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Let us first restate the usual assumptions and conclusions for linear least 
squares. Gauss showed that if we have n observations y1 , yz , . * + , un and if 
an appropriate model for the uth observation is 

yu = 0, + A21, + 82%” + * * * + P&-h” + cl (1) 

where the ,8’s are unknown parameters, the x’s known constants, and the t’s 
random variables uncorrelated and having the same variance and zero expec- 
tation, then estimates b, , b, , . . . , b, of the p’s obtained by minimizing 

c (Y - 9)” with jj = box0 + &xl + bzxz + . . . + bkxk are unbiassed and have 
smallest variance among all linear unbiassed estimates. 

The method of least squares is used in the analysis of data from planned 
experiments and also in the analysis of data from unplanned happenings. The 
word “regression” is most often used to describe analysis of unplanned data. 
It is the tacit assumption that the requirements for the validity of least squares 
analysis are satisfied for unplanned data that produces a great deal of trouble. 
Whether the data are planned or unplanned the quantity E, which is usually 
quickly dismissed as a random variable having the very specific properties 
mentioned above, really describes the effect of a large number of “latent” 
variables x~+~ , x~+~ , . . . , x, which we know nothing about. If we suppose 
that it is enough to consider the linear effects of these latent variables (which 
would often be realistic for small variations in x,++~ , . . . , x,) we should have 

e = pk+lxk+l + fLk+2xk+2 + *-* + /Lx, (2) 

Thus in matrix notation we can write for the column of n observations y 

J = x41 + xzea (3) 

where X1 has for elements the n values of the k regression variables and X, 
has for elements the n unknown values of the m - k latent* variables. The 
situation is illustrated in Figure 1 in which the variables xkCl . e e , x, are “hidden 
behind the wall.” In practice various kinds of linkages would occur between the 
variables indicated by lines. These linkages might indicate causative relations; 
for instance, an increase in temperature might necessarily produce an increase 

Received March 1966. 
t A talk prepared for the tenth conference on the Design of Experiments in Army Research, 

Development and Testing. Washington, D. C. November 1964. 
* More dramatically described as “lurking” variables. 
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X 
In Latent variables 

St2 

/////////////////////////////,///////////// 

Regression 
variables 

FVXJRE 1 Latent variables and regression variables. 

in pressure; or merely relationships due to correlation. Thus, an operator in 
charge of a process might as a standard operating procedure always reduce the 
flow of one of the reactants if a certain temperature was observed to be high. 

We must now ask the question, “What do we wish to do with the fitted 
regression equation?” We might 

(i) desire to predict y in the future from passive observation of x1 - . - xL . 
We assume that the causal and correlative system which operated during 
the data taking has not been interferred with and also operates during 
the period when predictions are being made. 

(ii) to discover how deliberate changes in x, - - . xb will effect ?/ with the 
intention of actually modifying the system to get a better value for y. 

The position is quite different depending upon whether prediction from 
passive observation or improvement from active interference is in mind. This 
is made clear by the following example. 

latent variable 

I/////// 
regression variable 

7 

x1 
Pressure 

FIGURE 2 Relations between yield, impurity, and pressure. 
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USE AND ABUSE OF REGRESSION 627 

Suppose that in a chemical process it has been found that undesirable frothing 
can be reduced by increasing pressure. The standard operating procedure is, 
therefore, to increase pressure whenever frothing appears. Suppose that the 
frothing in fact occurs because of an unsuspected impurity x2 (which is, of 
course, not measured because it is unknown). Suppose finally that a high value 
of impurity xz not only produces frothing but also lowers yield but that yield 
is unaffected directly by a change in pressure. 

If (with now x and y representing deviations from respective averages) 
a “regression of yield on pressure” $ = &x1 is fitted by the usual least squares 
procedure we may well find a highly significant coefficient 5, . 

This well known phenomenon of “nonsense” correlation exhibited in this 
example is worth studying further. Suppose there is a relationship y = fllxl + f12x2 

connecting y exactly with the two variables x1 and x2 (with, in the present 
instance, p1 = 0). Now, of course, the actual levels of x2 are unknown but 
suppose that & = ax1 , is the formal regression of x2 on x1 which would be 
obtained if values of xz were available. Then it is readily shown that 

bl = A + aA (4) 

In this expression 8, is zero and we appear to obtain a real effect only because 
of the influence of the bias term (a&). On the other hand using (4) we see that 
our fitted equation 9 = &x1 which ignored x2 can be written $ = fllxl + &ax1 
or as 

9 = PA + 82~1 (5) 

This equation which replaces xz by & is the best estimate of y we can expect 
to get from observing x1 only. Provided the system continues to be run in the 
same fashion as when the data were recorded we can use pressure to indicate 
the level of y. Of course, if we had measured x2 a more accurate (indeed in the 
present instance an exact) value of y would be deducible, but, lacking knowledge 
of the importance of x2 , we might nevertheless appropriately use the simple 
regression equation 6 = &x1 . 

On the other hand the value of b, will be utterly misleading if interpreted 
as the effect on the variable y of a unit change in x1 . If we hope to increase 
yield by reducing pressure we will be disappointed. 

A similar argument applies for any number of variables. The true model is 

9 = &LA + xzea (f-5) 
By including only the variables X, in the regression equation our prediction 
equation for y becomes 

9 = X,b, = X,(X:X,)-‘X;y (7) 

= wGQ-‘x:(xl@l + X&) (8) 
i.e. 

9 = Xlljl + %e* (9) 
where ii, = X,A and A = (X:X,)-‘X:X, is the k + 1 X m - k matrix 
of regression coefficients of the latent variables on the regression variables. 
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628 GEORGE E. P. BOX 

Again we see that so far as the passive prediction of 9 is concerned our simple 
regression onto the known variables X, in effect replaces the unknown X, by X, . 

On the other hand the regression coefficients b, = 0, + A@, represent combi- 
nations of effects due to regression variables and latent variables and as before 
it is impossible to draw any valid conclusions as to how interference with the 
levels of the regression variables will affect the system. 

In a designed experiment, we are in quite a different case. It was, of course, 
to overcome such difficulties as those described above that Fisher introduced 
the idea of designed experiments and in particular of randomization. When 
the levels of the regression variables are chosen in some deliberately random 
manner it is impossible for the levels of a regression variable to be affected 
by the level of a latent variable. The only cause of the particular values which 
the regression variables have within the design framework is the throw of an 
unbiassed die or other random process. Fisher makes it possible to analyze 
the data as if Gaussian assumptions were true by making X, a random variable. 
The regression variables can, of course, still affect the latent variables and 
these may in turn effect y. Provided, however, we apply our results to the 
same system for which we obtained our data this will cause no problem. It 
will be genuinely true that apart from experimental error manipulation of 
regression variables will produce the predicted change in y even though it 
does it via some latent variable. 

The basic difficulty mentioned above is by no means the only one that faces 
us in the analysis of unplanned data. In the operation of an industrial process 
past experience often shows that certain variables are of major importance. 
In order to control fluctuations in the process, therefore, care is taken to hold pre- 
cisely these variables very close to fixed values. As the “statistical significance” 
of any variable is greatly affected by the range it covers there is a strong 
probability, therefore, that the most important variables will be dubbed “not 
significant” by a standard regression analysis. A further difficulty is that with 
unplanned data regression variables will frequently be highly correlated only 
because of operating policy. The operator is told to reduce x2 whenever x1 
becomes high. With such data even if difficulties from latent variables could 
be ignored it may be almost impossible to discover whether changes in y are 
associated with x1 , with x2 , or with both. In designed experiments, of course, 
one normally arranges that x1 and x2 are uncorrelated by using an orthogonal 
design. 

In summary the regression analysis of unplanned data is a technique which 
must be used with great care. However, 

(i) It may provide a useful prediction of y in a fixed system being passively 
observed even when latent variables of some importance exist. For 
this application computer programs which progressively add or drop 
variables make some sense. 

(ii) It is one of a number of tools sometimes useful in indicating variables 
which ought to be included in some latter planned experiment (in which 
randomization will, of course, be included as an integral part of the 
design). It ought never to be used to decide which variable should be 
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USE AND ABUSE OF REGRESSION 629 

excluded from further investigation for reasons which are obvious from 
the above. 

To find out what happens to a system when you interfere with it you have 
to interfere with it (not just passively observe it). 
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