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PREFACE

The work leading up to this thesis was begun in 1954 at a time when

I had become interested in the problem of how to plot points on a nor-

mal probability paper. This research involved a study of the properties

of order statistics and led to the introduction of the a, 6-correction,

described in Chapter 6 of the present work.

When, in the same year, in a paper in the Journal of the American

Statistical Association, Chernoff and Lieberman demonstrated the existence

of a close relationship between the plotting problem and the much more

general problem of estimating parameters by means of linear functions

of order statistics, my interest in the first of these problems was ex-

tended also to the second. Another source of inspiration was Jung’s paper in

Arkiv for matematik in 1955, in which, for the first time, the laborious

procedure for finding linear estimates with minimum variance was re-

placed by an approximate one. The nearly best linear estimates dis-

cussed in the present thesis owe their existence partly to Jung’s work.

It soon became desirable to study the asymptotic properties of the

nearly best estimates. Fisher’s classical theory of estimation proved too

specialized for this purpose, and, as a third and final stage in there-

search reported in this thesis, a more general theory was developed cov-

ering all possible continuous probability distributions.

The three stages in my work outlined above are reflected in the di-

vision of the thesis into three parts, which, however, are presented in

an order differing from the chronological one.

Part I contains a generalization of that part of Fisher’s theory of

estimation which concerns the asymptotic minimum variance of an esti-

mate. The results are summarized in Sections 1.1 and 2.1.

In Part II, general properties of transformed beta-variables! are investi-

gated. Special attention is paid to the problem of finding approximations

to the first two momentsof single transformed beta-variables and of linear

combinations of such variables. Further, the asymptotic distribution of a

linear combination is studied.

1 For the definition of a transformed beta-variable, which is a more general con-

cept than the familiar term order statistic, the reader is referred to Section 3.1.



The results obtained in this part are applied in Part III to linear
estimation problems. Apart from these applications, Part II is deemed
to have some interest of its own, being a contribution to the general
theory of transformed beta-variables.

Part III is devoted to a study of the problem of constructing linear
estimates of location and scale parameters in a continuous distribution
of any form. A method is presented for constructing nearly best linear
estimates of such parameters, the name being suggested by the fact that
these estimates are often highly efficient as compared to minimum
variance estimates.

A more detailed summary of the results obtained in each chapter in
Part II and Part III is given in Section 3.3.

It may be appropriate to finish this preface by giving some advice
to different categories of readers concerning the selection of material
from the thesis.

The reader who wants a general survey of the results is advised to
read the introduction to each chapter and to glance, at least, at Chap-
ter 4. Furthermore, he might read Sections 5.3-5.5, 6.7-6.10, 8.2-8.4,
8.7, 10.3, 10.8, 12.2, 12.4, 12.6, 14.5, and consult other sections when
necessary.

Readers with a special interest in the practical problem of constructing
estimates of location and scale parameters are advised to read Chapters
9-12 and 14, and take, at least, a glance at Chapter 13.
The specialist in the general theory of estimation is reeommended to

study Chapters 1-2, 10, 13-14, and look up references to other chapters
when these are needed for a complete understanding of the results.
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PART I

CONTRIBUTIONS TO THE LARGE SAMPLE THEORY

OF ESTIMATION

 

CHAPTER 1

ESTIMATION OF A SINGLE UNKNOWN PARAMETER

1.1. Introduction

The theory of estimation was put forward by R.A. Fisher (1921,

1925). A useful review of this theory is given in Fisher (1935). Among

his many contributions to the theory of estimation, we shall here only

mention Fisher’s well-known result concerning the asymptotic behaviour

of an estimate «* of an unknown parameter « in a frequency function

(fr. f.) f(z; a).

Let us suppose that «* is a function of the observations in a random

sample of size n from the population with the fr. f. f(z; «). If a* is

asymptotically unbiased, its variance has a lower limit so that, asymp-

totically,
1

var a” > 7 (1.1.1)

where J is the amount of information in the sample, defined by

 
 Tank (’ 8 Ian {¢6 NYFee x) dz. (1.1.2)

Fisher partly used heuristic methods when proving this result and gave
no exact conditions. He realized that there are also other possibilities,
as shown by a passage on p. 350 in his paper from 1921, where, in
an analysis of the rectangular distribution, he demonstrated that the
variance of the mean of the extreme values in the sample has the
order of magnitude n~?.

In later years, Fisher’s inequality (1.1.1) has been studied by Rao
(1945), Cramér (1946 a; Ch. 32), and others, who have shown that it
holds good also for unbiased estimates, based upon samples of any size,

13



1.2

provided that certain specified conditions are fulfilled. When the for-
mula is interpreted in this way, it is generally called the Cramér—Rao
inequality.

Returning to the case of large samples, we observe that, apart from
Fisher’s results, our knowledge concerning the behaviour of the variance
of an estimate is still incomplete. For example, very little is known
about the situations arising when f(z) has discontinuities, or when the
integral appearing in (1.1.2) is zero.

In this chapter we shall attempt to give a general solution to the
question of the asymptotic behaviour of the variance of an estimate,
constructed by means of a sample from a continuous cumulative dis-
tribution function (cdf.). We shall replace Fisher’s result (1.1.1) by a
more general inequality, which is valid for a very wide class of asymp-
totically unbiased estimates. The proof of this inequality is given in 1.2.

In 1.3 we shall introduce a classification of distribution functions
into three categories, viz. Type 1, Type 2, and Type 3 distributions,
which together embrace all possible continuous distributions. Type 1
distributions fall within the scope of Fisher’s theory, while the other
types do not seem to have been systematically studied before.

1.2. A general theorem

We shall describe the situation considered in the introduction in
more detail. Suppose that the random variable z has the continuous
cdi. (2; «), where « is an unknown parameter belonging to an open
interval ©. The range of variation of z is denoted by (A, B) and
may depend upon «. Let z=G(u;«) denote the inverse function of

F
u=F(z;a). We shall suppose that the partial derivatives = =f (z; a)

of
and aw exist for any z and for any v€Q.

Oo

Let «* be an estimate of «, based upon n independent observations
of z. This estimate is a random variable defined over the n-dimensional
Kuclidean sample-space corresponding to the n observations. Let &,,...,&,
denote any point in this space and denote by P the probability mass
corresponding to the observations. We shall suppose that the mean

Bat =f a* dP (1.2.1)

exists and tends to « when n approaches infinity; in other words, we
assume that «* is an asymptotically unbiased estimate of «.

14



 

1.2

We shall derive a lower bound for the variance of «* which is valid

for large n. The exact meaning of this statement will become clear

later. In order to construct this bound, we proceed as follows. Let

a, €Q be some fixed value of the parameter. Define a sequence

Ay<Aa< woe <An41

by

» (1=0,1,...,n4+1). (1.2.2)

 

Clearly Ag=A, Anu =B.

Alternatively, we may write

a

i= G (53 a)

Further, define for any «€Q

 

A,=F (Aisi; a) -F (Aj; a), (¢=0,1,..., 2). (1.2.3)

Weobserve that, in the special case where «=p,

1
A; = n+l ° (1.2.4)

Divide the sample-space into (n+1)” parts by means of the planes

&,=A, ((=1,...,737=0,...,n+1), and assign numbers 1, 2,... to these

parts according to any convenient principle. Denote by «> the value

of the estimate in somearbitrarily chosen point in the yvth part. Fur-

ther, let P, be the probability mass corresponding to this part. Evi-

dently, the quantities P, for the different parts are terms in the series

obtained by expanding the expression

(2)
into a sum of products of the A,’s. It should be observed that A, and

P, depend both upon « and upon the given value a.

(n+1)”

The sum > «@P,
y=1

is, by the definition of a Riemann-Stieltjes integral, an approxima-

tion to the integral appearing in (1.2.1). As the estimate is assumed to

be asymptotically unbiased, we have

15



1.2

> of P,=at+ R®, (1.2.5)

where the error term tends to zero when n approaches infinity. Fur-
ther, we write

> (of — a)? P, = var a* + R®, (1.2.6)

where var «” denotes the variance of «*. Generally, both terms in the
right member of this relation tend to zero when n tends to infinity.
Weshall, however, make the somewhat morerestrictive assumption that
the error term converges to zero more rapidly than the leading term;
in other words, var «* and the sum in the left member are assumed

to be asymptotically equivalent.!
Returning to (1.2.5), let us suppose that this relation may bediffer-

entiated term by term with respect to «. Observing that

 

 
 

d P,

2 Ta =0,

we obtain

dP. d R®* y_ n ;

2 (% *) Ty P+ do

where the remainder term converges to zero when » tends to infinity.
Using Cauchy’s inequality, we obtain

1 (/dP,\?* 2 . _. v >

2 (o% aye, Sp (ae) (1+
 

 (1.2.7)

where the summation extends over all »v with non-zero P,. The second

factor in the left member can after some easy calculation be reduced to

1 /dA,\?
a ‘}, 1.2.8

n>—(F2) (
 

where the summation should be made over all i=0,1,..., 7” with non-

zero A,;.

Now take «=a, in (1.2.7). Using (1.2.4), we see that the expression

(1.2.8) is then, apart from a multiplicative factor 1+1/n, equal to the

value of the function
n d A; 2

f= Pa ( d a

1 For a formal definition of this term, which will be encountered many times in

the sequel, see p. 35.
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1.2

for «=a,. By this observation, and using equation (1.2.6) with «=a,

we conclude that

 

d RY\?
(var a* + R®)I (1 -|-

d a

Since we have assumed that RY converges more rapidly than var «”*,

we infer that, when noo, the product J-var «* remains greater than

or equal to unity. Since a, is arbitrary, this result holds good for

any «€Q. Thus we have proved the following theorem.

THEOREM. Let F' (z;a) be a continuous cdf., G (u; a) the inverse func-

tion of F, and a* an asymptotically unbiased estimate of a, based wpon a

random sample of n observations. Define, further,

 

 

 

w= (OF (hin1) OF any
I=7r =— —]} > 1.2.
v2 ( 8 8 a (1.2.9)

where oF (A) is the value of the partial derivative on for
On OM

4
= =G °

on (- +1? “|

ff
OF , ,

(a) Aa exists for any a belonging to an open interval Q,

(b) the serves appearing in (1.2.5) may be differentiated term by term for

any «EQ,

(c) the sum of the serves appearing in (1.2.6) 1s asymptotically equivalent

to var a”,

then, for any «€Q,

lim inf (I var «*)>1. (1.2.10)
N> oo

It should be noted that, as F(A,)=0 and F(Anii1) =1, we have

0 F (A)
O a

The relation (1.2.10) is equivalent to stating that

 = 0 for 7=0 and i=n+1.

i
Ivar «> (1.2.11)

when n is large enough. Following R. A. Fisher, we shall call J the
information available in a large sample of n values. The quantity 1/I

2 — 595540 G. Blom 17



1.3

will be called the asymptotic minimum variance of the estimate. If an
estimate has a variance, which is asymptotically equivalent to 1/I, it
will be called asymptotically efficient. As will follow from the discussion
in 1.3, this definition is in accordance with the definition of asymp-
totic efficiency used by Cramér (1946 a, p. 489) in all cases where the
latter is applicable.

Rectangular distribution.

To get a first, very simple application of the theorem, we shall
suppose that z is rectangularly distributed in the range u+4, where u
is unknown. Wethen have

0 for z-uw< —-4

F (2; u)= \2-+h4 for |z—p|<4

1 for z—w > $.

We get [=2n’, and (1.2.11) reduces to var u* >1/(2 7). The mean
of the extreme values of the sample has variance 1/[2(n+1) (n+ 2)]

(cf. 9.2), and is thus asymptotically efficient.

The main application of the theorem will be given in Chapter 13,

where it will be shown that, under very general conditions, asymptoti-

cally efficient estimates exist when « is a location or scale parameter

in a continuous distribution of any form. This general result contains

the example just given as a very special case.

It may be supposed that the conditions of the theorem can be stated

in a simpler form. In particular, it is believed that condition (c) is

on the whole superfluous. It should also be pointed out that the in-

equality (1.2.11) can easily be modified so as to apply also to asymptoti-

cally biased estimates. Finally, it may be mentioned that the improve-

ment of the Cramér—Rao inequality performed by Bhattacharya (1946)

can also be extended to the general situation discussed in this chapter.

1.3. Classification of distributions

The inequality (1.2.11) is very general, as it covers widely different

situations. It is convenient to classify these situations according to the

asymptotic behaviour of J. Properly speaking, this classification con-

cerns the behaviour of the underlying cdf. For this purpose, we need

two conditions.

18



 

1.3

OF (25a) . : . .
ConpITIONnN Cl. The function one) is a continuous function of z in

a

the open interval A<z<B, and tends to zero when z->A or zB.

ConpiTIon C 2. The integral

oe

é log f\* | é log f\*,
| A = I ( Do ) tesa) de (1.3.1) 

 

—-o©

exists and is greater than zero.

Note that, when the interval (A, B) is finite, Condition Cl may be

OF . , ; ,
given the simple formulation: aa 8 continuous for any z in the interval

a

oFf . s e °

—oo<z<oo, For — is then continuous, in particular, for z= A and
Ow

z= B; observing that F=0 for z < A, and F=1 for z => B, we conclude

that or equals zero for z=A and z=B.
Oo

We now introduce the following classification, which will play an

important réle in the sequel.

Type 1 distribution Conditions C1 and C2 are satisfied.

Type 2 distribution Condition Cl is not satisfied,

Condition C2 is satisfied.

Type 3 distribution Condition C2 is not satisfied.

When, in either of these cases, an asymptotically efficient estimate

exists (cf. 1.2), it may be termed an asymptotically efficient estimate of

Type 1, etc., or, shorter, a Type 1 estumate, etc.

in one special case it will prove convenient to modify the rules of

classification: If C 1 does not hold and the integral in (1.3.1) is zero,

we shall classify the distribution as Type 2. This rule affects the rec-

tangular distribution.

Weshall make some comments concerning theclassification. Suppose,

first, that the cdf. is of Type 1. By an analysis of J, defined by (1.2.9),

we easily see that this quantity is then asymptotically equivalent to

2nB(? log ‘

Oa
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1.3

Thus the inequality (1.2.11) reduces to Fisher’s inequality (1.1.1). If an
asymptotically efficient estimate exists, its variance has the order of
magnitude n7!.

Of

Ou
as a function of z, has at most a denumerable numberof discontinuity
points w,, W2,...,w, with ‘jumps’ A,, A,,..., A;. These points may be
situated inside or at the ends of the range of variation of z. It is
realized that J is then asymptotically equivalent to

Secondly, consider a Type 2 situation. Suppose that » considered 

l

n? > A?.
it

Thus the inequality (1.2.11) is specialized to

 

Provided that the sum in the denominator is finite, we see that an

asymptotically efficient estimate (if existent) has a variance of order n~*.

The rectangular distribution, already mentioned in 1.2, and the ex-
ponential distribution are the best known examples of Type 2 distribu-
tions. We shall discuss these and other similar cases in 13.7.

If, finally, the cdf. belongs to Type 3, a special analysis has to be
made of the limit in (1.2.11) in each particular case, and no general

statements are possible with respect to the order of 1/7. The reader
is referred to 13.8 and also to Table 8, p. 165, where examples

of Type 38 distributions are given. It follows from these examples that
the order of an asymptotically efficient estimate may, for example,

equal any power »“, where 1 < x% < 2. However, other situations are

also possible.

It has always been maintained that the information I is additive,

i.e. the amounts of information available in each of two independent

samples are added when the samples are combined into one single

sample. We now see that this statement is true when the samples are

taken from a Type 1 distribution, but not necessarily otherwise. For

instance, in the case of a Type 2 distribution, it follows from the above

that, when two large samples of equal size are united into one sample,

the total information becomes four times greater than the informa-

tion inherent in each subsample.

20



 

CHAPTER 2

ESTIMATION OF SEVERAL UNKNOWN PARAMETERS

2.1. Introduction

The theorem concerning the asymptotic minimum variance and the

classification of distributions discussed in the preceding chapter are ex-

tended to the case of several unknown parameters. The results are

related to but more general than the multi-parameter version of the

Cramér—-Rao inequality considered by Cramér (19466) and Rao (1947).

2.2. A general theorem for several unknown parameters

Let z have the continuous cdf. F(z; a, ..., %), Where a, ..., &, are k

unknown parameters, and each parameter «,, (r=1,...,%), is situated

in an open interval Q,. Let us suppose that the partial derivatives

oe =f (2 1, +++) &) and -

ticular values «,€Q,, (r=1,...,k%), of the parameters.

To estimate the parameters, we shall suppose that we have at our

disposal a random sample of n independent observations of z. Let

ax, ...,0% be the estimates of the parameters, based upon these observa-

tions. We shall assume that the means

 exist for any value z and for any par-

Bot=[atdP, (r=l,...,b), (2.2.1)

exist and tend to « when n tends to infinity.

Denote, further, by V the variance-covariance matrix with the ele-

ments! cov (af, a), (r,s=1,...,k%). This matrix is the main object of

our investigation.

In the first part of the investigation we proceed in the same way

as in 1.2. Let oo, (r=1,...,%), be any fixed values of the parameters.

Define quantities
hg<A< “ee <An41

by the relations

1 To avoid duplication of formulae, we shall in the sequel often write cov (2, y)

even when x=y, instead of var a.

21



2.2

a

n+1

 

F (Ai3 O49) »+-> Xo) = » (i=0,1,...,n+)), (2.2.2)

and A; by

Ai =F (hiss; Ay woes ar) —F (A; Kis soey Xr), (.=0, 1, eeey n). (2.2.3)

The sample-space is divided into (n+1)" parts exactly as in 1.2, and
the probability mass P, is defined as before. Note that A; and P, are
functions both of «9 and «,, (r=1,..., k).

Let us designate by «a, the value of the estimate «* in some arbi-
trarily chosen point in the yvth part. Since each estimate a* is assumed
to be an asymptotically unbiased estimate of the corresponding para-
meter, we obtain by analogy to (1.2.5)

>, ay Py =a +RO, (r=l,...,b), (2.2.4)

where Rf; tends to zero when n tends to infinity.
Further, we write by analogy to (1.2.6)

>, (Ory — Or) (3, — as) P, = cov (ar, aF)+R®,, (r,s=1,...,h). (2.2.5)
v

Both terms in the right member generally tend to zero when n tends
to infinity. We shall, however, introduce a more stringent condition.
Denoting by W the k-k matrix which has as its elements the expres-
sions in the left member of (2.2.5), we shall assume that W and V are

asymptotically equivalent (cf. p. 36).

Moreover, let us assume that the relations (2.2.4) may be differentiated
term by term with respect to any parameter a,. Observing that

 

 

 

 

 
 

2 a0, (s=1,..., 4),

we then find

Re
Pp 1+ - for r=

* y Or2. (ary = Or) 5a, aR® (2.2.6)
for r= s

Oks

Now consider the quadratic form

l oP, 1 aP,, |?
2 (ats ca) byt sss + (ay — Ox) be + P, 8 a, xsi: tp Sate P,,
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where the summation extends over all parts of the sample-space for

which P,+0. Since this form is positive definite or semi-definite, the

same is by (2.2.6) true of the 2k-2k matrix

where R is the k-& matrix with the expressions in the right member

of (2.2.6) as elements, R’ the transpose of R, and J the k-k matrix

y= a ot oe

| Py ba, Gas

By analogy to (1.2.8), we find after some calculation that J can be

given the more convenient form

  

 
 

1 0A, 0A;
ee. (yaad, ob (2.2.7)

v= [nS Ai Oo Oa,

summing over all i=0,1,..., for which A;+0.

In the remaining part of our investigation we shall turn off from

the path followed in 1.2 and make use of a device due to Rao (1947

or 1952, p. 144ff.). Suppose that the reciprocal J“' of J exists, and

let 6, denote the unit &-k matrix. The product!

5, | — RIO

      

0 v7

is evidently non-negative. Hence

|W-RJ*R'|>0.

We can repeat this argument for any subset of the estimates OT, 2-5 Lis

and thus we infer that the matrix

W-RJ"R’

is positive definite or semi-definite.

Now let n approach infinity. Then R tends to 6, and, as stated

earlier, W is asymptotically equivalent to V. Consequently, the matrix

V-J"

is positive definite or semi-definite if n is large enough.

1 We denote here and in the sequel by || the determinant corresponding to the

matrix A.

23



2.2

We now take =a, (r=l, ...,k). Let us add a subscript 0 to V
and J in order to denote the values of the matrices for these par-
ticular values of the parameters. Since by (2.2.2) and (2.2.3) we then
have A;=1/(n+1), we see that J, is equivalent to the value I, which
the matrix

 

 

=5a | » (r,s=1,..., hb),
Od;

assumes for a = a0.

Denoting the reciprocal of Ig by Jg', we conclude from what has
just been said that the matrix

Vo—Io"

is positive definite or semi-definite for large n. Since ao is an arbitrary
point in Q,, the result holds true for any values of the parameters.
Thus we have proved the following theorem.

THEOREM. Let F (z; a, ..., «,) be a continuous cdf. with the inverse func-
tion G(u; a, ..., &,) and ar, (r=1, ..., b), asymptotically unbiased estimates
of the unknown parameters a,, based upon a random sample of n ob-
servations. Let, further, V denote the variance—covariance matrix of the
estimates and I the k-k matrix with the elements

 

 

 

 

“(OF (Ai+1) ~2G) OF (Ai+1) na————-—~ - , 2.2.8=n?y (GeCO hy Od, Oks 0 ds (

where oF (Ai) ws the value of the partial derivative oF for
O oy O hy

a
=A,= ; wes . 2.2.ha(5s ay ons a] 2.2.9)

If
OF , ,(a) the derivatives Don” (r=I1,...,k), exist for any a, belonging to an open

interval Q, and for any z,

(b) the sertes appearing in (2.2.4) may be differentiated term by term
with respect to any parameter a,, (s=1,..., k),

(c) the matrix W defined by the left member of (2.2.5) is asymptotically
equivalent to V,
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2.3

(d) the reciprocal I~* of I exists,

then, for any a, €Q,, (r=1,...,k), and for n large enough, the matrix

V—-I"

ts positive definite or semi-definite.

Denote the elements of the matrix I~’ by I"*. The theorem implies

that we have, asymptotically,

varay >I", (r=1,..., 4), (2.2.10)

which may be regarded as a generalization of (1.2.11).

Further, when is large enough, the generalized variance |V | of the

estimates satisfies the inequality

|V|> |Z]. (2.2.11)

If the equality sign holds in this formula, we shall call the estimates

asymptotically jointly efficient. It will ensue from the discussion in 2.3

that this definition coincides with that used by Cramér (1946 a, p. 494 ff.),

whenever the latter is applicable.

When there are only two unknown parameters «, and a, the in-

equalities (2.2.10) reduce to

Iiyvar op S>—y>)—sVar a ST? (2.2.12)
IZ °~ |L|

where

Furthermore, (2.2.11) is specialized to

1
var at var a — [cov (af, a3)]/"> iT] (2.2.14)

We shall demonstrate in Chapter 13 that asymptotically jointly effi-

cient estimates of «, and a, generally exist in the important special

case where «, and «, are identified as the location parameter and the

scale parameter o in a continuous cdf. F [(z—)/o].

2.3. Extension of the classification

The classification of distributions with one unknown parameter per-

formed in 1.3 can be extended so as to apply also to the more general
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2.3

situation considered in this chapter. Conditions C1 and C2 then assume
a more general form. Set

wo

eon B (rel Cee) _ [Plea to lee
Ok, O64, Od, O4s

    

— 0

(r,s=1,...,h). (2.3.1)

Let E be the k-& matrix with these quantities as elements and E~its
reciprocal (if existent). Now consider any of the unknown parameters «,.
We have two conditions, the latter of which is the same for all para-
meters.

. OF , , ,ConDITION Cl. The function ay, 8 continuous function of z in the
Oy

open interval A<z<B, and tends to zero when z->A or z—->B.

ConpiTion C2. The quantities e,, exist, and the determinant |E| is
greater than zero.

Using these conditions, we are able to classify the cdf. into one of
three types according to exactly the same scheme as that introduced
in 1.3.1

The procedure of classification should be repeated for any other para-
meter, and thus should be performed & timesin all. Generally, the cdf.

belongs to the same type, regardless of which parameter is considered.
It may, however, well happen that the classification leads to different

results for different parameters. For instance, it is not uncommon that
the partial derivative appearing in Condition C1 is zero at the ends for
certain of the parameters, but different from zero for others. For this
reason, it is not sufficient to state that a cdf. belongs, for example,

to Type 1. Instead, it should be stated that it belongs to Type 1 with
respect to the parameter «u,.

It follows from these remarks that the classification of a cdf. de-

pending upon several unknown parameters may be rather complicated,

since many alternatives are possible. Of special interest is the case where

the cdf. belongs to the same type with respect to all parameters. We

shall say that the cdf. is then uniformly of Type 1, 2, or 3, or, alterna-

tively, that we have a uniform Type 1 distribution, etc. Since Condi-

tion C2 is the same for all parameters, Type 3 distributions are always

1 Wealso use a similar modification of the rules as on p. 19: When Condition C 1
breaks down and | H | = 0, we classify the distribution as Type 2.
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uniform. In the following two sections we shall make some general com-

ments upon the properties of estimates based upon samples from uni-

form Type 1 and Type 2 distributions. For examples of other distribu-

tions, the reader is referred to Chapter 13.

2.4. Uniform Type 1 distributions

Suppose that the distribution belongs uniformly to Type I. Condi-

tion C1 is then satisfied for each parameter a,, and Condition C2 is

fulfilled. We find after a simple calculation n-I,,—e,,, where ¢é,; 18

defined by (2.3.1). Thus we infer from the theorem in 2.2 that the

matrix

y—+E7
n

is positive definite or semi-definite if n is large enough.

This result is equivalent to the large-sample version of a theorem

proved by Cramér (19465; see also 1946a, p. 490 ff.). In particular, we

see that Cramér’s definition of asymptotic joint efficiency agrees with

the more general definition introduced in 2.2, p. 25. We notice that,

when asymptotically jointly efficient estimates exist, they have variances

and, generally, covariances of order n°.

Examples of uniform Type 1 distributions will be given in Chapter 13.

2.5. Uniform Type 2 distributions

We shall consider the interesting case of a distribution belonging

uniformly to Type 2. Then each partial derivative a , (r=1, ..., &),
Oy

has at least one discontinuity point, which may be situated inside or

at the ends of the range of variation of z.

Let us suppose that the discontinuity points are denumerable, and

let us order all such points, corresponding to the different parameters,

into a single sequence w,,...,w,. The number / of these points may be

finite or infinite. Denote the increase! of the function a in w, by A,,,
r

and let A be the &-/ matrix with these quantities as elements. Note

that certain of the quantities A,, may be zero, but, corresponding to

each parameter «,, there is at least one A,,+0. When thereis a single

discontinuity point, A is a column vector with non-zero elements.

1 The increase (‘jump’) of a function g(x) for «=w is defined as the difference

g(w+)—g(w—).
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Let us now examine the expressions J,, defined by (2.2.8). It is
realized after some calculation that

I~n?AA’+n(A+B), (2.5.1)

where the sign ~ denotes asymptotic equivalence, and A’ is the transpose
of A. Further, A is a k-k matrix, the elements of which will not be
given here (cf. 13.6).

Denote the k-k matrix AA’ by S={S,,}, and by S-!={S"} its re-
ciprocal (if existent). Now consider the theorem in 2.2. We must dis-
tinguish between two cases.

(a) The matrix S is non-singular.

The assertion made in the theorem is equivalent to stating that
the matrix

V-—=S"
nN

is positive definite or semi-definite. In particular, (2.2.10) reduces to

]
var Or> S”, (r,=1,..., &). (2.5.2)

If asymptotically jointly efficient estimates exist, they have variances
of order n~*. We shall give an example of this situation.

Rectangular distribution.

Let z have two unknown parameters, viz. the mean mu and the range
of variation o, so that

 

GO
— < — —0 for z—uU 5

2—-U G
F (zg, 0) = +4 for |z-—yul<=

0 2

GO
] for z—p> 3"

OF OF , ; oean and aq are discontinuous at the ends of the range of variation, and
lt G

we find
2-- i =; 0

G

1 1 0 1

20 20 20
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Denoting the estimates of « and o by w”™ and o”, we infer from

(2.5.2) that

 

*
var =

M op n

This result can, of course, also be obtained directly from the theorem

in 2.2. The limits are attained, for example, by, respectively, the mean

of the extreme values (cf. p. 18) and the range of the sample, which,

consequently, are asymptotically jointly efficient. We shall return to this

example several times in the sequel (cf. 9.2 and 13.7).

Further examples will be given in Chapter 13.

(b) The matrix S is singular.

: oF
This situation occurs, for example, when the derivatives — possess

a single common discontinuity point. 0 Or

When S is singular, the elements of J~* have for the most part the

order n~*. Hence the variances of the asymptotically efficient estimates

generally converge as n~*. This result is very remarkable, as it differs

radically from that obtained in (a). In fact, the situation has much

more in common with that encountered in the case of Type 1 distri-

butions.

Weshall verify the truth of the above statement in the important

special case where S has the rank k—1.

As seen from (2.5.1), the cofactor of any element J,, is, apart from

a factor n®"-*, asymptotically equivalent to the cofactor of S,, in the

matrix S provided, however, that S,,+=0. Since the rank of Sis k—1,

all these cofactors are not zero. Moreover, the determinant|/| is, apart
from a factor n*“~', asymptotically equivalent to the sum » of the k

determinants obtained by replacing in the determinant |S] one column
of elements by the corresponding elements in |A+#|. Thus, if
X+0 one at least of the elements of I7' is of order n™*~?/n™1 =n").
Generally, all the elements have this order.

The case 2 =0 is exceptional and will not be discussed here.

Particularly simple results are obtained when there are only two

unknown parameters «, and a, and the corresponding partial derivatives

have a single common discontinuity. Then the rank of S is k—1=1,

and the above results are applicable. We shall discuss this situation
more fully in 13.6 in the special case where a, and «, are location and
scale parameters.
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Returning to the general case of k unknown parameters, we shall,
finally, mention that the above discussion may without difficulty be
extended also to the situation when the rank of § is less than k—1.
Since nothing essentially new occurs in this case, we shall not con-
sider this alternative.
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PART II

TRANSFORMED BETA-VARIABLES

MOMENTS AND PROBABILITY DISTRIBUTIONS

CHAPTER 3

GENERAL INTRODUCTION

3.1. Definition of a transformed beta-variable

Take n points at random in the unit interval O<w<1. Denote by

U1n> Ugn, - ++) Unn

the distances of the points from the origin in ascending order of magni-

tude. In the language of statistics, ui, may be termed the ith order

statistic in a sample of m independent observations of a rectangularly

distributed variable 7. It is a random variable, which is distributed

according to the beta-distribution (see further 4.2).

Let x =G(u) be a B-measurable function of u, defined over the interval

O<uw<l, and let F(x)=G@"*(x) be its inverse. Any such function G (u)

will be called a transform. Let tn, on, ..., Unn be transformed to

Ving TIny +++) Unny

where Zin =G(uin). The one-dimensional random variable 2;, will be

called a transformed beta-variable or, in abbreviated form, a TRB-variable.
The n-dimensional variable (%in, Xen, .--; Unn) Will be termed a set of

transformed beta-variables. For simplicity, we shall mostly write u; and 2;

instead of uj, and Xp.

In applications, G'(u) is generally non-decreasing; then F (x) is uniquely
determined. Since this condition is not essential for the validity of all
results in Part ITI, it will not be introduced at this stage.

The random variable G'(j) will be denoted by & When G@(u) is non-
decreasing, € has the cdf. F(x). Of special importance is the case when
the probability mass corresponding to & is zero in every point, i.e. when
F(x) is everywhere continuous; then G(w) is an increasing function of w.

* If G(u) is constant between two points of increase, set F(x) =the right point.
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3.2

3.2. Place of transformed beta-variables in statistical theory

Two applications of transformed beta-variables will be mentioned.
The first of these is of great importance in statistics. In both cases
G(u) is assumed to be non-decreasing.

First, let

Ex<6,<:5:° <&,

be an ordered random sample (set of order statistics) of m independent
observations of ¢. It is known (cf., e.g., Scheffé & Tukey, 1945) that

the variable (£,, &, ..., én) has the same distribution as (2, Loy «+ +5 Ln).

In particular, any order statistic &; is distributed as a T7RB-variable 2;.

(Note, however, that, as pointed out by Scheffé & Tukey, the variable

F'(&;) is not distributed in the same way as F(x;)=u;, unless F(x) is
continuous.) Thus, when G(u) is non-decreasing, the abstract notion of

a set of 7#B-variables can be materialized as a set of orderstatistics.

An excellent review of the huge literature concerning order statistics
can be obtained from the lists of references given by Wilks (1948) and

David & Johnson (1956). Some further references are given at the end

of this thesis.

The second application of T’RB-variables concerns the problem of
transforming binomial andrelated distributions. Denote generally by P (£)

the probability that the event H will occur. Now the event »>z7 is

equivalent to the event u;<, where v is a binomial variable with

parameters n and p. Hence

P(y>1)=P(uj<p). (3.2.1)

Since the distance w; is beta-distributed, this formula expresses the well-

known relation between the binomial distribution and the beta-distribu-

tion (cf., e.g., Deming, 1950, p. 480 ff.).

It is sometimes of importance to transform the binomial variable to

a new variable whose distribution is easier to handle. Using the trans-

form x=G(u), we obtain from (3.2.1) the relation

P(y>t)=P(%<G(p)).

Thus, computing the binomial sum is equivalent to determining the

value of the cdf. of x; in the point G(p). If x; is approximately normally

distributed, this procedure is particularly convenient. The transform

G(u) ought therefore to be chosen such that the cdf. of 2; is as close

to the normal cdf. as possible. In a previous paper (Blom, 1954) the
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author has discussed this problem. He demonstrated that B-transforms

(cf. 3.5) are particularly useful for the purpose of normalizing binomial,

negative binomial, Poisson, and Z? variables.

A fundamental difference between the two above-mentioned applica-

tions of T’RB-variables should be emphasized. In the former of these,

G(u) is given in advance, being the inverse of the cdf. of the sampled

population. For, if w= F(x), then x=F~*(u)=G(u). In the latter case,

on the contrary, the transform has to be chosen in such a way that

the resulting TRB-variable will possess certain desired properties.

As a result of this brief account of the place of 7#B-variables in

statistics, we infer that these variables occur in two fields, which may

at first sight seem to have very little in common (a relationship which,

to the best of the author’s knowledge, has not been pointed out before).

In the present work, the theory of T7RB-variables will be applied only

to the former of the two fields.

3.3. Summary of Parts II and III

The contents of Part II and Part III may be summarizedas follows.

In Part II, which consists of Chapters 3-8, some general properties

of TRB-variables are studied by means of the theory of probability.

In Chapter 4, a review is given of several properties of such variables,

which are valid for any sample-size. Chapters 5 and 6 contain a detailed

discussion of the problem of finding approximations to the two first

moments of non-singular 7RB-variables.1 In Chapter 6, a special tool

is designed for improving the approximations given in Chapter 5, namely

the so-called «, 6-correction. Chapters 5 and 6 also contain a study of

a special type of weighted difference between consecutive 7'RB-variables.

The use of such differences results in a substantial simplification of the

derivations made in subsequent chapters.

In Chapter 7, some properties of singular! 7'RB-variables are derived,

which are related to Fisher & Tippett’s results concerning the extreme

values in a sample.

In Chapter 8, the results obtained in Chapters 4—7 are applied to the

main problem in Part II, which concerns an analysis of linear combi-

nations of 7’RB-variables. Several asymptotical results concerning moments

and distributions of such combinations are given. The results depend

largely upon the properties of the transform, and the investigation

1 For the definition of non-singular and singular TRB-variables, the reader is

referred to 3.4.

3 — 595540 G. Blom 33



3.3

concerns three general families of transforms, which cover most cases
occurring in practical situations.

In Part III, which consists of Chapters 9-14, the theoretical results
deduced in Part II are applied to the problem of estimating location
and scale parameters by meansof linear combinations of ordered sample-

values (linear estimates).

Chapter 9 has a preliminary character. In Chapter 10, the minimum
variance problem for linear estimates is studied, i.e. the problem of
constructing an estimate with the least possible variance. The exact

solution is known but is for the most part very tedious to apply in
practice. Instead, an approximative method is introduced, by which

so-called nearly best linear estimates can be constructed.
In Chapter 11, some remarks are made concerning the problem arising

when, in the above-mentioned problem, the variance is replaced by the
mean square deviation about the true value of the parameter.

A modification of the method presented in Chapter 10 is discussed
in Chapter 12, which also contains an application of nearly best linear

estimates to probability papers.

In Chapter 13, asymptotic properties of nearly best linear estimates

are subject to investigation. It is proved that, given certain general

conditions, such estimates are asymptotically efficient (in the general

sense used in Part I). Furthermore, the estimates are divided into three

types, viz. Type 1, Type 2, and Type 3 estimates according to the
classification of distributions introduced in Part I. A detailed study is

made of each type of estimate, and examples are given illustrating the

general theory expounded in Part I. The asymptotic distribution of a

nearly best estimate is also investigated, and it is proved that Type l

estimates (but not generally Type 2 estimates) are asymptotically nor-

mally distributed.

In Chapter 14, nearly best linear estimates are compared with esti-

mates obtained by some other methods.

The author has aimed at proving the results given in Part II and

Part III for as general classes of transforms as possible. The detailed

assumptions concerning the transform are stated in any special problem.

Nevertheless, to facilitate the reading, we shall give a survey of the

two parts from this point of view.

Generally speaking, we pass from more general to more special

results. The relations given in Chapter 4 apply to any transform or,

in certain situations, to non-decreasing and/or differentiable transforms.
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In Chapters 5 and 6, the transform is for the most part assumed to

be continuous and to have continuous derivatives of low order in some

small portion of the unit interval. In Chapter 7, we study transforms

which either tend to infinity in either of two specified ways, or which

have a first derivative with the same property.

From Chapter 8 and onwards, the transform is assumed to be bounded

and differentiable over the closed interval O<u<1, or sometimes, more

generally, over the open interval 0<u<1. (An exception is afforded by

the general formulae in 8.1-8.6 containing the coefficients g; explicitly,

which apply to any transform.) When asymptotical problems are studied,

some additional conditions are introduced.

In Part III we shall suppose that, besides the conditions just stated,

the transform is an increasing function of w.

For the benefit of the reader who is interested in particular distri-

butions, we shall, finally, present a list of the distributions discussed

in Part II and Part III.

Distribution Section

Cauchy 4.3, 6.12

Exponential 4.5, 6.15, 10.8, 13.7

Extreme-value 6.13, 10.8, 13.5

Laplace (double exponential) 6.11, 10.8, 13.5

Normal 6.10, 7.3, 7.4, 10.8, 12.4,

12.5, 12.6, 13.5

Rectangular 4.2, 9.2, 10.8, 11.2, 12.6, 13.7

Right triangular 10.8, 13.8

Triangular 10.8, 13.8

Weibull 6.14, 12.4, 13.5

3.4. Notations

Besides the symbols introduced in 3.1, we shall need several other

terms and notations connected with 7'RB-variables. Before presenting
these, we shall quote a few general symbols and expressions, most of

which are commonly used.

By M we shall designate a general positive fixed quantity.

By 2,=O(p(n)) we denote that the quotient x,/w(n) is bounded when

n->oo, Then 2, is said to be at most of the order p(n).

In particular, if x,/p(n) tends to zero when noo, we shall say that

% has a smaller order than y(n); we write this x, =0(w(n)).

On the other hand,if |z,/w(n)| is bounded and greater than zero when
n—>co, we shall say that x, has the same order as p(n). If the quotient
%nlYn Of two quantities x, and y,, which depend upon n, tends to unity
when n->cc, we shall call x, and y, asymptotically equivalent. We write
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this x,~y,. Two matrices A, and B, of the same size, which depend on
nm and are positive definite for any finite n, are said to be asympto-
tically equivalent if any two corresponding principal minors are asympto-
tically equivalent. We write this A,~ B,.

Set A=G@(0) and B=G@(1). When G(u) is non-decreasing, (A, B) is
the range of variation of €. A and B may befinite or infinite. The
derivatives of G(w) (when existent) are denoted by G’(u), G’’ (wu), ...,.
The first derivative of F(x) is designated by f(x) and the higher
derivatives by F’’(x)=f'(x), and so on. Since F(x) is the inverse of
G(u), we have f(x)=[G’(u)]"*. When G(u) is non-decreasing, f(x) (if
existent) is the fr.f. of €. In many applications f(x) is a symmetrical
function. This situation will be referred to as the symmetrical case.

The index 7 of the 7RB-variable x;, will be called the rank of the

variable. TARB-variables with ranks + and i+1 will be termed consecutive.

Weshall often consider sequences {2,n,},(v=1, 2,...), of IRB-variables,
where n,<7,41 and i,/n,>c when v>oco. It will be assumed that the
same transform G'(w) is used in the definition of all variables. c is a

constant which satisfies 0<c<1. A sequence defined in this way will

be called a c-sequence of TRB-variables.

Some particular types of c-sequence will be considered. A c-sequence

will be called at least n~*-convergent, if

On the other hand, if positive quantities M and @ can be found such

that for all but a finite number of »’s

ty
——C
Ny

>Mnz*te,
  

then the c-sequence will be called less than n~*?-convergent.

Further, we shall call the c-sequence singular, if (a) G(u) or G’ (wu)

is unbounded for u=c, and (b) the c-sequence is at least n~*-convergent.

All other sequences will be called non-singular.

If, in the definition of a c-sequence, we take 1,=1 or 1,=n—171+1,

we obtain a special type of sequence of great importance. In other

words, we consider a 7'RB-variable of a given rank, counted from the

left or from the right, and allow n to grow to infinity. In this case c

obviously equals zero or unity. Such sequences will be termed 2-sequences

of 7RB-variables. In accordance with the definition given above, an 7-

sequence maybesingular or non-singular. Singular 1-sequences occur, for

example, when A or B is infinite, and are therefore commonin application.
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3.5. Classes of transforms

We shall consider classes of transforms G(u) of different generality.

(1) H-bounded transforms.

Let H(u; a, 6) be defined by

H (u; a, 6) =u" (1—4)’, (3.5.1)

where a and 6 are two constants. We shall often write H(u) instead

of H(u; a, b).

A transform G(u) will be called H-bounded, if we can find quantities

a and 6 such that the product G(u)H(u) is bounded for 0<u<l.

The following two definitions concern the behaviour of the transform

near u=0 and u=1.

(2) AL-transforms.

G(u) is an AL-transform' at u=0 or u=1,if

vm forlpoole)
= coabertl Peete)respectively, where k>0 and cy>0.

If G(u) is an AL-transform at both ends, it is obviously H-bounded

with a,b>0. The inverse functions of many common cdf:s are AL-

transforms. The most important example is the inverse of the normal

cdf. A simple calculation shows that in this case cy= V2, k=}. The

inverses of the gamma distribution, the exponential distribution, and

Laplace’s distribution are other examples of AL-transforms.

 

 

(3) AP-transforms.

G(u) is an AP-transform! at w=0 or u=1, if (apart, possibly, from

an additive constant)

G(u) = —cyu* [1 +0 (u)]
(3.5.3)

or G(u) =c)(1—u)*[1+0(1—w)]

respectively, where k<0 or 0<k<1, and cy>0.

1 The abbreviations AL- and AP-transform are suggested by the first letters in

the words Asymptotic, Logarithmic, and Power.
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If G(u) is an AP-transform at both ends with the same value of k,
it is H-bounded with a=b>—k. The inverse of Cauchy’s distribution
affords an example of such a transform, k being in this case equal to — 1.
When necessary for the validity of the results concerning AL- and AP-

transforms given in the sequel, we shall assume that the defining relations
may be differentiated a suitable numberof times.

(4) B-transforms.

A B-transform (beta-transform) is defined as a solution of the dif-
ferential equation

G' (wu) =cgu-*(l—u)™, (0<t,<1; 0<7,<)1). (3.5.4)

B-transforms are either AL- or AP-transforms (except for T =T,=0).
It is convenient to divide the family of B-transforms into two sub-

classes: By-transforms with t,=0 or t,=0 (or both) and B,-transforms
with 1), t,+0. The class of By-transforms has three members, viz.

(a) Rectangular case.

T=1,=0, G(u)=u, F(x)=2, (0<a<l).

(b) Haponential case.

=0, T,=1, G(u)=log a, F(z)=1-—e-*, (x>0).

(c) Generalized geometric case.

0<7,<1, 7,=0, G(u)=u™, F(x) =eNO-m, (O<a<l).

It should be observed that each of these cases contains in reality a
family of distributions, obtained by shifting the location and the scale
of the cdf. given above as an example. Further, 1, and T, may be
interchanged.

Among the B,-transforms we may mention in passing the inverse
sine transformation 2 are sin Vu, obtained for T, =T, = 3, and the loga-
rithmic transformation log [w/(1—1u)], obtained for 7, = t==1. Both these
functions may be used for solving the transformation problem for
binomial variables outlined in 3.2 (cf. Blom, 1954).

For easy reference we shall also give two general sets of conditions
concerning the transform, which will play an important réle in various
parts of the thesis.

ConpiTIon A. In a given set of points © in the interval O<u<1 the
transform G(u) and its first two derivatives are bounded and continuous,
and ws third derivative is bounded.
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Conprrion B. In a given set of points © in the interval O<u<l the

transform G(u) and its first four derivatives are bounded and continuous.

Further, G’ (u) 40 in &.

Whenthe points u=0 and/or u=1 belong to €, continuity in these points

should be interpreted as continuity to the right and continuity to the

left, respectively.
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CHAPTER 4

FUNDAMENTAL PROPERTIES OF TRANSFORMED

BETA-VARIABLES

4.1. Introduction

In this chapter, a review is given of several fundamental properties
of 7RB-variables, the majority of which have been given before in thelite-
rature. Only exact relations will be considered, approximate relations
being studied in the succeeding chapters.

Weshall begin the review by considering certain properties of points
chosen at random in the unit interval.

4.2. Points chosen at random in the unit interval

For a more detailed discussion of some of the basic formulae given
in this section, the reader is referred to Wilks (1948).

Consider the set of n randomly chosen points uU,, Us, ..., U, described
in 3.1. This set is an n-dimensional random variable with the fre-
quency element

NI AU, dUg...dUn, (O< Uy <Ug<-<u,<]l). (4.2.1)

Any distance u, is distributed as a beta-variable with the fr.

; ;
Bi (ws n) ~Gopal u*(1—u)"-, (4.2.2)

The mean of u, will be denoted by p, We have

a

n+l

 

p, = (4.2.3)

The central moment H(u;—p,)’ of order r will be denoted by u,. The
variance of u, is given by

Pid[lg = Var U; =8 (4.2.4)

where g;=1—4,.
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The joint fr.f. of a pair of variables wu, and uw; is

n! i-1 j-i-1 -j i;: _ i _ 1—y)"~?
Biz (U, V3 2) (¢—1)! (j-i-1)! (n—j)! (v u) ( v) 3 (v<))

(4.2.5)

where uw and v correspond to u,; and u, respectively.

The covariance of u, and u; is given by (cf. note on p. 21)

cov (u,, u)=—# (é<}). (4.2.6) 

n+2’

We shall sometimes need more general central moments and denote

any such moment E£[(u;— p,)' (uj;—;)"] by u,s. Explicit expressions for

several u,, Of low order have been given by David & Johnson (1954).

It is interesting to observe that any u,, can be expressed in terms of

two non-central moments of order r+s—2 by means of either of the

 

relations

(y — l i ~ Ss

brs =eeE[(Uis1 n+2— pi) ° (Uj42 n+2— pi) | +

Ss .

$+ PD Boi nse — pi)(Uji nee pi), (r>0), (4.2.6)
n+2

§ — ] ; r $-—-Mpg=O)BE(ety ng — pi) (ttyat nz2—D))2] +
n+2

 

YD; r~ 3—
+8Bluss n+2— Pi) * (Ujs2 n+2— Dj) ‘), (s > 0). (4.2.6 b)

The formulae hold good, of course, also for single moments of u, and

u;; then the second terms disappear. The relations, which seem not
to have been given before in the literature, can be proved in various

ways. For example, formula (4.2.6a) can be proved by expanding u,,
according to powers of u, and 1—w, and using the auxiliary formula

E [uj n (1 — ujn)"] — p; B [uin® (1 — ujn)*] =

(r— 1) p; _ s= COPED DtutcPraa (1 — tee ns2)']—

_ SPQ
n+2 E [urate (1 —~ Uj41 n+2)°].
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This relation may be verified e.g. by a straightforward evaluation of

the moments involved.

By an inductive argument, the details of which we omit, we con-

clude from (4.2.6a) and (4.2.6b) that the moments u,, have the fol-

lowing general property. For any non-negative integers r and s, it is pos-

sible to find a quantity M, which does not depend upon i, 7, and n, such that

Mbrs | <p (4.2.7)

where k=(r+s)/2 if r+s is even, and k=(r+s+1)/2 if r+s is odd.

Moreover, by application of Schwarz’s inequality it follows from

(4.2.7) that the absolute central moments y,,=E[|u,—p,|" |w—p;|*]
satisfy a similar inequality, viz.

M
Yrs< ore” (4.2.8)

Both inequalities hold, of course, also when r=0O or s=0O; then u,,

and y,, are specialized to moments of the single variables u, and w,;.

It is sometimes of interest to consider the intervals

0; = Ui41 — Ui, (1=0, 1, ooey M5 Uy = 0; Un+1=1) (4.2.9)

between adjacent points. Any n of these n+1 intervals, say 0}, ..., On,

constitute an n-dimensional random variable with the frequency element

n! d6,d6,:::d0,; (54.<1) ° (4.2.10)

t=1

More generally, any & intervals, for example 0, ...,6,, have the joint

fr.f.

n(n—1) +++ (n—k+1) (1—6,—6,— ++: —6,)”*. (4.2.11)

It follows from (4.2.3), (4.2.4), (4.2.6), and the definition of 6 ,that the

mean and the variance of 6, are given by

 

1 n
= , = —_____-.. 4.2.12

BO= Ty YO amed) (4.2.12)

Further, it follows from (4.2.6) that

1
. = — b= 7), 4.2.13
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can be ob-

i=L' (x), (0=1,..., n), to (4.2.1).
continuous nearly everywhere, thefrequency element of the set is found to be

By the same transformation, the fr.f.
of variables x, and x“; can be obtained from (4.2.2) and (4.2.5) respec-tively. The resulting distributions are not very simple to handle, andnumerical integration has to be resorted to in most cases.

i Is by (4.2.2) and the definition of a TRB-variable

X;, Xj, (1<7), we have
COV (%;,, %) = Ha,x,—(E 2) (EL x,),

where E x, 2; = ff G (u) G(v) B:; (u, »; n)dudv (4.3.2)O0<u<v<l

with 6;;(u, v; 2) given by (4.2.5).
The integrals which appear in these formulae do notWe shall give two conditions of differ

question of finiteness can be decided.
First, we observe that the mean of x, is

finite. For by (4.2.2) we then have

always exist.
ent generality, by which the

finite for any 7 if B|é| is

| Bx] <If|G(w)|du=aE |g < oo.

Similarly, it is shown that the variances and covariances are finite forany 7 and 7 if H£? ig finite.
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Secondly, assume that G(u) is H-bounded (cf. 3.5). T

is then finite if

he mean of 2;

a<i<n—Otl.

Further, the variances and covariances are finite if

— is a Cauchy variable, we can take a =b=1. Thus
If, for example,

variances and covariances
the means are finite if 9<i<n-—l, and the

if 3<i<j<n-2.

4.4. Differences between consecutive transformed beta-variables

pose that G(u) is H-bounded
Throughout this section, we shall sup

by defining 6; as
and differentiable. We shall generalize (4.2.9)

6; = Vi41— Xi; ((=0, 1, ..., 75 t= A; 4n+1= B).

When G(u) is non-decreasing, the differences 0;

intervals, into which the range of variation (A, B) of & is divided by

the points 2, +++, Xp: We shall give expressions for the first two mo-

ments of the variables 6;. When

a<i<n-—D,

we have from (4.3.1) by a partial integration

  

1
= EG 4.4.1B6,=— BG (w) (4.4.1)

1

where EG’ (u) = {@ (uw) Bisa (U3 2 +1) du. (4.4.2)

0

Here a and } are the constants which appear in the definition of a

H-bounded transform (cf. 3.5). Moreover, when

a<i<j<n—b

we find by a series of partial integrations

= EG’ ’(v), 4.4.3

where

EQ(u) Gv) = ff Ow) G(r) Bisriva (U% n+2)dudv, (4.4.4)

O<u<v<l

44



E
E

~
—

aaa

4.5
and A=1 when i<j, and 2=2 when +=j. Irwin (1925) has given ageneral expression for the mean Eof of the kth power of 6;, whichcontains (4.4.1) and (4.4.3) (with ¢=7) as Special cases.

Weshall give an application of these expressions. If G (u) is a B-trans-form (see 3.5), then (4.4.1) is specialized tol

——p= At, (4.4.5)n +1 (;,)

where ,!

,» the double integral appearing in

  

where A=1 if i<j, and J=2 if j=
holds with t, replaced by 1,
respectively.

The interest of the formula (4.4.6) lies in the fact that, apart fromthe constants in the numerator, it is a product of two simple factors,which depend only upon 7 and j, respectively.

j. If t,=0, the same expression
and 7 and j replaced by n—j and n—-i

4.5. Exponential distribution

The distribution of the differences 6, is
to handle. In one special case it is, how
that G(w) is the inverse of the exponential

for the most part difficult
ever, quite simple. Suppose
distribution, i.e.

1

l-u
G (u) =log

   

1 For any x>—1, we define vl=D(x+1).
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1
pay, OotatHO

t ((=1,..., 2). (4.5.1)

 

Then a; = log

Introduce the quantities 6,, (1=9, 1, .-.; n—1), as variables in (4.2.1)

instead of the variables u,. The Jacobian of the transformation is

J =(1— uy) (L— Ug) ++ (L ~ Un):

Hence the 6,’s are distributed according to the joint fr.f.

_ _(n— —On _

nt en Moree MDS eg I,

Thus these variables are independent and, furthermore, 6; 18 eXpo-

nentially distributed with the frf. e7%-)%, The mean and the variance

of 6; are
1 1

E6,= -» var 6;=7——73" (4.5.2)
n—%  (n-ty

 

These values can also be obtained by setting tT,=0, T2=1 in (4.4.5)

and (4.4.6). Using the latter formula, we can also verify that

COV (0; 0;) = 0,

as it should be. Returning to the variables «,, we infer that

nj * 1

Ex,= > -> cov (%, %)= Y = (tS) (4.5.3)
2

yon-i+1?
y=n—it1Y

Similar results are obtained when G(u)=log u, the imverse of the

directed exponential distribution with the fr.f. e*,(~<0). The
negatively

a sum of n—i+1 exponentially dis-
variable —a, can be written as

tributed variables. Further,

vl
Ex,=—>,-> cov (%, 2%) = Ya

=

(t<)). (4.5.4)

y=il
ya=jP

Formulae (4.5.3) were proved by Pearson & Pearson (1932) by a com-

plicated method. A simpler proof was given by Gumbel (1937), who

used moment generating functions. A detailed discussion of the expo-

e is found in a paper by Rényi (1953). Malmquist (1950)
nential cas

ected with those reviewed
also obtained results which are closely conn

in this section.
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CHAPTER 5

NON-SINGULAR TRANSFORMED BETA-VARIABLES

5.1. Introduction

The asymptotic properties of non-singular 7’RB-variables have been
studied by many authors. We shall review the most important work
done in this field.1

First, we shall consider results which concern the behaviour of the
first two moments as n tends to infinity. It follows from Hoeffding
(1953, Lemma 5) that, given certain general conditions,

lim H2x,,=G(c), (¢/n—-c). (5.1.1)

There is a corresponding result for the second moments, viz.

lim 1 Cov (Xn, Zn) =C, (1 — Cy) G’ (c,) G’ (c,), (5.1.2)
n—> 00

(i/n > 03 j/n—>Cg3 Cy <4).

If we take c,=c, and i=j, the formula also holds good for the va-
riance of a. This relation has been used in various formulations by
several authors (see, e.g., Pearson, 1920), but it is uncertain to whom
it should be ascribed. More elaborate approximation formulae have been
derived by Pearson & Pearson (1931) and, in the case of the sample
median, by Chu & Hotelling (1955).

Secondly, some results concerning the asymptotic distribution of non-
singular 7'RB-variables will be mentioned. Smirnoff (1935) has proved
that, if x; belongs to a c-sequence with O<c<1 and GQ’ (uw) is bounded
and continuous in u=c, then x, is asymptotically normally distributed.
He has also demonstrated that, if x, belongs to a c,-sequence and 2; to
@ Cy-Sequence (0<c,<c,<1), the variables x, and x; are asymptotically
jointly normally distributed. This result has been extended to more than
two T’RB-variables by Mosteller (1946).

* It might be remarked that the work reviewed in the section concerns order
statistics. It can, however, easily be extended to the more general case of T7RB-
variables.
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More accurate results concerning the distribution can be obtained by

means of Cornish—Fisher expansions (Cornish & Fisher, 1937) of the

TRB-variables. Blom (1954) has derived such an expansion for a trans-

formed binomial variable. This result is also valid for a TRB-variable

because of the relationship pointed out in 3.2.

The contents of the present chapter can be summarized as follows.

Sections 5.3 and 5.4 will be devoted to an investigation of two ap-

proximation formulae, which are closely related to (5.1.1) and (5.1.2).

The proofs found in the literature of relations similar to those given

here often lack rigour in certain respects. We have aimed at proving

the results as completely as possible, using some general lemmas, proved

in 5.2, which are believed to be of some value also in other problems.

On the other hand, this makes the exposition rather long and detailed.

In 5.5 we shall study some properties of weighted differences be-

tween consecutive 7'RB-variables. Such differences will play an impor-

tant réle in the investigation of linear combinations performed in

Chapter 8.

5.2. Three lemmas

We need three lemmas, which will be proved for the case of a func-

tion of a two-dimensional random variable, but which can be general-

ized to any number of dimensions.

Let {X,}, (v=1,2,...), be a finite or infinite sequence of two-dimen-

sional random variables X, = (&,, ny). It will be assumed that the ranges

of variation of the variables can be enclosed within a finite region Q.

Denote by F,(é,7) the cdf. of X,, by &, and 7, the means of the

components &, and n, respectively, by Mrs, their central moment

KE [(é, ~ boy)" (%, a Nov)Is

and by yrs,» their absolute central moment

E[\é&—-40,|" | 7 — No» |']-

Set Wk» = > Vr sy»
r+s=k

where the summation extends over all absolute central moments with

r+s=k,(r,s20).

Let, further, g(&, 7) be a real-valued function defined over Q. Denote

by g*(&,7) the partial derivative obtained by differentiating the func-

tion r times with respect to & and s times with respect to 7.
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By an e-neighbourhood of a sequence ofpoints {&,, ny}; (v=1, 2,...)
we shall denote all points é, mn in Q which satisfy the inequalities

2
os

|é-&|<e and ln—n|<e, (v=1, 2, ...).

The first lemma concerns functions which are bounded in Q.

Lemma 1. If

(a) the function g(&,) is bounded in Q,

(b) @ quantity e>0 can be found such that in the e-neighbourhood of the
sequence {£o,, yor}, (v=1, 2, ...), the function g(é,7) is continuous,
and, further, the derivatives g*© ($,7) are continuous for all non-
negative integers r,s such that r+s<k—1 and bounded for all non-
negative integers such that rt+s=k 3

(c) the integral

I, = | 9(&,n) dF, (g, 7) (5.2.1)
Q

exists for any v=1,2,... 3

1
then L, = >. mg ters fe” (Sov, Nov) + R,, (5.2.2)r+s<k-—1

where, for any positive integer x,

|B,| <M (WE + e* Pyr), (5.2.3)

and M does not depend upon » and «. If, in particular, «=k, then

|B,| <M. xy, (5.2.4)

where M, may depend upon « but not upon Y.

In order to prove this lemma, consider the integral J, for some
fixed ». For convenience, the index y» is dropped in F,, etc., in the
course of the proof. We observe that, as Q is finite, moments Lys and
Yrs Of any order exist and are finite.

Divide Q into two parts Q, and Q,, where Q, consists of the pointsin the square |£—£,|<e, |y—79|<e, and Q, of all other points in Q.Then
|

L=[+fgdP=J,4J,. (5.2.5)
QO QO:

4— 595540 G. Blom
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First, we shall estimate J,. For any e>0 and any positive integer

x, we have by Tchebycheff’s inequality

P(\E—£)|> 8) <e“yx

and a corresponding relation for 7. Hence

P (Qs) <e" (Yn0 + You) <e* Wx: (5.2.6)

As g is bounded,

|Jo|<Me™ yr; (5.2.7)

where M does not depend upon » and e.

Secondly, we turn our attention to Jj. According to condition (b)

we have the following Taylor expansion for any ¢,7 in Q,

1

ries!
g(Eq, No) (E- Eo)’ (n- No) +

 

g(é,n)= >
r+s<k-1

+2nr!a0("5 7) (§ — £5)’ (n—- No)’;

where the point &’,7’ also belongs to Q,. Integrating over Q, and

using the identity

Uns= J + f(E—So) (n— mo)4;
Qi Oe

we get
1

Fy= Dees9(Sos ho) — Ha + Ho, (5.2.8)
r+s<k-1 r!s

where
1
—— g"(Eo, No)J (E—£,) (n—no)aF,

r+s<k-11: s!

for, n') (E— £0)" (no) GF.
rts=aris! ¢

We now observe that, as € and 7 are bounded, the integrals appearing

in H, are also bounded. Hence by condition (b) and (5.2.6)

|H,|<Me™ Wa: (5.2.9)

Furthermore, by condition (b)

| H,|< Myx, (5.2.10)

where M does not depend upon ».

Combining (5.2.7)-(5.2.10), we obtain (5.2.2) and (5.2.3), and the lemma

is proved.
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Note that it is essential for the proof that Q is finite. If the com-

ponents have an infinite range of variation, the lemma may, however,
still be true. It holds good, for example, if condition (b) is satisfied
for any point in Q; in that case the term containing ¢ in (5.2.3) dis-
appears.

In the second lemma we remove the condition that g shall be
bounded everywhere in Q. We then need the concept of a majorant of
a sequence of random variables with respect to a function g(é, 7).

The sequence {X,}={€&,,}, (v=1, 2, ..-), of random variables will be
called a majorant of the sequence {X,} with respect to g(&,n), if for any
Borel-set S contained in Q

flo, n)|aF,<M'{dF;, (v=1,2,...), (5.2.11)
S S

where M’ does not depend upon y and 8. (Here and subsequently primed
letters are used in order to denote the cdf. and other concepts con-
nected with X,.) In the particular case where X, and X, have distri-
butions of the continuous type, the condition is equivalent to requiring
that

la (&.)| f(E.9) <M’ f(é,), (5.2.12)
where f, and f, are the corresponding fr.f:s.

Lemma 2. If the sequence of random variables {X,}, (v=1, 2,...), has
a majorant {X;} with respect to g(&,n), and if, in addition, conditions
(b) and (c) of Lemma 1 are fulfilled, then (5.2.2) is true with

|B, | <M, (per + wey), (5.2.14)
where M, may depend upon é but not upon vy.

The proof follows the same pattern as that of Lemma 1. We use(5.2.5) and begin by estimating J,. From the definition of the majorant
we conclude that, for any Ff = F,,

|J2|<M’ [ dF’ =M’ P’(Q,).
Q2
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By analogy to (5.2.6),
,

P' (Q,) <e-" Was

whence | J,|<M’'e™ Woe (5.2.15)

J, is treated exactly as before. Combining (5.2.15) with the previously

obtained relations (5.2.8), (5.2.9), and (5.2.10), we get (5.2.2) and (5.2.13),

and the lemma is proved.

In the special case where g is a product of two functions depending

only upon & and 7 respectively, each factor can be expanded separately

in a Taylor series. Proceeding in other respects as before, we get

Lemna 3. If

(a) the sequence of random variables {X,}, (v=1, 2, ...), has a majorant

{Xj\ with respect to the function

(91 (€) — 91 (£00)] [92(7) — 92 (70»)1,

(b) a quantity e>0 can be found such that, in the e-neighbourhood of the

sequence {&,}, (v=1, 2,...), the function g,(€) and its k—1 first de-

rivatives are bounded and continuous and, further, its kth derivative

is bounded (and correspondingly for g2(n)),

(c) the integral

1, = [gs (€)— 91 (Eo»)] [92 (1) — 92 (mo»)] 4F,(8, 1) (5.2.16)
Q

exists for any v=1,2,...,

then

 

where for any positive integer x

|B,| <M (Syrsv te” pur) + Me™ Yur (5.2.18)

Here > denotes summation for 1<r<k, s=k and l<s<k, r=k.

5.3. An approximation formula for the mean of a transformed

beta-variable

Consider the relation

 

)+R, (5.3.1)
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5.3
We shall later often use a special notation for the leading term in
this relation, viz. |

1
a °

5.3.2nee (; + i eee)
THEOREM. If

(a) G(u) is H-bounded,1

(b) the functions G(u) and G’(u) are bounded and continuous, and G”’ (u)
ts bounded in ©, where © is equal to the interval 0<u<l with the
possible exception of a finite number of points 6,

(c) x; belongs to any c-sequence when ce , and to a less than n-*-
convergent c-sequence when c€C*,

then the error term in (5.3.1) satisfies the nequality

|R,|<= (5.3.3)

where M does not depend upon 4 and n.

‘For the proof we use the one-dimensional] version of Lemma 2. We
take & =u, and E> =u;, where u; is distributed according to the fr.f.
Bi-a(u;n—a—b) (cf. 4.2). Further, take g=G(u) and k=2.

First, we shall prove that the sequence {uj}, (i=1, ..., n), iS &@ ma-
jorant of the sequence {u,} with respect to G(u). To this end, we ob-
serve that, by (4.2.2) and (3.5.1), the fr.f:s of wu, and u; satisfy the
inequality

|G (u) | Bi (us 2) < Qin Bia (uz n—a—b),
! ,-—7—T1)i —7_h)\

where Q;,= UM Me ((-a—I1)! (n—i 6)
(0-1)! (n—-1)! (n—a—b)!

  

We can always assume that a, b6>0. Hence

!Qin <M——__< Mf, n°.mn (n—a—b)! t

It follows that (5.2.12) holds good in this case if we take

M’ = M,n**?, (5.3.4)
Thus the sequence {ui} is a majorant as stated.

  

1 For the definition of a H-bounded function, see 3.5.
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5.3

We now have two cases. First, suppose that c€W. Let be an ar-

bitrarily small positive quantity, and choose n so large that the two

inequalities

 

<=) (5.3.5)
 

 

a<i<n—b+l (5.3.6)

are satisfied simultaneously. We shall prove that this is possible. As to

the first inequality, we observe that it follows from condition (c) of

the theorem that it is always fulfilled if n is large enough. Turning

to (5.3.6), let us assume that it were not true, so that, for example,

i<a even for large n. We would then have c=0, which, as seen from

condition (b), implies that G(u) would be finite for w=0. This in its

turn would mean that, in (3.5.1), a@ could be put equal to zero. This

would entail 1=0, which is impossible. Similarly, it is shown that

i>n—b+1 leads to a contradiction. Thus (5.3.6)is satisfied for large n.

Since, by the definition of continuity, condition (b) holds good in

the @-neighbourhood of ¢ if @ is small enough, it is by (5.3.5) satis-

fied in the #/2-neighbourhood of £y,=i/(n+1). Thus condition (b) of

Lemma 1 is fulfilled, if we take e=0/2 and k=2. Finally, it follows

from (5.3.6) and condition (a) of the theorem that EF 2; is finite (cf. 4.3),

and thus condition (c) of the lemma is satistied.

Applying Lemma 2, we obtain (5.3.1), where, as seen from (5.2.13),

o\ * (OV,

R,<at [y+ (5 ya] + OE (5) Vu

Here y, and vr are the absolute central moments of the variables

u, and uw; respectively. Replacing x by 2 and using (4.2.8) and (5.3.4),

we get
1 1
=

+

=aJ’ 5.3.7
[R,\ <I (+ 5s a8]

( )

Since x is arbitrary, this is equivalent to (5.3.3).

Secondly, suppose that c¢ E€&*. By the definition of a less than

n-*-convergent c-sequence (see 3.4), formula (5.3.5) is replaced by

   

i__|?
n+1 Q”

where
9 = const. n7?*°, (5.3.8)
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5.4
and 9 is an arbitrarily small positive quantity. Observing that €* con-
sists of a finite number of points, we conclude that, when 7 is large
enough, the distance from the point i/(n+1) to any member of 6*is
at least 8/2. Arguing in other respects as before, we obtain (5.3.1)
and (5.3.7) with % given by (5.3.8). Now take

l+a+b
> ——_—______

in (5.3.7). It is realized that the second term is then at most of the
order x~**°, As po is arbitrary, we obtain (5.3.3), and the theorem is
proved.

Finally, we shall make a remark, which will be found useful later
(cf. 8.7). If condition (b) is replaced by the weaker condition that G'(u)
is bounded and continuous and @’ (uw) is bounded in ©, then (5.3.3)
should be replaced by

|R,|<-2.
nv

To prove this, use Lemma 2 with £=1. In other respects the proof
is the same as that given above.

0.4, An approximation formula for variances and covariances of transformed
beta-variables

An exact expression for the covariance of a pair of TRB-variables
was given in 4.3. This expression contains one double and two single
integrals and is for the most part difficult to use in practical applica-
tions. In this section we shall examine the formula

1
CoV (2;, x;) ny 19 p; (1 — p,) G’ (p;) G’ (pj) + B,;, (0<7). (5.4.1)

 

Note that this formula includes the variance of 2;.

THEOREM. If

(a) G(u) is H-bounded,

(b) Condition A in 3.5 is satisfied with © equal to the interval O<u<1
with the possible exception of a finite number of points &*,

(c) 2 belongs to any C,-sequence when c,€&, and to a less than n7}-
convergent c,-sequence when c, €&*; x; belongs to any czSEQUENCE (Cy < Co)
when c,E@, and to a less than n~*-convergent Co-sequence when c, EC*,
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5.4

then the error term in (5.4.1) satisfies the inequality

M
| Bis|<=3 (5.4.2)

where M does not depend upon i,j, and n.

To prove this theorem, we copy the proof of the theorem in 5.3 as

closely as possible. Write

cov (%;, 2%) =H [(G (ui) — & (pi) (G (uj) — & (p,))] —

— [EG (u;) — & (pi)] [EG (uj) —G4 (p)]=J1—-Je

We apply Lemma 3 to J,. For this purpose, take X,= (wi, uj) and

X’=(uj, uj), where u; and u; have the two-dimensional fr-f.

Bi-2a j-2a(U, V3 2 — 2a—20).

Further, take g,=G@(u,) and g,=G (wu). It is found after some calcula-

tion that (5.2.12) is fulfilled with M’ given by

M = Mr?”, (5.4.3)

Hence X;) is a majorant of X, as required by condition (a) of the

lemma.

Let us first suppose that ¢,, c,€€. Then n can be chosen so large

that (5.3.5) is valid for both i and j, and also (5.3.6) with a and b

replaced by 2a and 26 respectively. By means of these inequalities it

can be verified that conditions (b) and (c) of the lemma are satisfied

Here the quantities u,, denote the central moments of the variables

u, and u,; Further, yp, is the sum of their absolute central moments

vrs Of order x, and correspondingly for y,, The range of the summa-

tion in Ly,; is clear from the lemma.

Weshall study the behaviour of J, when n is large. By (4.2.7)

M
| By| <7
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5.5
Further, in the first term in the upper limit of R, we have r+s>4.
Using this observation together with (4.2.8) and (5.4.3), we find, re-
placing x by 2x,

I l
| Ry | < M(- + pras) °

Finally, as seen from formula (5.3.7), which is evidently applicable in
this case,

al <M(t

5a

tas)|
nN BP nX

Combining all these results and substituting u,, by its expression asgiven by (4.2.6), we get (5.4.1) with

] 1 ]ed+paz) (5.4.4)

Since x is arbitrary, this ig equivalent to (5.4.2).
By an argument similar to that em

0.5. Weighted differences between consecutive transformed
beta-variables

where the weights 6, are defined by

0; = [G’ (9;)]77, (2 = 1, soe, n), 6, = Ona4 = (0. (9.5.2a)

Alternatively, we may write

9:=f(Ai), ((=1,..., 2), 09=Ons1 <0, (5.5.2b)
where A; is given by (5.3.2). -

It would be more adequate to write Yin instead of y,, but we preferthe simpler notation. The interest of the variables y, lies chiefly in the
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5.5

fact that, provided that a sufficient number of derivatives of G(w) are

continuous, their variances and covariances are independent of G(w) in

large samples. More precisely, suppose that the conditions of the theorem

in 5.4 are fulfilled, with the exception that Condition A is replaced by

Condition B in 3.5. Note that the latter condition is more restrictive

than the former.

Expanding 2% = G(u;) and %41= G (uj41) in Taylor series around p; and

Pi+1 respectively, we see that y; can be divided into three parts

= m+ (8-5)+ 5.5.3
Yim; i n+1 Nis ( _ )

where m= 6:41 G (pi41) —6,G (pi),

OF = Ui+1— Vi»

and 7; is an error variable.

The first two moments of the variables 7; satisfy the inequalities

M M Mo.
<=: leov (ms m)|<q> (FI). (5-4)

These results are proved essentially by the same method as that

used in the proofs of the theorems in 5.3 and 5.4. The calculations

are, however, more lengthy, five terms of the Taylor expansions being

required in this case. Since no new principles are involved, we shall

not reproduce any details of the proof.

By means of the partition (5.5.3) and the above inequalities it is

easy to derive expressions for the second moments of the variables y;.

In fact, we obtain, using (4.2.12) and (4.2.13),

  

var Y,= " +A
wi (n +1)? (n+ 2) it

1 (5.5.5)

cov (Yi, Yj) = — (n +1) matae (0 9);

M M

where | Aus < Tar? | Ai, <7" (5.5.6)

Note that, in the special case of a rectangular distribution, 7;, Ai, and
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5.5
Ai; are zero. The expressions (5.5.5) will be of much use in Chapter8 in connection with our study of linear combinations.

Finally, we shall derive the limiting distribution of Yj when n->oo,
For this purpose, note that, according to (4.2.11), the variable

(261, Ng, ..., NOx)
has the k-dimensional fr.f.

Consequently, the variables n O;
the fr.f. e~*. Moreover, by (
variable

are independent in thelimit, each having
5.5.4) and Tchebycheff’s inequality, the

converges in probability to (0,..., 0). Using (5.5.3), we conclude (cf.Cramér, 1946a, p. 254) that the variables n(y¥;—m)+1 are also inde-pendent in the limit and exponentially distributed according to thecommon fr.f. e~7,
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CHAPTER 6

THE a, 8-CORRECTION

6.1. Introduction

In this chapter we sh

in 5.3-5.5. This extension is obtained by introducing what will be called

the a, B-correction into the asymptotic mean and covariance formulae ob-

tained in these sections. The generalized formulae for the means and

covariances of TRB-variables will be deduced in 6.2 and 6.3. In 6.4 we

shall generalize the weighted differences introduced in 5.5 in a similar

way. In 6.5 we shall return to the generalized mean value formula and

shall make a detailed investigation of its properties in the rest of the

chapter. The formula provides a simple and useful approximation to the

mean, which will be discussed in 6.9. In the remaining part of the chapter,

the theory will be applied to several particular distributions.

When this chapter was planned, it was deemed desirable to make the

proofs as rigorous as possible. Inevitably, this approach has made the

exposition rather long. For this reason, anyone whose interest lies pri-

marily in the practical field is advised to study the examples given in

sections 6.10-6.15 and consult the preceding sections when necessary.

6.2. A generalized mean value formula

We shall consider a generalization of (5.3.1), viz.

 

Ex,=G(m)+Ri, (6.2.1)

where
1—

i= : 6.2.2

7 n— 0% — Bi + 1 ( )

a, and f; are two quantities which may or may not depend upon 2

and n. Weshall sometimes write on, Bin instead of «;, fi. When the same

values are used fori=1, ..., », we must have a; <1, Bi <1. We shall some-

times use the notation!

B-corrected” quantities by primed
1 In the sequel we shall generally denote “a,

which is used in-
letters. An exception to this rule is afforded by the symbol 7,

stead of p;.
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6.2
Further, we shall sometimes write

n’ =n —- a — Bi. (6.2.3)

We shall see in 6.9 that formula (6.2.1)
cause the first term generally furnishes a b
mean than A; defined by (5.3.2), i
and 6;= 8 is chosen in an appropriate way.

is of practical interest, be-
etter approximation to the

pend upon both i and n.

THEOREM. J}

(b) AL“G<t (6.2.4)
b < pi <n—-a+l,

where a, b are the constants appearing in formula (3.5.1),

(c) ai—-O when ijn—>O,
, (6.2.5)Bi>0 when ijn—-1,

then

To prove the theorem, rewrite the mean value formula (4.3.1) as follows.

  

-variable u; with the fr.f.Pi-«(u;n—a—B). The mean of u; is, clearly, equal to z, in (6.2.2),Note that GH = G'(u) H (wu; oi, B:) is bounded for O<u<l, for, by con-dition (a) in the theorem in 5.3, G(u) H(u; a, 6) is bounded, and ua,Bi=b by (6.2.4). Hence the two integrals in (6.2.6) are both finite.
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6.3-6.4

The theorem in 5.3 is now applied to each of these integrals. Hence

G (mi) H (i) + O (n~*)
Fin.)O(n)(m4) +O (n=) . (6.2.7)

If 2, belongs to a c-sequence with 0<c<1, the function H remains

greater than zero when n> oo. Thus, clearly, (6.2.7) is equivalent to (6.2.1)

with Ri =O(n7') as asserted in the theorem. If, on the other hand, c=

and the same conclusion follows.

Exu4=

0 or c= 1, we use condition (c),

We shall return to the subject considered here in 6.5.

6.3. A generalized covariance formula

The «, B-correction can also be introduced into the covariance formula

(5.4.1), which then takes the form

 

(1-7; , . .

ov (2s 24) =A=) Gr (on) G! (au) +Riy (F< 9), (63-1)
n +2

where
_ VT &ij _;3

Ty=W 0, 9)s

and n’ = nN — Hij — Pii-

a; and fj; may depend on one or more of the parameters #, j, and m or

be independent of them. Corresponding to the theorem in 6.2, we have

the following result.

b 205 Wi<t,

) OS HS (6.3.2)

then

The proof follows the same pattern as that of the theorem in 6.2 and

will not be given here.

6.4. Generalized weighted differences

sidered weighted differences between consecutive 7'RB-
In 5.5 we con

A more general class of
variables with weights 6; equal to [G (p:)]°-
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6.5

differences Yi = 0141 0141 — 6; 2; is obtained if, in the definition of the weights,pi is replaced by z;. Then

9: = [4 (mu), @=1, ..., 2), 05=On.1 <0,
where z; is given by (6.2.2). We shall Suppose that the sum «, +B; isindependentof i (but not necessarily of 7).
Arguing as in 5.5, we get after some easy calculation

  

= elm +1—o)

|

yyre EE (a+9) + Ato
(6.4.1)

y;)= — Pi Ps ,COV (Yi, Yj) (n’ £1)? ( Ta) t Aw («<4),
where

Pi = Leito =] — Bit Bist, (6.4.2)

Po =1l—a, Pi="'' =Pn-1= 1, en =1—f£. (6.4.3)

The conclusions made in 5.5 concerning the error termsare valid evenin this more general situation. An application of (6.4.1) will be made in 8.5.

For a purpose
, the term of order n~!

Q(u; a, B)=4u(1 — U) G™ (u) + [oe (1 — wu) — Bul G’ (u). (6.5.1)
For simplicity, we shall often write Q(u) instead of Q (u; a, B).
Shall also find it convenient to use the notation

 

Introducing } (z) and its first derivative in this expressionalternative form
, we have the

 

where
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6.6

Using (6.5.2), we can write (6.5.1) in the form

Q(u; a, B)=[a(1—u) —Bu L (wu) G(x).

ditions of the theorem in 6.2 are satisfied, and if, in

u) is bounded in &,then

(6.5.4)

THEOREM. If the con

addition, G’’ (u) is continuous and G'”(

in (6.2.6). We then obtain, e.g.,

EB’ H=H(m)+42H"(m)+&,

where
|R|<Mys.

Here wz and y3 denote moments of the beta-variable u; defined in 6.2.

According to (4.2.4) and (4.2.8),

' 1
—_

—3/2 .

be n' 49
)m(1—m), ys=O(n

 

), and treating the integral in the
Inserting these expressions in (6.5.6

find after some calculation that the
numerator in (6.2.6) analogously, we

term of order n~! in the expansion of 4%; is

1
(GH)” H”

a(n 42)" 7) Sa |

where G=G(m,) and H=a# (1—2;)"!. According to (6.5.1), this is equal

to Q(mj)|(n’+2). The order of the error term in (6.5.5) is determined

by the same reasoning as that used in the last paragraphs of 6.2. This

completes the proof.

 

6.6. A limiting property of the veneralized mean value formula

Assume that, corresponding to any TRB-variable in a c-se

quantities dn and fin are chosen such that the error term in. (6.2.1) is

exactly zero. Generally, this choice can be made in an infinity of ways,

since two parameters are used (cf., however, the discussion of the sym-

metrical case in 6.7, in which case the choice 1s unique). For any %% in

the c-sequence, we then have

E ui= G (70;) 5

6.2.2). The following limiting property of equation

(6.6.1)

where 7; is given by (

(6.6.1) will prove useful in the sequel.
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hin->a(c), Bin>B (c) (6.6.2)
when i/n—>c. If, further, the conditions of the theorem in 6.5 are fulfilled, then

Q(c; a, B)=0 (6.6.3)

ion (6.6.1) will be analysedin the special but important symmetrical case. A considerable simplifica-
» Which is seen as follows. When

—t-+1, we evidently wish to obtain the sameexpression with a reversed sign. It is immediately realized that, to achievethis, we must have «= 6. Thus (6.6.1) is simplified to

1%

decreasing.) When ? varies from 1 to n, a se
is obtained, where hin
form end-points

quence of roots an, dan, . . -; knn
= On-is+1n- The smallest and the greatest of the roots

of an interval, which we denote by I,,. To different sample-Sizes n=2, 3, ... correspond intervals [a Is,..

6.6 that I, tends to a limit interval J, whichcontains all points obtained by solving the relation

gc vary from 0 to 1. The explicit so-lution is, as seen from (6.5.4), provided that @’ (c) +0,

L(c)30 (6.7.3)

 

a (c) =

where L(c) is defined by (6.5.2).
Consider the greatest lower bound Ginr and the least upper bound egy,

5 — 595540 @. Blom
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of a(c) when c varies from 0 to 1. The limit interval I evidently consists

of all points « in the interval

hint < & S Xgup- (6.7.4)

We observe that, when f(x) has a single maximum, I consists only of

non-negative values of a.

We now turn to the general, non-symmetrical case. Instead of consid-

ering the mean of a single T’RB-variable, we shall then study the means

of two “symmetrically” situated variables x; and %n-i+1 simultaneously;1.e.,

we replace equation (6.7.1) by a system of equations in « and B

Bs,-6(—-5), (y=i and n—i+1). (6.7.5)

For any fixed values of 1 and n, this system has generally a unique solu-

tion «= din, B = Bin; which has similar properties as the solution of (6.7.1).

When n increases, we obtain in the limit not a single limit interval J

but two intervals J, and I,, which consist of all points « and. fi, respec-

tively, obtained by solving the system of equations

Q (¢; Xs B) =Q,
(6.7.6)

Q(1-¢; a, Bp) =90

with respect to «=a(c) and B= (c). As seen from (6.5.4), the solution

of the system is
_(l-e) L)-eL(l—¢)

a (c) = 1—2c¢

 

(6.7.7)
_eL(c)—(i—¢) Ll —¢)

B(o)= 1—2c

In the symmetrical case, the solution 1s

 

where L(c) is given by (6.5.2).

specialized to (6.7.3).

By assigning different values to c, it is possible to determine the inter-

vals I, and Ig from (6.7.7). The limits «(0) and f (0) are often one of the

end-points of I, and I, respectively. As these limits will be used later,

they will be determined below for AL- and AP-transforms.

If G(u) is an AL-transform at both end-points (cf. 3.5), the limits are

equal to
a (0) = B (0) = ¢. (6.7.8)

If G(u) is an AP-transform at both end-points,

—k
a (0) =B (0) >. (6.7.9)
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6.8
Note that, if G(u) is an AL-
u=1 say, and G’/G"is finite for y =Q, then only f (or (6.7.9), while a“(0) is equal to 0. The exponentcase in point.
Transforms with shortintervals I, and I,

cally and practically. We shall make
forms in 6.11 and 6.15.

QO) is given by (6.7.8)
ial distribution is a

are of interest both theoreti-
some comments upon such trans-

6.8. A large-sample inequality

Wehave hitherto assumed that

 

G (11) < Ba, <G (x2), (6.8.1)where

+~—- a
: ; =1,2 8.2

Niy na —B, 41’ (v=1, 2), (6.8.2)
and a, 6, and &2, Se are two pairs of constants.
these constants so that (6.8.1) holds good for all 7 (or, at least, for a

The problem is solved i
such that the inequalities
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6.9

Suppose, for instance, that c

the limit interval J in this

a= On and Q(c) <0 for & = Qsup-

y=Pi= Ont, %2= Bo = %sup

>i. Insert the end-points nr and sup of

relation. It then follows that Q(c) 290 for

Accordingly, we take

Finally, we make a general remar

The question of the validity 0

passing. If constants %, By, have been

large n, it is, of course, possibl

so that the inequality holds for all values of n (and the limits may still

be not very far apart so that the formula has practical interest). The

determination of the best values of the constants can, however, be an

intricate problem.

The following simple remark is of

the function G(w) is continuous and convex

0<u<l, then for all 2 and

Bx>G( . )
n+1

,=0 in (6.8.2). The truth of the statement follows

e properties of convex functions (see,

some interest in this connection:lf

for any wu in the interval

 

Thus, we can take 0 = B

immediately from (4.3.1) and th

e.g., Hardy & Littlewood & Polya, 1934, Ch. JII).

6.9. An approximate mean value formula

We now carry the simplification a final step forward and use only one

pair of constants «, 8 in G(a;) for all values of i and n.

We then have the simple approximation

Ex ~ G (m4),
(6.9.1)

where
1-2

Tt: =
.

‘n-a-B+l

Following the sameline of thought as in the preceding part of the chapter,

we try to find constants which make Q small. Generally speaking, this

requirement is evidently satisfied, if a and B are chosen somewhere be-

tween the values &,, By, (v= 1, 2), used in the asymptotic inequality dis-

cussed in 6.8. The final choice obviously depends upon the desirability
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Suggests the following simple practical rule:
from the solution (6.7.7) of the system (
Geometrically Speaking,

Determine « and B in (6.9.1)
6.7.6) with a suitable fixed value of c.

this is equivalent to saying that two correspondingpoints are chosen in the limit intervals J, and Jz. In the symmetricalcase, we take as usual «= f. The determination of then consists in

even whenn is quite small. In order to
for small n, it may, however
which are situated

 

As seen from (6.5.3),

 

p (x)Hence by (6.7.3)

=plhae) we
w(c)= 3 2c—]1 @ (x)
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6.10

TABLE l.

Normal distribution. Root in of equation (6.10.2).

OO

ee
e

=;ooo

Sample-size ”

2 | 4 | 6 8 | 10 | 15 | 20

0.330 0.347 0.355 0.360 0.364 0.370 0.374

0.359 0.368 0.374 0.378 0.385 0.390

0.370 0.375 0.379 0.386 0.391

1

2

3

4
0.375 0.379 0.386 0.390

5
0.379 0.384 0.389

6

7

 

0.383 0.388

0.382 0.387

8

0.386

9

0.386

10

0.386

from } to
When c increases from 0 to 1, the function a(c) decreases

. Tt .

a minimum equal to 8 for c= 4, and then increases to the same value $.

I (cf. 6.7) is equal to approximately

Consequently, the limit interval

(6.8.1) for 12 (n+ 1)/2 the large-sample
(0.39, 0.50), and we obtain from

inequality

(1-039) - pep (#295).
® (= F53) <2<0 i (6.10.1)

  

d be reversed.
When i<(n+1)/2, the inequality signs shoul

tion (6.7.1), which becomes
Next, we make a numerical study of the equa

in this case

 

1— a
. 6.10.2

5)
( )

observe that ain does not change very muc

the smallest and largest values being 0.

n tends to infinity, the root tends to some point within the interval I

considered above. Thus we are led to suppose that in 18 always situated

in the interval (0.33, 0.50). This would be equivalent to saying that

the inequality, which ig obtained by replacing (i — 0.39)/(n+0.22) by
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6.11

has been included in the calculations, becaus

The first expression
proximation to the mean

-5 sometimes asserted that it furnishes a good ap

(cf. the discussion in 12.4 and 12.6).

It is seen from the table that (6.10

the small sample-sizes. (6.10.4) is unsatisfactory when 7 is small For

instance, when n=10, it underestimates the true value by 7-13%,

depending on ?. For n=10, the expression (6.10.5) overestimate

mean by 3-7%.

3) is quite accurate in view of

6.11. An optimal property of the normal distribution

We found in 6.10 that the limit interval J is comparatively short

when the distribution 1s normal. It will now be proved that the normal

distribution has the shortest interval of the family of distributions with

the symmetrical fr. f.

 

{ (x) =C(m) exp (=e ), (— co <4%< OO; m>Q).

The transform G (wu) corresponding to this fr.f. is evidently an AL-

transform. Thus « (¢) satisfies (6.7.8) when ¢ tends to 0 or lI.

Further, let us determine the value of «(c) when c= 1, From the

relation

2 F(x) -1=2{flat ~2C(m) x,

0

 

Observing that C (2) =(22)7*, we find

for 0<m<2CoO

o (4) = 5 for m=2 (6.11.1)

0 for m> 2.

clude that the length of I

Combining this result with (6.7.8), we con
stated in 6.10) it is



6.12-6.13
the distribution is normal. It might be added that, when m=1, we
obtain Laplace’s distribution. It follows from (6.11.1) that Z has then
infinite length.

6.12. Cauchy’s distribution

When & follows Cauchy’s distribution, we have

]1

Me) =TS

 

3? (—©<4X< 00),

Hence

G(u) = tg a(u— 4).
Formula (6.7.3) is specialized to

1—

a (c) =9)tg oe (o— 9).

Hence « (0) =a(1)=1 and « (4) =27/8, these values being end-points of J.
The former limit can also be obtained by taking k= —1 in (6.7.9). The
large-sample inequality (6.8.1) thus becomes

1—1.23 a—] n+1—1)<Ea< — ——— <1<n-]1].
tga (SS : Ex; tgx(— i), ( 9 v<n 1

  

For 2<i<(n+1)/2, the inequality signs should be reversed.

6.13. Extreme-value distribution

The extreme-value distribution has the cdf.

F (x)= exp (—e*), (—o<2< oo), (6.13.1)
Hence l

G (u) = — log log a (6.13.2)

The properties of this distribution, which was first derived by Fisher
& Tippett (1928) in connection with a study of the extreme values from
a normal distribution (cf. Chapter 7), have been studied in later years
by Gumbel (1954) and Lieblein (1954), among others. A table of £2;is
available (Table of the first moment of ranked extremes, 1951).

First, we shall determine the intervals J, and Ig defined in 6.7. For
this purpose, consider the general formula

L(u) = (1-14) E —b tc i)| . (6.13.3)
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It is easily seen from (6.5.2) and (6.13.2) that, by taking a=b=4 in

this expression, we obtain L(u) for the extreme-value distribution. In-

serting (6.13.3) into (6.7.7) and letting c vary from 0 tol, it is found

after some calculation that the end-points of IJ, and I are

a
=1.04a,

2 log? 2 °

 

a(0)=a(l)=a, a(3)=
(6.13.4)

1
B (0) =B (1) =8, p(y) =b—2(25zipgrg) =P 040%

  

It follows that, in the case of the extreme-value distribution, J, = (0.50,

0.52), I, = (0.30, 0.50).

Secondly, we shall determine the limits in the asymptotic inequality.

(6.5.4) is specialized to

We now seek constants «, 8 which make Q>0 or Q<0 for any u, and

then use the double inequality

 

inequality

1 1 J 1
_——— ———

+

= <1).
Tu<ulog lu 1—w Qw (O<u<1)

 

Hence

Q(u;4,4)>0, Q(u;t,4)<9.

Accordingly, we can take a,=4, B,=} and a= %, B,=4% in (6.8.1)

and obtain the large-sample inequality

 

 

_(i-4 i—}
a( )<En<4( ‘). (6.13.5)

n n+4

where G(u) is given by (6.13.2). We observe that is identical with

the left end-point «(0) of J, and £, with the right end-point 6 (0) of Lp.

Some numerical illustrations are given in Table 3, where the limits

in (6.13.5) have been calculated for n=5 and n=10. Hither of the limits

can be used as an approximation to the mean, the upper limit being,

however, more accurate for these sample-sizes.
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TABLE 3.

Extreme-value distribution. Calculation of Hx; by means of the limits

in (6.13.5).

n j Exact Lower Upper
value limit limit

5 1 — 0.69 — 0.83 — 0.67

2 — 0.11 — 0.19 — 0.10

3 0.43 . 0.37 0.44

4 1,07 1.03 1.09

5 2.19 2.25 2.30

10 1 — 0.99 — 1.10 — 0.96

2 — 0.58 — 0.64 — 0.57

3 — 0.28 — 0.33 — 0.28

4 — 0.01 — 0.05 —- 0.01

5 0.26 0.23 0.26

6 0.54 0.51 0.55

7 0.87 0.84 0.87

8 1,27 1.25 1.27

9 1.83 1.82 1.85

10 2.88 2.97 2.99

6.14. Weibull’s distribution

The cdf. of Weibull’s distribution (see Weibull, 1951) can be written

F (z)=1—exp(—2"), (420;m21). (6.14.1)
Hence

 

1 1/m

G (uw) = (10g , (6.14.2)
1l—wu

We shall determine J, and I;. We find from (6.5.2) that L(u) is ob-
tained by taking :

 

' |

a=4(1-2), b=4 (6.14.3)

in the formula
1 —]

L (u) - U |. (1og =| — . (6.14.4)

Introducing this expression into (6.7.7) and letting ¢ vary from 0 to 1,
we easily find that J, and I, have the same end-points (6.13.4) as when
L(u) is given by (6.13.3). Inserting the values (6.14.3) into (6.13.4), we
conclude that J, has the end-points
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m m
a (0) =0.5 (1- ~), a (4) = 0.52 (1 ~ at

and I, the end-points

B (4) =0.5 — 0.2 (1 ~ *) B (0) =0.5.
m

6.15. B-transforms

In the preceding examples the choice of constants in (6.9.1) neces-

sitated a compromise between conflicting interests, the best values being

functions of 7 and n. In one special case the determination is easily

made, namely when G'(u) is a B-transform (see 3.5).

Taking logarithms of both membersof (3.5.4) and differentiating with

respect to u, we infer that a B-transform satisfies the differential equation

Gu) ty 7

G' (u) wu iw

~
—

  

By this relation and (6.5.1) we conclude that, identically for any wu,

Q(u;t,/2, T,/2) —

Thus the intervals J, and I; degenerate to the points « =1,/2 and

B=t,/2.
We use these points as constants in the mean value expansion (6.5.5),

which becomes

Ex,=G (mi) + O(n7*"), (6.15.1)

where G'(u) is obtained by integrating (3.5.4), and

i—t,/2
hn— 1,/2—T,/2+ L

(6.15.2)

Note that an exact expression for Hx; is obtained by summing (4.4.5)

from 0 to i—1. By identifying the exact expression with the leading

term in (6.15.1), we obtain a relation, which has a certain interest of

its own.

In order to illustrate the nature of the approximation (6.15.1), we take

the special case t,=0, t,=1, which, as mentioned in 3.5, leads to the

exponential distribution. G (2) is then specialized to log[(n + $)/(n —i+ 4)]

which expression can also be obtained by approximating the exact valve

given by the first formula (4.5.3), by means of the Euler—-Maclaurin sum

formula.
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CHAPTER 7

SINGULAR TRANSFORMED BETA-VARIABLES

7.1 Introduction

The study of singular 7RB-variables undertaken in this chapter will
concern singular 7-sequences (see 3.4). The foundation of this subject

was laid by Fisher & Tippett (1928), who derived limiting distribu-
tions for the extreme variables x, and x, when G(wu) is specialized in

various ways. Their work was extended by Gumbelin a series of papers
(1936, 1944, 1946, 1947). Frechét (1927) and Smirnoff (1935) have also

contributed to the development of the subject. Several other papers
might be mentioned, e.g. those by Elfving (1947) and Cox (1948) dealing
with the asymptotic properties of the range in normal samples. |

Weshall determine the first two moments of TRB-variables belonging
to singular 2-sequences in the practically important cases when G (wu) is
an AL- or AP-transform. These cases are closely related to cases I
and II, respectively, studied by Fisher & Tippett. The «, f-correction
introduced in Chapter 6 will prove useful even in the present connec-
tion. In the last section of the chapter, the results will be generalized
to more general sequences than 1-sequences.

To make the exposition perfectly rigorous, we would need similar
tools as in Chapter 5 and, in particular, certain lemmas of the kind
derived in 5.2. This would have made the chapter rather long, and
we have preferred to omit certain details of the derivations.

7.2. An expansion valid for 4L-transforms

The AZL-transform can be asymptotically logarithmic at w=0 or at
u=1 (or at both these points). We shall confine the discussion to the
first-mentioned case, the other alternatives being similar.

Suppose, then, that the first formula (3.5.2) is valid. Consider a 7’RB-
variable x;, where ¢ is a fixed number. An asymptotic expansion for
a, can be derived as follows. We have from (3.5.2)

1\* 1
XLi= —Cy (10g “| E +0 (= Ta) (7.2.1)

and, using the notation (5.3.2),
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1\* 1
A; = — Cy (log = 1 +O (i= val . (7.2.2)

Define random variables w,, (1=1,2,...), by

w; = log u;— log ;. (7.2.3)

Inserting w,; into (7.2.1), we find that the leading term can be written

1 k w k

—c. llos — _ i .
“0 ( ve 7) (2 log a)

Expanding the last factor in a Taylor series, we obtain after some cal-

culation

 

Xj = Aj + k cal* ( — A," OO; + R (w;), (7.2.4)

where we can make the following statement with respect to the error

term: Corresponding to any positive quantity e, there is a quantity /,,

which does not depend upon 7, such that, if

  
Oj
qilk <€&,

then |B (ox) |< Meo? | Ai [2

Note that by (7.2.2)

A, =O ((log n)*). (7.2.5)

Hence, when w@, is bounded,

R (w,) = O ((log n)*~”). (7.2.6)

It follows from (7.2.4) that, apart from the error term, 7, is a linear

function of w;. Using the fact (cf. Cramér, 1946a, p. 370 ff.) that the

variable —log nu, has, in the limit, the fr.f.

1 ,
Ta oP (—tx-—e*), (7.2.7)

we obtain the well-known result that, apart from scale and location.

factors, 2, also has this limiting distribution. Our principal use of (7.2.4)

will, however, be to derive moments of x,, and then we need not in-

voke (7.2.7).

It should be noted that, if we take 7=1 in (7.2.7), we obtain the

fr.f. for the extreme-value distribution (cf. 6.13).
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7.3. AL-transforms. First two moments of transformed beta-variables

We obtain from (7.2.4) an approximation to the mean of x,, viz.

Bu,=),+ keg” (—A,)-"*" Bo, +R,, (7.3.1)

where | Ril< MA, |?" Bae. (7.3.2)

By (7.2.3) and the first relation (4.5.4)

|
La; —- >. y log Pi - (7.3.3)

It can be shown that

C M
3? Bai<—: (7.3.4)| Hw,|<

where C is Euler’s constant, and M is a constant which does not de-
pend upon 7 and n. By the latter of these relations and (7.2.5)

R, = 0 ((log n)*~). (7.3.5)

The expression (7.3.3) is inconvenient when n is large, and weshall
derive an approximation. Take N =n in the formula (cf. Cramér, 1946 a,
p. 125)

N 1
2 5 =log (N+}3)+C+O(N~’), (7.3.6)
v=1

where, as before, C is Euler’s constant. Hence

i-1
Ew,= > I —logi-C+0O(n""). (7.3.7)

y=1

For a later purpose, we shall also give another version of the expan-
sion (7.3.1). Combining the last two terms in the expansion and using
the second inequality (7.3.4), we obtain

Hu,=4,4+ f,;, (7.3.8)

where |Ri|< Mla, (|0 + = la) . (7.3.9)

We have used the same notation for the error term as in (7.3.1), which,
it is hoped, will not cause confusion. By thefirst result (7.3.4) we have,
more simply,
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|B |< = [as PoM". (7.3.9 a)

The quantities M in these relations do not depend upon 7 and n.

Approximations to the covariance of x, and a, can be derived from

(7.2.4) in a similar manner. Omitting certain details of calculation, we find

Cov (a; a) = 2 c8l* (A, Aj)! 1* cov (@;,@)) + By, (<j), (73-10)

where, by the second formula (4.5.4),

ny m0 j-1 l 4

cov (@,,0)= > s=a-> ~tO(n”). (7.3.11)
yap V 6 y=1 V

The latter of these expressions is convenient to use when 1 is large.

Further,
R,; = O ((log n)**~*). (7.3.12)

It is easily seen that
2

cov (@;, @;) < 3 : (7.3.13)

It follows from this relation and from an analysis of R,; that, corre-

sponding to (7.3.8) and (7.3.9a), we have the simple result

| cov (a, 2) |< 5 la Aj\-U*, (i<j). (7.3.14)

All the formulae derived above can easily be adapted to the case

where G(u) is an AL-transform at the point w=1.

Normal distribution.

Weshall finish the section by applying the results to the normal

distribution. As already mentioned in 3.5, we then have c)= V2, k=.

Thus (7.3.1) and (7.3.10) are specialized to

Exu=)1,-4,' Ew,+0 (log n) **),

 

(7.3.15)
cov (2;, #;)=(A,4;)~* cov (w;, @) + O ((log n)~”),

where 4,=O-* ( “ .n+1

The principal use of the formulae deduced in this section will be

made in 8.9.
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7.4. AL-transforms. Use of the a, 8-correction

We saw in Chapter 6 that a simple approximation to the mean of
a non-singular T’RB-variable can be obtained by means of the a, p-
correction. This correction is of interest also in the case of singular
TRB-variables, as will be demonstrated below for AL-transforms.
An inspection of 7.2 and 7.3 shows that we may everywherereplace

p, by x, defined by (6.2.2). In particular, (7.3.1) and (7.3.10) are valid
if we replace 4, and w, by

and wi = log u; — log x

Eo;= > —=—log i—a)-C+0(n-). (7.4.1)

We shall make some comments with respect to the choice of «,.
Applying the same principle as in Chapter 6, we determine «, so that,
apart from the error term in (74.1), the mean Hw; is zero. Using
(7.3.5), we then conclude that the «, B-corrected form of (7.3.1) becomes

Ex, =; + O ((log n)*-?), (7.4.2)

independently of the choice of B;. We infer from (7.4.1) that %, in this
formula is given by

i-1
a =i—exp (> 5 e), (7.4.3)

For +=1,2, and 3 we obtain a, =0.438, «, =0.474, and a, =0.483. For
large i we have by an application of (7.3.6)

Ew; = log (i— }) — log (i — 04) + O (6-2) + O(n). (7.4.4)
Thus «, tends to 4 when i tends to infinity. As seen from (6.7.8) we
obtained the same result in our study of non-singular TRB-variables.
These two identical results are interesting, because they form a con-
necting link between singular and non-singular 7’RB-variables, which in
other respects behave very differently.

It might also be noted that the values a; given above are identical
with the limits of the roots in given in Table 1 when n->co and 3
is constant. As seen from the table, p. 70, and from the values of

6 — 595540 G. Blom
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a,, etc., given above, the roots converge fairly slowly to the limiting

values when G(u) is the inverse of the normal cdf.

If G(u) is an AL-transform at w=1, the mean H2,_;,1 can be sub-

mitted to a similar analysis as that performed above. We then find

that Bn-i+1 should be determined from the same expression (7.4.3) as a;.

In the symmetrical case we take as usual «,=;. If, on the other hand,

G(u) is finite for u=1, we take 6;=0.

We shall illustrate these ideas by an example.

Normal distribution.

By (7.4.2) and (7.4.3), the mean of the range of a sample from a normal

distribution is approximately equal to —201[(1—«,)/(n—2a,4 1)],

where «,=0.438. For n=20, this expression furnishes the value 3.82,

the correct value being 3.73. The approximations indicated by Cox

(1948; §3) and Elfving (1947) lead to the values 3.83 and 3.76, re-

spectively. (It might be mentioned that if, instead of a, we choose the

value «=% proposed in 6.10, the value 3.82 is changed to 3.74.)

7.5. AP-transforms. First two moments of transformed beta-variables

We shall suppose that G(w) is an AP-transform at u=0. Then the

first formula (3.5.3) can be used for deriving approximations to the first

two moments of the 7RB-variables. We have

C= — cous [1 + O(ui)], (7.5.1)

A= —copi [1+ O(pi)]. (7.5.2)

Introducing the random variable

k

U;3>= (=) — 1,

Pi

we obtain

Exu,=1,+A,By,+8,, (7.5.3)

where | R,|< Mar,

and cov (x,;, 23) =A,A; cov (4;,,%)+ Ry, (¢<)9), (7.5.4)

where _ | R,j|< Me |Aias| (AP +1 A").

Note that R,=O(n"*"*), By =O (n~2*-), (7.5.5)
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The mean and the variance of v, can be exactly determined by means
of the fr.f. (4.2.2) of u,. We find, for example,

It can be shown that

|Eo|<= for i> —k,

uw (7.5.7)
OS cov(2%, 04) <— for j2>1> —2k,

where the constants M do not depend upon i, j, and n. For other
values of 4 and 7, the moments do not exist.
An application of the results obtained in this section will be given

in 8.11.

7.6. AP-transforms. Use of the a, 8-correction

As in the case of AZ-transforms, we can generalize the results ob-
tained in 7.5 by replacing p, by z;. In (7.0.3) and (7.5.4) we then write
A; instead of 4; and adjust the definition of v, accordingly. (70.6) is
then replaced by

eTeT SH 7.6.1(¢— a)" (¢—1)! (n+k)! (

Arguing in the same way as in 7.4, we choose «;, such that the mean
of v; is small for large n. It is seen from (7.6.1) that we should then
determine «; so that the first factor in the first term of this expres-
sion is equal to unity. This leads to

_. (G+k=1)!\"*
ani(r)

If, for example, k= —1, we get «,=1, independently of 1. When i tends
to infinity, «, tends to the limit (l1—k)/2 in accordance with (6.7.9).
If G(u) is an AP-transform at u=1, the constant Bn_ii:1 can be de-
termined by similar considerations.

¢.¢. A generalization



7d

Suppose, in fact, that x, belongs to any c-sequence such that c=0

or c=1. An examination of the proofs shows that all the results stated

in 7.2-7.6 are still valid, except those statements concerning error terms

which contain the sample-size n explicitly. The latter remark concerns

formulae (7.2.5), (7.2.6), (7.3.5), (7.3.7), etc. It is easily seen how these

relations should be modified. Suppose, e.g., that i/n tends to zero as

1/log n. It is then recognized that (7.2.6), for example, should be

replaced by R(a;) =O ((log log n)*-), It should also be remarked that

the discussion concerning the limit distribution (7.2.7) applies only

to the case where 7 is fixed.

The generalization is of particular interest in the special case where

the sequence is at least n-*-convergent (cf. 3.4). (In the case of less

than n~?-convergent sequences, the extension is of no great value, since

more powerful results were obtained in Chapters 5 and 6.)

In this connection, we shall make a special remark concerning the

a, B-corrected version of (7.3.8) (cf. the dicussion in 7.4). Introducing

the «, B-correction into (7.3.8), we find

Bxu,=4,4+ Bi, (7.7.1)

where, by analogy to (7.3.9),

, / , ] /

[Ri] <a [aif(| Bot] + 714617"): (7.7.2)

Let us now perform the generalization referred to above. More pre-

cisely, suppose that 2, belongs to a sequence of 7RB-variables which

is at least n~?-convergent when i/n->0. We then have from (7.4.4)

M
> for «+4

M
a for o= 4.

| Hwi| <

Applying the latter result to (7.7.2), we infer that, when the sequence

is at least n~*-convergent, and we choose the special value a, =4, the

mean of the TRB-variable x, satisfies relation (7.7.1) with

[Ri] < aLae+LA 179)

where the constants M do not depend upon 7 and n.

This result, which holds true with an obvious modification also when

i/n->1, will be used in 8.9.
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CHAPTER 8

LINEAR COMBINATIONS OF TRANSFORMED BETA-
VARIABLES

8.1. Introduction

Let win, Xan, ...,%nn be a set of TRB-variables (cf. 3.1). Consider a
linear combination

T= 2,Min Lin (8.1.1)

of these variables, where the coefficients Jin are real quantities. To con-
dense the notation, we shall generally omit the index n, always bearing
in mind, however, that the coefficients and variables depend both upon
2 and n.

Linear expressions of the form (8.1.1) are of great importance in the
theory of linear estimation. In spite of their practical importance, no
general investigation of the properties of such combinations seems to
have been undertaken. In the present chapter we shall perform such
an analysis, the results of which will be applied to linear estimation
problems in Part III.

In 8.2-8.6 we shall derive exact and approximate expressions for the
first two moments of J. Three alternatives will be discussed, all of
which occur in practice.

(a) The means, variances, and covariances of the 7RB-variables are
accurately known (tabulated).

(b) Only the means are accurately known.

(c) Neither the means nor the variances and covariances are accurately
known.

Sections 8.7-8.12 contain a detailed account of the asymptotic behaviour
of the error terms in the approximate expressions. The question of the
asymptotic distribution of a linear combination is also discussed. In 8.13
some remarks are made concerning linear combinations defined by means
of continuous weight functions.
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8.2. An alternative form of the linear combination

Weshall sometimes find it convenient to replace the variables x, in

(8.1.1) by the weighted differences y; introduced in 5.5. As will be shown

in 8.4, this substitution enables us to derive a useful expression for the

variance of 7’. We write, then, 7 as a linear combination

T= —_— Shy Y; (8.2.1)

i=0

of the n+1 variables

Yi = Din. Vi41— 1%, (1=0, 1, weey 1).

Here and subsequently we use h, instead of the complete notation hin.

The coefficients g, and h, are evidently connected by the relations

qi= 0; (hi — hi-1), (4 = l, eoed n), (8.2.2)

where the weights 0, are defined by (5.5.2a) or by the equivalent ex-

pressions (5.5.2 b). When the coefficients g, are given and 6,+0

(i=1,...,n), the quantities h, are determined, apart from an arbitrary

additive constant. In the sequel, we shall use the coefficients 9; and

h, alternately. The fundamental relations (8.2.2) should then always be

remembered. Note, however, that the representation (8.2.1) of T is

somewhat less general than (8.1.1), since, in the former case, we must

suppose that G(u) has a non-zero first derivative.

8.3. Mean and variance of the linear combination

Denoting the mean and the variance of 7 by ET and var T, we

have from (8.1.1) the general expressions

E T = 2S Ex,, (8.3.1)

var T= 291 g; COV (Xj, Xj). (8.3.2)
j=

The second expression can, alternatively, be written

var T= 2,i hy COV (Yj Yj) (8.3.3)
i,j=

The mean of 7 can, of course, also be expressed in terms of the

quantities f,, but we shall not need this expression. The expressions
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8.4
given above lose their meaning if any of the moments of the TRB.
variables do not exist. When this is the case, the linear combination
can be replaced by a censored combination which does not contain
these variables (cf. 8.6).

8.4. Approximations

When the means or the variances and covariances of the variables
«, are not accurately known, we make use of the approximative proce-
dures developed in Chapter 5, or of the a, B-corrected forms of the
approximations discussed in Chapter 6. In this section we shall treat
the former of these alternatives.

First, consider the mean of 7. Inserting (5.3.1) into (8.3.1), we obtain

ET=XG (p;) + Rmean, (8.4.1)

where by Rmean we denote the remainder term

Rmean =291 R, : (8.4.2)

If this term is small enough, the first term in (3.4.1) can be used
as an approximation to the mean of 7’. However, in this section we
make no assumption with respect to the magnitude of the remainder
term and regard the expression (8.4.1) and the relations to be derived
below as purely formal relations.

Secondly, consider the variance of 7 given by the first alternative
formula, (8.3.2). Replacing the variances and covariances of 2, and 2;
by the expressions (5.4.1), we obtain

] n

> 99; Pi (1 — p;) @’ (p,) @’ (p)) + Ruar, (8.4.3)
var T=

N+ 24524

 

n

where Ryar = II; Ri;. (8.4.4)
i,j=

Note that the double summation in these expressions should be inter-
preted as

y= > +25.
1 i=j=1 i<j

The first term in (8.4.3) is inconvenient for both numerical and ana-
lytical investigations, and we shall seldom use it in the sequel. Starting
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from the second alternative, (8.3.3), and using the expressions (5.5.5),

we obtain the alternative formula

  

 

var T = var h + Ryars (8.4.5)
n+2

where
1 2 m9

var h= aa 2, (h; —h)’, (8.4.6)

- ] n

h 7 m+ ] 2 hi

and Ryar = > h; h; Aj; . (8.4.7)

i,j=0

The letter 2 in var h may be regarded, e.g., as symbolizing the row

vector (hy, hy, ..-5 hn). The remark concerning the summation madeafter

formula (8.4.4) is relevant also in this case. The quantities A,; in

(8.4.7) are the error terms appearing in (5.5.5). Thus we have proved

that, if the error term is discarded, the variance of 7’ is proportional

to the variance of the coefficients hy,...,h,-. The formula (8.4.5) is

remarkably simple and will be used extensively in Part III.

We shall also consider the covariance of two linear combinations

T=2 911%; T= 2, Joi %%- (8.4.8)

Defining h,, and hy; by relations of the same kind as (8.2.2), we ob-

tain an expression of the same simplicity as (8.4.5), viz.

cov (h,, he)

 

cov (7, T.) = 4 + Roov; (8.4.9)

where
1 2 - -

cov (hy, he) = | 2. (hy; — hy) (hoi — he); (8.4.10)

- ] n

ra|

4

hei =] ? 2 ’
h n+l 2, ("

and Rey is a remainder term given by

Reov =, >ai ho; Ajj (8.4.11)
Oe
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Finally, it should be noted that, when G(u) is specialized to the in-

verse of the rectangular distribution, the remainder terms in all the

expressions given above are zero (cf. 4.2 and 5.5).

8.5. Use of the a, B-correction

The approximations given in the preceding section can often be im-

proved by introducing the «, f-correction discussed in Chapter 6. It is

easily seen how the formulae should then be moditied.

We first consider the mean and variance expressions (8.4.1) and

(8.4.3). As seen from (6.2.1) and (6.3.1), we have only to replace p, by

u;, given by (6.2.2), and n by n’, given by (6.2.3). The mean value

formula, for example, becomes

ET= > 9; @ (o;) + Rmeans (8.5.1)
im1

where

Rmean = > g, Ri; . (8.5.2)

Secondly, consider the alternative variance formula (8.4.5). Note that

the expressions derived in 8.2 and 8.3 hold good without any moditica-

tion, if the quantities y, are defined as the generalized weighted differ-

ences introduced in 6.4. Thus we may apply the results obtained in

that section. We find after some calculation that, if the sum a,+ p;

does not depend on 1, then

 var T= +Ry, (8.5.3)

where

1

wai [Seto alSet| (8.5.4)

is a ‘weighted’ variance of the h,’s, and

 

 

V (h, op) =

Ry= >hi hy Ai. (8.5.5)
i,j=0

The quantities 9, are defined by (6.4.2), and the components Aj; of Ry

are the error terms in (6.4.1). The letter 9 in V (h,9) symbolizes the

row vector (09,01, ..-;0n). We see that, when 9,=1 for all 2, formula

(8.5.3) reduces to (8.4.5).

It is realized that the expression (8.4.9) for the covariance of two

linear combinations can be generalized in a similar way by means of

the «, B-correction.

The expressions (8.5.1) and (8.5.3) are very general, since they are
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valid even when the quantities «, depend upon both 7 and n. In the
remaining part of the section, we shall make some comments upon the
simple case where «=a, f;=f, independently of i and n. We notice
that the quantities 9, appearing in (8.5.4) are then given by the simple
expressions (6.4.3). Then the only difference between (8.4.5) and (8.5.3)
is that, in the latter expression, n’ is used instead of n, and, further-
more, that weights are used for i=0 and i=n.
The constants ~ and # ought to be chosen, so that the leading terms

in the expressions for the mean and the variance of T are as good
approximations to these quantities as possible.

Consider, e.g., (8.5.1). We saw in the examples in Chapter 6 that it
is sometimes possible to determine « and # such that @(z,) is a good
overall approximation to Ha,. When such values of « and f are known,
they should, of course, be used also in (8.5.1). Theoretically, we might
go a step further and adjust these values of « and £, so that the term
of order n~* in Rmean is zero, As seen from (6.5.5), this leads to the
condition

do Q (7,3 «, B) =0.

In the symmetrical case, this relation could even be used for an exact
determination of «=f. From a computational point of view, the rela-

tion is, however, generally too complicated to be used for this purpose.
Similarly, « and # in (8.5.3) might, theoretically, be determined by

analyzing the error term in this formula. The computational difficulties
are, however, still greater than in the previous case, and no attempt
has been made to apply the idea to a numerical example. In the
applications of the theory made in Part III, we shall either use the
variance formula without any «, B-correction or, if this correction is
used in the mean value formula, with the same correction in both

expressions.

Summing up the contents of 8.3-8.5, we now have the following
tools with which to handle the three situations mentioned in 8.1.
When tables of the means and covariances of the 7'RB-variables are
available, the first two moments of 7’ can be determined from (8.3.1)

and (8.3.2). If only the means are accurately known,(8.3.2) is replaced

by the approximation afforded by the leading term of (8.4.3) or by the
equivalent expression (8.4.5). When neither the means nor the covariances

are accurately known, we also replace (8.3.1) by an approximation,

namely by the leading term of (8.4.1). The accuracy is often improved
by introducing a suitable «, B-correction into the leading terms.
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8.6. A note concerning censored linear combinations

If some of the coefficients in the linear combination (8.1.1) are zero,
we have a censored linear combination.

The expressions for the mean and the variance of a linear combina-
tion given in 8.3-8.5 are, of course, valid also for censored combina-
tions. It should only be noted that, in the expressions containing the
coefficients h, explicitly, we must, for any zero coefficients g;, 9;, 9, .
impose the conditions

hi=hi-1, hy =hy-1, hy =hr-1, eee (8.6.1)

8.7. Bounded transforms. Order of remainder terms

Up to the present, the discussion has been given in terms of a
general transform. In the remaining part of the chapter, we shall in-
vestigate the approach to zero of the remainder terms appearing in the
formulae deduced in the preceding sections. The question of the asymp-
totic distribution of a linear combination will also be discussed. In order
to arrive at useful results, certain conditions must be imposed upon
G(w). In this and, the following section, G (uw) will be assumed to be
bounded ; later, we shall remove this condition.

Turorem. If G(u) satisfies Condition A in 3.5 with © equal to the closed
interval O<u<1, then the remainder terms in the mean value formula (8.4.1)
and the equivalent variance formulae (8.4.3) and (8.4.5) satisfy the relations

(8.7.1)

lgi|< ani (8.7.2)

for any 1=1,...,n and
Mlal<—j (8.7.2)

for all but a finite number of ranks i, then
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Basen = O (-:] , (8.7.3)
nN

]_ _). 8.7.4)Rae

=

0(3a (8.7.4)

The proof is simple. Consider, for example, the mean value formula

(8.4.1). We apply the theorem in 5.3, p. 53, with © equal to the

unit interval. Since by (8.4.2) the remainder term Rmmean is a linear

combination of the errors R;, we immediately obtain the first relation

(8.7.1). Similarly, the second relation (8.7.1) is proved by meansof the

theorem in 5.4, p. 55. Finally, we obtain (8.7.3) and (8.7.4) by apply-

ing (8.7.2) and (8.7.2) to the relations (8.7.1).

We shall make some comments upon the theorem. First, it should

be remarked that there is a similar result as (8.7.4) which holds good

for the remainder term R,oy in the formula (8.4.9) for the covariance

of two linear combinations 7, and T,. If the coefficients of both these

combinations satisfy the relations (8.7.2) and (8.7.2a), we find by a

slight extension of the proof that

Secondly, it should be mentioned that (8.7.3) holds good even if

G’ (wu) has a finite number of discontinuity points in the unit interval,

provided, however, that (8.7.2 a) is satisfied for any i. To prove this

statement, surround each discontinuity point w of G’ (wu) by an interval

with the breadth 26. Apply the result in the final paragraph of 5.3,

p. 55, to those 7’RB-variables in the set which belong to c-sequences

such that |c—w|<6, and treat the remaining variables as before. We

then obtain

M M
| Rmean |< 97-2194 | + — =I al

where the first sum contains approximately 26n terms. Now use —

(8.7.2a) and take d=n"?. (This choice of

6

is allowed, for the variables

corresponding to the second term then belong to c-sequences which are “

less than n~?-convergent in the singular point w.) Hence we conclude

that Rmean has at most the order n~° as stated.

It would be of great value if the scope of (8.7.4) could be enlarged

in a similar manner. Unfortunately, this does not seem possible, the
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continuity of G’ (w) being essential for the validity of the theoremin 5.4.

Thirdly, we shall comment upon the use of (8.7.3) and (8.7.4) inpractice. It should be remembered that, in all situations of practicalinterest, the leading terms in the expressions (8.4.3) and (8.4.5) tendto zero when n tends to infinity. We must therefore require that
Ryar should tend to zero more rapidly than the leading term. Thus wefind that (8.7.4) is useful if the leading term var h/(n+2) in (8.4.5)converges to zero less rapidly than n-**. This is, indeed, a very common
case, but there are also other possibilities.

h, are equal. The example hy=1, h,=1, hy=-- =h,-1=0 is a case in
point (cf. 9.2, final paragraphs). Then d=1, and var h/(n+2) has the
order n~*, and thus (8.7 -4) is not powerful enough. By similar examples
it may be shown that (8.7.3) is not always applicable. To overcome
these difficulties,

error terms in a different way. The assumptions concerning the trans-
form made in the above theorem will then be replaced by slightly
different conditions.

Turormm. If G(u) satisfies Condition B in 3.5 with © equal to the
closed interval O<u<l, then, for any choice of the coefficients gi, the
remainder terms in the mean value formula (8.4.1) and the equivalent
variance formulae (8.4.3) and (8.4.5) satisfy the relations

  

Bimean = O (—), (8.7.5)

Rvar= (5 "): (8.7.6)
nN

The theorem is proved by applying the results obtained in 5.5 con-
cerning the weighted differences y;. First, we observe that, by (5.5.3)
and (8.4.1) (cf. also the proof of the theorem in 8.8),

Rinean = — > h, E n;. (8.7.7)
i=0

Hence by thefirst inequality (5.5.4)

| Rmean|< — > {&|- (8.7.8)
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T since these coefficients depend upon an
We may replace h, by h,—h,

arbitrary additive factor. By an application of Cauchy's inequality we

then obtain (8.7.5).

Secondly, applying

| Bear | < widSh S lh, i)
” i+j

(5.5.6) to the representation (8.4.7) of Ryar, we find

By Cauchy’s inequality
2M =

| Ryar |< ily

h,—h, we obtain (8.7.6), and the theorem is proved.
Replacing fh; by

the theorem, (8.4.5) can be given the convenient
As a consequence of

form
var h ]

var T= n+2 2 +O (-)| ° (8.7.9)

This formula evidently solves the difficulty referred to earlier. It shows

that Ry, tends to zero faster than the leading term, regardless of the

order of this term. It should, however, be remembered that, to arrive

at this result, we have used somewhat more restrictive assumptions

concerning G (u) than before.

The considerations which led to (8.7.6) can, of course, be extended

to the error term in (8.4.9), which then takes the form

 

(varfa)*

(war

fa)

. (8.7.10)
Roy = O (

Finally, we point out that the results obtained in this section may

easily be extended so as to apply to the «, B-corrected expressions

(8.5.1) and (8.5.3) for the mean and the variance of 7’.

8.8. Bounded transforms. Asymptotic distribution of a linear combination

We shall now show by the method used in 8.7 that, given certain

conditions, a linear combination is asymptotically normally distributed.

Set

a=2|Al. (8.8.1)

THEorEM. If G(u) satisfies Condition B in 3.5 with © equal to the

closed interval O<u<1, and if, in addition,
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lim os =0, (8.8.2)
NM—>0o C2

then

T= > J; %;

ws asymptotically normally distributed with the m
variance var h/n. —

Replacing in the first term h, by g; and making a rearrangement, weobtain

var h\~? “
- ( n IP -Sa4| =m+4,

 

where

  

simple calculation (cf. the estimation of Ryar in 8.7) that

1
var Z, = o(>)

n

B Z,-0(—-)

95



8.8

The truth of the assertion then f

(Cramér, 1946 a, p. 253). Hence the standardized variable —

asymptotically in the same way as Zy.

To determine the asymptotic distribution of Z,,

linear combination :
n _ n

C= (> #) D> 4%,
i=0 i=0

ollows from Tchebycheff’s theorem

T behaves

we consider the

where the variables z; are independent, each having the frf. etd,

(c= -—1). Applying the Central Limit Theorem in the form given by

Liapounoff (see Crameér, 1946 a, p. 215 ff.), we see that, if

. i=0lim =2°—\ =0,
N—->CO ( )

i=0

then ¢ is asymptotically normally distributed with m

1.

> | |?
=o (8.8.3)

ean 0 and vari-

ance

Let us now compare the distributions of ¢ and Z,

case t,=h,—h. Condition (8.8.2) then ensures that (8.8.3) holds good;

e use the
hence ¢ is asymptotically normal. With respect to Z,, Ww

at any finite number of variables n 6; are, in
—2z

in the special

result, proved in 5.5, th

the limit, independent and exponentially distributed with the fr.f. e

Consequently, any moment of Z, coincides, in the limit, with the cor-

responding moment for ¢. As the normal distribution is uniquely deter-

mined by its moments, it follows that, when C is asymptotically normal,

this must also be true of Z,. This completes the proof.

A consequence of the proof is that a linear combination of the type

studied in this section behaves asymptotically in the same way as a

weighted sum of independent y2.variables, each with two degrees of

freedom.

It should be remarked that the conditions of the theorem can un-

doubtedly be weakened. This observation raises an interesting problem,

which, however, will not be discussed here, the result established above

being sufficiently general for our purposes.

f a linear combination is not

always normal. As a simple example, take G(u)=u and hy=h,=1,

hy = +++ =hy-1=9. Tt is seen that (8.8.2) then breaks down. Wehave in

this case T=u,—wU,; hence we see that n(1—T) is, in the limit,

gamma-distributed with the fr.f. xe-*, (720).
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8.9
(8.9.1)

Ae =a = G (Vi) when i/n <6, and A; =1 otherwise,

 

Brean =O (<2 (log ny") ; (8.9.2)

1 mk-1

Ryar =O (ss (log 7)
(8.9.3)

the exponents of log n in (8.9.2) and (9.9.

mk<0ormk<I, respectively.

Tf G(u) is an AL-transform at u=I, the conditions should be slightly

reformulated. (In i/n<6, the letter + should then be replaced by n—t.)

To prove the theorem, we divide the linear c

two parts

The latter combination contains non-si

TRB-variables, for, by the choice of s, all variables belonging to

0 are less than n° *#-convergent (cf. 3.4). The condi-

re evidently fulfilled, and thus we

h component of 7,

the means of 7, and T,.

c-sequences with c=

tions of the theorem in 5.3, p. 53, a

find by applying this theorem to eac

ET,= > 9G(p)+ Ay, (8.9.6)
i=s+1

o the first relation (8.7.1),

1 n

R=0(7 > al) (8.9.7)
i=ms+l1

where, by analogy t

By condition (c)

 

n i=s+1

Lo & pg0im-
R,=0( d+1 > [Ai | ‘),
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Since the sum | i > lar}?

N i=st1

It follows from (7.2.2) that the sum i
Same order of magnitude as the sum

Hence

Adding (8.9.6) and (8.9.9),
with an error term, which, as seen from (8.9.8) and (8.9.10), satisfiesformula (8.9.2). Thus the first statement in the theorem is proved.In the remaining part of the proof, we shall make a similar examina-tion of the variance formula (8.4.5). 7 is divided into two parts 7,and 7’, exactly as before. We have

var I’ = var T+ var T,+2¢ (var 7, var 7), (8.9.11)
where [O)<1.

It follows from (8.4.5) and from the note in 8.6 concerning censoredcombinations that

var, h
nt + fivar,., (8.9.12)

 

var T, =

99



 

8.9

Here var, is the “censored” variance

obtained by setting

of the coefficients ho; .... Mn

mine the order of magnitude of the lea

_ We may, for example,

similar to the leading

but with an obvious res

‘rst formula (3.5.2) to this sum and using condition (c),

  

i=st+l

Proceeding as in the discussion concerning the mean of T, we find

1
Ryar, =O (3)

(8.9.14)

var Ty<2 > Py ay aylt.
Nn” i<i<i<s)

By (7.2.2) the right member has the same order as

 

sd [log (n+ 1)P™*-?.

Since s=[dn?**] and é 1s arbitrarily small, we obtain

1
var 7',=O (a (log ny?" (8.9.15)

Inserting (8.9.12) and (8.9.15) into (8.9.11), and using (8.9.13), (8.9.14),

gement
(8.9.15), and the condition mk>1, we find after some rearran
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bvious modification that,In (8.9.1), A; is replaced by 4;=@(m;), then R’mean 7” (8.5.1) and Ry in(8.5.3) satisfy the relations (8.9.2) and (8.9.3). These two statements areproved entirely as above.
The first statement, however, deserves gs

a remarkable fact that,
special value a=

pecial comment. I+ is, indeed,
if G(u) is an AlL-transform, and we choose the3, the remainder term Rinean in (8.5.1) satisfies a some-what stronger relation than (8.9.2), viz.

Roean = O (= (log nym) » (mk>1). (8.9.17)n

To prove this, only a slight modification of the proof given aboveis required. Applying (7.7.1) to each TRB-variable in Ty, we obtain,instead of (8.9.9), the following expression

Hence

Proceeding in other respects as before, we obtain
erm satisfying (8.9.17).
As, consequently, the «, B-correction affects the upper limit of therder of the remainder term in the mean value formula, this correction

(8.5.1) with the error
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has a deeper significance than might possibly

was first introduced in Chapter 6.

have been anticipated

when it

Though of wide application, the theorem proved above is, like the

corresponding theorem in 8.7, p. 93, not always sufficiently general.

Particularly, the formulation of condition (c¢) puts a limit on the use

of the theorem (cf. 13.6). For this reason, we shall prove a result which

is more general in this respect. On the other hand, we must then

e somewhat more restrictive conditions upon G(w) than before.
impos

THEOREM. If

(a) G(u) satisfies Condition B

O<u<l,

(b) G(u) 1s an AL-transform at u=9,

(c) constants M, d, and m can be found such that

in 3.5 with € equal to the half-open interval

 

var h=O (<2) , (8.9.18)

and, further, for any V< [Vn]

M
lai|<=alA 7-3, (8.9.19)

then formulae (8.9.2) and (8.9.3) are stil valid.

An important feature of this theorem is that only coefficients 9; with

low indices are assumed to have an upper bound. The theorem is proved

methods used in the proofs of the second

theorem in 8.7, p. 93, and the theorem stated earlier in this section.

Consider, for example, the mean of 7. Westart as before from the

partition (8.9.4). The second part, 7, satisfies (8.9.6), where by the

remark in 8.6 concerning censored combinations and by (8.7.5)

I
n

R,=0 ( (var, w)*) ,

on p. 100. As this quantity is
Here var,h has the same meaning as

obtain by condition (c)
asymptotically equivalent to varh, we

1

m-0():
The rest of the proof concerning the mean of 7’ is the same as before.
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8.9.1) or, in the secondtheorem, (8.9.18) and (8.9.19). This is proved by aSion of the methods used in

(d) condition (8.8.2) ds satisfied, a
than zero when n approaches 74

then T 7

nd, in addition, var h remains greater
nfinity,

We shall give a sketch of the proof. Write

(yr > & (ny) = (8 *) “(y-BT) 4

  

i=1

  

y (8.9.5), and Ry is the remainder term
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Using (8.9.15) with d=1,

in the right member has at most the same order as the expression

1 (log nyeme-*

var h ni

he first term tends to zer

with d=1 that the second term has

this case that if, in the definition

k satisfies k< —1, the linear combination mus

wise Ha, or Ea, and hence HT do not exist. Similarly,

not exist for k< —4 unless the combination is censored. A; is defined

as in the first theorem in 8.9, p. 98.

THEOREM. I}

) G(u) satisfres Condition A in 3.5 with &

O<u<l,

(b) G(u) ws an AP-transform at u=9,

for i< —2k and, further, constants M, d,

> —1 and, for any i> —2k,

(a
equal to the half-open interval

(c) the coefficients gi are zero

and m can be found such that mk

v \a|"?
(8.11.1)

mean value formula (8.4.1) and the equi-

then the remainder terms an the

d (8.4.5) satisfy the relations
valent variance formulae (8.4.3) an
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O(n~4) for mk>0

Pmean = O(n" logn) for mk=0 (8.11.2)
O (n7™*- 4) for —3<mk<0,

3
O(n -24+3) for mk>0Ryar = mk 3

(8.11.3)O(n-"y ~24+8 for -—l<emk<o
When G (u) is an AP-transform at “=I, or at both u=0 and u=1,

there igs an obvious change in the formul

 

\dding (8.9.6) and
ince S, has a smal

ormulae (8.9.11)-(8.9.14)
ndition (c¢) we conclude that



M m
var T,)< “sa 2 | A, a;|" (leov (% v))\+ lal ea A,\Y YI;

$,<i<I<S

and s are defined as before Using (7.5.2) and the second

T has at most the same

we see that the variance of +o

rder of magnitude of this expression ig determined by @ straight-

(8.9.11) in the same way as in the final stage

forward analysis. Using
finally obtain (8.11.3), and the theorem 1s

of the proof in 8.9, we

proved.

There 1s a

p. 102, which presupp

the other hand, we must then impos

(8.12.1)

(d) condation (8.8.2) 28 satisfied, and, in addition, var h remains greater

than zero when approaches infinity,

ally normally distributed with the mean S gi G(p;) and
f1

then T is asymptotic

the variance var h/n.

It is obvious how th

an AP-transform at u=?;

The proof of the theorem is

8.10 and will not be given here.
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var T= [J 0 (x)2f(x) da— ([% (x) f(a) dx)"] +R® +Re
vhere, under general conditions (cf. Cramér, 1946 a, p. 123 ff.),

IFmeen = 0 (1), RY. =0 (*) °

he behaviour of Rien and RY ;var 18 Clear from the discussion in 8.7, 8.9
ad 8.1],
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9.2

Putting
zy) =U TOM

we have
U=u29: +O 291 i;

It is immediately realized (cf. Chapter 3) th

defined by (9-1-3), constitute a

2=G(u), where G(u) is

k,=1, the parameter 18 §

of k, and ke

when percentage P

It follows from (9.1.4)
oints +p are es

G(w) is increasing an

d to pw and o respective

that U in (9.1.2) is

at the variables 1, Va: +++» %n

ariables with

linear combination

d ditffer-

stimated is kyr kyo,

=1,k,=0 and k,=9,

ly. Other values

for example,

"3





where

 

sets

O14 = 01 — Fist
(1=90, 1,. ,n),

Co, = 01 Bo — ivr BMis
1 i=90, 1, ’ n)

(9.2.10)

We observe that

> C4 =9: (r=1, 2)
(9.2.11)

i=0

Further, when & has a symmetrical distribution,

(9.2 12)

> Cri C2i = 0.

i=0

Hence the sets are then orthogonal. Replacing the 9;

hs given by (9.2.3), we find

2,Ori hi = ky, (r = 1, 2).
(9.2.13)

an unbiased estimate of

modifications
of the proce

The weights 9;
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9.2

6;=[G@’ (7:)]~*, (= I, sees nN), Oo = 8n41 =9, (9.2.14)

V— &;
= 9.2.15where Tey = %,—B, +1 ( )

The sum «;+f; will be assumed to be independent of 2. Formulae

(9.2.7) and (9.2.8) are replaced by

 

 

2

var yaoVe),eR (9.2.16)
nm +2

d V (h, 0) = ! b hz I (> i)| (9.2.17)
an °P —n +1 A” n’+1 mi ; , ~~

where n =n—a%— fi;

o=l-—ay1tam=1—fit Bis,

(a = 0; Bn+1 =Q),

and Ry is given by (8.5.5). As we saw in 8.5, the case «=a, B,= 6

is of special interest because of the simple character of the resulting

formulae. We then have opy=1l—a and p,=1-—f,all other 0,’s being

equal to unity.

The formulae presented in this section are very general, since we

have made no assumptions with respect to the transform G(u) besides

the general conditions stated in 9.1. The approximate expressions (9.2.7)

and (9.2.16) are, however, of practical interest only when the error

terms are small, at least for large n. For this purpose, a separate in-

vestigation is needed for each class of transforms. The readeris referred

to 8.7, 8.9, and 8.11, where the asymptotic behaviour of the error terms

has been studied in detail for some important families of distributions.

To bring out the essential features of the formulae reproducedin (a),

we shall give a simple example. _

Rectangular distribution.

Suppose that z is distributed according to the rectangular distribu-

tion, and let uw be the mean and o the range of variation of z. It

follows from (9.1.1) that € has mean 0 and range of variation 1. Hence
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9.2

As seen from (9.2.4), we have 6,=1,(¢=1,...,n). Hence (9.2.9) and
(9.2.10) are specialized to

n—l—] —S(n+1) t? 0

l
Ci,= 0, Co, =, —— <t<n—li oy nal for l<i<n-1

n—l
1 f =

2intl)

We take be =z=

 

o*=-

n 4 1

(a~3) 20 2S (;_m+)
3(—i -}) “aay2iS)#0

n+1 2
 

The second estimate is Gini’s mean difference in the rectangular case.
These estimates are obtained, if we take, respectively,

6 (¢—n/2)*

=D)
a

h, Hn

That the side conditions (9.2.13) are fulfilled is easily checked; the
estimates are therefore unbiased (this is, of course, also seen directly

from the definition of the estimates). Inserting the expressions for the

coefficients h, in (9.2.7), we find after some calculation the following

variances of the estimates.

2 2Oo x (n+3)o
> = ° e l

ln “9% 5n(n—1) (9.2.18)
 var "=

Equality signs may be used, the error terms being zero. The latter

expression seems to have been first given by Nair (1936).
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9.3

(b) Estimates based wpon extreme sample-values. —

 

We take ue = 4 (2a) + ny),

n+l
o* = nol (Zn) — Zap),

 

 

n+l ,
[3 [eet for s=0

h=

;,

0, h=, 0 forl<t<n-1

n+l
4 To for 1=n.

The variance formula (9.2.7) gives the known expressions

a a var ot=o. (9.2.19)
var 3 (n+1) (n +2)  (n—1) (n +2) -

The main application of the results reviewed in the section will be

made in Chapter 10.

9.3. Nearly unbiased estimates

Throughout the preceding section it was assumed that accurate val-

ues of the means of the 7'’RB-variables can be obtained from tables

or other sources. When this is not the case, the approximations dis-

cussed in Chapter 6 and in 8.5 are used.

The conditions (9.2.1) then become

2Ii = ky, 29 G (7;) = ke, (9.3.1)

where z; is given by (9.2.15). In the sequel we shall sometimes find it

convenient to use the notation

Ai = G (70).

The same modification is applied to the definition (9.2.10) of Cai,

which is replaced by

Ooi = 0; G (i) — 644 G (241), (9.3.2)

where 9, should now be defined by (9.2.14).
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9.3

Whentherelations (9.3.1) are valid, U is a biased estimate of

kyutkyo

with the mean (cf. 6.2 and 8.5)

HU =k,u+k,o+o0Rinean;

where Rinean i8 given by (8.5.2).
If « and # are chosen such that G(z,) is a good overall approxima-

tion to Hx, (cf. the discussion in 6.9 and the following sections), the
bias may be expected to be quite small.
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CHAPTER 10

NEARLY BEST LINEAR ESTIMATES.

10.1. Introduction

Let U be a linear estimate of the parameter k, w+ kyo. In Chapter 9

we have stated some results concerning the class of functions U which

are unbiased or nearly unbiased estimates of the parameter. In this

chapter we consider the following problem. We wish to select the func-

tion U which has the smallest possible variance of all functions in the

class. The unbiased linear estimate with this property will be termed

the best linear estimate. |

Much attention has been paid in theliterature to this minimum vari-

ance problem. For exactly unbiased estimates the general solution has

been given by Lloyd (1952). When applied to special distributions, the

solution involves for the most part considerable numerical work. The

covariances of the 7RB-variables must be computed for all combina-

tions of + and 7, and the coefficients g,; in U are then obtained as solu-

tions of » linear equations with the covariances as coefficients. A sepa-

rate calculation is needed for each sample-size.

Several studies of particular distributions have been published. Exact

analytical solutions have been given for the rectangular distribution

(Lloyd, 1952), the exponential distribution (Sarhan, 1954), and the gen-

eralized geometric distribution (Downton, 1954). Numerical solutions

for certain small sample-sizes have been derived for, among others, the

normaldistribution (Godwin, 1949 a), the extreme-value distribution (Lieb-

lein, 1954; see also Lieblein & Zelen, 1956), the triangular distribution

(Sarhan, 1954), and Laplace’s distribution (Sarhan, 1954). The case of

censored samples has been studied numerically by Sarhan (1955) and

Sarhan & Greenberg (1956).

The present chapter contains one of the main results of the thesis.

A procedure will be developed which furnishes approximations to the

exact solution of the minimum variance problem. The method will be

used for both complete and censored samples and illustrated by several

numerical examples. The resulting linear estimates will be called nearly

best linear estimates or, shorter, nearly best estimates.

The main contents of the chapter have been summarized in an earlier

publication (Blom, 1956).
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10.2-10.3

10.2. A preliminary remark

When we seek a convenient method of solving the minimum variance
problem, our first thought is, perhaps, to write U, as given by (9.1.2),
as a linear combination with unknown coefficients of the unweighted
differences 6;=2%j11—2%; (cf. 4.4). If the covariances of the variables

6; are known, an expression for the variance of U is then obtained,

which can be minimized in the usual way. This method works,in fact,
excellently when G(u) is a By-transform (cf. 3.5) because of the explicit
expressions (4.4.6) which are then obtained for the expected values
£'6,6;, and hence for the covariances of the differences 6, and 6,;. In
this special case it is even possible to obtain by this method an exact
analytical solution of the minimum variance problem. Weshall not
reproduce the solution, which, as mentioned in 10.1, has already been

derived by other authors for the three members of the B,-family,
though the relationship between these distributions seems to have passed

unnoticed.

In the general case, the expected values referred to above are difficult

to calculate, and it is better to abandon this approach to the problem.

Instead, we use the formula (9.2.7), which is based upon the properties

of the weighted differences y,; introduced in 5.5.

10.3. Determination of unbiased nearly best estimates

Let U be a linear estimate of the general form (9.1.2). It is an

unbiased estimate of k,u+h,o, if the conditions (9.2.13) are satisfied.

We shall assume that the means Hx, appearing in these expressions

are accurately known from tables, etc. (later we shall remove this condi-

tion). As seen from (9.2.7) and (9.2.8), the variance of U is, apart

from the error term in (9.2.7), proportional to

Z= > iB-— (> i) (10.3.1)

Let now Z be minimized with respect to the h,’s subject to the side

conditions (9.2.13). Generally, the true minimum of var U will not be

attained in this way, since the remainder term is discarded. Later, we

shall examine the consequences of this approximation both empirically

(cf. 10.8) and analytically (cf. Chapter 13). For the present, we merely

point out that, as will emerge from the empirical study, good results

may be obtained even when the remainder term is considerable.
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10.3

The solution of the minimum value problem can, in terms of two

Lagrange multipliers, be written

h,-h=a, C1, +a, Csi; (1=0, 1, eeey n), (10.3.2)

where .
- ] n—~—— Yh.
h n+l 2, :

The determination of a, and a, is made in the traditional way. Mul-

tiplying (10.3.2) first by C,, and adding from 0 to n, secondly by C4;

and again adding from 0 to n, we get, using (9.2.11) and (9.2.13),

Ay dy, + de dy = ky, (10.3.3)
Ay Ug, + Ag dog = ke,

where

d= > C,0u, (r,8=1,2). (10.3.4)
i=0

Set
1 do, —d

D={d,3, D={a -I 22 a (10.3.5)
| D| — dey dy,

where | D| = dy, dp — dia.

If |D|+0, the solution of the system (10.3.3) can be written

a, =" k, +d"?ke,
* * ° (10.3.6)

i, = B22 hey + akeg.

Finally, (10.3.2) is multiplied by h,, and the n+1 relations are added.

Hence we obtain the minimum of Z

Zunin = Oy, Key + Oy ky . (10.3.7)

It is in most cases convenient to translate the solution from h, to g;.

By (9.2.3) and (10.3.2)

ji= 0; [a4 (C1i — Cr i-1) + 2 (Coi— Cei-1)] (10.3.8)

or, alternatively, in central difference notation

g,= — 0,[a, 67 6;+ a, 6" (0; H x,)]. (10.3.9)
The estimate

U* = >, 9; Zi) (10.3.10)
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10.3

with these coefficients will be termed the unbiased nearly best linear
estumate of kiu+k,o. Its variance is given by

Oo

* —_________________ e

var U (n+1)(n +2) Zein + 07 Ryar, (10.3.11)

where Zin is given by (10.3.7), and Ry, is an error term (cf. 8.4).
By taking k,=1, k,=0 or k,=0, k,=1, we obtain the nearly best

estimates

ye = 2 91i i)»

(10.3.12)

o* = 2 J2i %i)

of w and oa. The coefficients are given by

Gri = O:[d"* (C1i— Cy 1) +0"? (Czi—Cai-a)], (r=1, 2). (10.38.13)

The variances of u* and o* are, to the accuracy provided by the leading
term in (10.3.11),

 

var ut a Aso

© n+] (n+2) [DI
(10.3.14)

2x or diyvar og ~—__—__—_. _= .
(n+1)(n+2) |D|

Using the expressions (8.4.9) and (8.4.10) or by a direct calculation, we
further obtain

2 dl
* 0 12
O_OOCU 1 . ecov (wu, a) (n+ 1) (n+2) [DI (10.3.15)

The procedure developed above can be summarized in the following
numerical rules.

Step 1. Compute the weights 6, according to (9.2.4).
Step 2. Compute 0,Hx,, where Ex, is the mean of the ith order sta-

tistic in a sample of m values from the reduced cdf. F (2).
Step 3. Compute the quantities C,; and Co; according to (9.2.9) and

(9.2.10).

Step 4. Compute the elements d,, of the matrix D and the elements
d™ of the reciprocal D~* according to (10.3.4) and (10.3.5). Note
that, in the symmetrical case, dj,=0. Hence d,,/|D|=1/d,,,etc.
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Step 5. Compute the coefficients of the nearly best estimates u* and o*

by inserting the values of d”, 6,, and C,, in (10.3.13).

Step 6. If the variances of u* and o” are required, use (9.2.2) or, if the

variances and covariances of the variables x; are unknown, the

approximate expressions (10.3.14). (As mentioned in the begin-

ning of the section, these approximations may be crude, even

though the method works excellently in other respects.)

Numerical illustrations of these rules will be given in 10.8.

10.4. A single unknown parameter

When only one of the parameters uw and o is unknown, the method

described in the foregoing section should be modified.

(a) uw unknown, o known.

Z in (10.3.1) is minimized subject to the single side condition

n

> Cuih=hh.i=0

The solution is found to be

hi ~ h = ay C1 9

where ay = A,
dyy

(10.3.11) is valid even in this case with

Zrnin =, k, .

Further, the coefficients of the resulting nearly best estimate Uf are

given by
ji = 0; ay (C1; — C*; i-1)- (10.4.1)

It is easily found that the mean of Uf is given by

HU{=k,u+o > Coihy = ky (uo).

i=0 dy,

Thus we obtain an unbiased nearly best estimate u* of uw by taking

k,=1 and subtracting the known term od,,/d,, from Uj. The variance
is given approximately by
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10.5

var p*~ @EDi (10.4.2)

(b) uw known, o unknown.

The coefficients of the nearly best estimate Uf are given by

gi = 0; Az (C2i — C2 i-1), (10.4.3)

where dy = Ba
do.

The mean of U$ is

 

E Us —_ ky (i4 | .

22

An unbiased nearly best estimate o* of o is obtained by taking k,=1
and subtracting the known term wudj,,/d., from Uz. The variance is
approximately

on 1
* mn —— e

varo (n+1)(n+2) doo
(10.4.4)

10.5. Censored samples

The procedure developed in 10.3 can easily be extended to the case

of censored samples. Suppose, e.g., that the 7, smallest and r, largest

observations zj) are missing; the estimation of u and o should then be

based upon the observations %7,41),...,%m-r)- Thus we must require

that, in (9.1.2), the g,’s corresponding to missing observations are zero.

Consequently, in (10.3.1) we take

hyo =h,= see =h,, and hn-+,= eee =h,.

Hence

nN—-T,—-1

Z=(rthat Dd WE (e+ 1) hn, —
i=7,+

1 n—-T.-1l 2

-a |tntpat > ba (rathn
n+1 i=r,+1

The side conditions (9.2.13) are changed in a similar way.

Determining the minimum of Z in the same way as before, we see

after some calculation that (10.3.2) is still valid, provided that we re-

place Ci; and Co; by Cy; and C3; according to the following definition.
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1
— 6 for O<t<r
r+" ° ,

Chi=

1

Chi for 7, +1<i<n-r,—-1

1 , |
redo for n—TrgS 1 <0,

(10.5.1)
1 .

|-— 6,41 H4%741 forO<1<7,

Czi= Cai for 7, +1<i<n-r,—I

1
rt On+r, HXn-r, for N-T,R1< N.

With this modification the other formulae in 10.3 also hold good.

Other types of censoring are similarly handled. We realize that the

extreme cases of censoring occurring when the estimation is based upon

a few selected observations can also be treated by this method.

10.6. a, 8-corrected nearly best estimates

The nearly best estimate, which has been discussed in the preceding

sections of this chapter, was derived on the assumption that the vari-

ance of the linear estimate (9.1.2) is approximated by the leading term

of (9.2.7). We saw, however, in 9.2 that the variance can also be

written in the «, B-corrected form (9.2.16). By using the leading term

of this formula as the starting-point for derivations of the same kind

as in 10.3, we are able to construct a more general estimate, which will

be called the «, B-corrected nearly best linear estimate. Since the theory

of this estimate has as yet not been fully explored, the following dis-

cussion has a preliminary character.

We shall assume that the sample is non-censored. Further, we shall

suppose that «, and £8, do not depend upon 7, so that a,=a and

6,=B. As seen from (9.2.16), we have then to minimize

 

n 1 n 2

Z! =

>

oh iy) >
2 Pi n’ + ] (> Pi )

where Po=l—a, pyp==pn-1=1, en=l—-B,

with the usual side conditions (9.2.13). It should be observed that the

quantities 6,, which appear in these conditions, should now be defined

by (9.2.14).
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The following modifications of the formulae given in 10.3 thenarise.
The 4,-coefficients which minimize Z’ are given by

 

 

h,—h=a,- Gi 4a, 2,
Pi Pi

where ih-— S hWl +1 mt

The multipliers a, and a, are given by (10.3.6), provided that we replace
(10.3.4) by

d,« _ > C;; Cs

i=0 0;

 

» (r,s=1, 2).

The coefficients of the «, B-corrected nearly best estimate U*’ are

0;
gi = 0 [a1 (C1i— Cy 1-1) +g (Cai — Ce i-1)],

where 6, is given by (9.2.14).

Formula (10.3.11) should be replaced by

Oo"
*/— 2var U (n’ +1) (nw £2) Zmin to Ry,

where n’=n—a—, and Ry is an error term. The remaining expressions
in 10.3 are valid with the modifications already mentioned.

The estimate U“’ contains two quantities « and B, which have to
be determined. Theoretically, they might be chosen in such a manner
that the approximation to the best estimate becomes as good as pos-
sible. This principle has, however, no practical interest at the present
state of our knowledge, as no method of calculating the optimal values
is known. Moreover, the numerical study described in 10.8 lends support
to the assertion that the efficiency of the nearly best estimate derived
in 10.3 is often so high that any substantial improvement of the
efficiency cannot possibly be effected by using an «, f-corrected esti-
mate. (However, there may, of course, exist distributions for which

the correction is of practical importance from this point of view.)
Quite apart from these remarks, there is often good reason for

using «, f-corrected nearly best estimates, as we shall see in the next
section.
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10.7-10.8

10.7. Nearly unbiased nearly best estimates:

We have hitherto assumed that the means H 2; are accurately known.

When, as is generally the case, such detailed information is not avail-

able, it is not possible to calculate exactly unbiased estimates, and a

certain bias must be tolerated. To reduce the bias, we use the «, p-

correction in the way described in 9.3 (cf. also Chapter 6). We then

proceed as follows.

First, the quantities « and # are determined such that G(m) is a

good overall approximation to #4.

Secondly, the nearly best estimate is derived by either (a) the method

described in 10.3 or (b) the method described in 10.6. Regardless of

which alternative is chosen, C., should be replaced by Cz, defined by

(9.3.2). In all other respects the rules are unaltered. When alternative

(b) is used, the question of the choice of « and f, which wasleft open

in 10.6, is thus solved. |

It should be observed that, from the numerical point of view, alter-

native (a) is less attractive to use than alternative (b). In the former

case we must, as an examination of the rules immediately shows, com-

pute the values of G(u) for w=, (¢=1, ..., n), and the values of

[G’ (u)]"* for u=;. If, on the other hand, alternative (b) is chosen, the

calculations have to be made for uw=z7; in both cases.

In either way we obtain estimates which may be denoted nearly

unbiased nearly best linear estimates. As already mentioned, they have often

a very small bias and then practically coincide with the unbiased nearly

best estimates treated in the preceding sections of the chapter.

10.8. Examples of unbiased nearly best estimates

The method for finding nearly best estimates can be expected to

yield satisfactory results, if the error term in (9.2.7) or (9.2.16) is small

compared to the leading term. In Chapter 13 weshall show that, given

certain general conditions, this is true asymptotically in the sense that

the quotient of the error term and the leading term tends to zero when

Noo,

It is, however, a notable feature of the method that the approxima-

tion may often be very good even though the sample-size is small. We

shall show this empirically for seven different distributions. These distri-

butions have been chosen, because best linear estimates are known
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10.8

TABLE 4.

Right triangular distribution. Calculation of unbiased nearly best estima-
tes uw* and o*. Sample size n=5.

  

    

 

a 6; 6; Bx; Cli Coi 9: (Cui—

|

91 (Cri Gli gJ2i
C1 i-1) C2 i-1)at

0 lo 0 —0.1925| 0.2427
1

|

0.1925

|

— 0.2427

|

— 0.0797

|

— 0.1127

|

0.02170

|

— 0.06841

|

0.3679

|

—0.3588
2

|

0.2722

|

— 0.1300

|

— 0.0611

|

— 0.1667

|

0.00505

|

— 0.01469

|

0.0816

|

—0.0783
3 0.3333] 0.0367 |— 0.0516 — 0.1942 0.00320 | — 0.00916 0.0513 —0.0490
4 10.3849] 0.2309 — 0.0454 — 0.2117] 0.00236 — 0.00673 0.0377 —0.0361
5 |0.4303| 0.4426] 0.43031 0.44261 0.20474 0.28156 0.4615 0.5222
6 10 0

p= [=o mous _ (oer vases| po | 6.720 ee

E01; Co = C2; 0.1826 0.3778 ~3.947 4.216)

Calculation of two last columns: g,, = 6.720 - 0.02170 + (— 3.247) - (— 0.06841), ete.

Joi = — 3.247 - 0.02170 + 4.216 - (— 0.06841), ete.

The expression for 6; is given in (10.8.1). The values of Hx; have been taken from
Table I in Downton (1954). The entries in the above table have been obtained by
rounding off entries taken from the original work sheet.

at least for certain sample-sizes, and thus the efficiency of the proposed

method can be evaluated in each case.

Weshall assume that the means Hx; are accurately known andshall

apply the procedures described in 10.3, 10.4, and 10.5.

(1) Normal, triangular, extreme-value, right triangular, and exponential distri-

butions.

The method developed in 10.3 has been applied to the five distribu-

tions mentioned above in the special case »=5. In all these cases, wu

and o are the mean and the standard deviation of z.

As an illustration, we shall reproduce the numerical calculations in

detail for the right triangular distribution, which is a special case of

the generalized geometric distribution (cf. 3.5). The cdf. of the reduced

variable can be written

F (x) == («+ 20), (—2V2<2<J2).

126



 

10.8

TABLE 5.

Variances and efficiencies of unbiased nearly best linear estimates ye
and o*. Sample-size n=5. |

  

Variances of w* and o* | Percentage

Variance of

|

efficiency
Distribution Estimate Exact Approxi- best linear of nearly

- mative estimate best linear
vanue value estimate

Rectangular pe* 0.1428 0.1428 0.1428 100
o* 0.0714 0.0714 0.0714 100

Normal p* 0.20038 0.1554 0.2000 99.8
o* 0.1337 0.0922 0.1333 99.7

Triangular p* 0.2049 0.1684 0.1934 94.4
o* 0.1083 0.1023 0.1080 99.6

Extreme-value p* 0.2007 0.1374 0.1983 98.8
o* 0.1725 0.1014 0.1667 96.6

Right triangular p* 0.1692 0.1600 0.1691 99.9
o* 0.1053 0.1004 0.1051 99.8

Exponential pe 0.2058 0.1187 0.2000 97.2
o* 0.2592 0.1409 0.2500 96.5

 

#4 and o are the mean and the standard deviation of the distribution. Each
variance should be multiplied by o?. The last decimal may beincorrect in somecases.

 

Hence G (u) = V18u—V/8

1 24% ;
and. I= 3 n+l 5 (2 =0, l, v005 n). (10.8.1)

The calculations required for the determination of * and o* are given
in Table 4. Further, the variances of the estimates have been deter-
mined both approximately according to (10.3.14) and accurately according
to the general formula (9.2.2). In the latter case, use has been made
of the table of variances and covariances of the T7RB-variables con-
structed by Downton (1954, p. 310). As a measure of the efficiency
we take the quotient of the variance of the best linear estimate and
the variance of the nearly best estimate. We shall call this quotient
the efficiency (in the linear sense) of the nearly best estimate.

Similar calculations have been performed for the other four distribu-
tions mentioned above. In the case of the normal and the triangular
distributions, simplifications are possible, since these distributions are
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symmetrical. The resulting variances and efficiencies are reproduced in

Table 5. The efficiencies must be considered very good.

Note that the approximations (10.3.14) are crude in most cases, which,

as already mentioned in 10.3, shows that the method mayyield satis-

factory results even when the error term in (9.2.7) is considerable.

The two following examples illustrate the case of one unknown

parameter.

(2) Exponential distribution.

1
Let z have thefr.f. we, (z>), where o is known. Note that

the definition of w is not the same as that used above.

The best linear estimate of uw is zq)—o/n. The nearly best estimate

can be constructed by the method described in 10.4. We have

0 for 1=0

 Oi = 1—- —~ for Ll<i<ntl,
n+l

~~ for i=0
n+l

Cy= 1
— for l<i<n,
n+l

and d,,=n/(n+1). Setting k,=1 in (10.4.1), we get Ul =zqa). The mean

of Ut is w+oa/n. Thus the nearly best unbiased estimate y* is za)—o/n,

and hence it coincides with the best estimate.

The variance of * is, as seen from (10.4.2), approximately o*/[n (n + 2)],

the exact value being o7/n’.

When o is unknown, the nearly best estimate of mw is no longer

100 % efficient. If, e.g., n =5, the efficiency (in the linear sense) is 99.3 %.

(3) Laplace’s distribution.

Suppose that z has the frf. $e7!*~"', where w is unknown. Wefind

; 1
. for i< ee

n+l

a _ n
for 12>

n+1

 

4+
bo

]
1— ,
 .
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Let us assume that n is odd, so that n=2m-+1. Then

]
e

——— for 0<i<m
n+1

Cu={ |
for m+1l<i<n

n+l

and dy,=1/(n+1). Applying (10.4.1), we see that the nearly best estimate
is the median

[= my.
Similarly, when n=2m, [A* = 4 (Zemy + 2m):

In this example the nearly best estimate is identical with the maximum
likelihood estimate (cf. 14.5).
As seen from Sarhan (1954,p. 321), the efficiency (in the linear sense)

of the median is 98.9 % when n=4 and 90.2 % when n=5,

(4) Rectangular distribution.

We take « as the mean and o as the range of variation of z. Suppose
that we have a censored sample of the type considered in 10.5 with
ry =lo=P.

The values of 6;, Cy, and Co; were given in 9.2, p. 113. By (10.5.1)

    

r+l 2(n+1)(r+1)

1Ch. = 0, Ck = — —_ forr+l<i<n-—r-l
n+l

1 n—-2r—]
~_______ f —7ricn.l rt] Qin +1) (r+1)7 StS%

Inserting these values in (10.3.4), we find

2 n—-2r—]
dy=> ta = 9, (Ftl)FL)

 

Hence by (10.3.5)

gua?

   

(n+1)(r+]1) 2 o"tl
n-2r—] » = 0, dB = 2

Thus we obtain from (10.3.13) the nearly best estimates

Le* = 4 (Zann +2e41),

n+]
o*i __ Ir— 1 (2¢n —r) ~~ Zer41))>

9 — 595540 G. Blom
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which, in this special case, coincide with the best linear estimates.

Further, by (10.3.14)

(r+1)o var ot = 2(r+1)c

var eeFe 1) (n +2) (n+ 2)(n—2r—1)

where we may use equality signs, since the error terms are zero.

If no sample-values are missing, we take r=0, and w* and o* are

specialized to the well-known estimates already considered in 9.2. For

comparison, the variances of “* and o* obtained for r=0 and n=5

have been included in Table 5.

The examples given in this section concern distributions of very

different shapes. In all cases the nearly best estimate is remarkably

efficient (in the linear sense) in view of the small sample-size used in the

numerical calculations; in several cases it is extraordinarily good, the

variance being practically the same as that of the best linear estimate.

The results seem to warrant the conclusion that the exact method for

finding best estimates can, in many cases encountered in practical applications,

be replaced by the approximate method without any appreciable loss of

effrcrency.

It should, however, be pointed out that it 1s possible that other

distributions behave less favourably than those considered here. Further

research is needed to clarify this question.

Finally, it should be mentioned that we may compare the nearly

best estimate not only with the unbiased best linear estimate but also

with the unbiased best general estimate. By the latter term we denote

the estimate with the smallest variance in the class of all unbiased

estimates, linear or non-linear. By dividing the variance of this estimate

with the variance of the nearly best estimate, we obtain the efficiency

(in the general sense) of the latter estimate.

As an example, we consider once more the estimation of o in a

normal cdf. We saw in Table 5 that the efficiency of o* (in the linear

sense) is 99.7 %. The corresponding efficiency (in the general sense) is

98.6 % (cf. Chernoff & Lieberman, 1954, Table II). Thus o* compares

very favourably to any other unbiased estimate.

We shall return to these questions in Chapters 13 and 14.

10.9. Estimation of percentage points

In the above applications of the general method for constructing

nearly best estimates we have everywhere assumed that only mw and o

should be estimated. In this section we shall draw attention to a fact,
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which is obvious, though it has not been mentioned hitherto, viz. that any

percentage point of the distribution can be estimated by the same

method. For brevity, we shall only discuss the situation considered in

10.3, i.e. we assume that both mu and o are unknownand,further, that

the means Ha; are accurately known.

Let zp be an arbitrary percentage point defined by

 r (2-4) =P, (0<P<\}).

It follows from 10.3 that, in order to estimate zp, we have only to

identify this quantity with the general parameter k,u+k,o studied in

this section. Evidently we have in this case

ki=1, k=G(P). (10.9.1)

We insert these values in (10.3.6) and the resulting values of a, and

a, in (10.3.8). The estimate 2; with the coefficients g,;, which are then

obtained, is an unbiased nearly best linear estimate of zp. Obviously,

2% =u*+o*G(P). (10.9.2)

It is interesting to consider the variance of z3 when P is given

different values between 0 and 1. Inserting (10.3.6) in (10.3.7) with the

values of k, and k, given above, we infer from the latter formula and

from (10.3.11) that, apart from the remainder term, the variance of 23

is proportional to the quadratic

d2[G(P)P+2d2G4(P)+d4.

Letting P vary from 0 to 1, we see that this expression attains a

minimum when P is equal to a value P, defined by

It should be observed that Py) is a function of n, which commonly
converges to a limit when noo.

The percentage point corresponding to P, is of some special interest,
because, of all such points, it is “easiest”? to estimate (for any given
sample-size). The more P differs from P,, the greater becomes the
variance of the corresponding percentage point estimate. Note, however,
that these statements are true only in an approximate sense, as we have
neglected the influence of the remainder term in (10.3.11).

Moreover, it is interesting to observe that, as is readily seen, the
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variance of the ‘optimal’ percentage point estimate 2}, is given ap-
proximately by the same expression (10.4.2) as was obtained for the
variance of the nearly best estimate of uw when a is known a priori.
Thus, apart from the error term, var zp is always greater than or

equal to this expression.
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CHAPTER 11

LINEAR ESTIMATES WITH NEARLY MINIMUM MEAN
SQUARE DEVIATION

11.1. Introduction

In Chapters 9 and 10 we have tacitly assumed that only unbiased
or nearly unbiased estimates are worth considering. In this chapter we
shall (a) drop the condition of unbiasedness and (b) use the mean square
deviation (MSD) about the true value of the parameter as our measure of
the precision of an estimate. An estimate will be considered good, if
its MSD is small.

The problem of constructing estimates with the least possible MSD
has been studied by Goodman (1953) and Chernoff & Lieberman (1954),
among others.

The discussion in this chapter will concern the estimation of ¢ in the
edf. F[(z—)/o] by means of a linear estimate of the form (9.1.1).
More specifically, we shall consider the class of all linear estimates o*
of o the means of which are proportional to o. From among this class,
we select the estimate which has the property that its MSD about o

E (o*—o/)
is as small as possible.

Just as in the corresponding problem for unbiased linear estimates,
the exact solution is laborious to apply in practice, and weshall there-
fore construct a nearly best estimate in the sense that the MSD is
nearly minimum. It will be shown that this may be accomplished by
a slight variation of the procedure developed in Chapter 10.
We shall only consider the situation which arises when the variances

and covariances of the TRB-variables are unknown but their means
are accurately known from tables, etc. The case in which no such
accurate values are available is treated in the same manner as in 10.6
and will not be discussed here.

11.2. Determination of an estimate with nearly minimum mean
square deviation

We shall follow the exposition in 10.3 as closely as possible, using
the expressions (9.2.7) and (9.2.13) as our starting-point.
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The relations (9.2.13) express the conditions which a linear function

U of the ordered sample-values must satisfy in order to be an un-

biased estimate of k,u+k,o, where k, and k, are given quantities. In

the present problem, the mean of U should be proportional to o. Hence

k,=0, and the first relation (9.2.13) becomes

i=0

We see, further, that k, is no longer a fixed quantity but a function

of the coefficients h; determined by

ke =2Cat hj. (11.2.2)

The formula (9.2.7) can be used for determining the MSD. Replacing

U by o*, we find after a simple calculation

oY
__7* _4gR, (11.2.3
(n+1)(n+2) ( )E (o* — 0)? = var o* + (Ho* — 0)" =

n n 2

where Y=)> w-—+(5 i) + (n+1) (n+ 2) (k,— 1)? (11.2.4)
i=0 n+1 \iz

with k, given by (11.2.2).

We now determine the coefficients h;, so that (11.2.1) 1s satisfied and

Y is minimized. The same formal solution (10.3.2) is obtained as in 10.3.

In the present case, however, only a, is a multiplier, a, being given by

dy = (w +1) (n+ 2) (1— ke). (11.2.5)

The system of equations (10.3.3) is valid if we take k,=0. The coeffi-

cients d,, are given by the usual expressions (10.3.4). Using (11.2.5),

we find

diy ~
a--[Diarnera)

; | (11.2.6)
_ 1

“3 [IDI+ (n+1) a) hy

Further, Yin = @ko +(n+1) (n+ 2) (kg— 1)? = 42. (11.2.7)

The coefficients g, of the estimate of with nearly minimum MSD

have the general form (10.3.8) with a, and a, determined by (11.2.6).
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As seen from (11.2.3) and (11.2.7), the MSD about a is given approxi-

mately by
o* d1,

dy, +(m+1)(n+2)[D] (11.2.8)

Let us now compare oj with the unbiased nearly best estimate o*

derived in 10.3. We see that the estimates are identical, apart from a

multiplicative factor. We have, in fact,

* diy “t 2ox = 1 +arpatDd|DlSpl o*. (11.2.9)

Further, a comparison of (11.2.8) and the second expression (10.3.14)

shows that the leading term of the MSD of of is less than the corre-
sponding term of var o”. This does not prove, however, that of is more

efficient (in the sense of having a smaller MSD), since the error terms

have then to be taken into consideration. A gain of efficiency can,

however, be obtained in this way, as shown by the following simple

example.

Rectangular distribution.

The nearly best estimate o* of the range of variation o is obtained
by taking r=0 in 10.8, Ex. (4). It is seen that

jp(td)
(n+1)(n+2)|D| (n—1) (n+2)

Using (11.2.9), we obtain

x nt+2* UT
noO (Zn) — 2a).

The error term discarded in (11.2.8) is zero in this special case. Hence

‘ 20°
E (ojOE)

which, as seen from 10.8, is less than the variance of o*.

A second example will be given in 12.4.
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CHAPTER 12

MODIFIED NEARLY BEST LINEAR ESTIMATES

12.1. Introduction

The method for constructing nearly best estimates is, as we have

shown in Chapter 10, of wide application. In certain cases, however, it

is of interest to change the general procedure. The modification con-

sists in a substitution of derivatives for differences in the expressions

for the nearly best estimate. Certain continuity conditions must then

be imposed upon G'(u) and its derivatives.

The modified method can be applied to both complete and censored

samples. As we shall see later, it bears an interesting relation to the

work of Jung (1955) and, in the special case of censored samples from

a normal distribution, to the work of Gupta (1952).

In 12.6 we shall study the relationship between modified nearly best

estimates and graphical estimates obtained by means of probability

papers.

12.2. Derivation of the modified estimates

Suppose that Condition A in 3.5 is satisfied with © equal to the open

interval 0<u<1 (note that G(u) may be unbounded for w=0 or 1).

Moreover, let us assume that the functions f(z)=1/G’ (w) and «xf (x) =

G(u)/G’ (uw) tend to 0 when wu tends 0 or 1 (cf. 13.2). It is then

possible to replace the differences in the definitions (9.2.9) and (9.2.10)

of Ci; and C.; by derivatives, which, for convenience, will be expressed

in terms of f(x).

By (9.2.6) and (9.2.9) we have

Cri=f (Ai) — f (Ai+1)-

It should be noted that this relation is satisfied not only fori=1,...,2—1

but also for i=0 and i=n, since f(x) is zero at the ends of the range

of variation of &. Using the notation (9.2.5), we have approximately

l

n+l

hi)
Ai)

 
 

 

,(@ \1FE
Cin — ju) a" (5) - n+l fi
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Similarly,
] Ai f’a

Coi~ Ai f (Ai) — Aisa f (Aisi) ned E + 7 (Ai)

In accordance with Jung (1955), we use the notations

d log (x) d log f (x)
71 (%) = —28 1), ¥2(t)= ~l-a%—T

dy, (2) (12.2.1)
, dy, (x , x

yihe=
1 ,

Hence Cnys(A), (r=1,2; +=0,1,..., n). (12.2.2)

Moreover, we find

I
 0; (Cri — Cri) © vr(&i), (r=1,2; ¢+=0,1,...,2). (12.2.3)
(n+1)?

Thus the coefficients (10.3.8) of the nearly best estimate can be approxi-
mated by

Gi = M1 V1 (Ai) + Gayo (Ai), (12.2.4)

a factor (n+1)~* having being included in the multipliers. More directly,
this expression can also be obtained from (10.3.9). The estimate

U = Px &(i) (12.2.5)

with these coefficients will be called a modified nearly best linear esti-
mate of kju+k,o. The question of the determination of the multipliers
will be treated in 12.4.

When only one of the parameters ~ and o is unknown, the same
reasoning holds good with the following modifications: Suppose, e.g.,
that « is unknown. The function f(x) (but not necessarily x f(x)) should
then vanish in the end-points. Moreover, (12.2.4) is replaced by

Gi = Ay Vi (Ai).

The case of an unknown o is analogous.

12.3. Discussion

It is interesting to observe that, if the discussion is limited to linear
estimates defined by means of a continuous weight function, the coeffi-
cients g; can also be derived by means of formulae (8.13.2). It follows,
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indeed, from these approximate expressions that the mean and the

variance of a linear estimate

U=29 Zi) = Px (u+o2)

are, to the same degree of approximation, given by

EU~| (u+ox) h'(x) f(x) da,

var U~— [J [h(af(x) da — (f(x) f (2) day’).

Setting the first expression equal to k,u+k,0, we obtain two side con-

ditions, which correspond to the conditions (9.2.13) obtained in the

general case. By the calculus of variation we determine h(x) so that

the second expression is minimized. Applying (8.13.1) to the resulting

function, we obtain (12.2.4). Note that this methodis less general than

that used in Chapter 10 and in 12.2, where we have used no a priory

assumption concerning the choice of the coefficients g;.

The general form of the coefficients (12.2.4) is previously known

(Jung, 1955), the derivation just outlined being a simplified version of

his method.

12.4. Determination of the multipliers. Examples

There are two alternatives, depending on whether the means Hz, have

been tabulated or not.

(a) Unbiased estimates.

UO in (12.2.5) is an unbiased estimate of k,u-+k,o, if the multipliers

a, and a, in (12.2.4) are determined from the system

ay 2 (Ai) + ds2, v2 (di) =k,

7 OO (12.4.1)
ayan (Ai) Ha; + ae2. V2 (Ai) Hx; = ke

In the symmetrical case we see that

n -1 n -1

a,=k, >V1 a) , =k, > v2, (Ai) Ba ; (12.4.2)
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(b) Nearly unbiased estimates.

In (12.4.1), replace A; and Ha, by 4; =G@(x,), where x, is given by
(9.2.15). The resulting estimate is only slightly biased if « and £ are
chosen appropriately (cf. Chapter 6).

We shall give two examples.

(1) Normal distribution.

The normal cdf. satisfies the conditions stated in the first paragraph
of 12.2. By (12.2.1)

Vj(x)=2, y,(x)=2?—-1.

(a) Unbiased estimates.

It follows from (12.2.4) and (12.4.2) that the modified unbiased nearly
best estimates of uw and o are

 

_ . 2Ai ei)

“=z, o==—>
>A; Ex;
i=l

_ a
where A,=® (4).

The first estimate is 100% efficient. The second estimate has prac-
tically the same efficiency for all sample-sizes as o* derived in 10.8,
Ex. (1). For example, if »=5, the efficiency is 99.9% (in the linear
sense) and 98.7% (in the general sense) (cf. pp. 127 and 130). The
high efficiency of o, together with its simplicity, makes this estimate
very suited for practical application.

(b) Nearly unbiased estimates.

The estimate o is altered to

 

o = = ’

>, ai”
i=]

? 1—aher (=O1(—-_ _}.
were A (555)

A numerical investigation has been performed, which is intended to
demonstrate that, in addition to its main purpose of providing a nearly
unbiased estimate of high efficiency, o’ may, by a change of «, also
provide a biased estimate with nearly minimum MSD (cf. Chapter 11).

139



12.4

TABLE 6.

Normal distribution. Mean of nearly unbiased nearly best estimate o’.

a

n
0 0.35 0.375 0.5

5 1.193 1.002 0.987 0.913

6 1.174 1.004 0.991 0.924

7 1.159 1.005 0.993 0.932

8 1.147 1.006 0.995 0.939

9 1.137 1.006 0.996 0.944

10 1.128 1.007 0.997 0.948

15 1.099 1.007 1.001 0.963

Each entry should be multiplied by o.

In Table 6 the mean of o’ has been tabulated for some sample-sizes.

In accordance with the results obtained in 6.10, the bias is small for

n=5—15 when a lies in the interval 0.350-0.375. When «=0 or «= $3,

there is a considerable bias for n=5, which diminishes when n increases.

As a measure of the precision of o’ we use the MSD about o. Table 7

gives the MSD for the same values of a as in Table 6 and, in addi-

tion, the variance of the unbiased best linear estimate. The entries for

a=0 and «= have been taken from Chernoff & Lieberman (1954,

Table II). The moments of the normal order statistics required for

constructing Table 6 and Table 7 have been obtained from Godwin

(1949 b) and Teichroew (1956).

TABLE 7.

Normal distribution. Mean square deviation about o of nearly unbiased

nearly best estimate o’.

   

m Variance of

n best linear

0 | 0.35 0.375 | 0.5 estimate

5 0.228 0.134 0.130 0.119 0.133

6 0.176 0.107 0.104 0.096 0.106

7 0.143 0.088 0.086 0.081 0.088

8 0.120 0.076 0.074 0.070 0.075

9 0.103 0.066 0.065 0.051 0.065

10 0.090 0.058 0.057 0.054 0.058

a

Each MSD should be multiplied by o?.
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It is observed from Table 7 that

(a) the precision of o’ for «=0.35 and «=3=0.375 is about the same
as that of the best linear estimate.

As a suitable single value of « we suggest the value «=3 already
considered in 6.10.

(b) the biased estimate obtained for a=4 has the smallest MSD of the
estimates entered in the table.

The latter statement illustrates the situation discussed in Chapter 11:
If some bias is allowed, it is possible to construct estimates which have
greater precision than the best unbiased estimate. It might be added
that, by considering values in the neighbourhood of a=4, it is possible
to find estimates with a MSD which is somewhat smaller than the
MSD for «=}3. Weshall, however, not consider this possibility, be-
cause, as seen from column 3 in Chernoff & Lieberman’s table referred
to above, even the MSD for «=4 is only very little in excess of the
minimum MSD which can be attained by any estimate, linear or non-
linear.

We conclude from these statements that it is advantageous to use
the modified estimate o’, both when nearly unbiased estimates are re-
quired and when biased estimates can be used.

(2) Werbull’s distribution.

Weshall discuss the estimation of o in the cdf. (cf. 6.14)

F(?) =]—exp |-(2)"], (220, m1).

This is a one-parameter situation of the type discussed at the end
of 12.2. Condition A is satisfied for 0<u<]l. Further, the function
x f(x) tends to zero in the end-points. Hence we are entitled to apply
the results in 12.2. By (12.2.1)

¥2(%) =m (x™—1).
(a) Unbiased estimate.

The modified unbiased nearly best estimate is

where A, = (108 ——~
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When m=1 Weibull’s distribution is specialized to the exponential

distribution; o is then identical with the best linear estimate 2Z.

(b) Nearly unbiased estimate.

_ > NP" ey

Wehave og=

> Ay
i=1

n—a—-B+1\""
where Ay (log"=F

The question of the choice of « and f was briefly discussed in 6.14.

As the best linear estimate has not been determined numerically for

Weibull’s distribution, no investigation of the efficiency of o and oO"

has been performed.

12.5. Censored samples

The method described above can easily be adapted to the situation

where the 7, smallest and r, highest sample-values are missing. In the

system (12.4.1) we have, in fact, only to alter the summation and let

the sums run from 7r,+1 to n—7r,. In all other respects the procedure

is the same as before. We shall give an example.

Normal distribution.

We shall assume that both mw and o are unknown.

(a) Unbiased estimates.

We obtain the system

Ay (M— 11, — 1%) + Ag DA = ky,

a, LH x; +54,x; = ky.

Here and subsequently the sums run from 7,+1 to n—rg. After some

calculation we obtain the following estimates

w=UgHizwy, C= UgAr-

The coefficients are determined by

1
ui =— gaib 2;

 

hi—h
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~ ]
where A=——— di,

]
KE xu,= ————__ XE 2;.

N-Ty—Ts

For r;=7r,=90 the estimates are specialized to those obtained in 12.4,
p. 139.

j and o should be compared with the closely related estimates which
have been discussed by Gupta (1952) and investigated numerically by
Sarhan & Greenberg (1956).

(b) Nearly unbiased estimates.

By solving the modified system (12.4.1) or, more simply, by substi-
tuting A; for Hx; in uu and o, we obtain

~y, , ~y ,

es = 2 g91i iy, Oo = 2 922i,

] -, ,

where gu =———_ - i’ J2i »

/

A; — M4

12.6. Application to probability papers

As already mentioned in 12.1, there is a connection between certain
of the results obtained in the preceding sections and the use of prob-
ability papers.

Let #' (x) be an arbitrary continuous cdf. and G'(u) its inverse. The
probability paper is so designed thatone of the scales, say the vertical,
is proportional to G(u) and consequently non-linear. This paper can
be used for graphical estimation of the parameters in a cdf. of the form
F[(z—y)/o] when a random sample of size n is available. The ordered
sample-values 2;),(¢=1, ..., m), are then plotted against P; on the vertical
axis, where P,,..., P, is a set of quantities to be discussed presently,
and a straight line is fitted visually to the points.

In accordance with Chernoff & Lieberman (1954), we shall assume
that the fitted line is identical with the line obtained by minimizing the sum
of squares of the horizontal deviations from the line.

Let us introduce the notations

v=G(P), u1=G4 (Pi). (12.6.1)
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The position of any point on the paper is determined by the abscissa

z and the ordinate v. By means of these symbols the true line can be

written

Z=U+ ov,

and the fitted line Z2=Ug t+ Og,

where ug and o, are the graphical estimates of uw and o. Applying the

usual formulae of regression analysis, we find

(12.6.2)
n

2,(vi — 0) 2a)
Og= p)

> (vi — 6)?
i=1

where gals, s-1 Sy
Ni=l o nih *

Thus yu, and o, are linear estimates. They depend upon the quantities

P;, which are as yet undetermined.

A common plotting rule is P;=i/(n+1), which seems to have been

first proposed by Weibull (1939, p. 28 ff.). It has been much recom-

mended by Gumbel (1954, p. 13 ff.). Another well-known rule is

P,=(i—4)/n, which has been discussed by Bliss (1937) and Ipsen & Jerne

(1944), among others. We shall consider the general expression

taala RET (ec, B<1), (12.6.3)

of which the rules mentioned above are special cases. We observe that

v;, is then specialized to A; =G@(2;). The given expression has the following

advantages if « and f are suitably chosen.

(a) The graphical estimates are nearly unbiased.

(b) The points (2; P:), (@=1,..., ), lie on the average on line,

which deviates only very little from a straight line.

(c) The graphical estimates are highly efficient in the important case

of the normal distribution.

The truth of statements (a) and (b) follows from the discussion in

Chapter 6. Formula (6.9.1) gives, in fact,

BEep=ptoku~utoG (nm).
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In order to verify the truth of statement (c), we shall consider the
graphical estimates of the mean and the standard deviation of a normal
population obtained by aid of a normal probability paper. We then take
a=in (12.6.3); the choice of « will be discussed below.

It is seen that 0=0 for any choice of a; hence yy in (12.6.2) is
specialized to Z. Moreover, o, is seen to coincide with the modified
nearly best estimate o’, discussed in 12.4, Ex. (1). Applying the con-
clusions made in this example to the present problem, we find that, in
the special case of a normal distribution,

(1) the plotting rule

leads to a practically unbiased estimate of o with a MSD about o which is
about the same as that of the unbiased best linear estimate,

(2) the plotting rule

 

leads to a biased estimate of o with nearly minimum MSD about o.

The latter statement is due to Chernoff & Lieberman (1954). Accord-
ingly, the first rule should be applied when unbiasedness is essential,
and the second rule otherwise. The rule P; = i/(n+1), on the other hand,

cannot be recommended for use in the normal case if high efficiency
is aimed at and the sample-size is small.

It should be mentioned that the expression obtained by taking
a=-f in (12.6.3) has been recommended as a plotting rule for any
probability paper by Benard & Bos-Levenbach (1953), who, for other
reasons than those given above, proposed the value «=0.3, irrespective
of the shape of the distribution.

It is interesting to observe that, if a censored sample from a normal
population is plotted according to the rule (12.6.3), and the graphical
estimates are determined by an application of the least-squares principle
described above, these estimates coincide with ”’ and o’ derived in
12.5. The proof of this statement is simple and will not be given here.

Finally, though it is outside the scope of the present chapter, it should
be mentioned that, if other probability papers than the normal are
considered, the rule (12.6.3) generally does not furnish graphical estimates
with high efficiency. As a simple example we may take the rectangular

10 — 595540 G. Blom 145



12.6

distribution. Suppose that an ordered random sample from this distri-

bution is plotted according to the rule P;=i/(n+1) on a paper with

linear scales in both directions. It then follows from (12.6.2) that the

graphical estimates of the mean ju and the range of variation o are

identical with the arithmetic mean and Gini’s mean difference, respec-

tively, which, as seen from the example in 9.2, p. 113 ff., are very in-

efficient as compared with the best linear estimates based upon the

extreme values of the sample.

More generally, it may be shown by an application of the formulae

in 8.13 that, for any cdf. satisfying certain general conditions, the

graphical estimate o, has approximately the variance

o Ma Be
4n Us
 9

where fl, and 4, denote the second and fourth moments, respectively,

of the reduced variable € around its mean.

Thus, when the sample-size is large, og has approximately the same

variance as s/Vu,, where s is the standard deviation

of the sample! (cf. Cramér, 1946 a, p. 353). This relation “explains”

in a way, why the normal probability paper works so well; we know

that s is a good estimate in this case, and hence this is true also of

o,. We also understand that the normal distribution is exceptional in

this respect; s (and thus also o,) is for the most part an inefficient

estimate of a scale parameter.

Similar remarks apply to the location parameter uw.

1 Since z=u+oa8, the standard deviation satisfies Hs~o ite; this explains why

we have divided s by Vy.
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CHAPTER 13

ASYMPTOTIC PROPERTIES OF NEARLY BEST

LINEAR ESTIMATES

13.1. Introduction

The purpose of this chapter is three-fold.

(a) It will be shown that nearly best linear estimates of location and
scale parameters are generally asymptotically efficient (in the general
sense considered in Part I).

(b) The order of magnitude of the variances and covariances of nearly
best linear estimates will be analysed in various situations.

(c) The asymptotic distribution of nearly best linear estimates will
be determined in an important special case.

Both the case of two unknown parameters and the case of a single
unknown parameter will be considered. In order to solve the problems
involved in (a) and (b), we shall use the general results concerning the
asymptotic behaviour of estimates presented in Part I of this thesis.
The classification of cdf:s introduced in this part will also be exten-
sively used in the chapter.

Some preliminary remarks will be made in 13.2 and 13.3. In 13.4
and 13.5, we shall investigate the asymptotic properties of the nearly
best estimates when the cdf. belongs uniformly to Type 1. It will be
demonstrated that, under general conditions, these estimates are asymp-
totically jointly efficient, asymptotically jointly normally distributed,
and, in accordance with the general theory, have variances and, gen-
erally, a covariance of order n~*. Similar results apply to the case
of a single unknown parameter.

In 13.6 and 13.7, we shall study nearly best estimates from Type 2
distributions. As follows from Part I, such distributions occur when the
ir.f. possesses discontinuity points in the interior or at the ends of the
range of variation of the distribution. The discussion will be limited to
the latter alternative. Both uniform Type 2 distributions and other Type 2
distributions will be considered. It will be shown that nearly best esti-
mates from Type 2 distributions show a different behaviour than estimates
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from Type 1 distributions; they are not asymptotically normal, and

their variances and covariance generally (but not always) converge as n*.

However, they have an important property in common with estimates

from Type 1 distributions, namely, they are generally asymptotically

jointly efficient.

In 13.8, some remarks will be made concerning nearly best linear

estimates from Type 3 distributions.

Finally, in 13.9, a summary of certain results is given and also a

table illustrating the behaviour of nearly best estimates corresponding

to B-transforms.

13.2. Classification of distributions with unknown location and

scale parameters

As in the foregoing chapters in Part III, we shall consider the estima-

tion of uw and o in a differentiable cdf. F [(z— 1)/o]. The corresponding

fr.f. is

f (23, 0) =~fllz—p)/ol.
Oo

Let (A, B) be the range of variation! of the reduced variable

E=(z—p)/o.

Suppose that nearly best linear estimates of «4 and o have been con-

structed according to the method described in Chapter 10. In order to

facilitate the study of the asymptotic properties of these estimates, we

shall use the classification introduced in Part I. There are two situa-

tions, depending on whether both parameters are unknown, or whether

only one of these is unknown. Weshall reverse the order of presenta-

tion as compared with Part I and begin with the former alternative.

(a) uw and o are unknown.

The classification relevant to this situation was given in 2.3. Iden-

tifying the general fr.f. f(z; «,, %,...) considered there with fh (% Ms o);

we infer from (2.3.1) after a simple calculation that e,,; in this formula

becomes equal to

Xs | vole) yo(e) fle)dey

1 1¢ should be noted that, in Part I, the interval (A, B) denotes the range of varla-

tion of z; the change of notation will, it is hoped, not cause confusion.
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where, in accordance with (12.2.1),

dlyey HEL, ay age| |
—

| 8

For formal reasons, we shall in this chapter include the factor 1/o? in
e,, and therefore write

B

ers = | r(x) ys (x) f(x)da, (r,8=1, 2),
A (13.2.1)

| Z| = €11 C29 — Cia.

Moreover, Conditions C1 and C2 in 2.3 assume the following form:

(1) With respect to wu.

ConDITIOoN C1. The function f(x) is a continuous function of x in the

interval A<a< B, and tends to zero when x—>A or xB.

CoNnDITION C2. The quantities e,, exist, and | H| ts greater than zero.

(2) With respect to o.

ConDITION Cl. The function x f(x) is a continuous function of x in the
unterval A<a< B, and tends to zero when x->A or x—>B.

ConDITION C2. (The same condition as in (1).)

(b) uw or o is unknown.

In this case we apply the general rules of classification introduced in
1.3. Suppose, for instance, that u is unknown. As seen from 1.3, the
conditions then become

ConpiTion Cl. The function f(x) ts a continuous function of x in the
unterval A<a< B, and tends to zero when x—>A or x->B.

CONDITION C2. The quantity ¢,, exists and is greater than zero.

Consequently, the conditions are, with a minor modification, the same
as those stated in (1) above. The case where o is unknown is analo-
gous.

The various conditions stated above in (a) and (b) will play an
important réle in the following sections. They enable us to classify any
distribution with unknown location and/or scale parameters into one
of three types according to the definitions introduced in 2.3 and 1.3,
respectively. Especially, the reader’s attention is called to the defini-
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tion of a uniform Type 1 distribution, etc., given in 2.3. As seen from

this section, a cdf. of the form F [(z— )/o| is, for example, a uniform

Type 1 distribution when both uw and o are unknown,and, in addition,

the conditions stated above in (a), i.e. three conditions in all, are ful-

filled. Similarly, F is a uniform Type 2 distribution if, in the pairs

of conditions given in (a), the second condition is satisfied, but not

the first one.

13.3. A general remark

Before entering upon a discussion of the three types of distribution

considered in Part I, we shall make a remark concerning problem (a)

in 13.1, which applies to any of these types.

Suppose that the parameters u and o are both unknown. The nearly

best linear estimates corresponding to this situation were derived in 10.3,

and their variances and covariance are, apart from certain error terms,

given by (10.3.14) and (10.3.15). In order to obtain information as to

the efficiency of these estimates when the sample-size is large, we use

the theorem in 2.2, p. 24.

Let us determine the matrix J mentioned in the theorem. Since

=f) OF © = Ea y(*)

O do «co OG 0

we realize, using the notations (9.2.5) and (9.2.6), that the quantities

I,; in (2.2.8) reduce to

 
 

 

2 n

—~ 3 >, ( 0; — 6441)",
O i=0

n2 n

I59= 2 > (A; 0; — Ai+1 9:41),
O i=0

and a similar expression for I,,. We now use the fact, proved in 5.3,

that, under very general conditions, the quantities 2, and Ha, are

asymptotically equivalent. Then, by (9.2.9), (9.2.10), (10.3.4), and (10.3.5)

we infer that the matrices J and D satisfy the relation (cf. p. 36).

I~ 5D. (13.3.1)
Oo

Now consider the inequalities (2.2.12), which contain lower bounds for

the variances of any asymptotically unbiased estimates of u and o.
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talized variance of ue

we can assert that
is asymptotically efficient (i

13.4. A theorem on Type 1 distributions

shall assume that both and o
m valid for unbiased nearly best

a uniform Type 1 distribution, By
inverse function of u=F (x).

ire unknown. Weshall prove a theore
stimates of uw and o When F ig
= Gi(u) we designate as usual the

=0 or u=1 (or both) and satisfies
unit interval.

Suppose, further, that the cdf. F[(z—
2 stated in 13.2, alternative (a), with

14)/0] satisfies Conditions C1 and
respect to u and o.
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Let p* and o* be t

(with the modification

=, then g,=9 for VS

nts of these estimates satisfy the relations

efficrent. Further,

means pp and o and variances

(13.4.1).

asymptotically jointly

normally distributed with

given by the leading terms wn

) are defined by (13.2.1).
appearing in (13.4.1

t have
an AP-transform, we mus

ated (see further 13.8).
The quantities ¢,, and | E|

Tt should be noted that, when G(w) is

k<4. For other values 0

shall, however, disregard this possibility.

Weshall, first, consider alternative (1) in the theorem. Let us examine

the behaviour of the matrix D in (10.3.5) when ” approaches infinity.

We have, for example, by Condition C1 and by the definition (10.3.4)

of the elements in D (ef. also 13.3)

dyy= 2M (Ai) —f (Aisa) (13.4.2)

Replacing the differences by derivatives

where as usual 4;=G@[i/(n+ 1)].
to the limit, we obtain

in the same way as in 12.2, and. passing

ndeu
(13.4.3)

when n->co. More generally, we find

1 dys —> Crs s (r, s=1, 2),
(13.4.4)
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Applying these results to the expressions (10.3.14) and (10.3.15) for the

variances and the covariance of u” and o”, we obtain the leading terms

in (13.4.1). More directly, this result can be obtained from (13.3.1) and

the general statement in the first paragraph of 2.4.

It remains to prove the statements in (13.4.1) concerning the con-

vergence of the error terms. For this purpose, we apply the general

results deduced in 8.4 and 8.7 concerning variances and covariancesof

linear combinations. For example, in (8.4.5), 7 is identified as ue or o*,

and analogously in (8.4.9). We infer from (8.7.6) and (8.7.10), which evi-

dently apply to the present situation, that the error terms converge to

zero at least as rapidly as n*#. Thus formulae (13.4.1) are proved, and

we conclude that u* and o” are asymptotically jointly efficient (cf. 13.3).

The assertion concerning the asymptotic normality of the estimates

is a consequence of the second theorem in 8.8, p. 97, the condition

(8.8.5) being fulfilled in this case.

Secondly, we shall consider alternative (2) in the theorem. To save

space, we shall omit certain details of the proof. Formulae (13.4.4) are

valid even in this case, and thus we obtain the leading terms of (13.4.1)

in the same way as before. The remainder terms need, however, closer

study. For this purpose, an upper limit is required for the coefficients

(10.3.18) of w* and o*.

First, it follows from (13.4.4) and Condition C2 in 13.2, alterna-

tive (a), that
d*=O(n), (r,s=1, 2). (13.4.5)

Secondly, applying (3.5.2) to 0; and C,;, and using the notation /; in-

troduced on p. 98, we find after some calculation (cf. 12.2)

6; |\Cui-C; alagp 7,n*

(13.4.6)
M ,.o

6; | Cai — Ce ial<= | Aj ye,
n”

Combining (13.4.5) and (13.4.6), we find that the coefficients in (10.3.13)

satisfy the inequality

M

,

0
Igri] <— [APE (13.4.7)

Thus we realize that the conditions of the first theorem in 8.9, p. 97,

are fulfilled if we take d=1 and m=1/k in (8.9.1). By (8.9.3) we get

Ryar=O(n*").
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Hence the error terms in the two variance formulae in (13.4.1) con-
verge more rapidly than n~* as stated. The remainder term in the
covariance formula is examined in a similar way (cf. the final para-
graph in 8.9).

The statement concerning the asymptotic normality of u* and o” is
a consequence of the two-dimensional version of the theorem in 8.10,
p. 103.

It remains to prove the theorem for alternative (3), which is made
in the same way as above. Relation (13.4.5) holds good even in this

case. The inequalities (13.4.6) are replaced by

My no)
6:|C1.-Cy i-1| <= | Ai .

(13.4.8)

M

,

0
0; | Co: — C2 i-1|<-s | Ai [ee

n

Thus we have from (10.3.13)

M

|

20
Lgrel<— [ar |", (13.4.9)

where m=-—1 for -—l<k<}4

m= for k< —]

By an application of the theorem in 8.11, p. 104, we conclude that

It may be similarly shown that the remainder term in the covariance
~1formula in (13.4.1) also converges faster than n°. Finally, applying

the two-dimensional counterpart to the theorem in 8.12, we infer that

the estimates are asymptotically jointly normal. This completes the proof.

We shall add a few words regarding the case of a single unknown

parameter. Formulae (13.4.1) are then replaced by

 

 

o” 1
var fl = +o (") (13.4.10)

Ney4 n

when yu is unknown, and by

Go" 1
var o* = +o(*] (13.4.11)

N Cys n
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when o is unknown. It is evident how the theorem should be modified

in other respects. As is easily seen, the leading terms in these expres-

sions are identical with the lower limit in Fisher’s inequality (1.1.1)

(cf. also 1.8).

13.5. Further comments upon Type 1 distributions

We shall extend the scope of the theorem in 13.4 by proving that

it is also true for nearly unbiased nearly best estimates (cf. 10.7).

We may without loss of generality suppose that the estimates are

constructed according to alternative (a) in 10.7. The coefficients in the

estimates are then given by (10.3.13) with C2; replaced by Co;. It is

realized that this modification of (10.3.13) does not affect the validity

of the relations (13.4.1). Also the statement in the theorem concerning

the asymptotic normality of the estimates holds good, provided, how-

ever, that we are able to show that the bias of the nearly unbiased

estimates tends to zero when n approaches infinity. We shall prove

that this is, indeed, the case.

Consider, first, alternative (1) in the theorem. An analysis of the

expressions (10.3.13) with Cz; replaced by C2; shows that, for any i,

M
lgul<—-

Thus it follows from the first (or from the second) theorem in 8.7 that
—1

the bias is at most of order n~* and, consequently, tends to zero when

N—-> oo,

Secondly, we turn our attention to the alternatives (2) and (3). We

then proceed as before and apply (13.4.7) to the first theorem in 8.9,

p. 97, and (13.4.9) to the theorem in 8.11, p. 104. In the former case

we infer from (8.9.2) that the error term converges to zero at least as

rapidly as n~* log n. In the latter case it follows from (8.11.2) that the

error term converges faster than n~?. Consequently, the estimates are

asymptotically unbiased even in these cases, and we have proved the

assertion that the theorem holds good for nearly unbiased nearly best

estimates.

Examining the proofs of the theorem in 13.4 and the above exten-

sion, we infer that all these results are true also for estimates with

nearly minimum JZSD and for modified nearly best estimates (cf. Chap-

ters 11 and 12).

In order to give someillustrations of the theory developed in this

and in the preceding section, we shall inspect the examples given in
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10.8 and 12.4 and find out which of them contain estimates from Type 1
distributions.

First, suppose that both mw and o are unknown. Examples of this
situation were given in 10.8, Ex. (1) and Ex. (4), and in 12.4, Ex. (1).
It follows from the reasoning developed in 13.2 that, of the six distri-
butions considered in these examples, the normal and the extreme-
value distributions satisfy Conditions C1 (with respect to u and o) and
C2, and are thus uniform Type 1 distributions. Some comments upon
the remaining four distributions will be given in 13.7 and 13.8.

Secondly, assume that uw or o is unknown. Examples were given in
10.8, Ex. (2) and Ex. (3), and in 12.4, Ex. (2). It is realized that
Laplace’s distribution (with « unknown) is a Type 1 case, and also
Weibull’s distribution (with o unknown), provided that m>1. The ex-
ponential distribution, treated in the first of the three examples, will be
discussed in 13.7.

13.6. Type 2 distributions

In the main part of this section, we shall assume that both u and o
in the cdf. F[(z—,)/o] are unknown, and, furthermore, that F belongs
to Type 2. We shall study the asymptotic behaviour of the unbiased
nearly best estimates u“ and o” derived in 10.3. As we shall see pres-
ently, several alternatives arise in this case, corresponding to the dif-
ferent situations outlined in 2.5. Some remarks upon the one-parameter
case will be given at the end of the section.
When F is a Type 2 distribution, Condition C2 given under (a) in

13.2 should be fulfilled. On the other hand, Condition C1 breaks down
at least for one of the parameters. When it is violated with respect to
both parameters, F is a uniform Type 2 distribution.

There are two principal situations when Condition C1 breaks down,viz.

(a) the functions f(x) and/or xf(x) are not zero at the ends A and B
of the range of variation of z,

(b) the functions f(x) and/or xf(x) have discontinuity points in the
interior of the interval (A, B).

In practice, situation (a) is much more common than (b), and our in-
vestigation in this and the next section will be limited to the former
alternative. Throughout 13.6 and 13.7, we shall assume that the conditions
stated in the theorem in 13.4 are satisfied, with the above exception.
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It is convenient to use the notations introduced in 2.5. There are in

this case at most two discontinuity points

W,=A, wWe=B.

The jumps {(A) and —/(B) of f(x) in these points are denoted by

Ai,, (v=1, 2),

and the corresponding jumps of xf(xz) by

As, =u,A1,, (v=1, 2).

Note that some of these four quantities A,, (but not all) may be zero.

The matrix A has two rows and two columns, and the product

matrix S=AA’ has the elements

Srs = An Asi + Are Ase, (7, s=l, 2).

We see that

| S| = (Ay, Ags ~~ Ais Ao).

Now consider the behaviour of d,, in (10.3.4) when n approaches

infinity. Note that d,,, for example, cannot be written in the form

(13.4.2). Instead
n—-1

dy = (f(A) + DOFA)FAP+ Of AnD (13.6.1)

Wefind by analyzing this expression and the related expressions for dj,

and d,. (cf. 2.5 and 13.3)

1
dyg= 81,4+40(2), (r, s=1, 2), (13.6.2)

n nN ”

where

Ars = >, [A,, Vs (w,) + Asy Vr (w,)] .
y=1,2

There are three subcases, which will be briefly discussed below.

(1) Two discontinuity points.

When f(x) is discontinuous at both ends, Ff is a uniform Type 2

distribution, for Condition C1 breaks down both with respect to u

and o. (Note that one of the quantities A>s,, but not both, may be zero.)

Moreover, the matrix S is non-singular. Evidently, G(wu) is bounded in

this case, and only alternative (1) in 13.4, p. 151, is relevant. We have
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2
*FS (1var L =F | 0(-)

2 9 l
var o® =2, “146 ("s) ; (13.6.3)

o” S15

The leading terms in these relations can be obtained in two ways,viz.
either by using the relation (13.3.1) and the general theory expounded
in 2.5, or by combining (13.6.2) with the expressions (10.3.14) and
(10.3.15) for the variances and covariance of u* and o*. The assertions
concerning the error terms follow from the general formulae (8.7.6) and
(3.7.10), which evidently may be applied to the present situation.

(2) A single discontinuity point + 0.

Suppose, for example, that f(x) is discontinuous at the left end w.
Since w,+0, also xf(x) is discontinuous at this point, and hence F is
a uniform Type 2 distribution even in this case. The matrix S, how-
ever, is now singular, and so the situation is of the type considered
in 2.5, (b), p. 29.

It is inferred from (13.6.2) after some reduction that

I Ae
| D|~= Ai J1,

n

where
B

J.= [leon (x) — Yo (w)]f(x) da = wi ey — 2 Wy ey + ego.
A

Hence, if J, +0,

var a2 Fi 0(2
aa Jy n

21 1
var o* =— —+0 (*) , (13.6.4)

n Jy n

2 l
cov (u*, o*) = -— 7+(;]

We shall prove the assertions concerning the error terms in these
relations, which may be done in about the same way as in the proof
of the theorem in 13.4.

158

\e



 

13.6

Whenalternative (1) in 13.4, p. 157, is relevant, we use the general

formulae (8.7.6) and (8.7.10). The remaining two alternatives are slightly

more complicated. Suppose, for example, that G(u) is an AL-transform

at uw=1. By (13.6.2) we obtain after a simple consideration

d,,=O(1), d@°=O(1), (r,s=1, 2).

We see that the formulae (13.4.6) hold, except for 7+=1. Hence also

(13.4.7) is true with the same exception.

Now apply the second theorem in 8.9, p. 102, with the modifications

caused by the fact that G(u) is an AL-transform at w=1. Conditions

(8.9.18) and (8.9.19) hold in this case for d=1 and m=1/k. Hence we

obtain exactly the same result as in the corresponding situation in

13.4, viz.

Ryar =O (n-?'*),

Thus the remainder terms in the two first relations (13.6.4) converge

more rapidly than n~*. The assertion concerning the third relation is

proved in a similar way.

If the discontinuity point is situated in the right end w, of the range

of f(x), the formulae (13.6.4) are still true, if only w, is replaced by wy.

(3) A single discontinuity point equal to zero.

If f(z) is discontinuous e.g. at the left end w, and this point is equal

to zero, the situation is of some special interest. Then the function

af(x) is continuous everywhere, and hence /’ is no longer a uniform

Type 2 distribution.

Denoting as before the jump of f(x) in w, by A,,, we find after

calculations which are very similar to those performed above

n® At, n

2 l
var o* =—— +0 (") ; (13.6.5)

N Coo n

Thus we find that var o* satisfies the same formula (13.4.11) as when

is known a priors and F is a Type 1 distribution.

The statements concerning the error terms are proved by similar

methods as before. A new situation arises, however, when G(u) is an
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AL- or an AP-transform and the first and third formulae (13.6.5) are
considered; we shall briefly discuss this case.
By (13.6.2) we have

1 ]
dy, =O (1), iyy-0(*); do,=O (*) "n

Consequently,
d'=0(1), d2=O(1), d®=0(n),

Now suppose, for example, that G(u) is an AZ-transform, and consider
the first formula (13.6.5). We find by similar calculations as in 13.4,
p. 153, that the coefficients g,; of u™ given by (10.3.13) satisfy the
inequality

Mlal<ael a? pe,
except for 7=1. The second theorem in 8.9, p. 102, is satisfied for
d=3/2 and m=1/k. Note that the formulation of the theorem should
be slightly modified, since G(wu) is an AZ-transform at u=1 in this
case. It should be observed that we cannot take d=2, as suggested

by the above inequality, for then only (8.9.19) but not (8.9.18) would

be satisfied. By (8.9.3), which is a consequence of the theorem, the

remainder term in the first relation (13.6.5) converges at least as rap-

idly as n-**, and thus faster than n~*, as stated. Other alternatives

are treated analogously.

A similar analysis as that performed in (1), (2), and (3) above may

also be made for nearly unbiased nearly best estimates (cf. 10.7), all

the results obtained in the three subcases being valid even in this case.

Moreover, it is possible to prove by exactly the same method as that

used in the corresponding analysis of Type 1 distributions in 13.5 that

the bias tends to zero when » approaches infinity. To save space, we

shall omit the details.

We shall also briefly mention the case of a single unknown para-

meter. The situation is then very much simpler than before, and we

shall only quote the result of the calculations.

(1) w unknown, o known.

When w is unknown andf(z) is discontinuousat either or both ends,

we have
2 I

var “= C4 (<5) (13.6.6)2 2n Si, n
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(2) w known, o unknown.

When oa is unknown and 2} (x) is discontinuous, we have

 

«7 +0(55] (13.6.7)var 0° =~5 Sn 2 6.

If, on the other hand, f(x) has a single discontinuity at «=0, the

Type 1 formula (13.4.11) holds true, since a2f(z) is then continuous

everywhere.

Summing up all the results obtained in the various subcases presented
in this section, we may, in view of the general remark in 13.3, make

the following statement. If the italicized conditions on p. 156 are satisfied,

then nearly best linear estimates from Type 2 distributions are asymptotically

efficient (in the general sense considered in Part I).

Weshall finish the section by making two additional remarks.
First, an interesting consequence of the formulae should be pointed

out. It is, of course, always necessary to define 4 and o in an un-
ambiguous way, so that the fr.f. of the reduced variable é is clearly
defined. The importance of this somewhattrivial statement can be aptly
illustrated in the case where the cdf. of z has a single discontinuity
at one end. Suppose that both mu and o are unknown, and let us
define uw as either any percentage point zp, (0<P<1), of the cdf. or
as the discontinuity point. Applying the results obtained above, we
infer that, in the former case, the variance of the nearly best estimate
u* of u has the order of magnitude n~', but, in the latter case, the

order of magnitude is n~*. Examples illustrating this situation will be
given in the following section.

Secondly, we note that nearly best estimates corresponding to Type 2
distributions are generally not asymptotically normally distributed. It
is easy to explain why this is so. We saw, in fact, in 8.8 that a linear
combination of 7'’RB-variables is, essentially, equal to a weighted sum

of n+1 %?-variables, each with two degrees of freedom. To ensure that
the sum is asymptotically normal, we introduced the condition (8.8.2),
which prevents any component of the sum from dominating the scene.
In the present case, (8.8.2) generally breaks down because of the dis-
continuity points of the fr.f., and the behaviour of the sum is, to a
large extent, determined by the components hy y, and h,, y,, corresponding
to these points.
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13.7. Further comments upon Type 2 distributions

The most common examples of Type 2 distributions are furnished

by the rectangular and the exponential distributions (cf. 2.5, 9.2, 10.8,

and Sarhan, 1954, p. 320 ff.). Let us suppose that both mw and o are

unknown.

Define, in the case of the rectangular distribution, the parameters

as the mean and the range of variation of z. The rectangular fr.f. has

two discontinuities. Hence the nearly best estimates satisfy the ex-

pressions (13.6.3). It is easily seen that the leading terms in these

formulae are asymptotically equivalent to (9.2.19), as they should be.

In the case of the exponential distribution, we define, first, w and o

as the mean and the standard deviation of z. Then, clearly, the reduced

variable has the fr. e*-*. The fr. has a single discontinuity for

x= -—1, and thus the expressions (13.6.4) are relevant in this case. If,

on the other hand, we define o as before but yu as the left end of the

range of variation of z, the reduced variable has the fr.f. e*. The

discontinuity is then moved to the point «=0, and thus u* and o*
satisfy the relations (13.6.5). It is easy to check that the variances are

asymptotically equivalent to those of the best linear estimates (cf.

Sarhan, 1954, formulae (5.7) and (5.8)), as they should be.

As a further illustration of the results obtained in 13.6, we consider

a truncated normal distribution. The parameters can be defined in

various ways in this case. Let us, to fix the ideas, define them as the

mean and the standard deviation of the corresponding non-truncated

distribution. We must distinguish between three different methods of

truncation.

If (a) both tails are truncated, the nearly best estimates satisfy

(13.6.3), and thus have variances of order ~*. If (b) the truncation is

made at any single point +, the relations (13.6.4) show that the

variances converge as n*. If (c) the truncation is made in such a way

that there remains exactly one half of the normal curve, m* has, as

seen from (13.6.5), a variance of order n™* but o* a variance of order

n'. Note, however, that, if one of the parameters is known a priori,

both case (a) and case (b) lead to estimates with variances of order

n*; the conclusions concerning case (c) hold good without modification.

We saw in 13.4 and 13.5 that, when no truncation is performed,

the nearly best estimates of uw and o in a normal cdf. have variances

which converge as n*. It follows from the above that the situation

becomes entirely different if the tails are cut off even at a long dis-
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tance from the origin, and the sampling is performed from the trun-

cated distribution. The variances of the nearly best estimates are then

of order n2, and thus converge much more rapidly. It is interesting

to study the behaviour of the variances in the last-mentioned case

when n is increased, let us say, by factors of two.

When v is small, a doubling of the sample-size results, approximately,

in an increase of the precision by a factor /2. Gradually, the increase

becomes greater, and, in the limit, it becomes equal to 2; thus, when

n is large, a doubling of the sample-size results almost in a doubling

of the precision. The reasoning developed in this example applies, of

course, also to other distributions than the normal.

It has sometimes been argued that the estimates obtained in the

rectangular or exponential case behave abnormally, have an unnaturally

small variance, and so on. We see now that a wide class of distribu-

tions show a similar behaviour. For this reason, estimates of para-

meters in Type 2 distributions deserve a reasonable part of the huge

amount of attention which has hitherto been reserved for what is some-

times called »regular» estimates, i.e. estimates from Type | distributions.

The investigation of Type 2 distributions, performed in this and the

preceding section, has concerned case (a) mentioned at the beginning of

13.6. Though of no great importance from a practical point of view,it

would be of considerable theoretical interest to undertake a similar study of

case (b), ie. of the situation arising when the fr.f. has discontinuities

in the interior of its range of variation. It may be believed that such

an investigation would yield results which are quite similar to those

reported here; it seems highly probable that linear estimates of location

and scale parameters may be constructed which generally have variances

of order n~*, and which are asymptotically efficient in the general sense

considered in Part I. It is even possible that the nearly best linear

estimates have these desirable properties also in this case; this is, how-

ever, as yet an open question.

13.8. Examples of Type 3 distributions

The discussion in this section has a preliminary character. We shall

suppose that G(u) is an AP-transform (cf. 3.5) at one or both end-

points with
t<k<l.

Writing e,, in (13.2.1) in the form
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a[G’
auf| oeNa U;

0

we see by means of (3.5.3) that e,, is finite when k<4, but that it

does not exist when & lies in the above interval. Thus we have en-
countered a case where Condition C 2 breaks down, and a Type situa-
tion arises.

We shall examine the leading terms in the expressions (10.3.14) for

the variances of the nearly best linear estimates when G (u) fulfills the

condition given above. Because of the general remark in 13.3, these
terms are asymptotically equivalent to the lower limits which can be

attained by any estimate satisfying the general requirements described

in the theorems in Part I. Hence, if it can be proved that the errors

in (10.3.14), (10.4.2), (10.4.4) converge more rapidly than the leading

terms, we know that the nearly best estimates are asymptotically ef-

ficient. Unfortunately, the theorem concerning AP-transforms proved in

8.11 is not strong enough for this purpose, and it has as yet not been

extended so as to cover the present problem. For this reason, the

question of the behaviour of the error terms will be left open, and the

truth of the assertions made in the sequel concerning the variances of

the nearly best estimates from Type 3 distributions is definitely estab-

lished, only after this question has been answered in the positive. However,

the assertions are true even without any complementary proof if y*

and o” are used as symbols for any asymptotically efficient estimates of

pw and o.

Two alternatives will be considered.

(1) Condition C1 1s satisfied with respect to u and a.

We shall only consider the case where uw is unknown and o is known

a priort. Then
2

og 1 +o(onI ;) for }<k<1

  

2K Vie

var pl" = (13.8.1)
o i l
= +0 ( for k= 3,

n log n Vx n log n

where

1 7,2 1

Veiete
for 4<k<1, and Vix=co’ for k=
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TABLE 8.

B-transforms. Orders of magnitude of variances of nearly best linear

estimates u* and o” when 0<1,<7,<l.

i

nT

  

or OG unknown f and o unknown

To Order Ty Order

ee

_ —2
0 nn? 0 n

> 0, <} n24-t) >0, <} n2a-w

-1 -1
5 (n log n) 4 (n log n)

>4 nt >t n

The estimates w* and o* are based upon a random sample from the cdf.

F [(z-p) /o], where # and o are the mean and the standard deviation of the dis-

tribution and F (x) = inverse of B-transform (cf. 3.5). If tT, <T., the exponents should

be interchanged.

The leading terms in these expressions are obtained by analyzing the

behaviour of d,, in (10.4.2) for large n by means of (3.5.3). The result

is remarkable, since it is very different from all results found before

in the chapter.

The triangular distribution affords an example of this alternative,

the second formula (13.8.1) being relevant in this case.

(2) Condition C1 is not satisfied with respect to u and o.

Let us assume that the fr.f. has one discontinuity at one of the

ends. Two results corresponding to this situation will be briefly stated,

and no proofs will be given.

When or o is unknown, the formulae (13.6.6) and (13.6.7) are

valid, and hence the variances of u* and o* converge as n”.

If both ~ and o are unknown and y+ the discontinuity point, then

u* and o* satisfy relations of the same kind as (13.8.1), though with

other values of the factor Vx.

As an illustration, we take the generalized geometric distribution

(cf. 3.5) with the exponent satisfying 0<t,<4. (Note that, in the spe-

cial case 7,=4, we obtain the right triangular distribution studied

empirically in 10.8, Ex. (1).) If uw and o are defined as the mean and

the standard deviation of z, and if both these parameters are unknown,

we conclude from what has just been said that u* and o” have vari-
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ances of order n™*“-™ when t,<4, and order (x log n)"! when 1,=}.
Though outside the scope of this chapter, it is instructive to check by
means of a result due to Downton (1954, p. 308 ff.), already mentioned
in 10.1, that the latter result holds for the best lear estimates of u
and o in a right triangular distribution.

13.9. Summary and a general example

Let us survey the results which have been reached in this chapter
concerning the order of magnitude of the variances of nearly best linear
estimates.?

It was proved in 13.4-13.7 that estimates from Type 1 distributions
have variances of order n~* and estimates from Type 2 distributions

~?, except in a special case where the order is 7.
In 13.8 we saw that, in the case of Type 3 distributions, the order of
magnitude may equal any power n* with 1<x<2. As seen from the
example (n log n)~*, there are, however, also other possibilities. It should
also be remembered that our discussion in 13.8 was limited to distribu-
tions corresponding to AP-transforms, and that other Type 3 distribu-
tions may behave differently.

variances of order n

Summing up our findings in a single sentence, we may, somewhat
loosely, say that Type 1 estimates converge slowest and Type 2 esti-
mates fastest, with Type 3 estimates (corresponding to AP-transforms)
filling the gap between these extremes.

A good illustration of the various alternatives investigated in this
chapter is furnished by the class of cdf:s which are inverses of B-
transforms (cf. 3.5). The reader is referred to Table 8, where the order

of magnitude of the variances of the nearly best estimates is given for
various combinations of the exponents 1, and 7,. It is interesting to
note that the order of the variances is determined by the smallest of the
exponents in the one-parameter case, and by the largest of the exponents
in the two-parameter case. The table includes the rectangular and ex-
ponential distributions discussed in 13.7 and the generalized geometric
distribution mentioned in 13.8.

It might be added that the results reproduced in Table 8 are valid
also for many other definitions of u and o than those stated in the
table, with the following important exceptions: If tz=0, 0<71,< 4 and
tt is defined as the right end-point of the range of the fr.f. (where the

1 With respect to AP-transforms, note the remark on p. 164 concerning the

convergence of the error terms.

166



 

13.9

fr.f is discontinuous), then (a) the “two-parameter” column should be

used for var o* also when yu is known a priori, and (b) the “‘one-para-

meter” column should be used for var u* also when both parameters

are unknown. These statements are closely related to those given on

pp. 159-161.
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CHAPTER 14

CONCLUDING REMARKS

14.1. Introduction

In this final chapter, the information obtained in the preceding chap-
ters concerning the efficiency of nearly best linear estimatesis surveyed,
and an attempt is made to assess the value of such estimates in com-
parison with other methods of estimation. In particular, it is claimed
that, in their region of application, nearly best estimates compare favour-
ably with maximum likelihood estimates. Some comments are also made
concerning the role of nearly best estimates in the theory of the testing
of hypotheses.

14.2. Criteria for comparison between methods of estimation

Two methods of estimation may be compared from several points of
view. In particular, it seems important that the resulting estimates
should be efficient. This general term may be given many different
meanings; we have, in fact, used the word in three different connections
in this thesis, viz. asymptotic efficiency (in the general sense introduced
in Part I), efficiency (in the general sense), and efficiency (in the linear
sense). These concepts have been defined on pp. 18 and 25, p. 130, and
p. 127, respectively. The last term is of interest only when two linear
methods of estimation are compared, and hastherefore, in the present
connection, not quite the same importance as the other two.
Apart from being efficient, the estimates should be easy to calculate.

Thus, it seems appropriate to compare two methods of estimation from
at least three points of view, namely

(a) Asymptotic efficiency.

(b) Efficiency (in the general sense).
(c) Ease of computation.

Weshall briefly compare the nearly best linear estimates with esti-
mates obtained by three other methodsin the light of these criteria.
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14.3. Comparison with best linear estimates

In Chapter 13, some results have been proved, whichall lead up to

the same conclusion, viz. that nearly best estimates are asymptotically

efficient in the sense introduced in Part I. The sameis evidently true

also of best linear estimates (cf. 10.1). Thus, by criterion (a), the two

methods of estimation are equivalent.

Moreover, we saw in 10.8 that nearly best estimates have often high

efficiency (in the linear sense), even when the sample-size is small; i.e.

nearly best linear estimates and best linear estimates seem to be practi-

cally equivalent from the point of view of criterion (b).

Finally, it was pointed out in Chapter 10 that nearly best estimates

are for the most part very mucheasier to calculate than best linear esti-

mates. Therefore, by criterion (c), the former estimates are generally

preferable to the latter.

14.4. Comparison with ‘zero-one’ linear estimates

In practical problems, it may be desirable, when possible, to estimate

location and scale parameters by means of linear combinations

n

const. >, 9; 21%)
i=1

of the ordered sample-values, where the g,’s are equal to 0 or +1. It is

known (cf., for example, Dixon, 1957) that highly efficient estimates can

be constructed in this way when the sample is taken from a normal

population.

From a practical point of view, such estimates are very convenient to

use and should of course, when available and efficient enough, be used

instead of nearly best linear estimates. It may, however, be supposed

that no general and simple method of derivation can be found; in any

case, “zero-one’ linear estimates have as yet a very limited area of ap-

plication and, furthermore, have not the same theoretical interest as nearly

best estimates.

14.5. Comparison with maximum likelihood estimates

The method of maximum likelihood, introduced by R. A. Fisher, has

long been regarded as the most important general method of estimation.
It seems to have reached this position for three main reasons put for-

ward by Fisher (1921), namely (1) it rests upon a simple principle, which,
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at least theoretically, is convenient to apply to any particular problem,
(2) the maximum likelihood estimate of a parameter in a Type 1 distri-
bution is under general conditions consistent, asymptotically normal, and
asymptotically efficient, and (3) when a sufficient statistic exists, the
maximum likelihood estimate is a function of this statistic. Statement (2)
has been proved by Cramér (1946 a, p. 498 ff.). Statement (3), which was
proved by Fisher, may be replaced by the following stronger result, which
is a consequence of a remarkable theorem due to Rao (1945), viz. (4)
when a sufficient statistic exists, the maximum likelihood estimate is
an efficient estimate (in the general sense) of its expected value.
We shall compare nearly best linear estimates of location and scale

parameters with maximum likelihood estimates of such parameters.First,
when the distribution is of Type 1, it follows from the above and from
the theorem in 13.4 that both types of estimate are generally asymptoti-
cally efficient. It seems not unlikely that this equivalence of the
two methods holds good even in the case of Type 2 and Type 3 distri-
butions; this is, however, as yet an open question, since no general inves-
tigation of the asymptotic properties of maximum likelihood estimates
from such distributions has been undertaken. Until the contrary has been -
proved, it may be assumed that, from an asymptotical point of view,

there is no essential difference between the two methods of estimation.
Secondly, let us turn to criterion (b) in 14.2 and consider the case of

finite samples. Unfortunately, our knowledge concerningtheefficiency (in
the general sense) of the two types of estimate is very limited, apart
from the theoretically interesting but specialized statement (4) above.
Therefore, it does not seem possible to settle the question of whether
one of the methods is generally superior to the other from this point of
view. It might be added that in 10.8, p. 130, we encountered an example
indicating that nearly best estimates can be highly efficient (in the
general sense). It was mentioned there that the nearly best estimate o*
of o in a normal cdf. has an efficiency (in the general sense) of 98.6 %
when the sample-size is 5. It is the author’s belief that this should not be
regarded as only a stroke of luck, but that the normal distribution is
only a particular case of a wide class of distributions displaying a similar
behaviour. Much research will, however, be required in order to confirm

or to disprove this statement.

Finally, from the point of view of criterion (c) in 14.2, nearly best esti-
mates are, with some important exceptions, superior to maximum likeli-
hood estimates. To see this, we may, for example, consider the list of

nine distributions given in 3.3, p. 35. Maximum likelihood estimates of
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location and scale parameters are convenient to determine for the ex-

ponential, normal, and rectangular distributions, and for Laplace’s dis-

tribution. For the other five distributions, these estimates are very diffi-

cult to calculate numerically, since an application of the maximum likelli-

hood principle results in quite complicated equations. Similar complexities

occur in many other cases. Nearly best estimates, on the other hand, are

always determined by the same, rather simple rules (cf. p. 120 ff.). It

seems to the author that this is an important argument in favour of the

method presented in this thesis.

14.6. Unsolved problems

It might be appropriate to mention that nearly best linear estimates

deserve a place not only in the theory of estimation butalso in the theory

of the testing of hypotheses. Because of their high efficiency, it may be

supposed that they can with advantage replace other quantities commonly

used in standard tests involving location and scale parameters. Further-

more, it seems possible that the use of these estimates may facilitate the

extension of such tests to non-normal situations. For instance, the stand-

ard method for testing a location parameter in the presence of an un-

known scale parameter can in this way be given a more general formula-

tion. These remarks raise many interesting problems, which are, however,

outside the scope of the present investigation.
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POSTSCRIPT

The original edition of this book was published in Sweden in April,
1958. Listed below are some corrections and complementary state-
ments, which for technical reasons have not been introduced into the
text of the present edition.
On p. 15 and p. 21, Ay and An+1 should be defined as — co and + co,

respectively.

The definition of an AJZ-transform given on p. 37 is too restrictive.
In fact, the exponent —1 in the error term within brackets should be
replaced by —1+e, where ¢ is a small positive quantity. This change
aifects the order of several error terms given in Chapter 7 in a rather
obvious way, but not any results in the following chapters.
On p. 55, 8th line, n-1*° should be replaced by n7}.
On p. 63, the statement in the second sentence from the end of

6.4 is true, provided that the «’s are chosen such that

Jaina — a4] <=, (0=0, 1, ..., 2).

On p. 146, the factor 1/(n—1) in the second formula should, of
course, be placed under the square root sign.
On p. 159, 5th line, the order of d" should be O(n).
Professor G. Elfving has kindly informed me that the proof of the

elsewhere.

Finally, some additional references will be given. Fil. Lic. G. Kull-
dorff has pointed out that the papers by Davis, Ann. Math. Stat.
Vol. 22, 1951, 43, and Kiefer, Ann. Math. Stat. Vol. 23, 1952, 627,
ought to have been mentioned in 1.1 and 13.7. I am indebted to
Professor Herbert A. David for bringing to my attention the paper by
Hastings, Mosteller, Tukey and Winsor, Ann. Math. Stat. Vol. 18, 1947,
412, which might have been included in the survey of the literature
given in 5.1.
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It is interesting to note that the results recently published by Plackett

in Ann. Math. Stat. Vol. 29, 1958, 131, are closely related to certain

of those presented in Part III of this book. The reader is recom-

mended to study Plackett’s paper and to compare the two approaches

to the problems of linear estimation.

Malmé, August 1958.

Gunnar Blom.

176


