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Preface

This new edition reflects the development of the field of hypothesis
testing since the original book was published 27 years ago, but the basic
structure has been retained. In particular, optimality considerations con-
tinue to provide the organizing principle. However, they are now tempered
by a much stronger emphasis on the robustness properties of the resulting
procedures. Other topics that receive greater attention than in the first
edition are confidence intervals (which for technical reasons fit better here
than in the companion volume on estimation, 7PE*), simultaneous in-
ference procedures (which have become an important part of statistical
methodology), and admissibility. A major criticism that has been leveled
against the theory presented here relates to the choice of the reference set
with respect to which performance is to be evaluated. A new chapter on
conditional inference at the end of the book discusses some of the issues
raised by this concern.

In order to accommodate the wealth of new results that have become
available concerning the core material, it was necessary to impose some
limitations. The most important omission is an adequate treatment of
asymptotic optimality paralleling that given for estimation in TPE. Since
the corresponding theory for testing is less satisfactory and would have
required too much space, the earlier rather perfunctory treatment has been
retained. Three sections of the first edition were devoted to sequential
analysis. They are outdated and have been deleted, since it was not possible
to do justice to the extensive and technically demanding expansion of this
area. This is consistent with the decision not to include the theory of
optimal experimental design. Together with sequential analysis and survey
sampling, this topic should be treated in a separate book. Finally, although
there is a section on Bayesian confidence intervals, Bayesian approaches to

*Theory of Point Estimation [Lehmann (1983))].
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viil PREFACE

hypothesis testing are not discussed, since they play a less well-defined role
here than do the corresponding techniques in estimation.

In addition to the major changes, many new comments and references
have been included, numerous errors corrected, and some gaps filled. I am
greatly indebted to Peter Bickel, John Pratt, and Fritz Scholz, who furnished
me with lists of errors and improvements, and to Maryse Loranger and Carl
Schaper who each read several chapters of the manuscript. For additional
comments I should like to thank Jim Berger, Colin Blyth, Herbert Eisenberg,
Jaap Fabius, Roger Farrell, Thomas Ferguson, Irving Glick, Jan Hemelrijk,
Wassily Hoeffding, Kumar Jogdeo, the late Jack Kiefer, Olaf Krafft, Wil-
liam Kruskal, John Marden, John Rayner, Richard Savage, Robert Wijs-
man, and the many colleagues and students who made contributions of
which I no longer have a record.

Another indebtedness I should like to acknowledge is to a number of
books whose publication considerably eased the task of updating. Above all,
there is the encyclopedic three-volume treatise by Kendall and Stuart, of
which I consulted particularly the second volume, fourth edition (1979)
innumerable times. The books by Ferguson (1967), Cox and Hinkley (1974),
and Berger (1980) also were a great help. In the first edition, I provided
references to tables and charts that were needed for the application of the
tests whose theory was developed in the book. This has become less
important in view of the four-volume work by Johnson and Kotz: Distribu-
tions in Statistics (1969-1972). Frequently I now simply refer to the ap-
propriate chapter of this reference work.

There are two more books to which I must refer:

A complete set of solutions to the problems of the first edition was
published as Testing Statistical Hypotheses: Worked Solutions. [Kallenberg
et al. (1984)]. I am grateful to the group of Dutch authors for undertaking
this labor and for furnishing me with a list of errors and corrections
regarding both the statements of the problems and the hints to their
solutions.

The other book is my Theory of Point Estimation [Lehmann (1983)],
which combines with the present volume to provide a unified treatment of
the classical theories of testing and estimation, both by confidence intervals
and by point estimates. The two are independent of each other, but cross
references indicate additional information on a given topic provided by the
other book. Suggestions for ways in which the two books can be used to
teach different courses are given in comments for instructors following this
preface.

I owe very special thanks to two people. My wife, Juliet Shaffer, critically
read the new sections and gave advice on many other points. Wei Yin Loh



PREFACE X

read an early version of the whole manuscript and checked many of the new
problems. In addition, he joined me in the arduous task of reading the
complete galley proofs. As a result, many errors and oversights were
corrected.

The research required for this second edition was supported in part by
the National Science Foundation, and I am grateful for the Foundation’s
continued support of my work. Finally, I should like to thank Linda
Tiffany, who converted many illegible pages into beautifully typed ones.
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Preface to the First Edition

A mathematical theory of hypothesis testing in which tests are derived as
solutions of clearly stated optimum problems was developed by Neyman
and Pearson in the 1930s and since then has been considerably extended.
The purpose of the present book is to give a systematic account of this
theory and of the closely related theory of confidence sets, together with
their principal applications. These include the standard one- and two-sam-
ple problems concerning normal, binomial, and Poisson distributions; some
aspects of the analysis of variance and of regression analysis (linear hy-
pothesis); certain multivariate and sequential problems. There is also an
introduction to nonparametric tests, although here the theoretical approach
has not yet been fully developed. One large area of methodology, the class
of methods based on large-sample considerations, in particular x2 and
likelihood-ratio tests, essentially has been omitted because the approach and
the mathematical tools used are so different that an adequate treatment
would require a separate volume. The theory of these tests is only briefly
indicated at the end of Chapter 7.

At present the theory of hypothesis testing is undergoing important
changes in at least two directions. One of these stems from the realization
that the standard formulation constitutes a serious oversimplification of the
problem. The theory is therefore being reexamined from the point of view of
Wald’s statistical decision functions. Although these investigations throw
new light on the classical theory, they essentially confirm its findings. I have
retained the Neyman-Pearson formulation in the main part of this book,
but have included a discussion of the concepts of general decision theory in
Chapter 1 to provide a basis for giving a broader justification of some of the
results. It also serves as a background for the development of the theories of
hypothesis testing and confidence sets.

Of much greater importance is the fact that many of the problems, which
traditionally have been formulated in terms of hypothesis testing, are in
reality multiple decision problems involving a choice between several deci-

xi



xii PREFACE TO THE FIRST EDITION

sions when the hypothesis is rejected. The development of suitable proce-
dures for such problems is at present one of the most important tasks of
statistics and is finding much attention in the current literature. However,
since most of the work so far has been tentative, I have preferred to present
the traditional tests even in cases in which the majority of the applications
appear to call for a more elaborate procedure, adding only a warning
regarding the limitations of this approach. Actually, it seems likely that the
tests will remain useful because of their simplicity even when a more
complete theory of multiple decision methods is available.

The natural mathematical framework for a systematic treatment of
hypothesis testing is the theory of measure in abstract spaces. Since intro-
ductory courses in real variables or measure theory frequently present only
Lebesgue measure, a brief orientation with regard to the abstract theory is
given in Sections 1 and 2 of Chapter 2. Actually, much of the book can be
read without knowledge of measure theory if the symbol [p(x)dp(x) is
interpreted as meaning either [p(x)dx or £ p(x), and if the measure-theo-
retic aspects of certain proofs together with all occurrences of the letters a.e.
(almost everywhere) are ignored. With respect to statistics, no specific
requirements are made, all statistical concepts being developed from the
beginning. On the other hand, since readers will usually have had previous
experience with statistical methods, applications of each method are indi-
cated in general terms, but concrete examples with data are not included.
These are available in many of the standard textbooks.

The problems at the end of each chapter, many of them with outlines of
solutions, provide exercises, further examples, and introductions to some
additional topics. There is also given at the end of each chapter an
annotated list of references regarding sources, both of ideas and of specific
results. The notes are not intended to summarize the principal results of
each paper cited but merely to indicate its significance for the chapter in
question. In presenting these references I have not aimed for completeness
but rather have tried to give a usable guide to the literature.

An outline of this book appeared in 1949 in the form of lecture notes
taken by Colin Blyth during a summer course at the University of Cali-
fornia. Since then, I have presented parts of the material in courses at
Columbia, Princeton, and Stanford Universities and several times at the
University of California. During these years I greatly benefited from com-
ments of students, and I regret that I cannot here thank them individually.
At different stages of the writing I received many helpful suggestions from
W. Gautschi, A. Heyland, and L. J. Savage, and particularly from Mrs. C.
Striebel, whose critical reading of the next to final version of the manuscript
resulted in many improvements. Also, I should like to mention gratefully
the benefit I derived from many long discussions with Charles Stein.
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It is a pleasure to acknowledge the generous support of this work by the
Office of Naval Research; without it the book would probably not have
been written. Finally, I should like to thank Mrs. J. Rubalcava, who typed
and retyped the various drafts of the manuscript with unfailing patience,
accuracy, and speed.

E. L. LEHMANN

Berkeley, California
June 1959



Comments for Instructors

The two companion volumes, Testing Statistical Hypotheses (TSH)
and Theory of Point Estimation (TPE), between them provide an introduc-
tion to classical statistics from a unified point of view. Different optimality
criteria are considered, and methods for determining optimum procedures
according to these criteria are developed. The application of the resulting
theory to a variety of specific problems as an introduction to statistical
methodology constitutes a second major theme.

On the other hand, the two books are essentially independent of each
other. (As a result, there is some overlap in the preparatory chapters; also,
each volume contains cross-references to related topics in the other.) They
can therefore be taught in either order. However, TPE is somewhat more
discursive and written at a slightly lower mathematical level, and for this
reason may offer the better starting point.

The material of the two volumes combined somewhat exceeds what can
be comfortably covered in a year’s course meeting 3 hours a week, thus
providing the instructor with some choice of topics to be emphasized. A
one-semester course covering both estimation and testing can be obtained,
for example, by deleting all large-sample considerations, all nonparametric
material, the sections concerned with simultaneous estimation and testing,
the minimax chapter of TSH, and some of the applications. Such a course
might consist of the following sections: TPE: Chapter 2, Section 1 and a
few examples from Sections 2,3; Chapter 3, Sections 1-3; Chapter 4,
Sections 1-4. TSH: Chapter 3, Sections 1-3, 5, 7 (without proof of Theorem
6); Chapter 4, Sections 1-7; Chapter 5, Sections 1-4,6-8; Chapter 6,
Sections 1-6, 11; Chapter 7, Sections 1-3, 5-8, 11, 12; together with material
from the preparatory chapters (TSH Chapter 1,2; TPE Chapter 1) as it is
needed.
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CHAPTER 1

The General Decision

Problem

1. STATISTICAL INFERENCE AND STATISTICAL
DECISIONS

The raw material of a statistical investigation is a set of observations; these
are the values taken on by random variables X whose distribution P, is at
least partly unknown. Of the parameter @, which labels the distribution, it is
assumed known only that it lies in a certain set £, the parameter space.
Statistical inference is concerned with methods of using this observational
material to obtain information concerning the distribution of X or the
parameter § with which it is labeled. To arrive at a more precise formula-
tion of the problem we shall consider the purpose of the inference.

The need for statistical analysis stems from the fact that the distribution
of X, and hence some aspect of the situation underlying the mathematical
model, is not known. The consequence of such a lack of knowledge is
uncertainty as to the best mode of behavior. To formalize this, suppose that
a choice has to be made between a number of alternative actions. The
observations, by providing information about the distribution from which
they came, also provide guidance as to the best decision. The problem is to
determine a rule which, for each set of values of the observations, specifies
what decision should be taken. Mathematically such a rule is a function 8,
which to each possible value x of the random variables assigns a decision
d = 8(x), that is, a function whose domain is the set of values of X and
whose range is the set of possible decisions.

In order to see how & should be chosen, one must compare the conse-
quences of using different rules. To this end suppose that the consequence
of taking decision d when the distribution of X is P, is a loss, which can be
expressed as a nonnegative real number L(8, d). Then the long-term
average loss that would result from the use of & in a number of repetitions

1



2 THE GENERAL DECISION PROBLEM [1.2

of the experiment is the expectation E[L(6, §(X))] evaluated under the
assumption that Py is the true distribution of X. This expectation, which
depends on the decision rule 8 and the distribution P, is called the risk
function of 8 and will be denoted by R(4, §). By basing the decision on the
observations, the original problem of choosing a decision d with loss
function L(#8, d) is thus replaced by that of choosing 8, where the loss is
now R(4, ).

The above discussion suggests that the aim of statistics is the selection of
a decision function which minimizes the resulting risk. As will be seen later,
this statement of aims is not sufficiently precise to be meaningful; its proper
interpretation is in fact one of the basic problems of the theory.

2. SPECIFICATION OF A DECISION PROBLEM

The methods required for the solution of a specific statistical problem
depend quite strongly on the three elements that define it: the class
P = {P,, 0 € Q} to which the distribution of X is assumed to belong; the
structure of the space D of possible decisions d; and the form of the loss
function L. In order to obtain concrete results it is therefore necessary to
make specific assumptions about these elements. On the other hand, if the
theory is to be more than a collection of isolated results, the assumptions
must be broad enough either to be of wide applicability or to define classes
of problems for which a unified treatment is possible.

Consider first the specification of the class &. Precise numerical assump-
tions concerning probabilities or probability distributions are usually not
warranted. However, it is frequently possible to assume that certain events
have equal probabilities and that certain others are statistically independent.
Another type of assumption concerns the relative order of certain infinitesi-
mal probabilities, for example the probability of occurrences in an interval
of time or space as the length of the interval tends to zero. The following
classes of distributions are derived on the basis of only such assumptions,
and are therefore applicable in a great variety of situations.

The binomial distribution b( p, n) with

1) P(X=x)=(:)p"(l—p)"_x, x=0,...,n, 0<p<1.

This is the distribution of the total number of successes in # independent
trials when the probability of success for each trial is p.
The Poisson distribution P(r) with

x

.
(2) P(X=x)=;e", x=0,1,..., 0<r.
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This is the distribution of the number of events occurring in a fixed interval
of time or space if the probability of more than one occurrence in a very
short interval is of smaller order of magnitude than that of a single
occurrence, and if the numbers of events in nonoverlapping intervals are
statistically independent. Under these assumptions, the process generating
the events is called a Poisson process. Such processes are discussed, for
example, in the books by Feller (1968), Karlin and Taylor (1975), and Ross
(1980).
The normal distribution N(£, 62) with probability density

1

1
(3) p(x)=—2‘/_w—oexp[—ﬁ(x—£)2], -0 <x,{<00, 0<o.

Under very general conditions, which are made precise by the central limit
theorem, this is the approximate distribution of the sum of a large number
of independent random variables when the relative contribution of each
term to the sum is small.

We consider next the structure of the decision space D. The great variety
of possibilities is indicated by the following examples.

Example 1. Let X,,..., X, be a sample from one of the distributions (1)-(3),
that is, let the X’s be distributed independently and identically according to one of
these distributions. Let @ be p, 7, or the pair (£, o) respectively, and let y = y(f)
be a real-valued function of 6.

(i) If one wishes to decide whether or not y exceeds some specified value y,, the
choice lies between the two decisions d,:y >y, and d,:y <y, In specific
applications these decisions might correspond to the acceptance or rejection of a lot
of manufactured goods, of an experimental airplane as ready for flight testing, of a
new treatment as an improvement over a standard one, and so on. The loss function
of course depends on the application to be made. Typically, the loss is 0 if the
correct decision is chosen, while for an incorrect decision the losses L(y, d;) and
L(y, d,) are increasing functions of |y — yy|.

(ii) At the other end of the scale is the much more detailed problem of
obtaining a numerical estimate of y. Here a decision d of the statistician is a real
number, the estimate of y, and the losses might be L(y,d) = v(y)w(ld — ¥)),
where w is a strictly increasing function of the error |d — y|.

(iii) An intermediate case is the choice between the three alternatives d: v < ¥,
dy iy >, d;: ¥ <y < 1, for example accepting a new treatment, rejecting it, or
recommending it for further study.

The distinction illustrated by this example is the basis for one of the
principal classifications of statistical methods. Two-decision problems such
as (i) are usually formulated in terms of testing a hypothesis which is to be
accepted or rejected (see Chapter 3). It is the theory of this class of problems
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with which we shall be mainly concerned here. The other principal branch
of statistics is the theory of point estimation dealing with problems such as
(ii). This is the subject of TPE. The intermediate problem (iii) is a special
case of a multiple decision procedure. Some problems of this kind are treated
in Ferguson (1967, Chapter 6); a discussion of some others is given in
Chapter 7, Section 4.

Example 2. Suppose that the data consist of samples X;;, j=1,...,n;, from
normal populations N(§,,62), i =1,...,s.

(i) Consider first the case s = 2 and the question of whether or not there is a
material difference between the two populations. This has the same structure as
problem (iii) of the previous example. Here the choice lies between the three
decisions dy: 1§, — §|<A,d &> 8 + A, dy: &, <§ — A, where A is pre-
assigned. An analogous problem, involving k + 1 possible decisions, occurs in the
general case of k populations. In this case one must choose between the decision
that the k distributions do not differ materially, d,:max|{; — §;| < A, and the
decisions d, : max|§; — ;| > A and £, is the largest of the means.

(ii) A related problem is that of ranking the distributions in increasing order of
their mean £.

(iii) Alternatively, a standard £, may be given and the problem is to decide
which, if any, of the population means exceed the standard.

Example 3. Consider two distributions—to be specific, two Poisson distribu-
tions P(r;), P(r,)—and suppose that r; is known to be less than 7, but that
otherwise the 7’s are unknown. Let Z,,..., Z, be independently distributed, each
according to either P(7;) or P(r,). Then each Z is to be classified as to which of the
two distributions it comes from. Here the loss might be the number of Z’s that are
incorrectly classified, multiplied by a suitable function of 7, and r,. An example of
the complexity that such problems can attain and the conceptual as well as
mathematical difficulties that they may involve is provided by the efforts of
anthropologists to classify the human population into a number of homogeneous
races by studying the frequencies of the various blood groups and of other genetic
characters.

All the problems considered so far could be termed action problems. It
was assumed in all of them that if § were known a unique correct decision
would be available, that is, given any 8, there exists a unique d for which
L(0, d) = 0. However, not all statistical problems are so clear-cut. Fre-
quently it is a question of providing a convenient summary of the data or
indicating what information is available concerning the unknown parameter
or distribution. This information will be used for guidance in various
considerations but will not provide the sole basis for any specific decisions.
In such cases the emphasis is on the inference rather than on the decision
aspect of the problem. Although formally it can still be considered a
decision problem if the inferential statement itself is interpreted as the
decision to be taken, the distinction is of conceptual and practical signifi-
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cance despite the fact that frequently it is ignored.* An important class of
such problems, estimation by interval, is illustrated by the following exam-
ple. (For the more usual formulation in terms of confidence intervals, see
Chapter 3, Section 5, and Chapter 5, Sections 4 and 5.)

Example 4. Let X = (Xi,..., X,) be a sample from N(¢, 0?) and let a decision
consist in selecting an interval [L L] and stating that it contains §. Suppose that
decision procedures are restricted to intervals [L(X ), L(X)] whose expected length
for all £ and o does not exceed ko where k is some preassigned constant. An
appropriate loss function would be 0 if the decision is correct and would otherwise
depend on the relative position of the interval to the true value of £. In this case
there are many correct decisions corresponding to a given distribution N(£, ¢2).

It remains to discuss the choice of loss function,t and of the three
elements defining the problem this is perhaps the most difficult to specify.
Even in the simplest case, where all losses eventually reduce to financial
ones, it can hardly be expected that one will be able to evaluate all the
short- and long-term consequences of an action. Frequently it is possible to
simplify the formulation by taking into account only certain aspects of the
loss function. As an illustration consider Example 1(i) and let L(8, d,) = a
for y(8) <y, and L(6, d,) = b for y(8) > v,. The risk function becomes

aPy{8(X) =d,} if y<v,

@ e[

and is seen to involve only the two probabilities of error, with weights which
can be adjusted according to the relative importance of these errors.
Similarly, in Example 3 one may wish to restrict attention to the number of
misclassifications.

Unfortunately, such a natural simplification is not always available, and
in the absence of specific knowledge it becomes necessary to select the loss
function in some conventional way, with mathematical simplicity usually an
important consideration. In point estimation problems such as that consid-
ered in Example 1(ii), if one is interested in estimating a real-valued
function y = y(@) it is customary to take the square of the error, or
somewhat more generally to put

(5) L(8,d)=v(0)(d~-v)"

*For a more detailed discussion of this distinction see, for example, Cox (1958), Blyth
(1970), and Barnett (1982).

fSome aspects of the choice of model and loss function are discussed in Lehmann (1984,
1985).



6 THE GENERAL DECISION PROBLEM [1.3

Besides being particularly simple mathematically, this can be considered as
an approximation to the true loss function L provided that for each fixed 6,
L(6, d) is twice differentiable in d, that L(8, y(8)) = 0 for all 4, and that
the error is not large.

It is frequently found that, within one problem, quite different types of
losses may occur, which are difficult to measure on a common scale.
Consider once more Example 1(i) and suppose that vy, is the value of y
when a standard treatment is applied to a situation in medicine, agriculture,
or industry. The problem is that of comparing some new process with
unknown ¥y to the standard one. Turning down the new method when it is
actually superior, or adopting it when it is not, clearly entails quite different
consequences. In such cases it is sometimes convenient to treat the various
loss components, say L,, L,,..., L,, separately. Suppose in particular that
r =2 and that L, represents the more serious possibility. One can then
assign a bound to this risk component, that is, impose the condition

(6) EL,(8,8(X)) <a,

and subject to this condition minimize the other component of the risk.
Example 4 provides an illustration of this procedure. The length of the
interval [L, L] (measured in o-units) is one component of the loss function,
the other being the loss that results if the interval does not cover the true £.

3. RANDOMIZATION; CHOICE OF EXPERIMENT

The description of the general decision problem given so far is still too
narrow in certain respects. It has been assumed that for each possible value
of the random variables a definite decision must be chosen. Instead, it is
convenient to permit the selection of one out of a number of decisions
according to stated probabilities, or more generally the selection of a
decision according to a probability distribution defined over the decision
space; which distribution depends of course on what x is observed. One
way to describe such a randomized procedure is in terms of a nonran-
domized procedure depending on X and a random variable Y whose values
lie in the decision space and whose conditional distribution given x is
independent of 4.

Although it may run counter to one’s intuition that such extra randomi-
zation should have any value, there is no harm in permitting this greater
freedom of choice. If the intuitive misgivings are correct, it will turn out that
the optimum procedures always are of the simple nonrandomized kind.
Actually, the introduction of randomized procedures leads to an important
mathematical simplification by enlarging the class of risk functions so that it
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becomes convex. In addition, there are problems in which some features of
the risk function such as its maximum can be improved by using a
randomized procedure.

Another assumption that tacitly has been made so far is that a definite
experiment has already been decided upon so that it is known what
observations will be taken. However, the statistical considerations involved
in designing an experiment are no less important than those concerning its
analysis. One question in particular that must be decided before an investi-
gation is undertaken is how many observations should be taken so that the
risk resulting from wrong decisions will not be excessive. Frequently it turns
out that the required sample size depends on the unknown distribution and
therefore cannot be determined in advance as a fixed number. Instead it is
then specified as a function of the observations and the decision whether or
not to continue experimentation is made sequentially at each stage of the
experiment on the basis of the observations taken up to that point.

Example 5. On the basis of a sample Xj,..., X, from a normal distribution
N(£, 6%) one wishes to estimate ¢ Here the risk function of an estimate, for
example its expected squared error, depends on ¢. For large o the sample contains
only little information in the sense that two distributions N(£,, 62) and N(¢,, ¢2)
with fixed difference §, — £, become indistinguishable as 0 — oo, with the result
that the risk tends to infinity. Conversely, the risk approaches zero as ¢ — 0, since
then effectively the mean becomes known. Thus the number of observations needed
to control the risk at a given level is unknown. However, as soon as some
observations have been taken, it is possible to estimate 6> and hence to determine
the additional number of observations required.

Example 6. In a sequence of trials with constant probability p of success, one
wishes to decide whether p < 1 or p > 1. It will usually be possible to reach a
decision at an early stage if p is close to 0 or 1 so that practically all observations
are of one kind, while a larger sample will be needed for intermediate values of p.
This difference may be partially balanced by the fact that for intermediate values a
loss resulting from a wrong decision is presumably less serious than for the more
extreme values.

Example 7. The possibility of determining the sample size sequentially is
important not only because the distributions P, can be more or less informative but
also because the same is true of the observations themselves. Consider, for example,
observations from the uniform distribution over the interval (6§ — 1, 6 + }) and the
problem of estimating §. Here there is no difference in the amount of information
provided by the different distributions F;. However, a sample Xj, X,,..., X, can
practically pinpoint 8 if max|X; — X,| is sufficiently close to 1, or it can give
essentially no more information than a single observation if max|X; — X;|is close to
0. Again the required sample size should be determined sequentially.

Except in the simplest situations, the determination of the appropriate
sample size is only one aspect of the design problem. In general, one must
decide not only how many but also what kind of observations to take. In
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clinical trials, for example, when a new treatment is being compared with a
standard procedure, a protocol is required which specifies to which of the
two treatments each of the successive incoming patients is to be assigned.
Formally, such questions can be subsumed under the general decision
problem described at the beginning of the chapter, by interpreting X as the
set of all available variables, by introducing the decisions whether or not to
stop experimentation at the various stages, by specifying in case of con-
tinuance which type of variable to observe next, and by including the cost of
observation in the loss function.

The determination of optimum sequential stopping rules and experimen-
tal designs is outside the scope of this book. Introductions to these subjects
are provided, for example, by Chernoff (1972), Ghosh (1970), and
Govindarajulu (1981).

4. OPTIMUM PROCEDURES

At the end of Section 1 the aim of statistical theory was stated to be the
determination of a decision function § which minimizes the risk function

(™ R(08,8) = E,[L(8,3(X))].

Unfortunately, in general the minimizing 8 depends on §, which is
unknown. Consider, for example, some particular decision d,, and the
decision procedure 8(x) =d, according to which decision d, is taken
regardless of the outcome of the experiment. Suppose that d, is the correct
decision for some 6, so that L(8,, d;) = 0. Then § minimizes the risk at 6,
since R(8,, ) = 0, but presumably at the cost of a high risk for other values
of 6.

In the absence of a decision function that minimizes the risk for all 8, the
mathematical problem is still not defined, since it is not clear what is meant
by a best procedure. Although it does not seem possible to give a definition
of optimality that will be appropriate in all situations, the following two
methods of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the
possibility that a procedure devotes too much of its attention to a single
parameter value at the cost of neglecting the various other values that might
arise. This suggests the restriction to decision procedures which possess a
certain degree of impartiality, and the possibility that within such a re-
stricted class there may exist a procedure with uniformly smallest risk. Two
conditions of this kind, invariance and unbiasedness, will be discussed in
the next section.
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R(8,9)

Figure 1

Instead of restricting the class of procedures, one can approach the
problem somewhat differently. Consider the risk functions corresponding to
two different decision rules 8, and é8,. If R(4, §,) < R(4, §,) for all 6, then
8, is clearly preferable to §,, since its use will lead to a smaller risk no
matter what the true value of 8 is. However, the situation is not clear when
the two risk functions intersect as in Figure 1. What is needed is a principle
which in such cases establishes a preference of one of the two risk functions
over the other, that is, which introduces an ordering into the set of all risk
functions. A procedure will then be optimum if its risk function is best
according to this ordering. Some criteria that have been suggested for
ordering risk functions will be discussed in Section 6.

A weakness of the theory of optimum procedures sketched above is its
dependence on an extraneous restricting or ordering principle, and on
knowledge concerning the loss function and the distributions of the observ-
able random variables which in applications is frequently unavailable or
unreliable. These difficulties, which may raise doubt concerning the value of
an optimum theory resting on such shaky foundations, are in principle no
different from those arising in any application of mathematics to reality.
Mathematical formulations always involve simplification and approxima-
tion, so that solutions obtained through their use cannot be relied upon
without additional checking. In the present case a check consists in an
overall evaluation of the performance of the procedure that the theory
produces, and an investigation of its sensitivity to departure from the
assumptions under which it was derived.

The optimum theory discussed in this book should therefore not be
understood to be prescriptive. The fact that a procedure 8 is optimal
according to some optimality criterion does not necessarily mean that it is
the right procedure to use, or even a satisfactory procedure. It does show
how well one can do in this particular direction and how much is lost when
other aspects have to be taken into account.
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The aspect of the formulation that typically has the greatest influence on
the solution of the optimality problem is the family # to which the
distribution of the observations is assumed to belong. The investigation of
the robustness of a proposed procedure to departures from the specified
model is an indispensable feature of a suitable statistical procedure, and
although optimality (exact or asymptotic) may provide a good starting
point, modifications are often necessary before an acceptable solution is
found. It is possible to extend the decision-theoretic framework to include
robustness as well as optimality. Suppose robustness is desired against some
class &’ of distributions which is larger (possibly much larger) than the
given #. Then one may assign a bound M to the risk to be tolerated over
%’. Within the class of procedures satisfying this restriction, one can then
optimize the risk over # as before. Such an approach has been proposed
and applied to a number of specific problems by Bickel (1984).

Another possible extension concerns the actual choice of the family £,
the model used to represent the actual physical situation. The problem of
choosing a model which provides an adequate description of the situation
without being unnecessarily complex can be treated within the decision-
theoretic formulation of Section 1 by adding to the loss function a compo-
nent representing the complexity of the proposed model. For a discussion of
such an approach to model selection, see Stone (1981).

5. INVARIANCE AND UNBIASEDNESS*

A natural definition of impartiality suggests itself in situations which are
symmetric with respect to the various parameter values of interest: The
procedure is then required to act symmetrically with respect to these values.

Example 8. Suppose two treatments are to be compared and that each is
applied n times. The resulting observatxons Xi---s X1, and X54,..., X,, are
samples from N(£,, ¢2) and N(§,, o) respectively. The three avmlable dec131ons
are do:|§;, — &1 <A, d;:§,>§ + A, dy:§ <§ — A, and the loss is w;; if
decision d; is taken when d; would have been correct. If the treatments are to be
compared solely in terms of the §’s and no outside considerations are involved, the
losses are symmetric with respect to the two treatments so that wy = wpy, Wip = Wy,
Wiy = wy,. Suppose now that the labeling of the two treatments as 1 and 2 is
reversed, and correspondingly also the labeling of the X’s, the £’s, and the decisions
d, and d,. This changes the meaning of the symbols, but the formal decision
problem, because of its symmetry, remains unaltered. It is then natural to require
the corresponding symmetry from the procedure & and ask that 8(x;,..., X;,,
XopseensXpy) =dg, dy, o8 dy as 8(Xg,.ees Xgps Xi1s- o5 X1,) = dg, dy, O d;
respectively. If this condition were not satisfied, the decision as to which population

*The concepts discussed here for general decision theory will be developed in more
specialized form in later chapters. The present section may therefore be omitted at first reading.
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has the greater mean would depend on the presumably quite accidental and
irrelevant labeling of the samples. Similar remarks apply to a number of further
symmetries that are present in this problem.

Example 9. Consider a sample Xj,..., X, from a distribution with density
o f[(x — §)/0] and the problem of estimating the location parameter £, say the
mean of the X’s, when the loss is (d — §)?/0?, the square of the error expressed in
o-units. Suppose that the observations are originally expressed in feet, and let
X/ = aX; with a = 12 be the corresponding observations in inches. In the trans-
formed problem the density is o’ 'f[(x’ — £)/0’] with ¢’ = a§, o’ = ao. Since
(d’' — ¢)?/a’* = (d — §)?/a?, the problem is formally unchanged. The same esti-
mation procedure that is used for the original observations is therefore appropriate
after the transformation and leads to 8(aXj,..., aX,) as an estimate of {’ = a{, the
parameter £ expressed in inches. On reconverting the estimate into feet one finds
that if the result is to be independent of the scale of measurements, § must satisfy
the condition of scale invariance

8(aX,,...,aX,)

a

=8(X,....X,).

The general mathematical expression of symmetry is invariance under a
suitable group of transformations. A group G of transformations g of the
sample space is said to leave a statistical decision problem invariant if it
satisfies the following conditions:

(i) It leaves invariant the family of distributions 2 = { P, § € @}, that is,
for any possible distribution P, of X the distribution of gX, say P, is
also in 2. The resulting mapping 8’ = g of Q is assumed to be onto'
Qand1:1.

(i) To each g € G, there corresponds a transformation g* = h(g) of the
decision space D onto itself such that 4 is a homomorphism, that is,
satisfies the relation h(g,g,) = h(g,)h(g,), and the loss function L is
unchanged under the transformation, so that

L(g0,g*d) = L(8,d).

Under these assumptions the transformed problem, in terms of X’ = gX,
0’ = gf, and d’ = g*d, is formally identical with the original problem in
terms of X, #, and d. Given a decision procedure § for the latter, this is
therefore still appropriate after the transformation. Interpreting the trans-
formation as a change of coordinate system and hence of the names of the
elements, one would, on observing x’, select the decision which in the new

*The term onto is used to indicate that gQ is not only contained in but actually equals ©;
that is, given any 6’ in @, there exists 8 in @ such that g = §’.
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system has the name 8(x’), so that its old name is g* ~'8(x"). If the decision
taken is to be independent of the particular coordinate system adopted, this
should coincide with the original decision 8(x), that is, the procedure must
satisfy the invariance condition

(8) 8(gx) =g*8(x) forall xeX, geG.

Example 10. The model described in Example 8 is invariant also under the
transformations X/, = X;; + ¢, §/ =§, + c. Since the decisions d,, d;, and d,
concern only the djiﬁ‘erences ¢, — £,, they should remain unchanged under these
transformations, so that one would expect to have g*d; = d, for i = 0,1,2. It is in
fact easily seen that the loss function does satisfy L(g#, d) = L(6, d), and hence
that g*d = d. A decision procedure therefore remains invariant in the present case
if it satisfies 8(gx) = 8(x) forall g€ G, x € X.

It is helpful to make a terminological distinction between situations like
that of Example 10 in which g*d = d for all d, and those like Examples 8
and 9 where invariance considerations require §(gx) to vary with g. In the
former case the decision procedure remains unchanged under the trans-
formations X’ = gX and is thus truly invariant; in the latter, the procedure
varies with g and may then more appropriately be called equivariant rather
than invariant.! Typically, hypothesis testing leads to procedures that are
invariant in this sense; estimation problems (whether by point or interval
estimation), to equivariant ones. Invariant tests and equivariant confidence
sets will be discussed in Chapter 6. For a brief discussion of equivariant
point estimation, see Bondessen (1983); a fuller treatment is given in TPE,
Chapter 3.

Invariance considerations are applicable only when a problem exhibits
certain symmetries. An alternative impartiality restriction which is appli-
cable to other types of problems is the following condition of unbiasedness.
Suppose the problem is such that for each 8 there exists a unique correct
decision and that each decision is correct for some §. Assume further that
L(6,,d) = L(0,,d) for all d whenever the same decision is correct for
both 8, and 6,. Then the loss L(8, d") depends only on the actual decision
taken, say d’, and the correct decision d. The loss can thus be denoted by
L(d, d’) and this function measures how far apart d and d’ are. Under
these assumptions a decision function § is said to be unbiased with respect
to the loss function L, or L-unbiased, if for all 8 and d’

EgL(d’,8(X)) = EgL(d,8(X))
where the subscript § indicates the distribution with respect to which the

¥ This distinction is not adopted by all authors.
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expectation is taken and where d is the decision that is correct for §. Thus §
is unbiased if on the average 8( X') comes closer to the correct decision than
to any wrong one. Extending this definition, 8 is said to be L-unbiased for
an arbitrary decision problem if for all § and ¢’

(9) E,L(6',8(X)) > E,L(6,8(X)).

Example 11. Suppose that in the problem of estimating a real-valued parameter
6 by confidence intervals, as in Example 4, the loss is 0 or 1 as the interval [L, L]
does or does not cover the true §. Then the set of intervals [L(X), L(X)] is
unbiased if the probability of covering the true value is greater than or equal to the
probability of covering any false value.

Example 12. In a two-decision problem such as that of Example 1(i), let w, and
w,; be the sets of §-values for which d, and d, are the correct decisions. Assume
that the loss is 0 when the correct decision is taken, and otherwise is given by
L(8,d,) =a for § € w,, and L(6,d,) = b for § € w,. Then

aP{8(X) =d,} if 0 €w,

E"L(ol’s(x))={bp,,{s(x)=dl} if 0 € w,

so that (9) reduces to
aPy{8(X) =d,} > bP{8(X) =dy} for 0 € wy,

with the reverse inequality holding for 6 € w,. Since P {8(X) =d,} + P {8(X)
= d,} = 1, the unbiasedness condition (9) becomes

Pa{8(X)=d1} < for 9€w0,

a+b

(10)

P{8(X)=d} 2 for 0 € w,.

a+b

Example 13. In the problem of estimating a real-valued function y(#) with the
square of the error as loss, the condition of unbiasedness becomes

E [8(X) — vy(8)) = E[8(X) — v(8)] forall 6,6’

On adding and subtracting h(8) = E,8(X) inside the brackets on both sides, this
reduces to

[h(8) - y(8)]* = [r(8) — ¥(8)]® forall 8,0".

If h(8) is one of the possible values of the function y, this condition holds if and
only if

(11) E,5(X) = v(0).
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In the theory of point estimation, (11) is customarily taken as the definition of
unbiasedness. Except under rather pathological conditions, it is both a necessary
and sufficient condition for & to satisfy (9). (See Problem 2.)

6. BAYES AND MINIMAX PROCEDURES

We now turn to a discussion of some preference orderings of decision
procedures and their risk functions. One such ordering is obtained by
assuming that in repeated experiments the parameter itself is a random
variable O, the distribution of which is known. If for the sake of simplicity
one supposes that this distribution has a probability density p(@), the
overall average loss resulting from the use of a decision procedure § is

(12)  r(p,8) = [E,L(6,8(X))p(0) db = [R(0,8)p(6) a6

and the smaller r(p, &), the better is 8. An optimum procedure is one that
minimizes r(p,8) and is called a Bayes solution of the given decision
problem corresponding to the a priori density p. The resulting minimum of
r(p, 8) is called the Bayes risk of 8.

Unfortunately, in order to apply this principle it is necessary to assume
not only that @ is a random variable but also that its distribution is known.
This assumption is usually not warranted in applications. Alternatively, the
right-hand side of (12) can be considered as a weighted average of the risks;
for p(#) = 1 in particular, it is then the area under the risk curve. With this
interpretation the choice of a weight function p expresses the importance
the experimenter attaches to the various values of §. A systematic Bayes
theory has been developed which interprets p as describing the state of
mind of the investigator towards . For an account of this approach see, for
example, Berger (1985).

If no prior information regarding @ is available, one might consider the
maximum of the risk function its most important feature. Of two risk
functions the one with the smaller maximum is then preferable, and the
optimum procedures are those with the minimax property of minimizing the
maximum risk. Since this maximum represents the worst (average) loss that
can result from the use of a given procedure, a minimax solution is one that
gives the greatest possible protection against large losses. That such a
principle may sometimes be quite unreasonable is indicated in Figure 2,
where under most circumstances one would prefer 8, to 8, although its risk
function has the larger maximum.

Perhaps the most common situation is one intermediate to the two just
described. On the one hand, past experience with the same or similar kind
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R(6,9)

Figure 2

of experiment is available and provides an indication of what values of 8 to
expect; on the other, this information is neither sufficiently precise nor
sufficiently reliable to warrant the assumptions that the Bayes approach
requires. In such circumstances it seems desirable to make use of the
available information without trusting it to such an extent that catastrophi-
cally high risks might result if it is inaccurate or misleading. To achieve this
one can place a bound on the risk and restrict consideration to decision
procedures & for which

(13) R(6,8) <C  forallé.

[Here the constant C will have to be larger than the maximum risk C, of the
minimax procedure, since otherwise there will exist no procedures satisfying
(13).] Having thus assured that the risk can under no circumstances get out
of hand, the experimenter can now safely exploit his knowledge of the
situation, which may be based on theoretical considerations as well as on
past experience; he can follow his hunches and guess at a distribution p for
0. This leads to the selection of a procedure 8§ (a restricted Bayes solution),
which minimizes the average risk (12) for this a priori distribution subject to
(13). The more certain one is of p, the larger one will select C, thereby
running a greater risk in case of a poor guess but improving the risk if the
guess is good.

Instead of specifying an ordering directly, one can postulate conditions
that the ordering should satisfy. Various systems of such conditions have
been investigated and have generally led to the conclusion that the only
orderings satisfying these systems are those which order the procedures
according to their Bayes risk with respect to some prior distribution of 6.
For details, see for example Blackwell and Girshick (1954), Ferguson (1967),
Savage (1972), and Berger (1985).
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7. MAXIMUM LIKELIHOOD

Another approach, which is based on considerations somewhat different
from those of the preceding sections, is the method of maximum likelihood.
It has led to reasonable procedures in a great variety of problems, and is
still playing a dominant role in the development of new tests and estimates.
Suppose for a moment that X can take on only a countable set of values
X1s Xg,..., With Py(x) = Py{ X = x}, and that one wishes to determine the
correct value of @, that is, the value that produced the observed x. This
suggests considering for each possible § how probable the observed x
would be if § were the true value. The higher this probability, the more one
is attracted to the explanation that the 8 in question produced x, and the
more likely the value of 8 appears. Therefore, the expression Py(x) consid-
ered for fixed x as a function of 8 has been called the likelihood of 8. To
indicate the change in point of view, let it be denoted by L (). Suppose
now that one is concerned with an action problem involving a countable
number of decisions, and that it is formulated in terms of a gain function
(instead of the usual loss function), which is 0 if the decision taken is
incorrect and is a(8) > 0 if the decision taken is correct and @ is the true
value. Then it seems natural to weight the likelihood L, (#) by the amount
that can be gained if 6 is true, to determine the value of 8 that maximizes
a(@)L,(0) and to select the decision that would be correct if this were the
true value of 8. Essentially the same remarks apply in the case in which
Py(x) is a probability density rather than a discrete probability.

In problems of point estimation, one usually assumes that a(f) is
independent of 6. This leads to estimating § by the value that maximizes the
likelihood L (@), the maximum-likelihood estimate of 6. Another case of
interest is the class of two-decision problems illustrated by Example 1(i). Let
w, and w, denote the sets of §-values for which d,, and d, are the correct
decisions, and assume that a(f) = a, or a, as 6 belongs to w, or w,
respectively. Then decision d, or d; is taken as a;supyc, L, (6) < or
> aysupy e, L, (0), that is, as

sup L,(6)

(14) L N
Sup Lx(a) ag
few,

This is known as a likelihood-ratio procedure.*

*This definition differs slightly from the usual one where in the denominator on the
left-hand side of (14) the supremum is taken over the set w, U w;. The two definitions agree
whenever the left-hand side of (14) is < 1, and the procedures therefore agree if a, < a,.
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Although the maximum-likelihood principle is not based on any clearly
defined optimum considerations, it has been very successful in leading to
satisfactory procedures in many specific problems. For wide classes of
problems, maximum-likelihood procedures have also been shown to possess
various asymptotic optimum properties as the sample size tends to infinity.
[An asymptotic theory of likelihood-ratio tests has been developed by Wald
(1943) and Le Cam (1953, 1979); an overview with additional references is
given by Cox and Hinkley (1974). The corresponding theory of maximum-
likelihood estimators is treated in Chapter 6 of TPE.] On the other hand,
there exist examples for which the maximum-likelihood procedure is worse
than useless; where it is, in fact, so bad that one can do better without
making any use of the observations (see Chapter 6, Problem 18).

8. COMPLETE CLASSES

None of the approaches described so far is reliable in the sense that the
resulting procedure is necessarily satisfactory. There are problems in which
a decision procedure §, exists with uniformly minimum risk among all
unbiased or invariant procedures, but where there exists a procedure 8, not
possessing this particular impartiality property and preferable to §,. (Cf.
Problems 14 and 16.) As was seen earlier, minimax procedures can also be
quite undesirable, while the success of Bayes and restricted Bayes solutions
depends on a priori information which is usually not very reliable if it is
available at all. In fact, it seems that in the absence of reliable a priori
information no principle leading to a unique solution can be entirely
satisfactory.

This suggests the possibility, at least as a first step, of not insisting on a
unique solution but asking only how far a decision problem can be reduced
without loss of relevant information. It has already been seen that a decision
procedure 8 can sometimes be eliminated from consideration because there
exists a procedure 8’ dominating it in the sense that

R(6,8) <R(6,8) foralld
(15)
R(6,8’) < R(0,8)  for some 6.

In this case & is said to be inadmissible; & is called admissible if no such
dominating &’ exists. A class ¥ of decision procedures is said to be complete
if for any 8 not in ¢ there exists 8’ in ¢ dominating it. A complete class is
minimal if it does not contain a complete subclass. If a minimal complete
class exists, as is typically the case, it consists exactly of the totality of
admissible procedures.
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It is convenient to define also the following variant of the complete class
notion. A class € is said to be essentially complete if for any procedure &
there exists 8’ in € such that R(6,8’) < R(4,8) for all 4. Clearly, any
complete class is also essentially complete. In fact, the two definitions differ
only in their treatment of equivalent decision rules, that is, decision rules
with identical risk function. If § belongs to the minimal complete class €,
any equivalent decision rule must also belong to ¢. On the other hand, a
minimal essentially complete class need contain only one member from such
a set of equivalent procedures.

In a certain sense a minimal essentially complete class provides the
maximum possible reduction of a decision problem. On the one hand, there
is no reason to consider any of the procedures that have been weeded out.
For each of them, there is included one in € that is as good or better. On
the other hand, it is not possible to reduce the class further. Given any two
procedures in €, each of them is better in places than the other, so that
without additional information it is not known which of the two is prefer-
able.

The primary concern in statistics has been with the explicit determination
of procedures, or classes of procedures, for various specific decision prob-
lems. Those studied most extensively have been estimation problems, and
problems involving a choice between only two decisions (hypothesis testing),
the theory of which constitutes the subject of the present volume. However,
certain conclusions are possible without such specialization. In particular,
two results concerning the structure of complete classes and minimax
procedures have been proved to hold under very general assumptions:*

(i) The totality of Bayes solutions and limits of Bayes solutions con-
stitute a complete class.

(i) Minimax procedures are Bayes solutions with respect to a least
favorable a priori distribution, that is, an a priori distribution that maxi-
mizes the associated Bayes risk, and the minimax risk equals this maximum
Bayes risk. Somewhat more generally, if there exists no least favorable
a priori distribution but only a sequence for which the Bayes risk tends to
the maximum, the minimax procedures are limits of the associated sequence
of Bayes solutions.

9. SUFFICIENT STATISTICS

A minimal complete class was seen in the preceding section to provide the
maximum possible reduction of a decision problem without loss of informa-

*Precise statements and proofs of these results are given in the book by Wald (1950). See
also Ferguson (1967) and Berger (1985).
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tion. Frequently it is possible to obtain a less extensive reduction of the
data, which applies simultaneously to all problems relating to a given class
P={P,, 0 €Q} of distributions of the given random variable X. It
consists essentially in discarding that part of the data which contains no
information regarding the unknown distribution P, and which is therefore
of no value for any decision problem concerning 4.

Example 14. Trials are performed with constant unknown probability p of
success. If X; is 1 or O as the ith trial is a success or failure, the sample (X,..., X,)
shows how many successes there were and in which trials they occurred. The second
of these pieces of information contains no evidence as to the value of p. Once the
total number of successes =X, is known to be equal to ¢, each of the ': possible
positions of these successes is equally likely regardless of p. It follows that knowing
2 X; but neither the individual X, nor p, one can, from a table of random numbers,
construct a set of random variables X],..., X! whose joint distribution is the same
as that of Xj,..., X,. Therefore, the information contained in the X; is the same as
that contained in 2 X; and a table of random numbers.

Example 15. 1If X,,..., X, are independently normally distributed with zero
mean and variance o2, the conditional distribution of the sample point over each of
the spheres, =X’ = constant, is uniform irrespective of ¢2. One can therefore
construct an equivalent sample X{,..., X, from a knowledge of =X? and a
mechanism that can produce a point randomly distributed over a sphere.

More generally, a statistic T is said to be sufficient for the family
P = {Py, 8 € Q) (or sufficient for 8, if it is clear from the context what set
Q is being considered) if the conditional distribution of X given T = ¢ is
independent of 6. As in the two examples it then follows under mild
assumptions* that it is not necessary to utilize the original observations X.
If one is permitted to observe only T instead of X, this does not restrict the
class of available decision procedures. For any value ¢t of T let X, be a
random variable possessing the conditional distribution of X given ¢. Such a
variable can, at least theoretically, be constructed by means of a suitable
random mechanism. If one then observes T to be ¢ and X, to be x’, the
random variable X’ defined through this two-stage process has the same
distribution as X. Thus, given any procedure based on X, it is possible to
construct an equivalent one based on X’ which can be viewed as a
randomized procedure based solely on 7. Hence if randomization is per-
mitted (and we shall assume throughout that this is the case), there is no loss
of generality in restricting consideration to a sufficient statistic.

It is inconvenient to have to compute the conditional distribution of X
given ¢ in order to determine whether or not T is sufficient. A simple check
is provided by the following factorization criterion.

*These are connected with difficulties concerning the behavior of conditional probabilities.
For a discussion of these difficulties see Chapter 2, Sections 3-5.
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Consider first the case that X is discrete, and let Py(x) = Po{ X = x}.
Then a necessary and sufficient condition for T to be sufficient for @ is that
there exists a factorization

(16) Py(x) =go[T(x)]h(x),

where the first factor may depend on & but depends on x only through
T(x), while the second factor is independent of 4.

Suppose that (16) holds, and let T(x) = ¢. Then Py{T =t} = LPy(x')
summed over all points x” with T(x") = ¢, and the conditional probability

N = Py(x) _ h(x)
}_P,{T=t} " Th(x)

is independent of §. Conversely, if this conditional distribution does not
depend on 6 and is equal to, say k(x, t), then Py(x) = Py{T = t}k(x, t),
so that (16) holds.

Example 16. Let X,..., X, be independently and identically distributed
according to the Poisson distribution (2). Then

,r‘l:x,-e-n'r
P(x1;...r x,) =—F ,

ij!
j=1

and it follows that X X, is a sufficient statistic for .

In the case that the distribution of X is continuous and has probability
density p;’(x), let X and T be vector-valued, X = (X,,..., X,) and
T = (Ty,...,T,) say. Suppose that there exist functions ¥ = (Y},...,Y,_,)
on the sample space such that the transformation

a7 (x,enx,) © (Ti(x),.., T(x), Yi(x),..., ¥, (x))

is 1:1 on a suitable domain, and that the joint density of T and Y exists
and is related to that of X by the usual formula

(18) po(x) = pi "(T(x), Y(x)) - |J1,

where J is the Jacobian of (T7},...,7T,Y,,...,Y,_,) with respect to
(x,..., x,). Thus in Example 15, T = yLX?, Y,,..., Y,_, can be taken to
be the polar coordinates of the sample point. From the joint density
Py Y(2, y) of T and Y, the conditional density of Y given T = ¢ is obtained
as

P (4, )
[p5 (e y)

(19) p"(y) =
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provided the denominator is different from zero. Regularity conditions for
the validity of (18) are given by Tukey (1958).

Since in the conditional distribution given ¢ only the Y’s vary, T is
sufficient for 4 if the conditional distribution of Y given ¢ is independent of
6. Suppose that T satisfies (19). Then analogously to the discrete case, a
necessary and sufficient condition for T to be sufficient is a factorization of
the density of the form

(20) pi(x) = g T(x)] A(x).

(See Problem 19.) The following two examples illustrate the application of
the criterion in this case. In both examples the existence of functions Y
satisfying (17)—+(19) will be assumed but not proved. As will be shown later
(Chapter 2, Section 6), this assumption is actually not needed for the
validity of the factorization criterion.

Example 17. Let X,,..., X, be independently distributed with normal prob-
ability density

1 ¢ n
-n/2
Pr.o(x) = (2m0?) cxp(—ﬁzx3+32x,—ﬁiz )

Then the factorization criterion shows (I X;,L X?) to be sufficient for (£, o).

Example 18. Let X),..., X, be independently distributed according to the
uniform distribution U(0, 8) over the interval (0, 8). Then py(x) = 0" u(max x;, 9),
where u(a, b)is1 or0as a < b or a > b, and hence max X, is sufficient for 6.

An alternative criterion of Bayes sufficiency, due to Kolmogorov (1942),
provides a direct connection between this concept and some of the basic
notions of decision theory. As in the theory of Bayes solutions, consider the
unknown parameter # as a random variable ©® with an a priori distribution,
and assume for simplicity that it has a density p(8). Then if T is sufficient,
the conditional distribution of © given X = x depends only on T(x).
Conversely, if p(8) # 0 for all 8 and if the conditional distribution of ®
given x depends only on T(x), then T is sufficient for 6.

In fact, under the assumptions made, the joint density of X and @ is
Pe(x)p(8). If T is sufficient, it follows from (20) that the conditional density
of © given x depends only on T(x). Suppose, on the other hand, that for
some a priori distribution for which p(8) # 0 for all # the conditional
distribution of © given x depends only on T(x). Then

Po(x)p(0)
[po(x)0(8) dbr

=f0[T(x)]

and by solving for p,(x) it is seen that T is sufficient.
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Any Bayes solution depends only on the conditional distribution of ©
given x (see Problem 8) and hence on 7T(x). Since typically Bayes solutions
together with their limits form an essentially complete class, it follows that
this is also true of the decision procedures based on 7. The same conclusion
had already been reached more directly at the beginning of the section.

For a discussion of the relation of these different aspects of sufficiency in
more general circumstances and references to the literature see Le Cam
(1964) and Roy and Ramamoorthi (1979). An example of a statistic which is
Bayes sufficient in the Kolmogorov sense but not according to the definition
given at the beginning of this section is provided by Blackwell and
Ramamoorthi (1982).

By restricting attention to a sufficient statistic, one obtains a reduction of
the data, and it is then desirable to carry this reduction as far as possible.
To illustrate the different possibilities, consider once more the binomial
Example 14. If m is any integer less than n and T, =YX X, T, =
X' .+1X;, then (T}, T,) constitutes a sufficient statistic, since the condi-
tional distribution of X|,..., X, given T} = ¢;, T, = ¢, is independent of p.
For the same reason, the full sample (X,..., X,) itself is also a sufficient
statistic. However, T = ¥7_, X, provides a more thorough reduction than
either of these and than various others that can be constructed. A sufficient
statistic T is said to be minimal sufficient if the data cannot be reduced
beyond T without losing sufficiency. For the binomial example in particu-
lar, ¥, X; can be shown to be minimal (Problem 17). This illustrates the
fact that in specific examples the sufficient statistic determined by inspection
through the factorization criterion usually turns out to be minimal. Explicit
procedures for constructing minimal sufficient statistics are discussed in
Section 1.5 of TPE.

10. PROBLEMS

Section 2

1. The following distributions arise on the basis of assumptions similar to those
leading to (1)-(3).

(i) Independent trials with constant probability p of success are carried out
until a preassigned number m of successes has been obtained. If the
number of trials required is X + m, then X has the negative binomial
distribution Nb(p, m):

P{X=1x) =(’"+;‘1)p'"(1 -p)%, x=01.2....

(i) In a sequence of random events, the number of events occurring in any
time interval of length 7 has the Poisson distribution P(Ar), and the
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numbers of events in nonoverlapping time intervals are independent.
Then the “waiting time” 7, which elapses from the starting point, say
t = 0, until the first event occurs, has the exponential probability density

p(t) =Xe™™, >0

Let T;, i > 2, be the time elapsing from the occurrence of the (i — 1)st
event to that of the ith event. Then it is also true, although more difficult
to prove, that 7}, T, ... are identically and independently distributed. A
proof is given, for example, in Karlin and Taylor (1975).

(i) A point X is selected “at random” in the interval (a, b), that is, the
probability of X falling in any subinterval of (a, b) depends only on the
length of the subinterval, not on its position. Then X has the uniform
distribution U(a, b) with probability density

p(x)=1/(b—-a), a<x<b.

[(i)): If ¢ > O, then T > ¢ if and only if no event occurs in the time interval

©,1).]
Section 5

Unbiasedness in point estimation. Suppose that y is a continuous real-valued
function defined over Q which is not constant in any open subset of Q, and
that the expectation h(8) = E;8(X) is a continuous function of 8 for every
estimate 8(X) of y(8). Then (11) is a necessary and sufficient condition for
8(X) to be unbiased when the loss function is the square of the error.

[Unbiasedness implies that y2(8”) — y2(8) = 2h(8)[y(8’) — v(8)] for all
0, 0’. If @ is neither a relative minimum or maximum of v, it follows that there
exist points @’ arbitrarily close to 8 both such that y(6) + y(8’) > and
< 2h(0), and hence that y(8) = h(6). That this equality also holds for an

extremum of y follows by continuity, since y is not constant in any open set.]
Median unbiasedness.

(i) A real number m is a median for the random variable Y if P{Y > m} > 1,
P{Y <m} > 3% Then all real a, a, such that m < a; <a, or m 2> q,
> a, satisfy E|Y — a,| < E|Y — a,|.

(i) For any estimate 8§(X) of y(#), let m~(8) and m*(8) denote the
infimum and supremum of the medians of §( X), and suppose that they
are continuous functions of 8. Let y(6) be continuous and not constant
in any open subset of 2. Then the estimate §(X) of y(f) is unbiased
with respect to the loss function L(8, d) = |y(8) — d|if and only if y(8)
is a median of 8( X) for each §. An estimate with this property is said to
be median-unbiased.

Nonexistence of unbiased procedures. Let Xi,..., X, be independently dis-
tributed with density (1/a) {(x — £)/a), and let 8 = (£, a). Then no estima-
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tor of ¢ exists which is unbiased with respect to the loss function (d — £)* /a*.
Note. For more general results concerning the nonexistence of unbiased
procedures see Rojo (1983).

Let € be any class of procedures that is closed under the transformations of a
group G in the sense that § € € implies g*8g™! € & for all g € G. If there
exists a unique procedure §, that uniformly minimizes the risk within the class
€, then 8, is invariant." If §, is unique only up to sets of measure zero, then it
is almost invariant, that is, for each g it satisfies the equation 8(gx) = g*8(x)
except on a set N, of measure 0.

Relation of unbiasedness and invariance.

(i) If &, is the unique (up to sets of measure 0) unbiased procedure with
uniformly minimum risk, it is almost invariant.

() If G is transitive and G* commutative, and if among all invariant
(almost invariant) procedures there exists a procedure §, with uniformly
minimum risk, then it is unbiased.

(iii) That conclusion (ii) need not hold without the assumptions concerning
G* and G is shown by the problem of estimating the mean £ of a normal
distribution N(£, 62) with loss function (£ — d)2/¢?. This remains
invariant under the groups G, : gx =x + b, —00 < b < o0 and G, : gx
=gax + b,0 < a < 00, — 00 < b < . The best invariant -estimate rela-
tive to both groups is X, but there does not exist an estimate which is
unbiased with respect to the given loss function.

[(G): This follows from the preceding problem and the fact that when § is
unbiased so is g*8g~ 1.

(ii): It is the defining property of transitivity that given 6, 8’ there exists g
such that ¢’ = gf. Hence for any 0, 6’

E,L(6°,8,(X)) = E,L(30,8,(X)) = EoL(o’ 8*_180(X))-
Since G* is commutative, g* 1§, is invariant, so that

R(0,g*‘180) > R(6,8) = E,L(6,5,(X)) ]

Section 6
Unbiasedness in interval estimation. Confidence intervals I = (L, L) are unbi-
ased for estimating @ with loss function L(0,1)= (8 — L)* + (L — 0)*
provided E[1(L + L)] = 6 for all , that is, provided the midpoint of 7 is an
unbiased estimate of 6 in the sense of (11).

¥ Here and in Problems 6, 7, 11, 15, and 16 the term “invariant” is used in the general sense
of “invariant or equivariant”.
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8.  Structure of Bayes solutions.

®

(ii)

(iif)

Let © be an unobservable random quantity with probability density
p(8), and let the probability density of X be p,(x) when ® = . Then §
is a Bayes solution of a given decision problem if for each x the decision
8(x) is chosen so as to minimize fL(0, §(x))7(08|x) d6, where =(0|x)
= p(0)py(x)/fp(0")pg.(x) db’ is the conditional (a posteriori) probabil-
ity density of © given x.

Let the problem be a two-decision problem with the losses as given in
Example 12. Then the Bayes solution consists in choosing decision d,, if

aP{® € w,|x} < bP{O € wy|x}

and decision d, if the reverse inequality holds. The choice of decision is
immaterial in case of equality.

In the case of point estimation of a real-valued function g(8) with loss
function L(0,d) = (g(8) — d)?, the Bayes solution becomes &(x) =
E[g(8)|x]. When instead the loss function is L(0, d) = |g(8) — d|, the
Bayes estimate §(x) is any median of the conditional distribution of
g(®) given x.

[(1): The Bayes risk r(p,8) can be written as [[[L(8,8(x))n(8\x)df] X
p(x) dx, where p(x) = [p(0')py(x) db’.

(ii):

The conditional expectation [L(6,d,)w(0|x)df reduces to aP{® €

w,|x}, and similarly for d,.]

9. (@)

(i)

As an example in which randomization reduces the maximum risk,
suppose that a coin is known to be either standard (HT) or to have heads
on both sides (HH). The nature of the coin is to be decided on the basis
of a single toss, the loss being 1 for an incorrect decision and O for a
correct one. Let the decision be HT when T is observed, whereas in the
contrary case the decision is made at random, with probability p for HT
and 1 — p for HH. Then the maximum risk is minimized for p = .

A genetic setting in which such a problem might arise is that of a couple,
of which the husband is either dominant homozygous (AA) or hetero-
zygous (Aa) with respect to a certain characteristic, and the wife is
homozygous recessive (aa). Their child is heterozygous, and it is of
importance to determine to which genetic type the husband belongs.
However, in such cases an a priori probability is usually available for the
two possibilities. One is then dealing with a Bayes problem, and randomi-
zation is no longer required. In fact, if the a priori probability is p that
the husband is dominant, then the Bayes procedure classifies him as such
if p > 1 and takes the contrary decision if p < .
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Unbiasedness and minimax. Let € = Q,U Q, where @,, £, are mutually
exclusive, and consider a two-decision problem with loss function L(8, d;) = g,
ford €@ (j+#i)and L(6,d,)=0for 0 € (i=0,1).

(i) Any minimax procedure is unbiased.

(ii) The converse of (i) holds provided P;(A) is a continuous function of ¢
for all A, and if the sets ©, and @, have at least one common boundary
point.

[(): The condition of unbiasedness in this case is equivalent to sup R;(8) <
aga,/(ay + a;). That this is satisfied by any minimax procedure is seen by
comparison with the procedure 8§(x) = d, or = d; with probabilities a, /(a,
+ a,) and a,/(a, + a,) respectively.

(ii): If 8, is a common boundary point, continuity of the risk function implies
that any unbiased procedure satisfies R;(8,) = aqa,/(a, + a;) and hence

supR;(0) = aga,/(a, + a).]

Invariance and minimax. Let a problem remain invariant relative to the
groups G, G, and G* over the spaces &, Q, and D respectively. Then a
randomized procedure Y, is defined to be invariant if for all x and g the
conditional distribution of Y, given x is the same as that of g*~'Y,,.

(i) Consider a decision procedure which remains invariant under a finite
group G = {g,,..., gy }- If a minimax procedure exists, then there exists
one that is invariant.

(ii) This conclusion does not necessarily hold for infinite groups, as is shown
by the following example. Let the parameter space @ consist of all
elements 8 of the free group with two generators, that is, the totality of
formal products m, ... o, (n=0,1,2,...) where each = is one of the
elements a, a™!, b, b™! and in which all products aa~?, a™la, bb™!, and
b~'b have been canceled. The empty product (n = 0) is denoted by e.
The sample point X is obtained by multiplying @ on the right by one of
the four elements a, a~!, b, b~! with probability 1 each, and canceling if
necessary, that is, if the random factor equals =, !. The problem of

estimating @ with L(0, d) equal to 0 if d = § and equal to 1 otherwise

remains invariant under multiplication of X, #, and d on the left by an
arbitrary sequence #_,, ... 7_,m_, (m =0,1,...). The invariant proce-

dure that minimizes the maximum risk has risk function R(4,8) = 3.

However, there exists a noninvariant procedure with maximum risk 1.

[(i): If Y, is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y is defined by P(Y; = d) =L\, P(Y, . = g*d)/N.

(ii): The better procedure consists in estimating 6 to be =, ...m _; when
@ ...m is observed (k > 1), and estimating § to be a,a™!, b, b”! with
probability 1 each in case the identity is observed. The estimate will be correct
unless the last element of X was canceled, and hence will be correct with

probability > 2.]
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Section 7
Let X have probability density p,(x) with 8 one of the values 4,,..., 6,

and consider the problem of determining the correct value of 6, so that
the choice lies between the n decisions d, = 0,,...,d, = 8, with gain
a(8,) if d, =06, and 0 otherwise. Then the Bayes solution (which maxi-
mizes the average gain) when @ is a random variable taking on each of the
n values with probability 1/n coincides with the maximum-likelihood
procedure.

Let X have probability density p,(x) with 0 < 6 < 1. Then the maxi-
mum-likelihood estimate is the mode (maximum value) of the a posteriori
density of © given x when O is uniformly distributed over (0, 1).

Let X,,..., X, be a sample from N(£, 0%), and consider the problem of
deciding between wy:£<0 and w,:£>0. If x=Xx,/n and C=
(a,/ay)¥", the likelihood-ratio procedure takes decision d, or d, as

X
n 2<k or >k,
I(x, — %)

where k= - yC-1ifC>1land k=4/(1-C)/Cif C<1

For the problem of deciding between w,: ¢ < ¢, and w;: ¢ > g,, the
likelihood ratio procedure takes decision d, or d, as

E(xr_i)2
————— < or >k,
no;

where k is the smaller root of the equation Cx = ¢*~! if C > 1, and the
larger root of x = Ce*~! if C < 1, where C is defined as in (i).

Section 8

14. Admissibility of unbiased procedures.

@)
(i)

Under the assumptions of Problem 10, if among the unbiased procedures
there exists one with uniformly minimum risk, it is admissible.

That in general an unbiased procedure with uniformly minimum risk need
not be admissible is seen by the following example. Let X have a Poisson
distribution truncated at 0, so that Pp{ X = x} = 8% % /[x!(1 — e7?)]
for x =1,2,... . For estimating y() = e~? with loss function L(, d)
= (d — e %)?, there exists a unique unbiased estimate, and it is not
admissible.

[(ii): The unique unbiased estimate §,(x) = (—1)**! is dominated by & (x)
=0 or 1 as x is even or odd.]
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Admissibility of invariant procedures. If a decision problem remains invariant
under a finite group, and if there exists a procedure §, that uniformly
minimizes the risk among all invariant procedures, then §, is admissible.
[This follows from the identity R(8, 8) = R(g0, g*8g~ ') and the hint given in
Problem 11(i).]

(i) Let X take on the values § — 1 and 8 + 1 with probability 1 each. The
problem of estimating § with loss function L(f,d) = min(|6 — d|,1)
remains invariant under the transformation gX=X+¢, gf =0+ c,
g*d = d + ¢. Among invariant estimates, those taking on the values
X -1 and X+ 1 with probabilities p and ¢ (independent of X)
uniformly minimize the risk.

(i) That the conclusion of Problem 15 need not hold when G is infinite
follows by comparing the best invariant estimates of (i) with the estimate
8,(x) whichis X + 1 when X < 0 and X — 1 when X > 0.

Section 9

In n independent trials with constant probability p of success, let X; =1 or 0
as the ith trial is a success or not. Then L7, X; is minimal sufficient.

[Let T = XX, and suppose that U = f(T) is sufficient and that f(k;) = ---
= f(k,) = u. Then P{T = tjU = u} depends on p.]

(i) Let X,...,X, be a sample from the uniform distribution U(0, 9),
0 < 0 < o0, and let T = max(X,..., X,). Show that T is sufficient, once
by using the definition of sufficiency and once by using the factorization
criterion and assuming the existence of statistics Y, satisfying (17)~(19).

(i) Let Xj,..., X, be a sample from the exponential distribution E(a, b)
with density (1/b)e *"%/% when x > a (— o0 < a < o0, 0 < b). Use

the factorization criterion to prove that (min(Xj,..., X,), £’ X)) is
sufficient for a, b, assuming the existence of statistics Y, satisfying
17)-(19).

A statistic T satisfying (17)~(19) is sufficient if and only if it satisfies (20).
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CHAPTER 2

The Probability
Background

1. PROBABILITY AND MEASURE

The mathematical framework for statistical decision theory is provided by
the theory of probability, which in turn has its foundations in the theory of
measure and integration. The present and following sections serve to define
some of the basic concepts of these theories, to establish some notation, and
to state without proof some of the principal results. In the remainder of the
chapter, certain special topics are treated in more detail.

Probability theory is concerned with situations which may result in
different outcomes. The totality of these possible outcomes is represented
abstractly by the totality of points in a space Z. Since the events to be
studied are aggregates of such outcomes, they are represented by subsets of
%. The union of two sets C;,C, will be denoted by C; U C,, their
intersection by C, N C,, the complement of C by € =%~ C, and the
empty set by 0. The probability P(C) of an event C is a real number
between 0 and 1; in particular

(1) P(0)=0 and P(Z)=1.

Probabilities have the property of countable additivity,

(2) P(UC)=XP(Cc) if CGNC=0 forall i+

Unfortunately it turns out that the set functions with which we shall be
concerned usually cannot be defined in a reasonable manner for all subsets
of 2 if they are to satisfy (2). It is, for example, not possible to give a
reasonable definition of “area” for all subsets of a unit square in the plane.

34



2.1] PROBABILITY AND MEASURE 35

The sets for which the probability function P will be defined are said to
be “measurable”. The domain of definition of P should include with any set
C its complement C, and with any countable number of events their union.
By (1), it should also include Z. A class of sets that contains & and is
closed under complementation and countable unions is a o-field. Such a
class is automatically also closed under countable intersections.

The starting point of any probabilistic considerations is therefore a space
Z, representing the possible outcomes, and a o-field € of subsets of &,
representing the events whose probability is to be defined. Such a couple
(Z, %) is called a measurable space, and the elements of € constitute the
measurable sets. A countably additive nonnegative (not necessarily finite) set
function p defined over € and such that u(0) = 0 is called a measure. If it
assigns the value 1 to Z, it is a probability measure. More generally, p is
Sinite if p(Z') < oo and o-finite if there exist C;,C,,... in ¥ (which may
always be taken to be mutually exclusive) such that UC; = & and p(C;) < o
for i =1,2,.... Important special cases are provided by the following
examples.

Example 1. Lebesgue measure. Let 2 be the n-dimensional Euclidean space
E,, and € the smallest o-field containing all rectangles*

R={(z,....,2,):a,<z;<b,i=1,...,n}.

The elements of € are called the Borel sets of E,. Over € a unique measure p can
be defined, which to any rectangle R assigns as its measure the volume of R,

r(R) =i‘].—'111(bi -a;).

The measure p can be completed by adjoining to € all subsets of sets of measure
zero. The domain of u is thereby enlarged to a o-field €’, the class of Lebesgue-
measurable sets. The term Lebesgue measure is used for p both when it is defined
over the Borel sets and when it is defined over the Lebesgue-measurable sets.

This example can be generalized to any nonnegative set function », which
is defined and countably additive over the class of rectangles R. There exists
then, as before, a unique measure p over (£, ¢) that agrees with » for all
R. This measure can again be completed; however, the resulting o-field
depends on p and need not agree with the o-field ¥’ obtained above.

Example 2. Counting measure. Suppose that Z is countable, and let € be the
class of all subsets of 2. For any set C, define u(C) as the number of elements of C

*If 7(z) is a statement concerning certain objects z, then {z: #(z)} denotes the set of all
those z for which #(z) is true.



36 THE PROBABILITY BACKGROUND 21

if that number is finite, and otherwise as + co. This measure is sometimes called
counting measure.

In applications, the probabilities over (£, €) refer to random experi-
ments or observations, the possible outcomes of which are the points
z € Z. When recording the results of an experiment, one is usually inter-
ested only in certain of its aspects, typically some counts or measurements.
These may be represented by a function T taking values in some space .

Such a function generates in J the o-field #’ of sets B whose inverse
image

C=TYB)={z:2€2%,T(z) € B)

is in €, and for any given probability measure P over (£, ¢¥) a probability
measure Q over (J, #’) defined by

(3) Q(B) = P(T"'(B)).

Frequently, there is given a o-field # of sets in J such that the
probability of B should be defined if and only if B € %. This requires that
T-Y(B) € € for all B € 4, and the function (or transformation) T from
(Z, %) into* (I, &) is then said to be %measurable. Another implication
is the sometimes convenient restriction of probability statements to the sets
B € & even though there may exist sets B ¢ & for which T-!(B) € € and
whose probability therefore could be defined.

Of particular interest is the case of a single measurement in which the
function T is real-valued. Let us denote it by X, and let &/ be the class of
Borel sets on the real line . Such a measurable real-valued X is called a
random variable, and the probability measure it generates over (%', &) will
be denoted by P* and called the probability distribution of X. The value
this measure assigns to a set A € & will be denoted interchangeably by
P*(A4) and P(X € A). Since the intervals {x:x < a)} are in &, the
probabilities F(a) = P(X < a) are defined for all a. The function F, the
cumulative distribution function (cdf) of X, is nondecreasing and continuous
on the right, and F(—o0) =0, F(+ o) = 1. Conversely, if F is any
function with these properties, a measure can be defined over the intervals
by P{a < X < b} = F(b) — F(a). It follows from Example 1 that this
measure uniquely determines a probability distribution over the Borel sets.
Thus the probability distribution P* and the cumulative distribution func-
tion F uniquely determine each other. These remarks extend to probability

*The term inro indicates that the range of T is in 7; if T(Z') =7, the transformation is
said to be from & onto J.
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distributions over an n-dimensional Euclidean space, where the cumulative
distribution function is defined by

F(ay,...,a,)=P{X, <ay,....,X,<a,}.

In concrete problems, the space (£, ¥), corresponding to the totality of
possible outcomes, is usually not specified and remains in the background.
The real starting point is the set X of observations (typically vector-valued)
that are being recorded and which constitute the data, and the associated
measurable space (£, &), the sample space. Random variables or vectors
that are measurable transformations T from (&, &) into some (J, &) are
called statistics. The distribution of T is then given by (3) applied to all
B € #. With this definition, a statistic is specified by the function T and the
o-field 4. We shall, however, adopt the convention that when a function T
takes on its values in a Euclidean space, unless otherwise stated the o-field
Z# of measurable sets will be taken to be the class of Borel sets. It then
becomes unnecessary to mention it explicitly or to indicate it in the
notation.

The distinction between statistics and random variables as defined here is
slight. The term statistic is used to indicate that the quantity is a function of
more basic observations; all statistics in a given problem are functions
defined over the same sample space (£, «/). On the other hand, any
real-valued statistic T is a random variable, since it has a distribution over
(7, %), and it will be referred to as a random variable when its origin is
irrelevant. Which term is used therefore depends on the point of view and to
some extent is arbitrary.

2. INTEGRATION

According to the convention of the preceding section, a real-valued function
f defined over (&, %) is measurable if f~'(B) € & for every Borel set B
on the real line. Such a function f is said to be simple if it takes on only a
finite number of values. Let p be a measure defined over (%, &), and let f
be a simple function taking on the distinct values a,,..., a,, on the sets
A,,..., A,, which are in &/, since f is measurable. If p(A4;) < oo when
a; # 0, the integral of f with respect to p is defined by

(@) [fdn="Yan(4,).

Given any nonnegative measurable function f, there exists a nondecreas-
ing sequence of simple functions f, converging to f. Then the integral of f
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is defined as
(5) [1du= tim [f,dp,

which can be shown to be independent of the particular sequence of f,’s
chosen. For any measurable function f its positive and negative parts

(6)  f"(x)=max[f(x),0] and f(x)=max[-f(x),0]
are also measurable, and
f(x) =f"(x) = f(x).

If the integrals of f* and f~ are both finite, then f is said to be integrable,
and its integral is defined as

[fduw=[f* du— [f dp.

If of the two integrals one is finite and one infinite, then the integral of f is
defined to be the appropriate infinite value; if both are infinite, the integral
is not defined.

Example 3. Let & be the closed interval [a, b], & be the class of Borel sets or
of Lebesgue measurable sets in &, and p be Lebesgue measure. Then the integral of
f with respect to p is written as [2f(x) dx, and is called the Lebesgue integral of f.
This integral generalizes the Riemann integral in that it exists and agrees with the
Riemann integral of f whenever the latter exists.

Example 4. Let & be countable and consist of the points x;, x,,... ; let & be
the class of all subsets of £, and let p assign measure b, to the point x;. Then f is
integrable provided ¥ f(x,)b; converges absolutely, and [fdp is given by this sum.

Let P* be the probability distribution of a random variable X, and let T
be a real-valued statistic. If the function 7(x) is integrable, its expectation is
defined by

(7) E(T) =/T(x)de(x).

It will be seen from Lemma 2 in Section 3 below that the integration can be
carried out alternatively in z-space with respect to the distribution of T
defined by (3), so that also

(8) E(T) =fzdPT(z).
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The definition (5) of the integral permits the basic convergence theorems:

Theorem 1. Let f, be a sequence of measurable functions, and let
f,(x) = f(x) for all x. Then

[1ndn~ £

if either one of the following conditions holds:

(i) Lebesgue monotone-convergence theorem: the f,’s are nonnegative
and the sequence is nondecreasing,

or

(i) Lebesgue dominated-convergence theorem: there exists an integrable
function g such that |f,(x)| < g(x) for all n and x.

For any set A € &, let 1, be its indicator function defined by

(9) I(x)=1or0 as x€Adorx€Ad,
and let
(10) [fan= [fadn.

If p is a measure and f a nonnegative measurable function over (%, &),
then

(11) v(4) = f,, fdu

defines a new measure over (£, %/). The fact that (11) holds for all 4 € &/
is expressed by writing

12 dv =fd g
(12) v=fdp or f—d#-

Let p and » be two given o-finite measures over (%, ). If there exists a
function f satisfying (12), it is determined through this relation up to sets of
measure zero, since

Lfdp =Lgdu forall A e«
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implies that f=g ae. p.* Such an f is called the Radon-Nikodym
derivative of v with respect to g, and in the particular case that » is a
probability measure, the probability density of v with respect to p.

The question of existence of a function f satisfying (12) for given
measures p and » is answered in terms of the following definition. A
measure v is absolutely continuous with respect to p if

p(A4) =0 implies »(4) = 0.

Theorem 2. (Radon-Nikodym.) If p and v are o-finite measures over
(%', o), then there exists a measurable function f satisfying (12) if and only if
v is absolutely continuous with respect to p.

The direct (or Cartesian) product A X B of two sets A and B is the set of
all pairs (x, y) with x € 4, y € B. Let (£, &) and (%, #) be two
measurable spaces, and let &/ X # be the smallest o-field containing all sets
A X B with 4 € o/ and B € 3. If p and » are two o-finite measures over
(Z, &) and (%, #) respectively, then there exists a unique measure A =
pEXvover (FX ¥, X RB), the product of p and », such that for any
Aes, Be A,

(13) A(4 X B) = p(4)v(B).

Example 5. Let ,% be Euclidean spaces of m and n dimensions, and let
&, # be the o-fields of Borel sets in these spaces. Then X ¥ is an (m + n)-
dimensional Euclidean space, and &/ X & the class of its Borel sets.

Example 6. Let Z = (X,Y)be arandom variable defined over (£ X ¥, & X &),
and suppose that the random variables X and Y have distributions P*, PY over
(Z,o) and (¥, #). Then X and Y are said to be independent if the probability
distribution PZ of Z is the product PX x PY.

In terms of these concepts the reduction of a double integral to a
repeated one is given by the following theorem.

Theorem 3. (Fubini.) Let p and v be o-finite measures over (%, &) and
(¥, B) respectively, and let A = p X v. If f(x, y) is integrable with respect
to N, then

(1) for almost all (v) fixed y, the function f(x, y) is integrable with
respect to p,

(it) the function [f(x, y) du(x) is integrable with respect to v, and
(14)  [f(xy)dr(xy) = [ Jf(x, ) du(X)] dv(y).

*A statement that holds for all points x except possibly on a set of p-measure zero is said to
hold a.e. p; or to hold (&, u) if it is desirable to indicate the o-field over which p is defined.
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3. STATISTICS AND SUBFIELDS

According to the definition of Section 1, a statistic is a measurable transfor-
mation T from the sample space (£, &) into a measurable space (7, &).
Such a transformation induces in the original sample space the subfield*

(15) oy =T Y(B) = {T"\(B): Be %).

Since the set T~ ![T(A)] contains A but is not necessarily equal to 4, the
o-field %7, need not coincide with &/ and hence can be a proper subfield of
&. On the other hand, suppose for a moment that 7= T(Z'), that is, that
the transformation T is onto rather than into . Then

(16) T[TY(B)] =B forall Be &,

so that the relationship 4, = T~ !(B) establishes a 1:1 correspondence
between the sets of &7, and %, which is an isomorphism—that is, which
preserves the set operations of intersection, union, and complementation.
For most purposes it is therefore immaterial whether one works in the space
(%, H,) or in (7, #). These generate two equivalent classes of events, and
therefore of measurable functions, possible decision procedures, etc. If the
transformation 7 is only into J, the above 1:1 correspondence applies to
the class #’ of subsets of ' = T(%') which belong to &, rather than to #
itself. However, any set B € & is equivalent to B’ = B N7 in the sense
that any measure over (£, &) assigns the same measure to B’ as to B.
Considered as classes of events, &, and # therefore continue continue to
be equivalent, with the only difference that & contains several (equivalent)
representations of the same event.

As an example, let £ be the real line and &7 the class of Borel sets, and
let T(x) = x%. Let J be either the positive real axis or the whole real axis,
and let & be the class of Borel subsets of 7. Then %, is the class of Borel
sets that are symmetric with respect to the origin. When considering, for
example, real-valued measurable functions, one would, when working in
J-space, restrict attention to measurable functions of x2. Instead, one could
remain in the original space, where the restriction would be to the class of
even measurable functions of x. The equivalence is clear. Which representa-
tion is more convenient depends on the situation.

That the correspondence between the sets 4, = T~ '(B) € #/, and B €
% establishes an analogous correspondence between measurable functions
defined over (%, #,) and (J, &) is shown by the following lemma.

*We shall use this term in place of the more cumbersome “sub-o-field”.
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Lemma 1. Let the suatistic T from (X, &) into (I, B) induce the
subfield sZ,. Then a real-valued sf-measurable function f is o/ measurable if
and only if there exists a %-measurable function g such that

f(x) = g[T(x)]
for all x.

Proof. Suppose first that such a function g exists. Then the set

{x:f(x)<r}y=TY{t:g(¢) <r})

is in &, and f is &/ measurable. Conversely, if f is </,-measurable, then
the sets

i+1
on

i
Ai,.={x:5;<f(x)s } i=0,+1,+2,...,

are (for fixed n) disjoint sets in =/, whose union is £, and there exist
B,, € % such that 4,, = T"Y(B,,). Let

B =B, N U Bjn'

J#i

Since 4,, and 4, are mutually exclusive for i # j, the set T~'(B,, N B,,) is

—~—

empty and so is the set T~ '(B;, N B¥). Hence, for fixed n, the sets B* are

n

disjoint, and still satisfy 4,, = T~'(B?*). Defining
i
f,(x) = 7 if xed,, i=0,+1,+2,...,

one can write

ful(x) = gu[T(x)],

where

i
— i € B*
g(1)={ 7 Tor 1B

0 otherwise.

i=0,+1,+2,...,

Since the functions g, are %-measurable, the set B on which g,(z) con-
verges to a finite limit is in &. Let R = T(4') be the range of T. Then for
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t € R,
lim g, [7(x)] = lim £,(x) = f(x)

for all x € &, so that R is contained in B. Therefore, the function g
defined by g(¢) = lim g,(¢) for t € B and g(¢) = 0 otherwise possesses the
required properties.

The relationship between integrals of the functions f and g above is
given by the following lemma.

Lemma 2. Let T be a measurable transformation from (¥, /) into
(7, #), b a o-finite measure over (X, &), and g a real-valued measurable
function of t. If p* is the measure defined over (I, #) by

(17) p*(B) = p[T"Y(B)] forall Be @,

then for any B € 3,
(18) L, g7 () = [g(0) du*(1)

in the sense that if either integral exists, so does the other and the two are
equal.

Proof. Without loss of generality let B be the whole space 7. If g is
the indicator of a set B, € &, the lemma holds, since the left- and
right-hand sides of (18) reduce respectively to p[T Y(B,)] and p*(B,),
which are equal by the definition of p*. It follows that (18) holds succes-
sively for all simple functions, for all nonnegative measurable functions, and
hence finally for all integrable functions.

4. CONDITIONAL EXPECTATION AND PROBABILITY

If two statistics induce the same subfield =/, they are equivalent in the
sense of leading to equivalent classes of measurable events. This equivalence
is particularly relevant to considerations of conditional probability. Thus if
X is normally distributed with zero mean, the information carried by the
statistics | X|, X2 e *’, and so on, is the same. Given that |X| =1, X? =
12, e X P = e"z, it follows that X is +¢, and any reasonable definition of
conditional probability will assign probability } to each of these values. The
general definition of conditional probability to be given below will in fact
involve essentially only &7, and not the range space J of T. However, when
referred to =7, alone the concept loses much of its intuitive meaning, and
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the gap between the elementary definition and that of the general case
becomes unnecessarily wide. For these reasons it is frequently more con-
venient to work with a particular representation of a statistic, involving a
definite range space (7, 4).

Let P be a probability measure over (£, &), T a statistic with range
space (7, #), and &/, the subfield it induces. Consider a nonnegative
function f which is integrable (%, P), that is, <~measurable and P-inte-
grable. Then [, fdP is defined for all A € &/ and therefore for all 4, € &,
It follows from the Radon-Nikodym theorem (Theorem 2) that there exists
a function f; which is integrable (%, P) and such that

(19) ffdP=ff0dP forall A, € o,
AO AO

and that f; is unique (%,, P). By Lemma 1, f, depends on x only through
T(x). In the example of a normally distributed variable X with zero mean,
and T = X2, the function f, is determined by (19) holding for all sets 4,
that are symmetric with respect to the origin, so that fo(x) = 3[f(x) +
f(=x))

The function f, defined through (19) is determined by two properties:

(1) [Its average value over any set A, with respect to P is the same as that
of f;

(ii) It depends on x only through T(x) and hence is constant on the sets
D, over which T is constant.

Intuitively, what one attempts to do in order to construct such a function
is to define fy(x) as the conditional P-average of f over the set D,. One
would thereby replace the single averaging process of integrating f repre-
sented by the left-hand side with a two-stage averaging process such as an
iterated integral. Such a construction can actually be carried out when X is
a discrete variable and in the regular case considered in Chapter 1, Section
9; fo(x) is then just the conditional expectation of f(X) given T(x). In
general, it is not clear how to define this conditional expectation directly.
Since it should, however, possess properties (i) and (ii), and since these
through (19) determine f, uniquely (%, P), we shall take f,(x) of (19) as
the general definition of the conditional expectation E| f( X)|T(x)]. Equiv-
alently, if f,(x) = g[T(x)] one can write

E[f(X)it] = E[f(X)|T = 1] = g(2),

so that E[f(X)|t] is a %-measurable function defined up to equivalence
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(%, PT). In the relationship of integrals given in Lemma 2, if p = P* then
p* = PT, and it is seen that the function g can be defined directly in terms
of f through

(20) frfl(g)f(x) dP¥(x) = /;g(t) dP™(t) forall Be 4,

which is equivalent to (19).
So far, f has been assumed to be nonnegative. In the general case, the
conditional expectation of f is defined as

E[f(x)|t] = E[f*(X)|1] - E[f(X)|t].

Example 7. Order statistics. Let X|,..., X, be identically and independently
distributed random variables with a continuous distribution function, and let

T(xp,.000%,) = (X0)s-s X))
where x;, < .-+ < x,, denote the ordered x’s. Without loss of generality one can
restrict attention to the points with x;, < --- < x,, since the probability of two

coordinates being equal is 0. Then & is the set of all n-tuples with distinct
coordinates, J the set of all ordered n-tuples, and &/ and % are the classes of
Borel subsets of £ and J. Under T~! the set consisting of the single point
a = (ay,..., a,) is transformed into the set consisting of the n! points (a,,..., q; )
that are obtained from a by permuting the coordinates in all possible ways. It
follows that &, is the class of all sets that are symmetric in the sense that if A4,
contains a point x = (xy,..., x,), then it also contains all points (x;,..., x; ).
For any integrable function f, let

1
ﬂ)(x) =me(xll""’xl")*

where the summation extends over the n! permutations of (x,,..., x,). Then f, is
&,-measurable, since it is symmetric in its # arguments. Alsc

/f(xl....,x,,)dP(xl)...dP(x,,)=ff(x,l,...,x,")dP(xl)...dP(x,,),
Aqy Ay

so that f, satisfies (19). It follows that f,(x) is the conditional expectation of f( X)
given T(x).

The conditional expectation of f(X) given the above statistic T(x) can also be
found without assuming the X's to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure p (such as Lebesgue
measure), which is symmetric in the variables x,,..., x, in the sense that for any
A €4 it assigns to the set {x:(x,,...,x; ) € A} the same measure for all
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permutations (i,,..., i,). Let

f( e X h( e X
fo(x)y.o0yx,) = Z th(:-”)... );) * );

here and in the sums below the summation extends over the n! permutations
of (x;,..., x,). The function f, is symmetric in its n arguments and hence -
measurable. For any symmetric set A, the integral

Lfo(xl,...,x,,)h(le,...,xj") du(x,...,x,)
0
has the same value for each permutation (x e X ) and therefore

L s )R Ce ) s 5,)
V]
1
=/Afo(xl,...,x,,)FZh(x,-l,...,x,-") du(x,...,x,)
. !

=/Af(xl,...,x,,)h(xl,...,x,,)d;L(xl,...,x,,).
0

It follows that f,(x) = E[f(X)|T(x)].

Equivalent to the statistic T(x) = (Xay>- -5 X the set of order statistics, is
U(x) = Cx;,Lx2,...,Zx!"). This is an 1mmed1ate consequence of the fact, to be
shown below, that if T(xo) = ¢% and U(x°) = 4°, then

Y = Uy = s
where (1%} and {u°)} denote the sets consisting of the single point ° and u°
respectively, and where S consists of the totahty of pomts x = (xg,...,x,) ob-

tained by permuting the coordinates of x° = (x?,..., x?) in all possible ways.
That T-'({¢°}) = S is obvious. To see the corresponding fact for U~Y, let

V(x)—(Zx,,Zx,x,, Y XXX, XX, -~~x,,),

i<j i<j<k

so that the components of V(x) are the elementary symmetric functions v, =
Ix;,...,0, = X;...x,of the n arguments x,,..., x,. Then

(x=x)...(x=x,)=x"—v;x" '+ 0,x"" 2= -+ +(=1)"p,

Hence V(x%)=1"=(v,...,10) implies that V~!({t°}) = S. That then also
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U '({u"}) = S follows from the 1: 1 correspondence between u and v established
by the relations (known as Newton’s identities),*

g = vy oy = (=D o+ (2D ko =0, 1<k <n

It is easily verified from the above definition that conditional expectation
possesses most of the usual properties of expectation. It follows of course
from the nonuniqueness of the definition that these properties can hold only
(. PT). We state this formally in the following lemma.

Lemma 3. If T is a statistic and the functions f, g,... are integrable
(&, P). then a.e. (B, PT)

(i) E[af(X) + bg(X)t] = aE[f(X)|t] + bE[g(X)|1]:

(i) E[R(T)f(X)lt] = h()E[f(X)It];

(i) a < f(x) < b(A, P)impliesa < E[f(X)|t] < b;

(V) |f] < g fu(x) = f(x), P) implies E[ f,(X)|t] = E[f(X)|t].

A further useful result is obtained by specializing (20) to the case that B
is the whole space .7. One then has

Lemmad. IfE|f(X)| < oc. and if g(t) = E[f(X)|t]. then
(21) Ef(X) = Eg(T),

that is. the expectation can be obtained as the expected value of the conditional
expectation.

Since P{ X € A} = E[I,(X)]. where I, denotes the indicator of the set
A, it is natural to define the conditional probability of A given T =t by

(22) P(A|t) = E[L(X)]1].

In view of (20) the defining equation for P( A|t) can therefore be written as

(23)  PX(A N T (B)) =/ dP*(x)

ANT Y(B)
=/P(A|t)dPT(z) forall B € 4.
B

It is an immediate consequence of Lemma 3 that subject to the appropriate

*For a proof of these relations see for example Turnbull (1952), Theory of Equations, 5th
ed., Oliver and Boyd, Edinburgh, Section 32.
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null-set* qualifications, P(A|t) possesses the usual properties of probabili-
ties, as summarized in the following lemma.

Lemma 5. If T is a statistic with range space (I, #), and
A, B, Ay, A,,... are sets belonging to o, then a.e. (%, PT)

i) 0<P(AIt)<1;

(ii) if the sets A, A,,... are mutually exclusive,

P(UAilt) =Y P(4,]1);

(iii) A < B implies P(A|t) < P(B]t).

According to the definition (22), the conditional probability P(A|t) must
be considered for fixed 4 as a %-measurable function of z. This is in
contrast to the elementary definition in which one takes ¢ as fixed and
considers P(A|t) for varying A as a set function over /. Lemma 5 suggests
the possibility that the interpretation of P(A|t) for fixed ¢ as a probability
distribution over &/ may be valid also in the general case. However, the
equality P(A; U 4,|t) = P(A4,]t) + P(A,|t), for example, can break down
on a null set that may vary with 4, and A4,, and the union of all these null
sets need no longer have measure zero.

For an important class of cases, this difficulty can be overcome through
the nonuniqueness of the functions P(A|t), which for each fixed A are
determined only up to sets of measure zero in f. Since all determinations of
these functions are equivalent, it is enough to find a specific determination
for each A so that for each fixed ¢ these determinations jointly constitute a
probability distribution over /. This possibility is illustrated by Example 7,
in which the conditional probability distribution given 7(x) =t can be
taken to assign probability 1/n! to each of the »! points satisfying T(x) = ¢.
Sufficient conditions for the existence of such conditional distributions will
be given in the next section. For counterexamples see Blackwell and Dubins
(1975).

5. CONDITIONAL PROBABILITY DISTRIBUTIONS'

We shall now investigate the existence of conditional probability distribu-
tions under the assumption, satisfied in most statistical applications, that %
is a Borel set in a Euclidean space. We shall then say for short that Z is

*This term is used as an alternative to the more cumbersome “set of measure zero.”
*This section may be omitted at first reading. Its principal application is in the proof of
Lemma 8(ii) in Section 7, which in turn is used only in the proof of Theorem 3 of Chapter 4.
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Euclidean and assume that, unless otherwise stated, 7 is the class of Borel
subsets of .

Theorem 4. If & is Euclidean, there exist determinations of the functions
P(A|t) such that for each t, P(A|t) is a probability measure over .

Proof. By setting equal to 0 the probability of any Borel set in the
complement of 4, one can extend the given probability measure to the class
of all Borel sets and can therefore assume without loss of generality that &
is the full Euclidean space. For simplicity we shall give the proof only in the
one-dimensional case. For each real x put F(x,t) = P((— o0, x]|t) for
some version of this conditional probability function, and let r, r,,...
denote the set of all rational numbers in some order. Then r; < r; implies
that F(r,, 1) < F(r, t) for all # except those in a null set N, ;, and hence that
F(x, 1) is nondecreasing in x over the rationals for all ¢ outside of the null
set N’ = UN, ;. Similarly, it follows from Lemma 3(iv) that for all ¢ not in a
null set N”, as n tends to infinity lim F(r;, + 1/n,t) = F(r, t) for i =
1,2,...,lim F(n,t) = 1, and lim F(—n, t) = 0. Therefore, for all ¢ outside
of the null set N’ U N”, F(x, t) considered as a function of x is properly
normalized, monotone, and continuous on the right over the rationals. For ¢
not in N’ U N” let F*(x, t) be the unique function that is continuous on
the right in x and agrees with F(x, t) for all rational x. Then F*(x, t)is a
cumulative distribution function and therefore determines a probability
measure P*(A|t) over /. We shall now show that P*(A|t) is a conditional
probability of A given #, by showing that for each fixed 4 it is a
#-measurable function of ¢ satisfying (23). This will be accomplished by
proving that for each fixed 4 € &/

PXA|0) = P(4]1) (&, PT).

By definition of P* this is true whenever A is one of the sets (— o0, x] with
x rational. It holds next when A is an interval (a, b] = (— 00, b] — (— 0, a]
with a, b rational, since P* is a measure and P satisfies Lemma 5(ii).
Therefore, the desired equation holds for the field % of all sets 4 which are
finite unions of intervals (a;, b;] with rational end points. Finally, the class
of sets for which the equation holds is a monotone class (see Problem 1) and
hence contains the smallest o-field containing %, which is /. The measure
P*(A|t) over o/ was defined above for all # notin N’ U N”. However, since
neither the measurability of a function nor the values of its integrals is
affected by its values on a null set, one can take arbitrary probability
measures over &/ for ¢ in N’ U N” and thereby complete the determination.

If X is a vector-valued random variable with probability distribution P*
and T is a statistic defined over (&, ), let P*" denote any version of the
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family of conditional distributions P(A|t) over & guaranteed by Theorem
4. The connection with conditional expectation is given by the following
theorem.

Theorem 5. If X is a vector-valued random variable and E|f( X)| < oo,
then

(24) E[f(X)l] = [f(x) aP*(x) (%, PT).

Proof. Equation (24) holds if f is the indicator of any set 4 € &, It
then follows from Lemma 3 that it also holds for any simple function and
hence for any integrable function.

The determination of the conditional expectation E[ f( X)|t] given by the
right-hand side of (24) possesses for each ¢ the usual properties of an
expectation, (i), (iii), and (iv) of Lemma 3, which previously could be
asserted only up to sets of measure zero depending on the functions f, g,...
involved. Under the assumptions of Theorem 4 a similar strengthening is
possible with respect to (ii) of Lemma 3, which can be shown to hold except
possibly on a null set N not depending on the function h. It will be
sufficient for the present purpose to prove this under the additional assump-
tion that the range space of the statistic T is also Euclidean. For a proof
without this restriction see for example Billingsley (1979).

Theorem 6. If T is a statistic with Euclidean domain and range spaces
(X, ) and (T, B), there exists a determination PX" of the conditional
probability distribution and a null set N such that the conditional expectation
computed by

E[f(X)It] = [£(x) dP¥(x)
satisfies for all t € N

(25) E[K(T)f(X)It] = h()E[£(X)le].

Proof. For the sake of simplicity and without essential loss of generality
suppose that T is real-valued. Let P¥!/(4) be a probability distribution over
&/ for each ¢, the existence of which is guaranteed by Theorem 4. For
B € %, the indicator function I4(¢) is #-measurable and

/BII"(’) dP™(1) = PT(B’' N B) = PX(T-'B' N T~'B)

forall B’ € 4.
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Thus by (20)

I,(t) = PY(T"'B)  ae. PT.

Let B,, n =1,2,...,be the intervals of J with rational end points. Then
there exists a P-null set N = UN, such that for t ¢ N

Iz (t) = PX*(T7'B,)

for all n. For fixed ¢ & N, the two set functions PX/(T~'B) and I(t) are
probability distributions over %, the latter assigning probability 1 or 0 to a
set as it does or does not contain the point z. Since these distributions agree
over the rational intervals B,, they agree for all B € #. In particular, for
t &€ N, the set consisting of the single point ¢ is in 4, and if

AV = {x:T(x) =1},
it follows that for all t ¢ N

(26) PXIH(A®W) =1.
Thus

R f(x) dp*¥(x) = [ AIT(01f(x) dP¥"(x)

ff ) dPX( x

for t € N, as was to be proved.

It is a consequence of Theorem 6 that for all ¢+ € N, E[h(T)|t] = k(1)
and hence in particular P(T € B|t) =1orOast€ Bort & B.

The conditional distributions P*!* still differ from those of the elemen-
tary case considered in Chapter 1, Section 9, in being defined over (%, &)
rather than over the set A‘” and the o-field &/ of its Borel subsets.
However, (26) implies that for ¢t € N

PX'(4) = PX(4 N AD).

The calculations of conditional probabilities and expectations are therefore
unchanged if for t € N, P*" is replaced by the distribution P*, which is
defined over (A'”, o7") and which assigns to any subset of A the same
probability as P X!,
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Theorem 6 establishes for all # & N the existence of conditional probabil-
ity distributions P*¥, which are defined over (A", /") and which by
Lemma 4 satisfy

(27) E[f(X)] = fy_N[ [IC) dPX"(x)] dP™(1)

for all integrable functions f. Conversely, consider any family of distribu-
tions satisfying (27), and the experiment of observing first T, and then, if
T = t, a random quantity with distribution P X!, The result of this two-stage
procedure is a point distributed over (%, /) with the same distribution as
the original X. Thus P*!’ satisfies this “functional” definition of conditional
probability.

If (%, &) is a product space (7X ¥, B X ¥), then A is the product
of & with the set consisting of the single point . For ¢ & N, the conditional
distribution P*" then induces a distribution over (%, €), which in analogy
with the elementary case will be denoted by P*". In this case the definition
can be extended to all of J by letting P! assign probability 1 to a
common specified point y,, for all # € N. With this definition, (27) becomes

29) BT, 1) = [ | [ 2| ap7(0.

As an application, we shall prove the following lemma, which will be
used in Section 7.

Lemma 6. Let (I, #) and (¥, €) be Euclidean spaces, and let P]Y be
a distribution over the product space (X, %)= (IX Y, B X €). Suppose
that another distribution P, over (%, &) is such that

dP\(t, y) = a(y)b(t) dPy(t, y),

with a(y) > 0 for all y. Then under P, the marginal distribution of T and a
version of the conditional distribution of Y given t are given by

ap{(1) = b(0)| fat ) aB3¥(»)] ap{ (0
and
aly) dB()

dP!V(y) = :
[a(r) ar3(y)
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Proof. The first statement of the lemma follows from the equation

P{T € B}=E,[I;(T)] = Eg[1,(T)a(Y)b(T)]

= ];b(t)[f@a(y) dPOY"(y)] dPl(1).

To check the second statement, one need only show that for any integrable f
the expectation E, f(Y, T') satisfies (28), which is immediate. The denomina-
tor of dP!" is positive, since a(y) > 0 for all y.

6. CHARACTERIZATION OF SUFFICIENCY

We can now generalize the definition of sufficiency given in Chapter 1,
Section 9. If # = { Py, € Q} is any family of distributions defined over a
common sample space (£, &), a statistic T is sufficient for # (or for @) if
for each 4 in &/ there exists a determination of the conditional probability
function P,(A|t) that is independent of . As an example suppose that
X,,..., X, are identically and independently distributed with continuous
distribution function F,;, 8 € Q. Then it follows from Example 7 that the set
of order statistics T(X) = (X, ..., X)) is sufficient for 4.

Theorem 7. If & is Euclidean, and if the statistic T is sufficient for P,
then there exist determinations of the conditional probability distributions
Py(A|t) which are independent of 8 and such that for each fixed t, P(A|t) is a
probability measure over .

Proof. This is seen from the proof of Theorem 4. By the definition of
sufficiency one can, for each rational number r, take the functions F(r, t) to
be independent of 6, and the resulting conditional distributions will then
also not depend on 6.

In Chapter 1 the definition of sufficiency was justified by showing that in
a certain sense a sufficient statistic contains all the available information. In
view of Theorem 7 the same justification applies quite generally when the
sample space is Euclidean. With the help of a random mechanism one can
then construct from a sufficient statistic T a random vector X’ having the
same distribution as the original sample vector X. Another generalization of
the earlier result, not involving the restriction to a Euclidean sample space,
is given in Problem 12.

The factorization criterion of sufficiency, derived in Chapter 1, can be
extended to any dominated family of distributions, that is, any family
P = { Py, § € Q) possessing probability densities p, with respect to some
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o-finite measure p over (£, & ). The proof of this statement is based on the
existence of a probability distribution A = Xc;P, (Theorem 2 of the Ap-
pendix), which is equivalent to & in the sense that for any 4 € &/

(29) A(4) =0 ifandonlyif Py(4) =0 forall § € Q.

Theorem 8. Let #= { Py, 8 € Q} be a dominated family of probability
distributions over (%, ), and let A = YXc;P, satisfy (29). Then a statistic T
with range space (I, ®) is sufficient for P if and only if there exist
nonnegative %-measurable functions gy(t) such that

(30) dPy(x) = go[T(x)] dA(x)
for all 8 € Q.

Proof. Let o, be the subfield induced by T, and suppose that T is
sufficient for 4. Then for all § € Q, 4, € &, and 4 € &

fA P(A|T(x)) dPy(x) = Py(4 N 4,);

1]

and since A = Xc, Py,
[ P(4|T(x)) d\(x) = A(4 N 4;),
Ao

so that P(A|T(x)) serves as conditional probability function also for A. Let
g¢(T(x)) be the Radon-Nikodym derivative dPy(x)/dA(x) for (&, A). To
prove (30) it is necessary to show that g,(7(x)) is also the derivative of P,
for (&, A). If A4, is put equal to & in the first displayed equation, this
follows from the relation

Py(A4) = [P(A]T(x)) dPy(x) = [E[L,(x)|T(x)] dPy(x)
= [EA[L(x)T(x)] 85(T(x)) dA(x)
= [Ex[2o(T(x)) L(x)|T(x)] dA(x)

= [T Li(x) dN(x) = [ £o(T(x)) dA(x).
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Here the second equality uses the fact, established at the beginning of the
proof, that P(A|T(x)) is also the conditional probability for A; the third
equality holds because the function being integrated is /,-measurable and
because dP, = g, d\ for (#,, A); the fourth is an application of Lemma
3(ii); and the fifth employs the defining property of conditional expectation.

Suppose conversely that (30) holds. We shall then prove that the condi-
tional probability function P,(A|t) serves as a conditional probability
function for all P € P. Let g4(T(x)) = dPy(x)/d\(x) on & and for fixed
A and @ define a measure » over & by the equation dv = I, dP,. Then over
&y, dv(x)/dPy(x) = Eg[I,(X)|T(x)), and therefore

dv(x)

anx) = Py[AIT(x)] 8o(T(x))  over .

On the other hand, dv(x)/dA(x) = 1,(x)ge(T(x)) over &, and hence

.3%((_’% = Ey[L(X)gs(T(X))|T(x)]

= P,[4|T(x)] 84(T(x))  over «,.

It follows that P,(A|T(x))8e(T(x)) = Py(A|T(x))ge(T(x)) (&, A) and
hence (&, Py). Since gyo(T(x)) # 0 (&, Py), this shows that Py(A|T(x))
= P,(A|T(x)) (#,, P;), and hence that P,(A|T(x)) is a determination of
Py(A|T(x)).

Instead of the above formulation, which explicitly involves the distribu-
tion A, it is sometimes more convenient to state the result with respect to a
given dominating measure p.

Corollary 1. (Factorization theorem.) If the distributions Py of & have
probability densities p, = dPy/dp with respect to a o-finite measure ., then T
is sufficient for P if and only if there exist nonnegative %-measurable functions
8¢ on T and a nonnegative stmeasurable function h on & such that

(31) po(x) = &[T()]h(x) (o, n).

Proof. Let A = L¢Py satisfy (29). Then if T is sufficient, (31) follows
from (30) with A = dA/dp. Conversely, if (31) holds,

dN(x) = L8y, [T(x)] h(x) dp(x) = k[T(x)] h(x) dp(x)

and therefore dPy(x) = g¥(T(x)) dA(x), where gi(t) = gq(t)/k(t) when
k(t) > 0 and may be defined arbitrarily when k() = 0.
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For extensions of the factorization theorem to undominated families, see
Ghosh, Morimoto, and Yamada (1981) and the literature cited there.

7. EXPONENTIAL FAMILIES

An important family of distributions which admits a reduction by means of
sufficient statistics is the exponential family, defined by probability densities
of the form

(32) po(x) = C(”)exp[ _; Q,-(0)7}(x)]h(X)

with respect to a o-finite measure p over a Euclidean sample space (£, &).
Particular cases are the distributions of a sample X = (X,..., X,) from a
binomial, Poisson, or normal distribution. In the binomial case, for exam-
ple, the density (with respect to counting measure) is

(3)r-p)=(- P)"CXP[X log( . fp )}(;)

Example 8. 1f Y,,...,7, are independently distributed, each with density (with
respect to Lebesgue measure)

yU/D=Nexp[ —y/(20%)]
(262)’T(£/2)

then the joint distribution of the Y’s constitutes an exponential fam11y For o =1,
(33) is the density of the x?-distribution with f degrees of freedom; in particular,
for f an integer this is the density of ¥/ =1 X5 2 where the X’s are a sample from the
normal distribution N(0,1).

(33) po(y) = >0,

Example 9. Consider n independent trials, each of them resulting in one of the
s outcomes E,,..., E; with probabilities p,,..., p, respectively. If X;; is 1 when
the outcome of the zth trial is E and 0 otherwise, the joint distribution of the X’s is

P{Xll =x11"--,Xn.r=xns} =p ,1PZX,1 ps x,-,,
where all x;; =0 or 1 and ¥;x,; =1. This forms an exponential family with
T(x) =Li.,x;; (j=1,...,s = 1). The joint distribution of the T’s is the multi-
nomial distribution M (n; pl, ., ;) given by
(34) P{Ty=1,....T_, =t_,}
n!

et Mn—t,— - =t )

== e =ty

pt (1 -ph - _ps—l)
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If X,..., X, is a sample from a distribution with density (32), the joint
distribution of the X’s constitutes an exponential family with the sufficient
statistics X7, T;(X;), j = 1,..., k. Thus there exists a k-dimensional suffi-
cient statistic for (Xj,..., X,) regardless of the sample size. Suppose
conversely that X|,..., X, is a sample from a distribution with some
density py(x) and that the set over which this density is positive is
independent of §. Then under regularity assumptions which make the
concept of dimensionality meaningful, if there exists a k-dimensional suffi-
cient statistic with k& < n, the densities p,(x) constitute an exponential
family. For a proof and discussion of regularity conditions see, for example,
Barankin and Maitra (1963), Brown (1964), Barndorff-Nielsen and Pedersen
(1968), and Hipp (1974).

Employing a more natural parametrization and absorbing the factor /(x)
into p, we shall write an exponential family in the form dP,(x) =

Ppe(x) dp(x) with

k
(35) po(x) = C(ﬂ)expl )) 0,7}()6)]-

j=1
For suitable choice of the constant C(#), the right-hand side of (35) is a
probability density provided its integral is finite. The set @ of parameter
points 8 = (8,,...,8,) for which this is the case is the natural parameter
space of the exponential family (35).

Optimum tests of certain hypotheses concerning any 6, are obtained in
Chapter 4. We shall now consider some properties of exponential families
required for this purpose.

Lemma 7. The natural parameter space of an exponential family is
convex.

Proof. Let (0,,...,8,) and (6,...,68;) be two parameter points for
which the integral of (35) is finite. Then by Holder’s inequality,

Jexo[ L[, + (1 = )] T(x)] du(x)

<[ el 24700 anto)| | ool Lo 0] ()] "<

forany 0 < a < 1.

If the convex set @ lies in a linear space of dimension < k, then (35) can
be rewritten in a form involving fewer than k components of 7. We shall
therefore, without loss of generality, assume § to be k-dimensional.
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It follows from the factorization theorem that T(x) = (T (x),..., T,(x))
is sufficient for = { P, 6 € Q}.

Lemma 8. Let X be distributed according to the exponential family

TOU(x) + X ajr,(x>} du(x).

i=1 j=1

dPo’Ya(x) = C(0, &)exp

Then there exist measures Ay and v, over s- and r-dimensional Euclidean
space respectively such that

(1) the distribution of T = (T,..., T,) is an exponential family of the
form

(36) dPT (1) = C(8, o)exp( y ajzj) dA,(1),

Jj=1

(ii) the conditional distribution of U = (U,,...,U,) given T =1 is an
exponential family of the form

(37) dPY"(u) = c,(o>exp( ) o) dv,(u),

and hence in particular is independent of 9.
Proof. Let (8°, #°) be a point of the natural parameter space, and let
p* = Pg¥ g0. Then
Cc(6,9)

dP¥3(x) = 6099

r s

Xexp[ Y(6-00)U(x)+ X (0j - ﬂJQ)T}(x)] dp*(x),

i=1 j=1

and the result follows from Lemma 6, with

d\y(t) = exp Y. 9%,) [fexp[:, 6,— 6°)u, ] U"‘,o(u)] dP{ 5(1)

and

dv,(u) = exp(— Y. 0%, ) PRl (u).
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Theorem 9. Let ¢ be any function on (¥, &) for which the integral

(38) /¢(x)exp[ L 67,(x)| du(x)

considered as a function of the complex variables 8, = £, + in; (j =1,..., k)
exists for all (§&,,...,§&,) € Q and is finite. Then

(1) the integral is an analytic function of each of the ’s in the region R of
parameter points for which (&,,...,£,) is an interior point of the natural
parameter space §1;

(i) the derivatives of all orders with respect to the 8’s of the integral (38)
can be computed under the integral sign.

Proof. Let (£,...,¢?) be any fixed point in the interior of £, and
consider one of the variables in question, say #,. Breaking up the factor

¢ (x)exp[(£3 + ind) Ty(x) + -+ + (&0 + ind) Ty (x)]

into its real and complex part and each of these into its positive and
negative part, and absorbing this factor in each of the four terms thus
obtained into the measure u, one sees that as a function of 4, the integral
(38) can be written as

fexPlalTl(x)] dp,(x) — fexp{olTl(x)] dp,(x)

+i/exp[91Tl(x)] dps(x) - ifexp[olTl(x)] dp4(x).
It is therefore sufficient to prove the result for integrals of the form
¥(8,) = fexp[6,7y(x)] dp(x).

Since (£Y,..., £2) is in the interior of Q, there exists § > 0 such that y(6,)
exists and is finite for all 8, with |§, — £)| < 8. Consider the difference
quotient

v(8,) —v(6?) =j-exp[01T1(x)] — exp[80Ty(x)] du(x).

01_0{) 01_010
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The integrand can be written as

exp| 60T, (x)] [CXP[(ax —0101_):5)():)] 1

Applying to the second factor the inequality

for |z] <8,

8

exp(az) — 1 ’ exp(8]al)
<
z

the integrand is seen to be bounded above in absolute value by

1 1
§|exp(0{’Tl +8|T)| < —8—|exp[(01° +8)T,] + exp[(60 - 8)T,] |

for |6, — 67| < 8. Since the right-hand side is integrable, it follows from the
Lebesgue dominated-convergence theorem [Theorem 1(ii)] that for any
sequence of points 8{™ tending to 62, the difference quotient of y tends to

JTi(x)exp[07T;(x)] dp(x).

This completes the proof of (i), and proves (ii) for the first derivative. The
proof for the higher derivatives is by induction and is completely analogous.

1.

8. PROBLEMS
Section 1

Monotone class. A class & of subsets of a space is a field if it contains the
whole space and is closed under complementation and under finite unions; a
class A is monotone if the union and intersection of every increasing and
decreasing sequence of sets of A is again in .#. The smallest monotone class
M, containing a given field & coincides with the smallest o-field ./ contain-
ing .

[One proves first that .#, is a field. To show, for example, that 4 N B € A4,
when A4 and B arein #, consider, for a fixed set 4 € &, the class 4, of all
B in A for which A N B € #,. Then #, is a monotone class containing
%, and hence #, =.#,. Thus A N Be€ #, for all B. The argument can
now be repeated with a fixed set B € #, and the class A of sets 4 in A
for which 4 N B € #,. Since A, is a field and monotone, it is a o-field
containing % and hence contains /. But any o-field is a monotone class so
that also .#, is contained in &/.]
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Section 2

2. Radon-Nikodym derivatives.

(i) If A and p are o-finite measures over (4, %) and p is absolutely
continuous with respect to A, then

Jran= [ ax

for any p-integrable function f.

(i) If A, p, and v are o-finite measures over (£, %) such that » is
absolutely continuous with respect to p and p with respect to A, then

dv dvdp N
i n dX ae. A.
(1) If p and » are o-finite measures, which are equivalent in the sense that
each is absolutely continuous with respect to the other, then

dv dp\~!

o\ @ ae. p,v.

Giv) If p,, k=1,2,..., and p are finite measures over (%, %) such that
TP pui(A) = p(A) for all 4 € , and if the p, are absolutely continu-
ous with respect to a o-finite measure A, then p is absolutely continuous
with respect to A, and

[(1): The equation in question holds when f is the indicator of a set, hence
when f is simple, and therefore for all integrable f.
(ii): Apply (i) with f = dv/du.]

3. If f(x) > O forall x € S and p is o-finite, then [;fdu = O implies p(S) = 0.
[Let S, be the subset of S on which f(x) > 1/n. Then p(S) < Xu(S,) and
k(S,) < nfs fdp < nfsfdp = 0]

Section 3

4. Let (%, &) be a measurable space, and %, a o-field contained in /. Suppose
that for any function T, the o-field 2 is taken as the totality of sets B such
that T~!(B) € &. Then it is not necessarily true that there exists a function 7
such that T~ 1(2) = «&,.

[An example is furnished by any &/, such that for all x the set consisting of
the single point x is in %7,.]
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5.

6.

THE PROBABILITY BACKGROUND 2.8
Section 4
(i) Let 2 be any family of distributions X = (X,..., X,) such that

P(X, X1 Xy Xy, X_)) €4} = P{(X,,..., X,) €4}

for all Borel sets A and all i = 1,..., n. For any sample point (x,,..., x,)
define (yy,..., ¥,) = (X5 X415 Xy X15..., X;_ 1), Where x; = x5 =
min(x,,..., x,). Then the conditional expectation of f(X) given ¥ =y
is

1
fo(yl’“"yn) =;[f(y1""’yn) +f(}’29-~~’y,.,}’1)

+ oo+ (G v D]

(i) Let G={g,...,8 ) be any group of permutations of the coordinates
Xy,..., X, of a point x in n-space, and denote by gx the point obtained
by applying g to the coordinates of x. Let & be any family of
distributions P of X = (Xj,..., X,) such that

(39) P{gX€A} =P{(Xe€A} forall g€G.

For any point x let 1 = T(x) be any rule that selects a unique point
from the r points g,x, k=1,...,r (for example the smallest first
coordinate if this defines it uniquely, otherwise also the smallest second
coordinate, etc.). Then

EO0I = £ 1.

(iii) Suppose that in (i) the distributions P do not satisfy the invariance
condition (39) but are given by

dP(x) = h(x) du(x),

where p is invariant in the sense that p{x: gx € 4} = p(A). Then

Y (gt h(get)
E[A(X)]] = <=1,
kZ_Zl h(gt)
Section §

Prove Theorem 4 for the case of an n-dimensional sample space.
[The condition that the cumulative distribution function is nondecreasing is
replaced by P{x, < X; < x{,...,x,, < X, < x,} > 0; the condition that it is

n =
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continuous on the right can be stated as lim,, ,  F(x, + 1/m,..., x, + 1/m)
= F(xl,...,x").]

7. Let =% X7, and suppose that Py, P, are two probability distributions
given by

dPy(y,1) = f(y)g(1) du(y) dv(1),
dP,(y,t) = h(y,t) du(y) dv(1),

where h(y,1)/f(y)g(t) < co. Then under P, the probability density of Y
with respect to p is

Yeoy h(y,T) |, _
[We have
h(»,
HOR RGO EIORS O Fi)yg—;),)g(o a(1)]
Section 6

8. Symmetric distributions.

(i) Let & be any family of distributions of X = (X,..., X,) which are
symmetric in the sense that

P{(X,,....X ) €A} =P{(X,,....,X,) €4)

for all Borel sets 4 and all permutations (i;,. .., i,) of (1,..., n). Then
the statistic T of Example 7 is sufficient for &, and the formula given in
the first part of the example for the conditional expectation E[ f( X)|T(x)]
is valid.

(ii) The statistic Y of Problem 5 is sufficient.

(iii) Let Xj,..., X, be identically and independently distributed according to
a continuous distribution P € £, and suppose that the distributions of
% are symmetric with respect to the origin. Let V; = | X;| and W, = V,,.
Then (W,,..., W,) is sufficient for 2.

9. Sufficiency of likelihood ratios. Let Py, P; be two distributions with densities
Po» P1- Then T(x) = p,(x)/py(x) is sufficient for # = { F,, P, }.
[This follows from the factorization criterion by writing p, = T - py, py =
1-po.
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10.

11.

12.
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Pairwise sufficiency. A statistic T is pairwise sufficient for & if it is sufficient
for every pair of distributions in #.

(i) If 2 is countable and T is pairwise sufficient for &, then T is sufficient
for 2.

(ii) If 2 is a dominated family and T is pairwise sufficient for £, then T is
sufficient for 2.

[(): Let = { Py, P;,...}, and let &, be the sufficient subfield induced by T.
Let A = X¢; P, (¢; > 0) be equivalent to 2. For each j = 1,2,... the probabil-
ity measure )\ that is proportional to (¢o/n)P, + ¢;P; is equ1va1ent to
{ Py, P,} Thus’ by pairwise sufficiency, the derivative f; = dPO/[( ¢o/n) dPy +

¢;dP)] is s/,-measurable. Let §; = {x:f(x) =0} and S =U]_;S,. Then
S GMO, Py(S)=0, and on flf S the derivative dF,/d¥’_ 1c P, equals
(Xi_i1/, f,-)‘1 which is &-measurable. It then follows from Problem 2 that

is also &/;-measurable.

(ii): Let A =X%¢; F, be equivalent to #. Then pairwise sufficiency of T
implies for any 0 that dPy,/(dPy, + d)) and hence dP, /dX is a measurable
function of T.]

If a statistic T is sufficient for %, then for every function f which is
(, Py)-integrable for all § € Q there exists a determination of the conditional
expectation function E,[ f(X)|¢] that is independent of 6.

[If & is Euclidean, this follows from Theorems 5 and 7. In general, if f is
nonnegative there exists a nondecreasing sequence of simple nonnegative
functions f, tending to f. Since the conditional expectation of a simple
function can be taken to be independent of 8 by Lemma 3(i), the desired result
follows from Lemma 3(iv).]

For a decision problem with a finite number of decisions, the class of
procedures depending on a sufficient statistic T only is essentially complete.
[For Euclidean sample spaces this follows from Theorem 4 without any
restriction on the decision space. For the present case, let a decision procedure
be given by 8(x) = (8(x),..., 8" (x)) where §)(x) is the probability
with which decision d, is taken when x is observed. If T is sufficient and
7' (t) = E[8')(X)]|t], the procedures 8 and 7 have identical risk functions.]
[More general versions of this result are discussed, for example, by Elfving
(1952), Bahadur (1955), Burkholder (1961), LeCam (1964), and Roy and
Ramamoorthi (1979).]
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Section 7

Let X, (i =1,...,s) be independently distributed with Poisson distribution
P(A),andlet Ty =L X, T, = X;, A = LA,. Then T;, has the Poisson distribu-
tion P(A), and the conditional distribution of 7},...,T,_, given Ty = ¢, is the
multinomial distribution (34) with n = ¢, and p, = \,/A.

[Direct computation.]

Life testing. Let X,..., X, be independently distributed with exponential
density (26) 'e */?® for x > 0, and let the ordered X’s be denoted by
Y, <Y, < .- <Y, Itis assumed that ¥, becomes available first, then ¥,,
and so on, and that observation is continued until Y, has been observed. This
might arise, for example, in life testing where each X measures the length of
life of, say, an electron tube, and n tubes are being tested simultaneously.
Another application is to the disintegration of radioactive material, where n is
the number of atoms, and observation is continued until r a-particles have
been emitted.

(i) The joint distribution of Y,,..., Y, is an exponential family with density

r

Lo Yy+(n-r)y
: i=1
—_— — , 0< < -0 <y
(26)" (n- r)!exp 26 =h s I
(i) The distribution of [L/_,Y, + (n — r)Y.]/8 is x* with 2r degrees of
freedom.
(iii) Let Y,,7,,... denote the time required until the first, second, ... event

occurs in a Poisson process with parameter 1/26’ (see Chapter 1,
Problem 1). Then Z, = Y,/0', Z, = (Y, — V\)/0', Z, = (Y, —
Y,)/0’,... are independently distributed as x> with 2 degrees of free-
dom, and the joint density of Y,...,Y, is an exponential family with
density

1 Yr ) 0

—onrexp| — o |, Sy <y

(20/)’exp( 201 N Y
The distribution of Y,/6’ is again x> with 2r degrees of freedom.

(iv) The same model arises in the application to life testing if the number n
of tubes is held constant by replacing each burned-out tube with a new
one, and if Y, denotes the time at which the first tube burns out, Y, the
time at which the second tube burns out, and so on, measured from some
fixed time.

[(i1): The random variables Z, = (n — i + 1Y, — Y,_,)/0 (i=1,...,r) are
independently distributed as x? with 2 degrees of freedom, and [L/.,Y; +
(n-=nY)/8=%_,Z]
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15. For any 8 which is an interior point of the natural parameter space, the
expectations and covariances of the statistics 7; in the exponential family (35)

are given by
E[T,-(X)]=—al%§(0) (j=1,...,k),
2 0
E[T(0T(0] - [ERET(0] = - o0 .

16. Let © be the natural parameter space of the exponential family (35), and for
any fixed t,,q,..., 4 (r <k)let 5 4 be the natural parameter space of
the family of conditional distributions given 7,,, = ¢,,,,..., T, = ;.

() Then @  , contains the projection £
(i) An example in which £
of densities

s Vpe

o, is the family

g, of Qonto b,,...,4

.....

s, is a proper subset of {25

..........

Po,oz(X, y) = C(6,,8,)exp(8;x + b,y — xy), x,y>0.
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CHAPTER 3
Uniformly Most Powerful Tests

1. STATING THE PROBLEM

We now begin the study of the statistical problem that forms the principal
subject of this book,* the problem of hypothesis testing. As the term
suggests, one wishes to decide whether or not some hypothesis that has been
formulated is correct. The choice here lies between only two decisions:
accepting or rejecting the hypothesis. A decision procedure for such a
problem is called a fest of the hypothesis in question.

The decision is to be based on the value of a certain random variable X,
the distribution P, of which is known to belong to a class £ = { P,
6 € Q). We shall assume that if § were known, one would also know
whether or not the hypothesis is true. The distributions of & can then be
classified into those for which the hypothesis is true and those for which it is
false. The resulting two mutually exclusive classes are denoted by H and K,
and the corresponding subsets of @ by @, and 2 respectively, so that
HUK=2 and Q, U Qy = Q. Mathematically, the hypothesis is equiv-
alent to the statement that P, is an element of H. It is therefore convenient
to identify the hypothesis with this statement and to use the letter H also to
denote the hypothesis. Analogously we call the distributions in K the
alternatives to H, so that K is the class of alternatives.

Let the decisions of accepting or rejecting H be denoted by d, and 4,
respectively. A nonrandomized test procedure assigns to each possible value
x of X one of these two decisions and thereby divides the sample space into
two complementary regions S, and S,. If X falls into S, the hypothesis is
accepted; otherwise it is rejected. The set S, is called the region of
acceptance, and the set S, the region of rejection or critical region.

*The related subject of confidence intervals is treated in Chapter 3, Section S; Chapter 5,
Sections 6, 7; Chapter 6, Sections 11-13; Chapter 7, Section 8; Chapter 8, Section 6; and
Chapter 10, Section 4.
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When performing a test one may arrive at the correct decision, or one
may commit one of two errors: rejecting the hypothesis when it is true (error
of the first kind) or accepting it when it is false (error of the second kind).
The consequences of these are often quite different. For example, if one tests
for the presence of some disease, incorrectly deciding on the necessity of
treatment may cause the patient discomfort and financial loss. On the other
hand, failure to diagnose the presence of the ailment may lead to the
patient’s death.

It is desirable to carry out the test in a manner which keeps the
probabilities of the two types of error to a minimum. Unfortunately, when
the number of observations is given, both probabilities cannot be controlled
simultaneously. It is customary therefore to assign a bound to the probabil-
ity of incorrectly rejecting H when it is true, and to attempt to minimize the
other probability subject to this condition. Thus one selects a number «
between 0 and 1, called the level of significance, and imposes the condition
that

(1) Pp{8(X)=d} =P{XES}<a forall 8,

Subject to this condition, it is desired to minimize Py{8(X) = d} for § in
2, or, equivalently, to maximize

(2) P{8(X)=4d,} =P{Xe€S) forall §eQ.

Although usually (2) implies that
(3) supPy{ X € S,} = a,

H

it is convenient to introduce a term for the left-hand side of (3): it is called
the size of the test or critical region S,. The condition (1) therefore restricts
consideration to tests whose size does not exceed the given level of signifi-
cance. The probability of rejection (2) evaluated for a given § in Q2 is
called the power of the test against the alternative . Considered as a
function of @ for all § € 2, the probability (2) is called the power function
of the test and is denoted by B(8).

The choice of a level of significance a will usually be somewhat arbitrary,
since in most situations there is no precise limit to the probability of an
error of the first kind that can be tolerated. Standard values, such as .01 or
.05, were originally chosen to effect a reduction in the tables needed for
carrying out various tests. By habit, and because of the convenience of
standardization in providing a common frame of reference, these values
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gradually became entrenched as the conventional levels to use. This is
unfortunate, since the choice of significance level should also take into
consideration the power that the test will achieve against the alternatives of
interest. There is little point in carrying out an experiment which has only a
small chance of detecting the effect being sought when it exists. Surveys by
Cohen (1962) and Freiman et al. (1978) suggest that this is in fact the case
for many studies. Ideally, the sample size should then be increased to permit
adequate values for both significance level and power. If that is not feasible,
one may wish to use higher values of a than the customary ones. The
opposite possibility, that one would like to decrease a, arises when the latter
is so close to 1 that a can be lowered appreciably without a significant loss
of power (cf. Problem 50). Rules for choosing a in relation to the attainable
power are discussed by Lehmann (1958), Arrow (1960), and Sanathanan
(1974), and from a Bayesian point of view by Savage (1962, pp. 64-66). See
also Rosenthal and Rubin (1985).

Another consideration that may enter into the specification of a signifi-
cance level is the attitude toward the hypothesis before the experiment is
performed. If one firmly believes the hypothesis to be true, extremely
convincing evidence will be required before one is willing to give up this
belief, and the significance level will accordingly be set very low. (A low
significance level results in the hypothesis being rejected only for a set of
values of the observations whose total probability under the hypothesis is
small, so that such values would be most unlikely to occur if H were true.)

In applications, there is usually available a nested family of rejection
regions, corresponding to different significance levels. It is then good
practice to determine not only whether the hypothesis is accepted or
rejected at the given significance level, but also to determine the smallest
significance level & = &(x), the significance probability or p-value,* at which
the hypothesis would be rejected for the given observation. This number
gives an idea of how strongly the data contradict the hypothesis, and
enables others to reach a verdict based on the significance level of their
choice (cf. Problem 9 and Chapter 4, Problem 2). For various questions of
interpretation and some extensions of the concept, see Dempster and
Schatzoff (1965), Stone (1969), Gibbons and Pratt (1975), Cox (1977), Pratt
and Gibbons (1981, Chapter 1) and Thompson (1985). The large-sample
behavior of p-values is discussed in Lambert and Hall (1982), and their
sensitivity to changes in the model in Lambert (1982). A graphical proce-
dure for assessing the p-values of simultaneous tests of several hypotheses is
proposed by Schweder and Spjetvoll (1982).

*For a related concept, which compares the “acceptability” of two or more parameter
values, see Spjetvoll (1983).
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Significance probabilities, with the additional information they provide,
are typically more appropriate than fixed levels in scientific problems,
whereas a fixed predetermined « is unavoidable when acceptance or rejec-
tion of H implies an imminent concrete decision. A review of some of the
issues arising in this context, with references to the literature, is given in
Kruskal (1978).

A decision making aspect is often imposed on problems of scientific
inference by the tendency of journals to publish papers only if the reported
results are significant at a conventional level such as 5%. The unfortunate
consequences of such a policy have been explored, among others, by
Sterling (1959) and Greenwald (1975).

Let us next consider the structure of a randomized test. For any value x
such a test chooses between the two decisions, rejection or acceptance, with
certain probabilities that depend on x and will be denoted by ¢(x) and
1 — ¢(x) respectively. If the value of X is x, a random experiment is
performed with two possible outcomes R and R, the probabilities of which
are ¢(x) and 1 — ¢(x). If in this experiment R occurs, the hypothesis is
rejected, otherwise it is accepted. A randomized test is therefore completely
characterized by a function ¢, the critical function, with 0 < ¢(x) < 1 for
all x. If ¢ takes on only the values 1 and 0, one is back in the case of a
nonrandomized test. The set of points x for which ¢(x) = 1 is then just the
region of rejection, so that in a nonrandomized test ¢ is simply the indicator
function of the critical region.

If the distribution of X is P,, and the critical function ¢ is used, the
probability of rejection is

Egs(X) = [o(x) dPy(x),

the conditional probability ¢(x) of rejection given x, integrated with
respect to the probability distribution of X. The problem is to select ¢ so as
to maximize the power

(4 B,(0) = Ego(X) forall 6 € Qy

subject to the condition

(5) Epp(X)<a forall 6€ Q.

The same difficulty now arises that presented itself in the general discussion

of Chapter 1. Typically, the test that maximizes the power against a
particular alternative in K depends on this alternative, so that some
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additional principle has to be introduced to define what is meant by an
optimum test. There is one important exception: if K contains only one
distribution, that is, if one is concerned with a single alternative, the
problem is completely specified by (4) and (5). It then reduces to the
mathematical problem of maximizing an integral subject to certain side
conditions. The theory of this problem, and its statistical applications,
constitutes the principal subject of the present chapter. In special cases it
may of course turn out that the same test maximizes the power for all
alternatives in K even when there is more than one. Examples of such
uniformly most powerful (UMP) tests will be given in Sections 3 and 7.

In the above formulation the problem can be considered as a special case
of the general decision problem with two types of losses. Corresponding to
the two kinds of error, one can introduce the two component loss functions,

L(6,d))=10r0 as 0€QyorfeQ,
L,(8,d,)=0 for all 4

and

L,(6,d))=00r1 as @€ QyorfeQy,
L,(8,d,)=0 for all 4.

With this definition the minimization of EL,(#, 8( X)) subject to the
restriction EL,(8, 8(X)) < a is exactly equivalent to the problem of hy-
pothesis testing as given above.

The formal loss functions L, and L, clearly do not represent in general
the true losses. The loss resulting from an incorrect acceptance of the
hypothesis, for example, will not be the same for all alternatives. The more
the alternative differs from the hypothesis, the more serious are the conse-
quences of such an error. As was discussed earlier, we have purposely
forgone the more detailed approach implied by this criticism. Rather than
working with a loss function which in practice one does not know, it seems
preferable to base the theory on the simpler and intuitively appealing notion
of error. It will be seen later that at least some of the results can be justified
also in the more elaborate formulation.

2. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

A class of distributions is called simple if it contains only a single distribu-
tion, and otherwise is said to be composite. The problem of hypothesis
testing is completely specified by (4) and (5) if K is simple. Its solution is



3.2] THE NEYMAN—-PEARSON FUNDAMENTAL LEMMA 73

easiest and can be given explicitly when the same is true of H. Let the
distributions under a simple hypothesis H and alternative K be P, and P,,
and suppose for a moment that these distributions are discrete with P,( X =
x} = P,(x) for i = 0,1. If at first one restricts attention to nonrandomized
tests, the optimum test is defined as the critical region S satisfying

(6) Y P(x) <a

xXES

and

Y P,(x) = maximum.
x€eSs

It is easy to see which points should be included in S. To each point are
attached two values, its probability under P, and under P,. The selected
points are to have a total value not exceeding « on the one scale, and as
large as possible on the other. This is a situation that occurs in many
contexts. A buyer with a limited budget who wants to get “the most for his
money” will rate the items according to their value per dollar. In order to
travel a given distance in the shortest possible time, one must choose the
speediest mode of transportation, that is, the one that yields the largest
number of miles per hour. Analogously in the present problem the most
valuable points x are those with the highest value of

- Py(x)
Py(x)

r(x)

The points are therefore rated according to the value of this ratio and
selected for S in this order, as many as one can afford under restriction (6).
Formally this means that S is the set of all points x for which r(x) > ¢,
where ¢ is determined by the condition

P{XeS})= Y Pyx)=a.

x:r(x)>c¢

Here a difficulty is seen to arise. It may happen that when a certain point is
included, the value « has not yet been reached but that it would be
exceeded if the next point were also included. The exact value a can then
either not be achieved at all, or it can be attained only by breaking the
preference order established by r(x). The resulting optimization problem
has no explicit solution. (Algorithms for obtaining the maximizing set S are
given by the theory of linear programming.) The difficulty can be avoided,
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however, by a modification which does not require violation of the r-order
and which does lead to a simple explicit solution, namely by permitting
randomization.* This makes it possible to split the next point, including
only a portion of it, and thereby to obtain the exact value a without
breaking the order of preference that has been established for inclusion of
the various sample points. These considerations are formalized in the
following theorem, the fundamental lemma of Neyman and Pearson.

Theorem 1. Let P, and P, be probability distributions possessing densities
P, and p, respectively with respect to a measure p."

(1) Existence. For testing H: p, against the alternative K : p, there
exists a test ¢ and a constant k such that

(7) Ep(X)=a

and

1 when p;(x) > kpy(x),

(8) ¢(x) = {0 when pl(x) < kpo(x).

(i) Sufficient condition for a most powerful test. If a test satisfies
(7) and (8) for some k, then it is most powerful for testing p, against p, at
level a.

(iii) Necessary condition for a most powerful test. If ¢ is most power-
ful at level a for testing p, against p,, then for some k it satisfies (8) a.e. p. It
also satisfies (7) unless there exists a test of size < a and with power 1.

Proof. For a =0 and a =1 the theorem is easily seen to be true
provided the value k = + oo is admitted in (8) and O - oo is interpreted as 0.
Throughout the proof we shall therefore assume 0 < a < 1.

(i): Let a(c) = Py{ p1(X) > cpy(X)}. Since the probability is computed
under P,, the inequality need be considered only for the set where py(x) > 0,
so that a(c) is the probability that the random variable p,(X)/p,(X)
exceeds ¢. Thus 1 — a(c) is a cumulative distribution function, and a(c) is
nonincreasing and continuous on the right, a(c — 0) — a(c) =
Py{ p1(X)/po(X) = ¢}, a(— ) =1, and a(0) = 0. Givenany 0 < a < 1,
let ¢, be such that a(cy) < a < a(cy — 0), and consider the test ¢ defined

*In practice, typically neither the breaking of the r-order nor randomization is considered
acceptable. The common solution, instead, is to adopt a value of a that can be attained exactly
and therefore does not present this problem.

There is no loss of generality in this assumption, since one can take p = P, + P,.
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by

1 when  p,(x) > ¢opo(x),

_ a—alcy) _
¢(.X) - d(CO _ 0) _ d(CO) when pl(x) - COPO(X)’
0 when  p,(x) < ¢opo(x).

Here the middle expression is meaningful unless a(c,) = a(c, — 0); since
then Py{ p(X) = copo(X)} = 0, ¢ is defined a.e. The size of ¢ is

. Pl(X)>C a—a(co) ‘P1(X)__ _
Eop(X) = P"{ } tale-0)- a(co>”°{p0(x> - } -

po(X)

so that ¢, can be taken as the k of the theorem.

It is of interest to note that ¢ is essentially unique. The only exception is
the case that an interval of ¢’s exists for which a(c) = a. If (¢’, ¢”’) is such
an interval, and

X
C= {x: Po(x) > 0and ¢’ < p(x) < c"},
Po(x)

then Py(C) = a(c’) — a(c” — 0) = 0. By Problem 3 of Chapter 2, this
implies p(C) = 0 and hence P;(C) = 0. Thus the sets corresponding to two
different values of ¢ differ only in a set of points which has probability 0
under both distributions, that is, points that could be excluded from the
sample space.

(ii): Suppose that ¢ is a test satisfying (7) and (8) and that ¢* is any
other test with E,¢*(X) < a. Denote by S* and S~ the sets in the sample
space where ¢(x) — ¢*(x) > 0 and < O respectively. If x is in S™, ¢(x)
must be > 0 and p,(x) = kpy(x). In the same way p,(x) < kpy(x) for all
x in S, and hence

f(¢ — ¢*)(py — kp,) dp = fsms-(‘p — ¢*)(p1 = kpo) dp 2 0.

The difference in power between ¢ and ¢* therefore satisfies

J(6—¢*)pidu=k[(6-¢*)podn=20,

as was to be proved.
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(iii): Let ¢* be most powerful at level a for testing p, against p,, and let
¢ satisfy (7) and (8). Let S be the intersection of the set S*U S, on which
¢ and ¢* differ, with the set {x: p;(x) # kpy(x)}, and suppose that
p(S) > 0. Since (¢ — ¢*) p; — kp,) is positive on S, it follows from
Problem 3 of Chapter 2 that

'/;'+US—(¢ = ¢*)(p1 — kpo) dp = [g(‘b = ¢*)(p, — kpy) du >0

and hence that ¢ is more powerful against p, than ¢*. This is a contradic-
tion, and therefore u(S) = 0, as was to be proved.

If ¢* were of size < a and power < 1, it would be possible to include in
the rejection region additional points or portions of points and thereby to
increase the power until either the power is 1 or the size is a. Thus either
Eg*(X)=aor Eip*(X)=1.

The proof of part (iii) shows that the most powerful test is uniquely
determined by (7) and (8) except on the set on which p,(x) = kpy(x). On
this set, ¢ can be defined arbitrarily provided the resulting test has size a.
Actually, we have shown that it is always possible to define ¢ to be constant
over this boundary set. In the trivial case that there exists a test of power 1,
the constant k of (8) is 0, and one will accept H for all points for which
P1(x) = kpy(x) even though the test may then have size < a.

It follows from these remarks that the most powerful test is determined
uniquely (up to sets of measure zero) by (7) and (8) whenever the set on
which p,(x) = kpy(x) has p-measure zero. This unique test is then clearly
nonrandomized. More generally, it is seen that randomization is not re-
quired except possibly on the boundary set, where it may be necessary to
randomize in order to get the size equal to a. When there exists a test of
power 1, (7) and (8) will determine a most powerful test, but it may not be
unique in that there may exist a test also most powerful and satisfying (7)
and (8) for some o’ < a.

Corollary 1. Let B denote the power of the most powerful level-a test
(0 < a < 1) for testing P, against P,. Then a < 8 unless P, = P,.

Proof. Since the level-a test given by ¢(x) = a has power a, it is seen
that « < B. If a = B8 <1, the test ¢(x) =« is most powerful and by
Theorem 1(iii) must satisfy (8). Then py(x) = p,(x) a.e. p, and hence
P, = P,.

An alternative method for proving the results of this section is based on
the following geometric representation of the problem of testing a simple
hypothesis against a simple alternative. Let N be the set of all points (a, 8)
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for which there exists a test ¢ such that
a=Ep(X), B=E¢(X).

This set is convex, contains the points (0,0) and (1,1), and is symmetric
with respect to the point (4, 1) in the sense that with any point (a, 8) it also
contains the point (1 — a,1 — B). In addition, the set N is closed. [This
follows from the weak compactness theorem for critical functions, Theorem
3 of the Appendix; the argument is the same as that in the proof of
Theorem 5(i).]

For each value 0 < a, < 1, the level-a, tests are represented by the
points whose abscissa is < a,. The most powerful of these tests (whose
existence follows from the fact that N is closed) corresponds to the point on
the upper boundary of N with abscissa a,. This is the only point corre-
sponding to a most powerful level-a,, test unless there exists a point (a,1) in
N with a < a, (Figure 1b).

As an example of this geometric approach, consider the following alter-
native proof of Corollary 1. Suppose that for some 0 < a, < 1 the power of
the most powerful level-a, test is a,. Then it follows from the convexity of
N that (a, 8) € N implies 8 < a, and hence from the symmetry of N that
N consists exactly of the line segment connecting the points (0,0) and (1, 1).
This means that [¢p,dp = [¢p, dp for all ¢ and hence that p, = p, (ae.
1), as was to be proved. A proof of Theorem 1 along these lines is given in a
more general setting in the proof of Theorem 5.

The Neyman-Pearson lemma has been generalized in many directions.
An extension to the case of several side conditions is given in Section 6, and
this result is further generalized in Section 8. A sequential version, due to

8 8
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Figure 1



78 UNIFORMLY MOST POWERFUL TESTS 3.3

Wald and Wolfowitz (1948, 1950), plays a fundamental role in sequential
analysis [see, for example, Ghosh (1970)]. Extensions to stochastic processes
are discussed by Grenander (1950) and Dvoretzky, Kiefer, and Wolfowitz
(1953), and a version for abstract spaces by Grenander (1981, Section 3.1).
A modification due to Huber, in which the distributions are known only
approximately, is presented in Section 3 of Chapter 9.

An extension to a selection problem, proposed by Birnbaum and
Chapman (1950), is sketched in Problem 23. Generalizations to a variety of
decision problems with a finite number of actions can be found, for
example, in Hoel and Peterson (1949), Karlin and Rubin (1956), Karlin and
Truax (1960), Lehmann (1961), Hall and Kudo (1968) and Spjetvoll (1972).

3. DISTRIBUTIONS WITH MONOTONE
LIKELIHOOD RATIO

The case that both the hypothesis and the class of alternatives are simple is
mainly of theoretical interest, since problems arising in applications typi-
cally involve a parametric family of distributions depending on one or more
parameters. In the simplest situation of this kind the distributions depend
on a single real-valued parameter 6, and the hypothesis is one-sided, say
H: 0 < §,. In general, the most powerful test of H against an alternative
0, > 0, depends on 8, and is then not UMP. However, a UMP test does
exist if an additional assumption is satisfied. The real-parameter family of
densities py(x) is said to have monotone likelihood ratio* if there exists a
real-valued function T(x) such that for any § < 6’ the distributions P, and
P,. are distinct, and the ratio p,.(x)/ps(x) is a nondecreasing function of
T(x).

Theorem 2. Let 8 be a real parameter, and let the random variable X
have probability density py(x) with monotone likelihood ratio in T(x).

(i) For testing H: 0 < 0, against K : 0 > 8, there exists a UMP test,
which is given by

1 when T(x)> C,
9) o(x)=(y when T(x)=C,
0 when T(x)<C,

*This definition is in terms of specific versions of the densities p,. If instead the definition is
to be given in terms of the distributions Py, various null-set ‘considerations enter which are
discussed in Pfanzagl (1967).
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where C and v are determined by
(10) E,6(X) =a.
(i) The power function
B(6) = Eg(X)

of this test is strictly increasing for all points 8 for which 0 < B(8) < 1.

(iii) For all §’, the test determined by (9) and (10) is UMP for testing
H’: 8 < 0’ against K’ : 0 > 0’ at level o/ = B(8).

(iv) For any 8 < 0, the test minimizes B(@) (the probability of an error of
the first kind) among all tests satisfying (10).

Proof. (i) and (ii): Consider first the hypothesis H,: § = §, and some
simple alternative 8, > 6,. The most desirable points for rejection are those
for which r(x) = py(x)/ps(x) = g[T(x)] is sufficiently large. If T(x) <
T(x’), then r(x) < r(x’) and x’ is at least as desirable as x. Thus the test
which rejects for large values of T(x) is most powerful. As in the proof of
Theorem 1(i), it is seen that there exist C and y such that (9) and (10) hold.
By Theorem 1(ii), the resulting test is also most powerful for testing P,
against P, at level a’ = B(6’) provided 8’ < §”. Part (ii) of the present
theorem now follows from Corollary 1. Since B(8) is therefore nondecreas-
ing, the test satisfies

(11) Ep(X)<a for 8<06,

The class of tests satisfying (11) is contained in the class satisfying E, ¢(X)
< a. Since the given test maximizes 8(#,) within this wider class, it also
maximizes S(6,) subject to (11); since it is independent of the particular
alternative 8, > @, chosen, it is UMP against K.

(iii) is proved by an analogous argument.

(iv) follows from the fact that the test which minimizes the power for
testing a simple hypothesis against a simple alternative is obtained by
applying the fundamental lemma (Theorem 1) with all inequalities reversed.

By interchanging inequalities throughout, one obtains in an obvious
manner the solution of the dual problem, H: 6 > 6,, K: 6 < §,,.

The proof of (i) and (ii) exhibits the basic property of families with
monotone likelihood ratio: every pair of parameter values 6, < 6, estab-
lishes essentially the same preference order of the sample points (in the
sense of the preceding section). A few examples of such families, and hence
of UMP one-sided tests, will be given below. However, the main appli-
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cations of Theorem 2 will come later, when such families appear as the set
of conditional distributions given a sufficient statistic (Chapters 4 and 5)
and as distributions of a maximal invariant (Chapters 6, 7, and 8).

Example 1. Hypergeometric. From a lot containing N items of a manufac-
tured product, a sample of size n is selected at random, and each item in the sample
is inspected. If the total number of defective items in the lot is D, the number X of
defectives found in the sample has the hypergeometric distribution

D\(N-D
P{X=x}=PD(x)=%L)

Interpreting P, (x) as a density with respect to the measure p that assigns to any set
on the real line as measure the number of integers 0,1,2,... that it contains, and
noting that for values of x within its range

, max(0,n+ D — N) < x < min(n, D).

Py i( D+1 N-D-n+x .
pe1(X) _ - if n+D+1-N<x<D,
) N-D D+1-x

0 or oo if x=n+D-NorD+1,

it is seen that the distributions satisfy the assumption of monotone likelihood ratios
with T(x) = x. Therefore there exists a UMP test for testing the hypothesis
H: D < D, against K: D > D, which rejects H when X is too large, and an
analogous test for testing H': D > D,.

An important class of families of distributions that satisfy the assump-
tions of Theorem 2 are the one-parameter exponential families.

Corollary 2. Let 0 be a real parameter, and let X have probability density
(with respect to some measure 1)

(12) Po(x) = C(6)e®Th(x),

where Q is strictly monotone. Then there exists a UMP test ¢ for testing
H: 0 < 0, against K : 8 > 6. If Q is increasing,

¢(x)=1,v,0 as T(x)>,=,<C,

where C and vy are determined by Eq¢(X) = a. If Q is decreasing, the
inequalities are reversed.

A converse of Corollary 2 is given by Pfanzagl (1968), who shows under
weak regularity conditions that the existence of UMP tests against one-sided
alternatives for all sample sizes and one value of « implies an exponential
family.
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As in Example 1, we shall denote the right-hand side of (12) by P,(x)
instead of py(x) when it is a probability, that is, when X is discrete and p is
counting measure.

Example 2. Binomial. The binomial distributions b( p, n) with

P(x)=(2)pt-p)""

satisfy (12) with T(x) = x, 8 = p, Q(p) = log[ p/(1 — p)]. The problem of testing
H: p > p, arises, for instance, in the situation of Example 1 if one supposes that
the production process is in statistical control, so that the various items constitute
independent trials with constant probability p of being defective. The number of
defectives X in a sample of size n is then a sufficient statistic for the distribution of
the variables X; (i = 1,..., n), where X, is 1 or O as the ith item drawn is defective
or not, and X is distributed as b(p, n). There exists therefore a UMP test of H,
which rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations is
inverse binomial sampling. Here the experiment is continued until a specified number
m of successes—for example, cures effected by some new medical treatment—have
been obtained. If Y; denotes the number of trials after the (i — 1)st success up to
but not including the i th success, the probability that Y, = y is pg* for y = 0,1,...,
so that the joint distribution of Y;,...,7Y,, is

Py V) =P"¢Y,  y=01,..., k=1,...,m.

This is an exponential family with T(y) =Xy, and Q(p) = log(l — p). Since
Q(p) is a decreasing function of p, the UMP test of H: p < p, rejects H when T
is too small. This is what one would expect, since the realization of m successes in
only a few more than m trials indicates a high value of p. The test statistic 7, which
1s the number of trials required in excess of m to get m successes, has the negative
binomial distribution [Chapter 1, Problem 1(i)]

P(t)=(m"_:1—11)p”’q’, t=0,1,....

Example 3. Poisson. 1f X,,..., X, are independent Poisson variables with
E(X,) = A, their joint distribution is

Ax]+ e+,

P(xy,...,x,) = T
! !

This constitutes an exponential family with 7(x) = £x;, and Q(A) = log A. One-
sided hypotheses concerning A might arise if A is a bacterial density and the X's
are a number of bacterial counts, or if the X’s denote the number of a-particles
produced in equal time intervals by a radioactive substance, etc. The UMP test of
the hypothesis A < A rejects when L X; is too large. Here the test statistic L X; has
itself a Poisson distribution with parameter nA.
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Instead of observing the radioactive material for given time periods or counting
the number of bacteria in given areas of a slide, one can adopt an inverse sampling
method. The experiment is then continued, or the area over which the bacteria are
counted is enlarged, until a count of m has been obtained. The observations consist
of the times Ty,...,T,, that it takes for the first occurrence, from the first to the
second, and so on. If one is dealing with a Poisson process and the number of
occurrences in a time or space interval r has the distribution

(Ar)”

x!

P(x) = e, x=0,1,...,

then the observed times are independently distributed, each with the exponential
probability density A e~ for ¢ > 0 [Problem 1(ii) of Chapter 1]. The joint densities

m
p,\(tl,,..,t,,,)=X"exp(—>\21,.), tyooisty, 20,

i=1

form an exponential family with T(¢,,...,¢,) = Xt; and Q(A) = —A. The UMP
test of H: A < A, rejects when T = LT, is too small. Since 2AT; has density 3¢~ %/2
for u > 0, which is the density of a x2-distribution with 2 degrees of freedom, 2AT
has a x2-distribution with 2m degrees of freedom. The boundary of the rejection
region can therefore be determined from a table of x2.

The formulation of the problem of hypothesis testing given at the
beginning of the chapter takes account of the losses resulting from wrong
decisions only in terms of the two types of error. To obtain a more detailed
description of the problem of testing H: 6 < 6, against the alternatives
0 > 6,, one can consider it as a decision problem with the decisions d, and
d, of accepting and rejecting H and a loss function L(6,d;) = L,(8).
Typically, L,(8) will be 0 for 8 < 6, and strictly increasing for > §,, and
L,(6) will be strictly decreasing for 8 < 6, and equal to 0 for § > 6,. The
difference then satisfies

The following theorem is a special case of complete class results of Karlin
and Rubin (1956) and Brown, Cohen, and Strawderman (1976).

Theorem 3.

(i) Under the assumptions of Theorem 2, the family of tests given by (9)
and (10) with 0 < a < 1 is essentially complete provided the loss function
satisfies (13).

(i) This family is also minimal essentially complete if the set of points x
for which py(x) > 0 is independent of 6.
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Proof. (i): The risk function of any test ¢ is

R(6,6) = [py(x){(x)Ly(8) + [1 = ¢(x)] Lo(6)} du(x)

= [pa(x){Lo(6) + [Ly(8) = Lo(0)] #(x)} di(x),

and hence the difference of two risk functions is

R(6,4) = R(6,9) = [L,(6) = Lo(8)] [(& — ¢) po dp.

This is < 0 for all @ if

By(8) = By(0) = [(¢ —9)pgduZ0  for 026,

Given any test ¢, let Eg¢(X) = a. It follows from Theorem 2(i) that there
exists a UMP level-a test ¢ for testing 6 = 6, against 8 > 6,, which
satisfies (9) and (10). By Theorem 2(iv), ¢ also minimizes the power for
6 < 6,. Thus the two risk functions satisfy R(6, ¢') < R(8, ¢) for all 8, as
was to be proved.

(i)): Let ¢, and ¢, be of sizes a < a’ and UMP for testing 6, against
8 > 6,. Then B, (8) < B,_(0) for all 6 > 6, unless B, (6) = 1. By consider-
ing the problem of testing § = 6, against § < @, it is seen analogously that
this inequality also holds for all & <6, unless B, ()= 0. Since the
exceptional possibilities are excluded by the assumptions, it follows that
R(08,¢') s R(0, ¢) as 8 2 §,. Hence each of the two risk functions is better
than the other for some values of 6.

The class of tests previously derived as UMP at the various significance
levels a is now seen to constitute an essentially complete class for a much
more general decision problem, in which the loss function is only required
to satisfy certain broad qualitative conditions. From this point of view, the
formulation involving the specification of a level of significance can be
considered as a simple way of selecting a particular procedure from an
essentially complete family.

The property of monotone likelihood ratio defines a very strong ordering
of a family of distributions. For later use, we consider also the following
somewhat weaker definition. A family of cumulative distribution functions
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F, on the real line is said to be stochastically increasing (and the same term
is applied to random variables possessing these distributions) if the distribu-
tions are distinct and if 6 < 6’ implies Fy(x) > Fp.(x) for all x. If then
X and X’ have distributions F, and F; respectively, it follows that
P{X > x} < P{X’> x} for all x, so that X’ tends to have larger values
than X. In this case the variable X’ is said to be stochastically larger than
X. This relationship is made more intuitive by the following characterization
of the stochastic ordering of two distributions.

Lemma 1. Let F, and F, be two cumulative distribution functions on the
real line. Then F,(x) < Fy(x) for all x if and only if there exist two
nondecreasing functions f, and f,, and a random variable V, such that (a)
fo(v) < fi(v) for all v, and (b) the distributions of fy(V') and f,(V) are F,
and F| respectively.

Proof. Suppose first that the required f,, f;, and V exist. Then
Fi(x)=P{fi(V) <x} < P{/,(V) < x} = Fy(x)

for all x. Conversely, suppose that Fj(x) < Fy(x) for all x, and let
fi(y) =inf{x: F(x — 0) <y < F(x)}, i = 0,1. These functions are non-
decreasing and for f; = f, F, = F satisfy

flF(x)] <x and F[f(y)] =y  forall x and y.

It follows that y < F(x,) implies f(y) < f[F(x,)] < x, and that con-
versely f(y) < x, implies F[f(y)] < F(x,) and hence y < F(x,), so that
the two inequalities f(y) < x, and y < F(x,) are equivalent. Let ¥ be
uniformly distributed on (0,1). Then P{f(V) < x} = P{V < F(x)}
= F,(x). Since F;(x) < Fy(x) for all x implies f,(y) < f,(») for all y, this
completes the proof.

One of the simplest examples of a stochastically ordered family is a
location parameter family, that is, a family satisfying

Fy(x) = F(x - 9).

To see that this is stochastically increasing, let X be a random variable with
distribution F(x). Then 8 < 8’ implies

F(x-6)=P{X<x-0)2P{X<x-0)=F(x-¢),

as was to be shown.
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Another example is furnished by families with monotone likelihood ratio.
This is seen from the following lemma, which establishes some basic
properties of these families.

Lemma 2. Let py,(x) be a family of densities on the real line with
monotone likelihood ratio in x.

(1) If Y is a nondecreasing function of x, then Eg( X) is a nondecreasing
function of 0; if X,,..., X, are independently distributed with density p; and
Y’ is a function of x,, ..., x,, which is nondecreasing in each of its arguments,
then Egy/( Xy, ..., X,) is a nondecreasing function of 6.

(ii) For any 0 < 8’, the cumulative distribution functions of X under 0
and 0’ satisfy

Fp(x) < Fy(x)  forall x.

(ii1) Let ¢ be a function with a single change of sign. More specifically,
suppose there exists a value x, such that y(x) < 0 for x < xy and Y(x) =0
for x > x,. Then there exists 0, such that Egy(X) <0 for 6 <6, and
Egy(X) = 0 for 8 > 8,, unless Egyy( X) is either positive for all 8 or negative
for all 8.

(iv) Suppose that py(x) is positive for all 8§ and all x, that py(x)/pe(x)
is strictly increasing in x for 0 < @', and that Y(x) is as in (iii) and is # 0
with positive probability. If Eq (X) = 0, then Egy(X) <0 for § < 6, and
> 0 for 6 > 6,.

Proof. (i): Let § < @, and let 4 and B be the sets for which p,.(x) <
Po(x) and py.(x) > py(x) respectively. If a = sup,y(x) and b = infg(x),
then b — a > 0 and

[¥(po = po) d = afA(pa' = po) dp + b/B(Pa' = pq) dp

= (b=a) [ (po = po) dp 20,

which proves the first assertion. The result for general n follows by
induction.

(i1): This follows from (i) by letting y(x) = 1 for x > x, and Y(x) =0
otherwise.

(iii): We shall show first that for any 6’ < 8", E,y(X) > 0 implies
Egy(X) = 0. If pg.(xq)/pg(xy) = o0, then py(x) =0 for x > x, and
hence E,y(X) < 0. Suppose therefore that py.(x,)/pe(xq) = ¢ < 00.
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Then y(x) > 0 on the set S = {x: py(x) = 0 and py.(x) > 0}, and

pou
Eg¥(X) 2 (4= py dp
S Do

> [7 cyppdu+ [ chpydp=cEpt(X)20.

X0

The result now follows by letting 6, = inf{6: Egy(X) > 0}.

(iv): The proof is analogous to that of (iii).

Part (i) of the lemma shows that any family of distributions with
monotone likelihood ratio in x is stochastically increasing. That the con-
verse does not hold is shown for example by the Cauchy densities

1 1
71+ (x-0)"

The family is stochastically increasing, since § is a location parameter;
however, the likelihood ratio is not monotone. Conditions under which a
location parameter family possesses monotone likelihood ratio are given in
Chapter 9, Example 1.

Lemma 2 is a special case of a theorem of Karlin (1957, 1968) relating
the number of sign changes of E,y(X) to those of ¢(x) when the densities
Pe(x) are totally positive (defined in Problem 27). The application of totally
positive—or equivalently, variation diminishing—distributions to statistics
is discussed by Brown, Johnstone, and MacGibbon (1981); see also Problem
30.

4. COMPARISON OF EXPERIMENTS*

Suppose that different experiments are available for testing a simple hy-
pothesis H against a simple alternative K. One experiment results in a
random variable X, which has probability densities f and g under H and K
respectively; the other leads to the observation of X’ with densities f’ and
g’. Let B(a) and B’(a) denote the power of the most powerful level-a test
based on X and X’. In general, the relationship between B(a) and B'(a)
will depend on a. However, if B’(a) < B(a) for all «, then X or the
experiment ( f, g) is said to be more informative than X’. As an example,
suppose that the family of densities p,(x) is the exponential family (12) and

*This section constitutes a digression and may be omitted.
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that f=f"=p,, g§=pg, 8 = Pps, Where 6, <8, <0,. Then (f, g) is
more informative than (f’, g’) by Theorem 2.

A simple sufficient condition* for X to be more informative than X’ is
the existence of a function h(x, u) and a random quantity U, independent
of X and having a known distribution, such that the density of Y = h( X, U)
is f’ or g’ as that of X is f or g. This follows, as in the theory of sufficient
statistics, from the fact that one can then construct from X (with the help of
U) a variable Y which is equivalent to X’. One can also argue more
specifically that if ¢(x’) is the most powerful level-a test for testing f’
against g’ and if y(x) = E¢[h(x, U)], then EY(X) = E¢p(X’) under both
H and K. The test y(x) is therefore a level-a test with power 8’(a), and
hence B(a) = B'(a).

When such a transformation 4 exists, the experiment ( f, g) is said to be
sufficient for (f’, g’). If then X,,..., X, and X{,..., X, are samples from
X and X’ respectively, the first of these samples is more informative than
the second one. It is also more informative than (Z,,..., Z,) where each Z,
is either X, or X/ with certain probabilities.

Example 4. 2 X 2 Table. Two characteristics A and B, which each member of
a population may or may not possess, are to be tested for independence. The
probabilities p = P(A4) and = = P(B), that is, the proportions of individuals
possessing properties A and B, are assumed to be known. This might be the case,
for example, if the characteristics have previously been studied separately but not in
conjunction. The probabilities of the four possible combinations 4B, AB, AB, and
AB under the hypothesis of independence and under the alternative that P(A4B) has
a specified value p are

Under H: Under K:
B B B B
A ’ p pd—m) p P-»
A ad-p)r a-p)a-m) T—p l-p-—m+p

The experimental material is to consist of a sample of size s. This can be selected,
for example, at random from those members of the population possessing property
A. One then observes for each member of the sample whether or not it possesses
property B, and hence is dealing with a sample from a binomial distribution with
probabilities

H:P(B|A) =7 and K:P(B|4) =

’t:l'o

Alternatively, one can draw the sample from one of the other categories B, l§, or 4 s

*For a proof that this condition is also necessary see Blackwell (1951b).
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obtaining in each case a sample from a binomial distribution with probabilities
given by the following table:

Population
Sampled Probability H K
A P(B|A) ™ p/p
B P(A|B) P p/m
B P(A|B) p (p—p)/Q~-m)
4 P(B|A4) ™ (7= p)/1 - p)

Without loss of generality let the categories 4, 4, B, and B be labeled so that
p <7< 3. We shall now show that of the four experiments, which consist in
observing an individual from one of the four categories, the first one (sampling from
A) is most informative and in fact is sufficient for each of the others.

To compare 4 with B, let X and X’ be 1 or 0, and let the probabilities of their
being equal to 1 be given by the first and the second row of the table respectively.
Let U be uniformly distributed on (0,1) and independent of X, and let Y =
h(X,U)=1when X=1and U < p/m, and Y = 0 otherwise. Then P{Y = 1}is p
under H and p/7 under K, so that Y has the same distribution as X”. This proves
that X is sufficient for X’, and hence is the more informative of the two. For the
comparison of 4 with B define Y tobe 1 when X =0and U < p/(1 — =), and to
be 0 otherwise. Then the probability that ¥ = 1 coincides with the third row of the
table. Finally, the probability that ¥ = 1 is given by the last row of the table if one
defines Y to be equal to1 when X =1and U < (7 — p)/(1 — p) and when X =0
and U> (1 — = - p)/(1 — p).

It follows from the general remarks preceding the example that if the experimen-
tal material is to consist of s individuals, these should be drawn from category 4,
that is, the rarest of the four categories, in preference to any of the others. This is
preferable also to drawing the s from the population at large, since the latter
procedure is equivalent to drawing each of them from either 4 or 4 with probabili-
ties p and 1 — p respectively.

The comparison between these various experiments is independent not only of a
but also of p. Furthermore, if a sample is taken from A, there exists by Corollary 2
a UMP test of H against the one-sided altematlves of positive dependence,
P(B|A) > = and hence p > pa, according to which the probabilities of AB and AB
are larger, and those of AB and 4B smaller, than under the assumption of
independence. This test therefore provides the best power that can be obtained for
the hypothesis of independence on the basis of a sample of size s.

Example 5. In a Poisson process the number of events occurring in a time
interval of length v has the Poisson distribution P(Av). The problem of testing A,
against A, for these distributions arises also for -spatial distributions of particles
where one is concerned with the number of particles in a region of volume v. To see
that the experiment is the more informative the longer the interval v, let v < w and
denote by X and Y the number of occurrences in the intervals (¢, + v) and
(t + v,t + w). Then X and Y are independent Poisson variablesand Z = X + Y is
a sufficient statistic for A. Thus any test based on X can be duplicated by one based
on Z, and Z is more informative than X. That it is in fact strictly more informative
in an obvious sense is seen from the fact that the unique most powerful test for
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testing A, against A, depends on X + Y and therefore cannot be duplicated from
X alone.

Sometimes it is not possible to count the number of occurrences but only to
determine whether or not at least one event has taken place. In the dilution method
in bacteriology, for example, a bacterial culture is diluted in a certain volume of
water, from which a number of samples of fixed size are taken and tested for the
presence or absence of bacteria. In general, one observes then for each of » intervals
whether an event occurred. The result is a binomial variable with probability of
success (at least one occurrence)

p=1-e¢?,

Since a very large or small interval leads to nearly certain success or failure, one
might suspect that for testing A, against A, intermediate values of v would be more
informative than extreme ones. However, it turns out that the experiments (A v, A,v)
and (Ayw, A;w) are not comparable for any values of v and w. (See Problem 19.)
For a discussion of how to select v in this and similar situations see Hodges (1949).

The definition of an experiment & being more informative than an
experiment &’ can be extended in a natural way to probability models
containing more than two distributions by requiring that for any decision
problem a risk function that is obtainable on the basis of &’ can be
matched or improved upon by one based on &. Unfortunately, interesting
pairs of experiments permitting such a strong ordering are rare. (For an
example, see Problems 11 and 12 of Chapter 7). LeCam (1964) initiated a
more generally applicable method of comparison by defining a measure of
the extent to which one experiment is more informative than another. A
survey of some of the principal concepts and results of this theory is given
by Torgersen {1976).

5. CONFIDENCE BOUNDS

The theory of UMP one-sided tests can be applied to the problem of
obtaining a lower or upper bound for a real-valued parameter 6. The
problem of setting a lower bound arises, for example, when 6 is the
breaking strength of a new alloy; that of setting an upper bound, when 4 is
the toxicity of a drug or the probability of an undesirable event. The
discussion of lower and upper bounds is completely parallel, and it is
therefore enough to consider the case of a lower bound, say 6.

Since § = §(X) will be a function of the observations, it cannot be
required to fall below 6 with certainty, but only with specified high
probability. One selects a number 1 — a, the confidence level, and restricts
attention to bounds @ satisfying

(14) P{6(X)<6}>1-a forallf.
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The function @ is called a lower confidence bound for 6 at confidence level
1 — a; the infimum of the left-hand side of (14), which in practice will be
equal to 1 — a, is called the confidence coefficient of 6.

Subject to (14), § should underestimate @ by as little as possible. One can
ask, for example, that the probability of § falling below any 8’ < § should
be a minimum. A function @ for which

(15) Py{0(X) < 0’} = minimum

for all 8’ < @ subject to (14) is a uniformly most accurate lower confidence
bound for 8 at confidence level 1 — a.

Let L(8, §) be a measure of the loss resulting from underestimating 8, so
that for each fixed 6 the function L(#8, 8) is defined and nonnegative for
0 < 0, and is nonincreasing in its second argument. One would then wish to
minimize

(16) E,L(6,0)

subject to (14). It can be shown that a uniformly most accurate lower
confidence bound # minimizes (16) subject to (14) for every such loss
function L. (See Problem 21.)

The derivation of uniformly most accurate confidence bounds is facili-
tated by introducing the following more general concept, which will be
considered in more detail in Chapter 5. A family of subsets S(x) of the
parameter space £ is said to constitute a family of confidence sets at
confidence level 1 — a if

(17) P{0eS(X))21-a forall €,

that is, if the random set S(X) covers the true parameter point with
probability > 1 — a. A lower confidence bound corresponds to the special
case that S(x) is a one-sided interval

S(x)={0:0(x) <0< o}.

Theorem 4.

(1) For each 0, € Q let A(8,) be the acceptance region of a level-a test for
testing H(8,): 8 = 0,, and for each sample point x let S(x) denote the set of
parameter values

S(x)={0:x€ A(6),6 € Q).

Then S(x) is a family of confidence sets for 0 at confidence level 1 — a.
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(it) If for all 6,, A(8,) is UMP for testing H(6,) at level a against the
alternatives K(8,), then for each 8, in @, S(X) minimizes the probability
Py{0,€ S(X)}  forall 6<K(6,)

among all level (1 — a) families of confidence sets for 6.

Proof. (i): By definition of S(x),
(18) 6 € S(x) ifandonlyif x € A(6),
and hence
P{0eS(X)} =P{XecA4(0)} 21— a.

(i1): If S*(x) is any other family of confidence sets at level 1 — a, and if
A*(0) = {x: 0 € S*(x)), then

P(X € 4%(8)) = P,{0 € S*(X)) > 1 - a,

so that A*(§,) is the acceptance region of a level-a test of H(8,). It follows
from the assumed property of 4(8,) that for any § € K(8,)

Py{ X € 4*(8y)} = Po{ X € A(6,)}
and hence that
Py{6,€ S*(X)} = P;{6, € S(X)},

as was to be proved.

The equivalence (18) shows the structure of the confidence sets S(x) as
the totality of parameter values 8 for which the hypothesis H(#) is accepted
when x is observed. A confidence set can therefore be viewed as a combined
statement regarding the tests of the various hypotheses H(#), which exhibits
the values for which the hypothesis is accepted [6 € S(x)] and those for

which it is rejected [0 € S(x)].

Corollary 3. Let the family of densities py,(x), 0 € @, have monotone
likelihood ratio in T(x), and suppose that the cumulative distribution function
Fy(t) of T = T(X) is a continuous function in each of the variables t and 0
when the other is fixed.

(1) There exists a uniformly most accurate confidence bound 8 for 8 at
each confidence level 1 — a.
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(ii) If x denotes the observed values of X and t = T(x), and if the
equation

(19) F(1)=1-a

has a solution 8 = 8 in Q, then this solution is unique and 9(x) = é

Proof. (i): There exists for each 6, a constant C(4,) such that
Poo{T > C(00)} =a

and by Theorem 2, T > C(§,) is a UMP level-a rejection region for testing
6 = 6, against § > §,. By Corollary 1, the power of this test against any
alternative 8, > 6, exceeds a, and hence C(6,) < C(8,) so that the function
C is strictly increasing; it is also continuous. Let A(6,) denote the accep-
tance region T < C(6,), and let S(x) be defined by (18). It follows from the
monotonicity of the function C that S(x) consists of those values § € Q
which satisfy § < 8, where

=inf {0:T(x) < C(8)}.

By Theorem 4, the sets {6: 8(x) < 6}, restricted to possible values of the
parameter, thus constitute a family of confidence sets at level 1 — a, which
minimize Py{ 8 < 6’} for all § € K(8’), that is, for all § > 6’. This shows §
to be a uniformly most accurate confidence bound for 6.

@ii): It follows from Corollary 1 that Fy(¢) is a strictly decreasing
function of 4 at any point ¢ for which 0 < F,(¢) < 1, and hence that (19)
can have at most one solution. Suppose now that ¢ is the observed value of
T and that the equation Fg(¢) =1 — a has the solution 6 € Q. Then
Fyp(t) = 1 — a, and by definition of the function C, C(0) = 1. The inequality
t < C(0) is then equivalent to C(#) < C(0) and hence to § < 6. It follows
that § = 8, as was to be proved.

Under the same assumptions, the corresponding upper confidence bound
with confidence coefficient 1 — a is the solution 8 of the equation Py{T >
t} =1 — a or equivalently of Fy(¢) = a.

Example 6. Exponential waiting times. To determine an upper bound for the
degree of radioactivity A of a radioactive substance, the substance is observed until
a count of m has been obtained on a Geiger counter. Under the assumptions of
Example 3, the joint probability density of the times T;(i = 1,..., m) elapsing
between the (i — 1)st count and the ith one is

p(ty,... ) =Xre M ¢, .1, >0.

If T=XT, denotes the total time of observation, then 2AT has a x>-distribution
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with 2m degrees of freedom, and, as was shown in Example 3, the acceptance region
of the most powerful test of H(A;): A = A, against A < A, is 2A,T < C, where C
is determined by the equation

./(;Cx%m=l—a.

The set S(¢,...,t,) defined by (18) is then the set of values A such that
A < C/2T, and it follows from Theorem 4 that A = C/2T is a uniformly most
accurate upper confidence bound for A. This result can also be obtained through
Corollary 3.

If the variables X or T are discrete, Corollary 3 cannot be applied
directly, since the distribution functions Fy(¢) are not continuous, and for
most values 6§, the optimum tests of H: § = 6, are randomized. However,
any randomized test based on X has the following representation as a
nonrandomized test depending on X and an independent variable U
distributed uniformly over (0,1). Given a critical function ¢, consider the
rejection region

R={(x,u):u<¢(x)}.
Then
P{(X,U)€ R} =P{U<¢(X)} = E¢p(X),

whatever the distribution of X, so that R has the same power function as ¢
and the two tests are equivalent. The pair of variables (X,U) has a
particularly simple representation when X is integer-valued. In this case the
statistic

T=X+U
is equivalent to the pair ( X, U), since with probability 1
X=[T], U=T-|[T],
where [T] denotes the largest integer < 7. The distribution of T is
continuous, and confidence bounds can be based on this statistic.

Example 7. Binomial. An upper bound is required for a binomial probability
p—for example, the probability that a batch of polio vaccine manufactured accord-
ing to a certain procedure contains any live virus. Let X|,..., X, denote the
outcomes of n trials, X; being 1 or 0 with probabilities p and g respectively, and let
X =XX,. Then T = X + U has probability density

([?])p“’q"-“], O<r<n+l.
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This satisfies the conditions of Corollary 3, and the upper confidence bound p is
therefore the solution, if it exists, of the equation

P{T<t}=a,

where ¢ is the observed value of T. A solution does exist for all values a < 7 < n + a.
For n + a < t, the hypothesis H( py): p = p, is accepted against the alternatives
P < po for all values of p, and hence p = 1. For ¢t < a, H( p,) is rejected for all
values of p, and the confidence set S(¢) is therefore empty. Consider instead the
sets S*(t) which are equal to S(¢) for ¢t > a and which for ¢ < a consist of the
single point p = 0. They are also confidence sets at level 1 — a, since for all p,

P(peSHT)) 2 P{peS(T)) =1-a.
On the other hand, P,{ p’ € $*(T)} = P,{ p’ € S(T)} for all p’ > 0 and hence
P{p e€s*(T)} =P(p €S(T)} forall p’>p.

Thus the family of sets S*(f) minimizes the probability of covering p’ for all
p’ > p at confidence level 1 — a. The associated confidence bound p*(t) = p(¢) for
t>a and p*(t) =0 for 1 < a is therefore a uniformly most accurate upper
confidence bound for p at level 1 — a.

In practice, so as to avoid randomization and obtain a bound not dependent on
the extraneous variable U, one usually replaces T by X + 1 = [T'] + 1. Since p*(¢)
is a nondecreasing function of ¢, the resulting upper confidence bound p*([¢] + 1)
is then somewhat larger than necessary; as a compensation it also gives a corre-
spondingly higher probability of not falling below the true p.

References to tables for the confidence bounds and a careful discussion of
various approximations can be found in Hall (1982) and Blyth (1984).

Let 8 and @ be lower and upper bounds for 8 with confidence coeffi-
cients 1 ~ a; and 1 — a,, and suppose that §(x) < 6(x) for all x. This will
be the case under the assumptions of Corollary 3 if a; + @, < 1. The
intervals (8, 8) are then confidence intervals for § with confidence coefficient
1 — a; — a,; that is, they contain the true parameter value with probability
1 — a; — a,, since

P{0<0<8)=1-a —a, foralld.

If 6 and_ﬁ are uniformly most accurate, they minimize E,L,(8, ) and
EqL,(0,9) at their respective levels for any function L, that is nonincreas-
ing in § for § < 6 and O for § > 4 and any L, that is nondecreasing in 6 for
6 > 0 and O for 8 < 0. Letting

L(6; 0, 5) =L,(8,8) + L,(6,9),
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the intervals (8, 8) therefore minimize E,L(6; 6, §) subject to
P{8>0)<a, Py{6<8)}<a,.

An example of such a loss function is

6-0 if 6<6<84,
L(8;6.0)={6-¢ if 6<8,
8- if 6<9

which provides a natural measure of the accuracy of the intervals. Other
possible measures are the actual length 6 — § of the intervals, or, for
example, a(8 — )* + b(8 — 8)?, which gives an indication of the distance
of the two end points from the true value.*

An important limiting case corresponds to the levels a; = a, = }. Under
the assumptions of Corollary 3 and if the region of positive density is
independent of @ so that tests of power 1 are impossible when a < 1, the
upper and lower confidence bounds 8 and @ coincide in this case. The
common bound satisfies

P{0<6})=P{0=26}=1,

and the estimate 8 of 6 is therefore as likely to underestimate as to
overestimate the true value. An estimate with this property is said to be
median unbiased. (For the relation of this to other concepts of unbiasedness,
see Chapter 1, Problem 3.) It follows from the above result for arbitrary a;
and a, that among all median unbiased estimates, § minimizes EL(4, §)
for any monotone loss function, that is, any loss function which for fixed 8
has a minimum of 0 at § = § and is nondecreasing as § moves away from 6
in either direction. By taking in particular L(4,8) = 0 when |§ — §} < A
and = 1 otherwise, it is seen that among all median unbiased estimates, §
minimizes the probability of differing from § by more than any given
amount; more generally it maximizes the probability

P-4, <0-0<A,}

for any A}, A, > 0.

A more detailed assessment of the position of 8 than that provided by
confidence bounds or intervals corresponding to a fixed level y =1 — a is
obtained by stating confidence bounds for a number of levels, for example

*Proposed by Wolfowitz (1950).
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upper confidence bounds corresponding to values such as y = .05, .1, .25, .5,
.75, .9, .95. These constitute a set of standard confidence bounds,* from
which different specific intervals or bounds can be obtained in the obvious
manner.

6. A GENERALIZATION OF THE FUNDAMENTAL LEMMA

The following is a useful extension of Theorem 1 to the case of more than
one side condition.

Theorem 5. Let f,,..., f,.1 be real-valued functions defined on a
Euclidean space ¥ and integrable p., and suppose that for given constants
Cy,- .-, C,, there exists a critical function ¢ satisfying

(20) fd)f,-dp,=ci, i=1,...,m.

Let € be the class of critical functions ¢ for which (20) holds.
(1) Among all members of € there exists one that maximizes

[t i1 dn.

(ii) A sufficient condition for a member of € to maximize

/¢fm+1dl‘-

is the existence of constants k, ..., k,, such that

() =1 when fyua(x)> L kifi(x)
(21) ':
6(x) =0 when fyua(x) < T k()

(iii)  If a member of € satisfies (21) with k,, ..., k,, > 0, then it maxi-
mizes

f¢fm+1 dp

*Suggested by Tukey (1949).
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among all critical functions satisfying

(22) f¢f,.dp5c,., i=1,...,m.

(iv) The set M of points in m-dimensional space whose coordinates are

(fofidu.... for, au

for some critical function ¢ is convex and closed. If (c,,...,c,,) is an inner
point* of M, then there exist constants k, ..., k,, and a test ¢ satisfying (20)
and (21), and a necessary condition for a member of € to maximize

f¢fm+1 dp

is that (21) holds a.e. p.

Here the term “inner point of M ” in statement (iv) can be interpreted as
meaning a point interior to M relative to m-space or relative to the smallest
linear space (of dimension < m) containing M. The theorem is correct with
both interpretations but is stronger with respect to the latter, for which it
will be proved.

We also note that exactly analogous results hold for the minimization of

f¢fm+1 dp‘

Proof. (i): Let { ¢, } be a sequence of functions in € such that [¢, /., du
tends to sup,[¢f, ., dp. By the weak compactness theorem for critical
functions (Theorem 3 of the Appendix), there exists a subsequence {¢, }
and a critical function ¢ such that

f¢n,fkdu—’f¢fkdu for k=1,....m+ 1.

It follows that ¢ is in ¥ and maximizes the integral with respect to f,, ., dp
within €.

(ii) and (iii) are proved exactly as was part (ii) of Theorem 1.

(iv): That M is closed follows again from the weak compactness theorem,
and its convexity is a consequence of the fact that if ¢, and ¢, are critical
functions, so is a¢, + (1 — a)¢, for any 0 < a < 1. If N (see Figure 2) is

*A discussion of the problem when this assumption is not satisfied is given by Dantzig and
Wald (1951).
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Figure 2

the totality of points in (m + 1)-dimensional space with coordinates

(fotidns.... fofodn),

where ¢ ranges over the class of all critical functions, then N is convex and
closed by the same argument. Denote the coordinates of a general point in
M and N by (u,,...,u,,) and (u,,..., u, ) respectively. The points of N,

the first m coordinates of which are c,,...,c,, form a closed interval
[c*, c**].
Assume first that ¢* < ¢**. Since (cy,..., ¢, ¢**) is a boundary point

of N, there exists a hyperplane II through it such that every point of N lies
below or on II. Let the equation of II be

m+1 m

= *x
Z ki, = Z kici + kpiic**.
i=1 i=1

Since (cy, ..., c,,) is an inner point of M, the coefficient k., # 0. To see
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this, let ¢* < ¢ < ¢**, so that (cy,...,c,, c) is an inner point of N. Then
there exists a sphere with this point as center lying entirely in N and hence
below II. It follows that the point (cy,...,c,, ¢) does not lie on IT and
hence that k,,,, # 0. We may therefore take k,,; = —1 and see that for
any point of N

m
Eklul_cm+1 Ekici'
i=1
That is, all critical functions ¢ satisfy
m m
f¢(fm+l - X kifi) dp < /¢**(fm+l - X kifi) ap,
i=1 i=1

where ¢** is the test giving rise to the point (¢, ..., ¢,,, c**). Thus ¢** is
the critical function that maximizes the left-hand side of this inequality.
Since the integral in question is maximized by putting ¢ equal to 1 when
the integrand is positive and equal to 0 when it is negative, ¢** satisfies (21)
ae. .

If ¢* = c**, let (¢},...,c,,) be any point of M other than (c,,..., c,,).
We shall show now that there exists exactly one real number ¢’ such that
(¢f,...,c,,c’) is in N. Suppose to the contrary that (cj...,c}, c¢’) and
(¢t,...,c., ") are both in N, and consider any point (¢{’,..., ¢/, ¢”’) of N
such that (¢;,...,c,) is an interior point of the line segment joining

(¢f,...,c},) and (c{,...,cy). Such a point exists since (c,,...,c,,) is an
inner point of M. Then the convex set spanned by the three points
(¢iy... ¢l c’), (cly-nnsClyy '), and (cf’,..., cl, ¢”) is contained in N and
contains points (c,,..., ¢, ¢) and (cy,..., ¢,,, ¢) with ¢ < ¢, which is a

contradiction. Since N is convex, contains the origin, and has at most one
point on any vertical line u, =c¢{,..., wu, =c,, it is contained in a
hyperplane, which passes through the origin and is not parallel to the
u,, . -axis. It follows that

m
J$fuirdu= X ki fof du
i=1
for all ¢. This arises of course only in the trivial case that

fs1 = Zkf ae. g,

i=1

and (21) is satisfied vacuously.
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Corollary 4. Let p,,..., p,,, P, be probability densities with respect to
a measure p, and let 0 < a <1. Then there exists a test ¢ such that
E¢(X)=a (i=1,...,m) and E,¢(X) > a, unless p,,,, = L]_k;p,,
a.e. .

Proof. The proof will be by induction over m. For m = 1 the result
reduces to Corollary 1. Assume now that it has been proved for any set of m
distributions, and consider the case of m + 1 densities p,,..., p,, ;. If
P1s---» P are linearly dependent, the number of p; can be reduced and the
result follows from the induction hypothesis. Assume therefore that
P1»-- - D, are linearly independent. Then for each j = 1,..., m there exist
by the induction hypothesis tests ¢, and ¢/ such that E;¢,(X) = Ei¢/(X) =
a forall i=1,...,j-1,j+1,...,m and E¢(X) <a<E¢(X). It
follows that the point of m-space for which all m coordinates are equal to a
is an inner point of M, so that Theorem 5(iv) is applicable. The test
¢(x) = a is such that E¢(X) =a for i=1,..., m. If among all tests
satisfying the side conditions this one is most powerful, it has to satisfy (21).
Since 0 < a < 1, this implies

m
Pm+1 = E k;p; ac.pu,

i=1

as was to be proved.

The most useful parts of Theorems 1 and 5 are the parts (ii), which give
sufficient conditions for a critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as follows
by the method of undetermined multipliers.

Lemma 3. Let F,,..., F, ,, be real-valued functions defined over a space
U, and consider the problem of maximizing F,  ,(u) subject to F,(u)=
¢; (i=1,...,m). A sufficient condition for a point u® satisfying the side
conditions to be a solution of the given problem is that among all points of U it
maximizes

Fy(u) = ¥ k,E(u)

i=1

for some ki, ..., k,,.

When applying the lemma one usually carries out the maximization for
arbitrary k’s, and then determines the constants so as to satisfy the side
conditions.



3.7] TWO-SIDED HYPOTHESES 101

Proof. If u is any point satisfying the side conditions, then
Fpoi(u) = X kiF(u) < Fy(u°) = X kF(u°),
i=1 i=1

and hence F,, , (u) < F,,, ().

As an application consider the problem treated in Theorem 5. Let U be
the space of critical functions ¢, and let F;(¢) = [¢f; du. Then a sufficient
condition for ¢ to maximize F, _ ,(¢), subject to F(¢) = c,, is that it
maximizes F,, . ,(¢) — Lk, F(¢) = [(f,+1 — Lk;f)d dp. This is achieved
by setting ¢(x) =1l or0as f,,,(x) > or <Xk,f(x).

7. TWO-SIDED HYPOTHESES

UMP tests exist not only for one-sided but also for certain two-sided
hypotheses of the form

(23) H:0<0,0r60>0, (6,<80,).

Such testing problems occur when one wishes to determine whether given
specifications have been met concerning the proportion of an ingredient in a
drug or some other compound, or whether a measuring instrument, for
example a scale, is properly balanced. One then sets up the hypothesis that
# does not lie within the required limits, so that an error of the first kind
consists in declaring @ to be satisfactory when in fact it is not. In practice,
the decision to accept H will typically be accompanied by a statement of
whether 8 is believed to be < 6, or > 6,. The implications of H are,
however, frequently sufficiently important so that acceptance will in any
case be followed by a more detailed investigation. If a manufacturer tests
each precision instrument before releasing it and the test indicates an
instrument to be out of balance, further work will be done to get it properly
adjusted. If in a scientific investigation the inequalities 8 < 8, and 8 > 6,
contradict some assumptions that have been formulated, a more complex
theory may be needed and further experimentation will be required. In such
situations there may be only two basic choices, to act as if §, < 8 < 8, or to
carry out some further investigation, and the formulation of the problem as
that of testing the hypothesis H may be appropriate. In the present section
the existence of a UMP test of H will be proved for exponential families.

Theorem 6.

(i) For testing the hypothesis H: 8 < 8, or 0 > 8, (6, < 8,) against the
alternatives K : 0, <8 <0, in the one-parameter exponential family (12)
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there exists a UMP test given by

1 when C, <T(x)<C, (C,<GC),
(24) o(x)=(y, when T(x)=C, i=1,2,
0 when T(x)<C,or >C,.

where the C’s and Y’s are determined by
(25) Eo$(X) = E;p(X) = .

(ii) This test minimizes Eg¢p( X)) subject to (25) for all 8 < 0, and > 0,.
(iii) For 0 < a <1 the power function of this test has a maximum at a
point 6, between 8, and 8, and decreases strictly as 0 tends away from 8, in

either direction, unless there exist two values t,, t, such that Py{T(X) = t,}
+ Py{T(X)=1t,} =1 forall 6.

Proof. (i): One can restrict attention to the sufficient statistic T = T(X),
the distribution of which by Lemma 8 of Chapter 2 is

dP,(t) = C(8) 2 dy(1),

where Q(#) is assumed to be strictly increasing. Let 8, < 8§’ < 6,, and
consider first the problem of maximizing E,¢(T) subject to (25) with
¢(x) = Y[T(x)]. If M denotes the set of all points (Eq ¥(T'), Eg¥(T)) as ¢
ranges over the totality of critical functions, then the point (a, «) is an inner
point of M. This follows from the fact that by Corollary 1 the set M
contains points (a, ¥;) and (a, #,) with #; < a < u, and that it contains all
points (u, u) with 0 < u < 1. Hence by part (iv) of Theorem 5 there exist
constants k;, k, and a test y,(¢) such that ¢(x) = ¢([T(x)] satisfies (25)
and that Y (¢) = 1 when

k,C(6,) e + k,C(8,) eQ® < C(87) ¥
and therefore when
a, e’ +a,e” <1 (b;<0<b,),
and Y ,(¢) = 0 when the left-hand side is > 1. Here the a’s cannot both be
< 0, since then the test would always reject. If one of the a’s is < 0 and

the other one is > 0, then the left-hand side is strictly monotone, and the
test is of the one-sided type considered in Corollary 2, which has a strictly



3.7] TWO-SIDED HYPOTHESES 103

monotone power function and hence cannot satisfy (25). Since therefore
both a’s are positive, the test satisfies (24). It follows from Lemma 4 below
that the C’s and y’s are uniquely determined by (24) and (25), and hence
from Theorem 5(iii) that the test is UMP subject to the weaker restriction
Eg ¢(T) < a (i = 1,2). To complete the proof that this test is UMP for
testing H, it is necessary to show that it satisfies Egy(T) < a for § < 6,
and 6 > 6,. This follows from (ii) by comparison with the test () = a.

(ii): Let 8’ < 8,, and apply Theorem 5(iv) to minimize E, ¢(X) subject
to (25). Dividing through by e?(®) the desired test is seen to have a
rejection region of the form

a e +a,e" <1 (b;<0<b,).

Thus it coincides with the test y(¢) obtained in (i). By Theorem 5(iv) the
first and third conditions of (24) are also necessary, and the optimum test is
therefore unique provided P{T = C;} = 0.

(iii): Without loss of generality let Q(8) = 6. It follows from (i) and the
continuity of B(8) = Ey¢(X) that either B(8) satisfies (iii) or there exist
three points 8’ < 8” < §’” such that B(6”) < B(8’) = B(8"") = ¢, say.
Then 0 < ¢ < 1, since B(§’) = 0 (or 1) implies ¢(¢) = 0 (or 1) a.e. » and
this is excluded by (25). As is seen by the proof of (i), the test maximizes
Ey.¢(X) subject to Egp¢p(X) = Eg..¢(X) =cforall 8" < §” < 8. How-
ever, unless 7' takes on at most two values with probability 1 or all @,
Dg+» Pgr» Py are linearly independent, which by Corollary 4 implies 8(6”)
> c.

In order to determine the C’s and y’s, one will in practice start with
some trial values C¥, vy, find C¥, y¥ such that 8*(6,) = a, and compute
B*(8,), which will usually be either too large or too small. For the selection
of the next trial values it is then helpful to note that if 8*(6,) < a, the
correct acceptance region is to the right of the one chosen, that is, it satisfies
either C; > C¥ or C; = Cf¥ and vy, < v/, and that the converse holds if
B*(8,) > a. This is a consequence of the following lemma.

Lemma 4. Let py(x) satisfy the assumptions of Lemma 2(iv).

() If ¢ and ¢* are two tests satisfying (24) and Eg¢(T) = Eq¢*(T),
and if ¢* is to the right of ¢, then B(6) < or > B*(6)as 6 >0, 0or <4,

(i) If ¢ and ¢* satisfy (24) and (25), then ¢ = ¢* with probability one.

Proof. (i): The result follows from Lemma 2(iv) with = ¢* — ¢.
(ii): Since Egp(T) = Eo¢*(T), ¢* lies either to the left or the right of ¢,
and application of (i) completes the proof.
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Although a UMP test exists for testing that § <6, or >0, in an
exponential family, the same is not true for the dual hypothesis H:
6, < 0 <0, or for testing 8 = §, (Problem 31). There do, however, exist
UMP unbiased tests of these hypotheses, as will be shown in Chapter 4.

8. LEAST FAVORABLE DISTRIBUTIONS

It is a consequence of Theorem 1 that there always exists a most powerful
test for testing a simple hypothesis against a simple alternative. More
generally, consider the case of a Euclidean sample space; probability
densities f;, § € w, and g with respect to a measure g; and the problem of
testing H : f,, § € w, against the simple alternative K : g. The existence of a
most powerful level-a test then follows from the weak compactness theorem
for critical functions (Theorem 3 of the Appendix) as in Theorem 5(i).

Theorem 1 also provides an explicit construction for the most powerful
test in the case of a simple hypothesis. We shall now extend this theorem to
composite hypotheses in the direction of Theorem 5 by the method of
undetermined multipliers. However, in the process of extension the result
becomes much less explicit. Essentially it leaves open the determination of
the multipliers, which now take the form of an arbitrary distribution. In
specific problems this usually still involves considerable difficulty.

From another point of view the method of attack, as throughout the
theory of hypothesis testing, is to reduce the composite hypothesis to a
simple one. This is achieved by considering weighted averages of the
distributions of H. The composite hypothesis H is replaced by the simple
hypothesis H, that the probability density of X is given by

ha(x) = [fo(x) dA(0),

where A is a probability distribution over w. The problem of finding a
suitable A is frequently made easier by the following consideration. Since H
provides no information concerning § and since H, is to be equivalent to H
for the purpose of testing against g, knowledge of the distribution A should
provide as little help for this task as possible. To make this precise suppose
that 8 is known to have a distribution A. Then the maximum power 8, that
can be attained against g is that of the most powerful test ¢, for testing H,
against g. The distribution A is said to be least favorable (at level a) if for
all A’ the inequality 8, < B, holds.

Theorem 7. Let a o-field be defined over w such that the densities fo(x)
are jointly measurable in 8 and x. Suppose that over this o-field there exists a



3.8] LEAST FAVORABLE DISTRIBUTIONS 105

probability distribution A such that the most powerful level-a test ¢, for
testing H, against g is of size < a also with respect to the original hypothesis
H.

(i) The test ¢, 1s most powerful for testing H against g.

(1) If ¢, is the unique most powerful level-a test for testing H, against g,
it is also the unigue most powerful test of H against g.

(ii1) The distribution A is least favorable.

Proof. We note first that &, is again a density with respect to p, since
by Fubini’s theorem (Theorem 3 of Chapter 2)

[ra(x) du(x) = [ dA(8) [fo(x) du(x) = [ dA(6) =1.

Suppose that ¢, is a level-a test for testing H, and let ¢* be any other
level-a test. Then since Ey¢*(X) < a for all § € w, we have

f¢*(X)hA(X) dp(x) = wa,,.(p*(X) dA(8) < a.

Therefore ¢* is a level-a test also for testing H, and its power cannot
exceed that of ¢,. This proves (i) and (ii). If A’ is any distribution, it follows
further that ¢, is a level-a test also for testing H,,, and hence that its power
against g cannot exceed that of the most powerful test, which by definition
is By

The conditions of this theorem can be given a somewhat different form
by noting that ¢, can satisfy [ Egp,(X) dA(0) = a and E,¢,(X) < « for
all € w only if the set of @’s with Ey¢,(X) = a has A-measure one.

Corollary 5. Suppose that A is a probability distribution over w and that
W’ is a subset of w with A(w’) = 1. Let ¢, be a test such that

1 if g(x)>kff,,(x)dA(o),
(26) ¢a(x) =
0 if g(x)<kff,,(x)dA(0).

Then ¢, is a most powerful level-a test for testing H against g provided

(27) Epo,(X) = supEyp,(X)=a for 0’ €w.

flew
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Theorems 2 and 6 constitute two simple applications of Theorem 7. The
set «’ over which the least favorable distribution A is concentrated consists
of the single point 6, in the first of these examples and of the two points 6,
and 6, in the second. This is what one might expect, since in both cases
these are the distributions of H that appear to be “closest” to K. Another
example in which the least favorable distribution is concentrated at a single
point is the following.

Example 8. Sign testt The quality of items produced by a manufacturing
process is measured by a characteristic X such as the tensile strength of a piece of
material, or the length of life or brightness of a light bulb. For an item to be
satisfactory X must exceed a given constant u, and one wishes to test the hypothesis
H:p > p,, where

p=P{X<u}

is the probability of an item being defective. Let X,..., X, be the measurements of
n sample items, so that the X’s are independently distributed with common
distribution about which no knowledge is assumed. Any distribution on the real line
can be characterized by the probability p together with the conditional probability
distributions P_ and P, of X given X <u and X > u respectively. If the
distributions P_ and P, have probability densities p_ and p., for example with
respect to p = P_+ P, then the joint density of X),..., X, at a sample point
X|,..., X, satisfying

Xijseres X SUS X500y X;

Jn—m
is
"1 =p)" " p(x) o (3, )P (x;) e ().
Consider now a fixed alternative to H, say (p,, P_, P, ), with p; < p,. One
would then expect the least favorable distribution A over H to assign probability 1

to the distribution (p,, P_, P,) since this appears to be closest to the selected
alternative. With this choice of A, the test (26) becomes

ér(x)=1lor0 as (ﬂ) (ﬂ) > or <C,
Do 90

and hence as m < or > C. The test therefore rejects when the number M of
defectives is sufficiently small, or more pecisely, when M < C and with probability
y when M = C, where

(28) P(M<C}+yP{(M=C}=a for p=p,.

The distribution of M is the binomial distribution b( p, n), and does not depend on
P, and P_. As a consequence, the power function of the test depends only on p
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and is a decreasing function of p, so that under H it takes on its maximum for
P = p,- This proves A to be least favorable and ¢, to be most powerful. Since the
test is independent of the particular alternative chosen, it is UMP.

Expressed in terms of the variables Z, = X, — u, the test statistic M is the
number of variables < 0, and the test is the so-called sign test (cf. Chapter 4,
Section 9). It is an example of a nonparametric test, since it is derived without
assuming a given functional form for the distribution of the X’s such as the normal,
uniform, or Poisson, in which only certain parameters are unknown.

The above argument applies, with only the obvious modifications, to the case
that an item is satisfactory if X lies within certain limits: ¥ < X < v. This occurs,
for example, if X is the length of a metal part or the proportion of an ingredient in
a chemical compound, for which certain tolerances have been specified. More
generally the argument applies also to the situation in which X is vector-valued.
Suppose that an item is satisfactory only when X lies in a certain set S, for
example, if all the dimensions of a metal part or the proportions of several
ingredients lie within specified limits. The probability of a defective is then

p=P{XeS§},

and P_ and P, denote the conditional distributions of X given X € S and X € §
respectively. As before, there exists a UMP testof H: p > p,, and it rejects H when
the number M of defectives is sufficiently small, with the boundary of the test being
determined by (28).

A distribution A satisfying the conditions of Theorem 7 exists in most of
the usual statistical problems, and in particular under the following assump-
tions. Let the sample space be Euclidean, let w be a closed Borel set in
s-dimensional Euclidean space, and suppose that fy(x) is a continuous
function of @ for almost all x. Then given any g there exists a distribution
A satisfying the conditions of Theorem 7 provided

Jim [ /u,(x) du(x) =0

for every bounded set S in the sample space and for every sequence of
vectors 6, whose distance from the origin tends to infinity.

From this it follows, as did Corollaries 1 and 4 from Theorems 1 and 5,
that if the above conditions hold and if 0 < a < 1, there exists a test of
power B > a for testing H: f,, 8 € w, against g unless g = [f, dA(8) for
some A. An example of the latter possibility is obtained by letting f, and g
be the normal densities N(6, 02) and N(0, o?) respectively with o < ol.
(See the following section.)

The above and related results concerning the existence and structure of
least favcrable distributions are given in Lehmann (1952) (with the require-
ment that w be closed mistakenly omitted), in Reinhardt (1961), and in
Krafft and Witting (1967), where the relation to linear programming is
explored.



108 UNIFORMLY MOST POWERFUL TESTS [3.9

9. TESTING THE MEAN AND VARIANCE OF A
NORMAL DISTRIBUTION

Because of their wide applicability, the problems of testing the mean ¢ and
variance o2 of a normal distribution are of particular importance. Here and
in similar problems later, the parameter not being tested is assumed to be
unknown, but will not be shown explicitly in a statement of the hypothesis.
We shall write, for example, ¢ < o, instead of the more complete statement
6 <0y, —o0 <§< oo. The standard (likelihood-ratio) tests of the two
hypotheses o < g, and £ < §, are given by the rejection regions

(29) Y(x,-x)=2C
and
30) Vi (% = &)

The corresponding tests for the hypotheses 0 > 6, and £ > £, are obtained
from the rejection regions (29) and (30) by reversing the inequalities. As will
be shown in later chapters, these four tests are UMP both within the class of
unbiased and within the class of invariant tests (but see Chapter 5, Section 4
for problems arising when the assumption of normality does not hold
exactly). However, at the usual significance levels only the first of them is
actually UMP.

Let X,,..., X, be a sample from N({ 02), and consider first the
hypotheses H, : ¢ > 0, and H,: ¢ < g;, and a simple alternative K : § = §,,
o = o0,. It seems reasonable to suppose that the least favorable distribu-
tion A in the (£, o)-plane is concentrated on the line 6 = g;,. Since ¥ =
YX,/n=Xand U=X(X,— X)? are sufficient statistics for the parameters
(£, o), attention can be restricted to these variables. Their joint density
under H, is

Cout™~ 3>/2exp(——f { —(y- 5)]dA(£)

while under X it is

u n
C1“("—3)/23Xp(— '2—0—2)6)(;) [“ m()’ - 51)2]-
1

1
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The choice of A is seen to affect only the distribution of Y. A least
favorable A should therefore have the property that the density of Y under
H,,

yn n 2
f rrad exp [— goz(y - £) ] dA (%),

comes as close as possible to the alternative density,

Vn n 2
We"p[— T.lz(y -¢) ]

At this point one must distinguish between H, and H,. In the first case
g, < o,. By suitable choice of A the mean of Y can be made equal tc §,, but
the variance will if anything be increased over its initial value o. This
suggests that the least favorable distribution assigns probability 1 to the
point £ = £, since in this way the distribution of Y is normal both under H
and K with the same mean in both cases and the smallest possible
difference between the variances. The situation is somewhat different for H,,
for which o, < o,. If the least favorable distribution A has a density, say A/,
the density of Y under H, becomes

| S [— 270~ £)Z]A'(£) dt.

-0 y270,

This is the probability density of the sum of two independent random
variables, one distributed as N(0, 6¢/n) and the other with density A’(§). If
A is taken to be N(£,,(of — af)/n), the distribution of Y under H,
becomes N(£,, 62/n), the same as under K.

We now apply Corollary 5 with the distributions A suggested above. For
H, it is more convenient to work with the original variables than with Y and
U. Substitution in (26) gives ¢(x) = 1 when

o 1
(2702) " exp [— 78 Y (x, - a)z]

- >C
. 1 ’
(270¢) " exp [— 73 Y (x; - 61)2}
)
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that is, when
(31) Y(x,—4&) <C.

To justify the choice of A, one must show that
P{L(X, - &) =< Clt, o)

takes on its maximum over the half plane ¢ > g, at the point £ = §,,
o = o,. For any fixed o, the above is the probability of the sample point
falling in a sphere of fixed radius, computed under the assumption that the
X’s are independently distributed as N(£, 62). This probability is maxi-
mized when the center of the sphere coincides with that of the distribution,
that is, when ¢ = ;. (This follows for example from Problem 25 of Chapter

7.) The probability then becomes
X-£) C C
P{Z( 2 s e } - AT )

where V,,..., V, are independently distributed as N(0,1). This is a decreas-
ing function of o and therefore takes on its maximum when ¢ = g,.

In the case of H,, application of Corollary 5 to the sufficient statistics
(Y,U) gives ¢(y, u) = 1 when

(n—3)/2 u n 2
Cu exp —553 €Xp —5—5()"51)
1

Cou'"~ 3’/Zexp(—— fexp[ (y - §)]A’ ) d¢

c ul 1 1 c
—3 % _—— _—— -— >
xp 2l0f o}l
that is, when

(32) u=Y(x,— %) =2

Since the distribution of X( X, — X)?/6? does not depend on ¢ or o, the
probability P{¥(X, — X)?> > C|§, o) is independent of ¢ and increases
with o, so that the conditions of Corollary 5 are satisfied. The test (32),
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being independent of ¢, and ¢,, is UMP for testing o < o, against ¢ > g,,.
It is also seen to coincide with the likelihood-ratio test (29). On the other
hand, the most powerful test (31) for testing o > o, against o < g, does
depend on the value £, of £ under the alternative.

It has been tacitly assumed so far that n > 1. If n = 1, the argument
applies without change with respect to H,, leading to (31) with n = 1.
However, in the discussion of H, the statistic U now drops out, and Y
coincides with the single observation X. Using the same A as before, one
sees that X has the same distribution under H, as under K, and the test ¢,
therefore becomes ¢,(x) = a. This satisfies the conditions of Corollary 5
and is therefore the most powerful test for the given problem. It follows that
a single observation is of no value for testing the hypothesis H,, as seems
intuitively obvious, but that it could be used to test H, if the class of
alternatives were sufficiently restricted.

The corresponding derivation for the hypothesis § < £, is less straight-
forward. It turns out* that Student’s test given by (30) is most powerful if
the level of significance a is > 3, regardless of the alternative £, > £, 0,.
This test is therefore UMP for a > ;. On the other hand, when a < } the
most powerful test of H rejects when L(x; — a)? < b, where the constants a
and b depend on the alternative (§,, 0,) and on a. Thus for the significance
levels that are of interest, a UMP test of H does not exist. No new problem
arises for the hypothesis £ > £, since this reduces to the case just consid-
ered through the transformation Y; = §;, — (X, — £;).

10. PROBLEMS

Section 2
1. Let X,,..., X, be a sample from the normal distribution N(£, 0).

(i) If o = g, (known), there exists a UMP test for testing H: §{ < £, against
£ > &, which rejects when L( X, — §,) is too large.

(i) If £ = ¢, (known), there exists a UMP test for testing H: ¢ < 0, against
K: 6 > a,, which rejects when L( X, — £,)? is too large.

2. UMP test for U(0,8). Let X =(X,,..., X,) be a sample from the uniform
distribution on (0, §).

(i) For testing H: 8 < 0, against K: § > 0, any test is UMP at level a for
which E;¢(X) =a, E(X)<a for 0 <, and ¢(x)=1 when
max(x;,..., x,) > 6.

(i) For testing H: 0 = 6, against K: 8 # 6, a unique UMP test exists, and
is given by ¢(x) = 1 when max(x,,..., x,) > 6, or max(x,,..., x,) < 6,
:/;, and ¢(x) = 0 otherwise.

*See Lehmann and Stein (1948).
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[1): For each @ > , determine the ordering established by r(x) =
Ps(x)/pg,(x) and use the fact that many points are equivalent under this
ordering.

(ii): Determine the UMP tests for testing § = , against # < 6, and combine
this result with that of part (i).]

UMP test for exponential densities. Let Xi,..., X, be a sample from the
exponential distribution E(a, b) of Chapter 1, Problem 18, and let X;, =
min( Xi,..., X,).

(i) Determine the UMP test for testing H: a = a, against K: a # a, when
b is assumed known.

(ii) The power of any MP level-a test of H: a = a, against K: a = a; < q,
is given by

B(a) =1 - (1 - a) e/,

(iii) For the problem of part (i), when b is unknown, the power of any level a
test which rejects when

X, —a

1) 0
—————=<Cor >C
[ X - Xy ! 2

against any alternative (a,, b) with 4, < a, is equal to B*(a,) of part (ii)
(independent of the particular choice of C; and G,).

(iv) The test of part (iii) is a UMP level-a test of H:a = a, against
K: a # a, (b unknown).

(v) Determine the UMP test for testing H:a =a,, b= b, against the
alternatives a < a,, b < b,.

(vi) Explain the (very unusual) existence in this case of a UMP test in the
presence of a nuisance parameter [part (iv)] and for a hypothesis specify-
ing two parameters [part (V)).

[(i): the variables ¥, = e~ */* are a sample from the uniform distribution on
(0,677

Note. For more general versions of parts (ii)~(iv) see Takeuchi (1969) and
Kabe and Laurent (1981).

The following example shows that the power of a test can sometimes be
increased by selecting a random rather than a fixed sample size even when the
randomization does not depend on the observations. Let Xj,..., X, be inde-
pendently distributed as N(8,1), and consider the problem of testing H: § = 0
against K: 0 =46, > 0.

(i) The power of the most powerful test as a function of the sample size n is
not necessarily concave.
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(i) In particular for @ = .005, 8, = 1, better power is obtained by taking 2
or 16 observations with probability 1 each than by taking a fixed sample
of 9 observations.

(iii) The power can be increased further if the test is permitted to have
different significance levels @, and a, for the two sample sizes and it is
required only that the expected significance level be equal to a = .005.
Examples are: (a) with probability 1 take n, =2 observations and
perform the test of significance at level a; = .001, or take n, =16
observations and perform the test at level a, = .009; (b) with probability
1 take n; = 0 or n, = 18 observations and let the respective significance
levels be a; = 0, a, = .01.

Note. This and related examples were discussed by Kruskal in a semi-
nar held at Columbia University in 1954. A more detailed investigation
of the phenomenon has been undertaken by Cohen (1958).

5. If the sample space € is Euclidean and P,, P, have densities with respect to
Lebesgue measure, there exists a nonrandomized most powerful test for testing
P, against P, at every significance level a.*
[This is a consequence of Theorem 1 and the following lemma.’ Let f > 0 and
f4f(x) dx = a. Given any 0 < b < a, there exists a subset B of 4 such that

[pf(x)dx =b]

6. Fully informative statistics. A statistic T is fully informative if for every

decision problem the decision procedures based only on T form an essentially
complete class. If 2 is dominated and T is fully informative, then T is
sufficient.
[Consider any pair of distributions P, P, € & with densities p,, p;, and let
8 = pi/(po + p,)- Suppose that T is fully informative, and let =/, be the
subfield induced by T. Then &, contains the subfield induced by (g, g;)
since it contains every rejection region which is unique most powerful for
testing P, against P, (or P, against P,) at some level a. Therefore, T is
sufficient for every pair of distributions (P, P;), and hence by Problem 10 of
Chapter 2 it is sufficient for £.]

Section 3

7. Let X be the number of successes in n independent trials with probability p
of success, and let ¢(x) be the UMP test (9) for testing p < p, against p > p,
at level of significance a.

(i) For n=6, p, = .25 and the levels a = .05,.1,.2 determine C and v,
and find the power of the test against p, = .3, 4, .5, .6,.7.

*For more general results concerning the possibility of dispensing with randomized
procedures, see Dvoretzky, Wald, and Wolfowitz (1951).

+For a proof of this lemma see Halmos (1974, p. 174.) The lemma is a special case of a
theorem of Lyapounov (see Blackwell (1951a).)
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10.

11.

(i) If p, = .2 and a = .05, and it is desired to have power B > .9 against
p; = 4, determine the necessary sample size (a) by using tables of the
binomial distribution, (b) by using the normal approximation.*

(iii) Use the normal approximation to determine the sample size required
when a = .05, B =9, p, = 01, p, = .02

(i) A necessary and sufficient condition for densities py(x) to have mono-
tone likelihood ratio in x, if the mixed second derivative
9%log py(x)/30 dx exists, is that this derivative is > 0 for all § and x.

(i) An equivalent condition is that

(x) 32Po(x) S Bp,,(x) 31’0(")
P 0ax - 90  ox

Let the probability density p, of X have monotone likelihood ratio in T(x),
and consider the problem of testing H: 0 < 8, against 8 > 6,,. If the distribu-
tion of T is continuous, the p-value & of the UMP test is given by & = P (T
> t}, where ¢ is the observed value of T. This holds also without the
assumption of continuity if for randomized tests & is defined as the smallest
significance level at which the hypothesis is rejected with probability 1.

Let X,,..., X, be independently distributed with density (28) e~ */?%, x > 0,
andlet ¥, < -+ <Y, be the ordered X’s. Assume that ¥, becomes available
first, then Y,, and so on, and that observation is continued until ¥, has been
observed. On the basis of Y},..., 7Y, it is desired to test H: 8 > 6, = 1000 at
level a = .05 against 8 < §,.

for all 8 and x.

(i) Determine the rejection region when r = 4, and find the power of the test
against 8, = 500.
(ii) Find the value of r required to get power 8 > .95 against this alternative.

[In Problem 14, Chapter 2, the distribution of [X/_,Y; + (n — r)Y,]/8 was
found to be x? with 2r degrees of freedom.]

When a Poisson process with rate A is observed for a time interval of length 7,
the number X of events occurring has the Poisson distribution P(A7). Under
an alternative scheme, the process is observed until r events have occurred, and
the time 7 of observation is then a random variable such that 2AT has a
x’-distribution with 27 degrees of freedom. For testing H: A < A, at level a
one can, under either design, obtain a specified power 8 against an alternative
A, by choosing 7 and r sufficiently large.

(i) The ratio of the time of observation required for this purpose under the
first design to the expected time required under the second is Ar/r.

(i) Determine for which values of A each of the two designs is preferable
when A\j=1,A, =2, a=.058=.9.

*Tables and approximations are discussed, for example, in Chapter 3 of Johnson and Kotz

(1969).
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12. Let X = (X,,..., X,) be a sample from the uniform distribution U(4, § + 1).

(i) For testing H: 8 < 0, against K: 6 > 6, at level a there exists a UMP
test which rejects when min(X,,..., X,) > 8, + C(a) or
max( Xi,..., X,) > 8, + 1 for suitable C(a).

(ii) The family U(0, 6 + 1) does not have monotone likelihood ratio. [Ad-
ditional results for this family are given in Birnbaum (1954) and Pratt
(1958).]

[(i)) By Theorem 2, monotone likelihood ratio implies that the family of UMP
tests of H: 8 < 6, against K: § > 6§, generated as a varies from 0 to 1 is
independent of 6,].

13. Let X be a single observation from the Cauchy density given at the end of
Section 3.

(i) Show that no UMP test exists for testing § = 0 against 6 > 0.
(ii) Determine the totality of different shapes the MP level-a rejection region
for testing 6 = 6, against 6 = 6, can take on for varying a and 6, — 6,.

14. Extension of Lemma 2. Let P, and P, be two distributions with densities
Po> Py such that p,(x)/py(x) is a nondecreasing function of a real-valued
statistic T'(x).

(1) If T has probability density p; when the original distribution is P;, then
p1(1)/po(t) is nondecreasing in .
(i) Ey y(T) < E;y(T) for any nondecreasing function .
(i) If p,(x)/pe(x) is a strictly increasing function of t= T(x), so is
pi(t)/pp(t), and Eg(T) < E;Y(T) unless ¢[T(x)] is constant a.e.
(P + Py) or Egy(T) = Ey(T) = £ 0.
(iv) For any distinct distributions with densities p,, p;,

pi(X) <El [Pl({?_

—o0 < Eylog og| — < 0.
° [po(X) P po(X)

[()): Without loss of generality suppose that p;(x)/py(x) = T(x). Then for
any integrable ¢,

o3 pi(1) dv(1) = [[T()IT(x) pol(x) die(x) = [6(6)1s(1) dn(1),

and hence p/(2)/py(t) =t ae.
(iv): The possibility Eylog[ p,(X)/po(X)] = oo is excluded, since by the
convexity of the function log,

Pl(X) Pl(x)
quu)“%qmu)=
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Similarly for E,. The strict inequality now follows from (iii) with 7(x) =
Pi(x)/po(x).]

If Fy, F; are two cumulative distribution functions on the real line, then
F(x) < Fy(x) for all x if and only if Eqy(X) < E;¢(X) for any nondecreas-
ing function .

Section 4

If the experiment ( f, g) is more informative than (f’, g’), then (g, f) is more
informative than (g’, ).

Conditions for comparability.

(i) Let X and X’ be two random variables taking on the values 1 and 0, and
suppose that P{X =1} = p,, P{X' =1} = p; or that P{X =1} = p,,
P{ X’ =1} = p}. Without loss of generality let p, < p§, p, < py, P4 < pi-
(This can be achieved by exchanging X with X’ and by exchanging the
values 0 and 1 of one or both of the variables.) Then X is more
informative than X’ if and only if (1 — p;)1 = p§) < A — po)A — p}).

(ii) Let U, U; be independently uniformly distributed over (0,1), and let
Y=1if X=1and U<y, and if X=0 and {; <y, and Y=0
otherwise. Under the assumptions of (i) there exist 0 < y,, v; < 1 such
that P{Y =1} = p/ when P{X =1} = p, (i = 0,1) provided (1 — p;)1
= pb) < (@ = po)1 — p}). This inequality, which is therefore sufficient
for a sample Xj,..., X, from X to be more informative than a sample
X{,..., X, from X, is also necessary. Similarly, the condition pjp; <
Ppop} is necessary and sufficient for a sample from X’ to be more
informative than one from X.

[(i): The power B(a) of the most powerful level-a test of p, against p, based
on X is ap,/p, if a < p,, and p; + q,95 *(« — p) if py < a. One obtains
the desired result by comparing the graphs of 8(«) and B’(a).

(ii): The last part of (ii) follows from a comparison of the power 8,(a) and
B, (a) of the most powerful level a tests based on L X, and £ X, for « close to

1. The dual condition is obtained from Problem 16.]

For the 2 X 2 table described in Example 4, and under the assumption
p < m < 1 made there, a sample from B is more informative than one from A.
On the other hand, samples from B and B are not comparable.

[A necessary and sufficient condition for comparability is given in the preced-
ing problem.]

In the experiment discussed in Example 5, n binomial trials with probability of
success p = 1 — ™" are performed for the purpose of testing A = A, against
A = A,. Experiments corresponding to two different values of v are not
comparable.
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20.

21.

22.

23.

Section §

(i) For n=5,10and 1 — a = .95, graph the upper confidence limits p and
p* of Example 7 as functions of t = x + u.

(ii) For the same values of n and a; = a, = .05, graph the lower and upper
confidence limits p and p.

Confidence bounds with minimum risk. Let L(8, §) be nonnegative and nonin-
creasing in its second argument for § < @, and equal to O for § > 4. If § and
@* are two lower confidence bounds for # such that

P{0<0') <P{8*<0'} forall 6’ <84,
then

E,L(8,8) < E,L(8,8%).

[Define two cumulative distribution functions F and F* by F(u) = P,{f <
ul/Pp{0* <0}, F*(u)= Py{0* <u}/Py{0* <0} for u<89, and F(u) =
F*(u) =1 for u>0. Then F(u) < F*(u) for all u, and it follows from
Problem 15 that

Ej[L(8,0)] = Py(8* <8} [L(8,u) dF(u)
< Py{8* <0} [L(6,u) dF*(u) = B[ L(6,6°)]]

Section 6

If B(0) denotes the power function of the UMP test of Corollary 2, and if the
function Q of (12) is differentiable, then B’(6) > 0 for all 8 for which
Q'(6) > 0.

[To show that B’(8,) > 0, consider the problem of maximizing, subject to
Eg¢(X) = a, the derivative B’(8,) or equivalently the quantity
Ep [T(X)$(X)}]

Optimum selection procedures. On each member of a population n measure-
ments (Xj,..., X,) = X are taken, for example the scores of n aptitude tests
which are administered to judge the qualifications of candidates for a certain
training program. A future measurement Y such as the score in a final test at
the end of the program is of interest but unavailable. The joint distribution of
X and Y is assumed known.

(i) One wishes to select a given proportion a of the candidates in such a way
as to maximize the expectation of Y for the selected group. This is
achieved by selecting the candidates for which E(Y|x) > C, where C is
determined by the condition that the probability of a member being
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24.

25.

26.

27.

UNIFORMLY MOST POWERFUL TESTS [3.10

selected is . When E(Y|x) = C, it may be necessary to randomize in
order to get the exact value a.

(ii) If instead the problem is to maximize the probability with which in the
selected population Y is greater than or equal to some preassigned score
Yo, one selects the candidates for which the conditional probability
P{Y 2 y,|x} is sufficiently large.

[()): Let ¢(x) denote the probability with which a candidate with measure-
ments x is to be selected. Then the problem is that of maximizing

f [f " () (%) dy] p¥(x) dx
subject to
f¢(x)PX(x) dx = a.]

The following example shows that Corollary 4 does not extend to a countably
infinite family of distributions. Let p, be the uniform probability density on [0,
1 + 1/n), and p, the uniform density on (0, 1).

(i) Then p, is linearly independent of ( p;, p,,...), that is, there do not exist
constants ¢,, ¢,,... such that p, = Xc, p,.

(ii) There does not exist a test ¢ such that f¢p, = a for n=1,2,... but
[$po > a.

Let F,,..., F,, ., be real-valued functions defined over a space U. A sufficient
condition for u, to maximize F, ,, subject to F,(#) < ¢; (i = 1,..., m)is that
it satisfies these side conditions, that it maximizes F,,,(u) — Xk, F,(u) for
some constants k; > 0, and that F,(u,) = ¢; for those values i for which
k, > 0.

Section 7

For a random variable X with binomial distribution b( p, n), determine the
constants C;, y;, (i = 1,2) in the UMP test (24) for testing H: p < 2 0or < .7
when a = .1 and n = 15. Find the power of the test against the alternative
p=4

Totally positive families. A family of distributions with probability densities
pe(x), 8 and x real-valued and varying over @ and % respectively, is said to
be totally positive of order r (TR,)if forall x, < --- <x,and 8, < --- < 4§,

pe,(x o pa(x,
(33) A, = () w0 foran n=1,2..,r.
po(x) - p(x,)
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28.

29.

It is said to be strictly totally positive of order r (STP,) if strict inequality
holds in (33). The family is said to be (strictly) totally positive of order infinity
if (33) holds for all n = 1,2,... . These definitions apply not only to probabil-
ity densities but to any real-valued functions p,(x) of two real variables.

(i) For r =1, (33) states that py(x) > 0; for r = 2, that py(x) has mono-
tone likelihood ratio in x.
(i) If a(8) > 0, b(x) > 0, and py(x) is STP,, then so is a(8)b(x) py(x).
(iii) If a and b are real-valued functions mapping £ and % onto ' and &’
and are strictly monotone in the same direction, and if py(x) is (S)TP,,
then p,.(x’) with 8’ = a!(8) and x’ = b~ !(x) is (S)TP. over (2', Z").

Exponential families. The exponential family (12) with T(x) = x and Q(4)
= 0 is STP,_, with @ the natural parameter space and & = (- c0, 00).

[That the determinant |e%*/|, i, j=1,...,n, is positive can be proved by
induction. Divide the ith column by eh% =1, .., n; subtract in the
resulting determinant the (n — 1)st column from the nth, the (n — 2)nd from
the (n — 1)st,..., the 1st from the 2nd; and expand the determinant obtained
in this way by the first row. Then A, is seen to have the same sign as

N, =|e" —evu-t|, i, j=2,...,n,

where n;, = 6, — 0,. If this determinant is expanded by the first column one
obtains a sum of the form

az(e'lzxz - e'lle) 4+ ... +a"(e7’nx2 — e"nxl) = h(xz) — h(xl)

=(x; = x)H (),

where x; < y, < x,. Rewriting h’(y,) as a determinant of which all columns
but the first coincide with those of &, and proceeding in the same manner
with the other columns, one reduces the determinant to |e" %), i, j = 2,..., n,
which is positive by the induction hypothesis.]

STP,. Let 8 and x be real-valued, and suppose that the probability densities
pe(x) are such that py.(x)/pe(x) is strictly increasing in x for @ < 8’. Then
the following two conditions are equivalent: (a) For 6, < 6, < 8, and k,, k,,
ki >0, let

g(x) = kypo (x) — k2 pg,(x) + kypp,(x).

If g(x,) = g(x;) =0, then the function g is positive outside the interval
(x,, x;) and negative inside. (b) The determinant A, given by (33) is positive
for all 8, <6, <8;, x, < x; < x5. {It follows from (a) that the equation
g(x) = 0 has at most two solutions.]
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[That (b) implies (a) can be seen for x; < x, < x4 by considering the determi-
nant

g(x)  g(x)  g(x3)
Po,(x1)  Po(x2)  pe(x3)
Poa(xl) Po,(xz) Po,(xa)

Suppose conversely that (a) holds. Monotonicity of the likelihood ratios
implies that the rank of A; is at least two, so that there exist constants
ki, k,, ky such that g(x,) = g(x;) = 0. That the k’s are positive follows
again from the monotonicity of the likelihood ratios.]

Extension of Theorem 6. The conclusions of Theorem 6 remain valid if the
density of a sufficient statistic 7 (which without loss of generality will be taken
to be X), say py(x), is STP; and is continuous in x for each 6.

[The two properties of exponential families that are used in the proof of
Theorem 6 are continuity in x and (a) of the preceding problem.}

For testing the hypothesis H': 0, < 0 < 0, (6, < 0,) against the alternatives
6 < 8, or 8 > 6,, or the hypothesis 8 = f, against the alternatives 6 # 6, in
an exponential family or more generally in a family of distributions satisfying
the assumptions of Problem 30, a UMP test does not exist.

[This follows from a consideration of the UMP tests for the one-sided
hypotheses H,: 0 >0, and H,: 0 < 0,.]

Section 8

Let the variables X, (i = 1,..., s) be independently distributed with Poisson
distribution P(A;). For testing the hypothesis H:XA; < a (for example, that
the combined radioactivity of a number of pieces of radioactive material does
not exceed a), there exists a UMP test, which rejects when Z',Xj > C.

[If the joint distribution of the X’s is factored into the marginal distribution of
L X, (Poisson with mean LA;) times the conditional distribution of the vari-
ables ¥, = X,/LX; given LX; (multinomial with probabilities p, = A,/ZA)),
the argument is analogous to that given in Example 8.]

Confidence bounds for a median. Let X,,..., X, be a sample from a continu-
ous cumulative distribution function F. Let £ be the unique median of F if it
exists, or more generally let £ = inf{¢’: F(¢') = 1}.

() If the ordered X’s are X;, < --- < X, a uniformly most accurate
lower confidence bound for £ is § = X, with probability p, § = X, .,
with probability 1 — p, where k and p are determined by

pZ( ) +(1-p) Z ( )§=1—a

j=k j=k+1
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34.

35.

(i1) This bound has confidence coefficient 1 — « for any median of F.

(ili) Determine most accurate lower confidence bounds for the 100p-per-
centile ¢ of F defined by £ = inf(§’: F(§) = p).

[For fixed £, the problem of testing H: § = £, against K : £ > £ is equivalent
to testing H': p = } against K': p < 1]

A counterexample. Typically, as a varies the most powerful level-a tests for
testing a hypothesis H against a simple alternative are nested in the sense that
the associated rejection regions, say R, satisfy R, € R, for any a < a’. This
relation always holds when H is simple, but the following example shows that
it need not be satisfied for composite H. Let X take on the values 1,2,3,4
with probabilities under distributions P, P;, Q:

1 2 3 4
2 4 3 4
Py 13 13 i3 1
4 2 L 6
P, 13 13 13 13
Q 4 3 2 4
13 13 13 13

Then the most powerful test for testing the hypothesis that the distribution of
X is P, or P, against the alternative that it is Q rejects at level a = 75 when
X=1o0r3, and at level « = 5 when X =1 or 2.

Let X and Y be the number of successes in two sets of n binomial trials with
probabilities p, and p, of success.

(1) The most powerful test of the hypothesis H: p, < p, against an alterna-
tive (p}, p5) with p| < p5 and p; + p5 =1 at level a < 1 rejects when
Y — X > C and with probability y when ¥ — X = C.

(ii) This test is not UMP against the alternatives p; < p,.

[(1): Take the distribution A assigning probability 1 to the point p, = p, = }
as an a priori distribution over H. The most powerful test against ( pj, p5) is
then the one proposed above. To see that A is least favorable, consider the
probability of rejection B( p,, p,) for p, = p, = p. By symmetry this is given
by

28(p,p) = P{|Y - X|> C} + yP{|Y - X| = C}.

Let X, be 1 or 0 as the ith trial in the first series is a success or failure, and let
Y, be defined analogously with respect to the second series. Then Y ~ X =
T'_,(Y, — X,), and the fact that 28( p, p) attains its maximum for p = ; can
be proved by induction over n.

(ii): Since B(p, p) < a for p # 1, the power B( p,, p,) is < a for alternatives
p; < p, sufficiently close to the line p, = p,. That the test is not UMP now
follows from a comparison with ¢(x, y) = a.]
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Sufficient statistics with nuisance parameters.

(i) A statistic T is said to be partially sufficient for 6 in the presence of a
nuisance parameter 7 if the parameter space is the direct product of the
set of possible 6- and n-values, and if the following two conditions hold:
(a) the conditional distribution given T = ¢ depends only on 7; (b) the
marginal distribution of T depends only on 8. If these conditions are
satisfied, there exists a UMP test for testing the composite hypothesis
H: 0 =0, against the composite class of alternatives 8 = 8,, which
depends only on T.

(ii) Part (i) provides an alternative proof that the test of Example 8 is UMP.

{Let Y, (¢) be the most powerful level a test for testing 6, against 6, that
depends only on ¢, let ¢(x) be any level-a test, and let ¥(t) = E, [¢(X)|t].
Since Eg y(T) = Ey,_, ¢(X), it follows that ¢ is a level-a test of H and its
power, and therefore the power of ¢, does not exceed the power of .}
Note. For further discussion of this and related concepts of partial sufficiency
see Dawid (1975), Sprott (1975), Basu (1978), and Barndorff-Nielsen (1978).

Section 9
Let X;,..., X, and Y;,...,Y, be independent samples from N(£,1) and
N(n,1), and consider the hypothesis H: 5 < § against K: n > £. There exists
a UMP test, and it rejects the hypothesis when Y — X is too large.
[If §, < m, is a particular alternative, the distribution assigning probability 1 to
the point § = §{ = (m§; + nn,)/(m + n) is least favorable.]

Let X;,..., X,,; Yi,..., Y, be independently, normally distributed with means
¢ and 7, and variances 0% and 72 respectively, and consider the hypothesis
H:7 <o against K:0 <.

(i) If ¢ and n are known, there exists a UMP test given by the rejection
region £(Y, - )%/E(X, - §)* > C.
(ii) No UMP test exists when ¢ and % are unknown.

Additional Problems

Let Py, P,, P, be the probability distributions assigning to the integers 1,...,6
the following probabilities:

1 2 3 4 5 6
P, .03 .02 02 01 0 .92
P, .06 .05 08 02 01 .78
P, .09 .05 12 0 02 T2

Determine whether there exists a level-a test of H: P = P, which is UMP
against the alternatives P, and P, when (i) a = .01; (ii) « = .05; (iii) a = .07.



3.10] PROBLEMS 123
40. Let the distribution of X be given by

x | 0 1 2 3
P(X=x) | 6 20 9-120 1-6

where 0 < 6 < .1. For testing H: 6 = .05 against § > .05 at level a = .05,
determine which of the following tests (if any) is UMP:

D ¢0) =1, (1) = ¢(2) = $(3) = 0;
(i) ¢@1)=.5 ¢(0)=¢(2)=¢(3)=0;
(i) ¢(3) =1, ¢(0) = 6(1) = ¢(2) = 0.
41. Let Xj,..., X, be independently distributed, each uniformly over the integers

1,2,..., 8. Determine whether there exists a UMP test for testing H: 6 = §, at
level 1/6} against the alternatives (i) 8 > 6,; (ii) 8 < 6,; (iii) 9 + 6.

42. Let X, be independently distributed as N(iA,1), i = 1,..., n. Show that there

exists a UMP test of H:A <0 against K: A >0, and determine it as
explicitly as possible.
Note. The following problems (and some of the Additional Problems in later
chapters) refer to the gamma, Pareto, Weibull, and inverse Gaussian distribu-
tions. For more information about these distributions, see Chapter 17, 19, 20,
and 25 respectively of Johnson and Kotz (1970).

43. Let Xj,..., X, be a sample from the gamma distribution T'(g, b) with density

g-1 7.\‘/h, 0< , 0< )
I‘(g)ng e x b,g

Show that there exist a UMP test for testing

(i) H:b < b, against b > b, when g is known;
(i) H:g < g, against g > g, when b is known.

In each case give the form of the rejection region.

44. A random variable X has the Pareto distribution P(c, ) if its density is
e’ /x*L0<r<x,0<ec

(1) Show that this defines a probability density.
(i) If X has distribution P(c, 7), then Y = log X has exponential distribu-
tion E(§, b) with { =logr, b=1/c.
(i) If Xj,..., X, is a sample from P(c, 7), use (ii) and Problem 3 to obtain
UMP tests of (a) H:7 =1, against 7 # 1, when b is known; (b)
H:c=cy, 7=1 against ¢ > ¢y, T < T,
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A random variable X has the Weibull distribution W(b, c) if its density is

cfx\¢<! .

(i) Show that this defines a probability density.

@) If X,,..., X, is a sample from W(b, ¢), with the shape parameter c¢
known, show that there exists a UMP test of H: b < b, against b > b,
and give its form.

Consider a single observation X from W(l, c).

(i) The family of distributions does not have monotone likelihood ratio in x.

(ii) The most powerful test of H: ¢ = 1 against ¢ = 2 rejects when X < k,
and when X > k,. Show how to determine k, and k,.

(iii) Generalize (ii) to arbitrary alternatives ¢; > 1, and show that a UMP test
of H: c =1 against ¢ > 1 does not exist.

(iv) For any ¢, > 1, the power function of the MP test of H: ¢ = 1 against
¢ = ¢, is an increasing function of c.

Let X),..., X, be a sample from the inverse Gaussian distribution I(g, 7)
with density

[ T ”
2mx3 exp( B 2xu2(x - u)h)’ *>0, ra>0.

Show that there exists a UMP test for testing

(i) H:p < p, against p > p, when r is known;
(i) H:r < 1, against 7 > 1, when p is known.

In each case give the form of the rejection region.

(iii) The distribution of V =7(X, — p)?/Xpu* is x?, and hence that of
TEZI(X; — 1)?/Xip*]is X3

[Let Y = min(X;, p2/X;), Z=17(Y — p)2/u*Y. Then Z=V and Z is x}

[Shuster (1968)].]

Note. The UMP test for (ii) is discussed in Chhikara and Folks (1976).

Let X be distributed according to Py, 6 € Q, and let T be sufficient for . If
@(X) is any test of a hypothesis concerning 8, then {(7T) given by y(z) =
Ef@(X)|t] is a test depending on T only, an its power function is identical
with that of p(X).
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49. In the notation of Section 2, consider the problem of testing H,: P = P,
against H,: P = P, and suppose that known probabilities m, = 7 and = =
1 — & can be assigned to H; and H, prior to the experiment.

(i) The overall probability of an error resulting from the use of a test ¢ is

mEe(X) + (1 - 7)E[1 - 9(X)].

(i) The Bayes test minimizing this probability is given by (8) with k = =, /m,.
(iii) The conditional probability of H, given X = x, the posterior probability
of H, is
7 pi(x)
Mopo(x) + mpy(x)’

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability.

50. (i) For testing H,: @ = 0 against H, : § = 8, when X is N(8,1), given any
0 < a <1andany0 <« <1 (in the notation of the preceding problem),
there exists 8, and x such that (a) H, is rejected when X = x but (b)
P(H,|x) is arbitrarily close to 1.

(ii) The paradox of part (i) is due to the fact that a is held constant while the
power against @, is permitted to get arbitrarily close to 1. The paradox
disappears if a is determined so that the probabilities of type I and type
II error are equal [but see Berger and Sellke (1984)].

{For a discussion of such paradoxes, see Lindley (1957), Bartlett (1957) and
Schafer (1982).]

51. Let Xi,..., X, be iid. with density p, or p,, so that the MP level-a test of
H: p, rejects whenI1/.,r(X;) > C,, where r(X,) = p,(X;)/po(X,), or equiv-
alently when

(34) —{Ehogr(x) - Eliog ()] 2,

(i) It follows from the central limit theorem (Chapter 5, Theorem 3) that
under H the left side of (34) tends in law to N(0, 0%) with o¢® =
Var,[log r( X,)] provided ¢* < c0.

(if) From (i) it follows that k, = ou, where ®(u,) =1 — a.

(iii) The power of the test (34) agaisnt p, tends to 1 as n — oc.

[(iii): Problem 14(iv).]

52. Let X,,..., X, be independent N(#,y), 0 <y <1 known, and Y,,...,7,
independent N(8,1). Then X is more informative than Y according to the
definition at the end of Section 4.
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[If ¥, is N(0,1 — y), then X; + V, has the same distribution as Y,.]
Note. If ¢ is unknown, it is not true that a sample from N(0, ya?),

0 <y <1, is more informative than one from N(#, 0%); see Hansen ad
Torgersen (1974).

53. Let f,g be two probability densities with respect to p. For testing the
hypothesis H:0 <6, or 8 >0, (0 <8, <8, <1) against the alternatives
0, <8 <0, in the family Z= {0f(x) + (1 — 0)g(x), 0 < < 1}, the test
@(x) = a is UMP at level a.
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CHAPTER 4

Unbiasedness: Theory and
First Applications

1. UNBIASEDNESS FOR HYPOTHESIS TESTING

A simple condition that one may wish to impose on tests of the hypothesis
H: 6 € Q, against the composite class of alternatives K: 8 € Q is that
for no alternative in K should the probability of rejection be less than the
size of the test. Unless this condition is satisfied, there will exist alternatives
under which acceptance of the hypothesis is more likely than in some cases
in which the hypothesis is true. A test ¢ for which the above condition
holds, that is, for which the power function B,(8) = E,¢( X) satisfies

B,(8) <a if 6€Qy,

(1)
B,(8) >a if 6eQ,

is said to be unbiased. For an appropriate loss function this was seen in
Chapter 1 to be a particular case of the general definition of unbiasedness
given there. Whenever a UMP test exists, it is unbiased, since its power
cannot fall below that of the test ¢(x) = a.

For a large class of problems for which a UMP test does not exist, there
does exist a UMP unbiased test. This is the case in particular for certain
hypotheses of the form 8 < 6, or § = §,, where the distribution of the
random observables depends on other parameters besides 8.

When B,(6) is a continuous function of #, unbiasedness implies

(2) B,(8) =a  forall 6inw,

where w is the common boundary of @ and £, that 1s, the set of points §
that are points or limit points of both Q, and . Tests satisfying this

134
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condition are said to be similar on the boundary (of H and K). Since it is
more convenient to work with (2) than with (1), the following lemma plays
an important role in the determination of UMP unbiased tests.

Lemma 1. If the distributions Py are such that the power function of every
test is continuous, and if ¢, is UMP among all tests satisfying (2) and is a
level-a test of H, then ¢, is UMP unbiased.

Proof. The class of tests satisfying (2) contains the class of unbiased
tests, and hence ¢, is uniformly at least as powerful as any unbiased test.
On the other hand, ¢, is unbiased, since it is uniformly at least as powerful
as ¢(x) = a.

2. ONE-PARAMETER EXPONENTIAL FAMILIES

Let 6 be a real parameter, and X = (Xj,..., X,) a random vector with
probability density (with respect to some measure u)

po(x) = C(8)e’™™h(x).

It was seen in Chapter 3 that a UMP test exists when the hypothesis H and
the class K of alternatives are given by (i) H: 6 < 6,, K : § > 8, (Corollary
2)and (i) H: 0 <6,0r0 >0, (0, <8,), K:8, <8 <8, (Theorem 6), but
not for (iii) H: 0, <0 <6,, K: 0 <8, or § > 6,. We shall now show that
in case (iii) there does exist a UMP unbiased test given by

1 when T(x) < C,or > G,,
(3) o(x)=(y, when T(x)=C, i=1,2,
0 when C; < T(x) < G,,

where the C’s and y’s are determined by
(4) Egd(X) = Egp(X) = a.

The power function Ey¢(X) is continuous by Theorem 9 of Chapter 2,
so that Lemma 1 is applicable. The set w consists of the two points #, and
6,, and we therefore consider first the problem of maximizing E,.¢(X) for
some 6’ outside the interval [6,, 6,], subject to (4). If this problem is
restated in terms of 1 — ¢(x), it follows from part (ii) of Theorem 6,
Chapter 3, that its solution is given by (3) and (4). This test is therefore
UMP among those satisfying (4), and hence UMP unbiased by Lemma 1. It
further follows from part (iii) of the theorem that the power function of the
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test has a minimum at a point between 8, and 6,, and is strictly increasing
as 0 tends away from this minimum in either direction.

A closely related problem is that of testing (iv) H: 6 = §, against the
alternatives 6 # 6,,. For this there also exists a UMP unbiased test given by
(3), but the constants are now determined by

(5) E00[¢(X)] =a
and
(6) Eq, [T(X)9(X)] = Eo [T(X)] e

To see this, let 8’ be any particular alternative, and restrict attention to
the sufficient statistic T, the distribution of which by Chapter 2, Lemma 8, is
of the form

dP,(t) = C(8) e® dv(1).

Unbiasedness of a test {(¢) implies (5) with ¢(x) = ¢[T(x)]; also that the
power function B(0) = Ey[¢(T)] must have a minimum at 6 = §,. By
Theorem 9 of Chapter 2 the function B(#) is differentiable, and the
derivative can be computed by differentiating E,y/(7T') under the expecta-
tion sign, so that for all tests {(t)

BO) = ETVD] + S BT,

For (?) = a, this equation becomes

0=E,(T) + CC—'(((%.

Substituting this in the expression for 8’(6) gives

B'(0) = Eg[TY(T)] — Eo(T)Ey[¢(T)],

and hence unbiasedness implies (6) in addition to (5).

Let M be the set of points (Eq [¢(T')), Eq [T¢(T))) as ¢ ranges over the
totality of critical functions. Then M is convex and contains all points
(u, uEg (T)) with 0 <u < 1. It also contains points (a, u,) with u, >
aEg (T). This follows from the fact that there exist tests with Ey[¥(T)) = a
and B’(6,) > O (see Problem 22 of Chapter 3). Since similarly M contains
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points (a, u;) with u; < aE, (T), the point (&, aE, (7)) is an inner point of
M. Therefore, by Theorem 5(iv) of Chapter 3 there exist constants k,, k,
and a test Y(¢) satisfying (5) and (6) with ¢(x) = ¢[T(x)], such that
Y(1) = 1 when

C(0y)(ky + kyt) €% < C(0")
and therefore when
a, + ayt < e

This region is either one-sided or the outside of an interval. By Theorem 2
of Chapter 3 a one-sided test has a strictly monotone power function and
therefore cannot satisfy (6). Thus §(¢) is 1 when ¢t < C; or > C,, and
the most powerful test subject to (5) and (6) is given by (3). This
test is unbiased, as is seen by comparing it with ¢(x) = a. It is then also
UMP unbiased, since the class of tests satisfying (5) and (6) includes the
class of unbiased tests.

A simplification of this test is possible if for § = @, the distribution of T
is symmetric about some point a, thatis, if Py {T <a —u} = Py {T>a +
u} for all real u. Any test which is symmetric about a and satisfies (5) must
also satisfy (6), since Eg [TY(T)] = Eq (T — a)y(T)] + aEg Y(T) = aa
= Ey(T)a. The C’s and 7’s are therefore determined by

a
P {T<C} + 1P {T=C} = IR

C,=22a- C, Y2 =T1-

The above tests of the hypotheses 0, < 8 < 8, and 8 = 8, are strictly
unbiased in the sense that the power is > a for all alternatives §. For the
first of these tests, given by (3) and (4), strict unbiasedness is an immediate
consequence of Theorem 6(iii) of Chapter 3. This states in fact that the
power of the test has a minimum at a point 6, between 6, and 6, and
increases strictly as  tends away from 6, in either direction. The second of
the tests, determined by (3), (5), and (6), has a continuous power function
with a minimum of « at 6 = §,. Thus there exist §, < §, < 8, such that
B(6,) = B(8,) = c where a < ¢ < 1. The test therefore coincides with the
UMP unbiased level-c test of the hypothesis 6, < 6 < 6,, and the power
increases strictly as 8 moves away from 6, in either direction. This proves
the desired result.
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Example 1. Binomial. Let X be the number of successes in n binomial trials
with probability p of success. A theory to be tested assigns to p the value p,, so that
one wishes to test the hypothesis H: p = p,. When rejecting H one will usually
wish to state also whether p appears to be less or greater than p,. If, however, the
conclusion that p # p, in any case requires further investigation, the preliminary
decision is essentially between the two possibilities that the data do or do not
contradict the hypothesis p = p,. The formulation of the problem as one of
hypothesis testing may then be appropriate.

The UMP unbiased test of H is given by (3) with T(X) = X. The condition (5)
becomes

-1 5
n
(Mg -0 &)sac=1-a,
x=C,+1 i=1

and the left-hand side of this can be obtained from tables of the individual
probabilities and cumulative distribution function of X. The condition (6), with the
help of the identity

X n—x =1\ -1 (n-1y—(x—
x( %) it =npo(" )Po lggn-n-x-p

x—-1
reduces to
c,-1 )
n-— -1, (n-1—(x—1
)y (x_l)pé S
x=C;+1

2
n-1 1 =1y =(Ci—
+ T -0 EI)E e =1 -,

the left-hand side of which can be computed from the binomial tables.

As n increases, the distribution of (X — npy)/ ‘/npoqo tends to the normal
distribution N(0,1). For sample sizes which are not too small, and values of p,
which are not too close to 0 or 1, the distribution of X is therefore approximately
symmetric. In this case, the much simpler “equal tails” test, for which the C’s and
y’s are determined by

-1
n
Y (%) g+ vl( cl)pg‘qa‘c‘

x=0

n Cy ,n—C: - ny x. n-x @
=72(C2)P0"10 1+ ) (x)l’o% =7

x=C,+1

is approximately unbiased, and constitutes a reasonable approximation to the
unbiased test. Of course, when n is sufficiently large, the constants can be de-
termined directly from the normal distribution.
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Example 2. Normal variance. Let X = (X,,..., X,) be a sample from a nor-
mal distribution with mean 0 and variance ¢2, so that the density of the X’s is

-]

Then T(x) = Lx? is sufficient for o2, and has probability density (1/a2)f,(y/a?),
where

1
= ,(n/)-1,=(y/2) >0
fn(y) 2"/2F(n/2)y e ) y ’

is the density of a x?-distribution with n degrees of freedom. For varying o, these
distributions form an exponential family, which arises also in problems of life
testing (see Problem 14 of Chapter 2), and concerning normally distributed variables
with unknown mean and variance (Section 3 of Chapter 5). The acceptance region
of the UMP unbiased test of the hypothesis H: 0 = g is

x2

<) 5<G
%

with
C
[PhNd=1-a
G

and

(1 - )E,(ZX?)

[wt) dy = =n(1-a).

For the determination of the constants from tables of the x2-distribution, it is
convenient to use the identity

e (y) = nf,.2(),

to rewrite the second condition as
c
fc foi2(p) dy =1~ a.
1

Alternatively, one can integrate fccl 2yf (y) dy by parts to reduce the second condi-
tion to

Ci?e G/t = g/t /2,
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[For tables giving C, and C, see Pachares (1961).] Actually, unless n is very small
or g, very close to 0 or oo, the equal-tails test given by

G Y _«
IO B NAOLES

is a good approximation to the unbiased test. This follows from the fact that T,
suitably normalized, tends to be normally and hence symmetrically distributed for
large n.

UMP unbiased tests of the hypotheses (iii) H: 8, < 6 < 6, and (iv)
H: 0 = 0, against two-sided alternatives exist not only when the family
Pe(x) is exponential but also more generally when it is strictly totally
positive (STP_). A proof of (iv) in this case is given in Brown, Johnstone,
and MacGibbon (1981); the proof of (iii) follows from Chapter 3, Problem
30.

3. SIMILARITY AND COMPLETENESS

In many important testing problems, the hypothesis concerns a single
real-valued parameter, but the distribution of the observable random vari-
ables depends in addition on certain nuisance parameters. For a large class
of such problems a UMP unbiased test exists and can be found through the
method indicated by Lemma 1. This requires the characterization of the
tests ¢, which satisfy

Ep(X) = a

for all distributions of X belonging to a given family #* = (P, 0 € w}.
Such tests are called similar with respect to #X or w, since if ¢ is
nonrandomized with critical region S, the latter is “similar to the sample
space” £ in that both the probability P,{ X € S} and Py{X € ¥} are
independent of § € w.

Let T be a sufficient statistic for 2%, and let £7 denote the family { P/,
0 € w} of distributions of T as 8 ranges over w. Then any test satisfying

(7 E[¢(X)t] =a ae 27
is similar with respect to 27, since then
Eg[o(X)] = Eo{E[¢(X)|IT]} =a forall 6 € w.

*A statement is said to hold a.e. 2 if it holds except on a set N with P(N) = 0 for all
Pe?
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A test satisfying (7) is said to have Neyman structure with respect to T. It is
characterized by the fact that the conditional probability of rejection is a on
each of the surfaces T = t. Since the distribution on each such surface is
independent of § for § € w, the condition (7) essentially reduces the
problem to that of testing a simple hypothesis for each value of r. It is
frequently easy to obtain a most powerful test among those having Neyman
structure, by solving the optimum problem on each surface separately. The
resulting test is then most powerful among all similar tests provided every
similar test has Neyman structure. A condition for this to be the case can be
given in terms of the following definition.
A family 2 of probability distributions P is complete if

(8) Ep[f(X)]=0 forall Pe®
implies
(9) f(x)=0 ae 2.

In applications, & will be the family of distributions of a sufficient statistic.

Example 3. Consider n independent trials with probability p of success, and let
X, be 1 or 0 as the ith trial is a success or failure. Then T= X, + --- + X, isa
sufficient statistic for p, and the family of its possible distributions is # = { b( p, n),
0 < p < 1}. For this family (8) implies that

n

Ef(t)(':)p' =0 forall 0<p< oo,

t=0

where p = p/(1 — p). The left-hand side is a polynomial in p, all the coefficients of

which must be zero. Hence f(¢) =0 for t = 0,..., n and the binomial family of
distributions of T is complete.

Example 4. Let X,,..., X, be a sample from the uniform distribution U(0, 8),
0 <0< . Then T = max(X,,..., X)) is a sufficient statistic for #, and (8)
becomes

[1(0) dP,,T(;)=no-"f0”f(:)-t"-ldz=0 forall .

Let f(t) = f*(t) — f (¢) where f* and f~ denote the positive and negative parts of
f respectively. Then

»*(4) =Lﬁ(z)z"-1m and v~ (A) =/Ar(z);"—1dz

are two measures over the Borel sets on (0, c0), which agree for all intervals and
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hence for all 4. This implies f*(r) = () except possibly on a set of Lebesgue
measure zero, and hence f(¢) = 0 a.e. 27,

Example 5. Let X,...,X,; Y,,...,Y, be independently normally distributed
as N(¢,0%) and N(¢, 72) respectlvely Then the joint density of the variables is

1 ¢ 1 H
C(é,o,f)eXP(—ﬁZx? + ;in —SaLy pZn)-

The statistic
T=(ZX,Zx,XY, 1Y)

is sufficient; it is, however, not complete, since E(XY,/n — LX,/m) is 1dent1cally
zero. If the Y’s are instead distributed with a mean E(Y) =7 which varies
1ndependently of £, the set of possxble values of the parameters 8, = —1/20?,
0, =¢/6% 0, = —1/27%, 6, = /7* contains a four-dimensional rectangle and it
follows from Theorem 1 below that 27 is complete.

Completeness of a large class of families of distributions including that of
Example 3 is covered by the following theorem.

Theorem 1. Let X be a random vector with probability distribution

Lo,

Jj=1

dPy(x) = C(8)exp

T(x ]du(x)

and let P be the family of distributions of T = (Ty(X),..., T (X)) as 8
ranges over the set w. Then PT is complete provided w contains a k-dimen-
sional rectangle.

Proof. By making a translation of the parameter space one can assume
without loss of generality that w contains the rectangle

I1={(6,,....0,):—a<8<a, j=1,. k}.
Let f(t) = f*(¢) — f(¢) be such that
Ef(T)=0 forall f€ o.

Then for all 6 € I, if v denotes the measure induced in T-space by the
measure p,

[ e ey av(e) = [ =f~(1) dn(o)
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and hence in particular

1@y av(e) = [£ (1) dv(e).

Dividing f by a constant, one can take the common value of these two
integrals to be 1, so that

dP*(1) = f*(1)dv(1) and dP~(r) = f(1)dv(r)

are probability measures, and
[ = ap* (1) = [ ¥ dP~(1)

for all § in I. Changing the point of view, consider these integrals now as
functions of the complex variables 01 = ﬁj +im;, j=1,..., k. For any
fixed 6,,...,0,_,,0,.,,...,0,, with real parts strictly between —a and +aq,
they are by Theorem 9 of Chapter 2 analytic functions of §; in the strip
R;:—a<§ <a, —oo <m;< oo of the complex plane. For 6,,...,86,
fixed, real, and between —a and a, equality of the integrals holds on the
line segment {(£,,%,): —a <§, <a, n, =0} and can therefore be ex-
tended to the strip R;, in which the integrals are analytic. By induction the
equality can be extended to the complex region {(0,,...,8,):(§;, n,) € R,
for j =1,..., k}. It follows in particular that for all real (n,,..., 1)

[ e ap* (1) = [e=nn dP(1).

These integrals are the characteristic functions of the distributions P* and
P~ respectively, and by the uniqueness theorem for characteristic functions,*
the two distributions P* and P~ coincide. From the definition of these
distributions it then follows that f*(¢) = f (¢), a.e. », and hence that
f(t) =0 a.e. 2T, as was to be proved.

Example 6. Nonparametric completeness. Let X|,..., Xy be independently
and identically distributed with cumulative distribution function F € %, where %
is the family of all absolutely continuous distributions. Then the set of order
statistics 7(X) = (X,,,..., X y,) was shown to be sufficient for # in Chapter 2,
Section 6. We shall now prove it to be complete. Since, by Example 7 of Chapter 2,
T'(X) = (LX,,ZX?%,...,LX") is equivalent to 7(X) in the sense that both induce
the same subfield of the sample space, T’( X) is also sufficient and is complete if

*See for example Section 26 of Billingsley (1979).
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and only if T(X) is complete. To prove the completeness of 7/(X) and thereby that
of T(X), consider the family of densities

f(x) = C(8y,...,0y)exp(—x2 + O;x + - +8yxV),

where C is a normalizing constant. These densities are defined for all values of the
6°s since the integral of the exponential is finite, and their distributions belong to %
The density of a sample of size N is

CNexp(—ijZN +0, %+ +0N2xj’-v)

and these densities constitute an exponential family #,. By Theorem 1, T’(X) is
complete for %,, and hence also for %, as was to be proved.

The same method of proof establishes also the following more general result. Let
X, j=1...,N,i= 1,..., ¢, be independently distributed with absolutely con-

4

tinuous distributions F,, and let X < --. < X{™) denote the N, observations
Xi,..., X,y arranged in increasing order. Then the set of order statistics

(XD, XMW, XD x0)

is sufficient and complete for the family of distributions obtained by letting
F,,..., F. range over all distributions of &%. Here completeness is proved by
considering the subfamily %, of & in which the distributions F, have densities of
the form

fi(x) = C'i(0i1,...,0iNi)exp(—x2Ni +0,x+ - +0,.NIxN").

The result remains true if % is replaced by the family &%, of continuous
distributions. For a proof see Problem 12 or Bell, Blackwell, and Breiman (1960).

For the present purpose the slightly weaker property of bounded com-
pleteness is appropriate, a family & of probability distributions being
boundedly complete if for all bounded functions f, (8) implies (9). If £ is
complete it is a fortiori boundedly complete.

Theorem 2. Let X be a random variable with distribution P € P, and let
T be a sufficient statistic for . Then a necessary and sufficient condition for
all similar tests to have Neyman structure with respect to T is that the family
PT of distributions of T is boundedly complete.

Proof. Suppose first that 27 is boundedly complete, and let ¢(X) be
similar with respect to #. Then

E[¢(X)-a] =0 forall Pe P
and hence, if (¢) denotes the conditional expectation of ¢(X) — a given ¢,

Ey(T)=0 forall PTe "
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Since {(¢) can be taken to be bounded by Lemma 3 of Chapter 2, it follows
from the bounded completeness of 27 that () = 0 and hence E[¢(X)|t]
= a a.e. P7, as was to be proved.

Conversely suppose that 27 is not boundedly complete. Then there
exists a function f such that |f(¢)| < M for some M, that Ef(T) = 0 for all
PT € @7 and f(T) +# 0 with positive probability for some P7 € 27, Let
o(2) = ¢f(t) + a, where ¢ = min(a,1 — a)/M. Then ¢ is a critical func-
tion, since 0 < ¢(¢) < 1, and it is a similar test, since E¢(T) = a for all
PT € #T. But ¢ does not have Neyman structure, since ¢(7) # a with
positive probability for at least some distribution in 27,

4. UMP UNBIASED TESTS FOR MULTIPARAMETER
EXPONENTIAL FAMILIES

An important class cf hypotheses concerns a real-valued parameter in an
exponential family, with the remaining parameters occurring as unspecified
nuisance parameters. In many of these cases, UMP unbiased tests exist and
can be constructed by means of the theory of the preceding section.

Let X be distributed according to

(10)

dPi¥s(x) = C(6, #)exp|0U(x) + iﬂﬂ}(x) du(x), (6,9)eQ,

i=1

and let ¢ = (&,,...,%,)and T = (T3, ..., T,). We shall consider the prob-
lems* of testing the following hypotheses H, against the alternatives X,
j=1...,4

H :0<6, K,:0>0,
H,:0<0,0r8=>86, K,:0,<0<89,
Hy:0,<0<8, K;:0<86,0r0>0,
H,:0=46, K,:0+4,.

We shall assume that the parameter space £ is convex, and that it has
dimension k + 1, that is, that it is not contained in a linear space of
dimension < k + 1. This is the case in particular when Q is the natural
parameter space of the exponent: il family. We shall also assume that there
are points in £ with  both < and > §,, 8,, and 6, respectively.

*Such problems are also treated in Johansen (1979), which in addition discusses large-
sample tests of hypotheses specifying more than one parameter.
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Attention can be restricted to the sufficient statistics (U, T) which have
the joint distribution

k
(11) dPY 3 (u,t) = C(8, &)exp| u + ). ﬂiti) dv(u,t), (6,9)eQ.

i=1

When T = ¢ is given, U is the only remaining variable and by Lemma 8 of
Chapter 2 the conditional distribution of U given ¢ constitutes an exponen-
tial family

dP{"(u) = C,(0)e® dv,(u).

In this conditional situation there exists by Corollary 2 of Chapter 3 a UMP
test for testing H, with critical function ¢, satisfying

1 when u > Cy(t),
(12) o(u,t) = {v,(t) when u=Cy1),
0 when u < Cy(t),

where the functions C, and y, are determined by
(13) Eo [6,(U, T)|t] =a  forall .

For testing H, in the conditional family there exists by Theorem 6 of
Chapter 3 a UMP test with critical function

1 when C;(t) <u < G(1),
(14) o(u,t) =({v, (1) when u=C\(t), i=1,2,
0 when u < C,(t) or > C,(t),

where the C’s and y’s are determined by
(15) Ey [9,(U, T)lt] = Ep,[,(U, T)lt] = a.
Consider next the test ¢, satisfying

1 when u < Cy(t) or > Cy(t),
(16) o(u,t)={v(t) when u=CJ(t), i=1,2,
0 when C,(t) <u < G(t),
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with the C’s and y’s determined by
(17) E [6:(U. T)It] = Eq,[65(U, T)lt] = a.

When T = ¢t is given, this is (by Section 2 of the present chapter) UMP
unbiased for testing H; and UMP among all tests satisfying (17).

Finally, let ¢, be a critical function satisfying (16) with the C’s and y’s
determined by

(18) E, [¢(U, T)|t] = @
and
(19) E, [Usy(U, T)It] = aEp [Ulr].

Then given T = ¢, it follows again from the results of Section 2 that ¢, is
UMP unbiased for testing H, and UMP among all tests satisfying (18) and
19).

So far, the critical functions ¢; have been considered as conditional tests
given T = t. Reinterpreting them now as tests depending on U and T for
the hypotheses concerning the distribution of X (or the joint distribution of
U and T) as originally stated, we have the following main theorem.*

Theorem 3. Define the critical functions ¢, by (12) and (13); ¢, by (14)
and (15); ¢, by (16) and (17); ¢, by (16), (18), and (19). These constitute
UMP unbiased level-a tests for testing the hypotheses H,, ..., H, respectively
when the joint distribution of U and T is given by (11).

Proof. The statistic T is sufficient for ¢ if § has any fixed value, and
hence T is sufficient for each

w,={(6.8):(6.9)eQ.0=06} ;=012
By Lemma 8 of Chapter 2, the associated family of distributions of T is
given by
k
dPaf,.a(t) = C(0,. 0)exp( Y ﬂ,t,) dy, (1), (0.9) € o, j=0.1,2.
i=1
Since by assumption € is convex and of dimension k + 1 and contains

*A somewhat different asymptotic optimality property of these tests is established by
Michel (1979).
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points on both sides of § = 8, it follows that w; is convex and of dimension
k. Thus w; contains a k-dimensional rectangle; by Theorem 1 the family

#T={P],:(6,9) € w)
is complete; and similarity of a test ¢ on w; implies

Eaj[‘P(U’ T)|t] = a.

(1) Consider first H,. By Theorem 9 of Chapter 2 the power function of
all tests is continuous for an exponential family. It is therefore enough to
prove ¢, to be UMP among all tests that are similar on w, (Lemma 1), and
hence among those satisfying (13). On the other hand, the overall power of a
test ¢ against an alternative (8, &) is

@) Eolo.)] = f| fotu,) dri)] drl (0.

One therefore maximizes the overall power by maximizing the power of the
conditional test, given by the expression in brackets, separately for each ¢.
Since ¢, has the property of maximizing the conditional power against any
6 > 6, subject to (13), this establishes the desired result.

(2) The proof for H, and H, is completely analogous. By Lemma 1, it
is enough to prove ¢, and ¢, to be UMP among all tests that are similar on
both w; and w,, and hence among all tests satisfying (15). For each ¢, ¢,
and ¢, maximize the conditional power for their respective problems
subject to this condition and therefore also the unconditional power.

(3) Unbiasedness of a test of H, implies similarity on w, and
d
%[Eo,W(U,T)] =0  onw,.

The differentiation on the left-hand side of this equation can be carried out
under the expectation sign, and by the computation which earlier led to (6),
the equation is seen to be equivalent to

Therefore, since 27 is complete, unbiasedness implies (18) and (19). As in
the preceding cases, the test, which in addition satisfies (16), is UMP among
all tests satisfying these two conditions. That it is UMP unbiased now
follows, as in the proof of Lemma 1, by comparison with the test ¢(u, t) = a.
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(4) The functions ¢, ..., ¢, were obtained above for each fixed ¢ as a
function of u. To complete the proof it is necessary to show that they are
jointly measurable in u and ¢, so that the expectation (20) exists. We shall
prove this here for the case of ¢,; the proof for the other cases is sketched in
Problems 14 and 15. To establish the measurability of ¢,, one needs to show
that the functions C,(¢) and y,(¢) defined by (12) and (13) are z-measur-
able. Omitting the subscript 0, and denoting the conditional distribution
function of U given T = ¢ and for 8 = 6§, by

F(u) = P {U<ult},
one can rewrite (13) as
F(C)-v[F(C)-F(C-0)] =1~
Here C = C(t) is such that F,(C — 0) <1 — a < F/(C), and hence
C(t)=F'(1-a)

where F'(y) = inf{u: F,(u) > y}. It follows that C(¢) and y(t) will both
be measurable provided F,(u) and F,(u — 0) are jointly measurable in u
and ¢ and F!(1 — a) is measurable in ¢.

For each fixed u the function F,(u) is a measurable function of ¢, and for
each fixed ¢ it is a cumulative distribution function and therefore in
particular nondecreasing and continuous on the right. From the second
property it follows that F,(u) > c if and only if for each n there exists a
rational number r such that u < r <u + 1/n and F,(r) > c. Therefore, if
the rationals are denoted by r, r,,...,

{(u,1): F(u) = ¢} =nU{(u,t):0 <r—-u< ;1;, F(r) > c}.

This shows that F,(u) is jointly measurable in u and ¢. The proof for
F,(u — 0) is completely analogous. Since F, '(y) < u if and only if F,(u) >
y, F7(y) is t-measurable for any fixed y and this completes the proof.
The test ¢, of the above theorem is also UMP unbiased if € is replaced
by the set & =Q N {(,4): 0 > 6,}, and hence for testing H': 8 = §,
against 8 > ,. The assumption that © should contain points with § < 6,
was in fact used only to prove that the boundary set w, contains a
k-dimensional rectangle, and this remains valid if Q is replaced by .
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The remainder of this chapter as well as the next chapter will be
concerned mainly with applications of the preceding theorem to various
statistical problems. While this provides the most expeditious proof that the
tests in all these cases are UMP unbiased, there is available also a variation
of the approach, which is more elementary. The proof of Theorem 3 is quite
elementary except for the following points: (i) the fact that the conditional
distributions of U given T = ¢ constitute an exponential family, (ii) that the
family of distributions of T is complete, (iii) that the derivative of
Ey 39(U,T) exists and can be computed by differentiating under the
expectation sign, (iv) that the functions ¢,,..., ¢, are measurable. Instead
of verifying (i) through (iv) in general, as was done in the above proof, it is
possible in applications of the theorem to check these conditions directly for
each specific problem, which in some cases is quite easy.

Through a transformation of parameters, Theorem 3 can be extended to
cover hypotheses concerning parameters of the form

k
0*=af+ Y a9, ag# 0.

i=1

This transformation is formally given by the following lemma, the proof of
which is immediate.

Lemma 2. The exponential family of distributions (10) can also be written
as

dP{*y(x) = K(0%, D)exp 62U *(x) + LHT*(x)] du(x)

where

U a;
U*=—, T*=T —-—U.
ag ag

Application of Theorem 3 to the form of the distributions given in the
lemma leads to UMP unbiased tests of the hypothesis H* : §* < 6, and the
analogously defined hypotheses H}, H}, H}.

When testing one of the hypotheses H; one is frequently interested in the
power B(8’, #) of ¢; against some alternative 8. As is indicated by the
notation and is seen from (20), this power will usually depend on
the unknown nuisance parameters 4. On the other hand, the power of the
conditional test given T = ¢,

B(8'1t) = Eo [¢(U, T)l],

is independent of ¥ and therefore has a known value.
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The quantity 8(6’|¢t) can be interpreted in two ways: (i) It is the
probability of rejecting H when T = 1. Once T has been observed to have
the value 7, it may be felt, at least in certain problems, that this is a more
appropriate expression of the power in the given situation than B(8’, 9),
which is obtained by averaging B(6’|t) with respect to other values of ¢ not
relevant to the situation at hand. This argument leads to difficulties, since in
many cases the conditioning could be carried even further and it is not clear
where the process should stop. (i) A more clear-cut interpretation is
obtained by considering B(8’|t) as an estimate of B(8’, #). Since

E,,,‘,[B(O'IT)] = 3(0', '9),

this estimate is unbiased in the sense of Chapter 1, equation (11). It follows
further from the theory of unbiased estimation and the completeness of the
exponential family that among all unbiased estimates of B(6’, ) the
present one has the smallest variance. (See TPE, Chapter 2.)

Regardless of the interpretation, 8(8’|¢t) has the disadvantage compared
with an unconditional power that it becomes available only after the
observations have been taken. It therefore cannot be used to plan the
experiment and in particular to determine the sample size, if this must be
done prior to the experiment. On the other hand, a simple sequential
procedure guaranteeing a specified power 8 against the alternatives 6 = 6§’
is obtained by continuing taking observations until the conditional power
B@'|t)is > B.

The general question of whether to interpret measures of performance
such as the power of a test or coverage probability of a family of confidence
statements conditionally, and if so, conditionally on what aspects of the
data, will be considered in Chapter 10.

5. COMPARING TWO POISSON OR BINOMIAL
POPULATIONS

A problem arising in many different contexts is the comparison of two
treatments or of one treatment with a control situation in which no
treatment is applied. If the observations consist of the number of successes
in a sequence of trials for each treatment, for example the number of cures
of a certain disease, the problem becomes that of testing the equality of two
binomial probabilities. If the basic distributions are Poisson, for example in
a comparison of the radioactivity of two substances, one will be testing the
equality of two Poisson distributions.

When testing whether a treatment has a beneficial effect by comparing it
with the control situation of no treatment, the problem is of the one-sided
type. If £, and §; denote the parameter values when the treatment is or is
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not applied, the class of alternativesis K : §, > £,. The hypothesisis £, = &,
if it is known a prioni that there is either no effect or a beneficial one; it is
¢, < ¢, if the possibility is admitted that the treatment may actually be
harmful. Since the test is the same for the two hypotheses, the second
somewhat safer hypothesis would seem preferable in most cases.

A one-sided formulation is sometimes appropriate also when a new
treatment or process is being compared with a standard one, where the new
treatment is of interest only if it presents an improvement. On the other
hand, if the two treatments are on an equal footing, the hypothesis &, = §,
of equality of two treatments is tested against the two-sided alternatives
¢, # §,. The formulation of this problem as one of hypothesis testing is
usually quite artificial, since in case of rejection of the hypothesis one will
obviously wish to know which of the treatments is better.* Such two-sided
tests do, however, have important applications to the problem of obtaining
confidence limits for the extent by which one treatment is better than the
other. They also arise when the parameter £ does not measure a treatment
effect but refers to an auxiliary vaniable which one hopes can be ignored.
For example, §, and £, may refer to the effect of two different hospitals in a
medical investigation in which one would like to combine the patients into a
single study group. (In this connection, see also Chapter 7, Section 3.)

To apply Theorem 3 to this comparison problem it is necessary to express
the distributions in an exponential form with 8 = f(£,, £,), for example
0 = ¢, — & or §,/§,, such that the hypotheses of interest become equivalent
to those of Theorem 3. In the present section the problem will be considered
for Poisson and binomial distributions; the case of normal distributions will
be taken up in Chapter 5.

We consider first the Poisson problem in which X and Y are indepen-
dently distributed according to P(A) and P(p), so that their joint distribu-
tion can be written as

e—(’\ﬂt)

P(X=x,Y=y}=

B
g exp| ylog X + (x + y)logA|.

By Theorem 3 there exist UMP unbiased tests of the four hypotheses
H,,..., H, concerning the parameter 8 = log(u/A) or equivalently concern-
ing the ratio p = p/A. This includes in particular the hypotheses p < A (or
p = A) against the alternatives p > A, and p = A against p ¥ A. Comparing
the distribution of (X, Y') with (10), onehas U= Yand T = X + Y, and by
Theorem 3 the tests are performed conditionally on the integer points of the

*For a discussion of the comparison of two treatments as a three-decision problem, see
Bahadur (1952) and Lehmann (1957).
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line segment X + Y = ¢ in the positive quadrant of the (x, y) plane. The
conditional distribution of Y given X + Y = ¢ is (Problem 13 of Chapter 2)

-y
b y=0’1""’t’

A

A+ p

P(Y=y|X+Y=1) =(;)(>\i“)y

the binomial distribution corresponding to ¢ trials and probability p =
p/(A + p) of success. The original hypotheses therefore reduce to the
corresponding ones about the parameter p of a binomial distribution. The
hypothesis H: p < aA, for example, becomes H: p < a/(a + 1), which is
rejected when Y is too large. The cutoff point depends of course, in addition
to a, also on t. It can be determined from tables of the binomial, and for
large ¢ approximately from tables of the normal distribution.

In many applications the ratio p = p/A is a reasonable measure of the
extent to which the two Poisson populations differ, since the parameters A
and p measure the rates (in time or space) at which two Poisson processes
produce the events in question. One might therefore hope that the power of
the above tests depends only on this ratio, but this is not the case. On the
contrary, for each fixed value of p corresponding to an alternative to the
hypothesis being tested, the power B(A, p) = B(A, pA) is an increasing
function of A, which tends to 1 as A = o0 and to a as A = 0. To see this
consider the power B(p|t) of the conditional test given ¢ This is an
increasing function of ¢, since it is the power of the optimum test based on ¢
binomial trials. The conditioning variable T has a Poisson distribution with
parameter A(1 + p), and its distribution for varying A forms an exponential
family. It follows (Lemma 2 of Chapter 3) that the overall power E[B(p|T)]
is an increasing function of A. As A = 0 or oo, T tends in probability to 0
or oo, and the power against a fixed alternative p tends to a or 1.

The above test is also applicable to samples X;,..., X,, and Y},...,7,

from two Poisson distributions. The statistics X = ¥, X, and Y = ¥7_,Y;
are then sufficient for A and pu, and have Poisson distributions with
parameters mA and np respectively. In planning an experiment one might
wish to determine m = n so large that the test of, say, H: p < p, has power
against a specified alternative p, greater than or equal to some preassigned
B. However, it follows from the discussion of the power function for n = 1,
which applies equally to any other n, that this cannot be achieved for any
fixed n, no matter how large. This is seen more directly by noting that as
A — 0, for both p = p, and p = p, the probability of theevent X =Y =0
tends to 1. Therefore, the power of any level-a test against p = p; and for
varying A cannot be bounded away from a. This difficulty can be overcome
only by permitting observations to be taken sequentially. One can for
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example determine ¢, so large that the test of the hypothesis p < p,/(1 + p,)
on the basis of ¢, binomial trials has power > B against the alternative
P, = p1/(1 + p,). By observing (X}, Y}), (X,, Y;),... and continuing until
Y(X; + Y;) > t,, one obtains a test with power > B against all alternatives
with p > p,.*

The corresponding comparison of two binomial probabilities is quite
similar. Let X and Y be independent binomial variables with joint distribu-
tion

PUX= 51 ) = (2} i i

= (Z’)(;)q{"qi‘exp[y(log% - logz—:)

+(x+ y)log?].

1

The four hypotheses H,,..., H, can then be tested concerning the parame-

ter
6= log( L& ﬂ),
9/ 4

or equivalently concerning the odds ratio (also called cross-product ratio)

) o

This includes in particular the problems of testing H/: p, < p, against
p, > p, and H]: p, = p, against p, # p,. As in the Poisson case, U =Y
and T= X+ Y, and the test is carried out in terms of the conditional
distribution of Y on the line segment X + Y = ¢. This distribution is given
by

1) P(Y=yp|X+Y=1}= c,(p)(,Ty)(;)pY, y=0,1,...,1,

*A discussion of this and alternative procedures for achieving the same aim is given by
Birnbaum (1954).
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where

1
t m n :
) (t~y’)(Y’)"y
y'=0

In the particular case of the hypotheses H; and H/, the boundary value 6,
of (13), (18), and (19) is 0, and the corresponding value of p is p, = 1. The
conditional distribution then reduces to
L Z)0)
t —
P(Y=y|X+V=1) =21V

m+n\ °
("7
which is the hypergeometric distribution.

Tables of critical values by Finney (1948) are reprinted in Biometrika
Tables for Statisticians, Vol. 1, Table 38 and are extended in Finney,
Latscha, Bennett, Hsu, and Horst (1963, 1966). Somewhat different ranges
are covered in Armsen (1955), and related charts are provided by Bross and
Kasten (1957). Extensive tables of the hypergeometric distributions have
been computed by Lieberman and Owen (1961). Various approximations
are discussed in Johnson and Kotz (1969, Section 6.5) and by Ling and
Pratt (1984); see also Cressie (1978).

The UMP unbiased test of p, = p,, which is based on the (conditional)
hypergeometric distribution, requires randomization to obtain an exact
conditional level a for each ¢ of the sufficient statistic 7. Since in practice
randomization is usually unacceptable, the one-sided test is frequently
performed by rejecting when Y > C(T), where C(¢) is the smallest integer
for which P{Y > C(T)|T =t} < a. This conservative test is called
Fisher’s exact test [after the treatment given in Fisher (1934)], since the
probabilities are calculated from the exact hypergeometric rather than an
approximate normal distribution. The resulting conditional levels (and
hence the unconditional level) are often considerably smaller than «, and
this results in a substantial loss of power. An approximate test whose overall
level tends to be closer to a is obtained by using the normal approximation
to the hypergeometric distribution without continuity correction. [For a
comparison of this test with some competitors, see e.g. Garside and Mack
(1976).] A nonrandomized test that provides a conservative overall level, but
that is less conservative than the “exact” test, is described by Boschloo
(1970) and by McDonald, Davis, and Milliken (1977). Convenient entries
into the extensive literature on these and related aspects of 2 X 2 tables can
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be found in Conover (1974), Kempthorne (1979), and Cox and Plackett
(1980); see also Haber (1980), Barnard (1982), Overall and Starbuck (1983),
and Yates (1984). For extensions to r X ¢ tables, see Mehta and Patel
(1983) and the literature cited there.

6. TESTING FOR INDEPENDENCE IN A 2 X 2 TABLE

The problem of deciding whether two characteristics A and B are indepen-
dent in a population was discussed in Section 4 of Chapter 3 (Example 4),
under the assumption that the marginal probabilities p(A) and p(B) are
known. The most informative sample of size s was found to be one selected
entirely from that one of the four categories A4, A, B, or B, say A, which is
rarest in the population. The problem then reduces to testing the hypothesis
H: p = p(B) in a binomial distribution b(p, s).

In the more usual situation that p(A) and p(B) are not known, a sample
from one of the categories such as A does not provide a basis for dis-
tinguishing between the hypothesis and the alternatives. This follows from
the fact that the number in the sample possessing characteristic B then
constitutes a binomial variable with probability p(B|A4), which is com-
pletely unknown both when the hypothesis is true and when it is false. The
hypothesis can, however, be tested if samples are taken both from categories
A and A4 or both from B and B. In the latter case, for example, if the
sample sizes are m and n, the numbers of cases possessing characteristic 4
in the two samples constitute independent variables with binomial distri-
butions b( p,, m) and b( p,, n) respectively, where p, = P(A|B) and p, =
P(A|B). The hypothesis of independence of the two characteristics, p( A|B)
= p(A), is then equivalent to the hypothesis p, = p,, and the problem
reduces to that treated in the preceding section.

Instead of selecting samples from two of the categories, it is frequently
more convenient to take the sample at random from the population as a
whole. The results of such a sample can be summarized in the following
2 X 2 contingency table, the entries of which give the numbers in the
various categories:

A A
Bl X X' | M
BlY Y |N

T T'| s
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The joint distribution of the variables X, X’, Y, and Y’ is multinomial,
and is given by

P(X=x,X"=x",Y=y,Y =y}

s!

=;§;;GWRBRMP 5P

s!

—————~DiifXp xlog—+xlo—+ log—
x!xytyt i Pip & i g Pip

Lemma 2 and Theorem 3 are therefore applicable to any parameter of the
form

aolog ? 4 allog ~“E a,log u.
PiB PiB Pib

Putting a, = a,=1, ag= —1, A=¢" = (pipp,)/(P4pPis) and de-
noting the probabilities of 4 and B in the population by p, = p,z + P>

P = P4p + Pip, One finds

1-A
Pap = PaPpt TPA'BPAI;’

1-A
Pip=PiPp— TPA'BPAE’

1-A
Pap = P4Pp — TPA'BPAE’

1-A
Pip=PiPpt A PisPan

Independence of A and B is therefore equivalent to A = 1, and A < 1 and
A > 1 correspond to positive and negative dependence respectively.

The test of the hypothesis of independence, or any of the four hypotheses
concerning A, is carried out in terms of the conditional distribution of X
given X+ X’=m, X+ Y =1 Instead of computing this distribution

A is equivalent to Yule’s measure of association, which is @ = (1 — A)/(1 + A). For a
discussion of this and related measures see Goodman and Kruskal (1954, 1959), Edwards
(1963), and Haberman (1982).
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directly, consider first the conditional distribution subject only to the
condition X + X’ = m, and hence Y + Y’ = s — m = n. This is seen to be

P(X=x,Y=y|X+ X" =m}

- (m)(n)(w)*(ﬂ)”‘”(fﬁ)y(w)”

XI\Y)\ ps ] \ Py P B
which is the distribution of two independent binomial variables, the number
of successes in m and n trials with probability p, = p,z/py and p, =
P43p/Pp- Actually, this is clear without computation, since we are now
dealing with samples of fixed size m and n from the subpopulations B and
B, and the probability of A4 in these subpopulations is p, and p,. If now the
additional restriction X + Y = ¢ is imposed, the conditional distribution of
X subject to the two conditions X + X’ = m and X + Y = ¢ is the same as

that of X given X+ Y =1t in the case of two independent binomials
considered in the previous section. It is therefore given by

P(X=x|X+X =m X+Y=1}=C)(T)(, )™

x=0,...,1,

that is, by (21) expressed in terms of x instead of y. (Here the choice of X
as testing variable is quite arbitrary; we could equally well again have
chosen Y.) For the parameter p one finds

=& ﬂ=pA.BpA§___A
92/ 91 PasPiB .

From these considerations it follows that the conditional test given X + X’
=m, X + Y =, for testing any of the hypotheses concerning A is identi-
cal with the conditional test given X + Y =t of the same hypothesis
concerning p = A in the preceding section, in which X + X’ = m was given
a priori. In particular, the conditional test for testing the hypothesis of
independence A = 1, Fisher’s exact test, is the same as that of testing the
equality of two binomial p’s and is therefore given in terms of the
hypergeometric distribution.

At the beginning of the section it was pointed out that the hypothesis of
independence can be tested on the basis of samples obtained in a number of
different ways. Either samples of fixed size can be taken from A4 and A4 or
from B and B, or the sample can be selected at random from the
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population at large. Which of these designs is most efficient depends on the
cost of sampling from the various categories and from the population at
large, and also on the cost of performing the necessary classification of a
selected individual with respect to the characteristics in question. Suppose,
however, for a moment that these considerations are neglected and that the
designs are compared solely in terms of the power that the resulting tests
achieve against a common alternative. Then the following results* can be
shown to hold asymptotically as the total sample size s tends to infinity:

(i) If samples of size m and n (m + n = s5) are taken from B and B
or from A and A, the best choice of m and nis m =n = s5/2.

(ii) It is better to select samples of equal size s/2 from B and B than
from A and A provided |py — 1| > |p, — I

(iii) Selecting the sample at random from the population at large is
worse than taking equal samples either from 4 and 4 or from B
and B.

These statements, which we shall not prove here, can be established by
using the normal approximation for the distribution of the binomial vari-
ables X and Y when m and n are fixed, and by noting that under random
sampling from the population at large, M /s and N/s tend in probability to
pg and pj respectively.

7. ALTERNATIVE MODELS FOR 2 X 2 TABLES

Conditioning of the multinomial model for the 2 X 2 table on the row (or
column) totals was seen in the last section to lead to the two-binomial model
of Section 5. Similarly, the multinomial model itself can be obtained as a
conditional model in some situations in which not only the marginal totals
M, N, T, and T’ are random but the total sample size s is also a random
variable. Suppose that the occurrence of events (e.g. patients presenting
themselves for treatment) is observed over a given period of time, and that
the events belonging to each of the categories 4B, AB, AB, AB are governed
by independent Poisson processes, so that by (2) of Chapter 1 the num-
bers X, X’,Y,Y’ are independent Poisson variables with expectations
A,z Nigs A4h» A jp, and hence s is a Poisson variable with expectation
A= >‘AB+ >‘A'B+>‘AE+>‘A'E-

It may then be of interest to compare the ratio A ,5/A ;5 with A ,3/A ;3
and in particular to test the hypothesis H: A ,z/A ;5 < A ,3/A ;5. The joint
distribution of X, X', Y, Y’ constitutes a four-parameter exponential family,

*These results were conjectured by Berkson and proved by Neyman in a course on x2.
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which can be written as
P(X=x,X=x,Y=y,Y =y')

1

- xx"yiyn

AABAIE

exp{xlog( ) + (x’ + x)log A ;5

AdpNis

+(y + x)log)\A;g + (y’ - x)lOgAA'i;}.

Thus, UMP unbiased tests exist of the usual one- and two-sided hypotheses
concerning the parameter § = A A ;3/A ;5\ 5. These are carried out in
terms of the conditional distribution of X given

X' +X=m, Y+ X=1, X+X +Y+Y =3,

where the last condition follows from the fact that given the first two it is
equivalent to Y’ — X = s — ¢t — m. By Problem 13 of Chapter 2, the condi-
tional distribution of X, X', Y given X+ X' + Y + Y’ = s is the multi-
nomial distribution of Section 6 with

.=él—4£ - = ——— = = — s == —
PuB A’PB A’pAB A’PAB A

The tests therefore reduce to those derived in Section 6.

The three models discussed so far involve different sampling schemes.
However, frequently the subjects for study are not obtained by any sam-
pling but are the only ones readily available to the experimenter. To create a
probabilistic basis for a test in such situations, suppose that B and B are
two treatments, either of which can be assigned to each subject, and that A
and A denote success or failure (e.g. survival, relief of pain, etc.). The
hypothesis of no difference in the effectiveness of the two treatments (i.e.
independence of 4 and B) can then be tested by assigning the subjects to
the treatments, say m to B and n to B, at random, i.e. in such a way that all
possible (f") assignments are equally likely. It is now this random assign-
ment which takes the place of the sampling process in creating a probability
model, thus making it possible to calculate significance.

Under the hypothesis H of no treatment difference, the success or failure
of a subject is independent of the treatment to which it is assigned. If the
numbers of subjects in categories 4 and A are r and r respectively
(¢t + t' = s), the values of ¢ and ¢’ are therefore fixed, so that we are now
dealing with a 2 X 2 table in which all four margins ¢, t’, m, n are fixed.
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Then any one of the four cell counts X, X', Y, Y’ determines the other three.
Under H, the distribution of Y is the hypergeometric distribution derived as
the conditional null distribution of Y given X + Y = ¢ at the end of Section
5. The hypothesis is rejected in favor of the alternative that treatment B
enhances success if Y is sufficiently large. Although this is the natural test
under the given circumstances, no optimum property can be claimed for it,
since no clear alternative model to H has been formulated.*

Consider finally the situation in which the subjects are again given rather
than sampled, but B and B are attributes (for example, male or female,
smoker or nonsmoker) which cannot be assigned to the subjects at will.
Then there exists no stochastic basis for answering the question whether
observed differences in the rates X/M and Y/N correspond to differences
between B and B, or whether they are accidental. An approach to the
testing of such hypotheses in a nonstochastic setting has been proposed by
Freedman and Lane (1982).

The various models for the 2 X 2 table discussed in Sections 6 and 7 may
be characterized by indicating which elements are random and which fixed:

(i) Al margins and s random (Poisson).
(ii) All margins are random, s fixed (multinomial sampling).
(iii)) One set of margins random, the other (and then a fortiori s) fixed
(binomial sampling).
(iv) All margins fixed. Sampling replaced by random assignment of
subjects to treatments.

(v) All aspects fixed; no element of randomness.

In the first three cases there exist UMP unbiased one- and two-sided tests of
the hypothesis of independence of A and B. These tests are carried out by
conditioning on the values of all elements in (i)-(iii) that are random, so
that in the conditional model all margins are fixed. The remaining random-
ness in the table can be described by any one of the four cell entries; once it
is known, the others are determined by the margins. The distribution of
such an entry under H has the hypergeometric distribution given at the end
of Section 5.

The models (i)-(iii) have a common feature. The subjects under observa-
tion have been obtained by sampling from a population, and the inference
corresponding to acceptance or rejection of H refers to that population.
This is not true in cases (iv) and (v).

*The one-sided test is of course UMP against the class of alternatives defined by the right
side of (21), but no reasonable assumptions have been proposed that would lead to this class.
For suggestions of a different kind of alternative see Gokhale and Johnson (1978).
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In (iv) the subjects are given, and a probabilistic basis is created by
assigning them at random, m to B and n to B. Under the hypothesis H of
no treatment difference, the four margins are fixed without any condi-
tioning, and the four cell entries are again determined by any one of them,
which under H has the same hypergeometric distribution as before. The
present situation differs from the earlier three in that the inference cannot
be extended beyond the subjects at hand.*

The situation (v) is outside the scope of this book, since it contains no
basis for the type of probability calculations considered here. Problems of
this kind are however of great importance, since they arise in many
observational (as opposed to experimental) studies. For a related discussion,
see Finch (1979).

8. SOME THREE-FACTOR CONTINGENCY TABLES

When an association between 4 and B exists in a 2 X 2 table, it does not
follow that one of the factors has a causal influence on the other. Instead,
the explanation may, for example, lie in the fact that both factors are
causally affected by a third factor C. If C has K possible outcomes
C,...,Ck, one may then be faced with the apparently paradoxical situa-
tion that 4 and B are independent under each of the conditions C,
(k = 1,..., K) but exhibit positive (or negative) association when the tables
are aggregated over C, that is, when the K separate 2 X 2 tables are
combined into a single one showing the total counts of the four categories.
[An interesting example is discussed by Bickel et al. (1977); see also Lindley
and Novick (1981).] In order to determine whether the association of 4 and
B in the aggregated table is indeed “spurious”, one would test the hypothe-
sis, (which arises also in other contexts) that 4 and B are conditionally
independent given C, for all k = 1,..., K, against the alternative that there
is an association for at least some k.

Let X, X/, Y,, Y/ denote the counts in the 4K cells of the 2 X 2 X K
table which extends the 2 X 2 table of Section 6 to the present case.

Again, several sampling schemes are possible. Consider first a ran-
dom sample of size s from the population at large. The joint distribution
of the 4K cellcounts then is multinomial with probabilities p,pc .,
PiBc, Pabc,» Pibc, for the outcomes indicated by the subscripts. If A,

*For a more detailed treatment of the distinction between population models [such as
(i)—(iii)] and randomization models [such as (iv)], see Lehmann (1975).
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denotes the AB odds ratio for C, defined by

A = Pabc, Pisc, _ Pabic, PiBic,
k= - s
Pasc, Pibc, Pasic, PiBc,

where p pc,, ... denotes the conditional probability of the indicated event
given C,, then the hypothesis to be tested is A, = 1 for all k.

A second scheme takes samples of size s, from C, and classifies the
subjects as AB, AB, AB, or AB. This is the case of K independent 2 X 2
tables, in which one is dealing with K quadrinomial distributions of the
kind considered in the preceding sections. Since the kth of these distribu-
tions is also that of the same four outcomes in the first model conditionally
given C,, we shall denote the probabilities of these outcomes in the present
model again by p,pc,, -

To motivate the next samplmg scheme, suppose that 4 and A represent
success or failure of a medical treatment, B and B that the treatment is
applied or the subject is used as a control, and C, the kth hospital taking
part in this study. If samples of size n, and m, are obtained and are
assigned to treatment and control respectively, we are dealing with K pairs
of binomial distributions. Letting ¥, and X, denote the number of successes
obtained by the treatment subjects and controls in the kth hospital, the
joint distribution of these variables by Section 5 is

m n Pk
[T1(7) 5ot exe{ Eon e+ E e+ s )

1k

where p,, and ¢q,,, (p,, and g,,) denote the probabilities of success and
failure under B (under B).

The above three sampling schemes lead to 2 X 2 X K tables in which
respectively none, one, or two of the margins are fixed. Alternatively, in
some situations a model may be appropriate in which the 4K variables
X.» X{, Y}, Y/ are independent Poisson with expectations A 4pc,, ... . In this
case, the total sample size s is also random.

For a test of the hypothesis of conditional independence of 4 and B
given C, for all k (ie. that A, = --- = A, = 1), see Problem 43 of
Chapter 8. Here we shall consider the problem under the simplifying
assumption that the A, have a common value A, so that the hypothesis
reduces to H: A = 1. Applying Theorem 3 to the third model (K pairs of
binomials) and assuming the alternatives to be A > 1, we see that a UMP
unbiased test exists and rejects H when LY, > C(X; + Y;,..., Xx + Yy),
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where C is determined so that the conditional probability of rejection, given
that X, + Y, =¢,,isa forall k = 1,..., K. It follows from Section 5 that
the conditional joint distribution of the Y, under H is

PH[YI =.71""'YK=yK|Xk+ Yk=tk’k= 1,..., K]

)5
e

t

The conditional distribution of LY, can now be obtained by adding the
probabilities over all (y,,..., yx) whose sum has a given value. Unless the
numbers are very small, this is impractical and approximations must be
used [see Cox (1966) and Gart (1970)].

The assumption H’: A; = --- = Ag = A has a simple interpretation
when the successes and failures of the binomial trials are obtained by
dichotomizing underlying unobservable continuous response variables. In a
single such trial, suppose the underlying variable is Z and that success
occurs when Z > 0 and failure when Z < 0. If Z is distributed as F(Z — ¢)
with location parameter {, we have p =1 — F(—¢) and ¢ = F(-¢). Of
particular interest is the logistic distribution, for which F(x) = 1/(1 + e~ ¥).
In this case p = ef/(1 + €f), ¢ =1/(1 + &%), and hence log(p/q) = ¢.
Applying this fact to the success probabilities

Pu=1- F(—glk)’ Pu=1- F('fzk)’
we find that

6, =1logl, = log(f_l’j Q) =$ok — Sk
9ok | Gk

so that {,, = {,, + 0,. In this model, H’ thus reduces to the assumption
that {,, = §, + 0, that is, that the treatment shifts the distribution of the
underlying response by a constant amount 6.

If it is assumed that F is normal rather than logistic, F(x) = ®(x) say,
then { = ®7!(p), ani constancy of {,, — {,, requires the much more
cumbersome condition ®~!(p,,) — ®!(p,,) = constant. However, the
functions log( p/q) and ® '{ p) agree quite well in the range .1 <p < .9
[see Cox (1970, p. 28)), and the assumption of constant A, in the logistic
response model is therefore close to the corresponding assumption for an



4.8] SOME THREE-FACTOR CONTINGENCY TABLES 165

underlying normal response.* [The so-called loglinear models, which for
contingency tables correspond to the linear models to be considered in
Chapter 7 but with a logistic rather than a normal response variable,
provide the most widely used approach to contingency tables. See, for
example, the books by Cox (1970), Haberman (1974), Bishop, Fienberg, and
Holland (1975), Fienberg (1980), Plackett (1981), and Agresti (1984).]

The UMP unbiased test, derived above for the case that the B- and
C-margins are fixed, applies equally when any two margins, any one margin,
or no margins are fixed, with the understanding that in all cases the test is
carried out conditionally, given the values of all random margins.

The test is also used (but no longer UMP unbiased) for testing H: A, =

- = A, =1 when the A’s are not assumed to be equal but when the
A, — 1 can be assumed to have the same sign, so that the departure from
independence is in the same direction for all the 2 X 2 tables. A one- or
two-sided version is appropriate as the alternatives do or do not specify the
direction. For a discussion of this test, the Cochran-Mantel-Haenszel test,
and some of its extensions see the reviews by Landis, Heyman, and Koch
(1978), Darroch (1981), and Somes and O’Brien (1985).

Consider now the case K = 2, with m, and n, fixed, and the problem of
testing H': A, = A, rather than assuming it. The joint distribution of the
X’s and Y’s given earlier can then be written as

(]

A,
XeXP(yzlog + (3, +y,)log Ay + X (x; + y)log=— |,

1i

and H’ is rejected in favor of A, > A, if Y, > C, where C depends on
Y,+ Y, X;+7, and X, + 1, and is determined so that the conditional
probability of rejection given Y, + Y, =w, X;+ Y, =¢, X, + Y, =1¢, is
a. The conditional null distribution of Y, and Yz, given X, + Y, =1,
(k = 1,2), by (21) with A in place of p is

C(8)G (A)(’ _yl)(:’:)(‘zmz )(L)Mﬂ2

and hence the conditional distribution of Y,, given in addition that Y; + Y,

*The problem of discriminating between a logistic and normal response model is discussed
by Chambers and Cox (1967).
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= w, is of the form

k(‘l”z’w)(y o w)(wn-IY)(tzm‘zy)(';z)'

Some approximations to the critical value of this test are discussed by Birch
(1964); see also Venable and Bhapkar (1978). [Optimum large-sample tests
of some other hypotheses in 2 X 2 X 2 tables are obtained by Cohen,
Gatsonis, and Marden (1983).]

9. THE SIGN TEST

To test consumer preferences between two products, a sample of n subjects
are asked to state their preferences. Each subject is recorded as plus or
minus as it favors product B or A. The total number Y of plus signs is then
a binomial variable with distribution b( p, n). Consider the problem of
testing the hypothesis p = 1 of no difference against the alternatives p # 1.
(As in previous such problems, we disregard here that in case of rejection it
will be necessary to decide which of the two products is preferred.) The
appropriate test is the two-sided sign test, which rejects when |Y — 1n| is
too large. This is UMP unbiased (Section 2).

Sometimes the subjects are also given the possibility of declaring them-
selves as undecided. If p_, p,, and p, denote the probabilities of prefer-
ence for product A4, product B, and of no preference respectively, the
numbers X, Y, and Z of decisions in favor of these three possibilities are
distributed according to the multinomial distribution

n!
(22) W,z—,p’ip{pé (x+y+z=n),

and the hypothesis to be tested is H: p,= p_. The distribution (22) can
also be written as

® gl (122 - p-p

xylz!\1-py—p, 1-po—p.

and is then seen to constitute an exponential family with U=Y, T = Z,
0 =logp,/(1 = po—p.)l & =log[po/(1 = po — p.)] Rewriting the hy-
pothesis H as p,.=1 — p, — p,, it is seen to be equivalent to & = 0. There
exists therefore a UMP unbiased test of H, which is obtained by considering
z as fixed and determining the best unbiased conditional test of H given
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Z = z. Since the conditional distribution of Y given z is a binomial
distribution b(p, n — z) with p =p_ /(p,+ p_), the problem reduces to
that of testing the hypothesis p = 1 in a binomial distribution with n — z
trials, for which the rejection region is |Y — 3(n — z)| > C(z). The UMP
unbiased test is therefore obtained by disregarding the number of cases in
which no preference is expressed (the number of ties), and applying the sign
test to the remaining data.

The power of the test depends strongly on p,, which governs the
distribution of Z. For large p,, the number n — z of trials in the conditional
binomial distribution can be expected to be small, and the test will thus
have little power. This may be an advantage in the present case, since a
sufficiently high value of p,, regardless of the value of p,/p_, implies that
the population as a whole is largely indifferent with respect to the products.

The above conditional sign test applies to any situation in which the
observations are the result of n independent trials, each of which is either a
success (+), a failure (=), or a tie. As an alternative treatment of ties, it is
sometimes proposed to assign each tie at random (with probability 1 each)
to either plus or minus. The total number Y’ of plus signs after the ties have
been broken is then a binomial variable with distribution b(w, n), where
7 = p,+ 1p,. The hypothesis H becomes = = 1, and is rejected when
|Y’” — in| > C, where the probability of rejection is a when = = ;. This test
can be viewed also as a randomized test based on X, Y, and Z, and it is
unbiased for testing H in its original form, since p, is = or # p_as 7 is
= or # }. Since the test involves randomization other than on the
boundaries of the rejection region, it is less powerful than the UMP
unbiased test for this situation, so that the random breaking of ties results in
a loss of power.

This remark might be thought to throw some light on the question of
whether in the determination of consumer preferences it is better to permit
the subject to remain undecided or to force an expression of preference.
However, here the assumption of a completely random assignment in case
of a tie does not apply. Even when the subject is not conscious of a definite
preference, there will usually be a slight inclination toward one of the two
possibilities, which in a majority of the cases will be brought out by a forced
decision. This will be balanced in part by the fact that such forced decisions
are more variable than those reached voluntarily. Which of these two factors
dominates depends on the strength of the preference.

Frequently, the question of preference arises between a standard product
and a possible modification or a new product. If each subject is required to
express a definite preference, the hypothesis of interest is usually the
one-sided hypothesis p, < p_, where + denotes a preference for
the modification. However, if an expression of indifference is permitted, the
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hypothesis to be tested is not p,< p_ but.rather p < p, + p_, since
typically the modification is of interest only if it is actually preferred. As
was shown in Chapter 3, Example 8, the one-sided sign test which rejects
when the number of plus signs is too large is UMP for this problem.

In some investigations, the subject is asked not only to express a
preference but to give a more detailed evaluation, such as a score on some
numerical scale. Depending on the situation, the hypothesis can then take
on one of two forms. One may be interested in the hypothesis that there is
no difference in the consumer’s reaction to the two products. Formally, this
states that the distribution of the scores X,..., X, expressing the degree of
preference of the n subjects for the modified product is symmetric about the
origin. This problem, for which a UMP unbiased test does not exist without
further assumptions, will be considered in Chapter 6, Section 10.

Alternatively, the hypothesis of interest may continue tobe H: p,=p_.
Since p_= P{ X < 0} and p,= P{ X > 0}, this now becomes

H:P{X>0} =P{X<0}.

Here symmetry of X is no longer assumed even when P{ X < 0} = P{X >
0}. If no assumptions are made concerning the distribution of X beyond the
fact that the set of its possible values is given, the sign test based on the
number of X’s that are positive and negative continues to be UMP
unbiased.

To see this, note that any distribution of X can be specified by the
probabilities

p=P{X<0}, p,=P{X>0}, po=P{X=0},

and the conditional distributions F_ and F, of X given X <0 and X >0
respectively. Consider any fixed distributions F’, F/, and denote by %,
the family of all distributions with F_= F’, F, = F/ and arbitrary
P_, P+» Po- Any test that is unbiased for testing H in the original family of
distributions % in which F_ and F, are unknown is also unbiased for
testing H in the smaller family %,. We shall show below that there exists a
UMP unbiased test ¢, of H in %,. It turns out that ¢, is also unbiased for
testing H in & and is independent of F’, F. Let ¢ be any other unbiased
test of H in %, and consider any fixed alternative, which without loss of
generality can be assumed to be in %,. Since ¢ is unbiased for F, it is
unbiased for testing p,= p_ in F,; the power of ¢, against the particular
alternative is therefore at least as good as that of ¢. Hence ¢, is UMP
unbiased.

To determine the UMP unbiased test of H in %, let the densities of F’
and F! with respect to some measure g be f’ and f. The joint density of
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the X’s at a point (x,,..., x,) with

x.,...,x,.r<0=le= T =X < X, Xy

h m

is
pipeptf(x,) o fL(x ) (). fi(x, ).

The set of statistics (r, s, m) is sufficient for (p_, p,, p.), and its distribu-
tion is given by (22) with x = r, y = m, z = 5. The sign test is therefore
seen to be UMP unbiased as before.

A different application of the sign test arises in the context of a 2 X 2
table for matched pairs. In Section 5, success probabilities for two treat-
ments were compared on the basis of two independent random samples.
Unless the population of subjects from which these samples are drawn is
fairly homogeneous, a more powerful test can often be obtained by using a
sample of matched pairs (for example, twins or the same subject given the
treatments at different times). For each pair there are then four possible
outcomes: (0, 0), (0,1), (1,0), and (1, 1), where 1 and 0 stand for success and
failure, and the first and second number in each pair of responses refer to
the subject receiving treatment 1 or 2 respectively.

The results of such a study are sometimes displayed in a 2 X 2 table,

1st
2nd 0 1
0 X X
1 Y Y’

which despite the formal similarity differs from that considered in Section 6.
If a sample of s pairs is drawn, the joint distribution of X,Y, X", Y’ as
before is multinomial, with probabilities pyy, po1, P1g> P11- The success
probabilities of the two treatments are m = p,, + p;; for the first and
7, = poy + Py, for the second treatment, and the hypothesis to be tested is
H: m, = =, or equivalently p,, = p,,, rather than p,,po; = Poo P11 a8 it was
earlier.
In exponential form, the joint distribution can be written as

s'p3 P
(24) —'—‘IPJT'CXP ylogE + (x' + y)log— + xlogﬂ.g .
xixtyly”t Pio Pu Pu

There exists a UMP unbiased test, McNemar’s test, which rejects H in
favor of the alternatives p,, < p,, when Y > C(X’ + Y, X), where the
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conditional probability of rejection given X' + Y =d and X = x is « for
all d and x. Under this condition, the numbers of pairs (0, 0) and (1, 1) are
fixed, and the only remaining variables are Y and X’ =d — Y which
specify the division of the d cases with mixed response between the
outcomes (0,1) and (1,0). Conditionally, one is dealing with 4 binomial
trials with success probability p = py, /( poy + P1o), H becomes p = 1, and
the UMP unbiased test reduces to the sign test. [The issue of conditional
versus unconditional power for this test is discussed by Frisén (1980).]

The situation is completely analogous to that of the sign test in the
presence of undecided opinions, with the only difference that there are now
two types of ties, (0,0) and (1,1), both of which are disregarded in
performing the test.

10. PROBLEMS

Section 1

1. Admissibility. Any UMP unbiased test ¢, is admissible in the sense that
there cannot exist another test ¢, which is at least as powerful as ¢, against
all alternatives and more powerful against some.

[If ¢ is unbiased and ¢’ is uniformly at least as powerful as ¢, then ¢’ is also
unbiased.]

2. p-values. Consider a family of tests of H: 8 = 6, (or 0 < §,), with level-a
rejection regions S, such that (a) P {X € S,} = a forall 0 < a <1, and (b)
Say = Na> a,S; for all 0 < ay <1, which in particular implies S, C S, for
a<a
(i) Then the p-value & is given by & = a(x) = inf{a: x € §,}.
(i) When @ = 6,, the distribution of & is the uniform distribution over (0,1).
(iii) If the tests S, are unbiased, the distribution of & under any alternative 8

satisfies

P{a<a)2P{a<a)=aq,

so that it is shifted toward the origin.

If p-values are available from a number of independent experiments, they can
be combined by (ii) and (iii) to provide an overall test* of the hypothesis.

[& < a if and only if x € S,, and hence Py{a < a} = P,{X € S,} = B,(0),
which is a for = 6, and > a if 8 is an alternative to H.]

*For discussions of such tests see for example Koziol and Perlman (1978), Berk and Cohen
(1979), Mudholkar and George (1979), Scholz (1982), and the related work of Marden (1982).
Associated confidence intervals are proposed by Littell and Louv (1981).
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Section 2

3. Let X have the binomial distribution b(p, n), and consider the hypothesis
H:p = p, at level of significance a. Determine the boundary values of the
UMP unbiased test for n = 10 with a = .1, p, = .2 and with a = .05, p, = .4,
and in each case graph the power functions of both the unbiased and the
equal-tails test.

4. Let X have the Poisson distribution P(r), and consider the hypothesis
H: v = 1,. Then condition (6) reduces to

C—-1 x-1 2 -1

T T
e+ Y (l-y)——e™=1—a,
x=C +1 (x- 1) i=1 (¢ -1

provided C; > 1.

5. Let T,/6 have a x’-distribution with n degrees of freedom. For testing
H: 8 =1 at level of significance a = .05, find n so large that the power of the
UMP unbiased test is > .9 against both § > 2 and 8 < 1. How large does n
have to be if the test is not required to be unbiased?

6. Let X and Y be independently distributed according to one-parameter ex-
ponential families, so that their joint distribution is given by

dPy, 5,(x,y) = C(8;) "™ dp(x) K(8,) e"Y) d(y).

Suppose that with probability 1 the statistics T and U each take on at least
three values and that (4, b) is an interior point of the natural parameter space.
Then a UMP unbiased test does not exist for testing H: 0, =a, 0, =)
against the alternatives 8, # a or 8, # b.*

[The most powerful unbiased tests against the alternatives 8, # a, 6, = b and
6, = a, 6, # b have acceptance regions C; < T(x) < G, and K, < U(y) <
K, respectively. These tests are also unbiased against the wider class of
alternatives K: 8, # a or 8, # b or both.]

7. Let (X, Y) be distributed according to the exponential family

dPy, 0,(%, ) = C(6,, 8,) "> dp(x, y).

The only unbiased test for testing H: 8, < a, 0, < b against K: 0, > a or
0, > b or both is ¢(x, y) = a.

*For counterexamples when the conditions of the problem are not satisfied, see Kallenberg
(1984).
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[Take a = b = 0, and let B(d,, 0,) be the power function of any level-a test.
Unbiasedness implies B(0,6,) = a for 6, <0 and hence for all #,, since
B(0, 8,) is an analytic function of 8,. For fixed 8, > 0, B(0,, 0,) considered as
a function of 8, therefore has a minimum at 6, = 0, so that 38(4,, 8,)/30,
vanishes at 8, = 0 for all positive 6,, and hence for all 8,. By considering
alternatively positive and negative values of #, and using the fact that the
partial derivatives of all orders of B(6,, 6,) with respect to 6, are analytic, one
finds that for each fixed 6, these derivatives all vanish at 6, = 0 and hence
that the function 8 must be a constant. Because of the completeness of ( X, Y),

B(0,, 8,) = a implies ¢(x, y) = a.]

For testing the hypothesis H: 8 = 6, (, an interior point of ) in the
one-parameter exponential family of Section 2, let € be the totality of tests
satisfying (3) and (5) for some —00 < C;, <, <0 and0<y,y, <1

(i) ¥ is complete in the sense that given any level-a test ¢, of H there
exists ¢ € € such that ¢ is uniformly at least as powerful as ¢,.

(i) If ¢,, ¢, € €, then neither of the two tests is uniformly more powerful
than the other.

(iii) Let the problem be considered as a two-decision problem, with decisions
d, and d, corresponding to acceptance and rejection of H, and with loss
function L(0,d;) = L,(9), i = 0,1. Then ¥ is minimal essentiaily com-
plete provided L,(8) < Ly(0) for all § + §,.

(iv) Extend the result of part (iii) to the hypothesis H': 6, < 0 < 6,.

[(i): Let the derivative of the power function of ¢, at 6, be 8; (6,) = p. Then
there exists ¢ € € such that B;(6,) = p and ¢ is UMP among all tests
satisfying this condition.

(ii): See Chapter 3, end of Section 7.

(iii): See Chapter 3, proof of Theorem 3.]

Section 3

Let X,,..., X, be a sample from (i) the normal distribution N(ao, 62), with a
fixed and 0 < o < oo; (ii) the uniform distribution U(6 — 1,0 + 1), —0 < 8
< oo; (iii) the uniform distribution U(0,, 8,), —o0 < 8, < 6, < oo. For these
three families of distributions the following statistics are sufficient: (i), T =
€ X,,~ X?); (i) and (iii), T = (min(X,,..., X,), max(X,,..., X,)). The family
of distributions of T is complete for case (iii), but for (i) and (ii) it is not
complete or even boundedly complete.

[(i): The distribution of £ X,/ YL X? does not depend on a.]

Let X,,..., X, and Y,,..., Y, be samples from N({, 6%) and N(§, 72). Then
T= ():X,-,Z)j-,ZX,-Z,E}j-Z ), which in Example 5 was seen not to be complete, is
also not boundedly complete.

[Let f(¢t)belor —1 as y — X is positive or not.]
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Counterexample. Let X be a random variable taking on the values
-1,0,1,2,... with probabilities

P{X=-1}=0; P{X=x}=(1-6)6%, x=0,1,....

Then £ = { P, 0 < 6 < 1} is boundedly complete but not complete.

The completeness of the order statistics in Example 6 remains true if the family
F is replaced by the family #, of all continuous distributions.

[To show that for any integrable symmetric function ¢, [é(x,...,
x,) dF(x,)... dF(x,) = 0 for all continuous F implies ¢ = 0 a.e., replace F
bya F, + --- +a,F,, where 0 < a; < 1, Za; = 1. By considering the left side
of the resulting identity as a polynomial in the a’s one sees that
fo(xy,...,x,)dF(x;)... dF,(x,) =0 for all continuous F,. This last equa-
tion remains valid if the F; are replaced by I, (x) F(x), where I, (x) =1 if
x < a; and = 0 otherwise. This implies that ¢ = 0 except on a set which has
measure 0 under F X - -+ X F for all continuous F.]

Determine whether T is complete for each of the following situations:

(i X,..., X, are independently distributed according to the uniform distri-
bution over the integers 1,2,...,8 and T = max(X,,..., X,).

(i) X takes on the values 1,2,3,4 with probabilities pq, p%q, pg>,1 — 2pq
respectively, and T = X.
Section 4

Measurability of tests of Theorer~ 3. The function ¢, defined by (16) and (17)
is jointly measurable in u and .
[With C; = v and C, = w, the determining equations for v, w, y,, y, are

(29) E(v-) +[1 - E(w)] +n[F(v) - F(v-)]

+1[F(w) - E(w-)] =«

and

(26) G(v-) +[1-G(w)] + nu[G(v) - G(v-)]
+n[G(w) - G(w-)] =a,

where

@) Ew) = [ @) (), 6w = [ G(o)e dn(y)

denote the conditional cumulative distribution function of U given ¢t when
6 = 6, and 0 = 0, respectively.
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(1) ForeachO <y <aletv(y,t)=F Y(y)and w(y,t) = F}(1 — a +y),
where the inverse function is defined as in the proof of Theorem 3. Define
71(», t) and y,(p, 1) so that for v = v(y, ?) and w = w(y, t),

F(v-) +n[EF(v) - FE(v-)] =,
1-F(w) +v,[E(w) - FE(w-)]=a-y.

(2) Let H(y,t) denote the left-hand side of (26), with v = v(y, t), etc. Then
H(,t) > a and H(a,t) < a. This follows by Theorem 2 of Chapter 3 from
the fact that v(0,¢) = —o0 and w(a, ) = oo (which shows the conditional
tests corresponding to y =0 and y = a« to be one-sided), and that the
left-hand side-of (26) for any y is the power of this conditional test.

(3) For fixed ¢, the functions

Hy(y,1) = G(v-) + n[G(v) - G(v-)]
and
Hy(y,1) =1-G(w) + n[G(w) - G(w-)]

are continuous functions of y. This is a consequence of the fact, which follows
from (27), that a.e. #T the discontinuities and flat stretches of F, and G,
coincide.

(4 The function H(y, t) is jointly measurable in y and ¢. This follows from
the continuity of H by an argument similar to the proof of measurability of
F(u) in the text. Define

y(t) =inf(y: H(y,1) < a},
and let v(t) = v[y(t), t], etc. Then (25) and (26) are satisfied for all ¢. The
measurability of v(#), w(?), v,(2), and v, (¢) defined in this manner will follow

from measurability in ¢ of y(t) and F~'[y(t)]. This is a consequence of the
relations, which hold for all real c,

{t:y(t) <} = U {e: H(r,1) < a},

where r indicates a rational, and
{t:F'[y(0)] cc} ={t:y(t) - F(c) <0}]

Continuation. The function ¢, defined by (16), (18), and (19) is jointly
measurable in ¥ and ¢.
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[The proof, which otherwise is essentially like that outlined in the preceding
problem, requires the measurability in z and ¢ of the integral

g(z,1) = f—z;udE(u).

This integral is absolutely convergent for all ¢, since F, is a distribution
belonging to an exponential family. For any z < o0, g(z,t) = lim g,(z, 1),
where

cton e Dl 25 o ol £ o]

Jj=1

and the measurability of g follows from that of the functions g,. The
inequalities corresponding to those obtained in step (2) of the preceding
problem result from the property of the conditional one-sided tests established
in Problem 22 of Chapter 3.]

16. The UMP unbiased tests of the hypotheses H,,..., H, of Theorem 3 are
unique if attention is restricted to tests depending on U and the T'’s.

Section 5§

17. Let X and Y be independently distributed with Poisson distributions P(A)
and P(p). Find the power of the UMP unbiased test of H: p < A, against the
alternatives A = 1, p=2; A=1, p=2; A=10, p=20; A=.1, p = 4; at
level of significance a = .1.

[Since T = X + Y has the Poisson distribution P(A + p), the power is

B= i B(t)(—w—e'(“"’,
=0

t!

where B(t) is the power of the conditional test given ¢ against the alternative
in question.]

18. Sequential comparison of two binomials. Consider two sequences of binomial
trials with probabilities of success p, and p, respectively, and let p =

(P2/92) + (P1/4)

() If a < B, no test with fixed numbers of trials m and n for testing
H: p = p, can have power > B against all alternatives with p = p,.

(ii) The following is a simple sequential sampling scheme leading to the
desired result. Let the trials be performed in pairs of one of each kind,
and restrict attention to those pairs in which one of the trials is a success
and the other a failure. If experimentation is continued until N such
pairs have been observed, the number of pairs in which the successful
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trial belonged to the first series has the binomial distribution b(w, N)
with 7 = p,q,/(P1q; + P2q1) = 1/(1 + p). A test of arbitrarily high
power against p, is therefore obtained by taking N large enough.

(i) If p,/p, = A, use inverse binomial sampling to devise atestof H: A = A,
against K: X > A,

19. Positive dependence. Two random variables (X, Y) with c.d.f. F(x, y) are
said to be positively quadrant dependent if F(x, y) > F(x, c0)F(c0, y) for all
x, y.* For the case that (X, Y) takes on the four pairs of values (0,0), (0,1),
(1,0), (1,1) with probabilities pyy, Poi» P1o> P11s (X, Y) are positively quadrant
dependent if and only if the odds ratio A = py; pio/PooP11 < 1.

20. Runs. Consider a sequence of N dependent trials, and let X; be 1 or 0 as the
ith trial is a success or failure. Suppose that the sequence has the Markov
property’

P{X, =1|x,....,x;_,} = P{X; = 1|x,_}
and the property of stationarity according to which P{ X, =1} and P{X, =
1}x,_,} are independent of i. The distribution of the X’s is then specified by
the probabilities
p=P(X=1X_,=1) and py=P{X,=1]X_, =0)
and by the initial probabilities
m=P(X,=1} and m=1-m =P{X, =0}.
(i) Stationarity implies that

Po U1

m = ,  my= .
Y opt " pota

(i) A set of successive outcomes x;, X;.,-.., X;,, is said to form a run of
zerosif x; = x;,; = --- =x;,;=0,and x;_; =lori=1,and x;,;,,
=1ori+j=N. A rmun of ones is defined analogously. The probability
of any particular sequence of outcomes (x;,..., xy) is

1
U n—v, u m-—u
2ot ar PoPi 94 >

*For a systematic discussion of this and other concepts of dependence, see Tong (1980,
Chapter 5).

¥Statistical inference in these and more general Markov chains is discussed, for example, in
Anderson and Goodman (1957), Goodman (1958), Billingsley (1961), Denny and Wright
(1978), and Denny and Yakowitz (1978).
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21.

where m and n denote the numbers of zeros and ones, and u and v the
numbers of runs of zeros and ones in the sequence.

Continuation. For testing the hypothesis of independence of the X’s, H: p,
= p,, against the alternatives K : p, < p,, consider the run test, which rejects
H when the total number of runs R = U + V is less than a constant C(m)
depending on the number m of zeros in the sequence. When R = C(m), the
hypothesis is rejected with probability y(m), where C and y are determined
by

P,{R < C(m)|m} + y(m)Py{R = C(m)|m} =a.

(i) Against any alternative of K the most powerful similar test (which is at
least as powerful as the most powerful unbiased test) coincides with the
run test in that it rejects H when R < C(m). Only the supplementary
rule for bringing the conditional probability of rejection (given m) up to
a depends on the specific alternative under consideration.

(i) The run test is unbiased against the alternatives K.

(iii) The conditional distribution of R given m, when H is true, is*

P{(R=2r} = 2(':(_,32(3):%)

m—l)(n—1)+(m—l)("—1)
r—1 r r r—1
(m + n) ’
m
[(1): Unbiasedness implies that the conditional probability of rejection given m
is a for all m. The most powerful conditional level-a test rejects H for those
sample sequences for which A(u, v) = (py/pP1)"(41/90)" is too large. Since

Po < p, and ¢, < g, and since |{v — u| can only take on the values 0 and 1, it
follows that

P{R=2r+l}=(

A(1,1) > A(L,2),  A(2,1) >A(2,2) >A(2,3), A(3,2) > -

Thus only the relation between A(i,i + 1) and A(i + 1,i) depends on the
specific alternative, and this establishes the desired resuit.

(ii): That the above conditional test is unbiased for each m is seen by writing
its power as

B(po, pr|lm) = (1 = ) P{R < C(m)|m} + yP{R < C(m)|m},

*This distribution is tabled by Swed and Eisenhart (1943) and can be obtained from the

hypergeometric distribution [Guenther (1978)]. For further discussion of the run test, see
Wolfowitz (1943).
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since by (i) the rejection regions R < C(m) and R < C(m) + 1 are both
UMP at their respective conditional levels.

(iii): When H is true, the conditional probability given m of any set of m
zeros and n ones is 1/ ( '”,'; ”). The number of ways of dividing n ones into r

groups is t B ; , and that of dividing m zeros into r + 1 groups is (’” . 1).
The conditional probability of getting r + 1 runs of zeros and r runs of ones is

therefore
( m-1 )( n-— 1)
r r—1
( m + n) :
m
To complete the proof, note that the total number of runs is 27 + 1 if and only

if there are either r + 1 runs of zeros and r runs of ones or r runs of zeros and
r + 1 runs of ones.]

(i) Based on the conditional distribution of X,,..., X, given X; = x, in the
model of Problem 20, there exists a UMP unbiased test of H: p, = p,
against p, > p, for every a.

(ii) For the same testing problem, without conditioning on X; there exists a
UMP unbiased test if the initial probability =, is assumed to be com-
pletely unknown instead of being given by the value stated in (i) of
Problem 20.

[The conditional distribution of X,,..., X, given x, is of the form

C(x15 Po> P1> 90> @) PP 41 450 h (31,5 ¥, 215 25),

where y, is the number of times a 1 follows a 1, y, the number of times a 1
follows a 0, and so on, in the sequence x,, X;,..., X,. [See Billingsley (1961,

p- 14).]

Rank-sum test. Let Yi,..., Yy be independently distributed according to the
binomial distributions b(p;, n;), i = 1,..., N, where

1
pi= 1+ e—(u+Bx,~) :

This is the model frequently assumed in bioassay, where x; denotes the dose,
or some function of the dose such as its logarithm, of a drug given to n,
experimental subjects, and where Y, is the number among these subjects which
respond to the drug at level x;. Here the x, are known, and « and B are
unknown parameters.

(i) The joint distribution of the Y’s constitutes an exponential family, and
UMP unbiased tests exist for the four hypotheses of Theorem 3, concern-
ing both a and B.
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(ii) Suppose in particular that x; = Ai, where A is known, and that n;, = 1
for all i. Let n be the number of successes in the N trials, and let these
successes occur in the s;st, s,nd,..., s,th trial, where 5, <5, < -+ <
s,. Then the UMP unbiased test for testing H:B =0 against the
alternatives 8 > 0 is carried out conditionally, given n, and rejects when
the rank sum L]_,s; is too large.

(iii) Let Y;,...,Yy and Z,,..., Z, be two independent sets of experiments
of the type described at the beginning of the problem, corresponding,
say, to two different drugs. If Y; is distributed as b(p;, m;) and Z; as
b(m;, n;), with

1 1
Pi= Ty e@buy  TT {4 sy

then UMP unbiased tests exist for the four hypotheses concerning v — a
and § — B.

Section 8
In a 2X2X2 table with m; =3, n,=4; my=4, n,=4; and ¢, =3,
t{ = 4, t, = t; = 4, determine the probabilities that P(Y, + ¥, < k|X; + Y, =
t;,i=1,2) for k = 0,1,2,3.

In a 2 X2 XK table with A, = A, the test derived in the text as UMP
unbiased for the case that the B and C margins are fixed has the same
property when any two, one, or no margins are fixed.

Let X, (i,j,k=0,1,1=1,..., L) denote the entriesina2 X2 X2 X L
table with factors 4, B, C, and D, and let

I = PabBcp,PiBcp, PaBCD, PiBCD,
) =

Puscp, Pibcp,PaBéD, PiBéD,

Then

(i) under the assumption I, = T there exists a UMP unbiased test of the
hypothesis I < T}, for any fixed Iy;

(ii) When / = 2, there exists a UMP unbiased test of the hypothesis I, =T,

—in both cases regardless of whether 0, 1, 2 or 3 of the sets of margins are
fixed.

Section 9

In the 2 X 2 table for matched pairs, show by formal computation that the
conditional distribution of Y given X’ + ¥ = d and X = x is binomial with
the indicated p.
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Consider the comparison of two success probabilities in (a) the two-binomial
situation of Section 5 with m = n, and (b) the matched-pairs situation of
Section 9. -Suppose the matching is completely at random, that is, a random
sample of 2n subjects, obtained from a population of size N (2n < N), is
divided at random into n pairs, and the two treatments B and B are assigned
at random within each pair.

(i) The UMP unbiased test for design (a) (Fisher’s exact test) is always more

powerful than the UMP unbiased test for design (b) (McNemar’s test).

(ii) Let X, (respectively Y;) be 1 or 0 as the 1st (respectively 2nd) member of
the ith pair is a success or failure. Then the correlation coefficient of X;
and Y; can be positive or negative and tends to zero as N — 0.

[(ii): Assume that the k th member of the population has probability of success
p$¥) under treatment A and p§*’ under 4.]

In the 2 X 2 table for matched pairs, in the notation of Section 9, the
correlation between the responses of the two members of a pair is

Py —mm

T mQ-m)m(-m)

p

For any given values of m, < m,, the power of the one-sided McNemar test of
H:m = m, is an increasing function of p.

[The conditional power of the test given X + Y = d, X = x is an increasing
function p = po,/(pn + P10)-]

Note. The correlation p increases with the effectiveness of the matching, and
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