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Cause, Constraint, and Quantized Eigenisms: Why
Data-intensive Biology needs New Mathematical

Perspectives

Causality in complex organisms is sculpted by constraints rather than instigators, with
outcomes perhaps better described by quantized patterns than rectilinear pathways

Douglas E. Brash

Complex organisms thwart the simple rectilinear causality paradigm of
“necessary and sufficient,” with its experimental strategy of “knock down and
overexpress.” This Essay organizes the eccentricities of biology into four
categories that call for new mathematical approaches; recaps for the biologist
the philosopher’s recent refinements to the causation concept and the
mathematician’s computational tools that handle some but not all of the
biological eccentricities; and describes overlooked insights that make causal
properties of physical hierarchies such as emergence and downward
causation straightforward. Reviewing and extrapolating from similar
situations in physics, it is suggested that new mathematical tools for
causation analysis incorporating feedback, signal cancellation, nonlinear
dependencies, physical hierarchies, and fixed constraints rather than
instigative changes will reveal unconventional biological behaviors. These
include “eigenisms,” organisms that are limited to quantized states;

its course in biology. Embodied experimen-
tally as “knock down and overexpress,” this
proxy has led biologists to impose recti-
linear, unidirectional, unilevel, billiard-ball
models on biological systems that are nei-
ther linearly ordered nor unidirectional and
that operate at multiple levels of hierarchi-
cal organization. Physicists have wrestled
sporadically with the same issues in the
form of thermodynamics, Mach’s principle,
quantum entanglement, quantum electro-
dynamics, and the Josephson effect.'8 In
both realms, the conundrum is acute. I first
unpack the problem through the eye of a bi-
ologist, identifying conceptual obstacles to
our mission of understanding causal events
in biology, and then present specific biolog-

trajectories that steer a system such as an evolving species toward optimal
states; and medical control via distributed “sheets” rather than single control

points.

1. Introduction

Twenty-first century biology provides more sophisticated exam-
ples of causality than those available to Aristotle and Hume.
Several phenomena in physics are not far behind. It is no longer
obvious what we want to know when we ask “What caused this
tissue to become a heart, this cell to become a tumor, or this
signaling pathway to become pro-apoptotic?” The explanation
of why Z happened rather than something else may not fall into
the form “This protein phosphorylated that protein at this amino
acid.” As a test for causation, “necessary and sufficient” has run
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ical examples that guide us toward promis-
ing solutions. The way forward is impeded
at the outset by the hurdles of muddled con-
cepts that we biologists tend to use.

2. Splitting Causation into Parts Is a First Step
toward Characterizing Complex Systems

The first hurdle is that the word “cause” conflates instigation with
determination: why anything happened at all versus the rules that
mold the outcome. The cancer biologist’s “driver gene” is worse,
conflating continued pushing with continued steering. Muddling
these lets our search trip over determinants without recognizing
them as causal. I will deem “cause” to have two parts: the instiga-
tor and the determinants. The second hurdle is that our colloquial
idea of causality focuses on the instigator—a billiard ball or hor-
mone that initiates an altered behavior of some other object. This
is causality as captured by Newton’s Laws, in which forces exerted
by an initiating object alter the behavior of a second object in a
way largely determined by the first. “Necessary” has never been
a good candidate for this causal link because alternative routes
to the endpoint are usually available. Nor is “sufficient,” because
even billiard balls require a level billiard table—a determinant.
Recently these points have been put on a rigorous footing by the
interventionist view of causality,[®! which focuses on whether a
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Box 1
The Interventionist Definition of Causation

We tend to think of a cause as an event sufficient to produce
the effect. But this conception does not handle the case of A
= Y & Z (panel 1), where observing Y is sufficient to predict
the later Z but Y is not a cause of Z. Correlation rather than
cause was the contemporary argument against Koch’s micro-
bial explanation of tuberculosis, prompting his Postulates for
causal testing.'” “Sufficient” also fails to recognize the role
of the unchanged background determinants such as the level
billiard table (Q in panel 2), which are surely part of any ex-
planation that causation is being used for. These defects can
be repaired by adding “necessary,” and Hume in fact defined
a cause solely as “necessary.” Yet “necessary” alone does not
guarantee an effect because moving a riverbank is moot if
there is no water; instigating cue balls and thus “sufficient”
are still needed. “Necessary and sufficient” was adopted for
Lewis’ counterfactual definition of “causally depends on.”!!!]
Alas, this conception is so tight that it fails to handle an effect
that can be achieved by alternative causes, A or B = Z (panel
2). Mackie repaired this defect with the INUS condition"?l: A
cause is an Insufficient but Necessary part of a (multifactor)
condition that is itself Unnecessary (due to alternatives) but
Sufficient for the result. This resembles the biologist’s “played
arole in” and the physician’s “predisposed to.” Another bene-
fit of INUS is that the multifactor condition includes both the
billiard ball A and the billiard table Q; in the original example
a sudden short-circuit and permanent flammable material are
both required for one possible route to a housefire. In a bi-
ology experiment, knockdown tests “IN” and overexpression
tests “US.” Nevertheless, INUS does not capture the fact that
causes and effects are really changes of objects, AA and AZ
(panel 3).

AA&Q AA&Q—'V1—'V2\

N, Nz a2
time /\
AB & R—W,— W,

The interventionist framework®! solves this difficulty and oth-
ers in a way that will please experimentalists, by defining

change AA in a putative cause creates an effect AZ when other
variables are held fixed (Box 1).

Including the determinants leaves a deep challenge: it is rarely
enough to know AA and point-to-point causes like Vs and Ws in
panel 4 of Box 1. At its heart, causality is shorthand for a link
between an initial state and a final state, each of which contains
the same affecting and affected parts A-Z but in different config-
urations. A change in A’s relations to its neighbors (a decrease
in momentum, an increase in binding to a hormone receptor,
movement of gasoline near a spark) is what causes a change in
relations of the affected object. More precisely, these relations
of A include the ones it has with the affected “other” object. A
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quantities that explicitly focus on manipulating A to create
AA:

Direct Cause A of Z with respect to variables like B and Q =
There is a possible intervention AA that results in AZ when
all other variables besides A and Z are held fixed at some value
by interventions.

The A formulation inherently brings in both presence and ab-
sence of the putative variable, in contrast to observing correla-
tions between variables that are present. It also allows graded
changes. A, B, and Q each satisfy the direct cause condition for
some value of the other variables and so are direct causes. The
variable that changed in a particular situation (e.g., A in panel
3), I will consider the instigator; those unchanged (e.g., Q)
would be determinants. The definition of direct cause works
even if A and B in are each sufficient and both change; here
the difficulty with identifying “the cause” is not “cause” but
“the.”

In the case of multiple multistep paths (panel 4):
Contributing Cause A of Z = There is a directed path from A
to Z such that each link V; in this path is a direct-cause rela-
tionship and there is a possible intervention AA that results
in AZ when all other variables that are not on this path are
fixed at some value.

The definition of contributing cause works even if parallel
paths cancel each other (crossbar in panel 4, lower), leaving
only net causation, and works if both Vs and Ws originate
from A. It does require that all Vs on the path be enunciated,
so that they are not held fixed inadvertently.

Both definitions work not only when A and Z are molecules
but also when multiple As are microscopic variables and Z
is a macroscopic phenotype. An overexpression experiment
achieves AA. Knockdown also creates A, but it presumes there
is an activity to be knocked down and thus an upstream AA;
knockdown therefore studies AV. Essential to the interven-
tionist approach is that each intervention directly changes
one and only one variable; interventions cannot behave like
panel 1. If we do not know this to be the case in an experi-
ment, then intervention is on a par with correlations between
observations.[!?]

characterization of the entire system is needed—an extended ver-
sion of panel 4. This is essentially the Lagrangian formulation
of physics, where the walls, axles, and force fields are included.
This formulation, not Newton’s focus on forces acting on a sin-
gle object, is what physicists and engineers use daily; it under-
pins the mechanics of industrial machinery and the Schrédinger
equation.'*15] A lesson of physics and engineering is that con-
straints Q on the object—unchanging conditions such as a wall—
are determinants that often are more sculptive of the final event
than is the particular instigator. In biology, the premier example
is the evolutionary role of selection pressure as a constraint or
determinant compared to mutations as instigators.

© 2020 WILEY Periodicals, Inc.



ADVANCED
SCIENCE NEWS

B?oEssays

www.advancedsciencenews.com

The third hurdle is that biology has shown us instigators that
are not external to the object being altered. A mutant oncogene is
not coming from outside the organism. During an embryo’s de-
velopment, each step is the instigator of the next. Of course, the
mutation or fertilization had its own cause, but once that occurs it
acts as an instigator via the structural change it makes within the
organism, rather than by imparting motive forces from without.
Unlike an external instigator like the billiard ball, which is effec-
tive even if present briefly, a structural instigator must typically
be sustained; if it reverts, its effects also revert.

The fourth hurdle is that we humans have two different cau-
sation demands on the link between initial and final states; these
mainly involve the determinants. The first demand is prediction,
the ability to know the final state based solely on the internal parts
of the initial state and their interactions. The payoff is that we can
then plan around that system’s behavior—we predict the behav-
ior of the tiger or poison ivy and then adjust ourselves. Predicting
the future from the state’s initial ingredients also lets us feel we
“understand” the system. The second demand is control, the abil-
ity to change the system’s final state by altering part of its initial
state. In medicine, this ideally occurs at a simple determinant
that serves as a control knob; in public health, control focuses
on preventing the instigator. This control is also essential in the
laboratory, allowing us to separate cause from correlation!'®! and
prove our predictive understanding is correct. In the interven-
tionalist view,®] an event’s ability to control is essential to even
defining causality.

We have now cleared our heads about the relationships we are
looking for. Does this clarity about point-to-point causal steps
resolve the catalog of challenges faced by experimental biolo-
gists identifying actual instigators, determinants, and control
points?

3. Four Eccentricities of Biology That Challenge
Rectilinear Causation

Those challenges spring from an omission in our colloquial pic-
ture of causation: in biology, the initial state and the final state
are usually separated by intermediate states. Intermediate states
break the billiard-ball model in specific ways that point toward a
solution.

3.1. Rectilinearity Is Broken by Pathway Branching

When a ligand activates a receptor kinase on the cell’s surface,
the kinase activates more than one downstream next-target, each
starting a signaling pathway; each of these then activates several
next-targets further downstream. Ultimately, these pathways lead
to transcription factors that bind to thousands of genes. Similarly,
aneuron’s dendrites form synapses with many downstream neu-
rons; in neural pathways that use biogenic amines, axonal neu-
rotransmitter release sites are not even restricted to synapses.!”]
Branching also occurs with small molecules: The sunlight energy
needed to generate vitamin D also produces other molecules with
similar structures!'®]; moreover, vitamin D not only acts as a lig-
and for a receptor that binds to genes, but also directly modifies
receptor kinases and ion channels.[*"]
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This 1-to-Many branching is augmented by Many-to-1
branches: Each receptor kinase or target can usually be activated
by alternative upstream ligands or receptors, and each gene
is bound by a dozen or more different transcription factors.
These often include both excitatory and inhibitory contributions
that can partially cancel each other, a computation. Indeed,
any computation is essentially a Many-to-1 branch from many
operands to one result, so biological computations for insulin
secretion amounts, visual tracking of a moving object, or the
mental representations that underlie mind will also break
rectilinearity.

Superimposed on these within-pathway branches is the fact
that many proteins and metabolites have more than one func-
tion and so branch onto more than one pathway. The tumor sup-
pressor TP53 is notorious, involved in cell cycle arrest, apopto-
sis, angiogenesis, DNA repair, melanogenesis, and more; it is
even upregulated by vitamin D. Lens crystallins are simply pro-
teins used in another body site that happen to make clear crystals,
with the particular co-opted protein differing between species.?!
The enzyme RAC1, a GTPase that binds to the cytoskeleton and
modulates cell motility, is also the regulatory subunit for the
enzyme NADPH oxidase, which generates the superoxide that
phagocytes use to kill invading pathogens and also initiates a
chemiexcitation reaction that creates sunlight-like DNA damage
in the dark.?!l Which of these functions is the reason RACI mu-
tations are an instigator for melanoma,??! and which are deter-
minants? Such dual-use is normal in engineering: the strut that
holds an airplane engine onto the wing is important for heat
dissipation.

Dense branching makes it difficult for the experimenter to
alter one and only one element of the initial state in order to
identify “causal” elements. Indeed, there is no longer a guarantee
that a pathway even has a control element. An underappreci-
ated strength of studying the genetics of single-gene inherited
diseases is that it reveals pathways that do have a control
point.

Branching is often a feature, not a bug, of the network. The
usual view in biology is that branching provides backup path-
ways and robustness. A more sophisticated example is given
by computer neural networks. Their computations were initially
limited to linear relations (in the mathematical sense of y =
mx + b), which did not include the logically essential exclusive-
OR.I224] The breakthrough came when an intermediate stage
with branches was added.[>] Directed acyclic graphs (DAGs), as
in Box 1, are capable of modeling branching but the branches
must be included in the model. Biological branching is not ig-
norable.

3.2. Unidirectionality Is Broken by Feedback

In feedback, the result Z of Box 1 also has an arrow back to the
causes A or B. Feedback is ubiquitous in metabolic pathways,
signaling networks, and the brain’s neural paths. Feedback in-
hibition of early enzymes in a pathway by the end-product is
well-known. Conversely, the signaling pathways mediated by the
proteins JNK or HIF1a have positive feedback loops—they acti-
vate genes producing the interleukins TNFa, IGF2, and TGFa,
the very ligands that activate these pathways. Blood pressure
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and glucose levels are regulated by homeostats that compare
a setpoint to feedback from physiology sensors; this mainte-
nance of constancy can be generalized to goal-oriented cognitive
functions.[?-28] In neuroscience, a similar mechanism is mini-
mization of “surprisal,” the Bayesian difference between an or-
ganism’s current perception and a mental world-model based on
experience.??3% One wonders whether Homo sapiens descended
not from apes but from homeostats. Loops present in the cell cy-
cle regulatory pathway highlight the fact that it is often unclear
who is upstream and who is downstream.>!] The tumor suppres-
sor protein TP53 is widely understood to inhibit the cell cycle
and activate apoptosis, using its E2F1 downstream target to es-
tablish a negative feedback pathway that keeps TP53 in check.
Knocking out the gene for TP53 thus knocks out apoptosis. How-
ever, for UV-induced apoptosis, additionally knocking out E2F1
in a mouse counterintuitively restores the apoptosis; moreover,
an E2F1 knockout alone elevates apoptosis. It is as if E2F1 is the
main story, inhibiting apoptosis, and TP53 is now the regulatory
addition.[333] Who is upstream and who is downstream? Who is
the instigator and who is a determinant? Moreover, the answer
differs for apoptosis induced by dexamethasone,** for UV in a
mouse knocked out in a different exon of the gene for E2F1,1%]
and for UV in human cells.**] So what was the causal answer we
sought?

Feedback designs are definitely a feature, not a bug: Mutually
inhibitory feedback loops are the way electrical engineers con-
struct a switch (the “flip-flop”) and the way the eye enhances
edges. Signal amplification is achieved by positive feedback. In
those cases, the intermediate state is just the final state at an
earlier time. Neural networks became powerful with the intro-
duction of backpropagation of outputs.l*”*® Kauffman studied
a network of randomly connected lightbulbs, each activated by
its input lightbulbs according to a randomly assigned AND or
OR rule. The arrangement led to a stable temporal pattern of
light flashes if each bulb was connected to exactly two others.*]
Few bioinformatics models incorporate feedback loops, both be-
cause loops are viewed as tweaks to the main pathway and be-
cause they demand intense computational resources. Yet, biology
cannot be “approximately understood” by ignoring them. Feed-
back also presents critical issues for medicine. Positive feedback
is a feature of inflammation pathways like JNK; correspondingly,
chronic diseases behave as the phenotypic expression of slow,
self-amplifying pathways.[*?) Heart attacks are an acute prob-
lem because of the positive feedback within the blood clotting
pathway. However, DAGs omit feedback by definition. Biological
loops are not ignorable.

3.3. Transience and Reversibility Are Broken by Triggers and
Switches

Molecular biologists tend to think of a cause as transient, after
which the receptor kinase signaling, blood sugar level, or neural
firing fades to baseline. Developmental biologists are more ac-
customed to the fact that these and other events can flip switches
that cause permanent change. In the extreme case, the role of a
“cause” is not to create the change but to render the change ir-
reversible: The genetic assimilation concept of Waddington and
Schmalhausen proposed that environmental changes induce al-
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tered phenotypes that become petrified by mutations.[*#2] One
wonders whether the role of a mutant oncogene is similarly to
act as a pawl for the ratchet of environmentally induced physi-
ological disturbances.[*}] If all the information lies in the deter-
minants, with little input from a Newtonian instigator, then the
instigator is a trigger: it determines only when the predetermined
event occurs. Triggered biological events, such as hormone bind-
ing, resemble logical if-then relations rather than physics. Revers-
ing such states in chronic diseases may require more than tran-
sient medical intervention. Less dramatic examples of nonlinear
dependencies in biology include thresholds and synergies such
as cooperative binding of molecules.

3.4. Unilevel Interactions Are Broken by Physical Hierarchy

Thermodynamics was the first scientific field to recognize that
the effect could occur at a different hierarchical level from its
cause: Macroscopic variables like temperature, pressure, work,
and “heat flow” could be explained in terms of the statistics of
microscopic collisions between molecules.['?] Yet key relation-
ships exist directly between temperature, pressure, work, and
heat, derived long before molecules were demonstrated.**] The
thermodynamicist’s approach to creating hierarchy was to define
a macrovariable as an average of a microvariable, which in bi-
ology is like grinding tissue in a homogenizer. Yet, this two-level
dichotomy is a suggestive paradigm for the multilevel hierarchies
seen in biology, which span subatomic, molecular, macromolec-
ular, signaling network, cellular, cellular network, organ, organ
system, mental representation, and sociology levels of organiza-
tion. A macrolevel is typically a coordinated collection of identical
copies in the microlevel, spread over space (Box 2).

The word “emergence” correctly captures the creation of nov-
elty at the higher level by using the ingredients of the lower level,
but it is often presented as meaning that combining lower-level
parts in a sublime way creates a novel function from nothing.
A perceptive solution was Pattee’s suggestion that the way to get
novelty, that is, an emergent function, is not to create something
new but to constrain what was there beforel*] (Box 2). An army
of ants is a mob of ants each constrained from moving in any
direction it wants. An enzyme constrains a pool of reactants
that would otherwise participate in many alternative slow,
temperature-driven reactions; enzyme substrates instead partic-
ipate in a single rapid reaction. The macroscopic roundness of a
balloon!*! is a consequence of the geometry of individual rubber
molecules plus the fact that each molecule is bound to its neigh-
bors at the same acute angle. The crucial ingredient is the large-
scale repetition of that microscopic property; the creator of their
correlation is the true originator of micro-/macroemergence,
in this case, it is the internal air pressure. In each case, adding
a constraint to a system that is doing many things weakly has
restricted it to doing a few things well; it is addition by subtrac-
tion. The whole is firmly less than the sum of its parts because
constraining the lower-level parts has discarded uncorrelated
behaviors and left correlated ones that define a higher-level
behavior.

Constraints also underlie the Lagrangian formulation of
physics mentioned earlier. Although Lagrange presented it as a
mathematical trick, the origin was D’Alembert’s attempt to adapt
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Box 2
Physical Hierarchies and Emergence

A macroscopic level is often a coordinated collection of iden-
tical copies in the microlevel, spread over space. The key is
“coordinated,” which is managed by physical structural rela-
tions between the copies, not by set-subset relationships.
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How well do we understand causality in hierarchies? In the
last century, biologists have executed a spectacular job of
reductionism—identifying parts and then the parts of those

the formalism of static constraints into dynamics by introducing
a constraint force akin to a wall.[>**-52] Essentially, a constraint
goes beyond Newton’s specification of the state of one object to
specify the relation between two objects. A subtlety is that statics
only requires the constraint to be in one place—the points where
the ladder touches the wall—but D’Alembert’s dynamics allows
the constraint to be present at each position the moving object
will occupy. In physics, an extended constraint is called a “field,”
like gravity; in biology, it is called the “environment.” Another
subtlety is that living organisms differ from physics by generat-
ing the constraints themselves; their constraints generate their
constraints.[>?!

In the extreme case of hierarchy, phenomena emerging at
the higher level are independent of the details at the lower lev-
els and rely solely on the constraints. In physics, this situa-
tion is termed “independence of microscopics.”l”#! An archetype
is the Chladni plate (https://sciencedemonstrations.fas.harvard.
edu/presentations/chladni-plates). If we sprinkle a flat plate with
sand grains and set it to vibrating, distinctive patterns emerge
that depend on the shape of the plate (Figure 1a). A new pattern
emerges if we place our thumb on the edge or if the vibration
frequency changes (http://dataphys.org/list/chladni-plates). The
high-level pattern does ultimately result from collisions of sand
grains governed by Newton’s laws. These collisions could be com-
puted at the microscopic level, but a) we do not care, because the
particular collisions that led to the pattern today will be different
on Thursday and b) we lack the computational power. Why do
the microscopics disappear? In effect, many of the motions of a
sand grain cancel out, as do many of the collisions that acted on
that grain. What is left are the patterns that are consistent with
the external constraints, constraints such as the size and edges
of the plate and the frequency of vibration. A similar cancella-

BioEssays 2020, 1900135

1900135 (5 of 12)

www.bioessays-journal.com

parts. But reductionism comes with the obligation to put the
parts back together again.l”! Rejoining requires knowing not
just the parts but the relations that join parts at the same
level, and knowing which relations create a higher level from
the lower one. Biology has been deficient in both regards.
Humans have a blindspot for relations that create new lev-
els, perhaps explaining why many fields and computational
approaches consider hierarchies to be equivalent to multi-
level set-subset relations.**] An illuminating experiment
is to ask a friend to name the parts of a chair—s/he will not
mention bolts or glue. The job of a Dounce homogenizer or
chaotropic salt is precisely to remove these relations in order
to dissociate an organism into parts, but we then forget to
study and include these relations when thinking about hier-
archies. This blindspot has made two deep properties of hier-
archies seem mystically opposed to reductionism, rather than
companions to it: emergence of novel behaviors and down-
ward causation (upward and downward arrows, discussed in
the text).

X

Figure 1. a) Sand grains on vibrating Chladni plates of different shapes
epitomize the conundrum facing biology. Vibrations drive the sand grains
into quantized patterns via collisions that follow Newton’s laws, but those
patterns depend not on the particular collisions but on the plate’s size,
shape, and vibration frequency. Do we seek causality in the instigators of
collisions or the constraints on patterns? Photo courtesy: Harvard Nat-
ural Sciences Lecture Demonstrations (https://sciencedemonstrations.
fas.harvard.edu/presentations/chladni-plates). b) The central point rep-
resents a stable attractor in state space of a system governed by nonlin-
ear equations. In a cell, the x- and y-axes would be physiologic quantities
such as redox potential and metabolic rate. If the system’s state varies only
due to haphazard influences (dotted line), it may eventually encounter the
attractor and become stabilized in that state. This might be one of the
stable patterns in (a). If states near the attractor are reoriented toward
it, migration becomes directed (solid curve). This happens under condi-
tions described in the text. The circle indicates a stable limit cycle, to which
the system migrates if initially positioned at a point outside. Discussed in
ref. [56].
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tion produces the coherent light of a laser.®* These “equilibrium
explanations”®*] are sometimes considered acausal, but the in-
terventionist definitions remain valid across hierarchical levels.
What we seek in order to feel we understand the patterns are
not the links between sand grains, the billiard-ball causality, but
the rules that link patterns to the constraints that cause them—a
new form of causality focusing on determinants like plate shape
rather than instigators like the vibration. The experimental chal-
lenge lies in determining how to avoid measuring every copy of
each microcomponent.

“Downward causation” is an apparently paradoxical phe-
nomenon in hierarchical systems in which an emergent phe-
nomenon at the higher, macroscopic level instigates changes ata
lower level.575°1 How can an abstract macroconcept like voltage
affect a concrete object like a protein? Yet, downward causation
need not invoke any new laws of biology (Box 3).

In the end, navigating physical hierarchies involves reduction-
ism followed by a U-turn upward until reaching the components-
plus-relations at the desired level of description. Sometimes the
new description simplifies the subject by redefining what is rele-
vant; as my biochemistry professor once remarked, “A molecular
biologist is someone who thinks adenine is A.” In other circum-
stances, new behaviors emerge, yet these are founded on lower-
level parts and their relations. In addition, sometimes a second
U-turn imposes constraints on a lower level. That U-turn is the
origin of the observation that living organisms’ constraints gener-
ate their constraints(>}] and do so via downward constraints that
look like control.[*®] Constraints at the microlevel that are coor-
dinated across space, usually by structure, generated a coordi-
nated function at the higher level. This spatially extended func-
tion acted as an environment: a spatially extended constraint on
the behavior of a different set of microlevel objects whose behav-
iors in space and time become constrained and coordinated by
the environment.

In synopsis, any computation of biological causation is empty
unless it incorporates these four eccentricities. Fortunately, they
contain the seeds of the way forward to explanation, prediction,
and control.

4. What Will the New World Look Like?

Including these eccentricities—particularly signal cancellations
and nonlinearity on the background of feedback and physical
hierarchies—will open the door to what may be an unorthodox
world.

4.1. Forms of Explanation: Eigenisms Emerge from Graded
Effects Broken by Quantization

4.1.1. Cancellation of Signals

The cross connections of branched cell signaling networks invite
cancellation: five “yes” and two “no,” executed by phosphoryla-
tions and dephosphorylations, would seem to output three “yes.”
Diftusible neurotransmitters might be similar. Even identical sig-
nals from two sources will cancel, if they are periodic like a sine
wave and if there is a time lag between them (“phase shift”).[®]
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A biologists’ intuition is that a cause acting through a collection
of cross-connected branches will provide graded effects, with
greater stability than a single path. However in physics, the result
is often a set of discrete options, like the Chladni plate patterns
or flashing light bulbs. Famously, the energy levels of atoms
and molecules have discrete options, alternative solutions to the
Schrodinger equation termed “eigenstates.” Less famously, Mott
wondered why the spherical wave of an alpha particle emitted
during radioactive decay appears as a straight track in a cloud
chamber.’] He found that if the Schrédinger equation included
all the chamber’s gas atoms, the phases of the wave—atom inter-
actions throughout the chamber canceled each other out except
in narrow cones along a line originating at the decaying nucleus.
The Feynman formulation of quantum electrodynamics adopts
a similar view for electromagnetic fields, assuming that all possi-
bilities can occur but most cancel each other out.[*] These situa-
tions involve wavelike behaviors that carry phase information as
complex numbers, so the mathematics of cells would likely differ.

4.1.2. Nonlinear Equations

An analogous situation arises for particles, in systems whose be-
havior is described by nonlinear equations (in the mathematical
sense). Initial trajectories can be quite different depending on the
starting conditions, but in many cases, they tend toward the same
final state. The multitude of trajectories, the common final state,
and the region in which these occur, are compactly described in
terms of attractors, limit cycles, and basins of attraction!3”:3:66-68]
(Figure 1b). This formulation has been useful in describing car-
diac behavior and gene expression,!®7% and it is hard to see how
the rest of nonlinear biology could avoid having them. Where
there are many attractors, the situation resembles eigenstates:
not all states can be reached, and what is stable are discrete,
widely separated attractors. We tend to think that a cell has an
enormous repertoire of behaviors, and that an external stimulus
nudges the cell from one to another. However, most of the real
world is nonlinear, relying on thresholds and synergies, so cell
states and embryos are likely to contain attractors and basins, and
to respond to stimuli by hopping from one basin to another or by
refashioning basins. Embryos do not occasionally make an organ
that is part liverish and part kidneyish. A subtle point is that hav-
ing a stable spot is not enough; a cell would meander through
state space until stumbling into the attractor and being trapped
there (Figure 1b, dotted line). It is essential that a state near the
attractor be redirected toward that attractor. This will happen if
the system’s nonlinear equations are such that a = d’r/dt* = —k
* d/dr f{r)*t", where a is the vectorial acceleration, f{r) describes
the attractor’s influence at distance r, and r” is the unit-length
vector from the attractor to the cell state’s position. This is essen-
tially Newton’s F = ma for cell states, if k involves properties of
the attractor and its cell analogous to charge and mass, that is,
reflecting their propensity for and resistance to change. This ge-
ometry can be described as a well in a state space whose z-axis
is a potential energy that increases with distance from the attrac-
tor; the state will be redirected toward a minimum energy. An
individual attractor thus acts as a homeostat even if there is no
obvious sensor, setpoint, comparator, and effector.[**] Surprisal
computations can also lead to attractors.!?”! If embryogenesis is
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Box 3
Downward Causation

Macroscopic properties like voltage or pressure emerged
when a correlation was established between many identi-
cal sites of microscopic properties like ion concentration or
macromolecule displacement. Voltage gradients then activate
individual ion channels, and mechanical stresses from a bent
tissue sheet or cilium influence differentiation of individual
cells. Biological computations have even greater opportunity
for hierarchy: An important class is symbolic computation, "]
in which the output symbol has the same format at every step
or level of computation whether it be 1 and 0, neural spikes, or
macromolecules. This uniformity allows the output of a high
level of the hierarchy to be easily introduced as an input to
a lower level, creating feedback down hierarchical levels. For
example, sensory systems receive input from cortical process-
ing centers. What does it mean for the macrolevel to influence
the micro?

First, a higher level is not in a new place. It consists of the
same parts but now coordinated in space or time. Even a tem-
poral correlation is usually ultimately a spatial correlation: my
body location correlated with a clock’s hand position, blood ve-
locity with the conformation of the heart. A higher level looks
like a new place because, when discussing it, we often show all
the additional parts that are now coordinated, such as many
“copies” of arteries and veins as well as the heart. However,
they were already there, a fact clearer when we talk about co-
ordinating the identical cells of an epithelium to produce an
ion gradient. Moreover, this coordination is enforced by addi-
tional parts—bolts and cadherins—that we tend not to include
in drawings of the microscopic level.

Three mechanisms seem to account for the several cases cited
in the literature.[!] a) 1:1. When two car bumpers collide,
they do so molecule by molecule; we sum the result to ob-
serve two “bent fenders.” Ion transport by the cells of an ep-
ithelium is conducted channel by channel; we sum the re-
sult to observe “the voltage gradient.” b) Many:1. A single
molecule in the fender or epithelium can be affected by sev-
eral members of the macrolevel constraint, for example, ions,
integrating them. If the macrolevel constraint is a pattern
rather than a single value such as voltage or pressure, this is
a non-trivial advance that allows the microlevel to respond to
patterns. ¢) 1:Many. In a laser, the emergent coherent light
beam interacts with each of the atoms that produce it, func-
tioning as a pacemaker.[**l In each case, the macroevents af-
fect microevents by increasing the probability of an individual
lower-level event such as a conformation change in a single
ion channel. Because the macroevents were correlated, the

a trajectory through basins that achieve the embryo’s structures
despite perturbances,®! and if the system of embryo plus envi-
ronment also has basins, then species need not meander through
state space to evolve a better organism. Fitness wells would ex-
plain the feasibility of evolution more perspicaciously than fit-
ness peaks. Although attractors have already been identified in
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microevents become correlated despite each interaction be-
ing itself microscopic. The real causal question is how the
correlation was established at the microlevel. That, in turn,
can be by cancellation of non-conformers, or self-assembly
of many molecules, or spread of a change at one site to the
whole tissuel®?; the latter is not unlike compressing a mole of
gas molecules by pushing the thin handle of a piston. Causal
rules that apply only at the higher level(®*] are not required.
One downward causation rule has been proposed to be un-
avoidably required in biology: selection pressure.l*’] Yet note
that if our ion channel were to diffuse to a different spot in the
cell membrane, it would still find itself surrounded by ions;
hence the ions qualify for the definition of a field or an en-
vironment. And in evolution, an environmental constituent
that alters an organism’s constituent so as to increase the or-
ganism’s reproduction rate or survival is simply selection. So
Patee’s rule for upward emergence and Campbell’s selection
rule for downward causation are identical constraints. Neither
is “irreducible” and indeed they rely on the microscopic struc-
ture.

Can changing a macrostate like voltage have causal efficacy on
other macrostates like current, or are macrochanges merely
correlations between epiphenomena of microcausal events?
A macropiston sets the volume of gas by downward causa-
tion (it is a constraint), although the gas molecules could be
in many alternative spatial locations at this same volume;
these alternative microstates have been termed “equivalence
classes.”(® If the piston falls, the microstates will change. A
subtle point is that only if all the equivalent microstates in
the initial volume’s equivalence class are also members of the
same final equivalence class, will each of them produce the
same new macrovolume state.l*®! That is, only in this case do
we have

rather than

B o= >
o — W
o — >
o — W

and thus hierarchical causality rather than mere correlation
between A and B. A more sophisticated way of achieving
macro-macrocausality is when the macrolevel contains a
homeostat’s setpoint or goal, to which the microlevel must
adapt.l®1%4] (I will show how such homeostats can arise later.)
The setpoint is again a constraint. This property of homeostat
arrays would then allow consistent causal influences between,
for example, neural representations of the world.

biological systems, my point is that attractors and eigenstates are
not just characteristics of a particular system but are examples of
the form in which complex biological causation can be described.
Including measures of susceptibility to change would upgrade
the current kinematics-like description of attractors to predictive
dynamics.
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Figure 2. A potential energy surface for an Eigenism. This figure is actu-
ally the potential energy surface for adjacent thymines in DNA, the two
horizontal axes being the angle and distance between bases and the z-axis
being energy. The lower surface is the ground state, the upper surface is
the first excited state, and the conical regions are the conical intersections
at particular geometries that allow easy transitions between states. In the
case of eigenisms, the x- and y-axes would be physiology parameters such
as redox potential and metabolic rate; the z-axis would be an analog to
energy or information. DNA calculation and illustration by Dr. Lluis Blan-
cafort, University of Girona; discussed in ref. [76].

4.1.3. Eigenisms

For either cancellations or attractors, we might call the organ-
ism’s discrete states “eigenisms.” The number of options may
be smallish—cells, organisms, and ecosystems being limited to
self-consistent states in which the various signals do not erase
each other. Indeed, a common experience in the field of clinical
biomarkers is that about 30 are needed to firmly diagnose a dis-
ease state—not 10 and not 1000.773) If a disease state is not a
broken organism but an alternative eigenism, 30 variables may
suffice to distinguish it from the other eigenisms the organism
could have adopted.

Eigenisms then suggest consequences: Are murine cells eas-
ier to transform to malignancy than human because they have
fewer distinct states, facilitating the switch to forbidden states?
Does lower metabolism or slower molecular turnover with age
fuse formerly distinct states, or make hopping easier, leading to
chimeric tissues that underlie the impaired homeostasis that con-
stitutes senescence? Do the energy levels that define a molecule’s
eigenstate have an analog in organismic biology—such as infor-
mation content*”74#73] or some other analog to the energy, mo-
mentum, and position variables of the Schrodinger equation—so
that eigenisms are not just different but can be arranged vertically
(Figure 2)? If so, particular conformations of the organism would
be most susceptible to switching between eigenisms.

4.2. Prediction: Patterns Replace Mechanism

The rules governing pattern creation would seem to be the causal
understanding that we sought. A program in which experimen-
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tal data drives a search for the appropriate mathematical explana-
tion is the following: First find the parts, at which we are skilled,
plus the relations between parts. Some of these relations will be
constrained by structures we need to discover. Next, a handful
of the relations or constraints on them will dictate higher-level
patterns or states via rules, and changes to the constraints will
precipitate changes in the patterns. To identify the relevant rela-
tions and constraints, we need to manipulate them and observe
the result. In engineering, this is done by imposing specific sig-
nals such as sine waves or a clamp and deducing the “transfer
function” from the shape of the output. In biology, this could
be done by optogenetics coupled with a multitude of real-time
probes.””] To identify the patterns, we initially observe states pro-
vided by Nature, by applying big data methods such as clustering
single cell measurements according to abstract principal compo-
nent axes.!”% The variables underlying the principal components
would indicate which parts and relations are important. Ideally,
particular principal component axes would reveal structures re-
sembling Figures 1b or 2. Those figures depict the system’s al-
lowed changes over time, but time series measurements are dif-
ficult to come by. Single-cell technologies provide a potential so-
lution because, when the experiment is performed, some cells
will be present from each stage of the temporal series. The trajec-
tory’s sequence will still need to be determined, but the existence
of attractors or energy surfaces will be evident from the snap-
shots. This analysis would be continued by perturbing the sys-
tem. In practice, the opposite order is likely to be fruitful: we are
in the position of Kepler looking for a pattern to the movement of
the planets, and only later Newton finding a law that explains the
causal microlevel relations. However, we have reached the stage
of Copernicus, concluding that a new worldview is needed.

The end result may even be laws or principles rather than in-
dividual mechanisms. Most biologists are not very confident that
compulsory principles of biology exist, yet several higher-level
principles have been found.

® The Principle of Kinetic Proofreading. The fidelity of a biochem-
ical reaction can exceed the limit set by the K, if both correct
and incorrect reaction products are discarded or delayed but at
different rates.”?8% This principle has been observed in pro-
cesses ranging from protein and DNA synthesis to immune
surveillance.l¥! Because life is the art of creating signals that
rise above ambient chemical noise, and K, is chemistry, this
is one of life’s essential tricks. One might say that nothing in
biology makes sense except in the light of kinetic proofreading.

® The Principle of Closest Packing in Information Space.”*] When a
molecule, cell, or ecosystem is forced to switch between distin-
guishable states, it is making a decision that involves a certain
number of bits. To execute that decision, it must dissipate a
minimum amount of energy that is related to the number of
states available and to the channel capacity of Shannon infor-
mation theory.

Others principles have also been identified.¥2#] In physics,
laws take the form of conservation—quantities like mass, en-
ergy, and momentum that are redistributed but whose amount
remains constant. These in turn stem from symmetries in the
process being studied,® and symmetries seem entirely plausi-
ble for biology.!®!
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Box 4
Which Mathematics Would Apply to Biology or Eigenisms?

Predictivity in physics ultimately came from mathematics.
Mechanism was lost in favor of the mathematics of patterns,
as lamented a century ago (see ref. (%, the original title of
which was The Decline of Mechanism). Replacing collisions
and hypothetical cogs by mathematical physics revolutionized
the power of physics, but with a faded sense of understanding
whatis going on.*”] The unreasonable effectiveness of mathe-
matics in the physical sciences!®® appears to lie in the fact that
each branch of mathematics captures a type of coordinated
behavior; billiard-ball collisions are only one type of coordi-
nation and capture only one part of physics.®”] The axioms
underlying the appropriate biological mathematics ought to
reflect either a) a property of biology, such as a minimization
principlel?®73] or b) an abiological consequence of statistics
(ref. %, esp. pp. 625, 627).

In the absence of laws, computational tools come primarily
from an alternative to the interventionalist approach that has
an even longer tradition: inferring causal relationships in
the absence of experimental manipulation.[**?-% This is the
usual situation in economics, sociology, and ecology. Termed
“path analysis,” the approach uses databases of observational
data along with systems of model equations to infer the con-
tribution of various paths to the final result. Manipulation
of a variable comes from switching between observed val-
ues of the variable, and sophisticated quantitative software
is available. The prevailing strategy is the DAG,[1316:95.97.98]
as in Box 1. All of the system’s possible microstates are
listed in a matrix, in which equivalence classes define the
macrostates. Transitions between states are represented by
DAGs. Causal links are quantified by successively altering
each of the possible micro- or macrostates (“perturbations”),
observing the new states, and summing the frequencies of
each transition. Biological examples are clearly explained in

4.3. The New Math: Biology Needs Enhanced Computational
Tools

Mathematical tools that could be modified to incorporate the four
eccentricities of biology are considered in Box 4.

4.4. Control: Replacing Control Knobs with Rudders and Fixed
Constraints

Experience gives us the intuition that a control point, such as
a volume control, is a small part of the system that changes
a higher-level function of the entire system. Hence, it is itself
intrinsically micro. However, our intuition comes largely from
engineered systems like cars and radios, which result from
engineers working hard to rig the system to have this localized
behavior. The Wright brothers steered their airplane by warping
the entire wing to alter its lift asymmetrically; Curtis’ contribu-
tion was the aileron, a small flap within the wing that achieved
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reference.[*’] Capturing data-driven biology this way is limited
by our not knowing all possible states of a cell and by the vast
space of possible fits to the data.®! More importantly, these
analyses in practice assume linear equations, absence of can-
celing paths, and acyclic graphs lacking feedback. The case
of feedback has occasionally been considered from a math-
ematical standpoint!1*931%-1%4] and implementation requires
experimental time series data so that the value Z’ resulting
from AA becomes an input to A. dZ/dt can be a variable
separate from Z, acting as if from outside the system.[*310]
These systems can have instabilities that constitute novel
states.[19310] Yet, investigations have focused on variables
related by linear equations. To mirror biology, additional en-
hancements are apposite: Constraints need to be overt, rather
than being implemented as omitted possible states. Differ-
ent domains of micro-coordination need to be specifiable,
creating different macroobjects. Quantifying causal strength
by perturbing all possible states of a matrix should incorpo-
rate the distinction between healthy states and the sick states
that lie outside the operating range of an engineered system.
With these enhancements, directed cyclic graphs (DCG) may
capture biologically realistic constraints and cancellations.
This matrix approach may then lead to a Lagrangian analyt-
ical description. A potential benefit is that the correspond-
ing “Lagrangian multipliers” not only solve the intractable
Newtonian equations arising when many particles are each
acted on by many forces, but also reveal the hidden constraint
forces.[>?] Path analysis designed for observational data can
be applied to experimental data.*>1%! Ideally the biological
data reviewed here and in accompanying papers provide con-
vincing reasons to revisit DCGs of nonlinear, cross-canceling,
hierarchical processes. This effort may reveal a terra nova
beyond.

the same end. Evolution has localized some controls, such
as hypothalamic nuclei, but controlling complicated systems
like weather or a cell is likely to require a different approach
(Box 5).

For a hierarchical eigenism, the Chladni plate analog is in-
structive about how to exert control via constraints. The instiga-
tor for the sand grains was the vibrating plate, which generated
microlevel changes amongst the sand grains and without which
they all would have remained at rest. The determinants for the
sand grain pattern resided in the plate’s shape, stiffness, and res-
onant frequency, which are macrolevel constraints on the sand
grains; they resemble structure, selection pressure, or informa-
tion rather than power. Notice also that it takes time for the pat-
terns to emerge. It therefore appears that reductionism and parts
lists have not bought us what we need to exert control in biology.
We instead need to understand the constraints. These behave like
Aristotle’s final cause, not out of mysterious “intent” but simply
because constraints dictate the achievable stable state; events will
trend toward that state.
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Box 5
Control

A priori, the branched networks, feedback loops, and multi-
functional proteins result in a system that has few localized
control knobs, or none. Consequently, the experimentalist
may never be able to prove how the wiring diagram of the
entire system works. Nevertheless, organisms do change in
distinct and repeatable ways during embryogenesis, during
cell differentiation in the adult, and in response to envi-
ronmental stimuli.*?l How can the embryo or the experi-
menter control specific properties of an object consisting of
networks, loops, and hierarchies? Is it the case that a con-
trol often must be non-localized—a motive source or con-
straint distributed over space or time? Do we prefer to con-
trol the instigator or determinant? Key properties of controls
include:

® A control is by definition a new constraint that does not
create an emergent property. (Kaleidoscopes are stunning
because their control ring breaks this rule.) Nor does a con-

Perhaps Nature has already figured this out. If a particular bio-
logical system has no local control point, does it have a constraint
that is a delocalized control—a control “sheet”? Does control re-
quire sustained modification of multiple initial microevents? Ex-
amples come to mind of biological phenomena that are dispar-
aged as “non-specific” but might be better characterized as delo-
calized constraints:

® Redox control of signaling and metabolism that alters entire
ensembles of proteins, for example by modifying the extremely
redox-sensitive active site of phosphatases(1%]

® MicroRNAs, each of which targets hundreds of messenger
RNAs (mRNAs)

e Piwi RNAs, which bind proteins and are the largest family of
small non-coding RNAs

® Stress-induced alternative mRNA splicing, which affects
dozens of genes!1%!

® Electric and gravitational fields, affecting differentiation of
sheets of cells.[1?]

In medicine, a very real implication is that restoring a tissue’s
state to its normal condition may require oligo-target drugs deliv-
ered for sustained lengths of time, long enough for the system’s
parts to be herded back to the desired state.

5. Conclusions and Outlook

Rethinking causation in complex organisms has led us through
three layers of the problem: What did we want to know? What
is the form of a possible answer? How will we identify those
causes experimentally? Insights emerged that suggest signals to
watch for in single-cell or embryo experiments: Emergence of
novel properties comes from constraints rather than augmen-
tations; microscopic components correlated by structural con-
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trol break what is already there. It simply changes a sin-
gle pre-existing property of the system. Though seemingly
powerful, a control is therefore a local and weak constraint.
The engineering profession specializes in creating discrete
modules that can be manipulated by such weak-constraint
dials.

® A control knob is by definition irreversible. A volume con-
trol stays where it is put, without sliding back to zero. In
contrast, a rudder is reversible; when the hand leaves the
tiller, the sea straightens the rudder. In biology, metabolic
manipulations are more like rudders. Yet differentiation
is stable, so developmental biology contains lessons for
medicine.

® A control knob or rudder is not itself an instigator of
change. It is the opposite—a new constraint held constant.
A radio’s station frequency selector and even the on-off
switch alter the outcome of the electrons moving through
the wires.

straints produce a macroscopic environment that constrains dif-
ferent microcomponents. On this hierarchical background, path-
way divergence, convergence, and feedback are ubiquitous and
produce signal cancellations that, in physics, create quantized be-
haviors; in biology these interactions may restrict an organism to
occupying one of a small set of “eigenism” states. The nonlinear
equations describing such interactions can, like physical forces,
specify trajectories that guide the organism toward optimal states
rather than randomly searching state space. These broad patterns
of activity seem closer to what we really wanted to know than
the underlying sequential activation of instigators like hormones,
neurotransmitters, and protein phosphorylations. Biologists ex-
perimental designs might then shift from point-source instiga-
tors of single pathways to behavior of the entire system including
rigid constraints; from molecular events to event patterns that de-
fine quantized eigenisms; and from single control points to con-
straints imposed on multiple parts of the organism, sustained
over time. This shift implies a new form for both scientific un-
derstanding and medical control.

Experimental questions we can ask include: What is the cat-
alog of an organism’s eigenisms? Can the Lagrangian operator
approach to constraints be generalized to biological interactions?
When is a system’s control knob distributed rather than local?
What are the time constants for switching the organism between
states? What simplifications and macroscopic variables let us
discover approximate solutions? Answering these questions will
require data-intensive experimental tools, amenable organisms,
bioconsistent mathematics, and much reflection by biologists.
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