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We expose fallacies in the arguments of critics of null hypothesis significance 
testing who go too far in arguing that we should abandon significance tests alto­
gether. Beginning with statistics containing sampling or measurement error, sig­
nificance tests provide prima facie evidence for the validity of statistical hypothe­
ses, which may be overturned by further evidence in practical forms of reasoning 
involving defeasible or dialogical logics. For example, low power may defeat ac­
ceptance of the null hypothesis. On the other hand, we support recommendations 
to report point estimates and confidence intervals of parameters, and believe that 
the null hypothesis to be tested should be the value of the parameter given by a 
theory or prior knowledge. We also use a Wittgensteinian argument to question the 
coherence of concepts of subjective degree of belief underlying subjective Baye­
sian alternatives to significance testing. 

INTRODUCTION 

An accumulating literature (Bakan, 1966; Carver, 1978; Cohen, 1994; Gigeren­
zer, 1993; Guttman, 1977, 1985; Meehl, 1967, 1978; Oaks, 1986; Pollard, 1993; 
Rozeboom, 1960; Serlin and Lapsley, 1993; Schmidt, 1992, 1996) has called for 
a critical reexamination of the common use of "null hypothesis significance 
testing" (NHST) in psychological and social science research. Most of these arti­
cles expose misconceptions about significance testing common among research­
ers and writers of psychological textbooks on statistics and measurement. But 
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the criticisms do not stop with misconceptions about significance testing. Others 
like Meehl (1967) expose the limitations of a statistical practice that focuses 
only on testing for zero differences between means and zero correlations instead 
of testing predictions about specific nonzero values for parameters derived from 
theory or prior experience, as is done in the physical sciences. Still others em­
phasize that significance tests do not alone convey the information needed to 
properly evaluate research findings and perform accumulative research. For ex­
ample, reporting that results are significant at some pre-specified significance 
level (as in the early Fisher, 1935 or Neyman-Pearson, 1933, significance testing 
paradigms) or the p level of significance (late Fisher, 1955, 1959) do not indicate 
the effect size (Glass, 1976; Hays 1963; Hedges, 1981), nor the power of the test 
(Cohen, 1969, 1977, 1988), nor the crucial parameter estimates that other 
researchers may use in meta-analytic studies (Rosenthal, 1993; Schmidt, 1996). 
A common recommendation in these critiques is to report confidence interval 
estimates of the parameters and effect sizes. This provides data usable in meta­
analyses. The confidence interval also provides a rough and easily computed in­
dex of power, with narrow intervals indicative of high power and wide intervals 
of low power (Cohen, 1994). A confidence interval corresponding to a com­
monly accepted level of significance (e.g .. 05) would also provide the informa­
tion needed to perform a significance test of pre-specified parameter values. 

Other than emphasizing a need to properly understand the interpretation of 
confidence intervals, we have no disagreements with these criticisms and pro­
posals. 

But a few of the critics go even further. In this chapter we will look at argu­
ments made by Carver (1978), Cohen (1994), Rozeboom (1960), Schmidt (1992, 
1996), and Schmidt and Hunter (chapter 3 of this volume), in favor of not 
merely recommending the reporting of point estimates of effect sizes and confi­
dence intervals based on them, but of abandoning altogether the use of signifi­
cance tests in research. Our focus will be principally on Schmidt's (1992, 1996) 
papers, because they incorporate arguments from earlier papers, especially 
Carver's (1978), and also carry the argument to its most extreme conclusions. 
Where appropriate, we will also comment on Schmidt and Hunter's (chapter 3 of 
this volume) rebuttal of arguments against their position. 

Our position with respect to Schmidt (1992, 1996), Schmidt and Hunter 
(chapter 3 of this volume), and Carver (1978) is that their opposition to signifi­
cance testing arises out of confusion regarding a number of things: (a) that sig­
nificance testing is the same as misconceptions held by many researchers about 
significance testing, (b) that a null hypothesis is necessarily a statistical hypothe­
sis of zero difference, zero effect, or zero correlation, (c) that significance testing 
is principally concerned with testing a null hypothesis of zero difference, zero ef­
fect, or zero correlation, (d) that proponents of significance testing believe sig-
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nificance tests are supposed to yield absolute and final determinations of the 
truth or falsity of a statistical hypothesis, (d) that meta-analysis not only replaces 
significance testing, but has no need ever of significance tests, (t) that because in 
small samples significance tests have very little power to detect small effects, 
they are useless, (g) that because in large samples significance tests have very 
large power to detect small effects, they will always do so, and thus are useless, 
(h) that significance tests per se are, or should be, concerned with the accumula­
tion of knowledge, (i) that knowing the power of a test implies that one knows 
the probability that the hypothesis will be rejected, U) that confidence intervals 
around point estimates of parameters should be reported and are not or should 
not be used for significance testing, (k) that the physical sciences do not use sig­
nificance tests but instead compute confidence intervals and perform meta­
analyses. We answer these criticisms. We place significance testing in the con­
text of seeking to make objective judgments about the world. We also defend 
significance testing against criticisms raised by others based on the idea that 
while significance tests concern making a dichotomous decision, that is, the sta­
tistical hypothesis is either true or false, we should instead focus on determining 
how our degrees of belief in the hypothesis are affected by the evidence. We 
follow-up this essay with a brief appendix on some of the historical controver­
sies in the area of significance testing, for this history has bearing on the current 
controversy involving significance testing. 

PRELIMINARY ARGUMENTS AGAINST SIGNIFICANCE TESTING 

Schmidt (1992, 1996) draws heavily on Carver (1978) in focusing his attack on 
significance testing from the perspective that it "has systematically retarded the 
growth of cumulative knowledge in psychology" (Schmidt, 1996, p. 115). 
Schmidt (1996) believed that authors like Carver have "carefully considered all 
.,. arguments [for retaining significance testing] and shown them to be logically 
flawed and hence false" (p. 116). Our own reading of Carver suggests that 
"significance testing" for him refers primarily to testing a statistical "null hy­
pothesis" of zero differences between means, zero effect sizes, or zero correla­
tions. He did not consider point hypotheses involving possibly nonzero values 
for parameters, which is the more general case considered by mathematical stat­
isticians for "significance testing." In fact, most statisticians who do significance 
testing, regard the "null hypothesis" as simply the hypothesis to be tested or 
"nullified" (Gigerenzer, 1993). Much of Carver's argument also involved ex­
posing what are actually misconceptions about significance testing, for example, 
interpreting the p value of the significance level as an unconditioned probability 
that you would be wrong in accepting the null hypothesis. Criticisms of these 
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misconceptions are not actually arguments against significance testing properly 
conceived and are somewhat tangential to the issue of significance testing. (We 
discuss some of these arguments further on). 

Corrupt Scientific Method 

Carver (1978) also described how significance testing of the null hypothesis in­
volves a "corrupt scientific method" (p. 387). According to Carver, researchers 
begin with a research hypothesis about the efficacy of some experimental treat­
ment. Proponents of the "corrupt scientific method" recommend that researchers 
perform experiments in which differences between experimental and control 
treatments are compared to differences one would expect under a hypothesis of 
random measurement and sampling error. A statistical "null hypothesis" is then 
proposed of no difference between experimental treatments. The null hypothesis 
is to be rejected and results regarded as "significant" only if a difference as large 
or larger than some specified amount occurs that would occur only rarely under a 
hypothesis of chance. "If the null hypothesis can be rejected, empirical support 
can automatically be claimed for the research hypothesis. If the null hypothesis 
cannot be rejected, the research hypothesis receives no support" (Carver, 1978, 
p. 387). Carver did not oppose conducting experiments, but giving emphasis to 
the null hypothesis as opposed to one's research hypothesis. He was troubled by 
the fact that in small samples one might fail to detect a large, real difference, and 
yet in very large samples one would almost always reject the null hypothesis, but 
the effects detected as merely significant might be small or theoretically negligi­
ble, so the outcome depends on the sample size. Furthermore, one is almost al­
ways guaranteed, Carver felt, of rejecting the null hypothesis with very large 
samples and. he cited Bakan (1966) as indicating that it is unlikely that two 
groups represent exactly the same population with respect to the variable being 
measured. But Bakan's example seems to concern natural groups being com­
pared rather than groups of experimental units assigned by randomization to ex­
perimental treatments, where there are reasonable grounds to expect no differ­
ences unless there are effects, either experimental effects or systematic error. 
Nevertheless, Carver did put his finger on problems in the logic of "null hy­
pothesis significance testing". But his analysis of these problems leaves many is­
sues confounded, especially the issue of significance testing per se versus the is­
sue of the kinds of hypotheses to test and the inferences to be drawn from tests 
of them. 

Criticism of the "Nil" Hypothesis. 

One of the problems of "null hypothesis significance testing" is with the null hy­
pothesis of zero difference between means or zero correlation (known as the "nil 
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hypothesis" (Cohen, 1994)). Meehl (1967) incisively showed how routine and 
exclusive use of this hypothesis in research prevents progress by inhibiting re­
searchers from formulating and testing hypotheses about specific nonzero values 
for parameters based on theory, prior knowledge andlor estimates of parameters 
based on accumulated data, in situations where they have such knowledge and 
theory to go on. And the logic of "nil hypothesis testing" seems askew, because 
if a researcher has a theory that a certain treatment has an effect, his theory is 
supported by rejecting another hypothesis (that there is no effect) rather than by 
making a successful specific prediction that is within the bounds of measure­
ment error of the observed value. It seems unreasonable to regard as support for 
a theory that some other hypothesis is rejected in favor of an alternative hypothe­
sis that is so vague in its content ("there is a difference") that it would be com­
patible with almost any substantive hypothesis predicting almost any size of dif­
ference. At best a test of the hypothesis of no difference can provide evidence 
against the null hypothesis of no difference, no effect, or no correlations. But it 
provides little evidence for any particular alternative hypothesis. 

Meehl (1967) contrasted the "nil hypothesis" approach in the behavioral sci­
ences to hypothesis testing in physics where proponents of theories are required 
to make specific predictions about a parameter based on theories, and the theo­
ries are provisionally accepted only if the outcomes are within measurement er­
ror of the predicted value, and no other theories make predictions that also fall 
within the range of measurement error around the estimate of the parameter. 
Furthermore, in physics as more and more data accumulate and standard errors 
of parameter estimates get smaller and smaller, tests of a theory become more 
and more stringent, because to retain support, predicted values must stay within 
an increasingly narrower range of measurement error around the estimated pa­
rameter as gauged by the standard error. But in "nil hypothesis significance test­
ing" almost any theory that predicts an unspecified nonzero effect will have 
greater possibilities of being "supported" as measurement precision and sample 
sizes increase, because the range of measurement andlor sampling error around 
the zero value of the null hypothesis will get narrower and narrower and the 
power to detect any small effect increases. 

So, one issue concerns the hypotheses to test statistically and whether there 
are ways to formulate a statistical hypothesis so that it takes into account what is 
currently known or theorized. There may be times when the no-difference and 
no-relation hypothesis is appropriate to test, and others when it is not. But, as we 
shortly argue, the issue of what hypothesis to test is distinct from the issue of 
significance testing itself, and criticisms of the testing of improper hypotheses 
should not be taken as criticisms of the concept of significance testing. 
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Building on Previous Studies in Hypothesis Testing. 

It seems that the most appropriate time to test the null hypothesis of no-effect or 
no-correlation is when one has no prior knowledge or theory of what value to 
expect and subjects have been assigned at random to experimental treatment 
conditions so that the expectation would be, failing an experimental effect or 
systematic error, of no effect. However, once previous studies have been con­
ducted, and the no-effectlno-correlation hypothesis rejected, then there will be 
estimates of the parameter based on the prior data and these can be used as the 
hypothesized value for the parameter in a significance test with a new set of 
data. (Or a hypothesis formulated on the basis of examining a number of prior 
estimates may be used.) The hypothesis to test concerns the value of the pa­
rameter-not that previous samples and a new sample come from populations 
having equal (but unspecified) population values for the parameter, which is a 
less informative result, when confirmed. 

For example, suppose the estimate of a population mean based on prior data 
is 50.1. We now construct a confidence interval estimate of the mean in a new 
sample. Let X designate a sample mean based on the new data. Let a x desig­
nate the standard error of the sample mean. Then assuming further that X IS 

normally distributed, a random interval 

[ X - 1.96a x ,X + 1.96a x ] 

may be constructed round the sample mean for which 

In other words, the lower and upper limits of this interval are random vari­
ables, based on the random sample mean plus or minus 1.96 times the standard 
error (which we presume is known, to simplify our illustration). Such random 
intervals based on the sample means will contain the true population mean in 
95% of all samples. Now, if X computed from the new data is 49 and ax = 2, 
then a 95% level confidence interval is given by 

[49 -1.96(2), 49 + 1.96(2)], 

which in this case is [45.08, 52.92]. Because 50.1 is contained within this ran­
dom interval, we provisionally accept the hypothesis that the mean equals 50.1 
in the population from which we have drawn the new data. If 50.1 fell outside 
the sample-based interval, we would provisionally reject the hypothesis that the 

a crooked scientist routinely a crooked scientist routinely 



4. A TIME AND A PLACE FOR SIGNIFICANCE TESTING 71 

population mean is 50.1. This illustrates a use of a confidence interval to per­
form a significance test of a hypothesis based on previously collected data. 

We need to add that instead of using for one's hypothesis previous estimates 
for the parameter, one may also develop a theory of what the "true" value is and 
test this theoretical value in new studies. Sometimes there may be several theo­
ries and more than one theoretical value to test (as we illustrate later with a case 
in physics that illustrates significance testing with confidence intervals in 
choosing between theories.) In some cases, when one theoretical value falls 
within the confidence interval and the other outside it, one can readily take sup­
port for the theory whose value falls within the confidence interval and reject the 
theory whose value falls without. But sometimes both theories may hypothesize 
values that fall within the confidence interval. In that case, the proper course 
may be to suspend judgment, collect more data with tighter standard errors so as 
to be able to exclude one or the other or both hypothesized values. 

Proper Interpretation of a Confidence Interval 

It is important to note that it is improper to interpret a specific confidence inter­
val constructed around a sample estimate of a parameter as itself containing the 
population parameter with the specified probability (Kendall & Stuart, 1979; 
Neyman, 1941). The specific interval either contains the population parameter or 
it does not, so it contains the population parameter with a probability of unity or 
of zero. The probability associated with a confidence interval concerns the class 
of random intervals so constructed around the sample estimates of the parameter 
and not any specific interval. In contrast, assuming normality and a known stan­
dard error, an interval, constructed to have endpoints at 1.96 standard errors 
above and below a hypothesized value for the population parameter can be said 
to have a probability of approximately .95 of containing the sample estimate of 
the parameter, if the hypothesized value is correct. (Kendall & Stuart, 1979; 
Neyman, 1941). 

If theory dictates a specific value for a parameter, then all available data that 
are independent of the formulation of the theoretical value can be used to esti­
mate the parameter with a confidence interval estimate. If the theoretical value is 
contained within the confidence interval, that is provisional support for the the­
ory. If not, that is provisional evidence against the theory. 

The Purpose of a Significance Test 

It is important to realize that in contrast to the issue of what hypothesis to test, 
significance testing arises because of the presumption that statistical estimates of 
parameters contain random errors of measurement and/or sampling error. Error 
in our parameter estimates introduces an element of uncertainty in inferences 
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about the parameter values from those estimates. A significance test is a way of 
applying a rational criterion of what values of a test statistic are to be regarded 
provisionally and defeasibly as inconsistent with and unsupportive of a hypothe­
sized value (or range of values) because they would be too extremely different 
from the hypothesized value and too improbable under a hypothesis of random 
error combined with the hypothesized parameter's value. Thus a frequent use for 
significance testing is distinguishing (provisionally) whether a difference be­
tween observed and hypothesized values results from effects of random errors of 
measurement and/or sampling error. This is what significance testing is princi­
pally about. The "statistical significance" of a deviation is a problem that has to 
be resolved in some way and at some point in a research program, especially if 
one seeks to evaluate theoretical predictions against data in an efficient and eco­
nomical way. 

The Argument that Meta-Analysis Should Replace 
Significance Testing 

Nevertheless, Schmidt (1992, 1996) built on Carver's (1978) arguments. Being 
an advocate of the use of meta-analytic procedures, he and his collaborator, John 
Hunter, " ... have used meta-analysis methods to show that these traditional data 
analysis methods [significance testing] militate against the discovery of the un­
derlying regularities and relationships that are a foundation for scientific prog­
ress (Hunter & Schmidt, 1990)" (Schmidt, 1996, pp. 115-116). Schmidt (1996) 
argued that "we must abandon the statistical significance test. In our graduate 
programs we must teach that for analysis of data from individual studies, the ap­
propriate statistics are point estimates of effect sizes and confidence intervals 
around these point estimates. And we must teach that for analysis of data from 
multiple studies, the appropriate method is meta-analysis" (p. 116). Schmidt be­
lieved that the development and widespread use of meta-analysis methods 
"reveals more clearly than ever before the extent to which reliance on signifi­
cance testing has retarded the growth of cumulative knowledge in psychology" 
(p. 116). 

Schmidt claims that even " ... these few defenders of significance testing 
(e.g., Winch and Campbell, 1969) agree that the dominant usages of such tests in 
data analysis in psychology are misuses and they hold that the role of signifi­
cance tests in data analysis should be greatly reduced" (Schmidt, 1996, p. 116). 
(Misuses, however dominant they may be in practice, are nevertheless not evi­
dence against the proper use of significance tests. Whether significance tests will 
be deemed to have a more limited application than now believed by rank-and­
file researchers is certainly a legitimate question we would be willing to enter­
tain. At the same time we think there is a legitimate role to be played by signifi-
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cance testing). Schmidt issued the following challenge to statisticians who still 
believe in significance tests: "Can you articulate even one legitimate contribu­
tion that significance testing has made (or makes) to the research enterprise (i.e., 
any way in which it contributes to the development of cumulative scientific 
knowledge)? I believe you will not be able to do so" (p. 116). 

We feel this challenge stacks the deck against significance testing, because it 
asks one to cite a contribution for significance testing that significance testing 
per se is not designed to make and for which it is not directly relevant. Signifi­
cance testing is not directly concerned with accumulating scientific knowledge. 
We feel that function is served by the formulation of hypotheses to be tested, 
which, to lead to accumulating knowledge, should incorporate prior knowledge 
and theory into the formulation of the hypothesis. In contrast, significance test­
ing per se concerns drawing defeasible inferences from data at hand as to the va­
lidity of a statistical hypothesis. A defeasible inference is an inference that " ... 
is subject to defeat (nullification, termination, or substantial revision) by further 
considerations (e.g., later facts or evidence)" (Finnis 1995, p. 181). Significance 
testing concerns a framework for deciding (provisionally or defeasibly) whether 
observed results (under presumptions of randomness, sampling, and error of 
measurement) that differ from hypothesized values are to be treated as consistent 
with chance error outcomes under the assumption that the hypothesis is true, or 
to be regarded as so divergent and different as well as improbable under the 
assumption of the truth of the hypothesis as to provide little or no support for the 
hypothesis (Fisher, 1959). That's all a significance test provides, no more, no 
less. It doesn't accumulate anything. That is not its function. There are no 
accumulative operations intrinsic to a significance test. 

On the other hand, significance testing contributes to the cumulative research 
enterprise in allowing one to assess whether differences from predicted values 
under an integrative hypothesis are more reasonably regarded as due to random 
measurement errors and sampling errors or not. For example, suppose you are 
seeking to accumulate knowledge by synthesizing findings from various studies. 
At some point the data "at hand" shifts from the data found in individual studies 
to the data across numerous studies, as in a meta-analysis, where one presumes 
that outcomes of each study are random and independent of one another along 
with whatever other assumptions needed to make the meta-analytic inferences. 
Significance testing comes back into play in deciding whether the data at hand 
across the studies are consistent with and hypothetically probable under a pre­
specified statistical hypothesis of interest to the researcher, or so different and so 
hypothetically improbable under that hypothesis as to cast doubt on the hypothe­
sis by being possibly not a chance result at all. In other words, in statistical 
studies with probabilistic outcomes there will always be criteria for deciding 
(defeasibly) whether differences from expectations are to be treated as real dif-
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ferences or as due to chance error, and those criteria will represent significance 
tests. But we do not claim that significance tests encompass all that is important 
in evaluating statistical hypotheses. We certainly support journals requiring the 
reporting of confidence interval estimates of parameters and effect sizes because 
these convey more of the crucial information about the results that may be joined 
with other findings in developing hypotheses and conducting meta-analyses. 

Misconceptions About the Misconceptions About 
Significance Testing 

Our concerns with these essays critical of hypothesis testing is that a major por­
tion of their arguments to do away with significance testing are based on criti­
cisms of abusive misconceptions of the use and interpretation of significance 
testing by researchers. They can hardly be regarded as criticisms of significance 
testing properly understood and applied. It is important to note that these critical 
essays rarely quote critically and accurately Fisher or Neyman and Pearson, the 
founding fathers of the major schools of significance testing, or mathematical 
statisticians well trained in their methods. But if one reads these eminent statisti­
cians' 'writings, he or she often will come across passages in which they are 
critical of the very same abuses and misconceptions of significance testing that 
the current crop of critics of significance testing cite as evidence against signifi­
cance testing. So, if we are to clear the air and get to the heart of their criticisms 
of significance testing, we need to stipulate what these misconceptions about 
significance testing are and show how irrelevant they are to the issue of whether 
to abandon or retain significance tests in our research. 

Misconceptions About Significance Testing 

Carver (1978), Cohen (1994) and Schmidt (1996) all cite critically variants of 
the following fallacious misinterpretations of significance testing. We add one or 
two of our own: 

1. The p value of a significant test statistic is the probability that the research 
results are due to chance (Carver 1978). It is hard to imagine how some­
one would arrive at this conclusion. Perhaps, because the statistic is sig­
nificant, one wonders how this might occur by chance and then thinks of 
the statistical hypothesis tested, Ho, as the hypothesis of chance. One rea­
sons that if Ho is true, a result D as extreme or more extreme than the criti­
cal value could occur by chance only with a conditional probability 
P(D I Ho) equal to the significance level. That is, the significance level is 
always the conditional probability of getting a result D as extreme or more 
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extreme than some critical value given the hypothesis Ho is true. Of 
course, we never know for certain that it is true, but only reason to this 
probability hypothetically. But the fallacy is that the statement asserts a 
different kind of conditional probability. What is the probability that the 
null hypothesis generated this data, given that we have observed a signifi­
cant result, that is what is P(Ho I D)? But without knowledge of the prior 
probability for Ho and each of the various alternative hypotheses, we can­
not work this out (using Bayes' theorem). No mathematical statistician 
would be so naive as to confuse these kinds of probabilities. 

2. The probability of rejecting Ho is a. Again the fallacy is to confuse an un­
conditioned statement of probability with a conditioned statement of prob­
ability. a is the conditional probability of rejecting the hypothesis Ho given 
Ho is true-regarded hypothetically. In contrast, without further prior 
knowledge, we have no idea what the actual probability is of rejecting the 
null hypothesis at a given significance level. It all depends upon what is 
the case in the world, and we would not perform a significance test if we 
knew what the true effect was. Schmidt (1992, 1996) makes a similar error 
when he imagined scenarios in which the true effect size is .50 and then 
declared that the probability of making a Type I error is not .05 but zero 
because, he says, in this scenario the null hypothesis is always false and so 
there is no error to be made in rejecting the null hypothesis. The only error 
to be made, he said, is a Type II error, accepting the null hypothesis when 
it is false. In this scenario Schmidt further computed the probability of re­
jecting the null hypothesis of no effect to be .37 and not .05. Furthermore, 
he said the true error rate in making decisions from tests of a hypothesis of 
no effect in studies against an effect size of .50 is 1-.37=.63, not .05, as 
he claimed many researchers believe. Within Schmidt's scenario the actual 
error rates he considered are correct, but Schmidt failed to see that Type I 
and Type II error rates are never actual probabilities of making these er­
rors. Having no knowledge about the true effects when setting out to per­
form a significance test, we have no way of knowing what the true error 
rates will be. So these error rates are hypothetical probabilities considered 
conditionally under the case where the null hypothesis is true and under a 
case where the null hypothesis is false, respectively. These hypothetical er­
ror rates are used, for example, in reasoning hypothetically to set a critical 
value of a significance test and to evaluate the power of the significance 
test against hypothetical alternatives in establishing what will represent 
prima facie evidence for or against a null hypothesis. Type I and Type II 
error rates should never be thought of as unconditional probabilities. 
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3. Replicability fallacy: A hypothesis accepted as significant at the a level of 
significance has the probability of 1 - a of being found significant in fu­
ture replications of the experiment. Carver (1978) cited Nunnally (1975, p. 
195) as asserting this fallacy. The fallacy is to presume that because one 
has accepted the hypothesis Ho, it is therefore true, and therefore according 
to the conditional probability distribution of the statistic when Ho is true, 
the probability of observing a value of the test statistic again within the re­
gion of acceptance will be I-a. But, as Fisher (1935) was careful to point 
out, accepting the null hypothesis (Ho for Neyman and Pearson) does not 
determine that the hypothesis is true. It still might be false. Consequently 
the rest of the inference fails. 

4. Validity fallacy: A hypothesis accepted as significant at the a level of sig­
nificance has a probability of 1 - a of being true. This is a gross misinter­
pretation. As Cohen (1994) points out, a statement about the conditional 
probability P(D I Ho) that a result will fall in the region of rejection (D) 
given one assumes the hypothesis Ho is true is not the same as a statement 
about the probability P(Ho I D) of the hypothesis being true given the result 
has fallen in the region ofrejectionD, nor even unconditional probabilities 
about the truth of the hypothesis P(Ho). As Fisher (1959) stated, the sig­
nificance level tells nothing about probabilities in the real world. All the 
significance level tells us is a hypothetical probability that D will occur 
given the hypothesis Ho is true, and that is not sufficient to allow us to in­
fer the actual probability of the truth of the hypothesis in a real-world set­
ting. 

5. The size p of the significance level of a result is an index of the importance 
or size of a difference or relation. Schmidt (1996) cited this fallacy. An 
example would be to regard a finding significant at the .05 level to be not 
as important as a finding significant at the .001 level. The fallacy is to con­
fuse size or magnitude of an effect with the improbability of an effect un­
der the null hypothesis. The p value does not tell you the size or magnitude 
of an effect. In large samples a p value of .00 I may represent a small mag­
nitude effect, which practically speaking may be of negligible importance. 
On the other hand, it is true that a result significant at the .05 level is not 
as deviant from the hypothesized value as a result significant at the .001 
level, although the p values alone tell you nothing about the difference in 
magnitude between them. There is also a danger of interpreting the p value 
as a measure of the improbability of the truth of the null hypothesis and 
then inferring that results with smaller p values indicate that the null hy­
pothesis is even more improbable. Remember that the p value is the con­
ditional probability of observing a result as deviant or more deviant from 



4. A TIME AND A PLACE FOR SIGNIFICANCE TESTING 77 

the hypothesized value given that the hypothesized value is the true value. 
It is not a measure of the probability of the hypothesized value. It is, how­
ever, a measure of the plausibility of the hypothesis, because a very small 
value for p indicates an observed value for the statistic that would be very 
improbable were the hypothesized value the true value of the parameter. 
Some of the confusion resides in confusing the logical "improbability" of 
a hypothesis when evidence quite inconsistent with or improbable ac­
cording to it is observed-which may have no clear quantitative value­
with the "probability" of probability theory that the p value under the null 
hypothesis represents. In this regard this is the same as the fallacy given in 
case 1 above. 

6. A statistically significant result is a scientifically significant result. This 
fallacy plays on the ambiguity of the word "significant." Knowledgeable 
statisticians recognize that regarding a result as statistically significant 
does not imply its size or importance scientifically. It is well known that 
the standard error of a test statistic varies inversely as the square root of 
the size of the sample so that in larger and larger samples the power to de­
tect smaller and smaller differences from the hypothesized parameter as 
"significant" increases. Thus in very large samples a difference significant 
at the .001 level may still be very small in both absolute terms and in rela­
tive terms with respect to the initial variance of the variable. Thus no in­
ference may be drawn as to the size or importance of a result from a 
knowledge that it is a significant result. 

7. If a result of a test of a hypothesis about a parameter is not significant, 
then the parameter equals the hypothesized value. This fallacy is a variant 
of the fallacy of presuming that if a result is not significant then this means 
the null hypothesis is true. Schmidt (1996) believed this assumption is the 
most devastating to the research enterprise. He claimed it prevents re­
searchers who get nonsignificant results with small samples from reporting 
and pooling their data with data from other studies in meta-analytic stud­
ies, which may be able to detect small effects with greater power that were 
overlooked in the individual studies because of lack of power. We agree 
that it is reasonable to suggest people should suspend judgment from 
small-sample studies because they lack power to detect meaningful differ­
ences. We agree that it is reasonable to criticize them for presuming with­
out warrant they have made an indefeasible and final judgment in order to 
get them to seek additional evidence. However, again, none of the original 
proponents of significance tests, neither Fisher nor Neyman and Pearson 
would interpret significance tests as determining absolutely the validity of 
the hypothesized parameter, Fisher least of all. So, again, it is a misinter-
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pretation of the results of a significance test. As Fisher (1935) put it, not 
rejecting the null hypothesis does not mean one has proven the null hy­
pothesis to be true. 

8. The fallacy that a statistical hypothesis is the same as one 50 theoretical 
hypothesis. Frequently, a theoretical prediction will state that a parameter 
has a certain value. This value is then made the value of a statistical hy­
pothesis to be tested with a significance test. If we observe results that 
would be too different from the hypothesized value and too improbable 
according to sampling and/or measurement error under the tested hypothe­
sis, we may be led to reject that hypothesis. But this need not imply that 
the theoretical hypothesis on which the statistical hypothesis is based is 
necessarily to be rejected. There may be in the experimental setting ex­
perimental artifacts that produce effects different from those anticipated by 
the theory. So, rejecting the statistical hypothesis may lead to a search for 
experimental artifacts instead of rejection of the theory. 

9. The argument that nothing is concluded from a significance test. Schmidt 
(1996) stated "If the null hypothesis is not rejected, Fisher's position was 
that nothing could be concluded. But researchers find it hard to go to all 
the trouble of conducting a study only to conclude that nothing can be 
concluded" (p. 126). We think this is an unfair reading of Fisher. The issue 
is what inference is reasonable, although defeasible, to draw from the em­
pirical findings of a study. 

A major difference between Fisher and Neyman and Pearson was over the 
idea that significance testing involves an automated decision-making procedure 
forcing a researcher to choose one of several predetermined altemative choices. 
Fisher did not want to lose the freedom to exercise his own judgment as a scien­
tist in whether or not to accept (provisionally) a tested hypothesis on the basis of 
a significance test. "A test of significance contains no criterion for 'accepting' a 
hypothesis. According to circumstances it mayor may not influence its accept­
ability" (Fisher, 1959, p. 42). Fisher's attitude seems to reflect, furthermore, 
many physicists' suspicions of the Neyman-Pearson approach to significance 
testing, that a decision to accept or reject a theory or hypothesis can be com­
pletely encapsulated in the automated significance test. For example, a signifi­
cant result that runs counter to well-established theory, may not be regarded as 
evidence against the theory but possibly evidence for an experimental artifact, 
which the researcher must then isolate. An option for Fisher was to suspend 
judgment. 

A bitter debate between Fisher and Neyman and Pearson followed their 
(1933) alluding to the relevance of their paradigm to sampling inspection prob-
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lems in mass-production industry. In discussing the difference between accep­
tance decisions in manufacturing and opinions and judgments based on signifi­
cance tests formed in scientific settings, Fisher (1959) held, "An important dif­
ference is that [ Acceptance] Decisions are final, while the state of opinion de­
rived from a test of significance is provisional, and capable, not only of confir­
mation, but of revision" (p. 100). Fisher's belief that Acceptance Decisions 
might be final seems reasonable, because a decision to return goods to the manu­
facturer or to stop the assembly line, once implemented, is final. But the point is 
that from Fisher's point of view a provisional scientific opinion can be formed 
about the null hypothesis from the results of a significance test, and one may 
even seek to confirm it with additional evidence, or revise one's opinion on the 
basis of that additional evidence. What Fisher seemed to sense is that such con­
cepts as "truth" and "falsity" and "logical inference," that work very well in ge­
ometry and other areas of mathematics where one presumes one has in the axi­
oms all one needs to arrive at a final decision regarding the truth or falsity of 
some proposition, do not work very well in science when one is making gener­
alizations or inferences from experience. Our information is incomplete, so our 
opinions formed from experience will be provisional and defeasible by addi­
tional experience. This is different from saying that one forms no conclusions, 
no opinions at all if a test is not significant. The conclusions, opinions, 
"decisions" are not final, only provisional. (See Mulaik & James, 1995; Pollock, 
1986). 

THE NULL HYPOTHESIS IS ALWAYS FALSE? 

Cohen (1994), influenced by Meehl (1978), argued that "the nil hypothesis is 
always false" (p. 1000). Get a large enough sample and you will always reject 
the null hypothesis. He cites a number of eminent statisticians in support of this 
view. He quotes Tukey (1991, p. 100) to the effect that there are always differ­
ences between experimental treatments-for some decimal places. Cohen cites 
an unpublished study by Meehl and Lykken in which cross tabulations for 15 
Minnesota Multiphasic Personality Inventory (MMPI) items for a sample of 
57,000 subjects yielded 105 chi-square tests of association and every one of 
them was significant, and 96% of them were significant at p < .000001 (Cohen, 
1994, p. 1000). Cohen cites Meehl (1990) as suggesting that this reflects a "crud 
factor" in nature. "Everything is related to everything else" to some degree. So, 
the question is, why do a significance test if you know it will always be signifi­
cant if the sample is large enough? But if this is an empirical hypothesis, is it not 
one that is established using significance testing? 
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But the example may not be an apt demonstration of the principle Cohen 
sought to establish: It is generally expected that responses to different items re­
sponded to by the same subjects are not independently distributed across sub­
jects, so it would not be remarkable to find significant correlations between 
many such items. 

Much more interesting would be to demonstrate systematic and replicable 
significant treatment effects when subjects are assigned at random to different 
treatment groups but the same treatments are administered to each group. But in 
this case, small but significant effects in studies with high power that deviate 
from expectations of no effect when no differences in treatments are adminis­
tered are routinely treated as systematic experimenter errors, and knowledge of 
experimental technique is improved by their detection and removal or control. 
Systematic error and experimental artifact must always be considered a possibil­
ity when rejecting the null hypothesis. Nevertheless, do we know a priori that a 
test will always be significant if the sample is large enough? Is the proposition 
"Every statistical hypothesis is false" an axiom that needs no testing? Actually, 
we believe that to regard this as an axiom would introduce an internal contradic­
tion into statistical reasoning, comparable to arguing that all propositions and 
descriptions are false. You could not think and reason about the world with such 
an axiom. So it seems preferable to regard this as some kind of empirical gener­
alization. But no empirical generalization is ever incorrigible and beyond testing. 
Nevertheless, if indeed there is a phenomenon of nature known as "the crud 
factor," then it is something we know to be objectively a fact only because of 
significance tests. Something in the background noise stands out as a signal 
against that noise, because we have sufficiently powerful tests using huge sam­
ples to detect it. At that point it may become a challenge to science to develop a 
better understanding of what produces it. However, it may tum out to reflect 
only experimenter artifact. But in any case the hypothesis of a crud factor is not 
beyond further testing. 

The point is that it doesn't matter if the null hypothesis is always judged false 
at some sample size, as long as we regard this as an empirical phenomenon. 
What matters is whether at the sample size we have we can distinguish observed 
deviations from our hypothesized values to be sufficiently large and improbable 
under a hypothesis of chance that we can treat them reasonably but provisionally 
as not due to chance error. There is no a priori reason to believe that one will al­
ways reject the null hypothesis at any given sample size. On the other hand, ac­
cepting the null hypothesis does not mean the hypothesized value is true, but 
rather that the evidence observed is not distinguishable from what we would re­
gard as due to chance if the null hypothesis were true and thus is not sufficient to 
disprove it. The remaining uncertainty regarding the truth of our null hypothesis 
is measured by the width of the region of acceptance or a function of the stan-
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dard error. And this will be closely related to the power of the test, which also 
provides us with information about our uncertainty. 

The fact that the width of the region of acceptance shrinks with increasing 
sample size, means we are able to reduce our uncertainty regarding the provi­
sional validity of an accepted null hypothesis with larger samples. In huge sam­
ples the issue of uncertainty due to chance looms not as important as it does in 
small- and moderate-size samples. 

THE NEED FOR SIGNIFICANCE TESTS 

We cannot get rid of significance tests because they provide us with the criteria 
by which provisionally to distinguish results due to chance variation from results 
that represent systematic effects in data available to us. As long as we have a 
conception of how variation in results may be due to chance and regard it as ap­
plicable to our experience, we will have a need for significance tests in some 
form or another. 

Schmidt and Hunter (chapter 3 of this volume) ignore the provisional way 
statisticians treat their decisions based on significance tests in arguing that sig­
nificance tests do not reveal whether observed differences or relations in a data 
set are real or "just due to chance." "This objection [against doing away with 
significance tests] assumes," they say, "that null hypothesis significance testing 
can perform that feat. Unfortunately, no such method exists-or is even possi­
ble." Their argument subtly portrays significance tests as designed to determine 
absolutely that relations or differences are "real or due to chance." Of course, 
there can be no such thing. They neglect to point out that Fisher denied that the 
significance test yields absolute and incorrigible determinations that something 
is "real or due to chance." Whatever opinions one forms as to the reality or 
chance basis of a difference or a relation are provisional. Most statisticians, in­
cluding us, interpret them in this way. So Schmidt and Hunter's argument is 
simply a misrepresentation of what significance tests provide. What is important 
to consider is that under the circumstances in which they are employed, where 
one has no knowledge a priori of the truth of one's statistical hypotheses, signifi­
cance tests provide a reasonable way of using the data available to arrive at 
prima facie evidence for the truth or falsity of the statistical hypothesis. Prima 
facie evidence is sufficient to establish truth or falsity, but conclusions based on 
it may be disproved or defeated by further evidence or reasoning. Thus we may 
use the provisional truth or falsity of such hypotheses in forms of defeasible rea­
soning (Pollock, 1986, 1990), which is the way we reason from experience as 
opposed to the way we reason in classical logic and mathematics where truths of 
propositions are presumed inalterably given. In defeasible reasoning truths of 
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propositions may change with further reasoning or evidence. Truths are provi­
sional. 

A FALLACIOUS USE OF POWER IN CRITICISM 
OF SIGNIFICANCE TESTING 

The Meaning of the Power of a Significance Test 

Statistical power is analogous to the concept of resolving power in evaluating 
optical instruments. Power is the hypothetical conditional probability of reject­
ing the null hypothesis under some alternative hypothesis for the population pa­
rameter's value. Power is influenced by three things: (a) the size of the signifi­
cance level a-increasing a increases power but also increases the probability 
of rejecting the null hypothesis when it is true; (b) the sample size, which with 
increasing sample size has the effect of reducing the size of the standard error, 
thereby increasing power; and (c) the difference between the value of the pa­
rameter under the null hypothesis and the value of the parameter under the alter­
native hypothesis-the larger the difference, the greater the power to detect it. 
Paradoxically one's confidence in acceptance of the null hypothesis increases 
with an increase in power to detect a standard difference regarded as important. 
On the other hand, knowing power is low to detect an effect of a size less ex­
treme than the critical value should temper any enthusiasm for an accepted null 
hypothesis. We now tum to a fallacious use of the concept of power in criticizing 
significance testing. Schmidt and Hunter (chapter 3 of this volume) create sce­
narios, which they imply are realistic, that illustrate the inadequacy of signifi­
cance tests. They state "The average power of null hypothesis significance tests 
in typical studies and research literatures is in the .40 to .60 range (Cohen, 1962; 
1965, 1988, 1994; Schmidt, 1996; Schmidt, Hunter, & Ury, 1976; Sedlmeier & 
Gigerenzer, 1989). Suppose we take .50 as a rough average. With a power of .50, 
half of all tests in a research literature will be nonsignificant." They argue next 
that supporters of significance tests assume that if a test of a null hypothesis is 
not significant, it is interpreted to be a zero effect. Schmidt and Hunter then 
claim that this means that in half of all the studies the conclusion will be that 
there is no relationship. "Every one of these conclusions will be false. That is, in 
a research area where there really is a difference or a relation, when the signifi­
cance test is used to determine whether findings are real or just chance events, 
the null hypothesis significance test will provide an erroneous answer about 50% 
of the time." 
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Our view is that this is fallacious reasoning. We looked up the article by 
Sedlmeier and Gigerenzer (1989) to see how they computed power for the stud­
ies reported in the various journal articles. They noted that they followed Cohen 
(1962). It is important to realize that power is one of four interrelated quantities: 
power, significance level, sample size N, and effect size. Determine any three of 
these quantities and you determine the fourth. So to determine the power of a 
study reported in the literature, you have to specify the sample size, the signifi­
cance level, and an effect size to be detected. Sample size is reported in a journal 
article about the study. To standardize comparisons across studies, it suffices to 
pick an arbitrary fixed significance level .05 and an arbitrary hypothetical effect 
size. Cohen chose to use three arbitrary hypothetical effect sizes, a small, me­
dium, and large effect size. He chose further to operationalize the three effect 
sizes as corresponding to the dimensionless Pearson correlations of .20, AD, and 
.60, respectively. He then computed the power of a study as the power to detect a 
specified correlation as significant at the .05 level given the sample size N of the 
study. It is extremely important for the reader to see that the effect size is com­
pletely hypothetical and does not represent an actual effect present to be detected 
by the study. No effort was made to find out what the true effect was, and even if 
such an effort had been made it could have only reported an estimated effect that 
would be subject to sampling and measurement error. Thus the only thing that 
varied across studies was sample size N, and this N was converted into three 
power figures for the study, the power to detect a small, medium and large effect, 
respectively, at that sample size. 

Sedlmeier and Gigerenzer (1989) followed Cohen's (1962) procedure in de­
termining power for the studies reported a decade or more later than Cohen's 
studies. The figures Schmidt and Hunter (chapter 3 of this volume) chose to re­
port as typical on the basis of these studies corresponded to the powers to detect 
as significant a medium effect (correlation of AD) at the study's sample size. On 
the other hand, although citing the power values Sedlmeier and Gigerenzer 
(1989) reported, as illustrative of typical psychological studies, Schmidt (1996) 
compared those power values with the power values of an artificial scenario he 
constructed of normally distributed data having a true .5 standard deviation ef­
fect and a power of .37 to detect that effect against the null hypothesis of no ef­
fect at the .05 level. Because he had been discussing an artificial scenario in 
which the true effect was .5 standard deviations, his comparison with the Sedl­
meier and Gigerenzer power figures conveyed the impression that their power 
figures were also powers to detect the typical true effects in the fields surveyed. 
By citing Schmidt (1996) and the Cohen (1962) and the Sedlmeier and Gigeren­
zer (1989) articles together as sources for typical effects, the same impression is 
created by Schmidt and Hunter (chapter 3 of this volume). And this is borne out 
because they then use the rough average power of .50 to conclude that in half of 
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the studies the researcher's conclusion will be that there is no relationship, but 
this conclusion, they say, will be false in every case. But in our view, to suggest 
that, in approximately half of the psychological studies surveyed by Cohen and 
Sedlmeier and Gigerenzer, the null hypothesis was accepted and that in every 
one of these cases the decision to do so was in error, is wrong and grossly mis­
leading. 

The power figures reported by Cohen (1962) and Sedlmeier and Gigerenzer 
(1989) and used by Schmidt and Hunter (chapter 3 of this volume) are not pow­
ers to detect the true effect of the respective studies. Their power figures were 
only the hypothetical powers to detect an arbitrary medium-sized effect if there 
were one, given the sample sizes of the studies. We have no idea what the true 
effects were in those studies. They could have all been much larger than the me­
dium effect on which the powers had been computed, in which case the true 
power would have been much larger than .50 and the proportion of nonsignifi­
cant results would have been lower than .50. Or they could have all been much 
smaller than the medium effect and the true power would have been much less 
than .50 and the proportion of nonsignificant results greater than .50. So any at­
tempt to extrapolate to what the typical error rate is in using significance tests in 
these fields is totally unwarranted. In effect this is the same kind of error of con­
fusing a hypothetical conditional probability with an actual probability of an 
event happening in the world that critics of significance tests accuse many users 
of significance tests of making. 

On the other hand, it is legitimate to generate hypothetical scenarios in which 
a true effect is presumed known and then investigate the performance of a sig­
nificance test as Schmidt (1996) has done. Within the framework of such hypo­
thetical assumptions, Schmidt's conclusions are correct. But the power to detect 
a true effect varies with the size of the true effect, the sample size, and the sig­
nificance level. For example, although a given study may have a power of only 
.5 to detect a medium-size effect, it may have a power greater than .8 to detect a 
moderately large effect. So it is misleading to generalize these scenarios with 
medium-size effects to all studies. 

But it is important also to remember that significance testing is performed in 
circumstances where one does not have prior knowledge of the size of the true 
effect nor of the probability of a certain effect size's occurrence. What is impor­
tant is whether a significance-testing procedure provides a reasonable way of 
forming a judgment about the validity of a hypothesis about a population pa­
rameter from sample data. Significance testing must be judged on those terms. 
Unlike in Schmidt's scenarios, a typical significance test is performed when one 
has no prior information about the nature of the effect. If one has such informa­
tion, it must be incorporated into the hypothesis to be tested. 
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We urge researchers to specify the value of the parameter to be tested to a 
value that reflects prior knowledge about it. In experiments with randomization, 
one knows that there should be no differences-unless there are effects, which 
one does not yet know. In field studies with correlation it is somewhat problem­
atic to say what prior knowledge dictates Ho should be. The question then is, 
"Does the significance test reasonably use the information given to it to guide 
the researcher to a provisional judgment given one has no idea whether the hy­
pothesis is true or not until one gets the data?" 

It is not necessarily a fault of significance testing if in one of these hypotheti­
cal scenarios where the true standardized effect size is .5 one accepts the null 
hypothesis in 74% of the cases and rejects it in only 26%. The question is 
whether it was reasonable, given what one does not know other than what is 
given in the data, to arrive at one's decisions in this manner? After all, if the null 
hypothesis of a zero standardized effect were true, one would reject the null hy­
pothesis in only 5% of the cases, which is much less than 26%. But knowing that 
the power to detect a small effect of.5 standardized effect units is only 26%, one 
might be unwilling to put too much stock in such decisions, if one is looking for 
effects that small. One needs to use knowledge of power to temper the confi­
dence one has in one's decisions if one has any reason to believe the effects to be 
detected are at most that size. 

Other indirect indices of power and corresponding uncertainty associated 
with an accepted null hypothesis are the standard error of the test statistic, width 
of the acceptance region, the standardized effect size corresponding to a critical 
value of the test statistic, and the confidence interval calculated around a point 
estimate of the effect. Prior calculations of the power to detect an expected effect 
size can also guide the researcher to obtain the sample sizes to reach a decision 
with adequate power. But in those cases where one feels one has insufficient 
power to resolve the issue we have no quarrel with Schmidt (1996) who argued 
that one can simply report point estimates of the effect size and the confidence 
interval estimate of the effect. One always has the option to suspend judgment 
while waiting to obtain sufficient evidence to reach a decision. (Editors need to 
evaluate articles not on the grounds of statistical significance in studies where 
power is low against an effect size regarded as important, but of the potential of 
the data's being useful in combination with data from other studies for meta­
analysis). But this does not mean giving up significance testing, only postponing 
it. 

No Need to Abandon Significance Tests 

There is no need to abandon significance tests altogether as Schmidt (1996) rec­
ommended, especially in those cases where one observes significant effects that 
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exceed in value effects detectable with high power. For example, a true effect 
that is four standard errors in size has approximately a power of .975 of being 
detected by any significance test involving a two-tailed test with a .05 level of 
significance. And any true effect that is 2.84 standard errors in size may be de­
tected by any such significance test with a power of approximately .80. Of 
course, in contrast, the observed effect will contain error, and one's remaining 
uncertainty regarding its true value will be gauged by the standard error or some 
function of it. 

Schmidt (1996) rejected the advice that researchers should calculate sample 
sizes needed to achieve a specified power against a specified effect. His argu­
ment is that this requirement would make it impossible for most studies to ever 
be conducted. As research progresses within an area sample size requirements 
become increasingly larger to achieve powers commensurate to detect ever 
smaller effects as one moves from simply detecting the presence of an effect to 
determining its specific value or relative size with respect to other effects. In cor­
relational research, he cited how sample sizes may need to be quite large-often 
1,000 or more. For example, with a sample of size 1,000 one has the power to 
detect a correlation of .089 as significantly different from zero at the .05 level 
with a power of .80. He believed to make these demands on researchers would 
be unrealistic. But many researchers with commercial and educational tests have 
access to large data bases today of far more than 1,000 cases. The issue is not 
whether or not to do a study, for small studies, as Schmidt suggests, can be inte­
grated with other small studies by meta-analyses, but to consider the power of 
detecting a certain size effect with a significance test with the sample at hand. If 
one is looking only for large effects, then a significance test can be taken seri­
ously with small samples. 

META-ANALYSIS AND SIGNIFICANCE TESTING 

Schmidt (1996) believed the issue of power is resolved if one abandons signifi­
cance testing. Power, he believed, is only relevant in the context of significance 
testing. But this is not so. Power concerns resolving power, and this issue will 
remain in any meta-analysis, especially those that investigate the presence of 
moderator effects and interactions or hypothesizes their nonexistence. To use an 
analogy, one does not discard an 8x field glass just because it cannot detect ob­
jects the size of a house on the moon. One uses it to detect objects within its re­
solving power. The same is true of a significance test. The point is that one must 
decide (provisionally) whether deviations from hypothesized values are to be re­
garded as chance or real deviations and with sufficient power to resolve the is­
sue. 
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Schmidt and Hunter (chapter 3 of this volume) believe that " ... no single 
study contains sufficient information to support a conclusion about the truth or 
value of a hypothesis. Only by combining findings across multiple studies using 
meta-analysis can dependable scientific conclusions be reached .... " The impli­
cation is that significance testing with a single study is thus unable to reach any 
conclusion about the truth or value of a statistical hypothesis. 

We think this argument confuses a number of complex issues. On the one 
hand, one may consider pooling the sample data from several studies into one 
large sample to achieve adequate power to test a hypothesis in question. On the 
other hand, there is the issue of whether one needs to show invariant results 
across many laboratory settings, which is an issue entirely separate from the is­
sue that significance testing addresses. One may, for example, regard each of the 
studies as representing a sample from the same population (defined by compara­
ble experimental conditions). A meta-analysis of these studies may take the form 
of pooling the samples from the individual studies to obtain one large sample 
that one uses to compute an estimate of the effect. The question will be whether 
the estimated effect equals some hypothesized effect. Any deviation between the 
estimated effect and the hypothesized effect will raise the question of whether 
the deviation is so large and so improbable as to be reasonably (but provision­
ally) regarded as not due to chance under the hypothesis. Whatever method you 
use to resolve this question will correspond to a significance test. So, why are we 
to suppose that this one large meta-analysis allows us to resolve issues about the 
validity of a hypothesis that no individual study can? Is it simply that individual 
studies have small samples and insufficient power to resolve the issue raised by 
the hypothesis? But suppose the individual study has a very large sample with 
adequate power to detect about any size effect with adequate power. Why is it 
we cannot reach a (provisional) judgment about the validity and value of a sta­
tistical hypothesis from such a single study, just as we do with the single meta­
analytic study that has a combined sample size equal to that of the single study? 
What makes a meta-analysis not itself a single study? 

The assertion that one cannot establish the validity and value of a hypothesis 
in a single study seems to be about other issues than just the issues of sample 
size and the pooling of samples. One of the values replication of results across 
many studies conveys is the objectivity of the result. Regardless of the researcher 
and the researcher's biases, regardless of the laboratory in which the results are 
observed, regardless of the research equipment used, the same results are ob­
tained. Objectivity just is the demonstration of invariance in what is observed 
that is independent of the actions and properties of the observer (Mulaik, 1995). 

But meta-analysis cannot establish this invariance if it simply pools studies 
and gets estimates of pooled effects. The resulting estimates may mask a hodge­
podge of effects in the various studies. Although careful examination of the re-
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ported procedures used to perform the studies may allow one to select studies 
that appear effectively equivalent in their methodology and research subjects, the 
possibility remains that some unreported moderating variable had different ef­
fects upon the dependent variable in the studies accumulated. If plausible rea­
sons based on prior experience for the possible existence of such a moderating 
variable can be given, this would undermine the assumption of invariance across 
the studies. The effect of moderating variables would have to be ruled out with 
positive evidence to allow one to proceed. Can one detect in the data themselves 
when a hypothesis of invariance across studies fails? The problem is analogous 
to an analysis of variance (ANaYA), but more complex, particularly when the 
parameters evaluated are not means. But even when the problem involves simply 
mean effects, one may not be able to presume homogeneity of variance within 
studies, which, with different size samples as commonly occurs in meta-analysis, 
will make implementation of traditional ANaYA procedures problematic. Nev­
ertheless, an issue that will arise is the power to detect the differences between 
studies that would undermine the use of pooled estimates of effects across stud­
ies. The decision that there are no such differences will involve a form of sig­
nificance test, if it is driven by the data at all. 

Examples of Meta-Analyses 

To get a better grasp of the problems of meta-analysis, let us consider the fol­
lowing scenario (Scenario 1) in which multiple samples are drawn from a single 
population. Scenario 2 will deal with samples drawn from several populations. 

Scenario 1: The statistical model underlying this scenario may be written as 

r; = p+ei (4.1) 

where ri is a sample correlation that we may think of as the population correla­
tion p to which sampling error ei has been added. Other things being equal, if 
the sample size is small (e.g., N = 68), it is known that the statistical test associ­
ated with the null hypothesis (of p = 0) will not have adequate power for de­
tecting nonzero, medium-size population correlations. This power can be 
brought to an adequate level (say, of .80) either by increasing the individual 
sample size or by combining data from several samples. In the example given in 
Schmidt (1996), the bivariate data from the 21 samples, with 68 cases per sam­
ple, can be combined in one big sample with N = 1428. The correlation based on 
the bigger sample is .22, which is also the result one would obtain using meta­
analytic procedures. In this example, meta-analysis does not really provide any 
additional useful information. However, the same result as Schmidt's (1996) 
meta-analysis is obtained from this single-pooled sample using a pooled estimate 
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of the population correlation and determining that it is significantly different 
from zero with a significance test. The power of this test to detect a correlation 
of .20 is greater than .80.

If correlations in the 21 different samples are based on different but compara­
ble measures of X  and Y, it would not be possible to combine different samples 
into one big sample for assessing the relationship between X  and Y. This could 
happen if X  and Y represent cognitive ability and grade point average (GPA), re­
spectively, and different but comparable measures of cognitive ability are used in 
the 21 samples. Because different cognitive ability measures are likely to be in 
different metrics, combining the raw data from different samples to compute a 
single correlation coefficient between X  and Y is not advisable. One, however, 
may be able to average the 21 correlations (as it is done in meta-analysis) to ar­
rive at an overall strength of the relationship between X  and Yf because by defi­
nition all correlations are on a common metric. Whereas correlations, like the ef­
fect sizes, offer the common or standard metric needed in most meta-analyses, 
Cohen (1994) noted that they “cannot provide useful information on causal 
strength because they change with the degree of variability o f the variables they 
relate” (p. 1001).

Scenario 2: In this scenario, different samples are drawn from different popu­
lations and the underlying statistical model can be expressed as

where subscript j  refers to population j  and i to a sample drawn from that popu­
lation. In meta-analysis, or especially in validity generalization studies, the aim 
is to estimate the mean and variance o f the p y (denoted, respectively as f ip and 
Oy). In this scenario, one can also pool the data from different samples into a 
single data set and compute the correlation between X  and Y. Such an analysis, 
although adequate in Scenario 1, is inadequate in Scenario 2 because the rj s may 
differ from population to population. One way to estimate the needed parameters 
is to first note that, under the assumption that E{etj) = 0,

r ij P j  e ij > (4.2)

(4.3)

and

G } = G l + E ( 0 2ej) (4.4)

These two equations can be used to estimate j ip and o 2p respectively (Hedges 
& Olkin, 1985; Hunter & Schmidt, 1990). Estimates o f these two parameters

H r = H p
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provide useful information in practice, with estimation of (J~ receiving more 
attention when one is concerned with the generalizability of the correlation be­
tween X and Yacross situations or populations. In the latter application (i.e., in 
validity generalization studies), Equation 4.4 plays an important role. (J~ on the 
left-hand side of Equation 4.4 can be estimated by the variance of observed cor­
relations, and let us denote this estimate by s;; the second quantity on the right­
hand side of Equation 4.4 can be estimated by the average of sampling-error 
variances of sample-based correlations denoted by s;. Then the difference, 
a~ = s; - se2 , can be used as an estimate of (J~. Two aspects of this estimate are 
important in the present context. 

First, even when (J~ = 0, the estimate s; generally will not equal estimate s; 
and, therefore, a~ rarely will equal zero. In explaining the benefits of meta­
analysis (and there are several), Schmidt (1996) provides an example (his Figure 
3) in which s; = s; to claim that "meta-analysis reaches the correct conclusion" 
(p. 118). Here, according to Schmidt (1996), the correct conclusion is that 
(J~ = O. This illustration is misleading because with a small finite number of 
samples, s; rarely equals s; ; one typically has a nonzero residual which must be 
assessed for its proximity to zero. As an illustration, let us consider the example 
given by Schmidt in his Table 2. The variance s; of the 21 observed correlations 
is .0109 and the average s; of the 21 sampling variances is .0133. Therefore 
a~ = s; - s; = .0109 - .0133 = -.0024, which is close to zero but not exactly 
zero. Since variance can only be nonnegative, one may treat this negative differ­
ence as zero, which is sometimes done in generalizabi1ity theory (Brennan, 
1983). What if this residual (J~ is small but positive? How does one decide 
when an estimate is small enough to be considered zero? Would null hypothesis 
testing be an appropriate tool for deciding whether a residual (J~ or an estimate 
of (J~ is significantly different from zero? We think so. Now to the second point: 

Second, in validity generalization studies, one is interested in finding out if 
(J~ is zero. This result has important theoretical and practical implications. 
Therefore, one typically estimates (J~ and then tries to determine if that estimate 
is significantly different from zero. Both Hunter and Schmidt (1990) and Hedges 
and Olkin (1985) have proposed approximate chi-square tests for this purpose. 
The aim of these tests is to assess whether the observed correlations or effect 
sizes are significantly different from each other, a pure and simple case of null 
hypothesis testing. Hunter and Schmidt (1990) also proposed an ad hoc proce­
dure, which is commonly referred to as the 75% rule. Furthermore, Hunter and 
Schmidt recommend the use of lower credibility values in inferring the gener­
alizability of·validity. These credibility values are derived with the help of esti­
mates of }1p and (J~. However, the estimates of }1p and (J~ by definition con­
tain sampling error which are reflected in the lower credibility values. Hunter 
and Schmidt did not take into account the associated sampling errors in estab-
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lishing the lower credibility values and therefore their recommended procedure 
raises questions about its true practical utility. It appears that the straightforward 
null hypothesis testing of an estimate of a~ is a more defensible route to estab­
lishing the generalizability of a validity coefficient across populations. 

Along the lines of null hypothesis testing, Hedges and Olkin (1985) have rec­
ommended between and within chi-square tests (which are significance tests) for 
those investigators looking for moderators. Despite the fact that moderators are 
hard to find in practice (because they are difficult to detect with adequate power 
when the number of studies compared is small and sample sizes are small), these 
chi-square tests have been useful in identifying sub-populations in which the va­
lidity is found to be generalizable. 

SIGNIFICANCE TESTS IN PHYSICS 

Schmidt and Hunter (chapter 3 in this volume) argue that physicists do not per­
form significance tests. What they do in their studies is compute an estimate of 
the parameter of interest and place an error band or confidence interval around 
the estimate. To test a theoretical hypothesis they compare the estimated value to 
the theoretical value. Schmidt and Hunter say specifically" ... this comparison 
is not based on a significance test." Furthermore physicists, Schmidt and Hunter 
say, combine results from different studies in ways that are not essentially differ­
ent from meta-analyses. "The tests of hypotheses and theories that are consid­
ered the most credible are those conducted based on data combined across stud­
ies. Estimates from the different studies are averaged, and the standard error of 
the mean is compared and used to place a confidence interval around the mean 
estimate. (The confidence interval is not interpreted as a significance test)." 
They then offer a couple of examples from physics. Of interest to us is their first 
example, the test of Einstein's theory of relativity which states that gravity of a 
large massive body like the sun will bend light by a certain amount. They say 
that 

... the hypothesis was tested in a famous study that measured the amount of bending in 
light produced by its passing the sun by comparing the apparent position of stars at the 
edge of the disk of the sun during an eclipse with their apparent positions when not 
near the sun. Several different observatories made these measurements and the meas­
urements were averaged. The measured amount of bending corresponded to the figure 
predicted by Einstein's general theory, and so the hypothesis was confirmed and hence 
the more general theory from which it was derived was supported. In this important 
study no significance tests were used. 
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Schmidt and Hunter (chapter 3 of this volume) say further" ... no significance 
test was run to see if the amount of bending was significantly greater than zero 
(test of the null hypothesis) or to see if the observed amount of bending was sig­
nificantly different from the amount predicted by the theory (a significance test 
preferred by some.)" 

Although it is true that no test of the nil hypothesis (that the parameter is 
zero) was performed, it is not quite true to say that no test was performed to see 
if the observed amount of bending was significantly different from the amount 
predicted by the theory. As we will see, the measured amount of bending of the 
light did not correspond to what was predicted by either theory (Newton's or 
Einstein's), and so some criterion was needed to determine whether the differ­
ence between the predicted and measured values was greater than what would be 
typical as a result of random error of measurement. 

Moyer (1979) recounts how in 1916-1917, the British astronomer Arthur S. 
Eddington published an article in which he showed that Newton's theory of 
gravity would predict that gravitation would deflect light by one-half the amount 
predicted by Einstein's theory of relativity. By 1918, Eddington had derived from 
Einstein's general theory of relativity that a ray of light from a star passing near 
the edge of the sun would be bent in such a way that the star's image would be 
shifted outward by 1".75 rr/r, where ro is the radius of the sun and r the closest 
approach of the star's light to the center of the sun when compared to the star's 
image without the sun. In contrast Newtonian theory predicted a shift of 0".87 
rr/r. Thus a test of Einstein's and Newton's theories could be made during a total 
eclipse of the sun, when the disc of the moon would just cover the disc of the 
sun and stars next to the sun in the field of view could be observed. 

In 1919 a total eclipse of the sun was predicted, and Eddington and A. C. D. 
Crommelin led expeditions to the island of Principe in the Gulf of Guinea, West 
Africa and to Sobral, northern Brazil, respectively, to observe and photograph 
the eclipse. In his summary of the experiment, Eddington (192011987) noted that 
Einstein's theory predicts a deflection of 1".74 at the edge of the sun, with the 
amount decreasing inversely as the distance from the sun's center. In contrast 
Newtonian theory predicts a deflection that is half this, 0".87. The final esti­
mates of the deflection (reduced to the edge of the sun) obtained at Sobral and 
Principe (with their 'probable accidental errors') were: Sobral, 1".98 ± 0".l2; 
Principe, 1".61 ± 0".30. Eddington then said, "It is usual to allow a margin of 
safety of about twice the probable error on either side of the mean. The evidence 
of the Principe plates is thus just about sufficient to rule out the possibility of the 
'half-deflection,' and the Sobral plates exclude it with practical certainty" (p. 
245). He then noted that because of the obscuring effects of the clouds, the value 
of the data obtained at Principe could not be put higher than about one-sixth of 
that at Sobral. Nevertheless, he felt it was difficult to criticize this confirm&tion 
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of Einstein's theory because " ... it was obtained independently with two differ­
ent instruments at different places and with different kinds of checks" (p. 245). 

A probable error is .67449 of a standard error in a normal distribution (Fisher, 
1925). Twice the probable error equals approximately 1.35 standard errors. This 
corresponds in a two-tailed test to a significance level of .177. So, if Eddington 
was using a margin of safety of two probable errors on either side of the mean, 
any hypothesized value outside of the confidence band would be rejected at the 
.177 level. In this case Newton's prediction of 0".87 lies outside the two prob­
able error confidence intervals from each site and is evidently rejected by Ed­
dington, in favor of Einstein's prediction of 1".74, which falls within each band. 
But if Eddington's probable errors are converted to standard errors by multiply­
ing them by 11.67449 = 1.4826, we get for Sobral 1.4826 x 0".12 = 0".178, and 
for Principe 1.4826 x 0".30 = 0".44. So a confidence interval of two standard 
errors for Sobral would be [1.624, 2.336], and for Principe [.73, 2.49]. The re­
sults obtained at Principe (which was partly covered by clouds during the 
eclipse) were fewer and of lower quality than those from Sobral, and Eddington 
gave the Principe results only 116 of the weight given the Sobral results. By cur­
rent standards the results from Sobral clearly supported Einstein's hypothesized 
value and not Newton's, because Einstein's value of 1".75 is contained in the 
interval, and the Newtonian value of 0".87 is not; the Principe results were 
equivocal, since the predicted values of each hypothesis, 0".87 and 1".75, fell 
within the two standard-error confidence interval. We believe that Eddington 
used the confidence bands as a significance test, but by current standards his 
Type I error was greater than most statisticians would feel comfortable with to­
day, although his power was likely fairly good for the small sample of 28 obser­
vations from Sobral because of the large size of the probability of a Type I error. 

We have consulted physicists on the Internet regarding their use of signifi­
cance tests. Evidently they get very little formal training in statistics. So, one 
reason why they might not perform formal significance tests is that they have not 
been trained to do so. But they do use confidence bands sometimes in the way 
many statisticians use confidence intervals as significance tests. If a hypothe­
sized value falls within the confidence interval, that is evidence in favor of the 
hypothesized value. If it falls outside of the confidence interval, that is evidence 
against the hypothesized value. Another reason physicists often do not do sig­
nificance tests is because they are not always testing hypotheses, but rather are 
trying to improve their estimates of physical constants. Their journals consider 
reporting estimates to be beneficial to the physics community, because they may 
be combined with results from other studies. (This supports Schmidt and 
Hunter's argument in chapter 3 of this volume that one does not always have to 
perform a significance test to have publishable results, and we concur with this 
aspect of their argument.) Physicists are also very suspicious of automated deci-
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sion-making procedures, and Neyman-Pearson significance testing suggests that 
to them. They also tend to regard results that differ significantly from predicted 
values to be most likely due to artifacts and systematic errors. Only after ex­
haustive efforts to identify the source of systematic errors has failed to turn up 
anything will they then take seriously such significant differences as providing 
lack of support for established theory and in favor o f some other theory that pre­
dicts such results. Finally, as Giere (1987, p. 190) notes, physicists have long re­
alized that the typical experiment produces results with errors of only 2%. But 
most theories, even good ones in physics, make predictions to only within 20% 
of the data. Thus if  one goes by significance tests alone, one would reject almost 
all such theories and not pursue them further. So, measures of approximation are 
often much more meaningful than significance tests in physics. This does not 
mean there are no situations where they might be used.

Hedges (1987) (cited by Schmidt and Hunter in chapter 3 of this volume as 
supporting their position) indicates that physicists do use procedures that are 
comparable to significance tests. Although many of their studies are equivalent 
to meta-analyses in the social sciences, they use a ratio known as Birge’s R to 
evaluate the hypothesis that the population value for a parameter is the same in 
all studies considered for review. When this ratio is near unity, this is evidence 
for the consistency of the estimates across the studies; when the ratio is much 
greater than unity this is evidence for a lack of consistency. Birge’s ratio is given 
as

where Tu . . . ,  Tk are estimates of a theoretical parameter in each of& studies, S]9 
. . . ,  Sk their respective standard errors, and I ’, their weighted average

with C0i = 1 / S? .
Hedges (1987) notes that Birge’s ratio is directly related to a chi-square sta­
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k 

X2 =(k-l)R= Lcoi(T;-T./ 
i=1 

with k -1 degrees of freedom. In other words, Birge's ratio is a chi-square sta­
tistic divided by its degrees of freedom. The mean of a chi-square distribution 
equals the degrees of freedom of the distribution, so this ratio compares the size 
of the obtained chi-square to the mean of the chi-square distribution. The ratio 
serves to test whether differences among the estimates are greater than what 
would be expected on the basis of unsystematic (measurement) error. 

This chi-square statistic is very similar to comparable chi-square statistics 
proposed for meta-analysis by Hedges (1981) and Rosenthal and Rubin (1982) 
in the social sciences to test whether differences in estimates of a parameter in 
question across studies are greater than what would be expected by sampling er­
ror. In this respect, Schmidt and Hunter (1996) are correct in saying that physi­
cists use statistics like those used in meta-analysis. But it is clear that Hedges re­
gards these as significance tests. Thus this is further evidence that physicists 
have not abandoned significance tests-nor have most meta-analysts. 

Hedges (1987) also notes the availability of a comparable approximate chi­
square statistic 

k 

XZ = LCOi(T; -'If 
i=1 

for testing whether several studies confirm a theoretically predicted value for a 
parameter. Instead of the estimate T., the theoretical value T of the parameter is 
used in the formula, and because an unknown value for the parameter is not es­
timated, one gains a degree of freedom so that the resulting chi-square statistic 
has k degrees of freedom. 

These approximate chi-square statistics used in meta-analysis are appropriate 
only in large samples (nj > 30) where estimates of the standard errors are stable 
and the sampling distributions of the parameter estimates are approximately 
normal. 

THE MEANING OF OBJECTIVITY 

Objectivity Derived from a Schema of Perception 

We have already mentioned the objectivity of significance tests. We would like 
to bring out why science cannot proceed merely by estimating parameters, as 
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suggested by Schmidt and Hunter (1996) when they recommend reporting confi­
dence interval estimates of parameters while denying their use in significance 
tests. Tests of hypotheses are essential to integrating and unifying conceptually 
the diversity of our observations into concepts of an objective world. The issue 
is not the uniformity of procedures followed, of clear-cut statements of alterna­
tives and how to decide between them, or how to calculate the results in a uni­
form way. Uniformity of procedure, it is true, is relevant to establishing objec­
tive findings, but the ultimate issue concerns establishing invariant features in 
the observations that are independent of the actions and properties of the ob­
server. 

Mulaik (1995) regarded "objectivity" as a metaphor taken from a schema of 
perception, the schema involved in the perception of objects. J. J. Gibson (1966, 
1979) regarded visual perception of objects to take place in the context of an or­
ganism's constantly moving within and interacting with its environment. The or­
ganism's motion through the environment produces varying information to the 
senses about the environment, but the transformations these motions and actions 
produce, in what is given to the organism perceptually, occur in certain invariant 
ways that are correlated with those motions and actions. The organism is thus 
able to factor out the effects of its own actions from the optic array of informa­
tion presented to it. The term for this is proprioception. Objects, on the other 
hand, for Gibson are invariants through time in the varying optic array that are 
distinct from invariants of transformations in the optic array produced by the or­
ganism. The detection of these objective invariants is known as exteroception. 

This schema of object perception serves to integrate information gathered al­
most continuously at adjacent instants in time and points in space into informa­
tion about objects and acts of the embodied self. Perception of objects and per­
ception of self (as body-in-action) occur simultaneously together and are two as­
pects of the same process. 

Mulaik (1995) argued that when extended conceptually beyond what is given 
immediately in sensory perception to information collected at widely spaced 
points in time and space, the schema of objectivity serves as a metaphor to inte­
grate this information conceptually through memory and narration into our ob­
jective knowledge about the world and our place within it. It is the driving meta­
phor of science and even of law. It is also the metaphor that underlies the worlds 
of virtual reality in computer graphics. 

Relevance to Hypothesis Testing 

The relevance of objectivity to hypothesis testing is that hypothesis testing is a 
way of integrating information conceptually into objective forms, of extending 
them beyond a given situation or context and independent of the observer. The 
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hypothesis is stated before the data are given. The hypothesis must be formu­
lated independently of the data used to evaluate it. The reason for this is because 
whatever the data are to reveal must be regarded as independent of the one who 
formulates the hypothesis. Only then will the data be an objective basis for com­
parison to the hypothesis and thereby a way of conveying objectivity to the hy­
pothesis, if the data conform to the hypothesis. 

In contrast, a hypothesis, so-called, formulated by observing the data to be 
used in its evaluation and formulated in such a way as to conform to that data, 
cannot then be regarded as objective by its conforming to those same data. To 
begin with, more than one hypothesis can be constructed to conform perfectly to 
a given set of data. Thus any particular hypotheses formulated by a researcher to 
conform to a set of data may be regarded as relative to the researcher in reflect­
ing the particular context, perspective, biases and even media of representation 
used by the researcher, imposed onto the data. On the other hand, hypotheses 
constructed to fit a given set of data logically might not fit an independent data 
set. Thus fit of a hypothesis to an independent data set can serve as a test of the 
independent and objective validity of the hypothesis. It is logically possible to 
fail such tests. But it is logically impossible for data to fail to fit a hypothesis 
tailored to fit them by the researcher. Thus a test of possible lack of fit cannot 
even be performed on a hypothesis using data that the hypothesis was con­
structed to fit, because there is no logical possibility of a lack of fit. On the other 
hand, most hypotheses are formulated by interacting with data, but not the data 
used to evaluate them. 

We humans do not have to formulate our hypotheses out of nothing. We for­
mulate them from past experience and test them as generalizations with new ex­
perience. Or we use one set of data for formulating a hypothesis and another set 
for testing it. Sometimes in models with many unspecified parameters we can 
use some aspects of a given data set to complete an incompletely specified hy­
pothesis by estimating the unspecified parameters, and still test the prespecified 
aspects of the hypothesis with other aspects of the data not used in determining 
the unspecified parameter estimates (Mulaik, 1990). This conforms very well to 
the schema whereby we determine perceptually that an object and not an illusion 
stands before us, by getting new information from a different point of view and 
comparing it to what we expect to see given what we thought is there initially by 
hypothesis and according to how that should appear from the new point of view. 

Significance testing is concerned with hypothesis testing. The hypothesis­
testing aspect of significance testing does concern the integration and accumula­
tion of knowledge, and it is for this reason why formulation of the proper hy­
pothesis to test is crucial to whether or not the test will contribute to the accu­
mulation and synthesis of knowledge. But the particular aspect of hypothesis 
testing that significance testing is concerned with is whether or not an observed 
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difference from the hypothesized value is so different and so improbable under 
the presumption that chance error is combined with the true value, as to cast 
doubt on the truth of the hypothesized value. In this regard significance testing is 
blind to the relevance of the hypothesis chosen to test. 

We believe that a major problem with nil hypothesis significance testing that 
brings on the accusation that significance tests prevent the accumulation of 
knowledge, is that once one has gained some knowledge that contradicts one's 
initial null hypothesis, one does not modify one's hypotheses to reflect that new 
knowledge. After rejecting the null hypothesis, a replication study proceeds 
again to test the same null hypothesis that one now has reason to believe is false. 
But a hypothesis one ought to test is that the effect is equal to the value esti­
mated in the previous study, which one judged to be significantly different from 
a zero effect. Or if one does not trust the results of the first study because one 
believes the effect is an artifact, one should eliminate suspected sources of sys­
tematic error in a new experiment and collect new data, with a sample suffi­
ciently large to detect any remaining meaningful effects with sufficient power. 

Unfortunately in the context of traditional factorial ANOVA, it is not easy in 
terms of methods and computer programs for researchers to specify their hy­
potheses in terms of earlier found effects. It is easier to test the hypothesis that 
there is no difference between groups and no interaction effects. But we have 
learned through the development of algorithms for structural equation modeling 
that one can fix some parameters and free others in specifying a model. Perhaps 
the time has come to modernize ANOVA and the general linear model, to make 
it easy to specify and test models with fixed nonzero parameters for certain ef­
fects. 

DEGREES OF BELIEF? 

Rozeboom (1960) criticized null-hypothesis significance testing because it con­
ceptualizes the problem as one in which a decision is to be made between two 
alternatives. Here his critique is directed more to Neyman-Pearson (1933) rather 
than Fisherian (1935, 1959) conceptions of significance testing. He argued "But 
the primary aim of a scientific experiment is not to precipitate decisions, but to 
make an appropriate adjustment in the degree to which one accepts, or believes, 
the hypothesis or hypotheses being tested" (Rozeboom, 1960, p. 420). Roze­
boom objected to the decision-theoretic concept that a motor-act is to be deter­
mined by the evidence of an experiment. Decisions are voluntary commitments 
to action, that is, motor sets. But " ... acceptance or rejection of a hypothesis," 
he said, "is a cognitive state which may provide the basis for rational decisions, 
but is not itself arrived at by such a decision ... " (p. 420). In other words: 
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As scientists, it is our professional obligation to reason from available data to explana­
tions and generalities-i.e., beliefs-which are supported by these data. But belief in 
(i.e., acceptance of) a proposition is not an all-or-none affair; rather it is a matter of de­
gree, and the extent to which a person believes or accepts a proposition translates prag­
matically into the extent to which he is willing to commit himse\fto the behavioral ad­
justments prescribed for him by the meaning of that proposition" (pp. 420-21). 
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Rozeboom seemed inclined to distinguish cognitive from behavioral states, 
although we think he would have been hard pressed to find criteria for attribut­
ing certain cognitive states to individuals without reference to behavioral crite­
ria. 

Nevertheless, Rozeboom's (1960) critique of the Neyman-Pearson decision­
theoretic approach to significance testing (about which we also have some con­
cerns in the context of evaluating scientific theories and hypotheses by compar­
ing them to specific rival hypotheses) raises issues whose complexities cannot be 
dealt with in detail in the short space that remains in this chapter. But we can 
make the following comments: To some extent, when he wrote his critique, Ro­
zeboom was entertaining Bayesian inference as a possible replacement for Ney­
man-Pearson significance testing. Bayesian inference, however, has long been 
controversial, particularly when it has been invoked in connection with the use 
of subjective prior probabilities. Critiques of the philosophical assumptions of 
Bayesian inference may be found in Giere (1987), Pollock (1986), Glymour 
(1981), Gillies (1973), and Hacking (1965), whereas a summary of the Bayesian 
argument and an attempted rebuttal of many of these criticisms from a subjective 
Bayesian point of view that rejects a behavioral interpretation of degrees of be­
lief was given by Howson and Urbach (1989), which in tum has been criticized 
by Chihara (1994) and Maher (1996). Another source on this debate was given 
by the Bayesian Earman (1992) and a subsequent critique by non-Bayesian For­
ster (1995), who argued that the Bayesian philosophy of science cannot explain 
the relevance of simplicity and the unification of data via theory to confirmation, 
induction, and scientific inference. But in joining with the critics, we can add the 
following comments to the argument, which were suggested to the first author by 
reading commentaries on the works of the philosopher Ludgwig Wittgenstein 
(Budd 1989; Schulte, 1992). 

The focus on belief as a cognitive state that varies in degree confuses the is­
sue of how to justify beliefs in propositions on the basis of evidence-which is a 
normative issue concerned with the use of objective criteria of support for a be­
lief-with a psychological theory concerned with describing and measuring a 
problematic cognitive belief state that presumably is a causal effect of evidence 
that varies as evidence accumulates, obeys Bayes' theorem, and which in tum is 
a cause of subsequent behavior. Bayesians attempt to use this implicit psycho-
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logical theory, which is at best a hypothesis-and one that does not fit well with 
the psychological facts about probabilistic beliefs either (Kahneman & Tversky, 
1972)--as a normative account of how one is to modify one's degrees of belief 
on the basis of evidence. But a descriptive theory or hypothesis about psycho­
logical processes involving belief states is not a normative framework for justi­
fying beliefs. We justify beliefs in a framework of norms of what constitutes 
supportive or disconfirming evidence for a proposition. And norms must be un­
derstood and applicable in an objective way. In fact, objectivity is a basic norm. 
As we evaluate the evidence in terms of these norms, our belief states take care 
of themselves and are not ordinarily explicitly relevant to making the evaluation 
itself. 

The problem with arguments designed to justify beliefs by focusing on pri­
vate, introspected belief states is that these arguments are based on the same 
pattern of reasoning used by empiricists to justify our knowledge based on expe­
rience. Empiricists sought to ground our knowledge of the world in an incorrigi­
ble foundation of inwardly experienced sense data. But the empiricist enterprise 
sank on the rocks of solipsism and the realization that ultimately the sense data 
of logically private experience involve a logically incoherent idea that is useless 
in the public dialogues aimed at justifying beliefs about experience. Not only are 
the so-called logically private sense data of one individual logically inaccessible 
to others for the purposes of verification, they are intractable even to the indi­
vidual who would try to bring them into a kind of private language he or she 
would use to reason about them. Wittgenstein's (1953) famous "private-language 
argument" showed the incoherence of the idea of a logically private language 
based on logically private experience. Because the concept of language involves 
an activity governed by rules, and rules demand objective criteria for their appli­
cation, so that one can distinguish between thinking one is following the rules 
and actually following them and not making them up as one goes along, lan­
guage cannot be applied to that which is logically and irretrievably private. Witt­
genstein's private-language argument knocked the linchpin out of the framework 
of arguments designed to justify one's beliefs via an incorrigible foundation in 
subjective, introspected experience. What remains to justify our beliefs are rea­
sons we locate in the world, reasons that are thus public and available to every­
one, and judged by rules and norms that we share. 

Wittgenstein's (1953) private-language argument rules out the possibility of 
using language to refer to an inner, logically private "inner state" that reflects an 
individual's degree of belief. Historically, the concept of "degree of belief' is a 
metaphor based on the idea of probability that originally developed in connec­
tion with games of chance (Hacking, 1975). The concept of probability was ex­
tended from objective settings (such as games of chance) with stable well-under­
stood causal constraints built in to the gaming apparatus and clear, objective 
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criteria of how to assign the probabilities, along with predictive success in use of 
these probabilities reinforced by the stable physical conditions of the games, 
through settings in which a probability represented an individual's gut feel as to 
what might happen next in a poorly understood situation, to degrees of belief in 
any proposition. The metaphor of life as a series of games of chance in which 
one constantly assesses the odds extended the idea of probability beyond the set­
tings in which assessing the odds and probability could be done in an objective, 
rule governed manner to produce numbers assigned to events that obey Kol­
mogorov's axioms of probability theory. To be sure, numbers can be produced 
that represent people's degrees of belief, and these may have many of the super­
ficial appearances of probabilities, but they are not probabilities. 

Whatever the numbers that Bayesian statisticians elicit from clients as their 
subjective prior probabilities, they are not under all the constraints needed to 
guarantee numbers satisfying Kolmogorov's axioms. To begin with, the quanti­
ties given must be numbers between zero and unity. Most people can be trained 
to provide those on request. We would also conjecture that people must have 
knowledge of the proper use of probabilities in situations where probabilities are 
objectively determined to use these cases as examples to guide them. This means 
they must recognize the constraints on the way quantities denoting probabilities 
are to be distributed over a redefined sample space of alternative possibilities. 
One is often at a loss to specify the sample space of alternative scientific hy­
potheses appropriate in a given context, which one needs to do to distribute nu­
merical quantities properly over the possible alternatives to represent probabili­
ties satisfying the axioms of probability theory. Furthermore there is no corre­
sponding concept of some reason for there being a specific value for one's un­
certainty about the truth of a scientific hypothesis, as there is a reason for the 
specific value for the probability of a specific outcome in a game of chance, 
which is based on the invariant physical properties of the gaming equipment and 
its configuration. So, even if one can prescribe to a person how in any given 
situation to define such a space of alternative possibilities, how then do you train 
them to pick the numbers to assign to the alternatives to represent the individ­
ual's subjective degrees of belief about them? How can the subjective Bayesian 
know that the individual is giving numbers that represent the individual's sub­
jective degree of belief? How can the person him- or herself know he or she is 
giving the right numbers that represent true subjective degree of belief? What 
criterion would one use? It is not sufficient to say that whatever the person says 
is "right" is "right", for in that case we cannot speak of following a rule, which 
requires being able to distinguish between cases where persons say they are right 
and their actually being right (Wittgenstein, 1953). Unless there is some objec­
tive way to determine this, the task is an impossible one not only for us external 
to the individual, but for the individual as well, and the numbers given are thus 
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of dubious value. Unless an individual can be taught rules whose application can 
be objectively verified as to how to assign degrees of belief in scientific hy­
potheses that satisfy the axioms of probability, there is no such thing as a sub­
jective degree of belief that an individual can learn to express that corresponds to 
the probability of probability theory. 

But one might argue that we ordinarily do not question the subjective reports 
of individuals but take them at face value. That is true, but in this case we do not 
treat their reports as objective truths about themselves, but, as Wittgenstein 
(1953) suggested, verbal substitutes for observable natural reactions, which we 
simply accept without judgment as their reactions. There is no requirement that 
we regard their subjective reactions as right or wrong or descriptive of anything, 
for there is nothing against which we could compare their expressions to validate 
them. Nor can the individual privately validate his expressions, because he is in 
no position to distinguish between being right and thinking he is right, which we 
are able to do with public phenomena and public criteria. This undermines 
claims that the use of subjective prior probabilities in Bayesian inference leads 
to optimal rational inference from experience, for even if the numbers given sat­
isfied axioms of probability in representing some subjective phenomenon, who 
would be able to tell? Finally the argument fails that subjective Bayesian infer­
ence can still be used as an ideal norm prescribing optimal rational inference, as 
if ideally we could attain subjective prior probabilities satisfying the axioms of 
probability (Howson & Urbach, 1989), because it is not a norm for humans if 
humans cannot follow it correctly and objectively. 

Recognizing these difficulties for subjective Bayesian prior probabilities, 
some Bayesians have sought to ground "personal" prior probabilities in behav­
ioral criteria, such as Ramsey's (1931) or de Finetti's (1937) assumption that a 
degree of belief p in a hypothesis h is equivalent to a disposition to bet indiffer­
ently on or against the truth of the hypothesis h at odds pl(l - p), so long as the 
stakes are kept small (Howson & Urbach, 1989). Ramsey and de Finetti showed 
that if the degrees of belief did not satisfy the probability axioms and if the one 
taking your bet could dictate which side of the issue you were to take and the 
size of the stakes, then you could be made to lose no matter what. Supposedly 
then one should have degrees of belief that satisfy the probability axioms or one 
would lose bets in this situation. But the usual arguments against this view point 
out that there are many good reasons (or none at all) why you might be willing to 
bet at odds different than those dictated by one's degree of belief (Howson & 
Urbach, 1989). Behavior in betting situations is influenced by too many things 
other than degree of belief to serve as a univocal indicator of degree of belief. 
Besides, no practical Bayesian statistician uses this method to assess personal 
prior probabilities. 
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But the strongest argument against "degrees of belief' as propounded by both 
the subjective and behavioristic personal-probability Bayesians is that their con­
cept of degree of belief confounds evidentiary reasons for belief with non-evi­
dentiary (nonepistemological) reasons, such as the hope one has that one's way 
of conceiving a situation will tum out to be "right" (whatever that means), which 
may have no prior evidence to support it. What a theory of justified knowledge 
requires is evidentiary reasons for one's belief, no more and no less. Subjective 
and/or personal probabilities are determined by more than what the person 
knows to be true, and it is impossible to separate in these subjective/personal 
probabilities what is known from what is hoped for or purely conjectured. And 
different individuals will have different "subjective," non-evidentiary reasons for 
their belief; as a consequence, Bayesians believe Bayesian inference will yield 
different inferences for different individuals, although accumulating data will 
eventually overwhelm the subjective/personalistic element in these inferences 
and converge to common solutions. The personal/subjective element enters in 
primarily at the outset of a series of updated Bayesian inferences. Nevertheless, 
at the outset, subjective/personal Bayesian inference based on these subjec­
tive/personal probabilities does not give what is just the evidentiary reasons to 
believe in something and is unable to separate in its inference what is subjective 
from what is objective and evidentiary (Pollock, 1986). 

These criticisms of subjective Bayesian inference are not designed to refute 
the legitimate uses of Bayes' theorem with objectively determinable prior prob­
abilities defined on explicitly defined sample spaces. But the proponents of ob­
jective Bayesian inference have not been inclined to regard their method as a 
universal prescription for inference, but rather as a method limited to situations 
where objectively determinable prior probabilities are possible. In the meantime 
that leaves significance testing as another route to probabilistic inference where 
knowledge of prior probabilities is not available or an incoherent idea. 

The point to be made with respect to significance testing, is that significance 
testing is a procedure contributing to the (provisional) prima facie judgment 
about the objective, evidentiary validity of a substantive proposition. Subjective 
opinions and descriptions of subjective states or psychological states are not 
relevant to such judgments. 

APPENDIX 

There have been two major schools of thought advocating forms of significance 
testing, and the distinctions between these schools have not always been recog­
nized. In fact, because of similarities in some of their positions and methods, 
they generally have been confused by textbook writers on psychological statis-
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tics and in the teaching of psychological and social statistics (Gigerenzer, 1989, 
1993; Gigerenzer & Murray, 1987). The first, and older of these two schools is 
due to the eminent statistician R. A. Fisher. The other is due to a successor gen­
eration of statisticians, Jerzy Neyman and Egon S. Pearson (the son of Karl 
Pearson who worked out the formula for the product-moment correlation coeffi­
cient that bears his name). Although there are similarities between these two 
schools, and the later school is in part a logical development from the earlier, a 
bitter debate between them lasted from the mid-1930's until Fisher died in 1962. 
Cowles (1989) provided an excellent summary of the development of these two 
schools and how the debate reflected conflicts between strong-willed, defensive 
personalities, although there are meaningful differences in emphasis. 

Fisherian Significance Testing. R. A. Fisher, known both as a geneticist and a 
statistician, thought of himself as a research scientist first and statistician second. 
Yet his mathematical skills were formidable and these allowed him to make nu­
merous major contributions to the mathematics of modem statistics during its 
formative years. Fisher's approach to significance testing grew out of his rejec­
tion of inductive inference based on the concept of inverse probability using 
prior probabilities (subjective Bayesian inference), an approach advocated by 
Laplace over 100 years before and still popular. On the one hand, Fisher re­
garded judgments of prior probabilities for scientific hypotheses to be either too 
subjective or impossible to formulate to the rigor required of a scientific method, 
while on the other hand he found the Bayesian argument-that in the absence of 
any prior knowledge, all hypotheses are to be regarded as being equally prob­
able-to be unconvincing or to lead to mathematical contradictions. Furthermore 
he did not regard the mathematically well-defined concept of probability to be 
appropriate for expressing all forms of uncertainty or degrees of belief, which 
are often based on vague and uncircumscribed grounds. Thus he regarded 
mathematical probabilities as best limited to objective quantities that could be 
measured by observed frequencies. Consequently, he sought methods of induc­
tive inference that dealt only with objective quantities and phenomena. In his 
first position as an agricultural statistician he formulated a system of how to de­
sign and draw inferences from experiments (Fisher, 1935). He argued that re­
searchers should always include control conditions among their experimental 
treatments and should assign experimental treatments at random to experimental 
units. This would allow one to treat extraneous variable influences on the de­
pendent variable, introduced via the experimental units, as randomized and un­
related to the experimental treatments. The effects of randomized extraneous 
variation would then in theory cancel one another in deriving expected mean 
outcomes. 

Now a natural hypothesis to be tested, Fisher (1935) held, was that there is no 
effect from the experimental treatments. This would imply no difference be-
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tween the expected means of any of the experimental treatments. This value re­
flects what you know you have put into the experiment by the process of ran­
domization. You do not know whether there will be an effect or not. Fisher 
called this natural hypothesis the null hypothesis. To those who wondered why 
one did not test the opposite hypothesis, that there is an effect, he argued that is 
not an exact hypothesis, because no specific value for the effect is set forth by 
simply saying there will be an effect. By implication it would seem that for 
Fisher, if one had some specific value for the expected effect, one could use that 
as one's null hypothesis. But in most experimental situations where the re­
searcher has no specific expected effect in mind, and is uncertain whether there 
will be an effect at all, the natural exact hypothesis to test is that there is no ef­
fect because that is what you would expect from randomization alone. 

Fisher (1935) then held that grounds for not believing the null hypothesis 
would consist in experimental results in the form of statistical values so improb­
able and so extreme from expected values according to the hypothesized distri­
bution for the statistic under the presumption of the truth of the null hypothesis 
that to believe these results are consistent with the null hypothesis would strain 
belief. This gives rise to a significance test. He noted that researchers frequently 
regard as "significant" extreme results that under the hypothetical distribution of 
the null hypothesis would be that extreme or more in only 5% of cases. But de­
ciding in this way that a result is significant, implying a lack of support for the 
null hypothesis is not an irreversible decision. "If we use the term rejection for 
our attitude to such a hypothesis," he said, it should be clearly understood that 
no irreversible decision has been taken; that as rational beings, we are prepared 
to be convinced by future evidence that appearances were deceptive, and that in 
fact a very remarkable and exceptional coincidence had taken place" (Fisher 
1959, p. 35). On the other hand, Fisher held that if one does not obtain a signifi­
cant result this does not mean the null hypothesis is necessarily true. As he put it, 
" ... it should be noted that the null hypothesis is never proved or established, 
but is possibly disproved, in the course of the experimentation. Every experi­
ment may be said to exist only in order to give the facts a chance of disproving 
the null hypothesis" (Fisher, 1935, p. 19) . 

In some respects Fisher's views on hypothesis testing anticipated the views of 
Karl Popper (1959/1935), the Viennese philosopher of science who argued that 
science cannot prove hypotheses from evidence but only falsify them. Popper ar­
gued that science may proceed with logic and deductive reasoning only insofar 
as it deduces hypotheses from certain premises and seeks to falsify them (see 
Mulaik and James, 1995). Fisher's approach to hypothesis testing with signifi­
cance tests followed this recommendation, but with the realization that Popper 
overlooked, that even finding a deduced consequence to be false is not sufficient 
to prove a scientific hypothesis to be false. In this respect Fisher even anticipated 
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more recent views in epistemology that all inferences from experience are defea­
sible and reversible with additional evidence. His attitude that there are no final 
decisions or irreversible conclusions reached in science explains his often nega­
tive reactions to other approaches to statistical inference that he perceived 
(sometimes wrongly) to automate the process of reasoning from evidence and 
thereby to force the researcher to abide by some final decision imposed by the 
algorithm. 

The other important point about Fisher's views of significance testing was 
that the significance test does not provide an actual probability for the truth of 
the hypothesis. As he put it: "In general, tests of significance are based on hy­
pothetical probabilities calculated from their null hypothesis. They do not gener­
ally lead to any probability statements about the real world, but to a rational and 
well-defined measure of reluctance to the acceptance of the hypotheses they test" 
(Fisher, 1959, p. 44). In other words, one can imagine what the probability dis­
tribution would be like for a test statistic if the null hypothesis were true. One 
can then imagine in connection with this hypothetical distribution what the 
probability would be of obtaining a deviation from the distribution's mean as 
extreme or more extreme than a certain value. If one selects first a small value 
for this probability and then finds the corresponding value of the test statistic 
that would be this extreme or more with this probability, then this value could 
serve as the critical value of the test statistic for rejecting the null hypothesis. 
The probabilities involved have nothing to do with real-world probabilities. 
They are all probabilities in an argument involving counterfactual or subjunctive 
conditionals (as the logicians would say) as to what sort of things should count 
in a researcher's mind as evidence against a hypothesis. This point is important, 
because a frequent criticism of significance testing is that researchers usually 
believe the probabilities described in connection with a significance test are 
about actual probabilities of making an error when one regards something to be 
significant. What is criticized in these cases is not Fisher's view of hypothesis 
testing, but some researchers' misconceptions about it. 

It is also important to realize that Fisher's view was that " ... a significance 
test of a null hypothesis is only a 'weak' argument. That is, it is applicable only 
in those cases where we have very little knowledge or none at all. For Fisher 
significance testing was the most primitive type of argument in a hierarchy of 
possible statistical analyses and inferences (see Gigerenzer et aI., 1989, chapter 
3)" (Gigerenzer, 1993, p. 314). 

Neyman-Pearson Decision-Theoretic Significance Testing. The other school 
of significance testing grew out of what its authors initially believed was simply 
an extension of Fisher's ideas. Beginning in 1928 Jerzy Neyman, a young Polish 
statistician studying at the University of London, and Egon Pearson, Karl Pear­
son's son, published a series of articles (Neyman & Pearson 1928, 1933) that had 
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a major impact on hypothesis testing in the years afterward (Cowles, 1989; Ken­
dall & Stuart, 1979). In their articles Neyman and Pearson argued that the out­
come of a significance test should be behavioral, accepting or rejecting some 
hypothesis and acting accordingly. Hypotheses, furthermore, are of two kinds, 
simple and composite. Simple hypotheses specify a unique point in the sample 
space of the statistic, which represents the set of all possible values that the sta­
tistic can take. Composite hypotheses specify a region of points of the sample 
space. The hypothesis you are to test has to be a well-defined hypothesis. It may 
be a point hypothesis or a composite hypothesis. To test any hypothesis one first 
has to divide the sample space into two regions. If the test statistic z falls in one 
of these regions, one accepts the hypothesis. If it falls in the other region, one 
rejects the hypothesis. (Acceptance and rejection of the hypothesis are only pro­
visional actions the researcher takes and do not imply final, irreversible deci­
sions nor determinations that the hypothesis is incorrigibly true or false [Kendall 
& Stuart 1979, p. 177].) 

But to get the best critical region of rejection, you first have to specify a 
probability a--determined hypothetically according to the distribution you pre­
sume the test statistic will have if the hypothesis is true-that you will reject the 
hypothesis if the test statistic z falls in the critical region of rejection. To deter­
mine this critical region, you will also need to specify further what alternative 
hypothesis is to be considered. This too can be either a simple or a composite 
hypothesis. Neyman and Pearson in the works cited referred to the initial hy­
pothesis as Ho and the alternative hypothesis as HI. (They did not call Ho the 
"null hypothesis", but because of the "null" subscript on Ho and its correspon­
dence to the null hypothesis of Fisherian significance testing, most statisticians 
continue to call it that. But it is important to realize that "null hypothesis" in this 
context does not mean the hypothesized parameter value is zero. It can be any 
specific value. It is the hypothesis to be "nullified" (Gigerenzer 1993)). Once the 
alternative hypothesis has been specified, one can then seek the best critical re­
gion (BCR) for a test of the hypothesis. The best critical region is that region of 
rejection with size a that also would have the largest possible power of rejecting 
the hypothesis if the alternative hypothesis is true. 

Power was a new concept introduced by Neyman and Pearson. It refers to the 
probability that one would accept the alternative hypothesis if it were true given 
the critical region for rejecting the null hypothesis. Again this is not an actual 
probability that one will accept the alternative hypothesis, but a hypothetical 
probability referred to a hypothetical probability distribution set up under the as­
sumption that the alternative hypothesis is true. Power is related to the probabil­
ity of making one of the two kinds of errors when testing a hypothesis: 
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FIGURE 4.1 Power as probability under alternative hypothesis //] of rejecting H0

1. Type I Error. Rejecting the null hypothesis when it is true.

2. Type II Error. Accepting the null hypothesis when the alternative hypothe­
sis is true.

The conditional probability o f making a Type I error when hypothesis H0 is 
true is given by a  and refers in the case of continuous statistics to the conditional 
probability of the test statistic’s taking a value in the critical region of the statis­
tic calculated according to the sampling distribution of the test statistic under the 
presumption that the hypothesis H0 is true. This is also known as the a priori sig­
nificance level of the test. The value of a  is also regarded by Neyman and Pear­
son as a long-run relative frequency by which you would make a Type I error in 
repeated samples from the same population under the same significance-testing 
setup when H0 is true.

The conditional probability of making a Type II error when the alternative 
hypothesis is true is given by /? and is the hypothetical probability of the test 
statistic’s falling in the region of acceptance derived from the hypothetical sam­
pling distribution of the test statistic under the assumption that the alternative 
hypothesis H x is true.

Power is the conditional probability of accepting the alternative hypothesis 
when it is true. Power is given by 1 -  /?, and refers to the area in the region of re-

Accept Reject

i - p

p a

Distribution under H0 Distribution under Hl
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Distribution under H0 Distribution under Hx

FIGURE 4.2 Power under a two-tailed test.

jection under the hypothetical curve of the distribution of the test statistic con­
sidered as if  the alternative hypothesis is true.

Finding best critical regions for a given a  when both the hypothesis H0 and 
H x are simple hypotheses is relatively straightforward. The situation is illustrated 
in Figure 4.1, where H0 is that the population mean j i  =  jll0 and the alternative 
hypothesis H x is that {I = jux. The test statistic is z  = (x -  j i0) / <7. In this case a 
one-tailed test is appropriate.

On the other hand, when one tests a simple hypothesis against a composite 
hypothesis as in the case where one hypothesizes H0: fi = /u0 against a composite, 
H x:ju* jj,0, finding the region that maximizes power varies with the specific 
value o f the parameter of the composite set chosen to consider. If one searches 
for a unique best critical region which is the best in the sense o f optimizing 
power for all values of the parameter under//,, then one will not find such a re­
gion. But a reasonable compromise is to split the value of a  in half and locate 
the region of rejection in the two tails o f the distribution, that is, to perform a 
two-tailed test. This is illustrated in Figure 4.2.

Neyman and Pearson’s approach to significance testing focused on what af­
fects power and how the researcher could optimize it when testing a hypothesis 
against specific alternatives. They noted that power depends on a , and power 
can be increased by increasing a , or by increasing sample size, or by redefining 
the critical region o f rejection.

Reject Accept Reject

1 - P

a /2a /2

p
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Conflicts Between Fisher and Neyman and Pearson 

Fisher's (1959) rejection of the Neyman-Pearson approach to significance testing 
grew out of his perception that the method prescribed a mechanical, automated 
decision to accept or reject the null hypothesis in a final, irreversible way. 
Neyman and Pearson used language that equated significance testing with testing 
for acceptance in manufacturing. This comparison was not appropriate, Fisher 
held, for significance testing in science. To behave toward a scientific hypothesis 
the way you behave toward acceptance or rejection of manufactured goods 
would take away from the researcher the obligation to use hislher independent 
judgment in making scientific inferences. Acceptance testing involves finite, 
well-defined populations from which samples can be repeatedly drawn. Accep­
tance testing also takes into account cost functions. Finally acceptance testing 
involves making final and irrevocable decisions. One decides irrevocably and fi­
nally to accept or reject a lot of manufactured goods on the basis of a sample of 
them. In science the hypothesized populations have no objective reality but are 
simply the products of a statistician's imagination. There is no well-defined 
population from which repeated samples can be drawn. There are also no well­
defined cost functions. And no decision about a hypothesis is irrevocable or fi­
nal. 

The one-tailed test of a simple hypothesis against a simple alternative also 
leads to paradoxes when an observed value of the statistic falls very far to the 
extreme in the tail opposite the tail where the critical region is located. It seems 
to strain credibility that something is not wrong with the initial hypothesis Ho, 
but the observed value does not fall in a region of rejection. Furthermore, in any 
given application, Ho may be rejected for some other reason than that HI is true. 
Being forced to chose between two alternatives is unrealistic. 

Fisher, it would also seem, regarded a test of a hypothesis to be based on the 
ordinary view of what in experience invalidates a hypothesis about the value of a 
parameter in cases where random error of measurement is absent and one has 
perfect precision of measurement: the observed value differs from the hypothe­
sized value. This difference can either be positive or negative. Furthermore, the 
larger the difference in absolute magnitude, the more incredible the hypothesis. 
That random error is added to a true value in obtaining an observed value only 
changes things insofar as one then has uncertainty as to the true value of the ob­
served parameter. One's uncertainty is less as the observed value becomes more 
extreme in differing from the hypothesized value, and values that or more ex­
treme when the hypothesized value is correct have quite low probability. This 
reasoning implies that a two-tailed test of a point hypothesis is the only appro­
priate test to apply in theoretical scientific work. It corresponds to a test of a hy­
pothesis of the form Ho:B = Bo against the composite aiternativeHI:B '# Bo. Thus 
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Fisher could regard Neyman and Pearson's focus on alternate hypotheses and 
power, to determine an optimal critical region, as irrelevant. 

Perhaps Fisher's greatest error was that he refused to consider the import of 
other uses for the concept of power than determining a region of rejection, even 
though he had recognized the rudiments of such a concept in his discussion of 
the effects of sample size on the sensitivity of a test of a person's ability to detect 
how a batch of tea has been formed when illustrating significance testing 
(Fisher, 1935, pp. 17-18). Power analysis, after all, is simply an extension of the 
conditional reasoning implicit in the reasoning used to choose a significance 
level for a significance test, which Fisher indulged in every time he considered a 
significance test. If one uses subjunctive reasoning to establish a critical region 
of acceptance of the null hypothesis with respect to a probability distribution of 
the test statistic under the assumption that the null hypothesis is true, one uses 
counterfactual reasoning to consider the probability distribution of the test sta­
tistic under the assumption that the true value of the parameter is some other 
value. Power is the conditional probability of rejecting the null hypothesis given 
that the population parameter is some specific value other than the value under 
the null hypothesis. Fisher seems to have been prejudiced against considering the 
concept of power because it was framed in terms of a decision to be made be­
tween two hypotheses, and he was only concerned with evaluating a given sta­
tistical hypothesis in terms of the support given to it by data. But the value of the 
parameter considered counterfactually when evaluating power, need not be a 
"hypothesis" one is forced to consider along with the value of the null hypothe­
sis and to accept when the original hypothesis is not supported by the data. The 
alternative value for the parameter merely represents a possible reality against 
which one evaluates the capacity of the significance test to detect the difference 
between that value and the value of the null hypothesis. When one obtains data 
so different from the hypothesized value and improbable under the distribution 
given the hypothesized value, it may be for any of an infinite number of possible 
values for the true value of the parameter. One is not thereby able to infer what 
specific value this is. All one can infer is that the hypothesis is likely not true. 
Power concerns the resolving power of a significance test. So the concept of 
power can be incorporated into the framework of Fisherian significance testing, 
while one rejects the paradigm of choosing between alternative point hypotheses. 

We have set forth this discussion of these two schools of significance testing 
so that the reader can compare what is asserted by the critics of significance 
testing with the positions of those who developed these methods. 
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