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The work leading up to this thesis was begun in 1954 at a time when
I had become interested in the problem of how to plot points on a nor-
mal probability paper. This research involved a study of the properties
of order statistics and led to the introduction of the «, 3-correction,
described in Chapter 6 of the present work.
When, in the same year, in a paper in the Journal of the American
Statistical Association, Chernoff and Lieberman demonstrated the existence
of a close relationship between the plotting problem and the much more
general problem of estimating parameters by means of linear functions
of order statistics, my interest in the first of these problems was ex-
tended also to the second. Another source of inspiration was Jung’s paper in
Arkiv for matematik in 1955, in which, for the first time, the laborious
procedure for finding linear estimates with minimum variance was re-

placed by an approximate one. The nearly best linear estimates dis-
cussed in the present thesis owe their existence partly to Jung’s work.

It soon became desirable to study the asymptotic properties of the
nearly best estimates. Fisher’s classical theory of estimation proved too
specialized for this purpose, and, as a third and final stage in the re-
search reported in this thesis, a more general theory was developed cov-
ering all possible continuous probability distributions.

The three stages in my work outlined above are reflected in the di-
vision of the thesis into three parts, which, however, are presented in
an order differing from the chronological one.

Part I contains a generalization of that part of Fisher’s theory of
estimation which concerns the asymptotic minimum variance of an esti-
mate. The results are summarized in Sections 1.1 and 2.1.

In Part II, general properties of transformed beta-variables! are investi-
gated. Special attention is paid to the problem of finding approximations
to the first two moments of single transformed beta-variables and of linear

combinations of such variables. Further, the asymptotic distribution of a
linear combination is studied.

1 For the definition of a transformed beta-variable, which is a more general con-
cept than the familiar term order statistic, the reader is referred to Section 3.1.




T'he results obtained in this part are applied in Part III to linear
estimation problems. Apart from these applications, Part IT is deemed
to have some interest of its own, being a contribution to the cgeneral
theory of transformed beta-variables.

Part 11l is devoted to a study of the problem of constructing linear
estimates of location and scale parameters in a continuous distribution
of any form. A method is presented for constructing nearly best linear
estimates of such parameters, the name being suggested by the fact that
these estimates are often highly efficient as compared to minimum
variance estimates.

A more detailed summary of the results obtained in each chapter in
Part 11 and Part III is given in Section 3.3.

It may be appropriate to finish this preface by giving some advice
to ditferent categories of readers concerning the selection of material
from the thesis.

The reader who wants a general survey of the results is advised to
read the introduction to each chapter and to glance, at least, at Chap-
ter 4. Furthermore, he might read Sections 5.3-5.5, 6.7-6.10, 8.2-8.4.
8.7, 10.3, 10.8, 12.2, 124, 12.6, 14.5, and consult other sections when
necessary.

Readers with a special interest in the practical problem of constructing
estimates of location and scale parameters are advised to read Chapters
9-12 and 14, and take, at least, a glance at Chapter 13.

The specialist in the general theory of estimation is recommended to
study Chapters 1-2, 10, 13-14, and look up references to other chapters
when these are needed for a complete understanding of the results.
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PART 1

CONTRIBUTIONS TO THE LARGE SAMPLE THEORY
OF ESTIMATION

CHAPTER 1

ESTIMATION OF A SINGLE UNKNOWN PARAMETER

1.1. Introduction

The theory of estimation was put forward by R. A. Fisher (1921,
1925). A useful review of this theory is given in Fisher (1935). Among
his many contributions to the theory of estimation, we shall here only
mention Fisher’s well-known result concerning the asymptotic behaviour
of an estimate «® of an unknown parameter « in a frequency function
(fr. 1.) f(z; o).

Let us suppose that «* is a function of the observations in a random
sample of size n from the population with the fr. f. f(2; «). If o is

asymptotically unbiased, its variance has a lower limit so that, asymp-
totically,

1
var o > 2 (1.1.1)

where I is the amount of information in the sample, defined by

o0

I:nE’(a ;Of f)2=n f(@ ;Of f)zf(z; x) dz. (1.1.2)

— OO

Fisher partly used heuristic methods when proving this result and gave
no exact conditions. He realized that there are also other possibilities,
as shown by a passage on p. 350 in his paper from 1921, where, in
an analysis of the rectangular distribution, he demonstrated that the

variance of the mean of the extreme values in the sample has the

order of magnitude n~“.

In later years, Fisher’s inequality (1.1.1) has been studied by Rao

(1945), Cramér (1946 a; Ch. 32), and others, who have shown that it
holds good also for unbiased estimates, based upon samples of any size,

13



1.2

provided that certain specified conditions are fulfilled. When the for.
mula is interpreted in this way, it is generally called the Cramér-Rao
inequality.

Returning to the case of large samples, we observe that, apart from
Fisher’s results, our knowledge concerning the behaviour of the variance
of an estimate is still incomplete. For example, very little is known
about the situations arising when f(z) has discontinuities, or when the
integral appearing in (1.1.2) is zero.

In this chapter we shall attempt to give a general solution to the
question of the asymptotic behaviour of the variance of an estimate,
constructed by means of a sample from a continuous cumulative dis-
tribution function (cdf.). We shall replace Fisher’s result (1.1.1) by a
more general inequality, which is valid for a very wide class of asymp-
totically unbiased estimates. The proof of this inequality is given in 1.2.

In 1.3 we shall introduce a classification of distribution functions
Into three categories, viz. Type 1, Type 2, and Type 3 distributions,
which together embrace all possible continuous distributions. Type 1
distributions fall within the scope of Fisher’s theory, while the other
types do not seem to have been systematically studied before.

1.2. A general theorem

We shall describe the situation considered in the introduction in
more detail. Suppose that the random wvariable z has the continuous
cdf. F(z; ), where o is an unknown parameter belonging to an open
interval (2. The range of variation of 2z is denoted by (4, B) and
may depend upon «. Let z=G(u; a) denote the inverse function of

70

u=1F (z; ). We shall suppose that the partial derivatives =, = f(z;a)
oF
and ™ exist for any z and for any «€(Q).
o

Let o™ be an estimate of «, based upon n independent observations
of z. This estimate is a random variable defined over the n-dimensional
Kuclidean sample-space corresponding to the » observations. Let &,, ..., &,
denote any point in this space and denote by P the probability mass
corresponding to the observations. We shall suppose that the mean

Bo*=|a*dP (1.2.1)

exists and tends to o« when n approaches infinity; in other words, we
assume that «* is an asymptotically unbiased estimate of «.

14




1.2

We shall derive a lower bound for the variance of & which is valid
for large n. The exact meaning of this statement will become clear
later. In order to construct this bound, we proceed as follows. Let
oy €2 be some fixed value of the parameter. Define a sequence

/‘t0<ﬂ.1< "ot <)~n+1
by
» (1=0,1,...,n+1). (1.2.2)

Clearly A=A, Any1=2DB.

Alternatively, we may write

)
Aiz__G(n—l—l’ cxo)-

Further, define for any « € {2

ANi=F (Aiy1; 0)—F (4;; o), (2=0,1,...,n). (1.2.3)
We observe that, in the special case where o =«,,

1

= 1.2.4
ol n+1 ( )

Divide the sample-space into (n-+ 1)" parts by means of the planes
Ei=A,(1=1,...,n;9=0,...,n+1), and assign numbers 1,2, ... to these
parts according to any convenient principle. Denote by «, the value
of the estimate in some arbitrarily chosen point in the yth part. Fur-
ther, let P, be the probability mass corresponding to this part. Evi-
dently, the quantities P, for the different parts are terms in the series

obtained by expanding the expression

(22

into a sum of products of the A;s. It should be observed that A; and
P, depend both upon « and upon the given value «,.

(n+1)"

The sum Z “:‘ p

1S, by the definition of a Riemann-Stieltjes integral, an approxima-
tion to the integral appearing in (1.2.1). As the estimate is assumed to
be asymptotically unbiased, we have

15




2, 0 P, =a+ Rp, (1.2.5)

where the error term tends to zero when n» approaches infinity. Fur-
ther, we write

> (o —a)* P,= var oF + R, (1.2.6)
where var o« denotes the variance of z*. Generally, both terms in the
right member of this relation tend to zero when n» tends to infinity.
We shall, however, make the somewhat more restrictive assumption that
the error term converges to zero more rapidly than the leading term;

in other words, var «° and the sum in the left member are assumed
to be asymptotically equivalent.!

Returning to (1.2.5), let us suppose that this relation may be differ-
entiated term by term with respect to «. Observing that

we obtaln

where the remainder term converges to zero when % tends to infinity.
Using Cauchy’s inequality, we obtain

1 (d P,\* d RS\ 2 -
*_ )PP, > — 1 > iy I _
Z(cx,, o) P, gP,,(doc) /(1—}- doc) (1.2.7)

where the summation extends over all » with non-zero P,. The second
factor in the left member can after some easy calculation be reduced to

n Z (d =l ) (1.2.8)

d o

where the summation should be made over all =0, 1, ..., n with non-
Zero A..
Now take a=c, in (1.2.7). Using (1.2.4), we see that the expression

(1.2.8) is then, apart from a multiplicative factor 14 1/n, equal to the
value of the function

1 For a formal definition of this term, which will be encountered many times in
the sequel, see p. 35.

16



1.2

for «=o,. By this observation, and using equation (1.2.6) with o= o,
we conclude that

d R\ ?
(var oc*+R§,,2))I>(l+ ) ;

do

Since we have assumed that R’ converges more rapidly than var o,
we infer that, when n—>oco, the product I-var «* remains greater than

or equal to unity. Since «, is arbitrary, this result holds good for
any o« €£2. Thus we have proved the following theorem.

THEOREM. Let F (z2; ) be a continuous cdf., G (u; ) the inverse func-

tion of F, and o an asymptotically unbiased estimate of o, based upon a
random sample of n observations. Define, further,

= (0F (A1) OF (/'L-))2
2 | v v, 1.2.
1=t 2 (- 129
where o F (%) 18 the wvalue of the partial derwative 0¥ for
0 0 &
z=2i:G(——-—-@—- > oc) -
n+1
I
or . .
(a) . exists for any o belonging to an open interval (),

(b) the series appearing wn (1.2.5) may be differentiated term by term for
any o € (),

(c) the sum of the series appearing wn (1.2.6) s asymptotically equivalent
lo var « .,

then, for any o € £,
lim inf (I var «*)>1. (1.2.10)

n—>oo

It should be noted that, as F (4,)=0 and F (1,,1) =1, we have
0 I (4;)

0 o

The relation (1.2.10) is equivalent to stating that

=0 for 1=0 and 1=n-+1.

L
I

var o > (1.2.11)

when n is large enough. Following R. A. Fisher, we shall call I the
information available in a large sample of n values. The quantity 1/1

2 — 595540 G. Blom 17




1.3

will be called the asymptotic minimum variance of the estimate. If an
estimate has a variance, which is asymptotically equivalent to 1/I, it
will be called asymptotically efficient. As will follow from the discussion
in 1.3, this definition is in accordance with the definition of asymp-

totic efficiency used by Cramér (1946 a, p. 489) in all cases where the
latter 1s applicable.

Rectangular distribution.

To get a first, very simple application of the theorem, we shall
suppose that z is rectangularly distributed in the range u +1, where u
1s unknown. We then have

1, for z—u < —1
I (z; u)=({z—pu+3% for IZ“M|<“%‘
1 for z2—u = 1.

We get I=2#?% and (1.2.11) reduces to var u*>1/(2 n?). The mean
of the extreme values of the sample has variance 1/[2 (n+1) (n+ 2)]
(cf. 9.2), and is thus asymptotically efficient.

The main application of the theorem will be given in Chapter 13,
where 1t will be shown that, under very general conditions, asymptoti-
cally efficient estimates exist when « is a location or scale parameter
in a continuous distribution of any form. This general result contains
the example just given as a very special case.

It may be supposed that the conditions of the theorem can be stated
in a simpler form. In particular, it is believed that condition (c¢) is
on the whole supertluous. It should also be pointed out that the in-
equality (1.2.11) can easily be modified so as to apply also to asymptoti-
cally biased estimates. Finally, 1t may be mentioned that the improve-
ment of the Cramér-Rao inequality performed by Bhattacharya (1946)
can also be extended to the general situation discussed in this chapter.

1.3. Classification of distributions

The inequality (1.2.11) is very general, as it covers widely different
situations. It 1s convenient to classity these situations according to the
asymptotic behaviour of I. Properly speaking, this classification con-
cerns the behaviour of the underlying cdf. For this purpose, we need
two conditions.

13



1.3

oLl (z;o) . . . :
ConpitioN C1l. The function -—-———é—(——-——-—-)- 18 a continuous function of z 1n
o

the open interval A<z<B, and tends to zero when z—>A or z—>B.

CoNDITION C 2. The wntegral

o0

0 log f\* 0 log f\*,
E( > ) = f( = ) f(z;00)dz (1.3.1)

— 00

exists and 18 greater than zero.
Note that, when the interval (A4, B) is finite, Condition C1 may be
ol

given the simple formulation: 5 S continuous for any z wn the interval
o

or . .. .
— oo <z< oo, For — is then continuous, in particular, for 2=4 and

0 o

2= B; observing that F =0 for z < 4, and F =1 for z > B, we conclude
oF

that . equals zero for z=4 and 2= 5.
o

We now introduce the following classification, which will play an
important role in the sequel.

Type 1 distribution Conditions C1 and C2 are satisiied.

Type 2 distribution Condition C1 is not satisfied,
Condition C2 is satisfied.

Type 3 dastribution Condition C2 1s not satisfied.

When, in either of these cases, an asymptotically etficient estimate
exists (cf. 1.2), it may be termed an asymptotically efficient estimate of
Type 1, ete., or, shorter, a T'ype 1 estimate, etc.

In one special case it will prove convenient to modity the rules of
classification: If C 1 does not hold and the integral in (1.3.1) is zero,

we shall classify the distribution as Type 2. This rule affects the rec-
tangular distribution.

We shall make some comments concerning the classification. Suppose,

first, that the cdf. is of Type 1. By an analysis of Z, defined by (1.2.9),
we easily see that this quantity is then asymptotically equivalent to

2
nE(a log f) |
0 o




1.3

Thus the inequality (1.2.11) reduces to Fisher’s inequality (1.1.1). If an
asymptotically efficient estimate exists, its variance has the order of
magnitude n™".

or

0 &
as a function of z, has at most a denumerable number of discontinuity

points w,;, w,, ..., w, with ‘jumps’ A, A,, ..., A,. These points may be
situated inside or at the ends of the range of variation of z. It is
realized that I is then asymptotically equivalent to

Secondly, consider a Type 2 situation. Suppose that » considered

z
n® > Aj.
=1

Thus the inequality (1.2.11) is specialized to

Provided that the sum in the denominator is finite, we see that an
asymptotically etficient estimate (if existent) has a variance of order n™*.
The rectangular distribution, already mentioned in 1.2, and the ex-

ponential distribution are the best known examples of Type 2 distribu-
tions. We shall discuss these and other similar cases in 13.7.

If, finally, the cdif. belongs to Type 3, a special analysis has to be
made of the limit in (1.2.11) in each particular case, and no general

statements are possible with respect to the order of 1/I. The reader
1s referred to 13.8 and also to Table 8, p. 165, where examples
of Type 3 distributions are given. It follows from these examples that
the order of an asymptotically efficient estimate may, for example,

equal any power n *, where 1 < » < 2. However, other situations are
also possible.

It has always been maintained that the information I is additive,
i. e. the amounts of information available in each of two independent
samples are added when the samples are combined into one single
sample. We now see that this statement is true when the samples are
taken from a Type 1 distribution, but not necessarily otherwise. For
instance, in the case of a Type 2 distribution, it follows from the above

that, when two large samples of equal size are united into one sample,

the total mmformation becomes four times greater than the informa-
tion inherent in each subsample.

20



CHAPTLER 2

ESTIMATION OF SEVERAL UNKNOWN PARAMETERS

2.1. Introduction

The theorem concerning the asymptotic minimum variance and the
classification of distributions discussed in the preceding chapter are ex-
tended to the case of several unknown parameters. The results are
related to but more general than the multi-parameter version of the
Cramér-Rao inequality considered by Cramér (1946 5) and Rao (1947).

2.2. A general theorem for several unknown parameters

Let z have the continuous cdf. F(2; 4, ..., &;), Where «,, ..., o are k
unknown parameters, and each parameter o,, (r=1, ..., k), is situated
in an open interval €),. Let us suppose that the partial derivatives

F
gz = f (2; oty ..., &) and 25 exist for any value 2z and for any par-
ticular values o, €Q., (r=1, ..., k), of the parameters.

To estimate the parameters, we shall suppose that we have at our
disposal a random sample of » independent observations of z. Let
af, ..., ar be the estimates of the parameters, based upon these observa-
tions. We shall assume that the means

Ecx;‘-‘:focfdP, (r=1, ..., k), (2.2.1)

exist and tend to « when n tends to iInfimty.

Denote, further, by V the variance—covariance matrix with the ele-
ments! cov (of, aF), (r,s=1, ..., k). This matrix is the main object of
our investigation.

In the first part of the investigation we proceed in the same way

as in 1.2. Let o9, (r=1, ..., k), be any fixed values of the parameters.

Define quantities
20< 21< *°° <An+1
by the relations

1 To avoid duplication of formulae, we shall in the sequel often write cov (z, ¥)
even when x =y, instead of var «.

21



2.2

F (Ai; oty - Otig) = , (3=0,1,...,n+1), (2.2.2)

and Ai by

A5=F(;{.i+1;d1,..., cxk)-—F(;{i;ocl,..., cxk), (?:=0, 1, ,n) (223)

The sample-space is divided into (n+1)" parts exactly as in 1.2, and
the probability mass P, is defined as before. Note that A; and P, are
functions both of a9 and «,, (r=1, ..., k).

Let us designate by «;, the value of the estimate «* in some arbi-
trarily chosen point in the »th part. Since each estimate a* is assumed
to be an asymptotically unbiased estimate of the corresponding para-
meter, we obtain by analogy to (1.2.5)

> o P,=0a, + R%. (r=1, ..., k), (2.2.4)

where R{, tends to zero when n tends to infinity.
Further, we write by analogy to (1.2.6)

> (o, — o) (o0 — os) P, =cov (af, o) + R, (r,s=1, ..., k). (2.2.5)

V

Both terms in the right member generally tend to zero when n tends
to infinity. We shall, however, introduce a more stringent condition.
Denoting by W the k-k matrix which has as its elements the expres-
sions 1n the left member of (2.2.5), we shall assume that W and V are
asymptotically equivalent (cf. p. 36).

Moreover, let us assume that the relations (2.2.4) may be differentiated
term by term with respect to any parameter «,. Observing that

; 22’-:0, (s=1, ..., k),
we then find
R
o p 1 -i—aa for r=
* v Xy
Zp:(fxrv"‘ ot ) . o BD (2.2.6)
for r==s
0 oL
Now consider the quadratic form
1 0P, 1 0P, 2
% [(afv—dl) b+ oo (o, — o) B + E 5 o b1+ * o +E 8akt2k] P,,
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2.2

where the summation extends over all parts of the sample-space for
which P,=0. Since this form is positive definite or semi-definite, the
same is by (2.2.6) true of the 2k-2k matrix

________________

where R is the k-k matrix with the expressions in the right member
of (2.2.6) as elements, R’ the transpose of R, and J the k-k matrix

J-———-{ L@P,,@P,,}.
- \< P,oa, 0,

By analogy to (1.2.8), we find after some calculation that J can be
given the more convenient form

1 0A;0A;
— — 1 =1, ..., k), 2.
J {nzZAiacx,. 8053} (r,s=1, ..., k) (2.2.7)
summing over all ¢=0, 1, ...,n for which A;=0.

In the remaining part of our investigation we shall turn off from
the path followed in 1.2 and make use of a device due to Rao (1947
or 1952, p. 144ff.). Suppose that the reciprocal J 1 of J exists, and
let §, denote the unit k-%k matrix. The product!?

1_..._-.-....—._.--! -—._-‘-_-----“—-—ﬂ--- - ey bk kel el A W ek e s s whes eV

is evidently non-negative. Hence
|W—-RJ 'R'|>0.

We can repeat this argument for any subset of the estimates «f), ..., o,
and thus we infer that the matrix

W—-RJ 'R’

is positive definite or semi-detfinite.
Now let n approach infinity. Then R tends to J, and, as stated
earlier, W is asymptotically equivalent to V. Consequently, the matrix

V—J!

is positive definite or semi-definite if n is large enough.

1 We denote here and in the sequel by 'AI the determinant corresponding to the
matrix A.
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2.2

We now take o, =049, (r=1,...,%). Let us add a subscript 0 to V
and J in order to denote the values of the matrices for these par-

ticular values of the parameters. Since by (2.2.2) and (2.2.3) we then

have A;=1/(n+1), we see that J, is equivalent to the value J o, Which
the matrix

o 0A; 0 A,
={n220 82 A}’ (r,s=1, ..., k),

0 &

assumes for o, = .

Denoting the reciprocal of I, by I;!, we conclude from what has
just been said that the matrix

Vo—1Ig"

1s positive definite or semi-definite for large n. Since a, is an arbitrary

point in L), the result holds true for any values of the parameters.
Thus we have proved the following theorem.

THEOREM. Let F (z; ay, ..., o) be a continuous cdf. with the inverse func-
ion G (u; o0y, ..., 0) and o, (r=1, ..., k), asymptotically unbiased estimates
of the wunknown parameters «,, based upon a random sample of n ob-

servations. Let, further, V denote the wvariance—covariance matrix of the
estimates and I the k-k matrix with the elements

8F(;t,,+1) or (Zi)) (8F(2H1) oF (2,-))
— — ; 2.2.8
z ( 0 oL, 0o, 0 oL, O o, ( )
where X (4) 18 the value of the partial derivative oF for
0o, 0oL,
)
= A; = ; : 2.2.9
& AZ G(n—l—l’ a]_: )ak) ( )
I
oF . :
(a) the derwatives — , (r=1, ..., k), exist for any «, belonging to an open

0 o,
wnterval L), and for any z,

(b) the series appearing in (2.2.4) may be differentiated term by term
wnth respect to any parameter oy, (s=1, ..., k),

(¢) the matrix W defined by the left member of (2.2.5) is asymptotically
equivalent to V,
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2.3

(d) the reciprocal I™* of I exists,

then, for any o, €Q,, (r=1, ..., k), and for n large enough, the matrix

V—-I"

s positive definite or semi-definite.

Denote the elements of the matrix I-* by I'"°. The theorem implies
that we have, asymptotically,

varoy = 1", (r=1, ..., k), (2.2.10)

which may be regarded as a generalization of (1.2.11).
Further, when n is large enough, the generalized variance |V| of the

estimates satisfies the inequality

V=177 (2.2.11)

If the equality sign holds in this formula, we shall call the estimates
asymptotically jointly effictent. It will ensue from the discussion in 2.3
that this definition coincides with that used by Cramér (1946 a, p. 494 11.),
whenever the latter is applicable.

When there are only two unknown parameters «; and «,, the in-
equalities (2.2.10) reduce to

I22 Ill

var of = ¥k var ag > Tk (2.2.12)
where
I|=1,,1,,— It;. (2.2.13)
Furthermore, (2.2.11) is specialized to
1

var o var as — [cov (af, o3 )]* = 7 : (2.2.14)

We shall demonstrate in Chapter 13 that asymptotically jointly etfi-
cient estimates of «, and a, generally exist in the important special
case where «, and «, are identified as the location parameter 4 and the
scale parameter ¢ in a continuous cdf. F [(z— u)/ac].

2.3. Extension of the classification

The classification of distributions with one unknown parameter per-
formed in 1.3 can be extended so as to apply also to the more general
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2.3

situation considered in this chapter. Conditions C 1 and C 2 then assume
a more general form. Set

o0

erS:E(alogfalogf):f@logf@logf

306,- aas aar ao‘s

— OQ

(r,s=1, ..., k). (2.3.1)

Let £ be the k-k matrix with these quantities as elements and £~ its

reciprocal (if existent). Now consider any of the unknown parameters o,.

We have two conditions, the latter of which is the same for all para-
meters.

. oF : . .
ConNDITION C1l. The function S s a contrnuous function of z in the
Xy

open wnterval A<z< B, and tends to zero when z—>A or z—>B.

CONDITION C2. The quantities e, exist, and the determinant E| s
greater than zero.

Using these conditions, we are able to classify the cdf. into one of
three types according to exactly the same scheme as that introduced
in 1.3.1

The procedure of classification should be repeated for any other para-
meter, and thus should be performed k£ times in all. Generally, the cdf.
belongs to the same type, regardless of which parameter is considered.
It may, however, well happen that the classification leads to different
results for different parameters. For instance, it is not uncommon that
the partial derivative appearing in Condition C1 is zero at the ends for
certain of the parameters, but different from zero for others. For this
reason, 1t 1s not sufficient to state that a cdf. belongs, for example,

to Type 1. Instead, it should be stated that it belongs to Type 1 with
respect to the parameter o, .

It follows from these remarks that the classification of a cdf. de-
pending upon several unknown parameters may be rather complicated,
since many alternatives are possible. Of special interest is the case where
the cdf. belongs to the same type with respect to all parameters. We
shall say that the cdf. is then wuniformly of Type 1, 2, or 3, or, alterna-
tively, that we have a wuniform Type 1 distribution, ete. Since Condi-
tion C2 is the same for all parameters, Type 3 distributions are always

1 We also use a similar modification of the rules as on p. 19: When Condition C 1
breaks down and IE’I =0, we classify the distribution as Type 2.
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2.4-2.5

uniform. In the following two sections we shall make some general com-
ments upon the properties of estimates based upon samples from uni-
form Type 1 and Type 2 distributions. For examples of other distribu-

tions, the reader is referred to Chapter 13.

2.4. Uniform Type 1 distributions

Suppose that the distribution belongs uniformly to Type 1. Condi-
tion C1 is then satisfied for each parameter «,, and Condition C2 1s
fulfilled. We find after a simple calculation n-I,,—>e., where e, 1s
defined by (2.3.1). Thus we infer from the theorem in 2.2 that the

matrix

V-
n

is positive definite or semi-definite if n s large enough.

This result is equivalent to the large-sample version of a theorem
proved by Cramér (1946 b; see also 1946 a, p. 490 ff.). In particular, we
see that Cramér’s definition of asymptotic joint efficiency agrees with
the more general definition introduced in 2.2, p. 25. We notice that,
when asymptotically jointly efficient estimates exist, they have variances
and, generally, covariances of order n™.

Examples of uniform Type 1 distributions will be given in Chapter 13.

2.5. Uniform Type 2 distributions

We shall consider the interesting case of a distribution belonging

. : . .. OF
uniformly to Type 2. Then each partial derivative P (r=1, ..., k),
Xy
has at least one discontinuity point, which may be situated inside or
at the ends of the range of variation of z.
Let us suppose that the discontinuity points are denumerable, and
let us order all such points, corresponding to the different parameters,

into a single sequence wy, ..., w;. The number [ of these points may be

finite or infinite. Denote the increase! of the function Q—'E in w, by A,,,

0o,
and let A be the k-l matrix with these quantities as elements. Note
that certain of the quantities A,, may be zero, but, corresponding to
each parameter «,, there is at least one A,,==0. When there is a single
discontinuity point, A is a column vector with non-zero elements.

1 The increase (‘jump’) of a function g (x) for x=w is defined as the difference
g(w+)—g(w-—).
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2.0

Let us now examine the expressions I,, defined by (2.2.8). It is
realized after some calculation that

I~n*AA +n(A+E), (25.1)

where the sign ~ denotes asymptotic equivalence, and A’ is the transpose

of A. Further, 4 is a k-k matrix, the elements of which will not be
given here (cf. 13.6).

Denote the k-% matrix AA’ by S={S,,}, and by S~ 1={8"} its re-
ciprocal (if existent). Now consider the theorem in 2.2. We must dis-
tinguish between two cases.

(@) The matrix S s non-singular.

The assertion made in the theorem is equivalent to stating that
the matrix

var o = — S, (r,=1, ..., k). (2.5.2)

It asymptotically jointly efficient estimates exist, they have variances
of order n™*. We shall give an example of this situation.

Rectangular distribution.

Let z have two unknown parameters, viz. the mean yx and the range
of variation o, so that

c
— ~<\ — e
0 for z—pu >
I (z; u, o) = zmﬂ—l—% for |z-—y|<g
C 2
G
1 for z—-y?-é--
oF 70 . . _y
5 and 5 are discontinuous at the ends of the range of variation, and
7 g
we find
2
2 2 ¢
A — > S=
L1 o L
20 20 2 o*
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2.5

Denoting the estimates of # and ¢ by u* and o¢°, we infer from
{2.5.2) that '

¥
2%2, var O ,>/7Z§“'

var u” >
This result can, of course, also be obtained directly ifrom the theorem
in 2.2. The limits are attained, for example, by, respectively, the mean
of the extreme values (cf. p. 18) and the range of the sample, which,
consequently, are asymptotically jointly efficient. We shall return to this
example several times in the sequel (cf. 9.2 and 13.7).

Further examples will be given in Chapter 13.

(b) The matrix S 18 singular.
oL

This situation occurs, for example, when the derivatives o, possess
a single common discontinuity point. '

When 8 is singular, the elements of I-' have for the most part the
order n~'. Hence the wvartances of the asymptotically efficient estimates
generally converge as n~'. This result is very remarkable, as it differs
radically from that obtained in (a). In fact, the situation has much
more iIn common with that encountered in the case of Type 1 distri-
butions.

We shall verity the truth of the above statement in the important
special case where § has the rank k—1.

As seen from (2.5.1), the cofactor of any element I, is, apart from
a factor n°°"%, asymptotically equivalent to the cofactor of S,, in the
matrix § provided, however, that S,,==0. Since the rank of Sis kt—1,
all these cofactors are not zero. Moreover, the determinant |I| is, apart
from a factor »**~', asymptotically equivalent to the sum X of the %
determinants obtained by replacing in the determinant |S| one column
of elements by the corresponding elements in |4+ E|. Thus, if
2+0 one at least of the elements of I™' is of order n**2/n* " 1=n"1,
Generally, all the elements have this order.

The case 2.=0 is exceptional and will not be discussed here.

Particularly simple results are obtained when there are only two
unknown parameters «; and «, and the corresponding partial derivatives
have a single common discontinuity. Then the rank of S is t—1=1,

and the above results are applicable. We shall discuss this situation

more fully in 13.6 in the special case where «, and «, are location and
scale parameters.
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2.5

Returning to the general case of & unknown parameters, we shall,
finally, mention that the above discussion may without difficulty be
extended also to the situation when the rank of S is less than k—1.

Since nothing essentially new occurs in this case, we shall not con-
sider this alternative.

30
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PART 11

TRANSFORMED BETA-VARIABLES
MOMENTS AND PROBABILITY DISTRIBUTIONS

CHAPTER 3

GENERAL INTRODUCTION

3.1. Definition of a transformed beta-variable

Take n points at random in the unit interval 0 <« <<1. Denote by

Uin, Uan,y « « <y Upn

the distances of the points from the origin in ascending order of magni-
tude. In the language of statistics, u;, may be termed the +th order
statistic 1n a sample of » independent observations of a rectangularly
distributed variable #. It is a random variable, which is distributed
according to the beta-distribution (see further 4.2).

Let x =G (u) be a B-measurable function of %, defined over the interval
O0<wu<l, and let F(x)=G " (x) be its inverse. Any such function @ (u)
will be called a transform. Let wy,, usn, ..., u,, be transformed to

Liny X2ny o« o9 Lnn,

where x;, =G (u;,). The one-dimensional random wvariable z;, will be
called a transformed beta-variable or, in abbreviated form, a T'RB-variable.
The n-dimensional variable (214, Zon, ..., Zny) Will be termed a set of
transformed beta-variables. For simplicity, we shall mostly write «; and z;
instead of u;, and x«;,.

In applications, G (u) is generally non-decreasing; then F (z) is uniquely
determined.! Since this condition is not essential for the validity of all
results mn Part 1I, it will not be introduced at this stage.

The random variable ¢ (n) will be denoted by & When @ (%) is non-
decreasing, & has the cdf. F (x). Of special importance is the case when
the probability mass corresponding to & is zero in every point, i.e. when
I (z) is everywhere continuous; then G (u) is an increasing function of «.

[ - e

t 1t ¢ (u) 18 constant between two points of increase, set F(x)=the right point.
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3.2
3.2. Place of transformed beta-variables in statistical theory

Two applications of transformed beta-variables will be mentioned.

The first of these is of great importance in statistics. In both cases
G (u) 1s assumed to be non-decreasing.

First, let

be an ordered random sample (set of order statistics) of n independent
observations of &. It is known (cf., e.g., Scheffé & Tukey, 1945) that
the variable (&, &, ..., &) has the same distribution as (z,, z,, . . ., 2,).
In particular, any order statistic &; is distributed as a TRB-variable z;.
(Note, however, that, as pointed out by Scheffé & Tukey, the variable
F(&;) 18 not distributed in the same way as F (x;)=wu;, unless F (z) is
continuous.) Thus, when G'(u) is non-decreasing, the abstract notion of
a set of T'RB-variables can be materialized as a set of order statistics.
An excellent review of the huge literature concerning order statistics
can be obtained from the lists of references given by Wilks (1948) and
David & Johnson (1956). Some further references are given at the end
of this thesis.

The second application of T RB-variables concerns the problem of
transtorming binomial and related distributions. Denote generally by P (¥)
the probability that the event E will occur. Now the event v>7¢ is

equivalent to the event w;<<p, where » is a binomial variable with
parameters n and p. Hence

P(v=1)=P(u; <p). (3.2.1)

Since the distance wu; 1s beta-distributed, this formula expresses the well-
known relation between the binomial distribution and the beta-distribu-
tion (cf., e.g., Deming, 1950, p. 480 ff.).

It 13 sometimes of importance to transform the binomial variable to
a new variable whose distribution is easier to handle. Using the trans-
form x=G(u), we obtain from (3.2.1) the relation '

Pw>i)=P(x:<G (D).

Thus, computing the binomial sum is equivalent to determining the
value of the cdf. of ; in the point G (p). 1f x; is approximately normally
distributed, this procedure 1s particularly convenient. The transform
G (u) ought therefore to be chosen such that the cdf. of x; is as close
to the normal cdi. as possible. In a previous paper (Blom, 1954) the
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3.5

author has discussed this problem. He demonstrated that B-transforms
(cf. 3.5) are particularly useful for the purpose of normalizing binomial,
negative binomial, Poisson, and X* variables.

A fundamental difference between the two above-mentioned applica-
tions of TRB-variables should be emphasized. In the former of these,
G (u) is given in advance, being the inverse of the cdf. of the sampled
population. For, if u=F (x), then x=F~'(u)=G (u). In the latter case,
on the contrary, the transform has to be chosen in such a way that
the resulting T RB-variable will possess certain desired properties.

As a result of this brief account of the place of T'RB-variables in
statistics, we infer that these variables occur in two fields, which may
at first sight seem to have very little in common (a relationship which,
to the best of the author’s knowledge, has not been pointed out betore).
In the present work, the theory of TRB-variables will be applied only
to the former of the two {fields.

3.3. Summary of Parts II and III

The contents of Part II and Part III may be summarized as follows.

In Part II, which consists of Chapters 3-8, some general properties
of TRB-variables are studied by means of the theory of probability.

In Chapter 4, a review is given of several properties of such variables,
which are valid for any sample-size. Chapters 5 and 6 contain a detailed
discussion of the problem of finding approximations to the two first
moments of non-singular 7'RB-variables.! In Chapter 6, a special tool
is designed for improving the approximations given in Chapter 5, namely
the so-called «, f-correction. Chapters 5 and 6 also contain a study of
a special type of weighted difference between consecutive 1'R B-variables.
The use of such differences results in a substantial simplification of the
derivations made in subsequent chapters.

In Chapter 7, some properties of singularl 7'RB-variables are derived,
which are related to Fisher & Tippett's results concerning the extreme
values in a sample.

In Chapter 8, the results obtained in Chapters 4-7 are applied to the
main problem in Part II, which concerns an analysis of linear combi-
nations of 7'"RB-variables. Several asymptotical results concerning moments
and distributions of such combinations are given. The results depend
largely upon the properties of the transform, and the investigation

1 For the definition of non-singular and singular T'RB-variables, the reader is
referred to 3.4.
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3.3

concerns three general families of transforms, which cover most cases
occurring In practical situations.

In Part IlI, which consists of Chapters 9-14, the theoretical results
deduced in Part II are applied to the problem of estimating location
and scale parameters by means of linear combinations of ordered sample-
values (linear estimates).

Chapter 9 has a preliminary character. In Chapter 10, the minimum
variance problem for linear estimates is studied, i.e. the problem of
constructing an estimate with the least possible variance. The exact
solution 1s known but is for the most part very tedious to apply in
practice. Instead, an approximative method is introduced, by which
so-called nearly best linear estimates can be constructed.

In Chapter 11, some remarks are made concerning the problem arising
when, in the above-mentioned problem, the variance is replaced by the
mean square deviation about the true value of the parameter.

A modification of the method presented in Chapter 10 is discussed
in Chapter 12, which also contains an application of nearly best linear
estimates to probability papers.

In Chapter 13, asymptotic properties of nearly best linear estimates
are subject to investigation. It is proved that, given certain general
conditions, such estimates are asymptotically efficient (in the general
sense used in Part I). Furthermore, the estimates are divided into three
types, viz. Type 1, Type 2, and Type 3 estimates according to the
classification of distributions introduced in Part I. A detailed study is
made of each type of estimate, and examples are given illustrating the
general theory expounded in Part I. The asymptotic distribution of a
nearly best estimate is also investigated, and it is proved that Type 1
estimates (but not generally Type 2 estimates) are asymptotically nor-
mally distributed.

In Chapter 14, nearly best linear estimates are compared with esti-
mates obtained by some other methods.

The author has aimed at proving the results given in Part II and
Part II1 for as general classes of transforms as possible. The detailed
assumptions concerning the transform are stated in any special problem.
Nevertheless, to facilitate the reading, we shall give a survey of the
two parts from this point of view.

Generally speaking, we pass from more general to more special
results. The relations given in Chapter 4 apply to any transform or,
in certain situations, to non-decreasing and/or differentiable transforms.
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In Chapters 5 and 6, the transform is for the most part assumed to
be continuous and to have continuous derivatives of low order in some
small portion of the unit interval. In Chapter 7, we study transforms
which either tend to infinity in either of two specified ways, or which
have a first derivative with the same property.

From Chapter 8 and onwards, the transform is assumed to be bounded
and differentiable over the closed interval O <u <1, or sometimes, more
generally, over the open interval 0 <u<1. (An exception is afforded by
the general formulae in 8.1-8.6 containing the coefficients g; explicitly,
which apply to any transform.) When asymptotical problems are studied,
some additional conditions are introduced.

In Part III we shall suppose that, besides the conditions just stated,
the transform is an increasing function of w«.

For the benefit of the reader who is interested in particular distri-
butions, we shall, finally, present a list of the distributions discussed

in Part II and Part 111.

Distribution Section

Cauchy 4.3, 6.12

Exponential 4.5, 6.15, 10.8, 13.7

Extreme-value 6.13, 10.8, 13.5

Laplace (double exponential) 6.11, 10.8, 13.5

Normal 6.10, 7.3, 7.4, 10.8, 12.4,
12.5, 12.6, 13.5

Rectangular 4.2, 9.2, 10.8,11.2, 12.6, 13.7

Right triangular 10.8, 13.8

Triangular 10.8, 13.8

Weibull 6.14, 12.4, 13.5

3.4. Notations

Besides the symbols introduced in 3.1, we shall need several other
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