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The Role of Method in Treatment Effectiveness Research:
Evidence From Meta-Analysis
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A synthesis of 319 meta-analyses of psychological, behavioral, and educational
treatment research was conducted to assess the influence of study method on
observed effect sizes relative to that of substantive features of the interventions. An
index was used to estimate the proportion of effect size variance associated with
various study features. Study methods accounted for nearly as much variability in
study outcomes as characteristics of the interventions. Type of research design and
operationalization of the dependent variable were the method features associated
with the largest proportion of variance. The variance as a result of sampling error
was about as large as that associated with the features of the interventions studied.
These results underscore the difficulty of detecting treatment outcomes, the impor-
tance of cautiously interpreting findings from a single study, and the importance of
meta-analysis in summarizing results across studies.

Systematic knowledge about the effectiveness of
psychological and behavioral intervention depends al-
most exclusively on studies using experimental or
quasi-experimental research designs. Among such de-
signs, the well-executed randomized experiment is
widely considered the gold standard because it is ex-
pected to produce an estimate of the mean treatment
effect on a given dependent variable that deviates
from the true value only by random error, which is
kept small when statistical power is adequate. Unfor-
tunately, when conducting treatment effectiveness re-
search in real-world settings, ideal experimental de-
sign often cannot be attained: Randomization is
incomplete, is undone by attrition, or is unethical or
impractical; sample sizes are not sufficient to keep
sampling error small relative to treatment effects; ex-
perimental control of conditions is lax or impossible;
dependent variables are limited by low reliability or
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do not represent the outcome construct well; and so
forth (Conrad, 1994; Cook & Shadish, 1994; Dennis,
1990; Kazdin, 1992; Lipsey & Cordray, 2000).

Each such departure from the ideal potentially de-
grades the treatment effect estimate. But by how
much? In what direction? Under what circumstances?
The statistical and epistemological theory that under-
lies experimental design supports the claim that ideal
design will yield valid estimates but provides little
basis for appraising the consequences of various de-
partures from the ideal. Indeed, the nature and mag-
nitude of those consequences are largely empirical
matters, but they can be investigated directly only
with the results of ideal designs in hand as a standard
of comparison, a difficult condition to fulfill. An al-
ternative way to conceptualize the empirical question
is in signal-detection terms. Research in a typical in-
tervention domain investigates the effects of different
treatment variants on different outcome constructs for
different respondent samples using different methods
and procedures. Some of the variation in observed
effects across these studies stems from differences in
substantive aspects of the intervention being investi-
gated (treatment, outcome construct, respondents);
this variation represents the "signal" the researcher
wishes to detect. The remaining variation sterns from
differences in method or from randomly distributed
sampling and measurement error; this variation rep-
resents the "noise" that potentially distorts or obscures
the signal the researcher is attempting to detect. Over
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the typical range of substantive and method differ-
ences in a body of research, it would be informative to
know that the proportion of variance in the observed
effect sizes associated with the signal was large rela-
tive to that associated with the noise. This would tell
us whether estimates of treatment effects are robust in
the face of method variation and random error of the
sort typical in the treatment domain examined; that is,
how threatening are departures from ideal design to
the resulting conclusions about treatment effects?

Obtaining a good empirical estimate of this signal-
to-noise ratio would require an experiment on experi-
ments. In this experiment, there would be a factor for
each design feature of interest (e.g., type of assign-
ment to conditions, treatment variant, type of outcome
measure), each varied over a range typical of actual
practice. Researchers would then be randomly as-
signed to these various factor levels and would be
required to conduct a study using the stipulated con-
figuration of substantive and method features. Each
observation within this factorial design would thus
reflect the results of an entire outcome study con-
ducted using the research methods specified by the
grand experiment.

It would be especially informative if the experiment
on experiments identified the specific method features
with the greatest potential to distort estimates of treat-
ment effects and the circumstances in which those
distortions were most likely. Designing treatment ef-
fectiveness studies often involves making trade-offs
with respect to ideal design, and such information
would give useful guidance to researchers about
which compromises were likely to introduce serious
error.

Of course, the experiment on experiments is not
practical, but the issue it would address can be exam-
ined, albeit less definitively, by analyzing the results
of multiple studies within a treatment domain in re-
lation to the naturally occurring method and substan-
tive variation across those studies. Meta-analysis does
just this (Cook et al., 1992; Cooper & Hedges, 1994;
Hunter & Schmidt, 1990; Rosenthal, 1991). A meta-
analysis of a particular treatment domain, therefore,
can be viewed as a quasi-experimental alternative to
the experiment on experiments. Typically, method
and substantive features vary across studies within a
specific treatment research context, and the differ-
ences in the mean effect sizes associated with the
method and substantive dimensions indicate their
relative contribution to that variation. Analysis of
such data can provide an assessment of the potential

biases associated with different method features
within the respective treatment domain (for similar
approaches, see Heinsman & Shadish, 1996; Shadish
& Ragsdale, 1996).

The findings resulting from this procedure, how-
ever, would be limited to the particular treatment do-
main for which the meta-analysis was done. Greater
generality would be possible if multiple treatment do-
mains were examined. This can be accomplished
through a synthesis of the substantive and method
effect size breakouts across multiple meta-analyses.

The current study uses the body of meta-analyses
identified by Lipsey and Wilson (1993) to construct a
meta-analysis of meta-analyses analog to the experi-
ment on experiments described previously. This body
of 319 meta-analyses encompasses 16,525 separate
studies of the effects of psychologically based treat-
ments, predominately mental health and educational
interventions but with considerable diversity within
those categories. This diversity provides the basis for
a broad examination of the role of method factors
relative to substantive factors in accounting for the
effects observed in studies of psychological interven-
tion. Thus, the research question addressed by this
study is, what is the role of method in treatment effect
estimates? More specifically, what is the influence of
method features relative to substantive intervention
features on observed study outcomes?

Method

Identification and Retrieval of Meta-Analyses

A variety of search strategies were used to identify
meta-analyses of psychologically based interventions
reported between 1976, the year of Glass's pioneering
work (Glass, 1976; Smith & Glass, 1977), and mid-
1991. Potential meta-analyses were identified mainly
through a computerized search of the following data-
bases: Academic Index, Ageline, British Education
Index, Child Abuse and Neglect, Criminal Justice Pe-
riodical Index, Dissertation Abstracts, ECER/EXCEP
Child, ERIC, Family Resources, Mental Health Ab-
stracts, NCJRS, PAIS International, Population Bib-
liography, PsycINFO, Public Opinion Online, Reli-
gion Index, Social Scisearch, Sociological Abstracts,
and U.S. Political Science Documents. Search terms
included variations on meta-analysis (e.g., meta-
analysis, metaanalysis, meta-analytic) and variations
on quantitative review (e.g., quantitative review,
quantitative synthesis). Meta-analyses were also iden-
tified through the references in articles reporting or
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discussing meta-analysis and through contact with
other meta-analysts.

Selection Criteria

To be eligible for inclusion, a meta-analysis had to
meet three criteria. First, it had to provide standard-
ized mean difference effect sizes for treatment-
control contrasts or statistics from which such effect
sizes could be derived. Second, the studies meta-
analyzed had to present research on the effects of
treatments that manipulated psychological variables
to produce psychological change. Third, those treat-
ments had to represent types of interventions that are
currently applied in practical domains (e.g., psycho-
therapy, parent effectiveness training, programs for
juvenile delinquents, smoking cessation programs,
pain management interventions, computer-based in-
struction, mastery learning). The search and selection
procedure yielded 332 reports of 319 distinct meta-
analyses: 181 for educational interventions, 123 for
mental health interventions, and 15 for industrial/
organizational interventions of a psychosocial nature.
Lipsey and Wilson (1993) briefly described the inter-
vention area covered by each of these meta-analyses,
and a bibliography of those meta-analyses not listed in
Lipsey and Wilson (1993) is provided in the reference
list.

alization of dependent variables), referred to as
method features. The specific categories into which
breakouts of substantive and method features were
sorted are described in the Results section. Effect size
data associated with each breakout of interest were
coded, including the mean effect sizes, number of
effect sizes, number of studies, standard deviation (or
variance or standard error), number of respondents,
and any correlations between a breakout variable and
effect size.

Estimating Variance Components

To represent the proportion of effect size variance
associated with the study features of interest, eta-
squared was computed for each breakout on a relevant
study feature in each meta-analysis (Winer, Brown,
& Michels, 1991, pp. 123-126). For the respective
breakdown groups, eta-squared is the ratio of the be-
tween-groups sum of squares to the total sum of
squares (Hays, 1988). The between-groups sum of
squares was estimated as the weighted sum of the
squared deviations of the mean effect size for each
category of the breakout from the grand mean effect
size, as follows, where j is the number of categories,
kj is the number of effect sizes per category, SS is the
sum of squares, and ES is the effect size:

Coding of Meta-Analysis Reports

Two types of data were extracted from each meta-
analysis. First, the total effect size variance around the
grand mean effect size was coded. When a total vari-
ance or standard deviation was not reported directly,
variance was estimated from other reported statistics
(e.g., the standard error). Second, information related
to the effect size variance associated with selected
study features was coded when available. Most of the
meta-analyses reported breakouts of the mean effect
sizes for such variables as type of research design
(e.g., random and nonrandom), type of treatment (e.g.,
behavioral self-management, cognitive-behavioral,
and biofeedback/relaxation therapy), different out-
comes (e.g., depression and anxiety), and different
samples (e.g., males and females).

The breakout dimensions were divided into those
involving the intervention (e.g., treatment types, re-
spondent characteristics, outcome constructs), re-
ferred to as substantive features, and those involving
the methods and procedures used to study the inter-
vention (e.g., design types, method quality, operation-

Estimation of the total sum of squares depended on
the data available. When the variance or standard de-
viation around each mean effect in a breakout was
reported, the total sum of squares was the sum of the
SS between-groups and the SS within groups, with the
latter computed as

^within = *<kjVj,

where j is the number of categories, kj is the number
of effect sizes per category, and y,- is the variance of
the effect sizes within each category. When variances
for each breakout category were not provided, the
total sum of squares was estimated from the total
variance multiplied by the total number of effect sizes
used in the breakout, which may not always have
exactly equaled the k on which the original variance
estimate was computed.

The resulting eta-squared values provide an esti-
mate of the proportion of the total variance in ob-
served effect sizes associated with a study feature in
each meta-analysis, as appropriate to the signal-to-
noise framework for this investigation, but they do not
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carry information about the direction of the relation-
ship involved. In many instances, it is informative to
also know which category of a breakout variable is
associated with larger or smaller effect sizes (e.g.,
whether the effect size variance associated with ran-
dom vs. nonrandom assignment to conditions repre-
sents a tendency for randomized studies to yield larger
or smaller effect sizes than nonrandomized ones). To
describe further the direction and pattern of the rela-
tionship with study features for which this was mean-
ingful, two additional indices were computed.

The simplest of these two indices was the arithme-
tic difference between the mean effect sizes for two-
way comparisons of interest. For instance, we sub-
tracted the mean effect size for nonrandomized
comparison studies from the mean for randomized
studies within each meta-analysis reporting this
breakout. Assuming that randomized designs yield
less bias, a positive difference (other things equal)
indicates that nonrandom designs underestimate treat-
ment effects and a negative difference indicates over-
estimation. This index not only describes the direction
of the relationship between the study feature and ef-
fect size but indicates the magnitude of the associated
difference directly.

The other directional index computed, when appli-
cable, was the product-moment correlation coeffi-
cient (r). The correlation provides information in fa-
miliar form on both the direction and strength of the
relationships by representing the linear relationship
between ordered categories of a breakout variable and
effect size. Because r2 is the portion of the total vari-
ance of the dependent variable predictable from the
least squares regression line, r can be defined as the
square root of the ratio of the linear component of the
between sum of squares to the total sum of squares
(McNemar, 1966). The sum of squares for the linear
component was computed using standard analysis of
variance methods (e.g., Ferguson, 1966, pp. 343-344).

Statistical Analysis

The major forms of analysis for this project were
description and comparison of the mean eta-squared
values and, when appropriate, the mean difference
and r indices for different categories of breakout vari-
ables. For such analyses, the values included should
be statistically independent and weighted to reflect
the precision with which they were estimated. In a
typical meta-analysis, this is accomplished by using
only a single effect size from each study in any given
analysis and by weighting each by the inverse of its

sampling variance (Hedges & Olkin, 1985). In the
current instance, this approach was modified to ac-
commodate the meta-analysis as the unit of analysis.

Independence of indices. Two sources of depen-
dencies among the index values required attention.
First, multiple values relating to a category of break-
out variables often were generated from a single meta-
analysis. These dependencies were handled by aver-
aging the values within a meta-analysis related to the
same category or breakout variable so that each meta-
analysis contributed only a single value to a given
analysis. This was done separately for each analysis
because both broad and narrow groupings of breakout
variables were examined.

A second source of dependencies was overlap in
studies included in related meta-analyses, such as two
meta-analyses on cognitive-behavioral therapy or
several meta-analyses on computer-aided instruction.
The degree of statistical dependency in these cases is
a function of the proportion of studies common to any
two meta-analyses. This source of dependency was
addressed by selectively eliminating one of any pair
of meta-analyses with 25% or more studies in com-
mon. When the bibliography of studies included in a
meta-analysis was unavailable, a judgment was made
about the likely degree of overlap based on the topic.
When two or more meta-analyses overlapped, the one
based on the largest number of studies was selected
except when exclusion of that one allowed for inclu-
sion of smaller meta-analyses with a greater combined
size. Few pairs of meta-analyses with any overlap
were included in any analysis, and of those, the
amount of overlap was generally less than 10%.

The weighted-bootstrap mean and confidence in-
terval. The central tendencies of the eta-squared
values across the meta-analyses, and those for the
other indices, were computed as bootstrap means
weighted by the harmonic means of the number of
effect sizes contributing to each level of the breakout.
The bootstrap resampling approach (Efron, 1982;
Lunneborg, 1985; Mooney & Duval, 1993; Stine,
1990) was selected because it provided a method for
estimating confidence intervals around the mean for
each index without requiring assumptions about its
underlying distributional properties.

Results

The analysis focused on the portion of variability in
effect sizes between studies within meta-analyses as-
sociated with various study features. An important
initial question was, How much variability is there to
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be explained? If the effect sizes for the studies in a
particular treatment domain show little variation, in-
dicating substantial agreement on the outcome, then
there is little variation to be explained by study fea-
tures, methodological or substantive. For the 250
meta-analyses that provided pertinent data, the aver-
age variance across effect sizes within a meta-analysis
was .52, which translates to a standard deviation of
.72. J. Cohen's (1988) well-known guidelines identify
.20 as a "small" effect size and .80 as a "large" one.
Moreover, the grand mean effect size in this collec-
tion of meta-analyses has a standard deviation of only
.29 across all the diverse interventions represented in
it. Relative to these ranges, it is clear that the effect
size variability within the typical meta-analysis in this
set is quite substantial.

A relatively small proportion of the total variance
associated with a study feature can represent mean-
ingful differences among the associated effect sizes.
For example, 4% of a total variance of .50 (i.e., an T|2

of .04) associated with a two-category breakout on a
study feature (e.g., random vs. nonrandom assign-
ment) represents a difference of .28 between the sub-
group effect size means. Relative to the grand mean
effect size for the meta-analysis in this example (.50),
a .28 difference between the means for two subgroups
of studies is substantial.

As mentioned earlier, the effect size breakouts of
interest in relation to the effect size variance were
those in one of four broad categories representing the
features of the treatment, respondents, measurement,
and design. Each of these is discussed in turn and then
summarized in an overall model for observed treat-
ment effect sizes. An assumption of these analyses is
that there is little covariation in the eta-squared be-
tween distinct breakout categories across meta-
analyses. Study features are unlikely, however, to be
truly independent. Of greatest concern is dispropor-
tionate covariation between breakout pairs because
the driving research question is the relative effect of
these breakout categories on effect size variability.

Treatment Features

Treatment features were differentiated into three
subcategories: treatment types, treatment components
(i.e., elements of treatments such as relaxation or
empathetic reflection), and treatment dosage (i.e.,
intensity or duration). The categorization of pertinent
breakouts as representing treatment types or treatment
components distinguished general treatment ap-
proaches or protocols from their constituent elements

or techniques. The heuristic used in making this dis-
tinction was that a treatment type was a relatively
free-standing intervention, whereas a treatment com-
ponent could be added to or subtracted from a treat-
ment but would not generally stand alone as a com-
plete intervention.

The mean eta-squared values for effect size break-
outs within each of these categories are shown in
Table 1. Different treatment types were associated
with the largest proportion of effect size variability,
with treatment components and treatment intensity or
duration, in turn, associated with roughly half as
much. This indicates that, within many of the treat-
ment domains represented, as would be expected, dif-
ferent treatment configurations show differential ef-
fects. For all the treatment characteristics, however,
the range in the mean eta-squared values across meta-
analyses was large, thus indicating greater differen-
tials in some intervention areas than in others.

The mean eta-squared value for differences in treat-
ment intensity or duration (usually defined as the
number of weeks of treatment) indicates that this fea-
ture is associated with roughly 5% of the effect size
variance. Recall that eta-squared is a nondirectional
and nonlinear index. Different patterns of mean ef-
fects across categories of a study feature could each
produce an equivalent eta-squared. Study features
such as treatment intensity have an ordinal nature, and
as such it is meaningful also to assess whether there is
a linear relationship between the study feature and
effect size. This was assessed by the linear correla-
tions between treatment dosage and effect size (Table
2). The mean correlation was slightly negative, al-
though not significantly different from zero, and has a
very wide range across meta-analyses. Examination
of the meta-analyses yielding the largest negative and
positive correlations did not reveal any obvious char-
acteristics of the respective treatment domains that
would explain this finding. It seems likely, however,
that dose is confounded with other study features that
offset its expected relationship to effect size. One can-
didate is the diagnostic severity of the respondent
population: A study involving a seriously impaired
client group may have longer average treatment du-
ration and poorer outcomes.

Respondent Features

The breakouts of respondent groups commonly re-
ported in the meta-analyses were divided into those
reflecting age, gender, ethnicity, socioeconomic sta-
tus, diagnosis (psychological meta-analyses), and



418 WILSON AND LIPSEY

Table 1
Mean Eta-Squared Values for Selected Study Features

Study feature 95% CIb Range Median

Treatment features
Treatment type
Treatment component
Intensity or duration

Respondent features
Age
Gender
Ethnicity
Socioeconomic status
Diagnosis
Ability group

Measurement features
Construct
Operationalization
Source of information
Researcher-developed measure

Design features
Comparison group type

No treatment vs. placebo
No treatment vs. alternative treatment

Design type
Random vs. nonrandom
Comparison vs. pre-post

Methodological quality
Sample size

.08

.04

.05

.04

.02
—
.05
.06
.05

.07

.08

.05

.02

.05

.04

.12

.04

.02

.06

.03

.04

.06-. 10

.03-.05

.03-.07

.02-.06

.01-.03
—

.01-.09

.03-.09

.03-.07

.05-.09

.02-. 14

.03-.07

.01-.03

.02-.08

.02-.06

.00-.24

.02-.06

.01-.03

.00-. 12

.02-.04

.03-.05

.00-.50

.00-.43

.00-.49

.00-. 10

.00-.73

.01-.25

.00-. 14

.00-.30

.00-.63

.00-. 87

.00-.29

.00-.21

.00-.48

.00-.52

.00-.75

.00-.50

.00-.62

.00-.59

.00-.62

.00-.23

.00-.68

.08

.03

.05

.03

.01

.09

.06

.04

.01

.06

.05

.04

.02

.04

.03

.14

.02

.01

.02

.02

.04

116
64
81

90
34
7

15
26
38

107
11
13
27

33
23
16
93
76
41
65
69

Note. Dashes indicate insufficient sample size for bootstrap procedure.
" Bootstrap mean, weighted by the harmonic mean of the number of studies contributing effect sizes to each level of the breakout.
b Confidence interval based on standard deviation of bootstrap distribution.
c Number of independent meta-analyses contributing to each mean eta-squared.

ability (educational meta-analyses). The mean eta-
squared for these various categories of respondent
breakouts ranged from .02 for gender to .06 for diag-
nosis (see Table 1). A large eta-squared median value
for ethnicity (.09) was also observed but must be in-
terpreted with caution given the small number of
meta-analyses on which it is based (7; insufficient to
compute a bootstrap mean).

It was possible to estimate the mean linear corre-
lation for the breakouts of age and gender with effect
size (see Table 2). Neither showed any clear direc-
tional relationship with effect size, and the means
were not significantly different from zero. This find-
ing indicates that, across the treatment domains ex-
amined, the mean effect sizes for males and females
and for older and younger respondents were roughly
comparable on average, although they varied widely
across intervention areas. The majority of the gender
and age breakouts were from educational meta-
analyses. The relationship of respondent features to

program effects is likely to be domain specific; as
such, the prior finding has limited generalizability. In
a research domain in which respondent features are
related to program effects, the failure to take into
account the relevant respondent characteristics in the
design would reduce the effect size and statistical
power (Lipsey, 1990).

Outcome Constructs and
Measurement Features

Outcome Constructs

The importance of the various dependent variable
constructs that represent the expected outcomes of an
intervention is reflected in the number of meta-
analyses that reported breakouts of effect size by out-
come construct. Different outcome constructs were
associated with roughly 7%, on average, of the vari-
ance in effect sizes, almost the same amount as for
treatment type (see Table 1). Within an intervention
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Table 2
Mean Linear Correlation Between Effect Size and Study Features That Break Out Into
Ordered Categories

Study feature

Treatment feature
Intensity or duration

Respondent features
Age
Gender0

Measurement feature
Researcher-developed measure

Design features
Comparison group type

No treatment vs. placebo
No treatment vs. alternative treatment

Design type
Random vs. nonrandom
Comparison vs. pre-post

Methodological quality
Sample size

M"

-.02

-.02
.00

.10*

.06

.18*

.04*
-.08
-.06
-.08

Range

-.44-.S6

-.65-.3S
-.30-32

-.69-.36

-S7-.66
-.53-.71

-.60-.77
-.78-.2S
-.48-39
-.S9-.44

ff

81

90
34

27

23
16

76
41
65
69

a Bootstrap mean, weighted by the harmonic mean of the number of studies contributing effect sizes to
each level of the breakout.
b Number of independent meta-analyses contributing to each mean eta-squared.
c A positive correlation indicates that larger average effects were observed for males.
* p < .05, based on a confidence interval derived from the standard deviation of a bootstrap distribution.

domain, therefore, effects on some of the outcome
constructs measured were typically much larger than
others. It is not, of course, especially surprising that
treatments would have larger effects on some out-
come variables than others. However, it is interesting
that the amount of differentiation is so great given that
researchers presumably measure all these outcomes in
expectation of potential effects.

Measurement Operationalization

How an outcome construct is measured may matter
as much as what is measured. To examine this possi-
bility, the effect size breakouts for different measure-
ment operationalizations were examined. Unfortu-
nately, only 11 independent meta-analyses reported
such breakouts, ranging from narrow to broad differ-
ences in how the constructs were operationalized. An
example from the narrow end of the continuum is a
breakout of the different versions of achievement tests
used in studies of programs for teaching biology as
inquiry (El-Nemr, 1980). At the broader end of the
continuum is a breakout of different indices of recidi-
vism (e.g., official arrest, self-report) in studies of
delinquency interventions (Kaufman, 1985).

As shown in Table 1, these breakouts were associ-
ated with about the same proportion of variance in

outcomes as differences in the constructs measured.
The small number of meta-analyses contributing to
this analysis and the correspondingly large confidence
interval for the bootstrap-weighted mean limit any
conclusion that can be drawn regarding this matter.
However, this indication that different operationaliza-
tions of what is presumed to be the same outcome
construct within the same treatment domain can lead
to quite different results is disconcerting. This finding
may be due in part to differential measurement reli-
ability and validity. Hunter and Schmidt (1990)
clearly showed the degradation in effect size attribut-
able to measurement unreliability and invalidity.

Source of Information

Related to how an outcome construct is operation-
alized is the source of the information for the mea-
sure, independent of the construct. Several meta-
analyses, mostly in mental health, grouped measures
by who provided the information, such as self-report,
therapist observation, or physiological measurement.
These breakouts did not control for the construct mea-
sured and, as such, may be confounded. To the degree
present, such a confound would inflate the eta-
squared. As shown in Table 1, the source of the in-
formation accounts for slightly less variability in



420 WILSON AND LIPSEY

effect size than either the construct or the operational-
ization of the construct. Given the smaller average
magnitude of the eta-squared and its smaller variabil-
ity relative to that for constructs and operationaliza-
tions, it appears that the "who" may be less important
than the "what" and "how" of measurement.

Origin of Measure

A final measurement feature examined in many
meta-analyses was the origin of the outcome measure,
that is, whether it was developed by the researcher or
was a preexisting standardized or published instru-
ment. These breakouts were found almost exclusively
in meta-analyses of educational interventions and, on
average, accounted for slightly less than half as much
effect size variance as that associated with different
constructs or measurement operationalizations (see
Table 1). Because these breakouts involved only two
categories (researcher developed vs. standardized or
published), it was also possible to examine the direc-
tion of the effect (see Table 2). Researcher-developed
measures generally yielded higher effect sizes within
a given treatment domain than standardized or pub-
lished measures. The direction of this effect was as
anticipated, favoring tests developed specifically for
the research study. Such measures may be more likely
to tap the relevant aspects of the construct being
changed by the intervention than a published measure
that is not necessarily well adapted to the circum-
stances of a particular intervention.

The range of the mean effect size difference
between researcher-developed versus standardized or

published measures was quite large (Table 3), sug-
gesting that the nature of this relationship is very dif-
ferent in different treatment domains. Closer inspec-
tion, however, revealed that only 4 of the 27 mean
differences were negative, with one outlier of -1.3.
The next largest negative value was much less ex-
treme (-.36). Thus, the balance of evidence suggests
that researcher-developed measures yield larger
effects.

Design Features

Effect size breakouts related to study design most
often described one of four different study features:
type of comparison group, design type, sample size,
and methodological quality. Each of these accounted
for an average of roughly 2% to 5% of the effect size
variance (see Table 1).

Type of Comparison Group

One set of breakouts contrasted the mean effect size
for studies comparing treatment versus a no-treatment
control group with that for studies comparing treat-
ment versus a placebo control group. Another set con-
trasted the mean effect size for studies comparing
treatment versus an alternative treatment. The eta-
squared value (see Table 1) showed that, overall, the
proportion of effect size variance associated with type
of comparison group averaged about 5%; much more
variance was associated with treatment-alternative
treatment comparisons in the cases in which this

Table 3
Difference Between Mean Effect Sizes for Study Features That Break Out Into
Two Categories

Study feature Af Range

Measurement feature
Researcher-developed measure

Design features
Comparison group type

No treatment vs. placebo
No treatment vs. alternative treatment

Design type
Random vs. nonrandom
Comparison vs. pre-post

Methodological quality
Sample size

.13*

.13*

.26*

.03
-.13*
-.06
-.18*

-1.3-0.8

-1.0-1.6
-1.0-1.6

-1.1-0.8
-1.6-0.5
-.70-.64
-1.0-0.7

27

23
18

80
47
41
65

a Bootstrap mean, weighted by the harmonic mean of the number of studies contributing effect sizes to
each level of the breakout.
b Number of independent meta-analyses contributing an eta-squared.
* p < .05, based on a confidence interval derived from the standard deviation of a bootstrap distribution.
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breakdown was reported. The direction and magni-
tude of the relationships, as indexed by the average
correlations and mean effect size differences for these
breakouts (Tables 2 and 3), indicate, as expected, that
studies contrasting treatment with no treatment
yielded higher effect sizes than those that used either
a placebo or alternative treatment as the control
condition.

Design Type

Breakouts were examined for randomized versus
nonrandomized assignment to experimental groups
and for comparison group versus one-group pre-post
designs. Comparison group designs were either ran-
domized or nonrandomized and are distinguished
from one-group pre-post designs in that the latter do
not have a control condition. The mean eta-squared
for comparison group designs (randomized and non-
randomized) versus the one-group pre-post design
was three times that for the randomized versus non-
randomized designs (.06 vs. .02; see Table 1). Al-
though the confidence intervals for these two esti-
mates overlapped slightly, the finding suggests that
the effect size estimates produced by randomized and
nonrandomized comparison group designs are more
similar to each other within an intervention area than
estimates from either compared with those of one-
group pre-post designs.

The mean correlation between randomized (coded
1) versus nonrandomized (coded 0) design type and
effect size was .04 (Table 2), showing that random-
ized designs tended to yield slightly higher effect
sizes. The magnitude of this effect can be seen in the
overall mean effect size difference of .03 (Table 3),
which was not significantly different from zero. It
does not appear, therefore, that nonrandom compari-
son group type designs are greatly biased on average
relative to randomized designs. However, it is impor-
tant to recognize that the contrast here is between
randomized and nonrandomized designs as they occur
in typical intervention research. In practice, random-
ized designs often fall short of the ideal because of
differential attrition, contamination of the control
group, and other validity threats that degrade the ini-
tial randomization. The contrast between studies that
were initially randomized versus studies that were ini-
tially nonrandomized, therefore, may not represent a
large difference in the internal validity actually ob-
tained at the conclusion of the studies. In addition,
examination of the ranges for the correlations and the
mean effect size differences (see Tables 2 and 3)

shows that there was often substantial bias associated
with nonrandomized designs within specific treatment
domains. Thus, nonrandomized designs may yield
quite different observed effects relative to randomized
designs, but the difference is almost as likely to rep-
resent an upward as a downward bias.

The bias of one-group pre-post designs relative to
comparison group designs was examined by combin-
ing the effect sizes from the randomized and nonran-
domized designs, when reported separately, into a
single category and contrasting it with the mean effect
size for the one-group pre-post designs. The correla-
tion between these two categories and effect size was
-.08 (see Table 2), and the mean magnitude of the
effect size difference was about -.13 (see Table 3).
The one-group pre-post design, therefore, generally
overestimates treatment effects relative to comparison
designs, and, in some treatment domains, the bias is
quite large.

Methodological Quality

Breakouts on the quality of study methods as rated
by the meta-analysts in their coding were also exam-
ined, but these focused heavily on internal validity
and, hence, overlapped the issue of type of design.
Features that were coded in those ratings included
type of assignment (e.g., P. A. Cohen, 1980), degree
of differential attrition (e.g., Samson, Borger, Wein-
stein, & Walberg, 1984), and equivalence of groups at
pretest (Sweitzer & Anderson, 1983). The effect size
breakouts by method quality accounted for roughly
2% of the variability in study outcome (see Table 1).
The direction and magnitude of bias associated with
poorer quality studies represented in the correlation
between method quality ratings and effect size (see
Table 2) was slightly negative but nonsignificant;
higher quality studies tended to have smaller effect
sizes. The mean effect size difference between the
high- and low-quality categories (see Table 3) showed
the same pattern, also nonsignificant. This null find-
ing is counter to the general belief that low method
quality leads to biased results. It appears that low
method quality functions more as error than as bias,
reducing the confidence that can be placed in the find-
ings but neither consistently over- nor underestimat-
ing program effects.

Sample Size

Beyond the small sample bias for effect size statis-
tics demonstrated by Hedges (1981), we would not
expect studies that varied in sample size, other things
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equal, to produce different effect sizes, only a differ-
ence in the precision with which those effect sizes
were estimated. However, Table 1 shows that sample
size was associated with about 4% of the effect size
variability across studies within a treatment domain.
Furthermore, the correlation and mean effect size dif-
ference (Tables 2 and 3) indicated that larger samples
tended to yield smaller effects. The small sample bias
demonstrated by Hedges cannot account for this dif-
ference; it is negligible in sample sizes above 20, and
the great majority of studies in the sample size break-
outs used larger samples than that.

A plausible explanation is that smaller studies may
represent more tightly controlled implementations and
evaluations of interventions and thus are more homo-
geneous with regard to both respondent populations
and treatment delivery (Yeaton & Sechrest, 1981).
This homogeneity would mean less variability on the
dependent variable within a study and possibly stron-
ger effects, with a corresponding increase in observed
effect sizes. It is also possible that the differences
associated with sample size reflect publication bias.
Larger studies have greater power to detect small ef-
fects, and statistically significant findings may have
greater likelihood of being submitted and accepted for
publication. Published studies, in turn, are easier to
locate and thus likely to be overrepresented in meta-
analyses (Begg, 1994; Kraemer, Gardner, Brooks, &
Yesavage, 1998; Lipsey & Wilson, 1993).

A Composite Model of Treatment
Effect Estimates

Early in this article, a simple model was proposed
in which observed intervention effects were viewed as
a function of (a) substantive features of the interven-
tion under study (e.g., treatment type, respondent
characteristics), (b) features of the study methods
(e.g., research design), and (c) stochastic error, par-
ticularly sampling error. The analyses reported here
provide rough estimates of the proportions of ob-
served effect size variance contributed by various spe-
cific substantive and methodological study features.
We turn now to the task of combining that informa-
tion to generate an order-of-magnitude estimate of the
overall proportion of effect size variance associated
with the interventions being studied relative to that
stemming from other sources.

To accomplish this, we first identified those vari-
ance sources from the prior analysis that involved
substantial conceptual overlap and selected the one

with the broader scope. For instance, under measure-
ment features (see Table 1), "source of information"
and "researcher-developed measure" are not likely to
be orthogonal study features, and both, in turn, are
likely to be related to "operationalization." In this
case, we judged measurement operationalization to
cover the broadest range of measurement variations
and dropped the other two categories from consider-
ation. Similarly, under treatment features, we dropped
the "treatment component" category in favor of the
more global representation in "treatment type." For
respondent features, no single category is more en-
compassing than the others, so, for this case, we sim-
ply averaged the eta-squared values across all of
them.

For summary purposes, we assume, rather gener-
ously, that there is little covariation among the eta-
squared indices for the conceptually distinct catego-
ries or, at least, that any covariation is not highly
disproportionate across pairs of categories. On that
basis, we can construct a rough estimate of the rela-
tive proportions of variance associated with substan-
tive and methodological study features by adding to-
gether, within these respective groupings, the mean
proportion of variance associated with each of the
selected study features (Figure 1).

An overall estimate of the proportion of effect size
variance attributable to subject-level sampling error
was derived from 117 meta-analyses that reported
sample size information for the studies included in the
analysis. Across these meta-analyses, sampling error
accounted for as little as 1 % of the variance and as
much as 100%. The mean was 26%, with the 25th and
75th percentiles at 7% and 39%, respectively. Thus,
within the typical treatment domain represented in
this sample, about 25% of the observed variability in
effect sizes can be attributed to sampling error asso-
ciated with the study-level subject samples.

With the different average proportion of variance
estimates grouped according to whether they are re-
lated to substantive features of the intervention, meth-
ods, or sampling error, more than 70% of the effect
size variance was represented in the composite model.
The remainder constituted a residual category and was
included as such for completeness. The resulting com-
posite model is presented in Figure 1. As an initial
estimate of the relative influence of various study fea-
tures on observed outcomes, we believe this model
has heuristic value, but, of course, it is necessarily
approximate. The inclusion of additional study fea-
tures and better estimation of the statistically indepen-
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Features of the Intervention
Treatment type
Intensity/duration
Respondent features
Outcome construct

.08

.05

.05

.07

Features of the Method
Design type
Comparison group type
Sample size
Operationalization

.04

.05

.04

.08

Sampling Error

Residual Sources of Variability

Observed Study
Effect Size

.28

Figure 1. Proportion of variance in observed study effect size explained by selected study features.

dent contribution of each feature to the variance in
observed effects would almost certainly change the
model to some unknown extent.

Some credibility is lent to the estimates in Figure 1
by virtue of their surprising similarity to the results
from a very thorough partitioning of the effect size
variance within a single meta-analysis of more than
400 studies of intervention with juvenile delinquents
(Lipsey, 1992, 1997). Using multiple regression
analysis to estimate the independent contribution of
different groups of study features, Lipsey found that
characteristics of the treatments, such as treatment
type, dosage, and client type, accounted for only 22%
of effect size variability. About 25% of the variance
was associated with method features (e.g., group
equivalence, control type, attrition, and measurement
characteristics), and sampling error accounted for
27%. These results have less generality than those
shown in Figure 1, because they are based on 1 meta-
analysis rather than 319. On the other hand, they pro-
vide a more complete accounting of study features
and better estimates of their independent contributions
to effect size variance. The relatively close agreement
between these two attempts to partition across-study
effect size variance provides some assurance that the
model presented in Figure 1 provides a reasonable,
albeit approximate, summary of the relative influence
of different groups of study features on the observed
outcomes.

Perhaps the most striking aspect of the summary
constructed in Figure 1 is the rough parity between the
proportion of effect size variance associated with sub-
stantive features of the intervention and that associ-
ated with features of the study methods. This suggests
that methodological choices made by the researcher
have nearly as much influence on observed effect
sizes as the features of the intervention phenomena
under study. Moreover, although the residual category
is unlikely to entirely represent variance associated
with undocumented substantive study features, even if
a large portion of it did, the total would still be sur-
prisingly modest; only about half the variation in ob-
served outcome would then be associated with differ-
ences in substantive intervention characteristics.

The rather large role of sampling error in observed
study effects is also notable. It accounts for roughly
25% of the total variability, which is quite large rela-
tive to the portion associated with substantive features
of the intervention. This indicates that, for any sub-
stantive study feature to influence an observed effect,
it must compete not only with distortions associated
with study method but with considerable noise from
sampling error.

Discussion

This study started with the question, What is the
role of method in treatment effect estimates? More
specifically, what is the influence of method features
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relative to substantive features on observed study out-
comes? Ideally, we would have found that the typical
range of methods used by researchers was associated
with little variation in observed effect sizes relative to
that associated with substantive features of the inter-
vention. Although the effect size variability attribut-
able to specific methodological and measurement fea-
tures was small to modest on average (e.g., eta-
squares ranging from .02 to .10), that attributable to
substantive features was of similar magnitude. Thus,
the effect sizes observed in a typical treatment effec-
tiveness study are in large part a function of method
and sampling error. Viewed as a signal-to-noise ratio,
the signal is relatively small and the random and non-
random noise is relatively large.

Implications for Treatment
Effectiveness Research

The indications of substantial instability in ob-
served treatment effects found in the analyses pre-
sented here have particular importance for the inter-
pretation of the findings from a single study. If the
magnitude of the effect observed in the study is
mainly a reflection of specific design and measure-
ment choices, plus a substantial random component,
different findings between studies are as likely to be
the result of method differences or random variation
as the result of substantive differences. Thus, a single
study will not typically provide a trustworthy indica-
tion of the effectiveness of a particular treatment
(Schmidt 1992, 1996). Until the stability and gener-
alizability of an effect across acceptable study meth-
ods and samples are established, evidence about a
treatment effect is weak.

Within the inherent limits of a single study, one
important design element is the procedure for assign-
ing subjects to experimental conditions. The benefits
of random assignment for ensuring internal validity
are well known, and the randomized clinical trial is
generally viewed as the ideal design for assessing the
effectiveness of an intervention (e.g., Boruch, 1997;
Cook & Campbell, 1979). It was, therefore, surprising
to find virtually no difference, on average, between
the results from nonrandomized comparison group de-
signs and those from randomized designs. Nonethe-
less, this finding cannot be interpreted as evidence for
the equivalence of randomized and nonrandomized
designs for providing estimates of treatment effects. A
more likely explanation is that within some treatment
domains the selection bias in one nonrandomized
comparison is offset by an opposite bias in another

such comparison. Cook and Leviton (1980) argued
that it is plausible that selection bias acts as error
rather than bias in many treatment domains, neither
consistently over- nor underestimating effect sizes. A
balanced distribution of selection biases across studies
is by no means assured in any treatment domain, how-
ever, and large differences between random and non-
random comparison group designs were found in
some of the meta-analyses examined here. Similar
differences were found by Heinsman and Shadish
(1996) in four selected treatment domains they ana-
lyzed very closely. They found that randomized de-
signs produced larger average effects than nonran-
domized designs, although this difference was
substantially reduced when they controlled for other
study differences.

In a similar spirit, LaLonde and Maynard (1987)
and Fraker and Maynard (1987) compared effect es-
timates from an experimental study of an employment
training program with that from a quasi-experimental
study. They found that not only did the quasi-
experimental study produce different results, but the
results varied with the statistical model used. Thus,
within the employment training domain, a quasi-
experimental design produced results inconsistent
with the findings from a randomized study even when
using sophisticated statistical methods. On the other
hand, in the classic case of the field trials for the Salk
polio vaccine, a randomized clinical trial and a quasi-
experimental design component found similar posi-
tive effects (Francis et al., 1955; Meldrum, 1998).
A nonrandomized design will be vulnerable to selec-
tion bias, but whether significant bias typically occurs
is an empirical question. The meta-analytic evidence
currently available on this point is far from conclusive
but does suggest that selection bias need not be large
relative to the many other influences on the magnitude
of a treatment effect estimate.

In any event, it is worth noting that, although the
proportion of variance associated with design type is
smaller than that associated with most of the substan-
tive features of the intervention (Table 1 and Figure
1), it is not a great deal smaller. Design type, there-
fore, generally contributes a significant amount of
"noise" relative to the "signals" the researcher is at-
tempting to detect. What is perhaps more interesting
is that the way outcome measures are operationalized
appears to be associated with at least as much varia-
tion in observed effects as type of design. Indeed, the
estimates in Table 1 and Figure 1 show that the op-
erationalization has a larger relationship with effect



THE ROLE OF METHOD 425

size than either of the two design features examined
(design type and comparison group type). The number
of meta-analyses reporting effect size breakouts ac-
cording to how the outcome measure was operation-
alized, however, was much smaller than the number
reporting about design type, so the resulting mean
eta-squares estimate has a more limited empirical
basis.

Nonetheless, the suggestion that the operationaliza-
tion of the outcome variable may have as much in-
fluence on the study findings as the method of assign-
ment to conditions raises important questions that
warrant further investigation. Issues related to the
quality and appropriateness of outcome measurement
are not extensively discussed in the literature on ex-
perimental methods for studying treatment effective-
ness. Correspondingly, the selection of the operation-
alization for the dependent variable is generally not
discussed or explained in any depth in reports of
treatment research. These practices are consistent
with the assumption that this matter is not especially
problematic and, hence, need not receive great atten-
tion in the design of the research. The findings
presented here from those meta-analyses that break
out effect sizes for different operationalizations of an
outcome variable give a contrary indication; this mat-
ter may be quite problematic and could well deserve
considerably more attention from researchers and
methodologists.

Implications for Meta-Analysis

The findings presented here suggest that outcomes
observed in a treatment study are, to a considerable
extent, a function of specific features of the study
methods and often of rather specific features of the
intervention itself. Under these circumstances, meta-
analysis is not only a relatively precise and effective
way to summarize the findings of a body of treatment
research and, in the process, gain the statistical power
advantages of the combined sample size of the con-
stituent studies, but it is also the means by which the
generalizability and stability of those findings are in-
vestigated and the respective influence of method,
substance, and stochastic error is disentangled in the
assessment of treatment effects (Cook, 1993).

One straightforward implication of this situation is
the importance of meta-analysts attending to between-
study differences and using appropriate analytic
frameworks to assess them (e.g., Hedges & Olkin,
1985; Hunter & Schmidt, 1990). Mean effect size

values, or breakouts only for major treatment types
and outcome constructs, without examination of the
amount and sources of variation in the effect sizes
contributing to those means, may be very misleading
if interpreted as treatment effects. Moreover, this task
must be approached in a sophisticated way using mul-
tivariate analysis to help disentangle the relationship
of different study features, especially method features,
with effect sizes. This is critical given the correla-
tional nature of meta-analytic data. Design features
and outcome operationalizations are often related to
treatment type, duration, respondent characteristics,
and other such substantive features of the interven-
tion. Differences in mean effect size that are observed
between, for example, different treatment types may
actually result from differences in method that are
confounded with those treatment types.

Meta-analysis allows for statistical techniques to be
used to control for the influence of study method fea-
tures so that less confounded estimates can be derived
for treatment effects. Such controls do not eliminate
the possibility that observed differences are a function
of unmeasured nuisance variables, but they do reduce
the plausibility that the observed effects are the result
of confounds with readily identifiable features of
study method. Two examples of meta-analyses that
applied such techniques to modeled or adjusted-for-
method effects before interpreting substantive differ-
ences reinforce the conclusion just presented. Lipsey
and Wilson (1998) and Shadish (1992) used different
approaches to controlling for method features before
interpreting substantive differences between mean ef-
fect sizes, and both found substantial method effects.

Limitations of This Study

The principal limitation of this study is that, of
necessity, the study features of interest could be rep-
resented only in broad categories. For example, the
distinction between randomized and nonrandomized
comparison group designs includes a broad range of
design types (e.g., randomization with matching, non-
randomization with post hoc matching), and any of
these may have greater or lesser attrition subsequent
to the assignment. A more differentiated coding and
reporting of study features by the meta-analysts
whose results were examined here would have per-
mitted a fuller and more detailed accounting of vari-
ance sources. This, in turn, might have increased the
proportion of variance found to be associated with
study features and reduced the unexplained residual
variance.
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Increased detail and precision could have been at-
tained, of course, if we had coded the contributing
studies de novo rather than relying on what was coded
and reported in meta-analyses of those studies. As a
practical matter, such an effort would have narrower
coverage than the 16,525 studies included in the 319
meta-analyses we examined. The broad scope of our
approach has the advantages of efficiency and gener-
ality but at the cost of less detail.

A second limitation of this study, implicit in the
nature of the research process, is that it is correlational
and, therefore, unable to test directly the causal influ-
ence of study features on observed outcomes. The
experiment on experiments described early in this ar-
ticle would be required to support such causal infer-
ences. Using the natural variation of study features
within a treatment domain as an analog to the experi-
ment on experiments is the only practical approach to
the research question we have attempted to address,
but it has inherent problems. For instance, features of
study methods within a treatment domain may well be
confounded with substantive differences between
studies and may either inflate or deflate the observed
relationship between study features and effect size.
Because of this possible confounding, a clean parti-
tioning of the effect size variance was not attainable,
even for the broad categories of study features we
examined. What we have been able to present, there-
fore, represents a first approximation to the partition-
ing of effect size variance. More refined estimates
will be possible when the practice of meta-analysis
gives greater attention to coding and reporting study
features and uses more sophisticated techniques for
estimating their independent contributions to effect
size.

These limitations must also be addressed through
better reporting of research methods at the primary
study level. Too often the descriptions of methods
reported in treatment studies are vague and thus do
not allow for careful description and differentiation in
meta-analysis coding. Better reporting would enable
meta-analysts to code studies into more tightly de-
fined design categories, providing more useful infor-
mation on the potential biases of specific design
choices within that treatment domain. We believe
these efforts are justified by the findings presented
here. Within the limitations of the current state of
study reporting and meta-analysis coding and analy-
sis, these findings give empirical support to the view
that the particulars of study method can have as large
an influence on the findings as the particulars of the

intervention under study and, moreover, that the latter
may have far less influence than generally assumed.
Better understanding of the nature and magnitude of
these influences is essential to improving our methods
for studying the effects of psychological, educational,
and behavioral interventions.
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