores, and so they have “come a long way.” As far as we 
know, this measure has never been presented before. 

To understand better the differences between these two mea- 
sures of residualized change, we illustrate the computation of one 
case in some detail. Before we begin, note that raw change is com- 
puted as Y — X whereas residualized change equals Y — Y’, where Y’ 
is the predicted Y given X. Comparing the two formulas, note that 
Y’ replaces X in the formula, and so the variable Y’, in a sense, 
takes on the role of a “pretest.” 

Consider the illustration in Figure 6.1. The scores of one per- 

  
\True-score corrections to residualized change are possible, but they do not 
change the rank order of the scores (Cronbach & Furby, 1970).
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FIGURE 6.1. Residualized change backward and forward in time. 

son are presented. That person is 1 unit above the mean on the 
pretest (X) and 2 units above the mean on the posttest (Y). The 
raw change is given by the difference in the levels of the two scores 
and is indicated in Figure 6.1 by the solid line going from X to Y. 

We assume that the regression coefficient in both directions is 
.) and the means of X and Y are equal. We have also graphed the 
expected posttest given the pretest or Y’ using the formula present- 
ed in Chapter 2. To show the change, we have placed the expected 
posttest or Y’ as a “pretest.” We have connected the posttest (Y) 
and the expected posttest given the pretest (Y’) by a dashed line. 
The gap between the posttest and expected posttest, Y — Y’, is the 
measure of residualized change from pretest to posttest. We see that 
because the person is above the mean at the pretest, this measure of 
residualized change (1.5 units) is somewhat larger than the raw 
change measure (1 unit). 

However, we can also look at how much “change” would be 
expected going from the posttest to the pretest, that is, looking 
backward in time. So we examine change from the expected pretest 
or X’ to the actual pretest or X. To show the change, we place the 
predicted pretest at the posttest. This backward residualized change 
measure is X’ — X. For the illustration in Figure 6.1, there is no ex- 
pected change in this direction. The dashed line is flat because 
both X and X’ equal 1. Given that the person is fairly extreme at
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the posttest, the score would be expected to regress toward the 
mean. 

Residualized change is a temporally asymmetric measure and 
has what the physicists call an arrow of time. That is, change is very 
different when we are looking in one direction (from the past to 
the present) than when we are looking in the other direction (from 
the present to the past). We return to the issue of temporal asym- 
metry in Chapter 10. 

Estimated True Change 

Cronbach and Furby (1970) described yet another measure of 
change that they credited to Lord (1956, 1958, 1963) and McNe- 
mar (1958), and we sometimes refer to this as the Lord—McNemar 
measure of change. This is a very complicated measure of change 
that we break into a series of steps. First, X and Y are used to predict 
the true scores of X. In Chapters 2 and 3, we discussed how an ob- 
served score can be used to predict a true score. What is different 
here is that two observed scores are used to predict a true score and 
so the true score must be estimated from a theoretical multiple re- 
gression. The resulting estimated true score is a composite of the 
two observed scores. The estimated true score for X, denoted as X4, 
can be estimated by 

2 Tx — 7 Sx(7 — Tyr) 
XT = (X— Mx)— > + (Y= Mx) Go) + Mx 

where 7x is the reliability of X. Next, X and Y are used to predict 
the true score of Y. That predicted score, denoted as Yr’, is 

2 
Ty —71 sy(r — ryr) Y= (Y=My)——> + (X—Mx) = ———______ + 

Sx(1 — 17) 

  My 

The Lord—McNemar measure of change is then defined as 

Yr —X7 

and it can be called estimated true change. As the pre- and posttest 
reliabilities approach 1, the estimated true change measure ap- 
proaches the raw change measure. 

Table 6.1 presents the estimated true change measure for the 
12 employees. We have assumed that the reliability of both the pre-
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and posttest is .85. The meaning of reliability in this context would 
be the theoretical correlation with an alternate measure of produc- 
tivity. Despite all of the computation, we see that the winners are 
persons J and L, the very same winners as with raw change, a rather 
typical result. The variability of the estimated true change is less 
than the variability of raw change scores, but the two usually corre- 
late very highly with each other. In fact, if the reliabilities and the 
variances of the pre- and posttest are the same, the correlation of 
raw and estimated true change is necessarily 1. 

As was shown in Chapter 3, true-score estimation reduces the 
variability of measures. This same shrinkage is found when two 
measures are used to estimate the true score. Shrinkage in predic- 
tion is a theme that we revisit in Chapter 10. 

There are even more complicated ways to measure change. 
Bayesian methods can be used to estimate the rate of change per 
unit time. We do not consider those methods here; however, the 
interested reader can consult Rogosa et al. (1982) for an introduc- 
tion to this approach. 

So who should get the bonus? Should we give it to J, L, D, K, 
or B? No one person is in the “top two” for all four of the defini- 
tions. The choice of the winner depends on how change or im- 
provement is defined. The raw change winners can claim that they 
increased the company’s profits more than anyone else. The residu- 
alized change winners can argue that they brought more profits 
than were “expected,” either expected given the past or expected 
given the present. The estimated true change winners can claim 
that they are making more true or real profits for the company, not 
more measured profits. 

The “forward” residualized change score would seem to pro- 
vide a very reasonable statistical estimate of change. It states how 
much change there is after controlling for regression toward the 
mean. There are, however, problems with the measure. First, as we 
have shown, it may yield some strange winners. For the example in 
Table 6.1, one of the residualized change winners actually declined! 
This type of anomaly may make it a difficult measure to use with a 
statistically naive audience. Second, residualized change scores vio- 
lates the principle of time reversal that we discuss again in Chapter 
10. Third, Rogosa et al. (1982) review several statistical difficulties 
with the measure. 

Because there are different answers about who changed most, 
this does not mean that it is arbitrary how change is measured. Just 
because change is difficult to measure does not mean that it should
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not be measured. We get different answers because we measure 
change using different definitions of change. It should not be sur- 
prising that different questions have different answers. 

CORRELATES OF CHANGE 

The focus of this chapter is the measurement of change and not the 
understanding of the causes or correlates of change. In this section, 
we consider the problem of the attribution of change. We have pre- 
sented four different measures of change: raw change, residualized 
change, “backward” residualized change, and estimated true 
change. Which of these measures should be correlated with other 
variables? This is a complicated and very controversial issue, with 
psychometricians quite divided over it (e.g., compare Collins, 
1996, to Humphreys, 1996). We now offer some advice on this is- 
sue. 

One practice that should be discouraged is that of correlating 
residualized change with other measures. If residualized change 
scores are desired, it is almost always better instead to employ sta- 
tistical equating by using multiple regression; that is, instead of 
residualizing the outcome variable (i.e., removing variance due to 
the pretest) before performing the analysis, one should treat the 
pretest as a covariate in the statistical analysis. The use of residual- 
ized change in studies of the correlates of change is fraught with dif- 
ficulties of improper degrees of freedom, inefficiency, and bias. 

Following Cronbach and Furby (1970) and others, we advise 
the reader not to correlate estimated true change with other vari- 
ables. Recall that this measure usually correlates highly with raw 
gain, and so raw gain can be used instead of estimated true change. 

We are then left with raw change and statistical equating as 
measures of change. These two measures were discussed in Chapter 
5. We adapt that discussion and consider how to measure the effect 
of Z on Y controlling for X. In essence, statistically equating throws 
X in the regression equation and statistically adjusts for its effect. In 
change score analysis, the outcome is adjusted by subtracting the 
pretest from the posttest. 

In deciding how to “control” for the pretest, we need to have 
an understanding of why it is that X is correlated with Z, besides 
causing it. As in Chapter 5, we now develop a model of selection in 
which there is an unknown, confounding variable, called the as- 
signment variable, that creates the correlation between Z with X
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and Y. In the previous chapter, we considered two alternative mod- 
els of selection. 

In one model of selection, the assignment variable is assumed 
to cause X and Z, and X is presumed to cause Y. However, the as- 
signment variable has no direct effect on Y, and so X is assumed to 
mediate the effect of the assignment variable on Y (see Figure 5.3). 
One major concern of this analysis is that if it is true X, not mea- 
sured X, that mediates, then ignoring measurement error in Y likely 
leads to underadjustment. This model of selection underlies treat- 
ing the pretest as a covariate. 

In the second model of selection, the assignment variable is 
assumed to cause both X and Y to the same extent. We also have no 
causal relationship between X and Y. To remove the biasing effect 
of selection in the posttest, the pretest is subtracted from it to re- 
move the effects of the assignment variable. If such a model of se- 
lection were true, some sort of change score analysis would be valid. 
Again we refer the reader to the discussion of change scores in the 
previous chapter as well as that by Judd and Kenny (1981; see espe- 
cially Chapter 5 therein). 

In Chapter 9, we consider yet another model of selection. As 
in the previous model there is stationarity, in that the assignment 
variable has the same effect on the pretest and posttest. However, 
in this model there is change in the assignment variable. In Figure 
9.2, the assignment variable is designated as Z. 

We wish to emphasize one key point. All too often researchers 
statistically equate or compute change scores without thinking 
through a model of selection. We urge a careful consideration of 
the process before the statistical analysis is undertaken. By choos- 
ing a model of selection, the researcher has decided what pattern of 
regression toward the mean will occur. 

CONCLUSION 

Our primary purpose in this chapter is the measurement of individ- 
ual change, not the attribution of the causes of change. This would 
seem to be an easy topic, but it is not. The measurement of change 
scores has been and continues to be a very controversial topic. For 
many years statisticians and psychometricians have criticized it as 

naive and ignorant. They have complained about its low reliability. 
It became so bad that one oft-cited article had the title, “How We 
Should Measure ‘Change’—or Should We?” (Cronbach & Furby,
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1970). In recent years, change scores have experienced a revival 
and there has been increasing acceptance of measuring change, 
even raw change scores. Ironically, one of the key papers resurrect- 
ing change scores had as its first author a student of Cronbach (Ro- 
gosa et al., 1982), one of the coauthors of the paper that sent 
change scores reeling for a generation. 

We offer the following advice about the measurement of 
change. 

First, if change scores are computed, it is inadvisable to corre- 
late them with initial status. That correlation would likely be nega- 
tive and must be negative if the variances do not increase. Given 
the principle of proximal autocorrelation (see Chapter 8), it is a 
very dangerous practice to correlate change with a measure that is 
time dependent, either the pretest or the posttest. Given positive 
correlations, “pretest” measures tend to correlate negatively with 
change and “posttest” measures correlate positively. 

Second, the reliability of change scores tends to be very low. 
Although researchers should strive for measuring variables with as 
much reliability as possible, the low reliability of change scores is 
not inherently a problem. 

Third, if researchers are trying to calculate those who change 
the most and those who change the least, they need to consider the 
various definitions of change and choose the one that makes the 
most sense for their own purposes. 

Fourth, if the researcher is trying to make attributions to the 
causes of change, this chapter is largely irrelevant. It is better to 
consult Chapters 5 and 9 as well as other sources (Judd & Kenny, 
1981). The researcher should determine what is the most plausible 
model of selection; that is, the researcher needs to understand why 
the pretest is correlated with the causal variable. Depending on 
what assumptions are made about selection, the researcher may 
well use change scores, but it is inadvisable ever to use residualized 
change scores or estimated true scores. 

It may seem surprising that something as simple as “change” is 
so complicated. Much of the complications and difficulties stem 
from regression toward the mean. Three major edited volumes 
(Collins & Horn, 1991; Gottman, 1995; Harris, 1963) have been 
written on change, and likely more ink will continue to be spilled 
regarding this subject. One theme that we return to in the conclu- 
sion of this primer (Chapter 10) is that simple questions usually re- 
quire complicated statistical methods. Change is not nearly as sim- 
ple a concept as it might naively seem. In Chapter 10, we return to



100 A PRIMER ON REGRESSION ARTIFACTS 

the concept that simple ideas often require complex statistical 

analysis. 
The next two chapters return to the discussion of quasi- 

experimental treatment evaluation. The common theme of both 

chapters is what happens when there are more than two time 

points. In Chapter 7 we consider time-series data, and in Chapter 8 
we discuss multiwave studies.



  

Regression Artifiacts 
in Time-Series Studies! 

In time-series data, a single person or unit is measured at more than 
one point in time. Typically, the unit is a governmental unit such as 
a state or a country, but sometimes it is a person who receives some 
sort of behavioral intervention. Regression artifacts plague the in- 
terpretation of program effects in time-series data, and in this chap- 
ter we consider three illustrations of these problems. We also devel- 
op a method to measure and correct for these regression artifacts in 
time-series data. 

To determine regression toward the mean we need to know 
the correlation between adjacent data points. The measurement of 
correlation for time-series data is relatively complex. To measure 
the correlation between adjacent data points, the data must be 
lagged. A series and its lagged series are presented below: 

6, Z, 8, 6, 5, 4, 4, 5, 1, 8 

I} tT} tle d tet 

6, 1, 8, 6, 5, 4, 4, 5, 7, 8 

A lagged correlation is called an autocorrelation. The graph of these 
correlations against lag length is called an autocorrelogram. We pre- 

  

'Much of this chapter was originally published in Campbell (1996). We are 
most grateful for permission from Elsevier Science to reprint this material. 
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sent formulas for computing autocorrelations in Appendix B. Be- 
sides the traditional formula, we also present a more complicated 
but less biased formula for the lag-1 autocorrelation that is given by 
Huitema and McKean (1994). 

The analysis of time-series data is complicated by the presence 
of trends and cycles. A trend might be that the series is generally 
increasing over time. A cycle might be an annual cycle such that 
observations are greater in the summer than the winter. In this 
presentation we do not consider cycles, but a complete discussion 
of time-series analysis would need to consider them (Judd & Kenny, 
1981; McCain & McCleary, 1979). For the last illustration in this 
chapter, we consider a trend, a constant change as a function of 
time. We downplay these complications because we wish to focus 
on the effect of regression toward the mean. 

A myriad of models can be used to explain the autocorrela- 
tional structure of time-series data (Judd & Kenny, 1981; McCain 
& McCleary, 1979). To simplify the discussion, we generally as- 
sume in this chapter that the correlational structure is a first-order 
autoregressive structure: each time point causes the next time 
point. If we denote a as the autoregressive coefficient, the lag-k au- 
tocorrelation equals a‘. Characteristic of this structure is that corre- 
lations decline the longer the time lag, and for long lags the auto- 
correlation is essentially 0. 

We now consider three extended examples from previous 
analyses of the first author. All three illustrations focus on the fact 
that interventions are often triggered by an extreme observation, 
making regression toward the mean a serious concern. 

THE CONNECTICUT CRACKDOWN ON SPEEDING 

We introduce the problem by a condensed discussion of an exam- 
ple that has been presented in previous papers (Campbell, 1969a; 
Campbell & Ross, 1968). It is perhaps the best known illustration 
of the interrupted time-series design. Figure 7.1 shows annual 
automobile traffic fatalities in the state of Connecticut for the 
years 1951 through 1959. At the beginning of 1956, the governor 
of the state, Abraham Ribicoff, introduced an extremely severe en- 
forcement of automobile speed limits. The following year he 
claimed great success “with the saving of 40 lives, a reduction of 
12.3% from the 1955 motor vehicle death toll, we can say the pro- 
gram is definitely worthwhile.” He was reporting on just the years
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FIGURE 7.1. Annual Connecticut traffic fatalities from 1951 to 1959. 
Adapted from Campbell (1996). Copyright 1996 by Pergamon Press. 
Adapted by permission of Elsevier Science. 

1955/56 (the dashed line in Figure 7.1), which do indeed show a 
decline.’ 

When we look at the extended series, we start doubting the 
governor's claims, because the 1951/52 and 1953/54 drops are just 
as large and occur prior to the crackdown on speeding. The most 
striking year-to-year shift is the 1954/55 gain. An examination of 
the governor’s announcements at the beginning of the crackdown 

  

’Abraham Ribicoff died while this primer was being completed. Despite the 
Connecticut crackdown being a classic regression artifact, it was still reported 
in his obituaries that “Connecticut’s highway deaths continued to drop, and 
Mr. Ribicoff’s stature soared” (Hartford Courant, February, 23, 1998, p. A8).
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makes it most plausible—indeed, virtually certain—that the sharp 
1954/55 gain caused the crackdown. Given a chance component in 
the rates for each year, shown by the unexplained fluctuations, it 
becomes highly likely that the 1955 peak was, in part, caused by a 
year-specific chance component operating so as to make it excep- 

tionally high. For the following years, it would be unlikely that the 
year-specific chance component would be as large. Thus, a return 
to the general trend would be expected, and this is indeed what is 
found. Thus, the 1955/56 drop is very plausibly only a regression ar- 
tifact, produced by selecting a peak in an unstable time series as the 
point to initiate the crackdown (thus anchoring the analysis on the 
1955 data), rather than being caused by the crackdown itself. Ask- 
ing the question: “Why was the crackdown introduced then?” alerts 
us to the role such dramatic reforms play in the larger system, as 
well as the role of focal public social indicators such as traffic fatali- 
ties. 

The regression artifact interpretation is quantifiable. In this 
primer, we develop a simple forecasting strategy. As is to be seen 
below, our approach is consistent with the regression toward the 
mean forecasts made in other chapters. Another approach is to es- 
timate ARIMA time-series models (McCain & McCleary, 1979). 
We consider estimation using the more complicated ARIMA mod- 
els in the last section of this chapter. 

As in most time-series modeling, one would need a long time 
series (e.g., at least 50 preintervention time periods). To measure 
the amount of regression toward the mean, we compute the lag-1 
autocorrelation (see Appendix B). This autocorrelation can be 
used to estimate the expected value for the first postintervention 
data point using the following formula: 

T(Yore ~ My) + My 

where 1, is the lag-1 autocorrelation, Y,,. is the preintervention 
data point, and My is the mean of the preintervention data points. 
Using the terms defined in the previous chapter, we are suggesting 
a form of residualized change. In general, the prediction for the kth 
observation after the intervention is 

TY pre ~ My) + My 

where 1, is the lag-k autocorrelation. If we can assume that the 
model is first-order autoregressive, then 1, can be estimated by 7," 
where 71, is the lag-1 autocorrelation. (The parameter of a first-
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order autoregressive model can be estimated by the lag-1 autocorre- 
lation.) 

We evaluated this approach by simulating time series that had 
at least 50 time points before the intervention. We found that by 
not using the two time points just before the point of intervention 
we produced relatively unbiased estimates of the lag-1 autocorrela- 
tion and the mean. With these values we estimate the observation 
after the intervention by using a varient of a formula presented in 
Chapter 2 of r)(X,,¢ -My) + My. 

There are much too few data from the Connecticut crack- 
down study to try this approach. However, if we assume that the au- 
toregressive coefficient is .4 and use the mean of the series before 
the intervention, we find that the predicted decline is .4(324 — 
260) + 260, which equals 285.6, a number that is virtually identical 
to the actual number of fatalities for the first year after the inter- 
vention: 284. We repeat that this illustration is more suggestive 
than definitive because we guessed but did not estimate the lag-1 
autocorrelation. 

THE OFFSET EFFECT OF PSYCHOTHERAPY 

Next, let us examine a still subtler version of the same problem in 
the analysis of the cost and benefits of psychotherapy in prepaid 
medical insurance programs. Jones and Vischi (1979) have re- 
viewed studies in which mental-health services were given to pa- 
tients at a specific point in time and in which there was a reduction 
in their demand for all types of medical services, the often-claimed 
offset effect. Thus, psychotherapy is seen as a cost-effective use of 
resources because its cost is offset by reduced use of medical ser- 
vices. 

In Figure 7.2, we present a hypothetical time series in which 
the cost per month is graphed for about a year and a half. At some 
point the person has a psychotherapy visit (the solid vertical line), 
and we can then examine from that point, both backward and for- 
ward, whether costs are declining. The solid line of Figure 7.2 illus- 
trates the most typical pattern of data presented and the 20% de- 
cline typically found. However, although the graph is based on 
hypothetical data, it is representative of results from many studies. 
Olbrisch (1977, 1980) has criticized such evidence on the grounds 
that transiently high users of other medical services were referred to 
psychotherapy, or they may have sought it out themselves in a tran- 
sient period of high disturbance cosymptomized also by high med-
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FIGURE 7.2. Hypothetical effect of psychotherapy in a health mainte- 
nance organization; the solid line corresponds to effects noted in several 
studies, and the dashed lines represent two possible pretrends. Adapted 
from Campbell (1996). Copyright 1996 by Pergamon Press. Adapted by 
permission of Elsevier Science. 

ical demands, that is, a regression artifact. Kogan, Thompson, 
Brown, and Newman (1975) have also interpreted their own data 
as showing regression artifacts. 

From the records of the health insurance programs (or health 
maintenance organizations, HMOs), it should be possible to pro- 
vide extended pretreatment time-series data testing this criticism 
even though such series have rarely been examined. All studies 
agree that the psychotherapy participants had on the average been 
exceptionally high users of medical services immediately prior to 
therapy being provided. The issue relevant to Olbrisch’s argument 
is whether or not this high usage was an atypical increase, in which 
case a return toward the mean would be expected without therapy. 
Figure 7.2 illustrates such a history in the line labeled as A. Alter- 
natively, if those receiving therapy had a sustained record of high 
usage, followed by the 20% drop, as illustrated by line B of Figure 
7.2, then the regression artifact interpretation seems to be ruled 
out. The time series becomes impressive evidence of genuine im-
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pact of psychotherapy (unless someone comes along with a more 
plausible rival hypothesis). 

Among the hundred or so data sets presented by Jones and 
Vischi (1979), there are only two that present more than one time 
period prior to psychotherapy. These two are presented in Figures 
7.3 and 7.4. Unfortunately, for proponents of offset argument, both 
strongly support the regression artifact interpretation. The decline 
in medical services is just as evident before as it is after the onset of 
psychotherapy. The declines shown are thus most plausibly inter- 
preted, at least in substantial part, as pseudodeclines. 

Let us expand the regression artifact explanation. The graphs 
in Figures 7.2, 7.3, and 7.4 are not in real or calendar time, but 
rather in time units for each patient, before and after psychothera- 
py. The many individual time series have been averaged after being 
coaligned around the onset of psychotherapy. Each patient series of 
medical usage is full of stochastic fluctuations. The regression arti- 
fact interpretation requires that assignment to psychotherapy occur 
at a high peak of patient complaints and use of diagnostic tests. If 
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FIGURE 7.3. Mean physician visits per month of 426 patients, before and 
after psychiatric intervention. Adapted from Campbell (1996; after Jones 
& Vischi, 1979, p. 54, Table 18, based on data from Patterson & Bise, 
1978, supplemented by a personal communication from Bise). Copyright 
1996 by Pergamon Press. Adapted by permission of Elsevier Science.
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the time series of demand is indeed full of instability, with chance 
peaks, then it follows that subsequent demand (as well as previous 
demand) would tend to average more nearly the level of the indi- 
vidual’s own norm. Because hundreds of individual records have 
been averaged, the resulting curves are smooth and so fail to show 
the instability that the individual series would show. 

Although the analysis of a single series is informative, the ad- 
dition of control groups, such as those in Figure 7.4, can greatly 
strengthen causal inferences. A different type of control group 
would also be useful. Thus, if one searched the nontherapy cases in 
the program from which Figure 7.3 comes for the first single month 
of usage above some high value (e.g., .80 in the figure), and plotted 
the 12-month span surrounding these and averaged 500 such case 
instances, one might have a portrait of a pure regression artifact 
due to selecting an extreme point to initiate therapy. One could
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also do without a control group, computing the autocorrelation at 
various lags for all patients for extended times lacking a psy- 
chotherapy intervention, and then use their average to predict val- 
ues both before and after the onset of psychotherapy. 

The 20% offset-effect results have been reported triumphant- 
ly in billion dollar arguments as to whether or not fees for psy- 
chotherapy should be reimbursed by health insurance and whether 
or not HMOs should provide it. With these data being used in 
such a high-stakes arena, it seems possible that selective reporting 
has been involved. Given that one of the earliest studies (Kogan 
et al., 1975) set the precedent shown in Figure 7.3 of using multi- 
ple time periods before the onset of psychotherapy, why have vir- 
tually all of the subsequent studies omitted this feature? The 
records were certainly there to be examined. Was it because these 
multiple pretreatment values provided a picture hard to explain, 
and one that undermined the causal interpretation of the cost re- 
duction? If such analyses were done, were they suppressed by vol- 
untary self-censorship, because of the researcher’s economic stake 
in the cost-reduction interpretation? We would hope that eco- 
nomic interests would not affect the presentation of data from qua- 
si-experiments. We return to the topic of advocacy versus science 
in Chapter 10. 

In terms of the economic arguments about psychotherapy cov- 
erage in health insurance, it is the costs, not the number of visits, 
that are important. Because these are available from the archival 
records, monetary costs should have been used in such analyses in 
addition to, or instead of, the number of visits. The importance of 
the problem requires a more comprehensive evaluation of available 
data. One wonders if only the number of visits has been presented 
because visits show larger effects than do costs? Because the types of 
visits that provoke referral to psychotherapy are probably those 
low-cost visits in which no medically diagnosable ailment is found, 
the regression artifact pattern might be relatively less sharp for a 
time series of costs. 

In HMOs such as Kaiser-Permanente, group insurance pro- 
grams had at one time made psychotherapy coverage available as 
an optional feature. Such HMOs have more recently changed their 
programs in this regard, with precisely datable changes. This situa- 
tion makes possible testing the claim that adding psychotherapy to 
a company’s health insurance plan will reduce its overall costs. 
Have such time series been run and yielded no offset effect? Or 
have they even found an increase in costs? That this rich resource 
of records has perhaps only been used (e.g., Follette & Cummings,
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1967; Cummings & Follette, 1968, 1976) to produce persuasive 
misleading results is highly deplorable. 

TIME SERIES OF HIV TREATMENTS IN CLINICAL TRIALS 

The following illustration is wholly conjectural. Its inclusion is felt 
justified by the potentially great importance of interrupted time- 
series quasi-experimental designs in research on possible cures, a 

potential not now being exploited. The regression artifacts that 
might sometimes be involved are computable, which provides a 
way of distinguishing them from genuinely therapeutic effects. 

In the last 25 years, the norms for testing new pharmaceutical 
therapies have completely shifted to randomized trials. Overall, 
this shift is to be applauded, but it has been so overdone that credi- 
ble evidence from nonrandomized clinical trials is now being 
neglected. It is now time to devote methodological attention to im- 
proving nonrandomized clinical trials by making them mote effec- 
tive in clarity of causal inference. Randomized trials are costly, time 
consuming, and awkward to implement. Further, innumerable ther- 
apeutic packages need exploring. Interpretable nonrandomized 
clinical trials with encouraging effects should be used to pilot-test 
therapies, discovering those promising enough to warrant expen- 
sive randomized trials. In addition, even though new medicines are 
always initially in short supply (so that most of the appropriate 
needy are untreated anyway, and thus randomized trials serve to de- 
crease the number of untreated, not increase it), designated un- 
treated control groups feel deprived and vocal opposition to such 
experiments is generated. 

As a prototypical methodological model, we might look into 
the research that established the efficacy of penicillin, for example, 
the 5-day cure of syphilis introduced around 1940. It is our under- 
standing that no randomized trials were used. Instead, the quasi- 
experiments were totally convincing. Patients whose blood tests 
had regularly shown spirochetes for years and years suddenly tested 
free of them after one such treatment. Were we to graph the results 
for a single patient, they would probably have looked like the data 
in Figure 7.5. 

Replicated over dozens of clinical tests and rarely refuted in 
later applications, the clinical and scientific communities were 
completely convinced, and rightfully so. Large-magnitude effects 
can be very convincing (Abelson, 1995), and so randomized clini- 
cal trials would have been superfluous. Probably graphs like that in
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FIGURE 7.5. Hypothetical time series of spirochete counts for a single pa- 
tient administered penicillin. Adapted from Campbell (1996). Copyright 
1996 by Pergamon Press. Adapted by permission of Elsevier Science. 

Figure 7.5 were not prepared, nor was there any methodological 
emphasis on keeping the method of assay comparable across times 
for a single patient and across patients. For less dramatic cures, clin- 
ical practice needs to be improved for clarity of causal inference. 

The method that we propose is most appropriate for long- 
standing pathology indicators that have been repeatedly measured 
prior to the onset of treatment. Our method is not appropriate for 
acute flare-ups, as has been demonstrated in the two previous illus- 
trations. For example, it would be inappropriate for testing cures for 
fevers, inasmuch as every cure would be found “effective” due to re- 
gression toward the mean. 

To make the discussion more concrete, consider the contro- 
versy over “Compound Q” at the Sixth International Conference 
on AIDS in San Francisco, as reported in a New York Times (Satur- 
day, June 23, 1990, p. 24) Editorial entitled “Tests of New AIDS 
Drug Assailed at Parley”: 

Martin Delaney, who heads Project Inform, the San Francisco 
AIDS organization that is coordinating the trials, said the 46 
patients in the experiment had improved significantly over the 
first four months of taking the drug... . Before participants in 
the trial started taking Compound Q, they were losing immune 
system cells called CD-4 cells at an average rate of one cell 
every three days. While taking the drug, he said, they gained 
an average of two cells every three days.... But there is no 
control group in the Project Inform experiments; each patient’s 
condition is simply compared to his condition before starting 
to take the drug. Many researchers are extremely critical of this
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approach. ... Mr. Delaney has said his organization’s uncon- 
ventional trials were necessary because people with AIDS were 
already taking the drug in larger doses on their own. Mr. De- 
laney’s announcement today was attacked immediately by Dr. 
Arnold Relman, the editor of The New England Journal of Med- 
icine. The two were on a panel on clinical trials. “You don’t 
know and we don’t know whether this is just a flash in the 
pan,” Dr. Relman said. While he approves the expansion of 
clinical tests to get drugs to fatally ill patients sooner, Dr. Rel- 
man said, he is “opposed to irrational and uncontrolled experi- 
ments!” Other researchers at the conference said these data 
were not enough to make the case that the drug had been help- 
ful, and criticized Mr. Delaney for not providing more informa- 
tion. Dr. Relman said it was wrong for Mr. Delaney to give se- 
lective bits of data to the public very early in the experiment, 
before review of the data from independent researchers. 

We have not examined the details of Delaney’s data. They may in- 
deed not have justified his claims. But they also could have been 
compelling, as was the penicillin-for-syphilis case, without a con- 
trol group. 

Let us assume, first, that he had repeated measures on the CD- 
4 T-cell (or T-lymphocyte) level for 5 or so months prior to the in- 
troduction of Q-therapy (or X-therapy, as in Figures 7.6 and 7.7), 
and for a similar number of months afterward; second, that the in- 
troduction of therapy was not timed as a response to a particularly 
low measure; third, that during the 10-month period no other ther- 
apy was introduced. (A constant background of other remedies dur- 
ing this 10-month period would not be invalidating.) The outcome 
of single patients might look like that shown in Figure 7.6. Such an 
outcome is compelling insofar as there are no plausible rival expla- 
nations for the change in slope. Most of laboratory experimenta- 
tion in the physical and biological sciences similarly lacks a control 
group. The preintervention points serve as a form of control group. 

In Figure 7.6, the treatment seems to have been successful in 
slowing the rate of decline or reversing it, but the results are un- 
compelling for single cases (in contrast with the penicillin—syphilis 
example). Combining those of Delaney’s 46 cases for which there 
are a sufficient number of pre- and postmeasures and producing an 
average time series (aligned in terms of months before and months 
after treatment, rather than calendar time) could produce a smooth 
and convincing plot, such as in Figure 7.7. 

No doubt we already know a great deal about the frailties of 
CD-4 T-cell tests. For example, should all of them be early morning
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FIGURE 7.6. Several hypothetical individual time series of a CD-4 T-cell 
measure. Adapted from Campbell (1996). Copyright 1996 by Pergamon 
Press. Adapted by permission of Elsevier Science. 
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FIGURE 7.7. Hypothetical averages of many individual time series of the 
CD-4 T-cell measure, reorganized into months before and after introduc- 
tion of X-therapy. Adapted from Campbell (1996). Copyright 1996 by 
Pergamon Press. Adapted by permission of Elsevier Science.



114 A PRIMER ON REGRESSION ARTIFACTS 

fasting blood samples? Do doctors with HIV patients obtain fre- 
quent enough blood tests? Are there seasonal trends liable to pro- 
duce pseudoeffects? It might be that usable data could be obtained 
from existing patient records. More likely, the U.S. government 
[e.g., National Institute of Allergy and the Infectious Diseases 
(NIAID), National Center for Health Statistics (NCHS), Centers 
for Disease Control (CDC)] could provide supplemental funding to 
several thousand clinicians with HIV patients so that such time se- 
ries would be available on a number of indicators against which to 
test new therapies clinically. 

The most likely source of a pseudoeffect in a case such as De- 
laney’s Q-therapy comes from a combination of an erratic time se- 
ries of measures and the initiation of treatment in response to an 
extreme measure. If the CD-4 T-cell measure shows the sort of in- 
stability illustrated by the three patients in Figure 7.8, and if treat- 
ment was usually introduced right after an extremely low measure, 
then on average the immediately following measures would show a 
less extreme departure from the general trend even if the treatment 
had no effect. Figure 7.8 illustrates this for an average of many cas- 
es, realigned after the initiation of our imaginary X-therapy. 
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FIGURE 7.8. Hypothetical individual time series in which there is no true 
reversal of trend but in which X-therapy is always introduced after an er- 
ratic high score. Adapted from Campbell (1996). Copyright 1996 by Perg- 
amon Press. Adapted by permission of Elsevier Science.
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As we have already discussed, the shape of this pseudoeffect 
curve can be estimated from a time-series autocorrelogram of the 
correlations of differing lags based upon records in which no treat- 
ment was introduced. In Figure 7.8, a first-order autoregressive 
process has been assumed, with a coefficient of .5 and a linear de- 
scending trend. That is, from the extreme point just before treat- 
ment was introduced, the adjacent points before and after are 
halfway back to the basic trend line; for those 2 points away, for 
which r = .5 x .5 = .25, the regression to the trend has been 75%; 
for those 3 points away, for which r = .5 x .5 x .5 = .125, the regres- 
sion toward the trend has been 87.5%; and so on. 

From Delaney’s case records we should be able to decide 
whether the onset of treatment was, in a given case, precipitated by 
an extreme measure. Moreover, from his and other records, we 
should be able to estimate typical CD-4 T-cell trends for HIV- 
positive patients in the absence of treatment, as well as the autore- 
gressive coefficients. These should enable us to predict the degree of 
“regression to the trend” expected as an artifact alone. From the 
news story, Delaney seems to be claiming a reversal of direction far 
beyond that explainable by the regression to the average trend of 
Figure 7.9. 
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FIGURE 7.9. Hypothetical example of the average of many time series with 
a pseudoremission result (lighter dashed line represents the true trend and 
bold line represents pseudoremission result). Adapted from Campbell 
(1996). Copyright 1996 by Pergamon Press. Adapted by permission of Else- 
vier Science.
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For prospective quasi-experiments of this type, there are addi- 
tional precautions that could be taken. After the decision to intro- 
duce X-therapy, one could routinely wait several measurement peri- 
ods before starting it; or one could introduce such a delay only in 
cases in which the decision was made after an extreme measure, as 
judged by the expected trend for such cases and that patient’s own 
measurement series. Of course, the ethics of such an intervention 
plan would need to be evaluated. But, if the study were ethical, it 
would be a way to evaluate the effectiveness of new drug therapies. 
We consider statistical adjustments in the next section. 

ARIMA MODELING AND REGRESSION ARTIFACTS 

The often recommended approach to time-series modeling is ARI- 
MA (autoregressive integrated moving average) modeling (Judd & 
Kenny, 1981; McCain & McCleary, 1979). This modeling ap- 
proach can estimate and test a wide range of models. A good intro- 
duction to these methods is presented by McCain and McCleary 
(1979). Although these methods can estimate elaborate models of 
serial dependency (the correlation between adjacent observations), 
it is not clear that they can adequately deal with the regression arti- 
facts in the data that we have discussed in this chapter. Because re- 
gression artifacts likely produce biased estimates of the mean and 
the autoregressive coefficient, intervention effect estimates may be 
biased. 

A major practical difficulty in time-series analyses is that cor- 
rection for serial dependency requires estimates from the data but 
the statistical theory on which these estimates are based often re- 
quire relatively large samples (at least 50 data points). However, 
typically in intervention analysis the sample size is very small. It is 
not known how well the large-sample method works with small 
samples. 

We conducted a computer simulation to determine the sensi- 
tivity of ARIMA modeling to both regression artifacts and small 
samples. We created 1,000 time-series data sets, each with 20 obser- 
vations: 10 pretreatment and 10 posttreatment observations. The 
model that we simulated was a first-order autoregressive model. To 
create a regression artifact, the treatment was always introduced af- 
ter a 2 standard deviation increase in the time series, which means 
that the observation before the intervention had to be 2 standard de- 
viations greater than the population mean of the pretreatment ob- 
servations. We refer to this as a nonrandom introduction of the
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treatment. Figure 7.10 presents an illustration of one of the time se- 
ries with such a treatment. It can be seen there that the intervention 
occurs immediately after an extreme observation, much like some of 
the real examples discussed previously in this chapter. 

The simulated model has four parameters: the autoregressive 
coefficient (set to .5); the mean of the pretreatment observations 
(set to 5.0); a treatment effect (set to —1.0, making the mean of the 
posttreatment observations 4.0); and the variance of the random 
component added to the observations (set to .75). SAS Institutes’s 
(1984) PROC ARIMA estimated the parameters of this model. 

Table 7.1 presents the basic set of results from this simulation. 
We first consider the results from the 500 samples with random in- 
troductions of the intervention. We see that the autoregressive co- 
efficient was underestimated, the earlier cited problem of small- 
sample bias. However, there is not much bias in the estimate of the 
intervention effect. 

Alternatively, when the treatment is nonrandomly intro- 
duced, the treatment effect estimates are biased. Ironically, the au- 
toregressive coefficient is essentially unbiased but the pretreatment 
mean is. Because that mean is biased, the extremity of the preinter- 
vention point is underestimated. This underestimation results in 
substantial bias in the estimate of the treatment effect, on the order 
of half a standard deviation. 
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FIGURE 7.10. Simulated time series with an exceptionally large pretreat- 
ment observation before the intervention point. Adapted from Campbell 
(1996). Copyright 1996 by Pergamon Press. Adapted by permission of Else- 
vier Science.
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TABLE 7.1. Results of 1,000 Trials of a Simulation Using a 
First-Order Autoregressive Model with 10 Pretreatment and 
10 Treatment Observations 
  

  

  

Intervention 

Parameter Population Random Nonrandom? 

Autoregressive coefficient 50 32 48 
Pretreatment mean 5.00 4.96 5.51 

Treatment effect —1.00 —1.02 —1.52 
Error variance 15 14 90 
  

“Intervention introduced after a 2 standard deviation change and with the preinterven- 
tion being 2 standard deviations above the mean. 

We recommend the following strategy for removing the bias. 
Two dummy variables are created that code the two observations 
just before the interventions. One dummy variable equals 0 for all 
points except the one just before the intervention, and for that val- 
ue the dummy variable equals 1. The other dummy variable is just 
like the first, except that the penultimate observation equals 1 and 
the rest O. We suggest “dropping” these two observations for the 
following reason: the observation just before the intervention is 
likely to be extreme, and the one before that might be extreme in 
the opposite direction; by eliminating those observations that are 
likely to be extreme, the mean of the pretreatment observations 
should be less biased. Limited simulation work has shown that the 
addition of these two dummy variables results in a much less biased 
estimate of the intervention effect. These additional dummy vari- 
ables are necessary to control for the potentially biasing effects of 
regression toward the mean. 

Two degrees of freedom are lost by this approach, and this 
might be costly if there are few points in the time series. One might 
think that an alternative approach would be to treat these observa- 
tions as missing. This, however, is not a viable strategy because the 
observation just before the intervention is needed to calculate the 
amount of regression toward the mean expected for observations af- 
ter the introduction of the intervention. 

CONCLUSION 

This chapter has presented three extended examples. A common 
theme is that often the timing of the initiation of the intervention
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is selected when a time-series observation takes on an extreme val- 
ue. Given the extremity of the value, we would expect regression 
toward the mean of the series—and so “improvement” appears to 
occur. Very often the regression from extremity masquerades as an 
intervention effect. We have also shown that even sophisticated 
estimation procedures like ARIMA modeling can be fooled by 
these regression artifacts. 

One advantage of time-series designs is that the biasing effect 
due to the extremity of the initiation of the intervention can be es- 
timated. If the autocorrelational structure is known, the degree of 
such regression artifacts can be computed and thus distinguished 
from a genuine impact of the intervention. Within ARIMA model- 
ing, we recommend introducing dummy variables for the two ob- 
servations just before the intervention occurs. Such controls are 
necessary to remove regression toward the mean as a plausible rival 
hypothesis. Further statistical study is needed to evaluate this and 
other methods to control for regression artifacts. 

In this chapter, we have largely ignored the additional compli- 
cations of trends and cycles that usually occur in time-series model- 
ing. Moreover, we have assumed that the autocorrelational struc- 
ture is first-order autoregressive. In principle, we believe that it is 
still possible to use our approach with these more complicated 
models. We encourage work in this area. 

Another issue is that often there are multiple time series, and 
how to pool results across many different time series is an important 
problem deserving of attention. That is, it should be possible to test 
whether the autocorrelational structure is the same for different 
units. Problems of small-sample bias need to be considered, because 
when there are many series it is likely that they are of short dura- 
tion. Most likely, multilevel modeling can be applied to this prob- 
lem. 

In the next chapter, we explore further the analysis of a form 
of time-series data. There we have a very short time series, with as 
few as four time points. However, in this case we have many time 
series, perhaps hundreds. We shall see that regression artifacts also 
plague these longitudinal studies.



  

  

Regression Artifacts 
in Longitudinal Studies' 

By longitudinal study, we refer to studies in which a large number of 
units of measurement (e.g., persons or census tracts) are all mea- 
sured at periodic intervals (e.g., every year) and in which the units 
are individually identifiable in each period. (A time series—just 
discussed in Chapter 7—involves few units, often just one, mea- 
sured at many different times.) The time differences between inter- 
vals need not be the same length (e.g., yearly) but often are. For 
most of the applications in this chapter, units are measured at least 
four times. 

In this chapter, we first consider the correlational structure of 
longitudinal or multiwave data. Recall that the degree of regression 
toward the mean depends on the correlation between measures. If 
we understand the correlational structure, we can predict the de- 
gree of regression over time. As an example, we examine the corre- 

lational structure over 45 years of measurements of physical attrac- 
tiveness. In the next section, we consider the mean change or trend 
lines over time. We are mainly concerned about mean differences 
between groups formed by matching. We consider in some detail a 
well-known evaluation of a job-training program. We believe that 
in this data set regression artifacts create a difference in trend lines. 

Generally in this chapter we assume stationarity of parame- 
ters; that is, the variance of the variable does not change over time 
and the correlation across the same lag length is the same for all 

  

'Much of this chapter was originally published in Campbell (1996). We are 
most grateful for permission from Elsevier Science to reprint this material. 
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pairs of variables. Of course, real data do not exactly meet these as- 
sumptions, but for pedagogical reasons we oversimplify. For the 
physical attractiveness example, we do allow for changes in correla- 
tion over time and, in fact, it is the change in correlation that is 
one of the most important aspects of that example. 

OVER-TIME CORRELATIONAL STRUCTURE 

We begin with the fact that the correlational structure of longitudi- 
nal data almost always has a proximally autocorrelated structure: ad- 
jacent waves of measurement correlate more highly than nonadja- 
cent waves, and the more remote in time, the lower the correlation 
(Campbell & Reichardt, 1991; Kenny & Campbell, 1989). So the 
longer the time lag, the lower the correlation. This empirical tru- 
ism has been found for economic, social-attitudinal, biological, and 
educational measures. Except for data that are highly cyclical 
(Warner, 1998), proximal autocorrelation is the norm. 

An example of proximal autocorrelation is presented in Table 
8.1. The correlation matrix is taken from Humphreys (1960) and 
consists of grade-point averages measured on 91 students across 
eight semesters. The data show the typical pattern of decreasing cor- 
relations at longer lags: a proximally autocorrelated structure. The 
average correlation between adjacent waves is .66, between waves 
separated by two semesters is .61, and between waves separated by 
three semesters is .58. The data illustrate the typical pattern of prox- 
imal autocorrelation. In the remainder of this section, we consider 
models that would bring about proximal autocorrelation. 

TABLE 8.1. Correlations of Grade Point Average across Eight Semesters 
  

X, 1.00 
X, 69 1.00 
X, 55 65 1.00 
X, 46 58 65 1.00 
X, 45 50 59 62 1.00 
X41 60 60 63 61 1.00 
X, 34 Al 56 66 64 65 1.00 
Xs «33 44 52 53 68 69 72 1.00 

X, X, X; X, X, Xe XX 
  

Note. N = 91. From Humphreys (1960). Copyright 1960 by the Psychometric Society. 
Reprinted by permission.
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Table 8.2 presents four major patterns of correlational struc- 
ture. In the first pattern, shown in part A of the table, there is an 
unchanging variable that creates the correlations between the 
waves. If the effect of this unchanging variable, usually called a 
trait, is the same at each wave, all of the correlations are the same. 
Because the trait does not explain all of the variance of the mea- 
sures, the remaining variance is denoted as error. Quite clearly, this 
model does not imply a proximal autocorrelational structure. 

TABLE 8.2. Four Over-Time Correlational Structures (Autoregressive 
Parameter Set to .8) 
  

A. Trait pattern: trait (.70) and error (.30) 
  

  

  

  

X, 1.000 
X, .100 1.000 
X; .700 .100 1.000 
X4 .700 .100 .700 1.000 
Xz .100 .100 .100 .100 1.000 

X, X, X3 X4 Xs 

B. Simplex pattern: state (1.00) 

X, 1.000 
X; 800 1.000 
X;3 .640 800 1.000 
X4 512 .640 800 1.000 
Xz 410 512 .640 800 1.000 

X, X, X; X4 Xz 

C. Quasi-simplex pattern: state (.90) and error (.10) 

X, 1.000 
X, 120 1.000 
X; 576 120 1.000 
X4 461 576 120 1.000 
Xz 369 461 576 720 1.000 

xX, X) X3 X4 Xs 

D. Trait-state—-error pattern: trait (.50), state (.40), and error (.10) 

X, 1.000 
X, 820 1.000 
X; 156 820 1.000 
X4 105 156 820 1.000 
Xs .664 105 156 820 1.000 

X l Xz X3 X4 x 5 
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Despite the infrequency of finding this pattern in data, it is 
nonetheless assumed by many statistical techniques. For instance, 
repeated measures analysis of variance assumes this structure, as 
well as many multilevel models. Within the repeated measures lit- 
erature, the assumption of this correlational structure is called ho- 
mogeneity of covariance or compound symmetry. 

For the pattern in part B of Table 8.2, the scores change and 
the resulting structure is said to be proximally autocorrelated. This 
pattern has been called a Guttman simplex (e.g., by Humphreys, 
1960), but the more common name is a first-order autoregressive 
model. The assumption of the first-order autoregressive model is as 
follows: a person’s score is caused by only the person’s score from 
the prior wave of measurement. The pattern for a first-order autore- 
gressive structure is often assumed for time-series data and is dis- 
cussed in Chapter 7. If the variables were categorical, a first-order 
autoregressive model would be a first-order Markov model. 

In part B of Table 8.2, there is an autoregressive model with 
the autoregressive coefficient set at .80. We have assumed perfect 
reliability (i.e., no error variance). Note that the ratio of correla- 
tions at adjacent lags (longer lag correlation divided by shorter lag 
correlation) is always the same value of .80. In a simplex, each cor- 
relation equals the autoregressive coefficient raised to the kth pow- 
er, where k is the time lag between measurements. If we were to 
plot the correlation in logarithm coordinates against lag length, the 
resulting graph would be a straight line. 

We refer to a variable that changes in an autoregressive fash- 
ion as a state. Of course, not all state variables have such a struc- 
ture, and so we are using the term “state” in a restricted sense of the 
term. A trait can be viewed as a variable that has an autoregressive 
coefficient of 1 and an error that has an autoregressive coefficient 
of 0. 

In part C of Table 8.2, we have taken the pattern in part B and 
added measurement error at each time. The model then contains 
state and error variance. These correlations are identical to those 
in part B except that all correlations are multiplied by a common 
reliability. We still see the general pattern of decreasing correlation 
over longer elapsed time or proximal autocorrelation. Illustrated 
here is a very simple first-order autoregressive process plus a time- 
specific error. The reliabilities have been set at .90, and the autore- 
gressive coefficient has been set at .80. Thus the 1-year lag value is 
.9 x .8, the 2-year value .9 x .8 x .8, and so on. When measurement 
error is added onto a simplex, the resulting model is called a quasi- 
simplex. Real correlation matrices, for example the grade-point av- 
erage data in Table 8.1, do not look exactly like that in part C of
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Table 8.2 because the autoregressive coefficients and the reliabili- 
ties change over time. 

Given a first-order autoregressive model with measurement er- 
ror, there is a constraint on the correlation matrix. For four waves 
of data (1-4), the following should hold: 7,473 = 113724. More typi- 
cal, however, 14723 is somewhat greater than 1;3724 (Campbell & 
Reichardt, 1991), something that does not happen for the data in 
Table 8.1 (only in 40% of the cases is 714723 greater than 13124). So 
real data characteristically show departures from the first-order au- 
toregressive pattern, almost always in the direction of decreasing 
decrements with longer lags. Larger correlations than a first-order 
autoregressive process would show for the longest lags. An example 
of this structure is presented in part D of Table 8.2. There are two 
major ways in which that pattern of results can be explained. 

First, as discussed by Campbell and Reichardt (1991), such a 
pattern would be produced if the process were a second-order au- 
toregressive. In this model, the true score is affected by the previous 
wave and the wave before that. The lag-2 path must be positive to 
explain the pattern of results that we typically see in data. There is 
a specification difficulty for this model. For first-order autoregres- 
sive models, the lag length need not be specified. Thus, if people 
were measured every month, every 6 months, or every year, the 
model is still correctly specified. However, if the model is second- 
order, the lag length must be correctly specified. If lags should be 6 
months and 1 year, then the sample must be measured every 6 
months. If however, people are measured every year, the model 
would contain a specification error. So we judge the second-order 
model as relatively implausible, as it depends on the length of lag, 
which is usually arbitrarily chosen. 

Second, the trait-state—-error model, developed by Kenny and 
Zautra (1995) and anticipated by Kenny (1975a), can explain this 
correlational structure. The model is similar to a first-order autore- 
gressive model, but it also includes a trait factor that does not 
change over time. So unlike the autoregressive model that predicts 
that eventually the correlation over time is 0, the trait—state—error 
model predicts that the floor in the lagged correlations is the trait 
variance. 

The trait-state-error model has interesting implications for 
regression toward the mean. In a state model every individual re- 
gresses to the same mean. So, in the long run, we do not expect any 
initial difference between two persons to persist. In the long run, 
they would be different, but the direction of that difference would 
be unpredictable. However, for the trait-state-error model, indi-
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viduals are not regressing to the same mean but to their own mean. 
Alternatively, in this model subgroups of individuals are regressing 
to different subgroup means. So, in the long run, persons become 
more similar but not exactly similar. Any initial difference would 
tend to exist later in time, though in a somewhat diminished form. 

We generally favor the trait—state—-error model over the other 
models discussed in this section. We do so for the following reasons. 
First, it is the most general model in that it subsumes all of the pre- 
viously discussed models, with the exception of the second-order 
autoregressive model. Second, it makes predictions that are in ac- 
cord with empirical patterns. As one example, if we were to esti- 
mate each of the models implied in Table 8.2 for the data in Table 
8.1, the trait—state-error would be the best-fitting model. Also, as 
Kenny and Campbell (1989) point out, the trait—-state-error model 
can explain why time-series data have relatively low autocorrela- 
tions (Huitema, 1985) and longitudinal data have large ones. 
Third, it is a rich theoretical model. Many researchers have debat- 
ed whether constructs are traits or states. This model turns that de- 
bate into an empirical question. 

The trait—-state-error model is useful in considering the analy- 
sis of treatment variables. The model has been implicitly assumed 
in Chapters 4 and 5. There we assumed that individuals are not all 
regressing to a common mean, implying stable differences between 
persons or between the social groups of which they are members. 
The trait factor can reflect differences between groups as well as 
persons. In Chapters 4 and 5, the simulation model assigned per- 
sons to treatment groups on the basis of a trait factor, group mem- 
bership. As Kenny (1975a) discussed, selection can also occur on 
the state or error factors. Moreover, intervention effects can change 
the trait (permanent effects), error (temporary effects), or state (de- 
caying effects) factors. 

It need not be assumed that the trait resides in the person or 
the person’s genes. Stable differences between persons may also be 
due to different, but stable environments. Also the trait factor may 
change, but the rate of change may be too slow to detect given the 
interval between the first and last wave of measurement. 

The differences between the four models in Table 8.2 are 
graphically illustrated in Figure 8.1. We label the models in the fig- 
ure as A through D to parallel the four models in Table 8.2. For 
each model, the autocorrelation is graphed as a function of lag 
length. As discussed in Chapter 7, this type of graph is called an au- 
tocorrelogram in time-series research. For each model, the different 
sources of variance are illustrated by dashed lines. For state vari-
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FIGURE 8.1. Autocorrelational structures of four different models (A—D).
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ance, we graph the total variance due to that factor. Figure 8.1D 
clearly shows how the trait-state—error model combines features of 
the other three models. 

This is not to say that the trait—-state—-error model does not 
have any weaknesses. As is typical of most very general models, it 
can be very difficult to estimate. One needs very large sample sizes 
to estimate the model. Moreover, estimation requires some assump- 
tion of stationarity—in other words, that the effects due to each fac- 
tor are the same at each time. Although the trait—state—error mod- 
el has several important theoretical advantages, it can be difficult 
to work with empirically. However, we still believe that it does pre- 
sent new possibilities for the analysis and conceptualization of over- 
time data. 

Although we favor stochastic models of change, others have 
advocated deterministic models in which change is entirely pre- 
dicted by time of measurement (e.g., McArdle & Epstein, 1987). 
These models, sometimes called growth-curve models, imply that 
each individual is on a track or orbit. The person may vary about 
that orbit, but he or she tends to stay near it. An example of a sim- 
ple deterministic model is that all individuals change in a linear 
fashion. Some growth-curve models create a pseudosimplex (but 
not a quasi-simplex) structure of correlations (Rogosa & Willett, 
1985). Growth-curve modelers have criticized autoregressive mod- 
els because such models discard the overall means, whereas growth- 
curve models leave the mean in the data. Growth-curve models are 
more parsimonious than the autoregressive model in that growth- 
curve models explain overall or mean change as well as within- 
person change. We remain skeptical that maturation is the only 
plausible explanation of group change. History, instrumentation, 
mortality, and especially regression toward the mean may be just as 
plausible explanations. So we worry that it may be very misleading 
to base one’s model on the overall pattern of mean change. 

Trait-State-Error Model of Physical Attractiveness 

In this example, we illustrate the estimation of the trait—state—error 
model (Kenny & Zautra, 1995). The model is an extension of the 
autoregressive model, but it allows for a trait or unchanging factor. 
The example concerns regression toward the mean of physical at- 
tractiveness across the lifespan. 

In this section, we reanalyze the data previously analyzed by 
Zebrowitz, Olson, and Hoffman (1993), who examined physical at-
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tractiveness measured at five times during the lifespan. Our conclu- 

sions are very similar to those of Zebrowitz et al. (1993) despite 

some differences in our analyses. Their data consist of three child- 

hood measures (average age 10), three puberty measures (average 

age 14.5 for males and age 12.5 for females), three adolescent mea- 

sures (average age 17.5), one young adult measure (age 31), and 

one late adult measure (age 56). The measures were for 103 males 

and 104 females (see Zebrowitz et al., 1993, for a discussion of miss- 

ing data). 
For the model that we estimate, there are three sources of vari- 

ation: 

Trait—lifetime physical attractiveness 
State—changes in physical attractiveness 
Error—random change 

So, if we say, “Joe has always been a good-looking guy,” we are refer- 

ring to the trait component. If we say, “Joe used to be good looking 

when he was younger, but he no longer is quite so good looking,” 

we are referring to the state component. Finally, if we say, “Joe was 

a good-looking child,” we are referring to the error component. 

Note that error in this context does not mean error of measurement 

but rather transient sources of variance, such as “having a bad hair 

day.” However, part of error variance would be errors of measure- 

ment. 
We estimated a model that is very similar to that estimated by 

Zebrowitz et al. (1993). A diagram of the model for the state com- 

ponent is given in Figure 8.2. The model is estimated by the struc- 

tural equation modeling computer program LISREL 8. We treated 

the first three measures as an indicator of a child factor, the next 

three as indicators of a puberty factor, the next three as indicators 

of an adolescence factor, the next measure as an indicator of a 

young adult factor, and the last measure as an indicator of a late 

adult factor. When there was more than one indicator, the loadings 

were set equal. We also forced the error variance of the two single- 

indicator measures to be equal. 
We estimated separate models for males and females. For the 

model that we present, the fit is excellent. For males the 

Tucker—Lewis index is .98, and for females the index is 1.00. Be- 

cause a Tucker—Lewis value of .95 or larger is generally considered a 

good fit and a fit of 1.00 is optimal, the fit of these models is excel- 

lent. 
The first major result is that there is little evidence of a trait
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FIGURE 8.2. Estimates of standardized stability in physical attractiveness 
for males and females across the lifespan: boldface numbers, males; italic 
numbers, females. 

factor. For neither males nor females is there any evidence of statis- 
tically significant trait variance. Dropping the trait factor did not 
statistically significantly reduce the fit for males [y2(1) = 1.06] and 
for females [y’(1) = 1.62]. Thus, physical attractiveness is not an 
inherent characteristic of the person. Individuals’ attractiveness 
seems to regress to one population mean. 

Figure 8.2 presents the second major result, which is that the 
rate of change is greater when people are younger. The numbers in 
boldface are for males and those in italic are for females. For in- 
stance, for females the year-to-year correlation in physical attrac- 
tiveness when they are young is .94, whereas during the last inter- 
val the year-to-year correlation is .99. For males, the year-to-year 
correlation is .91 when they are young and .98 when they are old. 
Across the entire lifespan there is considerable change: the correla- 
tion from age 10 to age 56 is .26 for females and .19 for males. 
These translate into year-to-year changes of .97 for females and .96 
for males. We can see why we find no trait variance for physical at- 
tractiveness. High year-to-year stabilities translate into very low 
stability across the lifespan. 

In the last set of models, we modeled the rate of change from 
year to year. We transformed years to a logarithmic scale and as- 
sumed that the rate of change is constant in this metric. So, for in- 
stance, we are assuming that the rate of change in physical attrac-
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tiveness is the same from 10 to 15 years of age as from 30 to 
45 (i.e., 10/15 = 30/45 = 2/3). The fit of this model was quite good 
for both men and women. Within this model the test-retest corre- 
lation from age 10-20 is .53 for females and .52 for males, whereas 
the test-retest correlation in physical attractiveness during the 
50’s is .85 for females and .84 for males. Quite clearly the data in- 
dicate slower rates of change for older persons than for younger 
ones.” 

This example shows an unexpected benefit of regression to- 
ward the mean. If you are not especially attractive physically and so 
become envious of someone else’s attractiveness, if you wait long 
enough, the two of you will not be all that different in physical at- 
tractiveness. You may, however, have to wait for 50 years. So, in the 
long run, men can expect to be as attractive as Mel Gibson (the 
good news) and Mel Brooks (the bad news). Because regression to- 
ward the mean works backward in time, people who are more at- 
tractive than you when you are in your 60’s were probably only lit- 
tle more attractive than you when you were both 10 years old. 
Regression toward the mean is the great equalizer. 

To most readers, the absence of trait variance in physical at- 
tractiveness seems counterintuitive. However, consider the fact 
that famous child stars often do not grow up to be particularly at- 
tractive adults. 

Despite our failure to find evidence of trait variance in judg- 
ments of physical attractiveness, we believe that the trait—state— 
error model is useful. It allows for careful documentation of differ- 
ent sources of variance. 

REGRESSION ARTIFACTS IN MULTIWAVE STUDIES 

In Chapters 3, 4, and 5, we discussed how regression toward the 
mean could create apparent change due to an intervention that is 
really just a statistical artifact. Those chapters focused on changes 
with just two waves of measurement. In this section we extend the 
discussion to the case in which there are more than two waves of 
measurement. We begin with a graphical analysis and then present 

  

7A log scale for the exponent in the autoregressive presents an interpretive 
problem for newborns. Because the log of 0 is -2, the predicted correlation of 
physical attractiveness at birth with any time later in life (even the next day) 
is O.
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a mathematical formulation. We finish with an extended example 
of a well-known evaluation. 

Graphical Analysis 

Nesselroade, Stigler, and Baltes (1980) have previously discussed 
this issue. They have argued that regression toward the mean is 
more of a problem in two-wave studies and may be less of a problem 
in multiwave studies. Gottman and Rushe (1993) have reiterated 
these claims. Lund (1989a, 1989b), while disagreeing with Nessel- 
roade et al. (1980) in some ways, has expressed similar concerns. 

Although there is theoretical merit in their claims, we strongly 
differ with these scholars. We believe that the empirical fact of 
proximal autocorrelation implies that regression toward the mean 
continues after the second wave of measurement. We worry that 
the careful qualifications made by the aforementioned scholars 
might be lost on the novice. We hope that this primer has made it 
abundantly clear that regression toward the mean is a serious prob- 
lem. 

Our disagreement centers on the assumption of proximal auto- 
correlation. As Nesselroade et al. (1980) make clear, if that as- 
sumption were false, regression toward the mean would be less of a 
problem. We, however, are confident that proximal autocorrelation 
is the rule, not the exception. We urge an extensive look at the 
myriad of over-time correlation matrices to measure the degree of 
proximal autocorrelation. 

Nesselroade et al. (1980) are correct in stating that the largest 
amount of regression toward the mean usually takes place at lag 1 
(r}7 vs. 713 Or 14) because that is where the correlation changes 
most. To see this, the reader should examine the changes in corre- 
lation over time in Figure 8.1 and see that the largest decline is at 
lag 1. However, regression toward the mean continues in further 
waves. One case that Nesselroade et al. (1980) considered is a pure 
trait model (see Table 8.2A or Figure 8.1A). For that model, all of 
the regression toward the mean occurs at lag one. However, we be- 
lieve that such correlational structures are rarely encountered em- 
pirically, a view that underlies the distrust of repeated measures 
analysis of variance for such data. 

Figure 8.3 is intended to expand the usual two-wave illustra- 
tion of the regression artifact due to matching, but with the normal 
distributions of measures for the two groups turned on their sides. 
Figure 8.3 attempts to extend the regression artifact from matching
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FIGURE 8.3. Mean trends in two groups (mean difference of 20 points) as 
a function of matching at age 3 or 6 years. Adapted from Campbell 
(1996). Copyright 1996 by Pergamon Press. Adapted by permission of El- 
sevier Science.
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on a single year to more years—earlier as well as subsequent years. 
We assume that there are seven waves of data for two neighbor- 
hoods of children from ages 3-9. Within each group, we have as- 
sumed a first-order autoregressive model. (The correlational struc- 
ture is similar to that of Table 8.2, part C.) We have separated the 
two groups by 2 within-group standard deviations. 

In Figure 8.3A, the group means for two neighborhoods, A 
(advantaged) and D (disadvantaged), on an annual vocabulary test 
are normed so as to remove the differential growth that would ac- 
company different means for an absolute measure such as total vo- 
cabulary. The advantaged neighborhood has a mean of 100; the dis- 
advantaged, a mean of 80. We have set the standard deviation 
within each group at 10. The two neighborhoods show the same 
overlap in each year as shown by the normal distribution curves. 

In Figure 8.3B, the expected values are portrayed in subse- 
quent (and earlier) years for subgroups matched on the age 3 mea- 
sure at the score of 90. The separation of the age 3 matches grows 
larger as the number of years separating the two measures increases, 
in conformity with the lower correlation coefficients. Consistent 
with Nesselroade et al. (1980), the largest amount of regression oc- 
curs between the ages of 3 and 4. However regression continues, 
even between years 8 and 9. 

In Figure 8.3C, the effects of a hypothetical matching of scores 
at age 6 are shown. Note especially that there is regression toward 
earlier means as well as toward later ones. Regression toward the 
mean occurs in both directions, a fact that we exploit in Chapter 
10. 

One might have used the years 3—6 as the matching base; that 
is, one might match at age 6 using the average of years 3—6 as the 
matching variable. If this were done, matching, as well as statistical 
equating, would never reduce the difference between neighbor- 
hoods in any one year to 0. Due to the proximally autocorrelated 
correlational structure, the difference would be smallest for ages 
4 and 5, doing less well at ages 3 and 6. Most importantly, the 
gap between neighborhoods would widen from ages 7—9. Thus, 
matching on or “controlling” for 4 years of data does not eliminate 
pseudoeffects. 

Multiple regression adjustments still predominate in the quasi- 
experimental compensatory education literature, and the proxi- 
mately autocorrelated nature of the data generates not only pseudo- 
effects but also pseudotrends of decreasing (or increasing) effects in 
long-term follow-up (Director, 1979). Thus, regression artifacts 
could create pseudoeffects that are not really present in the data.
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Measurement of Trend Differences 

Consider two groups, a treatment group and a control group. The 
mean of the treatment group is denoted as M7, and the mean of the 
control group as Mc. We assume stationarity, and so the mean and 
the variances do not change over time. If we were to match control 
and treatment participants at one time, these scores would regress 
to different means and so there would be a gap. As presented in 
Table 2.1 in Chapter 2, the amount of regression of the predicted 
score for X, given X, equals r,,(X, — M) + M when the mean and 
variance do not change over time and where 1, is the correlation 
between X, and X,. As we discuss in Chapter 5, when we use this 
formula in both groups, the predicted separation between groups is 

(My —- Mc)(1 -1) 

where Mr — Mc is the difference between groups at the time of 
matching, and r is the pooled correlation within groups between 
waves. Given that the separation in group means depends on the 
correlation and given a proximally autocorrelated structure, the gap 
between treatment groups widens as the distance from the point of 
matching increases. We can see the widening gap in Figure 8:3B 
and 8.3C. An empirical example of a pseudo-widening gap is pre- 
sented in the next section. 

The trait—state—error model can be used to better understand 
issues that were raised in Chapter 5 about the size of the gap be- 
tween treatment groups. One explanation for why there is a gap be- 
tween groups at the pretest is that the groups differ on the trait, 
state, and error factors. Thus, change in the error and the state fac- 
tors should reduce the gap. If, however, selection into groups is not 
based on the error variance, then there should be less regression to- 
ward the mean and the slope (b,,) must be corrected for attenua- 
tion, that is, divided by its reliability. Finally, if selection is based 
entirely on the trait factor, then we would expect that there would 
be no narrowing of the gap and some sort of change score analysis 
would be appropriate though assumptions of stationarity would be 
required. In general, if we are to successfully correct for pretest dif- 
ferences in selection, we must know what factors (trait, state, and 
error) created that pretest difference. However, it can be difficult to 
know exactly what the sources of selection are. This is the funda- 
mental problem in the analysis of multiwave quasi-experimental 
studies. 

Before turning to the example, we briefly consider the paper
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by Gibbons, Hedeker, and Davis (1987), who artfully illustrate that 
regression toward the mean can create a pseudocovariation be- 
tween two curves over time. They were interested in the associa- 
tion between two trend lines. The title of their paper is “Regression 
toward the Mean: More on the Price of Beer and the Salaries of 
Priests.” Their thesis is straightforward. If there is selection on a 
variable, then over time that variable regresses to its mean. So two 
different variables are selected, they both regress to their means, 
and the two trends then mirror one another. But that covariation 
of trends is an artifact due to regression toward the mean. 

A Job-Training Example 

In this subsection, we consider the divergence of trend lines in an 
actual quasi-experimental evaluation. The next two figures come 
from a famous study of a job-training program by Ashenfelter 
(1978). As graphed (Campbell, 1975, 1996; Cook & Campbell, 
1979, Figure 5.9, p. 229), this is the most effective intervention of 
which we know. Most job-training studies show either no benefits 
or pseudoharmful ones (Director, 1979). Ashenfelter (1978) used 
records from 10 years of earnings subject to withholding tax for in- 
dividuals receiving job training in 1963/64, and for age, gender, and 
race matches not receiving such training. We consider here only 
the data of white males, although essentially the same points can 
be made for African-American males. 

From Figures 8.4, we see that there are sustained differences 
between the groups during 1959-1963 even before the interven- 
tion begins. Using the vocabulary from Chapter 5, we observe that 
the program is a compensatory program in that the treated group’s 
income is lower than the control group’s before the intervention. 
After the intervention, there is a dramatic catch-up from 1965 to 
1969. We note visually (implicitly using raw change analysis) that 
it looks as though the treatment effects are sustained to an undi- 
minished degree. 

Ashenfelter (1978) did not present the graph in Figure 8.4, 
but instead he adjusted values in which the yearly data for 
1963-1969 were “corrected” or “statistically equated” by use of the 
pooled data from the years 1959-1962 as covariates. In Figure 8.5, 
we present his effect estimates, again for white males. Because the 
covariate is based upon four pooled years, the correlation with a 
subsequent year is very high and the adjustment initially almost en- 
tirely removes the difference between treatment group means. But 
during the later years, the multiple correlation between 1959-1962
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FIGURE 8.4. Trend lines for white males in the treatment and control 
groups (a replotting of results from Ashenfelter, 1978). Adapted from 
Campbell (1996). Copyright 1996 by Pergamon Press. Adapted by permis- 
sion of Elsevier Science. 

and the target year undoubtedly becomes lower and lower due to 
the proximally autocorrelated nature of such data. The adjustment 
thus becomes less and less, showing in Ashenfelter’s statistics as 
steadily declining benefits. In Figure 8.5, we have graphed his esti- 
mates of gains using statistical equating in contrast with the visual 
impression (i.e., using change scores). Figure 8.5 clearly shows that 
with statistical equating the effect entirely disappears. However, a 
visual inspection or raw change scores analysis clearly shows that 
after training the gap narrows and the program is beneficial. 

We are somewhat ambivalent about this illustration, for we 
believe that in most cases the impact of many interventions does 
steadily diminish (Campbell, 1988, pp. 308-312), in compatibility 
with Ashenfelter’s (1978) reported results. But, equally strongly, we 
believe that Ashenfelter’s method would have produced diminish- 
ing results even if the interventions’ impact had, in truth, been 
undiminished.
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FIGURE 8.5. ‘Treatment effect estimates of job training for white males us- 
ing statistical equating and change score analysis (Ashenfelter, 1978). 
Adapted from Campbell (1996). Copyright 1996 by Pergamon Press. 
Adapted by permission of Elsevier Science. 

Figure 8.6 is reproduced from an unpublished presentation by 
Campbell and Reichardt (1983), and for that presentation Reich- 
ardt conducted a simulation of what would have happened if in an 
Ashenfelter-like situation there had been no measurable effect. 
Reichardt generated a first-order autoregressive model in which 
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there is a constant $1,000 difference between treatment groups, the 
treated respondents earning less income than the controls. For this 
model, statistical equating would have made the job-training pro- 
gram look increasingly harmful! Of course, we do not know 
whether the model that was generated for Ashenfelter’s data is in- 
deed the correct model of selection. But if the two groups are drawn 
from different populations (i.e., selection on a trait), then his 
analysis is very misleading. 

CONCLUSION 

If we are to understand regression artifacts in longitudinal research, 
we need to first understand the correlational structure over time. A 
pure trait model is usually insufficient to explain the correlational 
structure because data are typically proximally autocorrelated: adja- 
cent waves of data are more highly correlated than nonadjacent 
waves. First-order autoregressive models can explain this structure. 
In this model, scores are assumed to be caused by the prior wave of 
measurement. The trait—state—error model combines the trait mod- 
el with the autoregressive model. 

Regression artifacts are a subtle source of mistaken causal in- 
ferences from longitudinal studies. Not only are these regression ar- 
tifacts produced by matching cases on fallible pretests or other mea- 
sures, but they also occur in analyses that anchor statistical 
adjustments of outcome variables on “independent” variables taken 
at a specific time. The anchoring measures (just like the matching 
variables) are implicitly treated as though they were perfect, lack- 
ing measurement error and reliable irrelevant variance. 

In longitudinal studies with many periodic waves of measure- 
ment, anchoring the analysis (as by matching or statistical equat- 
ing) at any one time period (usually the first wave) is likely to pro- 
duce an ever-increasing pseudoeffect as the time interval increases. 
The degree to which the resulting differential trends are merely re- 
gression artifacts can be estimated, and thus we can attempt to dis- 
tinguish them from genuine effects. 

A key question is whether persons are regressing to the same 
mean or persons or subsets of persons are regressing to different 
means. One can answer this question by estimating the trait— 
state—error model. If there is variance due to trait, then individuals 
are regressing toward their own different means. If there is not trait 
variance, then all individuals are regressing to the same mean. For 
details concerning the estimation of such models, consult Kenny 
and Zautra (1995).
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We need to emphasize the conclusions drawn from multiwave 
studies may depend on the model that is being assumed. Although 
we prefer trait-state-error models, there are other models (e.g., 
growth-curve models and second-order autoregressive models). 
Very often empirical analysis is unable to select among these mod- 
els. The researcher should consider what type of model is most sen- 
sible for the particular application. 

We have nearly completed our discussion of regression arti- 
facts. Next, in the penultimate chapter, we consider further the is- 
sue of proximal autocorrelation in the case in which two variables 
are changing over time. It is an implicit assumption of a neglected 
statistical method: cross-lagged panel correlation.



  

  

Cross-Lagged Panel 
Correlation Analysis 

In the previous chapters, we have generally had one variable, a 
treatment variable that is unchanging and is presumed to cause an- 
other variable that is moving through time. Very often the situa- 
tion is quite different. Two variables are both moving through time 
and each may cause the other. For historical reasons, we focus on 
one statistical technique, discussed below. However, our overarch- 
ing purpose is to encourage researchers to consider alternative 
models when they analyze longitudinal data. 

WHAT IS CLPC ANALYSIS? 

This chapter focuses on an analysis technique that one of the pres- 
ent authors invented (Campbell, 1963; Campbell & Stanley, 1963; 
Rozelle & Campbell, 1969) and the other spent most of his early 
career developing (Kenny, 1973, 1975b, 1979; Kenny & Harack- 
iewicz, 1979). The technique is called cross-lagged panel correlation 
(commonly abbreviated CLPC, an acronym that we use in this 
primer). In this chapter, we review the long and contentious litera- 
ture concerning this technique. We begin with a description of 
classical CLPC analysis. We show how the method’s fundamental 
logic is based on regression toward the mean and proximal autocor- 
relation. We then consider criticisms made by David R. Rogosa and 
others of the method. Next, we consider a recent recasting of 
CLPC as a variant of multitrait-multimethod matrix analysis. Fi- 
nally, we provide a series of recommendations for analysis. Al- 
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though we have defended CLPC in the past (Kenny & Campbell, 
1984, 1989), this chapter presents the most detailed defense to 
date. 

The original use of the technique involves two variables. Al- 
though the use of cross-lagged correlations for causal inference is 
nearly 100 years old (Hooker, 1901), the technique grew out of the 
first author’s attempt to generalize Lazarsfeld’s (1972) 16-fold table 
to continuous variables. Two variables, X and Y, are measured at 
two times, | and 2. (Note that X and Y are two different variables 
and not pretest and posttest, as they were in earlier chapters.) Fig- 
ure 9.1 illustrates the set of six correlations between the four vari- 
ables: two synchronous or cross-sectional correlations, two auto- 
correlations, and two cross-variable and time-lagged or cross- 
lagged correlations. The essence of traditional CLPC is that if X 
causes Y more than Y causes X, then rx,y, should be larger than 
Tx,y,- If, however, Y causes X more than X causes Y, then TX>Y) 
should be larger than rx,y,. Thus, the preponderance of causation 
is presumed to be measured through a comparison of cross-lagged 
correlations. However, as we discuss below, causal inference is 
much more complicated than a simple comparison of two correla- 
tions. 

As one example of CLPC, Calsyn and Kenny (1977) exam- 
ined the relative influence of grades on academic self-esteem. The 
research evidence that was reviewed consistently pointed to the re- 
sult that grades caused academic self-esteem more than vice versa. 

In another analysis, Lefkowitz, Eron, Walder, and Huesmann 
(1972), as part of the 1972 U.S. Surgeon General’s report on the ef- 
fects of violence on television, studied TV violence and aggressive 
behavior of 211 boys aged 3 and 13. The 10-year lag makes it one of 
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the longest ever studied using CLPC. These authors concluded that 
TV violence had a greater causal effect on aggressive behavior than 
vice versa. 

To test whether the difference between the two cross-lagged 
correlations is statistically significant, one should not use a Fisher’s 
z test because the correlations are themselves correlated. Two tests 
of the differences between cross-lagged correlations are currently 
available: one is the Pearson—Filon test as modified by Steiger 
(1980), and the other is a test recently developed by Raghunathan, 
Rosenthal, and Rubin (1996). 

As initially suggested by Rozelle and Campbell (1969) and as 
elaborated by Kenny (1973, 1975b, 1979; see also Duncan, 1972), 
CLPC is a test of spuriousness. The view is that the correlation be- 
tween variables does not reflect the mutual causation between the 
two but is due to a common variable that causes them both. In ex- 
perimental research, researchers typically take as the null hypothe- 
sis that there is no causal relationship between the two variables 
and so any association between the two variables is viewed as evi- 
dence of a causal effect of the experimental variable on the out- 
come. In nonexperimental research, it is likely that there is a corre- 
lation between the variables even in the presence of no direct 
causal relation. If we assume, akin to the null hypothesis in experi- 
mental research, no direct causal effects between the variables in 
the model, then the source of that covariation between the vari- 
ables is most plausibly viewed as spurious. One or more variables 
external to the variables under consideration can bring about that 
correlation. 

One plausible model of spuriousness is presented in Figure 9.2. 
The variable Z brings about the correlations between the two vari- 
ables X and Y. We follow the usual convention of circling latent 
variables. Within this model of spuriousness, the effect of the spuri- 
ous variable on both X and Y does not change over time (a, = a) 
and b, = b,). This assumption of the stationarity of effects has two 
important consequences: equal synchronous correlations and equal 
cross-lagged correlations. So the equal synchronous correlations 
can be used to test the stationarity assumption, and the equal cross- 
lagged correlations can be used to test the assumption of spurious- 
ness. We consider later in this chapter the very strong assumption 
of stationarity. 

In Chapter 8, we discussed the concept of proximal autocorre- 
lation: the same construct measured close together in time corre- 
lates more strongly than when measured farther apart in time. The
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CLPC model of spuriousness is based on this principle but in a bi- 
variate sense: a pair of variables measured at the same time should 
correlate more strongly than the same pair measured at different 
times (see also Chapters 6 and 7). To simplify presentation, the 
variable X is a dichotomy whose two values are denoted as A and B. 
We assume that X is changing over time but that the proportions of 
A’s and B’s are the same at both times. We also assume that the 
variance of Y is the same at both times. Given these assumptions, it 
can be shown that the correlation between X (dummy coded) and 
Y is directly proportional to the mean difference on Y between the 
A’s and the B’s. We focus on this mean difference. 

We present the mean differences in the A’s and B’s in Figure 
9.3, a variant of a Galton squeeze diagram. We have graphed the 
means on Yj and Y; for the two levels of X,, Ma and Mg. The upper 
lines in the figure refer to M, values, and the bottom lines to the 
Mg values. As in a Galton squeeze diagram, we have connected the 
means from the same persons. 

Consider first the solid lines, which refer to the A’s and B’s on 
X at time 1 or Ma, and Mg,). At time 1, there is a larger separation 
in the means than there is at time 2, the principle of proximal auto-
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FIGURE 9.3. Illustration of regression toward the mean in both temporal 
directions for a bivariate relation. 

correlation. Over time, both means regress to the same mean and 
so the gap between the means narrows from time 1 to time 2: there 
is regression toward the mean. The gap at time | is directly related 
to rx,y,, and the gap at time 2 is related to rx,y,. Thus, this regres- 
sion toward the mean implies that rx,y, is larger than rx,y>. 

Also in Figure 9.3, we consider the A’s and B’s on X at time 
2. We have plotted the means for Y, and Y, for the two groups 
(Ma, and Mg,). Note that because the variable X is changing, 
some of the A’s at time 2 were B’s at time | and vice versa. We 
have connected the means using dashed lines. Again we see re- 
gression toward the mean, but now that regression toward the 
mean is backward in time, which implies that rx,y, is larger than 
rx,y,- Note in Figure 9.3 that the size of the gaps between the two 
Y means is the same when we look at synchronous correlations 
(the larger gaps in means) and the cross-lagged relationships 
(the smaller gaps). CLPC rests on the assumption of proximal au- 
tocorrelation. Given stationarity, the degree of regression toward 
the mean ought to be the same regardless of the temporal direc- 
tion. If X does not cause Y or vice versa, equal cross-lagged corre- 
lations would be implied by regression toward the mean and sta- 
tionarity.
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COMPLICATIONS IN CLPC ANALYSIS 

In traditional CLPC analysis, a comparison of cross-lagged correla- 
tions points to which variable causes the other. The simple bivari- 
ate comparison of correlations is complicated by three problems: 
direction of causation, shifts in communality, and a model of 
causality. These three topics are considered in the following subsec- 
tions. 

Direction of Causation 

Following Yee and Gage (1968) and Rozelle and Campbell (1969), 

we note that there is a complication concerning the inference of 
the direction of causation within CLPC. Imagine that Tx1¥7 is 
greater than rx,y,. Traditional CLPC would conclude that X causes 
increases in Y. The alternative hypothesis is that Y causes decreases 
in X. Both explanations are possible. One way to determine the rel- 
ative plausibility of the two alternatives is to examine the synchro- 
nous correlations. If those correlations are positive, then it seems 
more plausible that X causes increases in Y. If negative, then it is 
more plausible that Y causes decreases in X. If the synchronous cor- 
relations were near O, then theory or the absolute size of the cross- 
lagged correlations would suggest the direction of causation. 

Shifts in Communality 

A decrease in the reliability of X or an increase in the reliability of 
Y might plausibly explain why the cross-lagged correlations might 
differ. Recall that a key assumption of CLPC is stationarity: the ef- 
fect of the spurious variable on the measures is the same at time 1 
and time 2. Using Figure 9.2, the assumption is made that a, = a, 
and b, = b). It seems doubtful that such an equality constraint 
would hold, especially with standardized variables (Cudeck, 1989). 

CLPC researchers recognized these difficulties. Beginning 
with Crano, Kenny, and Campbell (1972), corrections for changes 
in communality have been made to the cross-lagged correlations. 
Communality represents variance in the measure that is shared 
with other measures. The measure of change in communality with- 
in CLPC is the ratio of time 2 communality of a variable divided by 
the time 1 communality of that same variable, something called a 
communality ratio.
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A method developed by the second author looks at changes in 
the synchronous correlations and then adjusts the cross-lagged cor- 
relations for changes in communality. Moreover, tests can be done 
to determine if the communality shifts can be used to explain the 
changes in the synchronous correlations over time. Relatively sim- 
ple approaches to the estimation of communality ratios are given in 
Kenny (1979), and more formal methods are given in Kenny and 
Harackiewicz (1979). Later in this chapter, we present the ap- 
proach of Kenny and Campbell (1989) to correction for shifts in 
communality. 

We need to be clear about exactly what stationarity assump- 
tions are made with these corrections. The stationarity assumption 
is still made, but it does not necessarily refer to the standardized or 
unstandardized metric. Rather, it states that effects are stationary 
over time in some metric which is a linear transformation of the 
original (or standardized) metric. 

A Causal Model of CLPC 

If the cross-lagged correlations are unequal, what does that imply 
about causality? The only CLPC paper that explicitly examined a 
model of causality is that of Kenny (1973). In that paper, a cross- 
lagged common factor is introduced. It is assumed that one vari- 
able, say X, is caused by that factor and that the other variable, say 
Y, is caused by that same factor but with a lag. Given such a model, 
we would not conclude so firmly that X caused Y, but rather that X 
is a leading indicator and that Y is a lagging indicator. The model 
developed by Kenny (1973) for CLPC is not really a model of cau- 
sation per se, at least not in the usual way that causality is dis- 
cussed. For example, lightening precedes thunder, but we would 
not say that lightening causes thunder. Rather, it shows only that 
the speed of light is faster than the speed of sound. 

CLPC does not have a very rich model of causation. Unequal 
cross-lagged correlations show only that one variable leads the oth- 
er. Even that conclusion may be mistaken if the leading variable 
may, in reality, be a lagging variable that loads negatively on the 
cross-lagged common factor (see the earlier discussion of direction 
of causation). Finally, we do not measure the bidirectional strength 
of causation. ! 

  

'Rozelle and Campbell (1969) did suggest a “no cause baseline,” but Kenny 
(1973) showed that the logic of their procedure was faulty.
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THE ROGOSA CRITIQUE 

In a pair of widely cited papers, Rogosa (1979, 1980) criticized the 
use of CLPC. Others had previously criticized the method (Bohrn- 
stedt, 1969; Duncan, 1969), and so many of Rogosa’s criticisms 
were made before. Rogosa’s (1980) conclusion is remarkably blunt: 
“CLC [cross-lagged panel correlation] is best forgotten” (p. 257). 
He appears to have gotten his wish, because his papers, especially 
the 1980 Psychological Bulletin paper, led to a precipitous decline in 
the publication of studies that used the method. Even Cook and 
Campbell (1979) favorably cited the analysis of Rogosa. Today, we 
see only an occasional reference to CLPC (Mullen & Cooper, 
1994; Rosenthal & Rosnow, 1991). 

The model that Rogosa and other critics have assumed is quite 
different from the model in Figure 9.2. He used as his fundamental 
model of causal effects the model that we present in Figure 9.4. In 
this model, X and Y directly cause each other with a time lag. (In 
this chapter, when we say “causal effects,” we usually mean the ef- 
fect from X, to Y7 and the effect from Y, to X;. Technically, effects 
from spurious variables are causal, but we typically are not referring 
to those effects when we use the term “causal.”) The two variables 
may be correlated at time 1, and that correlation is represented by a 
curved line between X, and Y,. The correlation between X, and Y, 
may be larger than can be explained by the causation between vari- 
ables, and so there is a correlation between the unexplained varia- 
tion in X, and Y,, the curved line between U and V. The model in 
Figure 9.4 can be directly estimated by multiple regression. The 
time-1 variables are treated as predictor variables, and each of the 
time-2 variables is treated as an outcome variable. The correlation 
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FIGURE 9.4. Two-variable, two-time model of causal effects assumed by 
Rogosa (1980): the multiple regression model. Adapted from Rogosa 
(1980). Copyright 1980 by the American Psychological Association. 
Adapted by permission. 
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between U and V can be estimated by the partial correlation be- 
tween X, and Y), controlling for X, and Y,. The regression coeffi- 
cients, either standardized or unstandardized, provide estimates of 
the causal paths. Given this fact about estimation, we shall refer to 
the model in Figure 9.4 as the multiple regression model. 

The multiple regression model does not imply equal cross- 
lagged correlations. As Rogosa (1980) has shown, given zero cross- 
causal paths, the cross-lagged correlations are equal to each other 
only when the stability paths (the paths from X, to X, and from Y, to 
Y,) are equal. Because such equal stabilities are unlikely, equal cross- 
lagged correlations provide a poor way to diagnose no causal effects, 
if one takes the model in Figure 9.4 as the representation of reality. 

The major difficulty with the multiple regression model is how 
it explains spuriousness: at time 1, it posits covariation between X 

and Y without really modeling that covariation; at time 2, covaria- 
tion magically reappears. Curved lines in path diagrams of structur- 
al models imply covariation, but the model does not explain the 
causal process that explains the source of that covariation. 

Dwyer (1986) has determined that the multiple regression 
model implicitly makes what would seem to be a very implausible 
assumption about spuriousness. Figure 9.5 contains his model. He 
begins with the basic multiple regression model of Rogosa and no 
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FIGURE 9.5. Dwyer’s (1986) elaboration of the multiple regression model 
for spuriousness. 
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causation (see Figure 9.4): X, causes X, and Y, causes Xj, and no 
cross-causal effects. Like the CLPC model in Figure 9.2, Z acts as 
the spurious cause of X and Y. Thus, unlike the regression model, 
we have a model of spuriousness. We can now ask, as Dwyer (1966) 
did, the following question: given the model in Figure 9.5, when 
will multiple regression yield estimates of “causal” paths of 0? The 
answer is that multiple regression will yield such estimates when Z 
is totally unstable over time (i.e., when the path from Z, to Z; is 0). 
It seems extraordinarily unlikely that the spurious factor has zero 
stability. Thus, the multiple regression model makes a very implau- 
sible assumption about the nature of the spurious factor and does 
not really allow for meaningful spurious factors. 

In Chapter 8, we developed the trait—state—error model. That 
is, a variable is conceived as having three fundamental compo- 
nents: a trait (or unchanging) component, a state (or slowly chang- 
ing) component, and an error (or totally unstable) component. The 
multiple regression model in Figure 9.4 implicitly presumes that 
both X and Y are entirely state variables. If there is any error or trait 
variance, the model is incorrect and the causal paths may be biased. 
We now consider the effect of these possible specification errors on 
the estimates of the causal effects. 

We first consider the presence of measurement error, a topic 
that we previously considered in Chapter 5. The presence of error 
variance is complicated because both X and Y are likely to be mea- 
sured with error. The presence of measurement error in X, tends to 
lower the estimate of its effects on X, and Y,, but the measurement 
error in Y, likely tends to raise the estimate of the effect of X, on 
those variables. (We are assuming that all correlations and paths 
are positive.) When the reliabilities of X, and Y, are comparable, 
these two biases tend approximately to cancel each other out, but 
there is no absolute guarantee. Although it can be difficult to de- 
termine whether measurement error results in over- or underesti- 
mation of causal effects, it is usually the case that measurement er- 
ror biases estimates of effects. Currently, the most common way of 
controlling for these biasing effects is to measure variables with 
multiple indicators and perform a latent variable analysis.’ (True- 
score estimation is currently not a workable strategy when there are 
two causal variables that are unreliable.) Structural equation mod- 
eling programs (such as AMOS, CALIS, EQS, or LISREL) can be 
used to estimate effects within latent-variable causal models. 

  

Because of correlated measurement across the same measure at different times, 
at least three indicators per construct are necessary for this model to be identi- 
fied. However, if the constructs are correlated, two indicators are sufficient.
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The presence of trait variance also generally leads to bias in 
the estimation of causal effects. There has, however, been very lit- 
tle previous investigation of the biasing effects of trait variance on 
causal effects, although the work of Heise (1970) is a notable ex- 
ception. It is much more complicated to describe the effect of trait 
variance on the regression coefficients than it is to describe the ef- 
fect of measurement error. We begin by assuming that the effects of 
trait and state do not change over time and that there are no cross- 
causal effects. If the proportion of trait variance is larger for X than 
for Y, then, other things being equal, X’s effect on Y is overestimat- 
ed and Y’s effect on X is underestimated. Even if the amount of trait 
variance is equal for both X and Y, the strength of the synchronous 
correlations must be the same for the trait and state factors for the 
estimates of causal impacts to be unbiased. The presence of trait 
variance greatly complicates the estimates of causal effects using 
multiple regression. The combined effects of differential trait vari- 
ance in the measures, differential correlation between trait and 
state factors across variables, and differential stabilities of the two 
state factors all make the multiple regression estimates quite mis- 
leading. Interesting, CLPC need only assume that the state stabili- 
ties for the two measures are equal; no assumption needs to be 
made about the equality of the proportions of variance or the rela- 
tive degree of correlation between traits and states. Further study of 
the biasing effects of trait variance on multiple regression estimates 
is urgently needed. 

If we accept the model in Figure 9.4, the major advantage of 
the multiple regression model is that it directly measures the causal 
effects from X to Y and from Y to X. Unlike CLPC, it measures the 
absolute causal effects in both directions. With CLPC, at best one 
obtains a measure of relative causality. The major weakness of the 
multiple regression model is that it does not have a plausible expla- 
nation of spuriousness in that if there is a spurious variable, it must 
be assumed to be totally unstable. A further weakness of the multi- 
ple regression model is that corrections must be made for errors of 
measurement in the predictor variables and strong assumptions 
must be made about trait variance. 

CLPC AS A SPECIAL CASE OF THE 
MULTITRAIT—MULTIMETHOD MATRIX MODEL 

Kenny and Campbell (1989) provided an elaborate formal model 
for multivariate, two-wave longitudinal data. Like the traditional 
CLPC model of spuriousness, it presumes that the variables are all
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caused by a set of unmeasured factors or latent variables. Once cor- 
rections are made for shifts in communality or nonstationarity, the 
effect of the factors on the variables is assumed not to vary over 
time. Not assumed by traditional CLPC, this model presumes that 
the standardized stabilities of all the latent variables are the same. 

The model that we proposed in 1989 can be estimated by 
structural equation modeling methods. The stability of the latent 
variables, assumed to be equal, and the reliabilities of each measure 
can be estimated. Moreover, the fit of the model can be evaluated, 
and so it can be determined if the model is inconsistent with the 
data. In this way a model of spuriousness can be deemed implausi- 
ble. Of course, a poor-fitting model may indicate a violation of sta- 
tionarity assumptions, not a violation of spuriousness. 

We were not aware of this then, but the model that we pre- 
sented in 1989 is a variant of multiplicative multitrait—multi- 
method matrix (MTMM) analysis. Campbell and Fiske (1959) are 
the inventors of this matrix. The MTMM is a correlation matrix 
that results when a set of traits is measured by a common set of 
methods. For longitudinal data, the measures serve as traits and the 
times serve as the methods. In the more usual additive MTMM 
analysis, method variance is added to the correlations. So two traits 
measured by the same method correlate too highly because of 
shared method variance. 

The logic of the multiplicative MTMM model is quite differ- 
ent from the additive model. We start with the true synchronous 
correlations (or covariances), which are assumed to be the same at 
all times (i.e., they are stationary). The cross-lagged correlations 
are smaller than the synchronous correlations, and the ratio of the 
cross-lagged to the synchronous correlations is a constant; that 
constant can be interpreted as a stability coefficient. Each variable 
in the model has its own error variance that may vary across time. 

Despite the relative simplicity of the theoretical model, these 
multiplicative MIMM models are not very easy to estimate. There 
are phantom variables (nonsubstantive variables) and many para- 
meters whose substantive meaning for most can be difficult to deci- 
pher. In Kenny and Campbell (1989), we proposed a new method 
to estimate these models that is simpler than the usual way that 
multiplicative MTMM models are estimated (Millsap, 1995). How- 
ever, our method is itself still fairly complex, and we currently do 
not know for certain whether the two different methods are exactly 
equivalent, though we think that they are. Although not straight- 
forward to estimate, we believe multiplicative models are worth all 
of the difficulties.
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We might ask what the implications of the trait-state model 
(see Chapter 8) are for this MTMM analysis. That analysis implic- 
itly assumes that the ratio of trait variance to state variance is the 
same for each measure. As discussed above, this is the very same as- 
sumption about trait variance that was made for the multiple re- 
gression model. The estimate of stability for the MTMM model can 
be viewed as a weighted average of the stability of the trait factor 
and the stability of the state factors. 

Beginning with Campbell and Fiske (1959), there is a long 
history of methodologists recommending the MTMM model for 
analysis of longitudinal data. More recently, there have been sug- 
gestions that a multiplicative MTMM is appropriate for the analy- 
sis of longitudinal data (Kenny & Campbell, 1989), although see 
Coleman (1994) for a cautionary note. The model was quite suc- 
cessful at explaining the covariation of the Educational Testing 
Service Growth Study (Kenny & Campbell, 1989), a data set that 
has been extensively analyzed. Nonetheless, we know of no practic- 
ing researchers who have employed the multiplicative MTMM 
analysis in estimation of their longitudinal data. We hope to see in- 
creased use of MTMM analysis of such data. 

CONCLUSION: WHAT IS TO BE DONE? 

What is an analyst of longitudinal data to do? We have seen that 
CLPC has an elaborate model of spuriousness but its model of cau- 
sation is very limited. The multiple regression approach has an ex- 
plicit model of causality and the two causal effects can be simulta- 
neously estimated, but its model of spuriousness is quite 
implausible. So neither model allows for both spuriousness and 
causality. 

The reader might wonder why a combined model of spurious- 
ness and causality cannot be estimated. We are very confident that 
if such a model were specified, it would not be identified. That is, 
virtually any data set that could be collected would be consistent 
with such a model. Moreover, there would not be a unique solution 
for such a model’s parameters. Identification places stringent con- 
straints on the estimation of models, and so a reasonable model 
that allowed for unspecified spurious factors and causation is most 
likely impractical. So we find ourselves on the horns of a dilemma: 
either we can estimate a detailed model of spuriousness but a poor 
model of causal effects or we can estimate a detailed model of 
causal effects but a poor model of spuriousness. Perhaps in time a
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combined model can be estimated, but we remain dubious. More- 
over, we have limited ourselves to two waves of data, and having 
more than two waves may afford some special advantage. 

The choice of which model to estimate largely depends on the 
purposes of the researcher. If the goal is exploratory and the expec- 
tation is that there are few, if any, causal effects, then a CLPC 
analysis is preferable. Should a CLPC analysis be planned, we 
would recommend the multiplicative MTMM version (Kenny & 
Campbell, 1989; Millsap, 1995) discussed earlier in this chapter. If, 
however, there are expected causal effects, then a multiple regres- 
sion analysis is a reasonable way to estimate causal paths, assuming 
that some allowance for measurement error in the variables can be 
made. 

We strongly urge that some form of CLPC be used as a screen- 
ing device before attempting causal analysis. The data analyst 
needs to show that spuriousness cannot explain the covariation be- 
tween the variables. We believe that CLPC should be used before 
causal effects are estimated. The logic of null hypothesis testing in 
randomized experimental research is first to assume that there are 
no causal effects and second to look for evidence that is inconsis- 
tent with this viewpoint. This is essentially the same perspective as 
that taken within CLPC. However, most investigators are interest- 
ed more in showing that covariation between variables is causal 
than in showing that the covariation is spurious. Previous sugges- 
tions that researchers need to first rule out simpler, more parsimo- 
nious, noncausal models made earlier by the first author (Brewer, 
Campbell & Crano, 1970) have largely fallen on deaf ears. We can 
only repeat the challenge to researchers to rule out the plausible ri- 
val hypothesis of spuriousness (i.e., selection, using the parlance of 
Campbell & Stanley, 1963). We return to the necessity of consider- 
ing plausible rival hypotheses in the concluding chapter of this 
primer. 

So, contrary to what Rogosa asserted in 1980, CLPC is not 

“best forgotten.” Although it is certainly not the causal divining 
rod that some (including ourselves) once thought that it might be, 
it should still play a role in the analysis of longitudinal data. We 
hope that investigators will consider using this method or some 
other method demonstrating that the association between variables 
cannot be explained by spuriousness. The mindless use of multiple 
regression with longitudinal data ought to be overcome.



  

  

Conclusion 

In this chapter, we revisit many of the major themes of the primer: 
time-reversed analysis, graphical display of results, the importance 
of design, and consideration of plausible rival hypotheses. Each of 
these topics is reviewed, but we focus most extensively on time- 
reversed analysis because it is an excellent way to diagnose a regres- 
sion artifact. We begin with a brief discussion of epistemology. 

In this primer, we have occasionally discussed issues of predic- 
tion. In the penultimate section of this chapter we focus on the 
topic of prediction. We consider how forecasters need to make all- 
lowances for regression toward the mean in making predictions. 
Much of what we discuss in that section is counterintuitive. 

This chapter is a bit of a hodgepodge. It contains several dis- 
parate topics that we have not discussed in the previous chapters. 

COMMON SENSE AND DATA ANALYSIS: 
A BRIEF EPISTEMOLOGICAL EXEGESIS 

Science represents a form of knowing, but locomotion in the amoe- 
ba also represents a form of knowing—a quest for knowledge—and 
it should be recognized that we humans are “cousins to the amoe- 
ba” (Campbell, 1974). Knowledge processes help organisms adapt 
to their environments, but knowledge never comes with absolute 
certainty. We learn about the world that we inhabit, but we never 
know it perfectly. As we move through our environment, we some- 
times run into predators and do not survive. Even scientific knowl- 
edge is fallible and mistaken. Not to recognize errors in our percep- 
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tions, scientific knowledge, measuring instruments, and research 
designs is a recipe for disaster. 

Very often explanations of scientific knowledge imply that it 
is superior tc common sense, and science is described as a way of 
knowing the world that does not rely on naive accounts. However, 
this perspective on common sense is misleading because scientific 
knowledge rests on implicit beliefs. Common sense and qualitative 
knowledge form the very foundation of scientific knowledge, even 
when that knowledge takes on highly quantitative forms. As one of 
us (Campbell, 1988) has said: 

After all, man is, in his ordinary way, a very competent knower, 
and qualitative common sense knowing is not replaced by 
quantitative knowing. Rather quantitative knowing has to 
trust and build on the qualitative, including ordinary percep- 
tion. (p. 388) 

Certainly, scientific research can contradict ordinary percep- 
tion. The most famous achievements of science contradict com- 
mon sense: physics claims that time is relative, and biology claims 
that humans are the descendants of apes. Again, we quote from 
previous work (Campbell, 1988): 

We must not suppose that scientific knowing replaces common 
sense knowing. Rather, science depends upon common sense 
even though at best it goes beyond it. Science in the end con- 
tradicts some items of common sense, but it only does so by 
trusting the great bulk of the rest of common sense knowledge. 
(p. 362) 

Initially, it is reasonable to be skeptical of scientific results 
that contradict common sense. Results that seem incredible should 
be questioned and doubted. Just because they emanate from a sci- 
entific laboratory does not mean that they are inherently valid. 

Our careers in social-science methodology have mostly been 
devoted to developing methods that verify common sense. In large 
part, this primer illustrates how standard statistical techniques such 
as multiple regression have falsely made compensatory programs 
look harmful, a result inconsistent with common sense. Our skepti- 
cism, generated by common sense, led us to question these results. 
The analyses that we have proposed are more consistent with com- 
mon-sense intuitions. In a young science, results that contradict 
common sense are often due to improper methodological tools.
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Common-sense hypotheses do not require common-sense analysis 
tools. 

The second author’s research program over the last 20 years 
has been an elaboration of the theme that social science should 
verify hypotheses derived from common sense, especially when re- 
search results contradict intuition. Consider the following exam- 
ples: 

Previous surveys of leadership studies by Stogdill (1948) and 
Mann (1959) had claimed that leadership is not a stable 
trait. There was not evidence that some people tend to lead 
and others tend to follow. However, by using specialized re- 
search designs and a statistical model, Kenny and Zaccaro 
(1983) and Zaccaro, Foti, and Kenny (1991) have shown 
that a person who is leader in one group tends to be a leader 
in another group with different members. 

Newcomb (1979) had found that liking is not reciprocated: if 
John likes Mary, Mary does not necessarily like John. How- 
ever, Kenny and Nasby (1980) found that when individual 
differences were removed (how much John and Mary liked 
others on average and how much others on average liked 
John and Mary), liking was reciprocated. 

As reviewed by Swann (1984), the dominant view in social 
psychology is that people do not accurately perceive others’ 
personalities. However, Levesque and Kenny (1993) and 
Kenny, Kieffer, Smith, Ceplinski, and Kulo (1996) have 
shown that when perceivers agree with each other, they ac- 
curately know other people’s personalities. 

In each case, elaborate and complicated statistical analyses validat- 
ed common-sense beliefs that previous research using naive statisti- 
cal analyses had indicated were false. What was invalid in those 
conclusions was not their common sense, but rather the naive sta- 
tistical methods on which they were based. 

Knowledge can progress when science can verify what is al- 
ready known by common sense. An example more than 2,000 years 
old, taken from Dunham (1994), illustrates this point. Euclid was 
ridiculed by his contemporaries for his proof that one side of a tri- 
angle is always shorter than the sum of the other two sides. His 
critics pointed out that even an ass knew this fact, and it was 
silly to prove the obvious. But by doing so, Euclid and the Greeks 
laid the foundation for many proofs of theorems that are not so ob- 
vious. Moreover, Euclidean geometry laid the foundations for non-
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Euclidean geometry, which does indeed show that the shortest dis- 
tance between two points is not a straight line! Science and mathe- 
matics build on common sense and can only contradict some com- 
mon-sense beliefs by accepting many others. 

TIME-REVERSED ANALYSIS' 

One simple principle that we found of value is to repeat the analy- 
sis reversing what physicists have called the arrow of time. The pur- 
pose of time-reversed analysis (Kenny & Campbell, 1984) is to re- 
analyze the data to check for regression artifacts. The essence of a 
time-reversed analysis is a reanalysis of the data in which the tem- 
poral ordering of the data is reversed. So, for instance, if in the orig- 
inal analysis all time-2 measures are treated as dependent variables 
and all time-1 measures as independent variables, the time-reversed 
analysis would repeat the same analysis but make the time-1 mea- 
sures the dependent variables and the time-2 measures the inde- 
pendent variables. A time-reversed analysis obeys the biblical dec- 
laration that “the first shall be last and the last shall be first.” 

Imagine the following temporally ordered readings of a physio- 
logical variable: 

53, 56, 59, 52, 55, 57, 75, 76, 73, 71, 78 

Note that there is a sharp jump from 57 to 75 in the data. This 
jump from 57 to 75 is also readily apparent when the numbers are 
reversed in time: 

78, 71, 73, 76, 75, 57, 55, 52, 59, 56, 53 

However, instead of the jump in the first series, we now have a de- 
cline. In this simple analysis, reversing the flow of time reverses the 
direction of the effect. This is the fundamental principle of a time- 
reversed analysis: reversing the temporal ordering of the data and 
reanalyzing the data should reverse the direction of the effect. If 
the direction of the effect is not reversed but appears to be “robust,” 
then it is most likely an artifact brought about by regression toward 
the mean. When both the original and the time-reversed analysis 

  

'Parts of this section are reprinted from Kenny and Campbell (1984). We 
thank Lawrence Erlbaum Associates for permission to do so.
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yield essentially the same result, then we should lose confidence in 
the interpretation of the original analysis. Thus, if self-esteem 
“causes” academic achievement with a causal lag of 1 year, and if a 
time-reversed analysis—in which prior achievement appears to be 
“caused” by later self-esteem—yields the same conclusion, then we 
should view the original conclusion with suspicion. 

On the surface, a time-reversed analysis is a nonsensical and 
downright silly analysis. By itself it does not deserve serious study or 
attention. But its very “nonsensicalness” provides a logical ratio- 
nale for the analysis. If the original analysis yields essentially the 
same results as the nonsensical time-reversed analysis, then perhaps 
the original analysis is just as nonsensical as the time-reversed 
analysis. 

One parallel to time-reversed analysis is the estimation of 
equivalent models in structural equation modeling (Kline, 1998). 
As MacCallum, Wegener, Uchino, and Fabrigar (1993) have 
pointed out, very often the same model with all the paths backward 
would fit as well as the original model. A model in which the flow 
of causality is reversed is in the spirit of time reversal. 

There are two prototypical results of a time-reversed analysis. 
We have just discussed the first prototypical result: essential agree- 
ment. For such a result, the time-reversed analysis calls into ques- 
tion the validity of the conclusion of the original analysis. There is 
one exception. If there is “nothing going on in the data,” then both 
the original and time-reversed analysis should give the same result. 
When nothing is happening over time, the same result should 
emerge whether we look forward as the original analysis does or 
whether we look backward as the time-reversed analysis does. 

The second prototypical result is one in which the time- 
reversed analysis yields results of roughly equal value but opposite 
sign. In this case, the time-reversed analysis supports the conclu- 
sions of the original analysis because looking backward in time pro- 
duces a “backward” result. If a movie, save a Jim Carey one, is 
played backward, we know that something is wrong. 

To our knowledge, a time-reversed analysis was first employed 
by Campbell and Clayton (1961). They examined, among other 
things, the effect of seeing the movie Gentleman’s Agreement on 
anti-Semitic attitudes. In the study that they considered, Glock 
(1951) had examined differences between groups (those who 
viewed the movie and those who did not) at various levels of initial 
attitude. Attitudes toward Jews were measured before and after 
viewing the movie. Campbell and Clayton (1961) suspected that 
the effect of the motion picture on attitudes in Glock’s analysis
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was, in part, an artifact of regression toward the mean. To demon- 
strate their point, they argued that “if the apparent effect were only 
this simple regression [toward the mean], then one should get a 
similar picture by reversing the temporal arrangement of the table.” 
They performed a time-reversed analysis and found essentially the 
same result when they reversed the flow of time. Thus, they felt 
that regression toward the mean explained Glock’s results. 

Not only were Campbell and Clayton (1961) the first to per- 
form a time-reversed analysis, but they also provided a rationale. 
They noted that regression toward the mean works both forward 
and backward in time. Tall parents have shorter children (forward 
regression), and tall children have shorter parents (backward re- 
gression). Thus, if a statistical procedure is biased due to regression 
toward the mean (i.e., the effect “estimate” is nothing more than 
regression toward the mean), then a time-reversed analysis should 
produce an effect estimate with the same sign. If the effect estimate 
in the original analysis is not due to regression toward the mean, 
then the effect estimate in the time-reversed analysis should be of 
the opposite sign. Time-reversed analysis can be viewed as a proce- 

dure for rendering regression toward the mean implausible. 
A second example of a time-reversed analysis is that of Simon- 

ton (1974). In an analysis of archival data, Simonton investigated, 
among other things, the effects of political instability on creativity 
through a series of multiple regression analyses. He used the politi- 
cal instability of the prior generation to predict the number of emi- 
nent creators in the current generation. Then the regression analy- 
sis was repeated, but instead of using the political instability of the 
previous generation, he used the political stability of the next gener- 
ation. He thus predicted backward in time. He found that the “ef- 
fect” of political instability was much greater when the previous 
generations were used to predict subsequent events than the re- 
verse. 

A third example is taken from Baltes, Nesselroade, Schaie, 
and Labouvie (1972). They examined the correlation of change 
with initial status for three cognitive tests. They performed a time- 
reversed analysis and obtained the same result? as that obtained in 
the original analysis. They concluded that the original results were 
due to regression toward the mean. 

  
*Note that because Baltes et al. (1972) did not reverse their change score 
measure (i.e., posttest minus pretest), they obtained the opposite results. 
However, had they reversed their measure, they would have obtained the 
same result.
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We introduced the concept of time-reversed analysis into the 
literature well over 10 years ago, but it is still not yet widely used. 
The likely reason is that investigators are reluctant to perform sta- 
tistical analyses that would invalidate their conclusions (see the 
section below on plausible rival hypotheses). 

Certain data analytic procedures have built into them the 
principles of time-reversed analysis; that is, these procedures guar- 
antee that the time-reversed analysis will have exactly the opposite 
results from the original analysis. Moreover, these procedures will, 
when the original analysis shows no effect, also show no effect with 
a time-reversed analysis. 

The simplest of methods that satisfy the time-reversal criteria 
is McNemar’s test of change in a dichotomous measure (see, e.g., 
Hays, 1963). Given a dichotomy measured at two points of time, 
the test examines only the “changers.” For instance, the shoe man- 
ufacturer Nike claims that a greater percentage of persons stick 
with its brand than any other product. Such a claim is common for 
a brand that has the largest share of the market. In Table 10.1 we 
present artificial data that support Nike’s claim. At time 2, of the 
146 respondents who purchased athletic shoes, Nike held 78% of 
its consumers while Reebok retained only 69% of its previous con- 
sumers. However, a time-reversed analysis yields similar results: 
Nike “retained” 82% and Reebok 63%. The time-reversed analysis 
calls into question Nike’s claim because the latter results also illus- 
trate Nike’s “success.” If we look more closely at the data, we see 
that the percentage of Nike consumers actually declined: from 64% 
at time 1 to 61% at time 2. Although more people stay with Nike, 
this is practically a statistical necessity because Nike has a larger 
share of the market. To test whether the percentage share is con- 
stant, we employ McNemar’s test. We compare only the changers: 
there are 16 persons who switched to Nike versus the 21 who 

TABLE 10.1. Time-Reversed Analysis of Brand Loyalty 
  

  

  

Time 2 

Time 1 Nike Reebok Total 

Nike 73 21 94 
Reebok 16 36 52 

Total 89 57 146 
  

Note. Adapted from Table 6.1 of Kenny and Campbell (1984). Copyright 1984 by 
Lawrence Erlbaum Associates. Adapted by permission.
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switched away, the difference being —5. The appropriate test is 
x7(1) = (16 — 21)2/21 + 16 = .68, which is not statistically signifi- 
cant. 

The results of McNemar’s test satisfy the time-reversal criteria. 
In particular, the results of a time-reversed analysis—designating 
time 1 as time 2 and vice versa—will always be the opposite of the 
original analysis; that is, the number of those who “switched” to 
Nike is 21 and the number of those who “switched” away is 16, a 
difference of 5. When the original analysis indicates no change, so 
does the time-reversed analysis. 

Several other statistical procedures can be shown to satisfy the 
time-reversal criteria; that is, when the flow of time is reversed, ef- 

fect estimates reverse in sign and zero-effect estimates remain as 0. 
These methods include raw change score analysis (Chapter 5), 
standardized change score analysis (Chapter 5); univariate simplex 
(Chapter 8), quasi-simplex (Chapter 8), and trait—state—error 
(Chapter 8) models; and cross-lagged panel correlation (CLPC; 
Chapter 9). The reader might notice here that we have a peculiar 
fondness for preferring analysis methods that satisfy the time-rever- 
sal criteria. 

Time-reversed analysis is an intriguing approach that we feel 
deserves further attention. However, it is not a cure-all for the 
analysis of longitudinal data. In certain cases a time-reversed analy- 
sis can yield inappropriate conclusions. If the regression disconti- 
nuity design (see Chapter 5) is employed and one uses the appro- 
priate analysis (Reichardt, 1979; Trochim, 1984), a time-reversed 
analysis yields an inappropriate conclusion. Clearly, careful study is 
needed to determine when a time-reversed analysis is valid and 
when it is not. 

Time-reversed analysis provides the researcher with a simple 
way of ruling out regression artifacts as a plausible alternative ex- 
planation of the results. To some it may seem to be an unjustifiable 
strategy in part because it supports what they see as questionable 
analysis strategies such as change score analysis and CLPC analysis. 
Rather, we believe that the principle of time reversal adds to the ra- 
tionale for these procedures. We believe that employing a time- 
reversed analysis can add to the intuitive rationale for complex sta- 
tistical analyses of over-time data, especially when regression to- 
ward the mean is a likely problem. 

Statistical equating (multiple regression and partial correla- 
tion analysis) usually does not satisfy the time-reversal criteria. 
Nonetheless, we still urge a time-reversed analysis for this analysis 
technique. At the very least, the result should weaken under rever-
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sal; if it does not, we should be very suspicious as to the validity of 
the result. 

One potential use for time-reversed models is the estimation 
of lagged effects in multilevel analysis. In these analyses, persons 
are measured at multiple time points and the over-time or lagged 
effect of one variable is measured. In a time-reversed analysis, the 
same analysis is undertaken but the flow of time is reversed. If the 
effect is real, then the effect in the time-reversed analysis should be 
much weaker. 

GRAPHICAL DISPLAY OF RESULTS 

Data analysis in the social and behavioral sciences has become in- 
creasingly complex in the last 20 years. Log-linear analysis, struc- 
tural equation modeling, and hierarchical linear modeling are just 
some of the very complicated analyses that can be performed. In 
part, these more complicated analyses can now be performed be- 
cause of the computational efficiency of computers. Analyses that 
used to take days to complete are now done in seconds after a few 
clicks of a computer mouse. 

Although such analyses are useful and as methodologists we 
often strongly recommend these analytical techniques (as we did 
earlier in this chapter), we feel that many mistakes occur in these 
analyses because the researchers are not familiar with their data. 
The more complicated and less understood the analysis, the more 
likely that errors will be made, and so it becomes all the more nec- 
essary for researchers to become well acquainted with their data. 

Researchers can become more familiar with their data by dis- 
playing them graphically. We have used scatter plots, which virtu- 
ally all readers know about but most hardly ever use. We would 
urge that it become standard practice to draw the perfect-correla- 
tion lines when scatter plots are drawn. We have also introduced 
two new tools to illuminate regression artifacts: the pair-link and 
Galton squeeze diagrams. We strongly urge the use of these and 
other graphical techniques. The Galton squeeze diagram much 
more clearly illustrates regression toward the mean than does the 
more conventional scatter plot. We urge its use so that regression 
toward the mean can be more easily recognized and appreciated. 

We have also introduced the concept of guesstimation. In- 
stead of using a mathematical formula to compute a mean or draw a 
regression line, we just look at the data and guess at the value. Cer- 
tainly, were we to publish the results of our analyses, we would not
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report guesstimates but would compute them. But in exploring data 
it helps to have a sense that the mathematical operations, like av- 
erages and slopes, have a meaning that can be readily seen in the 
data. Sometimes more can be learned from the data from ineffi- 
cient and informal analyses than from complicated, exact, and op- 
timal statistical analyses. 

In this era of “point-and-click” data analysis, highly elaborate 
analyses can be performed in a matter of seconds. We would urge 
that programmers of commercial software include easy-to-use op- 
tions for graphical displays. So, for instance, when a correlation co- 
efficient is computed, a flashing message might urge the user to dis- 
play a scatter plot, perferably with the perfect-correlation line. 

Although we believe that sophisticated analyses of data are or- 
dinarily needed, it is still necessary to explore the raw data in sim- 
ple and direct ways. If the key result from a complicated analysis 
cannot be exhibited in the displays of raw data, then there should 
be skepticism about its very existence. 

THE IMPORTANCE OF RESEARCH DESIGN 

Given the recent advances in the statistical analysis of data, re- 
searchers have become able to perform very complicated statistical 
analyses of their data. However, data analysis, no matter how so- 
phisticated, alone cannot solve inherent problems that are created 
by poor design. Students in the social sciences need to learn design 
principles as well as statistical techniques. 

The most important design feature is randomization of persons 
to treatment groups. Although this primer has hardly discussed ran- 
domization, we are stalwart promoters of that procedure. Random- 
ization provides the best way to make regression toward the mean 
implausible as a rival hypothesis. We recognize that randomization 
is not always possible, but we encourage its use whenever feasible. 
Complicated statistical analyses can seldom compensate for the 
benefits to internal validity afforded by random assignment of per- 
sons to treatment conditions. 

Although randomization is the most important design feature, 
there are others that should also be considered. One critical feature 
is having a pretest. As we have shown (see especially Chapter 5), a 
pretest is not just another covariate. Rather, it has a special status 
that should be recognized in the statistical analysis (Campbell & 
Reichardt, 1991). With a pretest one may be able to calculate di- 
rectly the degree of selection bias that is present in the outcome
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measure. That measure of selection bias can then be subtracted to 
obtain a relatively bias-free estimate of the intervention effect. 

Another important design feature is random selection of per- 
sons in the research. As was shown in Chapter 3, random selection 
reduces but does not eliminate the plausible rival hypothesis of re- 
gression for the pre—post design. Random selection can also be an 
important way to increase the external validity of a study. 

An excellent example of how statistical analysis cannot cure 
problems created by poor design is the unreliability of measures. 
With the development of latent variable analysis and computer 
programs like AMOS, CALIS, EQS, and LISREL, it is now possible 
to estimate models in which there is an allowance for errors of mea- 
surement in the predictor variables. Despite this statistical ad- 
vance, it is still desirable to measure one’s variables as reliably as 
possible. Estimates from models, either latent or not, are always 
better when more reliable measures are used. Moreover, models 
with variables with lots of measurement error are often not worth 
estimating, even with the most sophisticated latent variable model- 
ing computer program. 

Another important design principle is that of balance. Very 
often the optimal design is one in which there are equal numbers of 
persons in each cell of the design, an approach that accords with 
the principle of balance. It seems that with the ascendancy of mul- 
tiple regression over analysis of variance, researchers have started 
to ignore balance in their designs, sometimes with disastrous conse- 
quences. A very unbalanced design leads to estimates that have 
very little precision. 

A final point is that usually decisions made about the statisti- 
cal analysis need to be based on aspects of the research design. Very 
often the choice between analysis methods rests not on statistical 
criteria but on the way the study is designed. Knowing how the 
data were collected is just as important as knowing complex statis- 
tical methods. The proper analysis of data requires that the analyst 
be well informed about the details of the design of the research. 

CAREFUL CONSIDERATION OF 
PLAUSIBLE RIVAL HYPOTHESES 

A fundamental part of the analysis of data is the consideration and 
ideally the elimination of plausible rival hypotheses. This primer 
has focused on the most complex and perhaps most pervasive plau- 
sible rival hypothesis in over-time studies: regression toward the
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mean. Several texts (e.g., Campbell & Stanley, 1963; Cook & 

Campbell, 1979; Judd & Kenny, 1981) detail other explanations, 

such as history, selection, and maturation. Researchers need to con- 

sider alternative plausible explanations of the intervention effect 

and then attempt to show, as best they can, that such explanations 

are implausible. 
All too often researchers fail to adequately consider counter 

explanations of their results. Instead they become advocates by 

hiding weaknesses of their research, dismissing too quickly criti- 

cisms of their work, and responding hostilely to questions from oth- 

ers. We feel that researchers have the responsibility to be their own 

worst critics of their work. As scientists, especially those among us 

who study human reasoning, we should know how easily we can 

make mistakes and delude ourselves about the correctness of our 

own position. Research conclusions need to be thoroughly probed 

and criticized by the investigator. After all, it is the investigator's 

scientific reputation that is at stake. The investigator should realize 

that an error will eventually be detected because the result will fail 

to replicate. 
The one plausible rival hypothesis to which we have given 

special emphasis in this primer, besides regression toward the mean, 

is selection. Treatment “effects” very often reflect the effects of oth- 

er variables that are not included in the analysis. Other literatures 

call this threat to validity “the omitted variable problem,” “spuri- 

ousness,” “the third variable problem,” and “specification error.” 

Especially in Chapters 4, 5, 8, and 9, we have argued that although 

statistical techniques such as multiple regression analysis reduce 

the bias due to selection, very often such bias persists. We urge re- 

searchers to concentrate their efforts to reduce the bias due to se- 

lection and to attempt to determine the direction of likely bias in 

their estimates. We worry that modern advances in data analysis 

(e.g., latent variable modeling and hierarchical linear modeling) do 

not in any way solve the problem of selection, but all too many re- 

searchers who use these methods seem to think that they do. 

Again, sophisticated data analysis cannot cover for the mistakes of 

poor design. 
The term “plausible rival hypotheses” is used so much that its 

meaning may be lost. We need to emphasize that the expression 

contains the qualifier plausible (Campbell, 1969b). The researcher 

within a specific context makes a determination of plausibility. So 

what might be very plausible in some contexts might be implausi- 

ble in another context. For instance, Campbell and Stanley (1963) 

considered the problem of pretest sensitization in attitude change
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research. They worried that by pretesting participants they would 
be sensitized to change when they read an attitude change message. 
However, research by Lana (1969) suggested that pretest sensitiza- 
tion effects are minimal, at least in the area of attitude change. So a 
testing by treatment interaction (i.e., pretest sensitization) is often 
not a very plausible rival hypothesis in attitude change research. 

Sometimes a simple analysis can be performed to rule out a 
plausible rival hypothesis. For instance, if the worry were that the 
experimental participants might be more motivated than the con- 
trol participants, then measuring whether there was a difference in 
motivation between the groups would be helpful. Occasionally, ad- 
ditional control groups can be used to render a plausible rival hy- 
pothesis implausible. 

In over-time research without randomization, regression to- 
ward the mean is virtually always a plausible rival hypothesis that 
requires careful consideration. However, we want to caution the 
reader against the temptation to see regression toward the mean 
everywhere. This primer has carefully delineated how regression to- 
ward the mean works in different designs and contexts. Although 
often ignored and underappreciated, regression toward the mean 
does not explain every treatment effect that is observed. Moreover, 
as we explained in Chapters 4 and 5, certain analysis procedures 
overcorrect for the phenomenon. We can become artifact obsessed 
and lose sight of the fact that some phenomena are real and not 
just statistical artifacts. The good methodologist knows when to 
worry—and just as important when not to WOTITy. 

REGRESSION AND PREDICTION 

Regression toward the mean can be used to improve the accuracy of 
predictions. Let us consider the predictions made by two hypothet- 
ical weather forecasters over a week. They each make seven predic- 
tions of the daily high temperature in their locality. These predic- 
tions can be compared to the actual daily high temperatures. Using 
a fairly common standard, we define an error in prediction as Y — X, 
where Y is the actual temperature and X the predicted temperature. 
Accuracy (actually inaccuracy) is defined as the sum of squared er- 
rors for the week. We refer to this measure as “accuracy,” recogniz- 
ing that the lower the number, the more accurate the forecaster. 

The two sets of predictions and the actual temperatures are in- 
cluded in Table 10.2. Sally is quite an expert, and she achieves a 
very high correlation of .91 between her judgments and the actual
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TABLE 10.2. Weather Predictions in Degrees Fahrenheit Made for a 
Week by Two Forecasters, Sal and Sally, and the Actual Temperatures 
  

  

Day Sal Sally Actual 

Monday 50 57 53 
Tuesday 50 52 48 
Wednesday 50 59 53 
Thursday 50 47 44 
Friday 50 51 42 
Saturday 50 67 56 
Sunday 50 48 40 

Mean 50 54.42 48 
SD 0 7.07 6.19 
Accuracy 258 343 
  

weather. Sal is a very lazy forecaster, but he knows that the average 
temperature in the locality is near 50 degrees Fahrenheit, and so he 
just predicts that the temperature will be 50 degrees every day of 

the week. It seems obvious that Sally should be more accurate than 
Sal. However, using the measure of accuracy that we introduced 
earlier, it is Sal who is more accurate! To understand why that is so, 
we need to understand better the factors that influence the accura- 
cy of predictions. 

Three different factors lead to errors in prediction: errors in 
the mean, errors in the rank order of responses, and errors of vari- 
ance. When we naively think of errors, we tend to consider only er- 
rors about the rank order, but the other two types of errors are very 
important. Let us consider each of the three. 

The first type of error concerns the discrepancy between the 
mean of the judgments and the mean of the criterion, or whether 
Mx = My. A forecaster could have a perfect correlation with the ac- 
tual temperature yet be off by 5 degrees Fahrenheit, and this con- 
stant error could considerably lower that forecaster’s accuracy. In 
Table 10.2, we see that Sal is closer to the actual mean than Sally. 
This is the major reason why Sal is a more accurate forecaster than 
Sally. 

The second error is the one that naive observers usually focus 
on most: the degree to which the forecaster reproduces the rank or- 
der. This type of error can be measured by how much the correla- 
tion between the forecast and the criterion measure is less than 1. 
Sally has a very impressive correlation of .91, and Sal has no corre-
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lation at all because there is no variability in his judgments. It is 
for this reason that most observers would think Sally must be a bet- 
ter forecaster than Sal, but the other two reasons are important and 
more than offset this considerable advantage in the present case. 

Finally, to maximize the accuracy of judgment, the standard 
deviation of the predictions should equal the standard deviation of 
the criterion times the correlation between the judgment and the 
criterion, Or Sx = TxySy. (This condition implies that the slope using 
the judgments to predict the criterion equals 1.) It follows from this 
fact that the variance in predictions needs to be less than the vari- 
ance of the criterion. Sally is a poor forecaster in that the variance 
of her predictions mirrors the variance in actual temperature. In 
fact, her judgments show slightly more variability than actual tem- 
peratures do. For optimal prediction, the standard deviation in the 
predictions should equal rxysy, or (.91)(6.19) = 5.63 for Sally. Her 
standard deviation is larger, 7.07, and that leads to increased inac- 
curacy of her predictions. As Kahneman and Tversky (1973) have 
demonstrated, if forecasters mistakenly try to make their judgments 
representative by matching variances, they are likely to be inaccu- 
rate. Although matching the mean of the criterion is good, match- 
ing the variance leads to increased errors. Optimal forecasting re- 
quires judicious use of regression toward the mean.* 

There is one important special case for the condition of sy = 
TxySy that is worth noting. When rxy equals 0, then it follows that 
the variance in the predictions should be 0. When the forecaster is 
totally ignorant, the best prediction is the mean with no variance 
in the judgments. If a forecaster does not know anything informa- 
tive about the rank ordering of the objects of the predictions, he or 
she should just guess that they will all be average. So sometimes the 
best prediction is to guess that they are all the same, as Sal does. 

The term that is used to describe that predictions should be 
less variable than what they are predicting is shrinkage. Unless there 
is perfect knowledge, the variance of predictions should be less 
than the variance of the variable being predicted. The less that a 
forecaster knows in terms of rank order, the more he or she should 

  

*The denominator of the correlation contains the variance of Sal’s predic- 
tions, and so it would be 0, making the correlation coefficient undefined. 

‘If we took Sally’s predictions and transformed them as follows 

80(X — 54.42) + 48 

she would outperform Sal, as her accuracy score would be 58.26.
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shrink the variance in the predictions. The forecaster needs to 
regress his or her judgments toward the mean to increase the accu- 
racy. To do this, the mean of the criterion to which the judgment is 
compared must be known. 

So we can now understand why Sal outperforms Sally. Sal 

shrinks his judgments, perhaps a little too much. Sally fails to 

shrink her judgments in that the variability of her judgments is 

about the same as the variability of the criterion. The other reason 
for Sal’s superiority as a forecaster is that he is much more accurate 
at knowing the mean than Sally. As this example shows, there is 

more to making accurate predictions than just getting the correla- 
tion right. 

Shrinkage is used in statistical analyses that are sometimes 
called empirical Bayes estimates. One important use of empirical 

Bayes estimates is multilevel modeling (Bryk & Raudenbush, 

1992). Within such models, the slopes (the effect of one variable 

on another) are estimated for each group of observations. For ex- 

ample, a slope is computed for children in each classroom. These 

estimated slopes for each classroom are shrunk to take into account 

regression toward the mean. The effect of this shrinkage is to re- 

duce the variance in the estimated slopes, making each slope more 
similar to the average slope. The statistical estimates are regressed 
toward the mean estimate. 

CONCLUSION 

This chapter has summarized several themes echoed throughout 
this primer. After a brief epistemological exegesis that focused on 
the role of common sense, we have introduced a very useful proce- 

dure for diagnosing regression toward the mean: a time-reversed 
analysis. We have also discussed methods for improving the quality 
of research conclusions: the use of graphical methods, considera- 
tion of plausible rival hypotheses, and the importance of research 
design. Finally, we have shown how regression toward the mean 
should be incorporated into prediction. 

We hope that by reading this chapter and the previous nine, 
the reader has learned about the concept of regression toward the 
mean. It can be a very confusing concept, and we have sought to 
clear up that confusion. The key idea is very simple: scores that are 
extreme in standard deviation units on one measure are not likely 
to be as extreme when measured on another measure. Complica- 
tions arise in that to know whether there will be regression toward
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the mean depends on the process of selecting the score. Change is 
inevitable, but some components of scores change hardly at all; if 
selection is made on these components, there may be little or no 
regression to the mean. Forecasting the degree of regression toward 
the mean critically depends on an understanding of both the selec- 
tion process that makes the score or mean of scores extreme and 
the model of change. 

The reader might be surprised to learn that there is no statisti- 
cal analysis that can remove or eliminate regression artifacts. Virtu- 
ally all of the analyses that we have performed in this primer are 
standard analyses. We have the tools; we just need to use our intel- 
lect to use them in a way that reduces the likelihood of regression 
artifacts. 

Regression toward the mean certainly deserves more attention 
than it has received in the recent past. It surprises us that this is the 
first book-length treatment of this most important topic. (It might 
well surprise others that a whole book has been written on this top- 
ic.) 

More than a half century ago Rulon (1941) said, “The list of 
studies in which the regression factor has been neglected grows mo- 
notonous, as well as distressing” (p. 222). This dismal statement is 
included in virtually every review of regression toward the mean, 
and sadly this statement remains true today. We are hopeful that a 
few years from now, because of this primer and increased vigilance, 
Rulon’s statement will no longer apply. We conclude with a more 
optimistic statement of Sir Francis Galton (1889), the man who 
coined the term “regression toward the mean”: 

Some people hate the very name of statistics but I find them 
full of beauty and interest. Whenever they are not brutalized, 
but handled by higher methods, and are warily interpreted, 
their power of dealing with complicated phenomena is extraor- 
dinary. (p. 62)





  

Glossary of Terms 

alpha: the probability of making a Type I error (rejecting the null hypoth- 
esis when it is true). 

ANCOVA: the analysis of covariance; the analysis of variance with the 

addition of a continuous variable as a predictor variable. 

ANOVA: the analysis of variance; a statistical technique to test hypothe- 
sis concerning the effects of categorical variables on a continuous 
variable. 

anticompensatory program: program in which treatment participants 

outscore the control participants on pretreatment measures for 
which higher scores mean “better.” 

ARIMA model: autoregressive integrated moving average model for the 
analysis of time-series data. 

assignment variable: variable correlated with the outcome and used to as- 
sign persons to treatment groups; the source of nonrandomized selec- 
tion effects. 

autocorrelation: in a time series, the degree of correlation between two 
time points separated by a fixed length of time or lag. 

autocorrelogram: a graph of the strength of autocorrelation as a function 
of lag length. 

autoregressive coefficient: coefficient indicating the degree to which the 
current value is influenced by the previous value. 

autoregressive model: for time-series and longitudinal data, a model in 
which the current value is assumed to be a function of the previous 
values plus a random component. 

blocking: matching using a categorical variable; term often used in ran- 

domized experiments. 
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caliper matching: matching on a continuous variable, with an interval de- 
fined for which persons are “similar enough” for an acceptable 
match. 

change score analysis: method using change as the outcome in over-time 
analyses. 

Cohen’s d: mean difference between two treatment groups divided by the 
pooled within-groups standard deviation; a measure of effect size. 

compensatory program: program in which control participants outscore 

the treatment participants on pretreatment measures for which 
higher scores mean “better.” 

construct validity: validity when the measure actually taps the intended 

theoretical construct. 

control group: persons who have not received the treatment and to 

whom the treated group is compared. 

correlation: the degree of linear association between two standardized 
variables; the slope divided by the perfect slope; ranges from —1 to 

+1; measure of effect size. 

covariate: a measure that is correlated with the outcome but not affected 
by the treatment or the outcome. 

cross-lagged panel correlation (CLPC): a method for ruling out the plau- 
sible rival hypothesis of spuriousness using longitudinal data. 

cycle: in a time series, a recurrence of observations separated by a con- 
stant interval that tend to be similar to one another. 

effect size: the magnitude of the standardized effect of a treatment vari- 
able on an outcome. 

error variance: in psychometrics, the variance in a measure not due to 

true variance, estimated by the measure’s variance times 1 minus the 

measure’s reliability; alternatively in modeling, the unexplained 
variance in a variable. 

external validity: the generalizability of the results from a study; a threat 
to such validity is the interaction of treatment with another vari- 

able. 

Galton squeeze diagram: a pair-link diagram in which the levels of one 
variable are connected to the means of the other variable. 

growth-curve model: a model in which change is determined by time but 
the rates and starting points of change may vary by individual. 

guesstimate: an approximation through a visual examination, not a math- 
ematical computation, of a statistic (e.g., a mean or slope). 

history: the plausible rival hypothesis that a change in an outcome is due 
to some intervening event and not the treatment.
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horizontal squeeze plot: a scatter plot in which means or guesstimates are 
computed for each value on the variable on the vertical axis; the 
scatter plot is squeezed horizontally. 

instrumentation: the plausible rival hypothesis that a change in an out- 
come is due to a change in the calibration of the measuring device, 
not the treatment. 

internal validity: valid causal inference (threatened by plausible rival hy- 

potheses such as regression toward the mean). 

interrupted time-series design: a time series in which the initial observa- 
tions serve as the control and, after an intervention is introduced, 

the remaining observations are treated. 

lag: the time interval between measurements. 

latent variable: a theoretical construct that is imperfectly measured by 
one or more indicators. 

linearity: the assumption that the relationship between two variables can 
be best fitted by a straight line. 

Lord’s paradox: when treatment groups differ on a pretreatment measure, Pp group Pp 

covarying out that measure and change score analysis yield different 
conclusions. 

matching: measuring the treatment effect across equivalent scores on a 
third variable to reduce, but likely not eliminate, bias due to selec- 
tion. 

maturation: the plausible rival hypothesis that a change in an outcome is 
due to development and not the treatment. 

measurement error: the random, unsystematic component in a measure- 
ment. 

mega-covariate: a covariate that is formed by combining the values of two 
or more covariates. 

mortality: the plausible rival hypothesis that persons who leave the treat- 
ment and control groups do so for different reasons; a type of selec- 
tion effect. 

multilevel modeling: a statistical method for the analysis of data at two or 
more levels (e.g., children and classrooms, or persons and times). 

multiple regression: a statistical technique for the simultaneous estima- 
tion of the effects of several predictors that add together. 

multitrait-multimethod matrix (MTMM): a correlation matrix between a 
set of variables (i.e., traits) all measured by the same set of methods. 

nonequivalent control group design: a research design in which treat- 
ment and control groups are nonrandomly formed and persons are 
pre- and posttested.
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null hypothesis: the hypothesis that some population value (e.g., a mean 
difference, a correlation, or a regression coefficient) equals some par- 

ticular value (usually 0). 

omitted variable: a variable not controlled in the statistical analysis that 
causes the outcome and the assignment variable; the assignment 
variable; the source of selection effects. 

overadjustment: biasing of the estimated treatment in the direction of the 
difference on the covariate (the covariate being scaled to correlate 

positively with the outcome). 

overfitted regression line: if X is used to predict Y, the line by which 
the predicted values of Y for each value of X are plotted and con- 
nected. 

pair-link diagram: graph of a two-variable association; two vertical lines, 

one for each variable, with each pair of scores represented by a line 
connecting these two vertical lines. 

parallel test: a second measure of the same construct that has the same 
amount of true and error variance and sometimes is assumed to have 
the same mean. 

perfect-correlation line: a slope of the standard deviation of the criterion 
divided by the standard deviation of the predictor; when units of 
measurement the same, a diagonal line. 

phantom variable: a variable in a model that has no substantive meaning 
but is used as a vehicle for forcing a constraint (e.g., a nonlinear con- 

straint in structural equation modeling). 

plausible rival hypothesis: a threat to internal validity; an alternative ex- 
planation of the treatment effect. 

power: the probability of rejecting the null hypothesis; 1 minus the prob- 
ability of making a Type II error. 

pre—post design: a research design in which a group of persons is measured 
before and after receiving a treatment. 

pretest: a prior measure of the outcome. 

proximal autocorrelation: the outcome when the correlation between 
shorter time lags is larger than the correlation between longer lags. 

quasi-simplex: a simplex correlational structure that is attenuated by 
measurement error. 

random assignment: the assignment of persons into treatment groups by a 
random rule; such persons have a fixed probability of being assigned 
to a given treatment group. 

randomized experiments: studies in which units, typically persons, are 
randomly assigned to treatments.
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random selection: the selection of persons into a study randomly from 
some specified population. 

regression discontinuity design: a research design in which persons are 

assigned to treatment groups on the basis of a measured variable. 

regression line: if X is used to predict Y, the line that minimizes the sum 
of squared errors of prediction. 

regression toward the mean: because of a less than perfect correlation, 

the predicted score of a variable tends to be not as extreme in terms 

of standard score units as is the predictor variable in standard score 
units. 

reliability: the proportion of variance in a measure that is true, commonly 
estimated by an internal consistency measure. 

scatter plot: a graph in which the axes are two variables and the points 
represent the scores of individuals on the variables. 

selection: the plausible rival hypothesis that the treatment difference is 
due to a preexisting difference on some unknown variable; that un- 
known variable is called the assignment variable. 

selection by maturation: persons at the different levels of the assignment 
variable are changing at different rates. 

selection by regression: persons at the different levels of the assignment 
variable are regressing to different means. 

shrinkage: the variance of predicted scores using the standard regression 
prediction formula must be less than or equal to the variance of the 
observed scores; how much less depends on the correlation between 
the prediction and the score being predicted. 

simplex: the correlational structure that results from a first-order autore- 
gressive model; the resulting structure is proximally autocorrelated. 

spuriousness: the covariation between two variables that is not due to 
one causing the other, but rather to the variables both being caused 
by a third variable. 

standardization: the transformation of a variable so that its mean is 0 and 

its variance is 1; Z scoring. 

standardized change score analysis: the method by which the compo- 
nents of a change score have equal variance through standardization; 
the formula for this analysis is Y — (sy/sx)X. 

stationarity: the condition when parameters do not change over time 

(e.g., the mean and the standard deviations of the pretest and the 
posttest are the same). 

statistical equating: a method using multiple regression in an attempt to 
control presumed selection variables.



178 Glossary of Terms 

structural equation modeling: models with causal links between latent or 
unmeasured variables. 

synchronous correlation: the correlation between two variables mea- 
sured at the same time. 

testing: the plausible rival hypothesis that the process of being measured 
affects subsequent measurements. 

time-reversed analysis: the analysis of data by switching the flow of time 
and determining if the results change. 

time series: data from a single unit that are temporally ordered. 

trait-state-error model: a model of change with three components: a 
trait or unchanging component, a state or autoregressive compo- 
nent, and an error or random component. 

treatment: an intervention or program; the variable that contrasts the 
two groups in an evaluation. 

trend: a constant change in a variable over time. 

true-score estimate: an estimate in which, given an observed score, the 

predicted true score is regressed or shrunk toward the mean using the 

formula Mx + Tx(X —M,), where rx is the measure’s reliability. 

true variance: the portion of variance in a measure that is not error; esti- 

mated by the measure’s variance times its reliability. 

Type I error: the error of rejecting the null hypothesis when it is true; its 

probability is denoted as alpha. 

Type II error: the error of not rejecting the null hypothesis when it is 
false; its probability is denoted as beta; power equals 1 minus beta. 

underadjustment: biasing of the estimated treatment in the direction op- 
posite from the difference on the covariate (the covariate being 

scaled to correlate positively with the outcome). 

vertical squeeze plot: a scatter plot in which means or guesstimates are 
computed for each value of the variable on the horizontal axis; the 
scatter plot is squeezed vertically. 

zero-correlation line: a flat line that intersects the mean of the variable 

being predicted.
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pretest or one of the variables in CLPC 

posttest or one of the variables in CLPC 

predicted pretest given the posttest 

predicted posttest given the pretest 

standardized pretest 

standardized posttest 

predicted standardized pretest given the posttest 

predicted standardized posttest given the pretest 

pretest true score 

posttest true score 

estimated pretest true score 

estimated posttest true score 

mean 

mean of the treated group 

mean of the control group 

mean of the pretest 

mean of the posttest 

standard deviation 

standard deviation of the pretest 

standard deviation of the posttest 

correlation coefficient 

correlation of the pretest and the posttest 
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bxy 

Y7 

Yk 

Xy 

12 

Tx 

Ty 

Glossary of Symbols 

regression coefficient in which the posttest is predicted by the 

pretest 

regression coefficient in which the pretest is predicted by the 

posttest 

the lag-1 autocorrelation 

the lag-k autocorrelation 

measurement at wave | 

measurement at wave 2 

the correlation between measurements at wave | and wave 2 

reliability of the pretest 

reliability of the posttest



APPENDIX A 
  

Dice-Rolling Program 
and Data Sets Used 

as Illustrations 

Readers can access the computer program that was used to generate much 
of the data and graphs used in this primer from the following World-Wide 
Web address: 

htpp://nw3.nai.net/~dakenny/primer.htm 

The computer program, called RTM (regression toward the mean), gener- 

ates a pretest and posttest for a group of persons. (Should the website 
change, readers should search for “primer” and “RTM.”) The user can 

specify the number of cases. Each score is based on one to four dice rolls, 
and all, some, or none of the dice rolls can be shared. By sharing more 

dice, the correlation’s size can be increased. Negative correlations can be 

created by subtracting the shared dice, and this can be accomplished by 
entering a negative number of shared dice. A number from 1 to 4 can be 
added to either the pretest or the posttest. The data set that is created can 
be stored for subsequent analysis. 

The correlation between pretest and posttest equals the number of 
dice shared divided by the square root of the product of the number of 
dice rolled at the pre- and posttest. If the number of shared dice is nega- 
tive, the correlation is negative. So, for instance, if 2 dice are thrown at 

the pretest, 4 dice are thrown at the posttest, and 2 dice are shared, the 

correlation is 2 divided by the square root of 8, which equals .707. If 3 dice 
are thrown at both the pretest and posttest and —1 die is shared, the corre- 
lation is —1 divided by the square root of 9, which equals —.333. 
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Output from the program include basic statistics, histograms, scatter 
plots, overfitted regression lines, and Galton squeeze diagrams. The over- 
fitted lines and the Galton squeeze diagrams are given forward and back- 
ward in time. The user can control what output is presented. 

The website also includes the major data sets used in this primer. 
The data sets can be downloaded from the website and reanalyzed by 
RTM. The computer program is written in QuickBASIC and runs on 
IBM-compatible personal computers. 

The website will contain updates and errata for this primer. Readers 
can send corrections and suggestions to the second author through the 
website.



APPENDIX B 
  

The Computation 
of Autocorrelations 

Consider a very short time series of 

4, 3, 4, 7,5, 8, 6, 7, 8, 8 

To compute the autocorrelation, we first lag the time series. The series and 
the lagged series are presented below: 

4, 3, 4 

| | 

4,3 a
N
 

) 

The covariation between the paired observations (e.g., 3-4, 4-3, 7-4, and 

so on) is then observed. The formula for the lag-1 autocorrelation is 

(Xj — Mx)(X41 — Mx) 

2(X; — Mx)? 
  

where My, is the mean of all the observations. So, for the example, the lag- 
1 autocorrelation equals .41. 

The general formula for the lag-k autocorrelation is 

(Xi — Mx) (Xia — Mx) 
2(X; — Mx)? 
  

Notice that there are k fewer terms on the numerator than there are in the 

denominator, in that the summation goes from 1 to N —k, where N is the 
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number of observations. The lag-2 through the lag-5 autocorrelations for 
the example data are .28, .00, ~.03, and —.19, respectively. If there were 

trends and cycles in the series, then the observations would be first de- 

trended and decycled before the autocorrelations were computed. 

These standard formulas for autocorrelations are negatively biased; 
that is, they underestimate the population autocorrelation. We present an 
alternative formula for the lag-1 autocorrelation proposed by Huitema and 
McKean (1994). It takes the following form: 

[.5{(X — Mx)? + (Xn — Mx)?I + 2X; — Mx) (%ie1 — MIT UL + SAN - 1)] 
%(X; — Mx)? 
  

where again N is the number of observations. For the example data, the 

lag-1 autocorrelation equals .83. Note that this value is nearly three times 
as large as the value obtained using the standard estimation method. 
Based on simulations, if the true correlation were .80 and N were 10, the 

standard value would be estimated to be .35 and this modified value would 
be .71. Clearly the Huitema and McKean (1994) modification reduces the 

bias in the estimation of the lag-1 autocorrelation.
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multiwave studies and, 135 

trait—state—error model and, 128 

Statistical equating, 177 

alternatives to, 79-82 

appropriate use of, 82 

assumption of linearity and, 68-69 
bias in 

controlling for, 84 

direction of, 70-71, 74-78, 85 

examples of, 82-84 
explanation of, 71-74 
significant problem of, 84-85 

warning readers of, 84 

compared to matching, 68 

conducted by multiple regression, 
69 

covariates and, 69-71 

effective use of, 78-79 

nonequivalent control group design 
and, 70 

with nonoverlapping distributions, 
68-69 

with random assignment, 55 
regression toward the mean and, 

73-74, 84 

residualized change scores and, 97 

time-reversed analysis and, 162-163 
Structural equation modeling, 85, 150, 

152,178 

Synchronous correlation, 143, 146, 

178 

T 

Testing, 51, 178 

Time-reversed analysis, 178
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Time-reversed analysis (continued) 

data analysis procedures satisfying, 
161-162 

efficacy of, 162 
examples of, 159-161 

multiple regression model and, 151 

overview of, 16-17, 158-159 

prototypcial results of, 159 

regression toward the mean and, 
16-17, 19, 21, 160 

statistical equating and, 162-163 
Time series, 178 

application to clinical trials, 
110-116 

autocorrelation and, 101-102 

control groups and, 108-109 
offset effect of psychotherapy, 

105-110 
regression artifact in 

ARIMA modeling and, 116- 
119 

from nonrandom intervention, 
102-104, 107-108, 118-119 

quantifying, 104-105 
sample size bias, 116-117, 119 

traffic fatalities study, 102-105 
trends and cycles in, 102 

Trait models, 122-123, 126(figure), 

132 
Trait—state—error model, 178 

advantages of, 125 
assumption of stationarity in, 128 
example of, physical attractiveness, 

128-131 

explaining trend differences with, 
135 

MTMM analysis and, 153 
overview of, 123(table), 124-125, 

127(figure), 128, 139 

Trait variable 
defined, 122 

multiple regression model and, 151 
See also Trait—state—error model 

Treatment, 178 

Trend, 102, 135-136, 178 

True-score estimate, 27-28, 50, 76, 

150, 178. See also Shrinkage 

True variance, 178 

Index 

Tucker—Lewis index, 129 

Type I error, 178 

Type II error, 55, 178 

U 

Underadjustment, 178 

in statistical equating, 74(figure), 
75-78, 85 

V 

Variables 

dichotomous, 34—35 

matching, 54-55 
omitted, 176 

phantom, 152, 176 

standardized, 24-26, 28(table), 177 

state, 123, 150 

trait, 122, 151 

trait—state—error model and, 150 

See also Assignment variable 
Variance 

correlations of change and, 88-90 
relationship to regression toward the 

mean, 29 

selection by maturation interaction 

and, 81 

shrinkage and, 27 

true, 178 

Vertical squeeze plot, 7-11, 178 

Z 

Zero-correlation line, 178 

defined, 19 

in Galton squeeze diagrams, 14, 
15(figure) 

negative correlation and, 32, 

33(figure), 34 

in time-reversed horizontal squeeze 
plot, 16(figure) 

with unequal means and variances, 

23(figure) 

in vertical squeeze plots, 10 
Z scores, 24. See also Standardization


