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Preface

Statistics is the science of data collection, analysis, and interpretation. It plays
a pivotal role in many disciplines, including environmental, health, economic,
social, physical, and information sciences. Statistics not only helps advance
scientific discovery in many fields but also influences the development of hu-
manity and society. In an increasingly data-driven and information-rich world,
statistics is ever more critical in formulating scientific problems in quantitative
terms, accounting for and communicating uncertainty, analyzing and learning
from data, transforming numbers into knowledge and policy, and navigating
the challenges for making data-driven decisions. The emergence of data science
is also presenting statisticians with extraordinary opportunities for increasing
the impact of the field in the real world.

This volume was commissioned in 2013 by the Committee of Presidents of
Statistical Societies (COPSS) to celebrate its 50th anniversary and the Inter-
national Year of Statistics. COPSS consists of five charter member societies:
the American Statistical Association (ASA), the Institute of Mathematical
Statistics (IMS), the Statistical Society of Canada (SSC), and the Eastern
and Western North American Regions of the International Biometric Society
(ENAR and WNAR). COPSS is best known for sponsoring prestigious awards
given each year at the Joint Statistical Meetings, the largest annual gathering
of statisticians in North America. Through the contributions of a distinguished
group of statisticians, this volume aims to showcase the breadth and vibrancy
of statistics, to describe current challenges and new opportunities, to highlight
the exciting future of statistical science, and to provide guidance for future
generations of statisticians.

The 50 contributors to this volume are all past winners of at least one of
the awards sponsored by COPSS: the R.A. Fisher Lectureship, the Presidents’
Award, the George W. Snedecor Award, the Elizabeth L. Scott Award, and
the F.N. David Award. Established in 1964, the Fisher Lectureship honors
both the contributions of Sir Ronald A. Fisher and a present-day statistician
for their advancement of statistical theory and applications. The COPSS Pres-
idents’ Award, like the Fields Medal in mathematics or the John Bates Clark
Medal in economics, is an early career award. It was created in 1979 to honor
a statistician for outstanding contributions to statistics. The G.W. Snedecor
Award, founded in 1976 and bestowed biennially, recognizes instrumental the-
oretical work in biometry. The E.L. Scott Award and F.N. David Award are
also given biennially to commend efforts in promoting the role of women in
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statistics and to female statisticians who are leading exemplary careers; these
awards were set up in 1992 and 2001, respectively.

This volume is not only about statistics and science, but also about people
and their passion for discovery. It contains expository articles by distinguished
authors on a broad spectrum of topics of interest in statistical education, re-
search, and applications. Many of these articles are accessible not only to pro-
fessional statisticians and graduate students, but also to undergraduates in-
terested in pursuing statistics as a career, and to all those who use statistics in
solving real-world problems. Topics include reminiscences and personal reflec-
tions on statistical careers, perspectives on the field and profession, thoughts
on the discipline and the future of statistical science, as well as advice for
young statisticians. A consistent theme of all the articles is the passion for
statistics enthusiastically shared by the authors. Their success stories inspire,
give a sense of statistics as a discipline, and provide a taste of the exhilaration
of discovery, success, and professional accomplishment.

This volume has five parts. In Part I, Ingram Olkin gives a brief overview
of the 50-year history of COPSS. Part II consists of 11 articles by authors who
reflect on their own careers (Ingram Olkin, Herman Chernoff, Peter Bickel),
share the wisdom they gained (Dennis Cook, Kathryn Roeder) and the lessons
they learned (David Brillinger), describe their journeys into statistics and
biostatistics (Juliet Popper Schaffer, Donna Brogan), and trace their path to
success (Bruce Lindsay, Jeff Rosenthal). Mary Gray also gives an account of
her lifetime efforts to promote equity.

Part III comprises nine articles devoted to the impact of statistical science
on society (Steve Fienberg), statistical education (Iain Johnstone), the role
of statisticians in the interplay between statistics and science (Rafael Irizarry
and Nilanjan Chatterjee), equity and diversity in statistics (Mary Thompson,
Nancy Reid, and Louise Ryan), and the challenges of statistical science as we
enter the era of big data (Peter Hall and Xihong Lin).

Part IV consists of 24 articles, in which authors provide insight on past de-
velopments, current challenges, and future opportunities in statistical science.
A broad spectrum of issues is addressed, including the foundations and princi-
ples of statistical inference (Don Fraser, Jim Berger, Art Dempster), nonpara-
metric statistics (David Dunson), model fitting (Andrew Gelman), time series
analysis (Ted Anderson), non-asymptotic probability and statistics (Pascal
Massart), symbolic data analysis (Lynne Billard), statistics in medicine and
public health (Norman Breslow, Nancy Flournoy, Ross Prentice, Nan Laird,
Alice Whittemore), environmental statistics (Noel Cressie), health care and
finance (Tze Leung Lai), statistical genetics and genomics (Elizabeth Thomp-
son, Michael Newton), survey sampling (Rod Little), targeted learning (Mark
van der Laan), statistical techniques for big data analysis, machine learning,
and statistical learning (Jianqing Fan, Rob Tibshirani, Grace Wahba, Larry
Wasserman). This part concludes with “a trio of inference problems that could
win you a Nobel Prize in statistics” offered by Xiao-Li Meng.
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Part V comprises seven articles, in which six senior statisticians share their
experience and provide career advice. Jeff Wu talks about inspiration, aspira-
tion, and ambition as sources of motivation; Ray Carroll and Marie Davidian
give tips for success in research and publishing related to the choice of research
topics and collaborators, familiarity with the publication process, and effective
communication; and Terry Speed speaks of the necessity to follow one’s own
path and to be enthusiastic. Don Rubin proposed two possible topics: learning
from failure and learning from mentors. As they seemed equally attractive, we
asked him to do both. The book closes with Brad Efron’s “thirteen rules for
giving a really bad talk.”

We are grateful to COPSS and its five charter member societies for sup-
porting this book project. Our gratitude extends to Bhramar Mukherjee, for-
mer secretary and treasurer of COPSS; and to Jane Pendergast and Maura
Stokes, current chair and secretary/treasurer of COPSS for their efforts in
support of this book. For their help in planning, we are also indebted to the
members of COPSS’ 50th anniversary celebration planning committee, Joel
Greenhouse, John Kittelson, Christian Léger, Xihong Lin, Bob Rodriguez, and
Jeff Wu.

Additional funding for this book was provided by the International Chi-
nese Statistical Society, the International Indian Statistical Association, and
the Korean International Statistical Society. We thank them for their spon-
sorship and further acknowledge the substantial in-kind support provided by
the Institut des sciences mathématiques du Québec.

Last but not least, we would like to express our deep appreciation to
Heidi Sestrich from Carnegie Mellon University for her technical assistance,
dedication, and effort in compiling this volume. Thanks also to Taylor and
Francis, and especially senior editor Rob Calver, for their help and support.
With the publisher’s authorization, this book’s content is freely available at
www.copss.org so that it can benefit as many people as possible.

We hope that this volume will inspire you and help you develop the same
passion for statistics that we share with the authors. Happy reading!
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A brief history of the Committee of
Presidents of Statistical Societies (COPSS)

Ingram Olkin

Department of Statistics
Stanford University, Stanford, CA

Shortly after becoming Chair of COPSS in 1992, I collated some of the
organization’s archival history. At that time there was already a 1972
document prepared by Walter T. Federer who was Chair starting in
1965. The following is a composite of Federer’s history coupled with
my update in 1994, together with a review of recent activities.

1.1 Introduction

In 1958–59, the American Statistical Association (ASA), the Biometric So-
ciety (ENAR), and the Institute of Mathematical Statistics (IMS) initiated
discussions to study relationships among statistical societies. Each of the three
organizations often appointed a committee to perform similar or even identi-
cal duties, and communication among these and other groups was not always
what was desired. Thus, in order to eliminate duplication of work, to improve
communication among statistical societies, and to strengthen the scientific
voice of statistics, the ASA, under the leadership of Rensis Likert, Morris H.
Hansen, and Donald C. Riley, appointed a Committee to Study Relationships
Among Statistical Societies (CONTRASTS). This committee was chaired by
Frederick Mosteller. A series of campus discussions was initiated by members
of CONTRASTS in order to obtain a broad base of opinion for a possible
organization of statistical societies.

A grant of $9,000 was obtained from the Rockefeller Foundation by ASA
to finance a series of discussions on the organizational needs of North Amer-
ican statisticians. Subsequently, an inter-society meeting to discuss relation-
ships among statistical societies was held from Friday evening of Septem-
ber 16 through Sunday morning of September 18, 1960, at the Sterling Forest
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Onchiota Conference Center in Tuxedo, New York. An attempt was made
at inclusiveness, and 23 cognate societies sent representatives in addition to
Wallace O. Fenn of the American Institute of Biological Sciences, G. Baley
Price of the Conference Board of Mathematical Sciences, and May Robinson
of the Brookings Institute. See The American Statistician, 1960, vol. 14, no. 4,
pp. 2–3, for a complete listing of the representatives.

Mr. Fenn described the origin of the American Institute of Biological
Sciences (AIBS) and pointed out their accomplishments after organization.
Mr. Price discussed the background and importance of the Conference Board
of Mathematical Sciences. The main motion for future action that was passed
was to the effect that a federation of societies concerned with statistics should
be organized to consider some or all of the following items: (1) publicity;
(2) publication; (3) bulletin; (4) newsletter; (5) subscription exchange; (6) ab-
stracts; (7) translations; (8) directors; (9) national roster; (10) recruitment;
(11) symposia; (12) visiting lecturer program and summer institutes; (13) joint
studies; (14) films and TV; (15) Washington office; (16) nominations for na-
tional committees; (17) fellowships at national levels; (18) cooperative appren-
tice training program; (19) international cooperation. It is satisfying to note
that many of these activities came to fruition. A committee was appointed to
draft a proposal for a federation of statistical societies by January 1, 1961.

1.1.1 The birth of COPSS

It was not until December 9, 1961, that a meeting was held in New York to
discuss the proposed federation and the roles of ASA, ENAR–WNAR, and
IMS in such an organization. A more formal meeting of the presidents, sec-
retaries, and other members of the ASA, IMS, and the Biometric Society
(ENAR) was held at the Annual Statistics Meetings in December of 1961.
At this meeting the Committee of Presidents of Statistical Societies (COPSS)
was essentially born. It was agreed that the president, the secretary, and one
society-designated officer of ASA and IMS, the president and secretary of
ENAR, the president of WNAR, and one member-at-large would form the
COPSS Committee (Amstat News, October 1962, p. 1). The Executive Com-
mittee of COPSS was to be composed of the presidents of ASA, ENAR, and
IMS and the secretary of ASA, with each president to serve as Chairman of
the Committee for four months of the year.

Philip Hauser, then President of the ASA, reported on the deliberation of
COPSS at the Annual Meeting. Six joint committees were established with
representatives from ASA, IMS, ENAR, and WNAR. The charges are de-
scribed in his report as follows.

1. The Joint Committee on Professional Standards is charged with consid-
ering the problems relating to standards for professional statisticians and
with recommending means to maintain such standards.
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2. The Joint Committee on the Career Brochure will be charged generally
with considerations relating to statistics as a career. A specific continuing
task will be the preparation and revision of a Career Brochure.

3. The Joint Committee on Educational Opportunities will be charged with
the preparation of a brochure designed to inform students and others inter-
ested in statistics as a career of the appropriate available training facilities,
both graduate and undergraduate.

4. The Joint Committee for Liaison with the American Association for the
Advancement of Science (AAAS) will represent the statistics profession in
a new section within the AAAS.

5. The Joint Committee on Organizational Changes is charged with the study
of constitutional changes among the societies and with recommending
those which may facilitate more effective and efficient collaboration be-
tween them and between members of the profession generally.

6. The Joint Committee on News and Notes has the task of working out
arrangements for The American Statistician to carry news and notes for
the Institute of Mathematical Statistics and the Biometric Society as well
as for ASA.

As the report continued, creation of these six joint committees was to be
hailed as a major step forward toward more effective collaboration between
statistical societies in pursuing common ends.

The joint publication of a directory of members was part of the initial
thrust for avoiding duplication, and for a cooperative venture on the part of
statistical societies. However, the needs of the member societies did not always
coincide, and directories have been published jointly in 1973, 1978, 1987, and
1991, and separately by IMS in 1981. In 1996 it was generally agreed to plan
for a joint directory to appear no less frequently than every three years. With
the advent of computer technology, an up-to-date member directory became
available at any time. However, the joint directory was concrete evidence of
the benefits of collaboration between the statistical societies.

A meeting of the full COPSS Committee was held on Monday, Septem-
ber 10, 1962, to discuss a memorandum prepared by H.L. Lucas on (7) COPSS
and its activities; (8) membership of COPSS Committees; (9) charges to
COPSS Committees; and (10) Committee reports. The revised version of this
report became the official document of COPSS. In addition to discussing the
topics listed, COPSS established the following committees: (11) Standardiza-
tion of Symbols and Notations; and (12) Memorial Session in Honor of Sir
Ronald A. Fisher, who had died in Adelaide, Australia, on July 29.

The COPSS Committee on Organizational Changes and COPSS Exec-
utive Committee held a meeting on Friday, March 1, 1963, to discuss a
number of items dealing with cooperative arrangements among societies in
COPSS, including certain possible structural changes within the societies.
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The items discussed were: (1) a national committee on statistics; (2) financial
needs of COPSS; (3) liaison with related societies; (4) improvement of inter-
society arrangements with respect to The American Statistician; (5) Mathe-
matical Statistics Section of ASA; (6) implications of reorganization to IMS;
(7) progress in coordination of ENAR and WNAR; (8) recommendations on
Sections of ASA, other societies affiliated with ASA, and for improvement in
structure and activities of COPSS; and (9) joint billings of ASA, ENAR, IMS,
and WNAR.

Two meetings of COPSS on August 26, 1963, and September 6, 1963,
were held to consider a national committee on statistics, action on a report
on availability of new statisticians, review of reports from COPSS Commit-
tees, a committee on liaison with related societies, the problem of recruiting
census enumerators, and a proposal for publishing statistical tables. The 13th
COPSS Committee, Liaison with Statistical Societies, was appointed during
the summer of 1963.

At their meeting on Thursday, January 16, 1964, the COPSS Executive
Committee considered the distribution of the new edition of Careers in Statis-
tics, a national committee on statistics, recommendations of the Committee on
Standardization of Symbols and Notation, suggestions regarding the Liaison
Committee, availability of statisticians, and other items.

At the meeting of COPSS held on Tuesday, December 29, 1964, the
member-at-large, Walter T. Federer, was elected as Chairman and Executive
Secretary of COPSS for a three-year term, 1965–67. Federer was subsequently
reappointed for a second three-year term, 1968–70, a one-year term in 1971,
and a second one-year term in 1972. After this change the Executive Commit-
tee no longer met, so the ASA and IMS both designated the President-Elect
as the other officer on COPSS, and some committees were added and others
disbanded.

1.2 COPSS activities in the early years

It was decided that the minutes of COPSS meetings were of sufficient general
interest to be published in The American Statistician. Meeting minutes are
found in the following issues: February 1964, p. 2 (meeting of January 16,
1964); April 1969, p. 37 (meeting of August 21, 1968); June 1970, p. 2 (meeting
of August 21, 1969); April 1972, p. 38 (meeting of December 27, 1970); April
1972, p. 40 (meeting of August 23, 1971). In addition, the minutes of the
Onchiota Conference Center meeting appear on p. 2 of the October 1960 issue
(see also p. 41).

Membership lists of COPSS Committees were published in Amstat News
as follows: February 1963, p. 31; April 1965, p. 61; April 1966, p. 44; April
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1967, p. 48; April 1968, p. 40; February 1969, p. 39; April 1970, p. 48; April
1971, p. 47; April 1972, p. 55.

Other Amstat News citations relating to work on COPSS Committees are
the “Brochure on Statistics as a Career” (April 1962, p. 4), the “AAAS Elects
Statisticians as Vice Presidents” (April 1962, p. 4), “Statistics Section (U) of
the AAAS, ” by M.B. Ullman (February 1964, p. 9), and “Recommended Stan-
dards for Statistical Symbols and Notation,” by M. Halperin, H.O. Hartley
(Chairman), and P.G. Hoel (June 1965, p. 12).

The Academic Programs Committee was most beneficial, especially
through the work of Franklin Graybill in several publications of the Com-
mittee on the Undergraduate Program in Mathematics (CUPM) relating to
statistics, and of Paul Minton in preparing a list for Amstat News (Octo-
ber 1970, December 1971) of US and Canadian schools that offer degrees in
statistics. The work of the Bernard Greenberg committee on preparing the
“Careers in Statistics” brochure was particularly commendable as evidenced
by the fact that several hundred thousand copies of the brochure were dis-
tributed. The work of other Committees as well helped COPSS to achieve its
goals. To further their efforts, it was suggested that the committee members
be placed on a rotating basis of three-year terms whenever possible, that cer-
tain members be considered ex-officio members of the committees, that the
Committee for Liaison with Other Statistical Societies be studied to find more
effective means of communication between societies, and that the Executive
Committee of COPSS consider holding additional meetings to consider ways
of strengthening statistics in the scientific community and nationally.

In 1965 the Conference Board of the Mathematical Sciences (CBMS) began
conducting a survey of the state of undergraduate mathematical and statistical
sciences in the nation. This survey is conducted every five years and ten full
reports have been issued, the latest being in 2010. With its statistical expertise,
COPSS participated in the 1990 and 1995 surveys.

COPSS was represented at meetings of the Conference Board of Mathemat-
ical Sciences, and this served to bring concerns of the statistical community
to the attention of the cognate mathematics societies.

A chronic concern related to the annual meetings of the statistical sci-
ences. For many years the IMS alternated meeting with the ASA in one year
and with the American Mathematical Association and Mathematical Associ-
ation of America in another year. Somehow schedules did not always mesh
geographically. This led to a considerable amount of negotiation. At one point
having Joint Statistical Meetings (JSM) with all societies included solved this
problem.

In the early days of COPSS the position of Chair rotated among the Soci-
eties. Later a Chair and Secretary/Treasurer were chosen by the chairs of the
member societies. These are listed in Table 1.1.
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TABLE 1.1
List of COPSS Chairs and Secretary/Treasurers.

Period Chair Secretary/Treasurer
1994–96 Ingram Olkin Lisa Weissfeld
1997–00 Marvin Zelen Vickie Hertzberg
2001–03 Sallie Keller Aparna Huzurbazar
2004–06 Linda Young Karen Bandeen-Roche
2007–09 Jessica Utts Madhuri Mulekar
2010–12 Xihong Lin Bhramar Mukherjee
2013–15 Jane Pendergast Maura Stokes

1.3 COPSS activities in recent times

From the beginning of the 1990s, COPSS has been an established organization
with a host of activities. The main program is described below, along with a
number of notable projects.

The joint “Careers” brochure was revised in 1991 and again in 1993, and
was mailed to over 100,000 individuals, schools, and institutions. It has been
subsequently revised by a committee consisting of Donald Bentley (Chair),
Judith O’Fallon (ASA), Jeffrey Witner (IMS), Keith Soyer (ENAR), Kevin
Cain (WNAR), and Cyntha Struthers representing the Statistical Society of
Canada (SSC). The latter society joined COPSS as a member in 1981.

A task force was formed to recommend a revision of the 1991 Mathematics
Subject Classification in Mathematical Reviews (MR). A committee (David
Aldous, Wayne Fuller, Robb Muirhead, Ingram Olkin, Emanuel Parzen, Bruce
Trumbo) met at the University of Michigan with Executive Editor Ronald
Babbit and also with editors of the Zentralblatt für Mathematik.

In 2011 the US Centers for Medicare and Medicaid Services (CMS) asked
COPSS to prepare a white paper on “Statistical Issues on Assessing Hospital
Performance.” Then Chair, Xihong Lin formed a committee consisting of Ar-
lene Ash, Stephen Fienberg, Thomas Louis, Sharon-Lise Normand, Thérèse
Stukel, and Jessica Utts to undertake this task. The report was to provide
evaluation and guidance on statistical approaches used to estimate hospital
performance metrics, with specific attention to statistical issues identified by
the CMS and stakeholders (hospitals, consumers, and insurers). Issues related
to modeling hospital quality based on outcomes using hierarchical generalized
linear models. The committee prepared a very thoughtful and comprehensive
report, which was submitted to CMS on November 30, 2011, and was posted
on the CMS website.
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1.3.1 The Visiting Lecturer Program in Statistics

The Visiting Lecturer Program (VLP) in Statistics was a major undertaking
by COPSS. At the Annual Meeting of the IMS held at Stanford University in
August 1960, discussion in the Council of the Institute, program presentations,
and general comment forcibly re-emphasized the need to attract many more
competent young people to professional careers in statistics. Governmental,
educational, and industrial requirements for trained statisticians were not be-
ing met, and new positions were being created at a faster rate than the output
of new statisticians could address. The difficulty was compounded by a paucity
of information about careers in statistics, by the loss of instructional personnel
to higher-paying, non-academic employment, and by competition from other
sciences for students with mathematical skills. A proposal for a program of
visiting scientists in statistics covering the years 1962–67 was drawn up and
presented to the National Science Foundation. The program was funded in
1962 by means of a three-year NSF grant to set up the Visiting Lecturer
Program in Statistics for 1963–64 and 1964–65 under the Chairmanship of
Jack C. Kiefer. The VLP was administered by the IMS but became a COPSS
Committee because of the nature of its activities.

The original rationale for the VLP was described as follows.

“Statistics is a very broad and exciting field of work. The main
purpose of this program is to convey this excitement to students and
others who may be interested. Specifically, we hope that this program
will:
1. Provide information on the nature of modern statistics.
2. Illustrate the importance of statistics in all fields of scientific en-

deavor, particularly those involving experimental research, and
to encourage instruction in statistics to students in all academic
areas and at all levels.

3. Create an awareness of the opportunities for careers in statistics
for students with high quantitative and problem-solving abilities
and to encourage them to seek advanced training in statistics.

4. Provide information and advice to university and college faculties
and students on the present availability of advanced training in
statistics.

5. Encourage the development of new courses and programs in
statistics.”

Over the years the objectives changed somewhat, and by 1995 the Program
had five similar main objectives: (1) to provide education and information on
the nature and scope of modern statistics and to correct misconceptions held
in regard to the science; (2) to establish and emphasize the role that statistics
plays in research and practice in all fields of scientific endeavor, particularly
those involving experimental research, and to encourage instruction in statis-
tical theory and application to students in all academic areas; (3) to create an
awareness of the opportunities for careers in statistics among young men and
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women of high potential mathematical ability and to encourage them to seek
advanced training in statistics; (4) to provide information and advice to stu-
dents, student counselors, and university and college faculties on the present
availability of advanced training in statistics; (5) to encourage and stimulate
new programs in statistics both to supplement programs in other curricula
and to develop the further training of statisticians.

The 1963–64 VLP was highly successful. There were about 100 requests
for lectures and over 70 visits were made by 31 lecturers. Almost every school
which was assigned a speaker received the first of its three choices. Lectur-
ers were urged to give two talks, one at a technical level and one on statis-
tics as a career. The program continued into the 1990s. A 1991–93 report
by then-Chair Lynne Billard noted that in the two-year period there were
over 40 visits. These were mainly to universities in which there was no statis-
tics department. Examples are Allegheny College, Carson Newman College,
Bucknell University, Furman University, Moorhead State University, Memphis
State University, University of Puerto Rico, and Wabash University, to name
but a few. In general the program was not designed for universities with an
active statistics department. The chairs of the VLP are listed in Table 1.2.

TABLE 1.2
List of Chairs of the Visiting Lecturer Program (VLP).

Period Chair
1962–63 Jack C. Kiefer
1964–65 W. Jackson Hall
1966–67 Shanti S. Gupta
1970–71 Don B. Owen
1974–75 Herbert T. David
1984–86 Jon Kettenring
1987–89 Fred Leysieffer
1990–94 Lynne Billard

For a list of the lecturers and number of their visits, see The American
Statistician: 1964, no. 4, p. 6; 1965, no. 4, p. 5; 1966, no 4, p. 12; 1967, no. 4,
p. 8; 1968, no. 4, p. 3; 1970, no. 5, p. 2; 1971, no. 4, p. 2.

1.4 Awards

COPSS initiated a number of awards which have become prestigious hallmarks
of achievement. These are the Presidents’ Award, the R.A. Fisher Lectureship,
the George W. Snedecor Award, the Elizabeth L. Scott Award, and the Flo-
rence Nightingale David Award. The COPSS Awards Ceremony usually takes
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place on Wednesdays of the Joint Statistical Meetings. The Presidents’ Award,
the Snedecor or Scott Award, and the David Award are announced first, and
are followed by the Fisher Lecture. All awards now include a plaque and a
cash honorarium of $1,000.

The George W. Snedecor and Elizabeth L. Scott Awards receive support
from an endowment fund. In the early days of these awards, financing was
in a precarious state. This led to a solicitation for funds in August 1995 that
raised $12,100. Subsequently a fiscal policy was established for the support of
awards.

This history of COPSS provides us with an opportunity to thank the fol-
lowing donors for their assistance at that time: Abbott Laboratories ($500);
Biopharmaceutical Research Consultants ($100); Bristol-Myers Squibb Phar-
maceutical Research Institute ($500); Chapman & Hall ($1,000); COPSS
($4,250); Duxbury Press ($500); Institute of Mathematical Statistics ($500);
Institute for Social Research Survey Research Center, University of Michigan
($500); Iowa State University ($750); Procter & Gamble ($500); Springer-
Verlag ($500); Section on Statistical Graphics ($500); SYSTAT ($500); Trilogy
Consulting Corporation ($500); John Wiley and Sons ($1,000).

1.4.1 Presidents’ Award

COPSS sponsors the Presidents’ Award and presents it to a young member of
the statistical community in recognition of an outstanding contribution to the
profession of statistics. The Presidents’ Award was established in 1976 and
is jointly sponsored by the American Statistical Association, the Institute of
Mathematical Statistics, the Biometric Society ENAR, the Biometric Society
WNAR, and the Statistical Society of Canada operating through COPSS. (In
1994 the Biometric Society became the International Biometric Society.) The
first award was given in 1979, and it is presented annually.

According to the award description, “The recipient of the Presidents’
Award shall be a member of at least one of the participating societies. The
Presidents’ Award is granted to an individual who has not yet reached his or
her 40th birthday at the time of the award’s presentation. The candidate may
be chosen for a single contribution of extraordinary merit, or an outstanding
aggregate of contributions, to the profession of statistics.”

The Presidents’ Award Committee consists of seven members, including
one representative appointed by each of the five member societies plus the
COPSS Chair, and a past awardee as an additional member. The Chair of the
Award Committee is appointed by the Chair of COPSS.

Prior to 1988 the COPSS Presidents’ Award was funded by the ASA.
When the 1987 award depleted this account, COPSS voted to reallocate a
fraction of membership dues to fund future awards. Recipients are listed in
Table 1.3 with their affiliation at the time of the award.
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TABLE 1.3
List of COPSS Presidents’ Award winners.

Year Winner Affiliation (at the Time of Award)
1979 Peter J. Bickel University of California, Berkeley
1981 Stephen E. Fienberg Carnegie Mellon University
1983 Tze Leung Lai Columbia University
1984 David V. Hinkley University of Texas, Austin
1985 James O. Berger Purdue University
1986 Ross L. Prentice Fred Hutchinson Cancer Research Center
1987 Chien-Fu Jeff Wu University of Wisconsin, Madison
1988 Raymond J. Carroll Texas A&M University
1989 Peter Hall Australian National University
1990 Peter McCullagh University of Chicago
1991 Bernard W. Silverman University of Bristol, UK
1992 Nancy M. Reid University of Toronto, Canada
1993 Wing Hung Wong University of Chicago
1994 David L. Donoho Stanford University
1995 Iain M. Johnstone Stanford University
1996 Robert J. Tibshirani University of Toronto, Canada
1997 Kathryn Roeder Carnegie Mellon University
1998 Pascal Massart Université de Paris-Sud, France
1999 Larry A. Wasserman Carnegie Mellon University
2000 Jianqing Fan University of North Carolina, Chapel Hill
2001 Xiao-Li Meng Harvard University
2002 Jun Liu Harvard University
2003 Andrew Gelman Columbia University
2004 Michael A. Newton University of Wisconsin, Madison
2005 Mark J. van der Laan University of California, Berkeley
2006 Xihong Lin Harvard University
2007 Jeffrey S. Rosenthal University of Toronto, Canada
2008 T. Tony Cai University of Pennsylvania
2009 Rafael Irizarry Johns Hopkins University
2010 David B. Dunson Duke University
2011 Nilanjan Chatterjee National Cancer Institute
2012 Samuel Kou Harvard University
2013 Marc Suchard University of California, Los Angeles
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1.4.2 R.A. Fisher Lectureship

The R.A. Fisher Lectureship was established in 1963 to honor both the con-
tributions of Sir Ronald Aylmer Fisher and a present-day statistician for their
advancement of statistical theory and applications. The list of past Fisher
Lectures well reflects the prestige that COPSS and its constituent societies
place on this award. Awarded each year, the Fisher Lectureship represents
meritorious achievement and scholarship in statistical science, and recognizes
highly significant impacts of statistical methods on scientific investigations.
The Lecturer is selected by the R.A. Fisher Lecture and Award Committee
which is chosen to reflect the interests of the member societies. The Lecture
has become an integral part of the COPSS program, and is given at the Joint
Statistical Meeting.

In the early days of COPSS, the award of the Lectureship was governed by
the following conditions: (1) The Fisher Lectureship is awarded annually to
an eminent statistician for outstanding contributions to the theory and appli-
cation of statistics; (2) the Fisher Lecture shall be presented at a designated
Annual Meeting of the COPSS societies; (3) the Lecture shall be broadly
based and emphasize those aspects of statistics and probability which bear
close relationship to the scientific collection and interpretation of data, areas
in which Fisher himself made outstanding contributions; (4) the Lecture shall
be scheduled so as to have no conflict with any other session at the Annual
Meeting; (5) the Chair of the Lecture shall be the Chair of the R.A. Fisher
Lecture and Award Committee or the Chair’s designee: the Chair shall present
a short statement on the life and works of R.A. Fisher, not to exceed five min-
utes in duration, and an appropriate introduction for the Fisher Lecturer;
(6) the Lecturer is expected to prepare a manuscript based on the Lecture
and to submit it to an appropriate statistical journal. There is an additional
honorarium of $1,000 upon publication of the Fisher Lecture.

The recipients of the R.A. Fisher Lectureship are listed in Table 1.4, to-
gether with the titles of their lectures and their affiliations at the time of the
award.

TABLE 1.4
Recipients of the R.A. Fisher Lectureship and titles of their lectures.

Year Winner and Affiliation (Title of the Talk)
1964 Maurice S. Bartlett, University of Chicago

and University College London, UK
R.A. Fisher and the last fifty years of statistical methodology

1965 Oscar Kempthorne, Iowa State University
Some aspects of experimental inference

1966 (none)
1967 John W. Tukey, Princeton University and Bell Labs

Some perspectives in data analysis
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TABLE 1.4
Recipients of the R.A. Fisher Lectureship (cont’d).

Year Winner and Affiliation (Title of the Talk)
1968 Leo A. Goodman, University of Chicago

The analysis of cross-classified data: Independence,
quasi-independence, and interactions in contingency tables
with or without missing entries

1970 Leonard J. Savage, Princeton University
On rereading R.A. Fisher

1971 Cuthbert Daniel, Private Consultant
One-at-a-time plans

1972 William G. Cochran, Harvard University
Experiments for nonlinear functions

1973 Jerome Cornfield, George Washington University
On making sense of data

1974 George E.P. Box, University of Wisconsin, Madison
Science and statistics

1975 Herman Chernoff, Massachusetts Institute of Technology
Identifying an unknown member of a large population

1976 George A. Barnard, University of Waterloo, Canada
Robustness and the logic of pivotal inference

1977 R.C. Bose, University of North Carolina
R.A. Fisher’s contribution to multivariate analysis
and design of experiments

1978 William H. Kruskal, University of Chicago
Statistics in society: Problems unsolved and unformulated

1979 C.R. Rao, The Pennsylvania State University
Fisher efficiency and estimation of several parameters

1980 (none)
1981 (none)
1982 Frank J. Anscombe, Yale University

How much to look at the data
1983 I. Richard Savage, University of Minnesota

Nonparametric statistics and a microcosm
1984 (none)
1985 T.W. Anderson, Stanford University

R.A. Fisher and multivariate analysis
1986 David H. Blackwell, University of California, Berkeley

Likelihood and sufficiency
1987 Frederick Mosteller, Harvard University

Methods for studying coincidences (with P. Diaconis)
1988 Erich L. Lehmann, University of California, Berkeley

Model specification: Fisher’s views and some later strategies
1989 Sir David R. Cox, Nuffield College, Oxford

Probability models: Their role in statistical analysis
1990 Donald A.S. Fraser, York University, Canada

Statistical inference: Likelihood to significance
1991 David R. Brillinger, University of California, Berkeley

Nerve cell spike train data analysis: A progression of technique
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TABLE 1.4
Recipients of the R.A. Fisher Lectureship (cont’d).

Year Winner and Affiliation (Title of the Talk)
1992 Paul Meier, Columbia University

The scope of general estimation
1993 Herbert E. Robbins, Columbia University

N and n: Sequential choice between two treatments
1994 Elizabeth A. Thompson, University of Washington

Likelihood and linkage: From Fisher to the future
1995 Norman E. Breslow, University of Washington

Statistics in epidemiology: The case-control study
1996 Bradley Efron, Stanford University

R.A. Fisher in the 21st century
1997 Colin L. Mallows, AT&T Bell Laboratories

The zeroth problem
1998 Arthur P. Dempster, Harvard University

Logistic statistics: Modeling and inference
1999 John D. Kalbfleisch, University of Waterloo, Canada

The estimating function bootstrap
2000 Ingram Olkin, Stanford University

R.A. Fisher and the combining of evidence
2001 James O. Berger, Duke University

Could Fisher, Jeffreys, and Neyman have agreed on testing?
2002 Raymond J. Carroll, Texas A&M University

Variability is not always a nuisance parameter
2003 Adrian F.M. Smith, University of London, UK

On rereading L.J. Savage rereading R.A. Fisher
2004 Donald B. Rubin, Harvard University

Causal inference using potential outcomes:
Design, modeling, decisions

2005 R. Dennis Cook, University of Minnesota
Dimension reduction in regression

2006 Terence P. Speed, University of California, Berkeley
Recombination and linkage

2007 Marvin Zelen, Harvard School of Public Health
The early detection of disease: Statistical challenges

2008 Ross L. Prentice, Fred Hutchinson Cancer Research Center
The population science research agenda:
Multivariate failure time data analysis methods

2009 Noel Cressie, The Ohio State University
Where, when, and then why

2010 Bruce G. Lindsay, Pennsylvania State University
Likelihood: Efficiency and deficiency

2011 C.F. Jeff Wu, Georgia Institute of Technology
Post-Fisherian experimentation: From physical to virtual

2012 Roderick J. Little, University of Michigan
In praise of simplicity not mathematistry!
Simple, powerful ideas for the statistical scientist

2013 Peter J. Bickel, University of California, Berkeley
From Fisher to “Big Data”: Continuities and discontinuities
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1.4.3 George W. Snedecor Award

Established in 1976, this award honors George W. Snedecor who was instru-
mental in the development of statistical theory in biometry. It recognizes a
noteworthy publication in biometry appearing within three years of the date
of the award. Since 1991 it has been given every other year in odd years.

George W. Snedecor was born on October 20, 1881, in Memphis, TN,
and was educated at the Alabama Polytechnic Institute, the University of Al-
abama, and the University of Michigan. He joined the faculty of Iowa State
College (University) in 1913 and taught there for 45 years. In 1924, he and
his colleague Henry Wallace (who became Secretary of Agriculture, 1933–40,
33rd Vice President of the United States, 1941–45, and Secretary of Com-
merce, 1945–46) organized a seminar to study regression and data analysis.
He formed the Iowa State Statistics Laboratory in 1933 and served as Director.
His book Statistical Methods was published in 1937, and later, with William
G. Cochran as co-author, went through seven editions. Iowa State’s Depart-
ment of Statistics separated from the Mathematics Department in 1939; it
offered a Master’s in statistics, the first of which was given to Gertrude Cox.

The F distribution, which is central to the analysis of variance, was ob-
tained by Snedecor and called F after Fisher. Snedecor served as president of
the American Statistical Association in 1948, was named an Honorary Fellow
of the Royal Statistical Society in 1954, and received an honorary Doctor-
ate of Science from North Carolina State University in 1956. Further details
about Snedecor are contained in “Tales of Statisticians” and “Statisticians in
History” (Amstat News, September 2009, pp. 10–11).

The recipients of the George W. Snedecor Award are listed in Table 1.5,
along with references for the awarded publications.

TABLE 1.5
Recipients of the George W. Snedecor Award and publication(s).

1977 A. Philip Dawid
Properties of diagnostic data distribution.
Biometrics, 32:647–658.

1978 Bruce W. Turnbull and Toby J. Mitchell
Exploratory analysis of disease prevalence data from survival/
sacrifice experiments.
Biometrics, 34:555–570.

1979 Ethel S. Gilbert
The assessment of risks from occupational exposure to ionizing
radiation. In Energy and Health, SIAM–SIMS Conference Series
No. 6 (N. Breslow, Ed.), SIAM, Philadelphia, PA, pp. 209–225.

1981 Barry H. Margolin, Norman Kaplan, and Errol Zeiger
Statistical analysis of the Ames salmonella/microsome test.
Proceedings of the National Academy of Science, 78:3779–3783.
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TABLE 1.5
Recipients of the George W. Snedecor Award (cont’d).
1982 Byron J.T. Morgan

Modeling polyspermy.
Biometrics, 38:885–898.

1983 Cavell Brownie and Douglas S. Robson
Estimation of time-specific survival rates from tag-resighting samples:
A generalization of the Jolly–Seber model.
Biometrics, 39:437–453; and

1983 R.A. Maller, E.S. DeBoer, L.M. Joll, D.A. Anderson, and J.P. Hinde
Determination of the maximum foregut volume of Western Rock Lobsters
(Panulirus cygnus) from field data.
Biometrics, 39:543–551.

1984 Stuart H. Hurlbert
Pseudoreplication and the design of ecological field experiments.
Ecological Monographs, 54:187–211; and

1984 John A. Anderson
Regression and ordered categorical variables.
Journal of the Royal Statistical Society, Series B, 46:1–30.

1985 Mitchell H. Gail and Richard Simon
Testing for qualitative interactions between treatment effects and
patients subsets.
Biometrics, 41:361–372.

1986 Kung-Yee Liang and Scott L. Zeger
Longitudinal data analysis using generalized linear models.
Biometrika, 73:13–22; and
Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, 42:121–130.

1987 George E. Bonney
Regressive logistic models for familial disease and other binary traits.
Biometrics, 42:611–625;
Logistic regression for dependent binary observations.
Biometrics, 43:951–973.

1988 Karim F. Hirji, Cyrus R. Mehta, and Nitin R. Patel
Exact inference for matched case-control studies.
Biometrics, 44:803–814.

1989 Barry I. Graubard, Thomas R. Fears, and Mitchell H. Gail
Effects of cluster sampling on epidemiologic analysis in
population-based case-control studies.
Biometrics, 45:1053–1071.

1990 Kenneth H. Pollack, James D. Nichols, Cavell Brownie, and James E. Hines
Statistical inference for capture-recapture experiments.
Wildlife Monographs, The Wildlife Society 107.

1993 Kenneth L. Lange and Michael L. Boehnke
Bayesian methods and optimal experimental design for
gene mapping by radiation hybrid.
Annals of Human Genetics, 56:119–144.
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TABLE 1.5
Recipients of the George W. Snedecor Award (cont’d).
1995 Norman E. Breslow and David Clayton

Approximate inference in generalized linear models.
Journal of the American Statistical Association, 88:9–25.

1997 Michael A. Newton
Bootstrapping phylogenies: Large deviations and dispersion effects.
Biometrika, 83:315–328; and

1997 Kathryn Roeder, Raymond J. Carroll, and Bruce G. Lindsay
A semiparametric mixture approach to case-control
studies with errors in covariables.
Journal of the American Statistical Association, 91:722–732.

1999 Daniel Scharfstein, Anastasios Butch Tsiatis, and Jamie Robins
Semiparametric efficiency and its implications on the
design and analysis of group sequential studies.
Journal of the American Statistical Association, 92:1342–1350.

2001 Patrick J. Heagerty
Marginally specified logistic-normal models
for longitudinal binary data.
Biometrics, 5:688–698.

2003 Paul R. Rosenbaum
Effects attributable to treatment: Inference in experiments
and observational studies with a discrete pivot.
Biometrika, 88:219–231; and
Attributing effects to treatment in matched observational studies.
Journal of the American Statistical Association, 97:183–192.

2005 Nicholas P. Jewell and Mark J. van der Laan
Case-control current status data.
Biometrika, 91:529–541.

2007 Donald B. Rubin
The design versus the analysis of observational studies
for causal effects: Parallels with the design of randomized trials.
Statistics in Medicine, 26:20–36.

2009 Marie Davidian
Improving efficiency of inferences in randomized
clinical trials using auxiliary covariates.
Biometrics, 64:707–715
(by M. Zhang, A.A. Tsiatis, and M. Davidian).

2011 Nilanjan Chatterjee
Shrinkage estimators for robust and efficient inference
in haplotype-based case-control studies.
Journal of the American Statistical Association, 104:220–233
(by Y.H. Chen, N. Chatterjee, and R.J. Carroll).

2013 John D. Kalbfleisch
Pointwise nonparametric maximum likelihood estimator of
stochastically ordered survival functions.
Biometrika, 99:327–343
(by Y. Park, J.M.G. Taylor, and J.D. Kalbfleisch).
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1.4.4 Elizabeth L. Scott Award

In recognition of Elizabeth L. Scott’s lifelong efforts to further the careers of
women, this award is presented to an individual who has helped foster oppor-
tunities in statistics for women by developing programs to encourage women
to seek careers in statistics; by consistently and successfully mentoring women
students or new researchers; by working to identify gender-based inequities in
employment; or by serving in a variety of capacities as a role model. First
awarded in 1992, it is given every other year in even-numbered years.

Elizabeth Scott was born in Fort Sill, Oklahoma, on November 23, 1917.
Her family moved to Berkeley, where she remained for the rest of her life. She
was in the UC Berkeley astronomy program and published more than ten pa-
pers on comet positions. She received her PhD in 1949. Her dissertation was
part astronomy and part statistics: “(a) Contribution to the problem of selec-
tive identifiability of spectroscopic binaries; (b) Note on consistent estimates
of the linear structural relation between two variables.” She collaborated with
Jerzy Neyman on astronomical problems as well as weather modification.

In 1970 Elizabeth Scott co-chaired a university sub-committee which pub-
lished a comprehensive study on the status of women in academia. Subse-
quently she led follow-up studies concerning gender-related issues such as
salary discrepancies and tenure and promotion. She developed a toolkit for
evaluating salaries that was distributed by the American Association of Uni-
versity Professors and used by many academic women to argue successfully
for salary adjustments. She often told of her history in the Astronomy De-
partment which provided a telescope to every male faculty, but not to her.
She received many honors and awards, and served as president of the IMS,
1977–78, and of the Bernoulli Society, 1983–85. She was Chair of the Statistics
Department from 1968 to 1973. She was a role model for many of the women
who are our current leaders. She died on December 20, 1988.

TABLE 1.6
Recipients of the Elizabeth L. Scott Award.

Year Winner Affiliation (at the Time of the Award)
1992 Florence N. David University of California, Riverside
1994 Donna Brogan University of North Carolina, Chapel Hill
1996 Grace Wahba University of Wisconsin, Madison
1998 Ingram Olkin Stanford University
2000 Nancy Flournoy University of Missouri, Columbia
2002 Janet Norwood Bureau of Labor Statistics
2004 Gladys Reynolds Centers for Disease Control and Prevention
2006 Louise Ryan Harvard University
2008 Lynne Billard University of Georgia
2010 Mary E. Thompson University of Waterloo, Canada
2012 Mary W. Gray American University
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For more details of her life and accomplishments, the web site “Biographies
of Women Mathematicians” (http://www.agnesscott.edu/lriddle/women)
recommends: (1) “Elizabeth Scott: Scholar, Teacher, Administrator,” Statis-
tical Science, 6:206–216; (2) “Obituary: Elizabeth Scott, 1917–1988,” Journal
of the Royal Statistical Society, Series A, 153:100; (3) “In memory of Eliza-
beth Scott,” Newsletter of the Caucus for Women in Statistics, 19:5–6. The
recipients of the Elizabeth L. Scott Award are listed in Table 1.6.

1.4.5 Florence Nightingale David Award

This award recognizes a female statistician who exemplifies the contributions
of Florence Nightingale David, an accomplished researcher in combinatorial
probability theory, author or editor of numerous books including a classic
on the history of probability theory, Games, Gods, and Gambling, and first
recipient of the Elizabeth L. Scott Award. Sponsored jointly by COPSS and
the Caucus for Women in Statistics, the award was established in 2001 and
consists of a plaque, a citation, and a cash honorarium. It is presented every
other year in odd-numbered years if, in the opinion of the Award Committee,
an eligible and worthy nominee is found. The Award Committee has the option
of not giving an award for any given year.

F.N. David was born in the village of Irvington in Herefordshire, England,
on August 23, 1909. She graduated from Bedford College for Women in 1931
with a mathematics degree. She sought advice from Karl Pearson about ob-
taining an actuarial position, but instead was offered a research position at
University College, London. David collaborated with Pearson and Sam Stouf-
fer (a sociological statistician) on her first paper, which appeared in 1932.
Neyman was a visitor at this time and urged her to complete her PhD, which
she did in 1938. During the war, she served as a statistician in military agen-
cies. She remained at University College until 1967 when she joined the Uni-
versity of California at Riverside, serving as Chair of Biostatistics which was
later renamed the Department of Statistics. Her research output was varied
and included both theory and applications. She published Probability Theory
for Statistical Methods in 1949, and jointly with D.E. Barton, Combinatorial
Chance in 1962. David died in 1993 at the age of 83. The recipients of the
F.N. David Award are listed in Table 1.7.

TABLE 1.7
Recipients of the Florence Nightingale David Award.

Year Recipient Affiliation
2001 Nan M. Laird Harvard University
2003 Juliet Popper Shaffer University of California, Berkeley
2005 Alice S. Whittemore Stanford University
2007 Nancy Flournoy University of Missouri, Columbia
2009 Nancy M. Reid University of Toronto, Canada
2011 Marie Davidian North Carolina State University
2013 Lynne Billard University of Georgia
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Reminiscences of the Columbia University
Department of Mathematical Statistics in
the late 1940s

Ingram Olkin

Department of Statistics
Stanford University, Stanford, CA

2.1 Introduction: Pre-Columbia

Every once in a while in a dinner conversation, I have recalled my student
days at Columbia, and have met with the suggestion that I write up these
recollections. Although present-day students may recognize some of the fa-
mous names such as Hotelling, Wald, and Wolfowitz, they won’t meet many
faculty who were their students. The following is the result, and I hope the
reader finds these reminiscences interesting. Because recollections of 60 years
ago are often inaccurate, I urge readers to add to my recollections.

I started City College (CCNY) in 1941 and in 1943 enlisted in the US Army
Air Force meteorology program. After completion of the program, I served as
a meteorologist at various airports until I was discharged in 1946. I returned
to CCNY and graduated in 1947, at which time I enrolled at Columbia Uni-
versity. As an aside, the professor at CCNY was Selby Robinson. Although
not a great teacher, he somehow inspired a number of students to continue
their study of statistics. Kenneth Arrow, Herman Chernoff, Milton Sobel, and
Herbert Solomon are several who continued their studies at Columbia after
graduating from CCNY.

Harold Hotelling was a key figure in my career. After receiving a doctor-
ate at Princeton, Hotelling was at Stanford from 1924 to 1931, at the Food
Research Institute and the Mathematics Department. In 1927 he taught three
courses at Stanford: mathematical statistics (among the very early faculty
to teach a rigorous course in statistics), differential geometry, and topology
(who would tackle this today?). In 1931 he moved to Columbia, where he
wrote his most famous papers in economics and in statistics (principal com-
ponents, canonical correlations, T 2, to mention but a few). His 1941 paper on

23
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the teaching of statistics had a phenomenal impact. Jerzy Neyman stated that
it was one of the most influential papers in statistics. Faculty attempting to
convince university administrators to form a Department of Statistics often
used this paper as an argument why the teaching of statistics should be done
by statisticians and not by faculty in substantive fields that use statistics. To
read more about Hotelling, see Olkin and Sampson (2001a,b).

2.2 Columbia days

At Columbia, Hotelling had invited Abraham Wald to Columbia in 1938, and
when Hotelling left in 1946 to be Head of the Statistics Department at Chapel
Hill, Wald became Chair of the newly formed department at Columbia. The
department was in the Faculty of Political Economy because the Mathemat-
ics Department objected to statistics being in the same division. The two
economists F.E. Croxton and F.C. Mills taught statistics in the Economics
Department and insisted that the new department be the Department of
Mathematical Statistics to avoid any competition with their program. The
other faculty were Ted Anderson, Jack Wolfowitz, later joined by Howard
Levene and Henry Scheffé; Helen Walker was in the School of Education. (He-
len was one of a few well-known, influential female statisticians. One source
states that she was the first woman to teach statistics.) For a detailed history
of the department, see Anderson (1955).

In the late 1940s Columbia, Chapel Hill, and Berkeley were statistical
centers that attracted many visitors. There were other universities that had
an impact in statistics such as Princeton, Iowa State, Iowa, Chicago, Stanford,
and Michigan, but conferences were mostly held at the top three. The first two
Berkeley Symposia were in 1946 and 1950, and these brought many visitors
from around the world.

The Second Berkeley Symposium brought a galaxy of foreign statisticians
to the US: Paul Lévy, Bruno de Finetti, Michel Loève, Harold Cramér, Aryeh
Dvoretzky, and Robert Fortet. Domestic faculty were present as well, such as
Richard Feynman, Kenneth Arrow, Jacob Marshak, Harold Kuhn, and Albert
Tucker. Because some of the participants came from distant lands, they often
visited other universities as part of the trip. During the 1946–48 academic
years the visitors were Neyman, P.L Hsu, J.L. Doob, M.M. Loève, E.J.G.
Pitman, R.C. Bose, each teaching special-topic courses. Later Bose and Hsu
joined Hotelling at Chapel Hill.

With the GI Bill, I did not have to worry about tuition, and enrolled at
Columbia in two classes in the summer of 1947. The classes were crowded
with post-war returnees. One class was a first course in mathematical statis-
tics that was taught by Wolfowitz. Some of the students at Columbia during
the 1947–50 period were Raj Bahadur and Thelma Clark (later his wife), Bob
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Bechhofer, Allan Birnbaum, Al Bowker, Herman Chernoff (he was officially at
Brown University, but worked with Wald), Herb T. David, Cyrus Derman, Syl-
van Ehrenfeld, Harry Eisenpress, Peter Frank, Leon Herbach, Stanley Isaac-
son, Seymour Jablon, Jack Kiefer, Bill Kruskal, Gerry Lieberman, Gottfried
Noether, Rosedith Sitgreaves, Milton Sobel, Herbert Solomon, Charles Stein,
Henry Teicher, Lionel Weiss, and many others. Columbia Statistics was an ex-
citing place, and almost all of the students continued their career in statistics.
There was a feeling that we were in on the ground floor of a new field, and
in many respects we were. From 1950 to 1970 The Annals of Mathematical
Statistics grew from 625 to 2200 pages, with many articles from the students
of this era.

Some statistics classes were held at night starting at 5:40 and 7:30 so
that students who worked during the day could get to class. However, math
classes took place during the day. I took sequential analysis and analysis of
variance from Wald, core probability from Wolfowitz, finite differences from
B.O. Koopman, linear algebra from Howard Levi, differential equations from
Ritt, a computer science course at the Columbia Watson Lab, and a course on
analysis of variance from Helen Walker. Anderson taught multivariate analysis
the year before I arrived. Govind Seth and Charles Stein took notes from this
course, which later became Anderson’s book on multivariate analysis.

Wald had a classic European lecture style. He started at the upper left
corner of the blackboard and finished at the lower right. The lectures were
smooth and the delivery was a uniform distribution. Though I had a lovely
set of notes, Wald treated difficult and easy parts equally, so one did not
recognize pitfalls when doing homework. The notion of an application in its
current use did not exist. I don’t recall the origin of the following quotation,
but it is attributed to Wald: “Consider an application. Let X1, . . . , Xn be
i.i.d. random variables.” In contrast to Wald’s style, Wolfowitz’s lectures were
definitely not smooth, but he attempted to emphasize the essence of the topic.
He struggled to try to explain what made the theorem “tick,” a word he
often used: “Let’s see what makes this tick.” However, as a novice in the field
the gems of insight that he presented were not always appreciated. It was
only years later as a researcher that they resurfaced, and were found to be
illuminating.

Wolfowitz had a number of other pet phrases such as “It doesn’t cut any
ice,” and “stripped of all baloney.” It was a surprise to hear Columbia grad-
uates years later using the same phrase. In a regression class with Wolfowitz
we learned the Gauss–Seidel method. Wolfowitz was upset that the Doolit-
tle method had a name attached to it, and he would exclaim, “Who is this
Doolittle?” Many years later when Wolfowitz visited Stanford a name might
arise in a conversation. If Wolfowitz did not recognize the name he would say
“Jones, Jones, what theorem did he prove?”

In 1947–48 the only serious general textbooks were Cramér, Kendall, and
Wilks’ soft-covered notes. This was a time when drafts of books were being
written. Feller’s Volume I appeared in 1950, Doob’s book on stochastic pro-
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cesses in 1953, Lehmann’s notes on estimation and testing of hypotheses in
1950, Scheffé’s book on analysis of variance in 1953. The graduate students
at Columbia formed an organization that duplicated lecture notes, especially
those of visitors. Two that I remember are Doob’s lectures on stochastic pro-
cesses and Loève’s on probability.

The Master’s degree program required a thesis and mine was written with
Wolfowitz. The topic was on a sequential procedure that Leon Herbach (he
was ahead of me) had worked on. Wolfowitz had very brief office hours, so
there usually was a queue to see him. When I did see him in his office he
asked me to explain my question at the blackboard. While talking at the
blackboard Wolfowitz was multi-tasking (even in 1947) by reading his mail
and talking on the telephone. I often think of this as an operatic trio in which
each singer is on a different wavelength. This had the desired effect in that
I never went back. However, I did manage to see him after class. He once said
“Walk me to the subway while we are talking,” so I did. We did not finish
our discussion by the time we reached the subway (only a few blocks away)
so I went into the subway where we continued our conversation. This was not
my subway line so it cost me a nickel to talk to him. One of my students at
Stanford 30 years later told me that I suggested that he walk with me while
discussing a problem. There is a moral here for faculty.

Wald liked to take walks. Milton Sobel was one of Wald’s students and he
occasionally accompanied Wald on these walks. Later I learned that Milton
took his students on walks. I wonder what is the 21st century current version
of faculty-student interaction?

2.3 Courses

The Collyer brothers became famous for their compulsive collecting. I am not
in their league, but I have saved my notes from some of the courses that I took.
The following is an excerpt from the Columbia course catalog.

Mathematical Statistics 111a — Probability. 3 points Winter Session.
Professor Wolfowitz.

Tu. Th. 5:40–6:30 and 7:30–8:20 p.m. 602 Hamilton.
Fundamentals. Combinatorial problems. Distribution functions in

one or more dimensions. The binomial, normal, and Poisson laws. Mo-
ments and characteristic functions. Stochastic convergence and the law
of large numbers. Addition of chance variables and limit theorems.

This course terminates on Nov. 18. A thorough knowledge of cal-
culus is an essential prerequisite. Students are advised to study higher
algebra simultaneously to obtain a knowledge of matrix algebra for use
in more advanced mathematical statistics courses.
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Milton Sobel was the teaching assistant for the 111a course; Robert Be-
chofer and Allan Birnbaum were also TAs. I remember that Milton Sobel sat
in on Wald’s class on analysis of variance. Because he was at least one year
ahead of me I thought that he would have taken this course earlier. He said he
did take it earlier but the course was totally different depending on who was
teaching it. It was depressing to think that I would have to take every course
twice! As the course progressed Wald ran out of subscripts and superscripts
on the right-hand side, e.g., xk!

ij , and subsequently added some subscripts on
the left-hand side.

Wolfowitz recommended three books, and assigned homework from them:

(a) H. Cramér (1945): Mathematical Methods of Statistics

(b) J.V. Uspensky (1937): Introduction to Mathematical Probability

(c) S.S. Wilks (1943): Mathematical Statistics

He mentioned references to Kolmogorov’s Foundation of Probability and the
Lévy and Roth book Elements of Probability.

Wolfowitz used the term “chance variables” and commented that the Law
of Small Numbers should have been called the Law of Small Probabilities. As
I look through the notes it is funny to see the old-fashioned factorial sym-
bols !n instead of n!. As I reread my notes it seems to me that this course
was a rather simplified first course in probability. Some of the topics touched
upon the use of independence, Markov chains, joint distributions, conditional
distributions, Chebychev’s inequality, stochastic convergence (Slutsky’s the-
orem), Law of Large Numbers, convolutions, characteristic functions, Cen-
tral Limit Theorem (with discussion of Lyapunov and Lindeberg conditions).
I have a comment in which Wolfowitz notes an error in Cramér (p. 343): (a)
if y1, y2, . . . is a sequence with

∑
yi = ci for all c and σ2(yi) → 0 as i → ∞,

then p limi→∞(yi− ci) = 0; (b) the converse is not true in that it may be that
σ2(yi)→∞ and yet p lim(yi − ci) = 0.

The second basic course was 111b, taught by Wald. The topics included
point estimation, consistency, unbiasedness, asymptotic variance, maximum
likelihood, likelihood ratio tests, efficiency. This course was more mathemat-
ical than 111a in that there was more asymptotics. In terms of mathemat-
ical background I note that he used Lagrange multipliers to show that, for
w1, . . . , wn ∈ [0, 1],

∑n
i=1 w

2
i /(

∑n
i=1 wi)2 is minimized when wi = 1/n for all

i ∈ {1, . . . , n}. Apparently, convexity was not discussed.
There is a derivation of the chi-square distribution that includes a discus-

sion of orthogonal matrices. This is one of the standard proofs. Other topics
include Schwarz inequality (but not used for the above minimization), and
sufficiency. The second part of the course dealt with tests of hypotheses, with
emphasis on the power function (Wald used the term “power curve”), accep-
tance sampling, and the OC curve.

My Columbia days are now over 65 years ago, but I still remember them
as exciting and an incubator for many friendships and collaborations.
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A career in statistics

Herman Chernoff
Department of Statistics
Harvard University, Cambridge, MA

3.1 Education

At the early age of 15, I graduated from Townsend Harris high school in New
York and made the daring decision to study mathematics at the City College
of New York (CCNY) during the depression, rather than some practical sub-
ject like accounting. The Mathematics faculty of CCNY was of mixed quality,
but the mathematics majors were exceptionally good. Years later, one of the
graduate students in statistics at Stanford found a copy of the 1939 yearbook
with a picture of the Math Club. He posted it with a sign “Know your Fac-
ulty.” At CCNY we had an excellent training in undergraduate mathematics,
but since there was no graduate program, there was no opportunity to take
courses in the advanced subjects of modern research. I was too immature to
understand whether my innocent attempts to do original research were mean-
ingful or not. This gave me an appetite for applied research where successfully
confronting a real problem that was not trivial had to be useful.

While at CCNY, I took a statistics course in the Mathematics Department,
which did not seem very interesting or exciting, until Professor Selby Robinson
distributed some papers for us to read during the week that he had to be away.
My paper was by Neyman and Pearson (1933). It struck me as mathematically
trivial and exceptionally deep, requiring a reorganization of my brain cells
to confront statistical issues. At that time I had not heard of R.A. Fisher,
who had succeeded in converting statistics to a theoretical subject in which
mathematicians could work. Of course, he had little use for mathematicians
in statistics, on the grounds that they confronted the wrong problems and he
was opposed to Neyman–Pearson theory (NP).

Once when asked how he could find the appropriate test statistic without
recourse to NP, his reply was “I have no trouble.” In short, NP made explicit
the consideration of the alternative hypotheses necessary to construct good
tests. This consideration was implicit for statisticians who understood their
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problem, but often unclear to outsiders and students. Fisher viewed it as
an unnecessary mathematization, but the philosophical issue was important.
Years later Neyman gave a talk in which he pointed out that the NP Lemma
was highly touted but trivial. On the other hand it took him years of thinking
to understand and state the issue.

Just before graduation I received a telegram offering me a position, which
I accepted, as Junior Physicist at the Dahlgren Naval Proving Grounds in
Virginia. After a year and a half I left Dahlgren to study applied mathemat-
ics at Brown University in Providence, Rhode Island. Dean Richardson had
set up a program in applied mathematics where he could use many of the
distinguished European mathematician émigrés to teach and get involved in
research for the Defense Department, while many of the regular faculty were
away working at Defense establishments. There was a good deal of coming
and going of faculty, students and interesting visitors during this program.

During the following year I worked very hard as a Research Assistant
for Professor Stefan Bergman and took many courses and audited a couple.
I wrote a Master’s thesis under Bergman on the growth of solutions of partial
differential equations generated by his method, and received an ScM degree.
One of the courses I audited was given by Professor Willy Feller, in which his
lectures were a preliminary to the first volume of his two volume outstanding
books on probability.

During the following summer, I took a reading course in statistics from Pro-
fessor Henry Mann, a number theorist who had become interested in statistics
because some number theory issues were predominant in some of the work
going on in experimental design. In fact, he had coauthored a paper with
Abraham Wald (Mann and Wald, 1943) on how the o and O notation could
be extended to op and Op. This paper also proved that if Xn has as its limiting
distribution that of Y and g is a continuous function, then g(Xn) has as its
limiting distribution that of g(Y ).

Mann gave me a paper by Wald (1939) on a generalization of inference
which handled that of estimation and testing simultaneously. Once more
I found this paper revolutionary. This was apparently Wald’s first paper on de-
cision theory. Although it did not resemble the later version of a game against
nature, it clearly indicated the importance of cost considerations in statistical
philosophy. Later discussions with Allen Wallis indicated that Wald had been
aware of von Neumann’s ideas about game theory. My theory is that in this
first paper, he had not recognized the relevance, but as his work in this field
grew, the formulation gradually changed to make the relationship with game
theory clearer. Certainly the role of mixed strategies in both fields made the
relation apparent.

At the end of the summer, I received two letters. One offered me a predoc-
toral NSF fellowship and the other an invitation I could not decline, to join
the US Army. It was 1945, the war had ended, and the draft boards did not
see much advantage in deferring young men engaged in research on the war
effort. I was ordered to appear at Fort Devens, Massachusetts, where I was
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given three-day basic training and assigned to work as a clerk in the separa-
tion center busy discharging veterans. My hours were from 5 PM to midnight,
and I considered this my first vacation in many years. I could visit Brown on
weekends and on one of these visits Professor Prager suggested that I might
prefer to do technical work for the army. He arranged for me to be transferred
to Camp Lee, Virginia, where I was designated to get real basic training and
end up, based on my previous experience, as a clerk in the quartermaster corps
in Germany. I decided that I would prefer to return to my studies and had
the nerve to apply for discharge on the grounds that I was a scientist, a pro-
fession in good repute at the end of the war. Much to everyone’s surprise my
application was approved and I returned to Brown, where much had changed
during my brief absence. All the old European professors were gone, Prager
had been put in charge of the new Division of Applied Mathematics, and a
new group of applied mathematicians had replaced the émigrés.

I spent some months reading in probability and statistics. In particular
Wald’s papers on sequential analysis, a topic classified secret during the war,
was of special interest.

During the summer of 1946 there was a six-week meeting in Raleigh,
North Carolina, to open up the Research Triangle. Courses were offered by
R.A. Fisher, J. Wolfowitz, and W. Cochran. Many prominent statisticians at-
tended the meeting, and I had a chance to meet some of them and young
students interested in statistics, and to attend the courses. Wolfowitz taught
sequential analysis, Cochran taught sampling, and R.A. Fisher taught some-
thing.

Hotelling had moved to North Carolina because Columbia University had
refused to start a Statistics Department. Columbia realized that they had
made a mistake, and started a department with Wald as Chair and funds
to attract visiting professors and faculty. Wolfowitz, who had gone to North
Carolina, returned to Columbia. I returned to Brown to prepare for my pre-
liminary exams. Since Brown no longer had any statisticians, I asked Wald
to permit me to attend Columbia to write my dissertation in absentia under
his direction. He insisted that I take some courses in statistics. In January
1947, I attended Columbia and took courses from T.W. Anderson, Wolfowitz,
J.L. Doob, R.C. Bose and Wald.

My contact with Anderson led to a connection with the Cowles Commis-
sion for Research in Economics at the University of Chicago, where I was
charged with investigating the possible use of computing machines for the ex-
tensive calculations that had to be done with their techniques for character-
izing the economy. Those calculations were being done on electric calculating
machines by human “computers” who had to spend hours carrying 10 digits
inverting matrices of order as much as 12. Herman Rubin, who had received
his PhD working under T. Koopmans at Cowles and was spending a postdoc-
toral year at the Institute for Advanced Study at Princeton, often came up to
New York to help me wrestle with the clumsy IBM machines at the Watson
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Laboratories of IBM, then located near Columbia. At the time, the engineers
at Watson were working on developing a modern computer.

3.2 Postdoc at University of Chicago

I completed my dissertation on an approach of Wald to an asymptotic approx-
imation to the (nonexistent) solution of the Behrens–Fisher problem, and in
May, 1948, I went to Chicago for a postdoc appointment at Cowles with my
new bride, Judith Ullman. I was in charge of computing. Among my new col-
leagues were Kenneth Arrow, a former CCNY mathematics major, who was
regarded as a brilliant economist, and Herman Rubin and several graduate
students in economics, one of whom, Don Patinkin, went to Israel where he
introduced the ideas of the Cowles Commission and later became President
of the Hebrew University.

Arrow had not yet written a dissertation, but was invited to visit Rand
Corporation that summer and returned with two outstanding accomplish-
ments. One was the basis for his thesis and Nobel Prize, a proof that there
was no sensible way a group could derive a preference ordering among alter-
natives from the preference orderings of the individual members of the group.
The other was a proof of the optimum character of the sequential probabil-
ity ratio test for deciding between two alternatives. The latter proof, with
D. Blackwell and A. Girshick (Arrow et al., 1949), was derived after Wald
presented a proof which had some measure theoretic problems. The backward
induction proof of ABG was the basis for the development of a large literature
on dynamic programming. The basic idea of Wald and Wolfowitz, which was
essential to the proof, had been to use a clever Bayesian argument.

I had always been interested in the philosophical issues in statistics, and
Jimmie Savage claimed to have resolved one. Wald had proposed the mini-
max criterion for deciding how to select one among the many “admissible”
strategies. Some students at Columbia had wondered why Wald was so ten-
tative in proposing this criterion. The criterion made a good deal of sense in
dealing with two-person zero-sum games, but the rationalization seemed weak
for games against nature. In fact, a naive use of this criterion would suggest
suicide if there was a possibility of a horrible death otherwise. Savage pointed
out that in all the examples Wald used, his loss was not an absolute loss, but
a regret for not doing the best possible under the actual state of nature. He
proposed that minimax regret would resolve the problem. At first I bought
his claim, but later discovered a simple example where minimax regret had a
similar problem to that of minimax expected loss. For another example the
criterion led to selecting the strategy A, but if B was forbidden, it led to C
and not A. This was one of the characteristics forbidden in Arrow’s thesis.
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Savage tried to defend his method, but soon gave in with the remark that
perhaps we should examine the work of de Finetti on the Bayesian approach
to inference. He later became a sort of high priest in the ensuing controversy
between the Bayesians and the misnamed frequentists. I posed a list of proper-
ties that an objective scientist should require of a criterion for decision theory
problems. There was no criterion satisfying that list in a problem with a finite
number of states of nature, unless we canceled one of the requirements. In
that case the only criterion was one of all states being equally likely. To me
that meant that there could be no objective way of doing science. I held back
publishing those results for a few years hoping that time would resolve the
issue (Chernoff, 1954).

In the controversy, I remained a frequentist. My main objection to Bayesian
philosophy and practice was based on the choice of the prior probability. In
principle, it should come from the initial belief. Does that come from birth?
If we use instead a non-informative prior, the choice of one may carry hid-
den assumptions in complicated problems. Besides, the necessary calculation
was very forbidding at that time. The fact that randomized strategies are not
needed for Bayes procedures is disconcerting, considering the important role
of random sampling. On the other hand, frequentist criteria lead to the con-
tradiction of the reasonable criteria of rationality demanded by the derivation
of Bayesian theory, and thus statisticians have to be very careful about the
use of frequentist methods.

In recent years, my reasoning has been that one does not understand a
problem unless it can be stated in terms of a Bayesian decision problem. If one
does not understand the problem, the attempts to solve it are like shooting in
the dark. If one understands the problem, it is not necessary to attack it using
Bayesian analysis. My thoughts on inference have not grown much since then
in spite of my initial attraction to statistics that came from the philosophical
impact of Neyman–Pearson and decision theory.

One slightly amusing correspondence with de Finetti came from a problem
from the principal of a local school that had been teaching third graders
Spanish. He brought me some data on a multiple choice exam given to the
children to evaluate how successful the teaching had been. It was clear from
the results that many of the children were guessing on some of the questions.
A traditional way to compensate for guessing is to subtract a penalty for
each wrong answer. But when the students are required to make a choice,
this method simply applies a linear transformation to the score and does not
provide any more information than the number of correct answers. I proposed
a method (Chernoff, 1962) which turned out to be an early application of
empirical Bayes. For each question, the proportion of correct answers in the
class provides an estimate of how many guessed and what proportion of the
correct answers were guesses. The appropriate reward for a correct answer
should take this estimate into account. Students who hear of this approach
are usually shocked because if they are smart, they will suffer if they are in a
class with students who are not bright.
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Bruno de Finetti heard of this method and he wrote to me suggesting
that the student should be encouraged to state their probability for each of
the possible choices. The appropriate score should be a simple function of
the probability distribution and the correct answer. An appropriate function
would encourage students to reply with their actual distribution rather than
attempt to bluff. I responded that it would be difficult to get third graders to
list probabilities. He answered that we should give the students five gold stars
and let them distribute the stars among the possible answers.

3.3 University of Illinois and Stanford

In 1949, Arrow and Rubin went to Stanford, and I went to the Mathematics
Department of the University of Illinois at Urbana. During my second year at
Urbana, I received a call from Arrow suggesting that I visit the young Statistics
Department at Stanford for the summer and the first quarter of 1951. That
offer was attractive because I had spent the previous summer, supplementing
my $4,500 annual salary with a stint at the Operations Research Office of
Johns Hopkins located at Fort Lesley J. McNair in Washington, DC. I had
enjoyed the visit there, and learned about the Liapounoff theorem about the
(convex) range of a vector measure, a powerful theorem that I had occasion to
make use of and generalize slightly (Chernoff, 1951). I needed some summer
salary. The opportunity to visit Stanford with my child and pregnant wife was
attractive.

The head of the department was A. Bowker, a protégé of the provost
F. Terman. Terman was a radio engineer, returned from working on radar in
Cambridge, MA during the war, where he had learned about the advantages
of having contracts with US Government agencies and had planned to exploit
such opportunities. Essentially, he was the father of Silicon Valley. The Statis-
tics Department had an applied contract with the Office of Naval Research
(ONR) and I discovered, shortly after arriving, that as part of the contract,
the personnel of the department supported by that contract were expected
to engage in research with relevance to the ONR and to address problems
posed to them on annual visits by scientists from the NSA. We distributed
the problems posed in mathematical form without much background. I was
given the problem of how best to decide between two alternative distributions
of a random variable X when the test statistic must be a sum of integers Y
with 1 ≤ Y ≤ k for some specified value of k and Y must be some unspecified
function of X. It was clear that the problem involves partitioning the space of
X into k subsets and applying the likelihood ratio. The Liapounoff theorem
was relevant and the Central Limit Theorem gave error probabilities to use
to select the best procedure.
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In working on an artificial example, I discovered that I was using the
Central Limit Theorem for large deviations where it did not apply. This led
me to derive the asymptotic upper and lower bounds that were needed for
the tail probabilities. Rubin claimed he could get these bounds with much
less work and I challenged him. He produced a rather simple argument, using
the Markov inequality, for the upper bound. Since that seemed to be a minor
lemma in the ensuing paper I published (Chernoff, 1952), I neglected to give
him credit. I now consider it a serious error in judgment, especially because
his result is stronger, for the upper bound, than the asymptotic result I had
derived.

I should mention that Cramér (1938) had derived much more elegant and
general results on large deviations. I discovered this after I derived my results.
However, Cramér did require a condition that was not satisfied by the integer-
valued random variables in my problem. Shannon had published a paper using
the Central Limit Theorem as an approximation for large deviations and had
been criticized for that. My paper permitted him to modify his results and led
to a great deal of publicity in the computer science literature for the so-called
Chernoff bound which was really Rubin’s result.

A second vaguely stated problem was misinterpreted by Girshick and my-
self. I interpreted it as follows: There exists a class of experiments, the data
from which depend on two parameters, one of which is to be estimated. Inde-
pendent observations with repetitions may be made on some of these exper-
iments. The Fisher information matrix is additive and we wish to minimize
the asymptotic variance, or equivalently the upper left corner of the inverse
of the sum of the informations. We may as well minimize the same element
of the inverse of the average of the informations. But this average lies in the
convex set generated by the individual informations of the available exper-
iments. Since each information matrix has three distinct elements, we have
the problem of minimizing a function on a convex set in three dimensions.
It is immediately obvious that we need at most four of the original available
experiments to match the information for any design. By monotonicity it is
also obvious that the optimum corresponds to a point on the boundary, and
we need at most three of the experiments, and a more complicated argument
shows that a mixture of at most two of the experiments will provide an asymp-
totically optimal experiment. This result (Chernoff, 1953) easily generalizes
to the case of estimating a function of r of the k parameters involved in the
available experiments.

The lively environment at Stanford persuaded me to accept a position
there and I returned to settle in during the next academic year. Up to then
I had regarded myself as a “theoretical statistical gun for hire” with no long-
term special field to explore. But both of the problems described above have
optimal design implications. I also felt that the nature of scientific study was
to use experiments to learn about issues so that better experiments could be
performed until a final decision was to be made. This led me to have sequential
design of experiments as a major background goal.
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At Stanford, I worked on many research projects which involved optimiza-
tion and asymptotic results. Many seemed to come easily with the use of
Taylor’s theorem, the Central Limit Theorem and the Mann–Wald results. A
more difficult case was in the theorem of Chernoff and Savage (1958) where
we established the Hodges–Lehmann conjecture about the efficiency of the
nonparametric normal scores test. I knew very little about nonparametrics,
but when Richard Savage and M. Dwass mentioned the conjecture, I thought
that the variational argument would not be difficult, and it was easy. What
surprised me was that the asymptotic normality, when the hypothesis of the
equality of the two distributions is false, had not been established. Our argu-
ment approximating the relevant cumulative distribution function by a Gaus-
sian process was tedious but successful. The result apparently opened up a side
industry in nonparametric research which was a surprise to Jimmie Savage,
the older brother of Richard.

One side issue is the relevance of optimality and asymptotic results. In
real problems the asymptotic result may be a poor approximation to what is
needed. But, especially in complicated cases, it provides a guide for tabulating
finite-sample results in a reasonable way with a minimum of relevant variables.
Also, for technical reasons optimality methods are not always available, but
what is optimal can reveal how much is lost by using practical methods and
when one should search for substantially better ones, and often how to do so.

Around 1958, I proved that for the case of a finite number of states of na-
ture and a finite number of experiments, an asymptotically optimal sequential
design consists of solving a game where the payoff for the statistician using
the experiment e against nature using θ is I(θ̂, θ, e) and I is the Kullback–
Leibler information, assuming the current estimate θ̂ is the true value of the
unknown state (Chernoff, 1959). This result was generalized to infinitely many
experiments and states by Bessler (1960) and Albert (1961) but Albert’s re-
sult required that the states corresponding to different terminal decisions be
separated.

This raised the simpler non-design problem of how to handle the test that
the mean of a Normal distribution with known variance is positive or negative.
Until then the closest approach to this had been to treat the case of three
states of nature a, 0,−a for the means and to minimize the expected sample
size for 0 when the error probabilities for the other states were given. This
appeared to me to be an incorrect statement of the relevant decision problem
which I asked G. Schwarz to attack. There the cost was a loss for the wrong
decision and a cost per observation (no loss when the mean is 0). Although
the techniques in my paper would work, Schwarz (1962) did a beautiful job
using a Bayesian approach. But the problem where the mean could vary over
the entire real line was still not done.

I devoted much of the next three years to dealing with the non-design
problem of sequentially testing whether the mean of a Normal distribution
with known variance is positive or negative. On the assumption that the payoff
for each decision is a smooth function of the mean µ, it seems natural to
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measure the loss as the difference which must be proportional to |µ| in the
neighborhood of 0. To facilitate analysis, this problem was posed in terms of
the drift of a Wiener process, and using Bayesian analysis, was reduced to
a free boundary problem involving the heat equation. The two dimensions
are Y , the current posterior estimate of the mean, and t, the precision of
the estimate. Starting at (t0, Y0), determined by the prior distribution, Y
moves like a standard Wiener process as sampling continues and the optimal
sequential procedure is to stop when Y leaves the region determined by the
symmetric boundary.

The research resulted in four papers; see Chernoff (1961), Breakwell and
Chernoff (1964), Chernoff (1965a), and Chernoff (1965b). The first was prelim-
inary with some minor results and bounds and conjectures about the bound-
ary near t = 0 and large t. Before I went off on sabbatical in London and
Rome, J.V. Breakwell, an engineer at Lockheed, agreed to collaborate on an
approach to large t and I planned to concentrate on small t. In London I fi-
nally made a breakthrough and gave a presentation at Cambridge where I met
J. Bather, a graduate student who had been working on the same problem.
He had just developed a clever method for obtaining inner and outer bounds
on the boundary.

Breakwell had used hypergeometric functions to get good asymptotic ap-
proximations for large t, but was unhappy because the calculations based on
the discrete time problem seemed to indicate that his approximations were
poor. His letter to that effect arrived just as I had derived the corrections re-
lating the continuous time and discrete time problems, and these corrections
indicated that the apparently poor approximations were in fact excellent.

Bather had impressed me so that I invited him to visit Stanford for a
postdoc period. Let me digress briefly to mention that one of the most valu-
able functions of the department was to use the contracts to support excellent
postdocs who could do research without teaching responsibilities and appre-
ciate courses by Stein and Rubin that were often too difficult for many of our
own students.

Breakwell introduced Bather and me to the midcourse correction problem
for sending a rocket to the moon. The instruments measure the estimated miss
distance continuously, and corrections early are cheap but depend on poor
estimates, while corrections later involve good estimates but are expensive
in the use of fuel. We found that our methods for the sequential problem
work in this problem, yielding a region where nothing is done. But when the
estimated miss distance leaves that region, fuel must be used to return. Shortly
after we derived our results (Bather and Chernoff, 1967), a rocket was sent
to the moon and about half way there, a correction was made and it went to
the desired spot. The instrumentation was so excellent (and expensive) that
our refined method was unnecessary. Bather declined to stay at Stanford as
Assistant Professor and returned with his family to England to teach at Suffolk
University. Later I summarized many of these results in a SIAM monograph
on sequential analysis and optimal design (Chernoff, 1972).
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A trip to a modern factory in Italy during my sabbatical gave me the im-
pression that automation still had far to go, and the study of pattern recog-
nition and cluster analysis could be useful. There are many methods available
for clustering, but it seemed that an appropriate method should depend on
the nature of the data. This raised the problem of how to observe multidi-
mensional data. It occurred to me that presenting each n-dimensional data
point by a cartoon of a face, where each of the components of the data point
controlled a feature of the face, might be effective in some cases. A presen-
tation of this idea with a couple of examples was received enthusiastically by
the audience, many of whom went home and wrote their own version of what
are popularly called “Chernoff faces.” This took place at a time when the
computer was just about ready to handle the technology, and I am reasonably
sure that if I had not done it, someone else would soon have thought of the
idea. Apparently I was lucky in having thought of using caricatures of faces,
because faces are processed in the brain differently than other visual objects
and caricatures have a larger impact than real faces; see Chernoff (1973).

3.4 MIT and Harvard

At the age of 50, I decided to leave Stanford and start a statistics program at
MIT in the Applied Mathematics Section of the Mathematics Department. For
several years, we had a vital but small group, but the School of Science was not
a healthy place for recognizing and promoting excellent applied statisticians,
and so I retired from MIT to accept a position at Harvard University, from
which I retired in 1997, but where I have an office that I visit regularly even
though they don’t pay me.

I am currently involved in a collaboration with Professor Shaw-Hwa Lo
at Columbia University, who was inspired by a seminar course I offered at
Harvard on statistical issues in molecular biology. We have been working on
variable selection methods for large data sets with applications to biology and
medicine; see Chernoff (2009).

In review, I feel that I lacked some of the abilities that are important for
an applied statistician who has to handle problems on a daily basis. I lacked
the library of rough and ready techniques to produce usable results. However,
I found that dealing with real applied problems, no matter how unimportant,
without this library, required serious consideration of the issues and was often
a source of theoretical insight and innovation.
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“. . . how wonderful the field of statistics
is. . . ”

David R. Brillinger

Department of Statistics
University of California, Berkeley, CA

4.1 Introduction

There are two purposes for this chapter. The first is to remind/introduce
readers to some of the important statistical contributions and attitudes of
the great American scientist John W. Tukey. The second is to take note of
the fact that statistics commencement speeches are important elements in the
communication of statistical lore and advice and not many seem to end up in
the statistical literature. One that did was Leo Breiman’s 1994.1 It was titled
“What is the Statistics Department 25 years from now?” Another is Tukey’s2

presentation to his New Bedford high school. There has been at least one
article on how to prepare such talks.3

Given the flexibility of this COPSS volume, in particular its encourage-
ment of personal material, I provide a speech from last year. It is not claimed
to be wonderful, rather to be one of a genre. The speech below was delivered
June 16, 2012 for the Statistics Department Commencement at the University
of California in Los Angeles (UCLA) upon the invitation of the Department
Chair, Rick Schoenberg. The audience consisted of young people, their rela-
tives and friends. They numbered perhaps 500. The event was outdoors on a
beautiful sunny day.

The title and topic4 were chosen with the goal of setting before young
statisticians and others interested the fact that America had produced a great
scientist who was a statistician, John W. Tukey. Amongst other things he
created the field Exploratory Data Analysis (EDA). He gave the American
statistical community prestige, and defined much of their work for years.

Further details on specific remarks are provided in a Notes section. The
notes are indexed by superscripts at their locations. A brief bibliography is
also provided.
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4.2 The speech (edited some)

I thank Rick for inviting me, and I also thank the young lady who
cheered when my name was announced. She has helped me get started.
It is so very nice to see Rick and the other UCLA faculty that I have
known through my academic years.

Part of my time I am a sports statistician, and today I take special
note of the Kings5 winning the Stanley Cup6 five days ago. I congrat-
ulate you all for surely your enthusiasm energized your team. I remark
that for many years I have had a life-size poster of Wayne Gretzky,7

wearing a Kings uniform, in my Berkeley office,8 Rick would have seen
it numerous times. All of you can enjoy this victory. I can tell you
that I am still enjoying my Leafs9 victory although there has been a
drought since.

Rick asked me to talk about “how wonderful the field of statistics
is.” No problem. I welcome the opportunity. I have forever loved my
career as a statistical scientist, and in truth don’t understand why
every person doesn’t wish to be a statistician,10 but there is that look.
I mean the look one receives when someone asks what you do, and you
say “statistics.” As an example I mention that a previous University
of California President once told me at a reception, seemingly proudly,
that statistics had been the one course he had failed in his years at the
University of California. Hmmh.

My talk this afternoon will provide a number of quotations associated
with a great American scientist, Rick’s statistical grandfather,

John Wilder Tukey (1915–2000)

To begin, Rick, perhaps you know this already, but in case not, I men-
tion that you owe John Tukey for your having an Erdős number of 4.11

Mr. Tukey had a number of aliases including: John Tukey, Mr. Tukey,
Dr. Tukey, Professor Tukey, JWT, and my favorite — The Tuke. The
Tuke was born June 16, 1915 in New Bedford, Massachusetts, and in
some ways he never left. He was a proud New Englander, he ate apple
pie for breakfast, and he bought his Princeton house putting cash on
the barrelhead.

Dr. Tukey was a unique individual during his childhood, as a professor,
as an advisor, as an executive, and as a consultant. He learned to read
at a very young age and was home schooled through high school. His
higher education included Bachelor’s and Master’s degrees in Chem-
istry from Brown University in 1936 and 1937, followed by a Master’s
and a Doctorate in Mathematics from Princeton in 1938 and 1939.
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He went on to be Higgins Professor at Princeton and Associate Ex-
ecutive Director of Research Information Sciences at Bell Telephone
Laboratories. As a graduate student at Princeton he drew attention
by serving milk instead of the usual beer at his doctoral graduation
party.12

John Tukey was quick, like Richard Feynman.13 He could keep track
of time while reciting poetry and seemingly do three different things
simultaneously. I watched him continually, I guess, because I had never
seen anyone quite like him before. He was called upon continually to
provide advice to presidents and other decision makers. He created
words and phrases like: bit, software, saphe cracking, the jackknife and
his marvelous creation, EDA.14 He delighted in vague concepts, things
that could be made specific in several ways, but were often better left
vague. He worked in many fields including: astronomy, cryptography,
psephology, information retrieval, engineering, computing, education,
psychology, chemistry, pollution control, and economics.

John Tukey was firmly associated with Princeton and Bell Labs.15

Moreover, he had associations with UCLA. For example, I can men-
tion his friendship and respect for Will Dixon. Will started your Bio-
stat/Biomath group here in 1950 and had been John’s colleague at the
Fire Control Research Office (FCRO)16 in World War II.

John had the respect of scientists and executives. The Princeton physi-
cist John Wheeler17 wrote:

“I believe that the whole country — scientifically, industri-
ally, financially — is better off because of him and bears ev-
idence of his influence. [· · · ] John Tukey, like John von Neu-
mann, was a bouncy and beefy extrovert, with interests and
skills in physics as well as mathematics.”

A former President of Bell Labs, W.O. Baker18 said in response to a
personal question:

“John was indeed active in the analysis of the Enigma19 sys-
tem and then of course was part of our force in the fifties
which did the really historic work on the Soviet codes as well.
So he was very effective in that whole operation. [· · · ] John
has had an incisive role in each major frontier of telecom-
munications science and technology: uses of transistors and
solid state; digital and computers.”

Dr. Tukey was involved in the construction of the von Neumann com-
puter. In particular, A. Burks wrote:

“John Tukey designed the electronic adding circuit we actu-
ally used in the Institute for Advanced Studies Computer. In
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this circuit, each binary adder fed its carry output directly
into the next stage without delay.”

John Tukey was renowned for pungent sayings.

“The best thing about being a statistician,” he once told a
colleague, “is that you get to play in everyone’s backyard.”

“The collective noun for a group of statisticians is a quarrel.”

“Perhaps because I began in a hard but usually non-
deductive science — chemistry — and was prepared to learn
‘facts’ rather than ‘proofs’, I have found it easier than most
to escape the mathematician’s implicit claim that the only
real sciences are the deductive ones.”

“Doing statistics is like doing crosswords except that one
cannot know for sure whether one has found the solution.”

“A consultant is a man who thinks with other people’s
brains.”

“The stronger the qualitative understanding the data analyst
can get of the subject matter field from which his data come,
the better — just so long as he does not take it too seriously.”

“Most statisticians are used to winning arguments with
subject-matter colleagues because they know both statistics
and the subject matter.”

“The first task of the analyst of data is quantitative detective
work.”

“Well, what I think you need is folk dancing.”20

Tukey had a quick wit. For example the seismologist Bruce Bolt and
I developed a method to estimate certain Earth parameters following a
great earthquake. I half-boasted to John, that with the next one Bruce
and I would be in the morning papers with estimates of the parameters
and their uncertainties. John’s response was,

“What if it is in Berkeley?”

Indeed.
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Tukey wrote many important books, and many papers. A selection of
the latter may be found in his Collected Works.21

Some advice for the students

Learn the theory for the theory becomes the practice.

Learn the math because that is the hard part of the other sciences.

In consulting contexts ask, ‘What is the question?’ Ask it again, and
again, and...

Answer a question with, ‘It depends,’ followed by saying what it de-
pends upon.

Be lucky, remembering that you make your luck.

Don’t forget that statisticians are the free-est of all scientists — they
can work on anything. Take advantage.

Closing words

Congratulations graduates.

May your careers be wonderful and may they emulate John Tukey’s in
important ways.

Thank you for your attention.

4.3 Conclusion

In my academic lifetime, statistical time series work went from the real-valued
discrete time stationary case, to the vector-valued case, to the nonstationary
case, to the point process case, to the spatial case, to the spatial-temporal
case, to the generalized function case, to the function-valued time parameter
case. It proved important that robust/resistant variants22 followed such cases.

In summary there has been a steady progression of generalization and
abstraction in modeling and data analysis of random processes. Learning the
mathematics and continuing this progression is the challenge for the future.

For more details on John Tukey’s life, see Brillinger (2002a) and Brillinger
(2002b). This work was partially supported by the NSF Grant DMS–
100707157.
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Notes

1. www.stat.berkeley.edu/~dpurdy/Breiman-1994-commencement.html

2. See p. 306 in Anscombe (2003).

3. See Rodriguez (2012).

4. These words come from an email of Rick’s describing his wishes for the
talk.

5. The Kings are the National Hockey League (NHL) team in Los Angeles.
They won the Stanley Cup in 2012.

6. The Stanley Cup is the trophy awarded to the NHL championship team
each year.

7. Wayne Gretzky is a renowned Canadian hockey player holding many NHL
records.

8. Room 417 in Evans Hall on the UCB campus.

9. The NHL team based in Toronto, Canada, where I grew up.

10. In Sacks and Ylvisaker (2012) one reads, “But seriously why would one
choose to be something other than a statistician?”

11. A mathematician’s Erdős number provides the “collaborative distance”
from that person to Paul Erdős.

12. The famous mathematician John von Neumann is reputed to have said,
“There is this very bright graduate student, and the remarkable thing is
that he does it all on milk.”

13. Richard Feynman was an American physicist known for his work in the
theoretical areas. With Julian Schwinger and Sin-Itiro Tomonaga, he re-
ceived the Nobel Prize in Physics in 1965.

14. Exploratory data analysis (EDA): 1. It is an attitude; and 2. A flexibility;
and 3. Some graph paper (or transparencies, or both). See Tukey (1965).

15. Bell Labs was an institution sponsored by AT&T. It was the birthplace
for many scientific and development advances.

16. The Fire Control Research Office (FRCO) located in Princeton during the
Second World War.

17. John Archibald Wheeler (1911–2008) was an American theoretical physi-
cist, and colleague of Tukey at Princeton. He worked in general relativity.
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18. Personal communication from W.O. Baker.

19. Enigma was an important code employed by the Germans in World War II.

20. Personal communication from Leo Goodman.

21. See Cleveland (1984–1994). There are eight volumes spread over the years
1984–1994.

22. Robust refers to quantities not strongly affected by non-normality, and
resistant refers to those not strongly affected by outliers.
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An unorthodox journey to statistics:
Equity issues, remarks on multiplicity

Juliet Popper Shaffer

Department of Statistics
University of California, Berkeley, CA

The progression to my statistics career was anomalous, and not to be rec-
ommended to anyone interested initially in statistics. A fuller account of my
earlier studies, as well as information on my childhood, can be found in an
interview I gave to Robinson (2005) as former Editor of the Journal of Edu-
cational (now Educational and Behavioral) Statistics (JEBS). It is available
for download on JSTOR and probably through many academic libraries.

In this paper I will recount briefly some pre-statistical career choices, de-
scribe a rather unorthodox way of becoming a statistician, introduce my major
area, multiplicity, and note briefly some of my work in it, and make some gen-
eral remarks about issues in multiplicity. I’ll discuss the more technical issues
without assuming any background in the subject. Except for a few recent pa-
pers, references will be only to some basic literature on the issues and not to
the recent, often voluminous literature.

5.1 Pre-statistical career choices

At about 14 years of age I read a remarkably inspiring book, “Microbe
Hunters,” by Paul de Kruif (1926), and decided immediately to be a scien-
tist. Since then, several other scientists have noted a similar experience with
that book.

In addition to an interest in science, mathematics was always attractive
to me. However, I thought of it wrongly as something very remote from the
real world, like doing crossword puzzles, and wanted to be more engaged with
that world.

My high school courses included a year each of beginning biology, chem-
istry, and physics. I wanted to take the four years of mathematics available,
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but that turned out to be a problem. At that time in my Brooklyn public
high school, and probably at the other public high schools in New York City,
boys were automatically enrolled in mathematics in the first semester of 9th
grade, and girls in a language of their choice. That left me with only 3 1/2
semesters, and course availability made it impossible to take more than one
mathematics class at a time.

This was just one example of the stereotyping, not to speak of outright
discrimination, against women in those years, especially in mathematics and
science. In fact, Brooklyn Technical High School, specializing in the science–
technology–engineering–mathematics (STEM) area, was restricted to boys at
that time. (It became co-ed in 1972.) My interview in JEBS discusses several
other such experiences.

I solved the problem by taking intermediate algebra as an individual read-
ing course, meeting once a week with a teacher and having problems assigned,
along with a geometry course. In that way I managed to take all four years
offered.

I started college (Swarthmore College) as a Chemistry major, but began to
consider other possibilities after the first year. Introductory psychology was
chosen in my second year to satisfy a distribution requirement. In the in-
troductory lecture, the professor presented psychology as a rigorous science of
behavior, both animal and human. Although some of my fellow students found
the lecture boring, I was fascinated. After a brief consideration of switching
to a pre-med curriculum, I changed my major to psychology.

In graduate school at Stanford University I received a doctorate in psy-
chology. I enjoyed my psychological statistics course, so took an outside con-
centration in statistics with several courses in the mathematics and statistics
departments.

There was then much discrimination against women in the academic job
world. During the last year at Stanford, I subscribed to the American Psycho-
logical Association’s monthly Employment Bulletin. Approximately half the
advertised jobs said “Men only.” Of course, that was before overt sex discrimi-
nation was outlawed in the Civil Rights act of 1964. After an NSF Fellowship,
used for a postdoctoral year working in mathematical psychology at Indiana
University with one of the major contributors to that field (William Estes),
I got a position in the Department of Psychology at the University of Kansas,
thankfully one of the more enlightened departments.

5.2 Becoming a statistician

I taught part-time during several years while my three children were small.
There were no special programs for this at the time, but fortunately my de-
partment allowed it. There was no sabbatical credit for part time, but finally,
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with enough full-time years to be eligible, I decided to use the sabbatical year
(1973–74) to improve my statistics background. I chose the University of Cal-
ifornia (UC) Berkeley, because I had been using a book, “Testing Statistical
Hypotheses,” by E.L. Lehmann, as background for my statistics teaching in
the Psychology Department.

As life sometimes evolves, during that year Erich Lehmann and I decided to
marry. After a one-year return to Kansas, and a one-year visiting appointment
at UC Davis in the Mathematics Department, I joined the Statistics Depart-
ment at UC Berkeley as a lecturer, later becoming a senior lecturer. Although
I had no degree in statistics, my extensive consulting in the Psychology De-
partment at Kansas gave me greater applied statistical experience than most
of the Statistics faculty at UC Berkeley, and I supervised a Berkeley Statistics
Department consulting service for many years. We probably had about 2000
clients during that time, mostly graduate students, but some faculty, retired
faculty, and even outside individuals of all kinds. One of the most interesting
and amusing contacts was with a graduate student studying caterpillar be-
havior. The challenge for us was that when groups of caterpillars were being
observed, it was not possible to identify the individuals, so counts of behaviors
couldn’t be allocated individually. He came to many of our meetings, and at
the end invited all of us to a dinner he was giving in his large co-op, giving us
a very fancy French menu. Can you guess what kind of a menu it was? Much
to my regret, I didn’t have the courage to go, and none of the consultants
attended either.

During this early time in the department, I was also the editor of JEBS
(see above) for four years, and taught two courses in the Graduate School of
Education at Berkeley.

It’s interesting to compare teaching statistics to psychologists and teach-
ing it to statisticians. Of course the level of mathematical background was far
greater among the statisticians. But the psychologists had one feature that
statisticians, especially those going into applied work, would find valuable.
Psychological research is difficult because the nature of the field makes it pos-
sible to have many alternative explanations, and methods often have defects
that are not immediately obvious. As an example of the latter, I once read a
study that purported to show that if shocks were given to a subject while a
particular word was being read, the physiological reactions would generalize
to other words with similar meanings. As a way of creating time between the
original shock and the later tests on alternative words, both with similar and
dissimilar meanings, subjects were told to sit back and think of other things.
On thinking about this study, it occurred to me that subjects that had just
been shocked on a particular word could well be thinking about other words
with similar meanings in the interim, thus bringing thoughts of those words
close to the time of the shock, and not separated from it as the experimenters
assumed.

Thus psychologists, as part of their training, learn to think deeply about
such alternative possibilities. One thing that psychologists know well is that in-
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dividual differences are so important that it is essential to distinguish between
multiple methods applied to the same groups of individuals and methods ap-
plied to different independent groups. I found that the statisticians were less
sensitive to this than the psychologists. In the consulting classes, they some-
times forgot to even ask about that. Also, they sometimes seemed to think
that with the addition of a few variables (e.g., gender, ethnicity, other distin-
guishing variables) they could take care of individual differences, and treat the
data as conditionally independent observations, whereas psychologists would
be quite wary of making that assumption. There must be other fields in which
careful experimental thinking is necessary. This is not statistics in a narrow
sense, but is certainly important for applied statisticians who may be involved
in designing studies.

5.3 Introduction to and work in multiplicity

In addition to teaching many psychology courses during my time at Kansas,
I also taught most of the statistics courses to the psychology undergraduate
and graduate students. Analysis of variance (ANOVA) was perhaps the most
widely-used procedure in experimental psychology. Consider, for example, a
one-way treatment layout to be analyzed as an ANOVA. Given a significant
F statistic, students would then compare every treatment with every other
to see which were different using methods with a fixed, conventional Type I
error rate α (usually .05) for each. I realized that the probability of some
false conclusions among these comparisons would be well above this nominal
Type I error level, growing with the number of such comparisons. This piqued
my interest in multiplicity problems, which eventually became my major area
of research.

The criterion most widely considered at that time was the family-wise
error rate (FWER), the probability of one or more false rejections (i.e., rejec-
tions of true hypotheses) in a set of tests. If tests are carried out individually
with specified maximum (Type I) error rates, the probability of one or more
errors increases with the number of tests. Thus, the error rate for the whole
set should be considered. The statistical papers I read all referred to an un-
published manuscript, “The Problem of Multiple Comparisons,” by John W.
Tukey (1953). In those days, before Xerox, it was impossible to get copies of
that manuscript. It was frustrating to have to use secondary sources. Fortu-
nately, with the advent of Xerox, that problem has disappeared, and now,
in addition, the manuscript is included in Tukey’s Collected Works (Braun,
1994).

Tukey’s treatment was extremely insightful and organized the field for
some time to follow. In his introduction, he notes that he should have published
it as a book at that time but “One reason this did not happen was the only
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piece of bad advice I ever had from Walter Shewhart! He told me it was unwise
to put a book out until one was sure that it contained the last word of one’s
thinking.”

My earlier work in multiple comparisons is described in the interview I gave
to Robinson (2005). Since the time of Tukey’s manuscript, a suggested alter-
native measure of error to be controlled is the False Discovery Rate (FDR),
introduced by Benjamini and Hochbert (1995). This is the expected proportion
of false rejections, defined as zero if there are no false rejections. Controlling
FDR implies that if there are a reasonable number of true rejections a small
proportion of false ones is tolerable. John Tukey himself (personal remark)
was enthusiastic about this new approach for some applications.

One of my early pieces of work that started a line of research by others
arose from an interest in directional inference. When one tests a hypothesis
of the form θ = θ0, where θ0 is a specific value, it is usually of interest, if
the hypothesis is rejected, to decide either that θ > θ0 or θ < θ0, although
strictly speaking the permitted alternative is θ '= θ0. In fact, most researchers
automatically conclude that the direction of sample departure from θ0 is the
correct direction. Do these more detailed inferences lead to the probability of
errors (often called Type III errors) beyond the acceptable bounds? In some
methods, the sample outcome can be reformulated as a confidence interval
about a sample value of θ, in which case, if θ0 is not included in the interval,
the usual directional inference is acceptable. However, in some more complex
methods for testing such hypotheses, the results cannot be so reformulated.
Although it seemed intuitively clear that the usual directional inference would
still be valid, it turned out that I couldn’t prove it, and in fact ended up
proving it was not necessarily true. This began a whole line of studies. A
paper by Finner (1999) summarized what was known up to that point. There
is some extended work on directional inference since then (see, e.g., Guo et
al. 2010), but there are still unsolved problems in this area.

Another early line of work that has had many applications is the consider-
ation of logical as well as statistical restrictions, in a way that can strengthen
procedures by eliminating some steps, thereby increasing power. An example
of some of the more recent work in this area is Westfall and Tobias (2007).
Both the above lines of research are discussed in my JEBS paper, so won’t be
further explained here.

Recently, I have revisited an earlier research interest, interpretability, with
a new approach that is somewhat easier to apply than my earlier formulation.
Outcomes are considered relatively more interpretable if the rejected hypothe-
ses of equality result in separation of treatments into nonoverlapping clusters.
A recent publication (Shaffer et al., 2013) describes the approach in detail. It
deals with both FWER and FDR, as well as the per-family error rate (PFER),
the expected number of false rejections, also defined in the Tukey manuscript.

In the context of pairwise comparisons of population means, for each con-
trol criterion (FWER or FDR), one can compare methods based on individual
p-values, one for each hypothesis, with methods based on considering the range
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of sample treatment outcomes between the two means being compared. Our
work shows that range-based methods lead to a higher proportion of separa-
tions than individual p-value methods. In connection with the FDR, it appears
that an old test procedure, the Newman–Keuls, which fell out of favor because
it did not control FWER, does control FDR. Extensive simulation results sup-
port this conclusion; proofs are incomplete. Interpretability is the main issue
I’m working on at present.

5.4 General comments on multiplicity

Although championed by the very eminent John Tukey, multiplicity was a
backwater of research and the issues were ignored by many researchers. This
area has become much more prominent with the recent advent of “Big Data.”

Technological advances in recent years, as we know, have made massive
amounts of data available bringing the desire to test thousands if not mil-
lions of hypotheses; application areas, for example, are genomics, proteomics,
neurology, astronomy. It becomes impossible to ignore the multiplicity issues
in these cases, and the field has enjoyed a remarkable development within
the last 20 years. Much of the development has been applied in the context
of big data. The FDR as a criterion is often especially relevant in this con-
text. Many variants of the FDR criterion have been proposed, a number of
them in combination with the use of empirical Bayes methods to estimate the
proportion of true hypotheses. Resampling methods are also widely used to
take dependencies into account. Another recent approach involves considera-
tion of a balance between Type I and Type II errors, often in the context of
simultaneous treatment of FDR and some type of false nondiscovery rate.

Yet the problems of multiplicity are just as pressing in small data situa-
tions, although often not recognized by practitioners in those areas. According
to Young (2009), many epidemiologists feel they don’t have to take multiplic-
ity into account. Young and others claim that the great majority of apparent
results in these fields are Type I errors; see Ioannidis (2005). Many of the
newer approaches can’t be applied satisfactorily in small data problems.

The examples cited above — one-way ANOVA designs and the large data
problems noted — are what might be called well-structured testing problems.
In general, there is a single set of hypotheses to be treated uniformly in testing,
although there are variations. Most methodological research applies in this
context. However, there have always been data problems of a very different
kind, which might be referred to as ill-structured. These are cases in which
there are hypotheses of different types, and often different importance, and it
isn’t clear how to structure them into families, each of which would be treated
with a nominal error control measure.
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A simple example is the division into primary and secondary outcomes
in clinical research. If the primary outcomes are of major importance, how
should that be taken into account? Should error control at a nominal level,
for example the usual .05 level, be set separately for each set of outcomes?
Should there be a single α level for the whole set, but with different weights
on the two different types of outcomes? Should the analysis be treated as
hierarchical, with secondary outcomes tested only if one (or more) of the
primary outcomes shows significant effects?

A more complex example is the analysis of a multifactor study by ANOVA.
The standard analysis considers the main effect of each factor and the interac-
tions of all factors. Should the whole study be evaluated at the single nominal
α level? That seems unwise. Should each main effect be evaluated at that
level? How should interactions be treated? Some researchers feel that if there
is an interaction, main effects shouldn’t be further analyzed. But suppose one
high-order interaction is significant at the nominal α level. Does that mean
the main-effect tests of the factors involved aren’t meaningful?

Beyond these analyses, if an effect is assumed to be significant, how should
the ensuing more detailed analysis (e.g., pairwise comparisons of treatments)
be handled, considering the multiplicity issues? There is little literature on this
subject, which is clearly very difficult. Westfall and Young (1993, Chapter 7)
give examples of such studies and the problems they raise.

Finally, one of the most complex situations is encountered in a large sur-
vey, where there are multiple factors of different types, multiple subgroups,
perhaps longitudinal comparisons. An example is the National Assessment
of Educational Progress (NAEP), now carried out yearly, with many educa-
tional subjects, many subgroups (gender, race-ethnicity, geographical area,
socio-economic status, etc.), and longitudinal comparisons in all these.

A crucial element in all such ill-structured problems, as noted, is the defini-
tions of families for which error control is desired. In my two years as director
of the psychometric and statistical analysis of NAEP at Educational Testing
Service, we had more meetings on this subject, trying to decide on family defi-
nitions and handling of interactions, than any other. Two examples of difficult
problems we faced:

(a) Long term trend analyses were carried out by using the same test at dif-
ferent time points. For example, nine-year-olds were tested in mathematics
with an identical test given nine times from 1978 to 2004. At first it was
planned to compare each time point with the previous one. In 1982, when
the second test was given, there was only one comparison. In 2004, there
were eight comparisons (time 2 with time 1, time 3 with time 2, etc.).
Treating the whole set of comparisons at any one time as a family, the
family size increased with the addition of each new testing time. Thus,
to control the FWER, each pairwise test had to reach a stricter level of
significance in subsequent analyses. But it would obviously be confusing to
call a change significant at one time only to have it declared not significant
at a later time point.
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(b) Most states, as well as some large cities, take part in state surveys, giving
educational information for those units separately. Suppose one wants to
compare every unit with every other. With, say, 45 units, the number of
comparisons in the family is 45×44/2, or 990. On the other hand, people in
a single unit (e.g., state) are usually interested mainly in how it compares
with other units; these comparisons result in a family size of 44. Results
are likely to differ. How can one reconcile the different decisions, when
results must be transmitted to a public that thinks that there should be
a single decision for each comparison?

Extensive background material and results for NAEP are available at
nces.ed.gov/nationsreportcard. In addition, there is a book describing the de-
velopment of the survey (Jones and Olkin, 2004). For information specifically
on handling of multiplicity issues, see nces.ed.gov/nationsreportcard/
tdw/analysis/2000\_2001/infer\_multiplecompare\_fdr.asp.

In summary, the work on multiplicity has multiplied with the advent of big
data, although the ill-structured situations described above have been around
for a long time with little formal attention, and more guidance on handling of
family size issues with examples would be a contribution that could result in
wider use of multiple comparison methods.
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Statistics before and after my COPSS Prize

Peter J. Bickel
Department of Statistics
University of California, Berkeley, CA

This is largely an account of my research career, the development of different
interests as I moved along, and the influences, people and ideas that deter-
mined them. It also gives an idiosyncratic view of the development of the field
and ends with some words of advice.

6.1 Introduction

I was fortunate enough to be young enough to receive the first COPSS prize in
1979. It was a fairly rushed affair. I flew back from France where I was giving
some lectures, mumbled that I felt like the robber in a cops and robbers drama
since I didn’t feel I had done enough to deserve the prize, and then returned
to France the next day.

This is partly the story of my life before and after the prize and my con-
tributions, such as they were, but, more significantly, it describes my views
on the changes in the main trends in the field that occurred during the last
30+ years. In addition, given my age of 72, I can’t resist giving advice.

6.2 The foundation of mathematical statistics

During the period 1940 to 1979 an impressive theoretical edifice had been
built on the foundations laid by Fisher, Pearson and Neyman up to the 1940s
and then built up by Wald, Wolfowitz, LeCam, Stein, Chernoff, Hodges and
Lehmann, and Kiefer, among others, on the frequentist side and by L.J. Savage
on the Bayesian side, with Herbert Robbins flitting in between. There were,
of course, other important ideas coming out of the work of people such as
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I.J. Good, H.O. Hartley, J.W. Tukey and others, some of which will come up
later. The focus of most of these writers was on classical inference applied to
fairly standard situations, such as linear models, survey sampling and designed
experiments as explored in the decision-theoretic framework of Wald, which
gave a clear infrastructure for both frequentist and Bayesian analysis. This in-
cluded the novel methodology and approach of sequential analysis, introduced
by Wald in the 1950s, and the behavior of rank-based nonparametric tests and
estimates based on them as developed by Hodges and Lehmann. Both of these
developments were pushed by World War II work. Robustness considerations
were brought to the fore through Tukey’s influential 1958 paper “The Future
of Data Analysis” and then the seminal work of Hampel and Huber.

6.3 My work before 1979

My thesis with Erich Lehmann at the University of California (UC) Berke-
ley was on a robust analogue of Hotelling’s T 2 test and related estimates.
I then embarked on a number of contributions to many of the topics men-
tioned, including more robustness theory, Bayesian sequential analysis, curve
estimation, asymptotic analysis of multivariate goodness-of-fit tests, and the
second-order behavior of rank test power and U -statistics. Several of the pa-
pers arose from questions posed by friends and colleagues. Thus, some general
results on asymptotic theory for sequential procedures as the cost of observa-
tion tended to zero was prompted by Yossi Yahav. The second-order analysis of
nonparametric tests grew out of a question asked by Hodges and Lehmann in
their fundamental paper published in 1970 (Hodges and Lehmann, 1970). The
question was picked up independently by van Zwet and myself and we then
decided to make common cause. The resulting work led to the development of
second-order theory for U -statistics by van Zwet, Götze and myself; see Bickel
(1974) and subsequent papers. The work on curve estimation originated from
a question posed by Murray Rosenblatt.

I even made an applied contribution in 1976 as a collaborator in the analy-
sis of “Sex bias in graduate admission at Berkeley” which appeared in Science
(Bickel et al., 1975). Thanks to my colleague David Freedman’s brilliant text-
book Statistics, it garnered more citations than all my other work. This was
initiated by a question from Gene Hammel, Professor of Anthropology and
then Associate Dean of the Graduate Division.

Two opportunities to work outside of UC Berkeley had a major impact on
my research interests, the second more than the first, initially.
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6.3.1 Imperial College

In 1965–66 I took a leave of absence from UC Berkeley and spent a year at
Imperial College, London during the last year that George Barnard held the
Statistics Chair. My job was mainly tutoring undergraduates in their classes
in probability theory, but I became acquainted with John Copas in addition to
Barnard at Imperial and with some of the other British statisticians and prob-
abilists, including David Cox, Henry Daniels, Allan Stuart, Jim Durbin, the
two very different Kendalls, David and Maurice, and others. The exposure
to data analysis, after the theory-steeped Berkeley environment, was some-
what unsettling but I wonder if, at least subconsciously, it enabled me to deal
sensibly with the sex bias in graduate admissions questions.

I returned to Imperial in 1975–76 during David Cox’s tenure as chair.
I interacted with an active group of young people including Tony Atkinson,
Agnes Herzberg, Ann Mitchell, and Adrian Smith. Agnes and I initiated some
work on robust experimental design but my knowledge of martingales was too
minimal for me to pursue David Cox’s suggestion to further explore the Cox
survival analysis model. This again was an opportunity missed, but by then
I was already involved in so many collaborations that I felt unready to take
on an entirely new area.

6.3.2 Princeton

My second exposure to a very different environment came in 1970–71 when,
on a Guggenheim Fellowship, I joined David Andrews, Peter Huber, Frank
Hampel, Bill Rogers, and John Tukey during the Princeton Robustness Year.
There I was exposed for the first time to a major computational simulation
effort in which a large number of estimates of location were compared on a
large number of possible distributions. I found to my pleased surprise that
some of my asymptotic theory based ideas, in particular, one-step estimates,
really worked. On the other hand, I listened, but didn’t pay enough attention,
to Tukey. If, for instance, I had followed up on a question of his on the behavior
of an iteration of a one-step estimate I had developed to obtain asymptotic
analogues of linear combinations of order statistics in regression, I might have
preceded at least some of the lovely work of Koenker and Basset on quantile
regression. However, unexpected questions such as adaptation came up in
talking to Peter Huber and influenced my subsequent work greatly.

The moral of these stories is that it is very important to expose yourself
to new work when you’re young and starting out, but that their effects may
not be felt for a long time if one is, as I am, basically conservative.

6.3.3 Collaboration and students

Most of my best work in the pre-1979 period was with collaborators who often
deserve much more credit than I do, including Yossi Yahav, W.R. van Zwet,
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M. Rosenblatt, my advisor and friend, E.L. Lehmann, and his favorite collab-
orator who brought me into statistics, J.L. Hodges, Jr. This trend continued
with additional characters throughout my career. I should note that I have
an unfair advantage over these friends since, with ‘B’ starting my name, I am
almost always listed first in the list of authors, though at that time much less
fuss was made about this in the mathematical sciences than now.

I acquired PhD students rather quickly, partly for selfish reasons. I always
found that I could think more clearly and quickly in conversation than in
single-handedly batting my head against a brick wall. More significantly, I like
to interact with different minds whose foci and manner of operation are quite
different from mine and whose knowledge in various directions is broader and
deeper.

Thus my knowledge of invariance principles, concentration inequalities and
the like which led to the work on distribution-free multivariate tests came in
part out of working with Hira Koul on confidence regions for multivariate
location based on rank tests.

There are, of course, students who have had a profound effect on my re-
search directions. Some of them became lifelong collaborators. I will name six
in advance. Their roles will become apparent later. There are others, such as
Jianqing Fan and Jeff Wu, who have played and are playing very important
roles in the field but whose interests have only occasionally meshed with mine
after their doctorates, though I still hope for more collaborations with them,
too.

(a) Ya’acov Ritov (PhD in Statistics from Hebrew University, Jerusalem, su-
pervised during a 1979–80 sabbatical)

(b) Elizaveta Levina (PhD in Statistics, UC Berkeley, 2002)

(c) Katerina Kechris (PhD in Statistics, UC Berkeley, 2003)

(d) Aiyou Chen (PhD in Statistics, UC Berkeley, 2004)

(e) Bo Li (PhD in Statistics, UC Berkeley, 2006)

(f) James (Ben) Brown (PhD in Applied Science and Technology, College of
Engineering, UC Berkeley, 2008).

6.4 My work after 1979

In most fields the amount, types and complexity of data have increased on an
unprecedented scale. This, of course, originated from the increasing impact
of computers and the development of refined sensing equipment. The rise in
computing capabilities also increased greatly the types of analysis we could
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make. This was first perceived in statistics by Brad Efron, who introduced
Monte Carlo in the service of inference by inventing the bootstrap. David
Freedman and I produced some of the first papers validating the use of the
bootstrap in a general context.

6.4.1 Semiparametric models

In the 1980s new types of data, arising mainly from complex clinical trials,
but also astronomy and econometrics, began to appear. These were called
semiparametric because they needed both finite- and infinite-dimensional pa-
rameters for adequate description.

Semiparametric models had been around for some time in the form of
classical location and regression models as well as in survival analysis and
quality control, survey sampling, economics, and to some extent, astronomy.
There had been theoretical treatments of various aspects by Ibragimov and
Khasminskii, Pfanzagl, and Lucien LeCam at a high level of generality. The
key idea for their analysis was due to Charles Stein. Chris Klaassen, Ya’acov
Ritov, Jon Wellner and I were able to present a unified viewpoint on these
models, make a key connection to robustness, and develop methods both for
semiparametric performance lower bounds and actual estimation. Our work,
of which I was and am still proud, was published in book form in 1993. Much
development has gone on since then through the efforts of some of my co-
authors and others such as Aad van der Vaart and Jamie Robins. I worked
with Ritov on various aspects of semiparametrics throughout the years, and
mention some of that work below.

6.4.2 Nonparametric estimation of functions

In order to achieve the semiparametric lower bounds that we derived it became
clear that restrictions had to be placed on the class of infinite dimensional
“nuisance parameters.” In fact, Ritov and I were able to show in a particular
situation, the estimation of the integral of the square of a density, that even
though the formal lower bounds could be calculated for all densities, efficient
estimation of this parameter was possible if and only if the density obeyed a
Lipschitz condition of order larger than 1/4 and

√
n estimation was possible

if and only if the condition had an exponent greater than or equal to 1/4.
In the mid-’80s and ’90s David Donoho, Iain Johnstone and their col-

laborators introduced wavelets to function estimation in statistics; see, e.g.,
Donoho et al. (1996). With this motivation they then exploited the Gaussian
white noise model. This is a generalization of the canonical Gaussian linear
model, introduced by Ibragimov and Khasminskii, in which one could quan-
titatively study minimax analysis of estimation in complex function spaces
whose definition qualitatively mimics properties of functions encountered in
the real world. Their analysis led rather naturally to regularization by thresh-
olding, a technique which had appeared in some work of mine on procedures
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which could work well in the presence of bias (Bickel, 1981) although I was far
from putting this work in its proper context. Their work in this area, earlier
work on detecting sparse objects (Donoho et al., 1992), and earlier work of
Stone (1977) made it apparent that, without much knowledge of a statistical
problem, minimax bounds indicated that nothing much could be achieved in
even moderate dimensions.

On the other hand, a branch of computer science, machine learning, had
developed methodology such as neural nets, and on the statistics side, Leo
Breiman and Jerry Friedman, working with Richard Olshen and Charles
Stone, developed CART. Both of these methods of classification use very high
dimensional predictors and, relative to the number of predictors, small train-
ing sets. These methods worked remarkably well, far better than the min-
imax theory would lead us to believe. These approaches and a plethora of
other methods developed in the two communities, such as Boosting, Random
Forests, and above all “lasso” driven methods involve, implicitly or explic-
itly, “regularization,” which pulls solutions of high dimensional optimization
problems towards low dimensional spaces.

In many situations, while we know little about the problem, if we can
assume that, in an appropriate representation, only a relatively few major
factors matter, then theorists can hope to reconcile the “Curse of Dimension-
ality” minimax results with the observed success of prediction methods based
on very high dimensional predictor sets.

Under the influence of Leo Breiman I became very aware of these devel-
opments and started to contribute, for instance, to the theory of boosting in
Bickel et al. (2006). I particularly liked a simple observation with Bo Li, grow-
ing out of my Rietz lecture (Bickel and Li, 2007). If predictors of dimension
p are assumed to lie on an unknown smooth d-dimensional manifold of Rp

with d * p, then the difficulty of the nonparametric regression problem is
governed not by p but by d, provided that regularization is done in a suitably
data-determined way; that is, bandwidth selection is done after implicit or
explicit estimation of d.

6.4.3 Estimating high dimensional objects

My views on the necessary existence of low dimensional structure were greatly
strengthened by working with Elizaveta Levina on her thesis. We worked with
Jitendra Malik, a specialist in computer vision, and his students, first in ana-
lyzing an algorithm for texture reconstruction developed by his then student,
Alexei Effros, and then in developing some algorithms for texture classifi-
cation. The first problem turned out to be equivalent to a type of spatial
bootstrap. The second could be viewed as a classification problem based on
samples of 1000+ dimensional vectors (picture patches) where the goal was
to classify the picture from which the patches were taken into one of several
classes.
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We eventually developed methods which were state-of-the-art in the field
but the main lesson we drew was that just using patch marginal distributions
(a procedure sometimes known as naive Bayes) worked better than trying to
estimate joint distributions of patch pixels.

The texture problem was too complex to analyze further, so we turned to
a simpler problem in which explicit asymptotic comparisons could be made:
classifying a new p-dimensional multivariate observation into one of two un-
known Gaussian populations with equal covariance matrices, on the basis of a
sample of n observations from each of the two populations (Bickel and Levina,
2004). In this context we compared the performance of

(i) Fisher’s linear discriminant function

(ii) Naive Bayes: Replace the empirical covariance matrix in Fisher’s function
by the diagonal matrix of estimated variances, and proceed as usual.

We found that if the means and covariance matrices range over a sparsely
approximable set and we let p increase with n, so that p/n→∞, then Fisher’s
rule (using the Moore–Penrose inverse) performed no better than random
guessing while naive Bayes performed well, though not optimally, as long as
n−1 log p→ 0.

The reason for this behavior was that, with Fisher’s rule, we were unneces-
sarily trying to estimate too many covariances. These results led us — Levina
and I, with coworkers (Bickel and Levina, 2008) — to study a number of meth-
ods for estimating covariance matrices optimally under sparse approximation
assumptions. Others, such as Cai et al. (2010), established minimax bounds
on possible performance.

At the same time as this work there was a sharp rise of activity in trying to
understand sparsity in the linear model with many predictors, and a number
of important generalizations of the lasso were proposed and studied, such
as the group lasso and the elastic net. I had — despite appearing as first
author — at most a supporting part in this endeavor on a paper with Ritov
and Tsybakov (Bickel et al., 2009) in which we showed the equivalence of a
procedure introduced by Candès and Tao, the Danzig selector, with the more
familiar lasso.

Throughout this period I was (and continue to be) interested in semipara-
metric models and methods. An example I was pleased to work on with my
then student, Aiyou Chen, was Independent Component Analysis, a method-
ology arising in electrical engineering, which had some clear advantages over
classical PCA (Chen and Bickel, 2006). Reconciling ICA and an extension
with sparsity and high dimension is a challenge I’m addressing with another
student.

A more startling and important analysis is one that is joint with Bin Yu,
several students, and Noureddine El Karoui (Bean et al., 2013; El Karoui
et al., 2013), whose result appears in PNAS. We essentially studied robust
regression when p/n → c for some c ∈ (0, 1), and showed that, contrary to
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what is suggested in a famous paper of Huber (Huber, 1973), the asymptotic
normality and 1/

√
n regime carries over, with a few very significant excep-

tions. However, limiting variances acquire a new Gaussian factor. As Huber
discovered, contrasts with coefficients dependent on the observed predictors
may behave quite differently. Most importantly, the parameters of the Gaus-
sian limits depend intricately on the nature of the design, not simply on the
covariance matrix of the predictors. This work brought out that high dimen-
sion really presents us with novel paradigms. For p very large, garden variety
models exhibit strange properties. For instance, symmetric p-variate Gaussian
distributions put almost all of their mass on a thin shell around the border of
the sphere of radius

√
p that is centered at the mean. It was previously noted

that for inference to be possible one would like mass to be concentrated on
low dimensional structures. But finding these structures and taking the search
process into account in inference poses very new challenges.

6.4.4 Networks

My latest interest started around 2008 and is quite possibly my last theo-
retical area of exploration. It concerns inference for networks, a type of data
arising first in the social sciences, but which is now of great interest in many
communities, including computer science, physics, mathematics and, last but
not least, biology.

Probabilistically, this is the study of random graphs. It was initiated by
Erdős and Rényi (1959). If you concentrate on unlabeled graphs, which is so
far essentially the only focus of the probability community, it is possible to
formulate a nonparametric framework using work of Aldous and Hoover which
permits the identification of analogues of i.i.d. variables and hence provides
the basis of inference with covariates for appropriate asymptotics (Bickel and
Chen, 2009). Unfortunately, fitting even the simplest parametric models by
maximum likelihood is an NP-hard problem. Nevertheless, a number of sim-
ple fitting methods based on spectral clustering of the adjacency or Laplacian
matrices (Rohe et al., 2011; Fishkind et al., 2013), combined with other ideas,
seem to work well both in theory and practice. An interesting feature of this
theory is that it ties into random matrix theory, an important and very active
field in probability and mathematics with links to classical Gaussian multivari-
ate theory which were recently discovered by Iain Johnstone and his students
(Johnstone, 2008).

In fact, more complex types of models and methods, all needing covariates,
are already being used in an ad hoc way in many applications. So there’s lots
to do.

6.4.5 Genomics

Following work initiated in 2005 with my then student, Katerina Kechris, and
a colleague in molecular biology, Alex Glazer, I began to return to a high
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school interest, biology. After various missteps I was able to build up a group
with a new colleague, Haiyan Huang, supported initially by an NSF/NIGMS
grant, working on problems in molecular biology with a group at the Lawrence
Berkeley Lab. Through a series of fortunate accidents our group became the
only statistics group associated with a major multinational effort, the EN-
CODE (Encyclopaedia of DNA) project. The end product of this effort, apart
from many papers in Nature, Science, Genome Research and the like, was a
terabyte of data (Birney et al., 2007).

I was fortunate enough to acquire a student, James (Ben) Brown, from
an engineering program at Berkeley, who had both an intense interest in, and
knowledge of, genomics and also the critical computational issues that are
an integral part of such a collaboration. Through his participation, I, and
to a considerable extent, Haiyan, did not need to immerse ourselves fully in
the critical experimental issues underlying a sensible data analysis. Ben could
translate and pose old and new problems in terms we could understand.

The collaboration went on for more than five years, including a pilot
project. During this time Ben obtained his PhD, continued as a postdoc and
is now beset with job offers from computational biology groups at LBL and
all over. Whether our group’s participation in such large scale computational
efforts can continue at the current level without the kind of connection to
experimentalists provided by Ben will, I hope, not be tested since we all wish
to continue to collaborate.

There have been two clearly measurable consequences of our participation.

(a) Our citation count has risen enormously as guaranteed by participation
in high-visibility biology journals.

(b) We have developed two statistical methods, the GSC (Genome Structural
Correction) and the IDR (the Irreproducible Discovery Rate) which have
appeared in The Annals of Applied Statistics (Bickel et al., 2010; Li et al.,
2011) and, more significantly, were heavily used by the ENCODE consor-
tium.

6.5 Some observations

One of the things that has struck me in writing this is that “old ideas never
die” and they may not fade away. Although I have divided my interests into
coherent successive stages, in fact, different ideas frequently reappeared.

For instance, second-order theory and early papers in Bayes procedures
combined in a paper with J.K. Ghosh in 1990 (Bickel and Ghosh, 1990) which
gave what I still view as a neat analysis of a well-known phenomenon called
the Bartlett correction. Theoretical work on the behavior of inference in Hid-
den Markov Models with Ritov and Ryden (Bickel et al., 1998) led to a study
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which showed how difficult implementation of particle filters is in the atmo-
spheric sciences (Snyder et al., 2008). The work in HMM came up again in
the context of traffic forecasting (Bickel et al., 2007) and some work in as-
trophysics (Meinshausen et al., 2009). Both papers were close collaborations
with John Rice and the second included Nicolai Meinshausen as well. The
early bootstrap work with Freedman eventually morphed into work on the m
out of n bootstrap with Götze and van Zwet (Bickel et al., 1997) and finally
into the Genome Structural Correction Method (Bickel et al., 2010).

Another quite unrelated observation is that to succeed in applications one
has to work closely with respected practitioners in the field. The main rea-
son for this is that otherwise, statistical (and other mathematical science)
contributions are dismissed because they miss what practitioners know is the
essential difficulty. A more pedestrian reason is that without the imprimatur
and ability to translate of a respected scientist in the field of application, sta-
tistical papers will not be accepted in the major journals of the science and
hence ignored.

Another observation is that high-order computing skills are necessary to
successfully work with scientists on big data. From a theoretical point of view,
the utility of procedures requires not only their statistical, but to an equal
extent, their computational efficiency. Performance has to be judged through
simulations as well as asymptotic approximations.

I freely confess that I have not subscribed to the principle of honing my own
computational skills. As a member of an older generation, I rely on younger
students and collaborators for help with this. But for people starting their
careers it is essential. The greater the facility with computing, in addition to
R and including Matlab, C++, Python or their future versions, the better you
will succeed as a statistician in most directions.

As I noted before, successful collaboration requires the ability to really
understand the issues the scientist faces. This can certainly be facilitated by
direct study in the field of application.

And then, at least in my own career, I’ve found the more mathematics
I knew, from probability to functional analysis to discrete mathematics, the
better. And it would have been very useful to have learned more information
theory, statistical physics, etc., etc.

Of course I’m describing learning beyond what can be done or is desirable
in a lifetime. (Perhaps with the exception of John von Neumann!) We all spe-
cialize in some way. But I think it’s important to keep in mind that statistics
should be viewed as broadly as possible and that we should glory in this time
when statistical thinking pervades almost every field of endeavor. It is really
a lot of fun.
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The accidental biostatistics professor

Donna J. Brogan

Department of Biostatistics and Bioinformatics
Emory University, Atlanta, GA

Several chapters in this book summarize the authors’ career paths after com-
pletion of graduate school. My chapter includes significant childhood and early
adult experiences that coalesced into eventually completing a PhD degree in
statistics. I also summarize some highlights of my biostatistics academic ca-
reer post PhD at two universities over 37 years. My educational and career
paths had twists and turns and were not planned in advance, but an underly-
ing theme throughout was my strong interest and ability in mathematics and
statistics.

7.1 Public school and passion for mathematics

I grew up in a working class neighborhood in Baltimore and loved school
from the moment I entered. I was a dedicated and conscientious student and
received encouragement from many teachers. My lifelong interest in math and
my perseverance trait developed at an early age, as the following vignettes
illustrate.

As a nine year old in 1948 I rode the public bus each month to a local bank,
clutching tightly in my fist $50 in cash and a passbook, in order to make the
mortgage payment for a row house in which I lived. I asked the tellers questions
over time about the passbook entries. Once I grasped some basic ideas, I did
some calculations and then asked why the mortgage balance was not reduced
each month by the amount of the mortgage payment. A teller explained to
me about interest on loans of money; it sounded quite unfair to me.

Two years later my sixth grade teacher, Mr. Loughran, noted my mathe-
matical ability and, after school hours, taught me junior high and high school
mathematics, which I loved. He recommended me for admission to the only
accelerated junior high school in Baltimore where I completed in two years
the work for 7th, 8th, and 9th grades.

73
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My maternal grandfather, whose public education ended after 8th grade,
fanned my passion for math and analysis by showing me math puzzles and
tricks, how to calculate baseball statistics like RBI, and how to play checkers
and chess, in which he was a local champion.

I chose the unpopular academic track in my inner city working class high
school simply because it offered the most advanced math courses. I had no
plans to go to college.

I decided that typing would be a useful skill but was denied enrollment
because I was not in the commercial track. However, I persisted and was
enrolled. When personal computers appeared a few decades later, I was fast
and accurate on the keyboard, unlike most of my male academic colleagues.

A gifted math teacher in 11th and 12th grades, Ms. Reese, gave a 10-
minute drill (mini-test) to students at the beginning of each daily class. She
encouraged my math interest and challenged me daily with a different and
more difficult drill, unknown to other students in the class.

A female high school counselor, Dr. Speer, strongly advised me to go to
college, a path taken by few graduates of my high school and no one in my
immediate family. I applied to three schools. I won substantial scholarships to
two state schools (University of Maryland and Western Maryland) but chose
to attend Gettysburg College, in Pennsylvania, with less financial aid, because
it was smaller and seemed less intimidating to me.

7.2 College years and discovery of statistics

College was my first exposure to middle class America. I majored in math and
planned to be a high school math teacher of the caliber of Ms. Reese. However,
I rashly discarded this goal in my sophomore year after disliking intensely my
first required education course. In my junior year I became aware of statistics
via two math courses: probability and applied business statistics. However,
two courses during my senior year solidified my lifelong interest in statistics:
mathematical statistics and abnormal psychology.

A new two-semester math-stat course was taught by a reluctant
Dr. Fryling, the only math (or college) faculty member who had studied sta-
tistical theory. He commented frequently that he felt unqualified to teach the
course, but I thought he did a great job and I was wildly excited about the
topic. I worked all assigned problems in the textbook and additional ones
out of general interest. When midterm exam time approached, Dr. Fryling
stated that he did not know how to construct an exam for the course. With-
out thinking, and not yet having learned the social mores of college life, my
hand shot up, and I said that I could construct a good exam for the course.
The other students noticeably groaned. After class Dr. Fryling discussed with
me my unorthodox suggestion and took me up on my offer. After reviewing
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my prepared exam and answer key, he accepted it. I did not take the exam, of
course, and he graded the students’ answers. We continued this arrangement
for the rest of the year.

In my abnormal psychology course that same year we were assigned to
read in the library selected pages from the Kinsey books on human sexual
behavior (Kinsey et al., 1948, 1953). The assigned readings were not all that
interesting, but I avidly read in each book the unassigned methods chapter
that discussed, among other things, statistical analysis strategy and sampling
issues (i.e., difficulty in obtaining a representative sample of people who were
willing to answer sensitive questions about their sexual behavior). This was my
first exposure to sampling theory applications, which eventually evolved into
my statistical specialty. Sometime later I read a critique of the 1948 Kinsey
book methodology by Cochran et al. (1954); this book is a real education in
sampling and data analysis, and I highly recommend it.

Dr. Fryling, noting my blossoming fascination with statistics, asked me
about my career plans. I had none, since giving up secondary school teaching,
but mentioned physician and actuary as two possibilities, based on my science
and statistics interests. He advised that a medicine career was too hard for a
woman to manage with family life and that the actuarial science field was not
friendly to women. I accepted his statements without question. Neither one of
us had a strong (or any) feminist perspective at the time; the second wave of
feminism in the United States was still ten years into the future.

A fellow male math major had suggested that I go into engineering since
I was good at math. I did not know what engineering was and did not inves-
tigate it further; I thought an engineer was the person who drove the train.
Even though I was passionate about math and statistics and performed well in
them, there were obvious gaps in my general education and knowledge; some
family members and friends say this is still true today.

Dr. Fryling strongly recommended that I apply for a Woodrow Wilson
National Fellowship, with his nomination, and pursue a doctoral degree in
statistics or math. These competitive fellowships were prestigious and pro-
vided full graduate school funding for persons who planned a college teaching
career. I had not considered such a career, nor did it appeal to me, perhaps
because I never saw a female faculty member at Gettysburg College except
for girls’ physical education. Although Dr. Fryling indicated that I would not
be legally bound to teach college by accepting a Wilson fellowship, I felt that
it would not be appropriate to apply when I had no intention of becoming
a college teacher. Other Wilson applicants may not have been so scrupulous
about “the rules.” Looking back now, the Wilson fellowship was excellent ad-
vice, but limited self awareness of my own talents and interests prevented me
from taking this opportunity.
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7.3 Thwarted employment search after college

Having discarded high school and college teaching, actuarial science, and
medicine, I sought employment after college graduation in 1960. I was aware
of only two methods to find a job: look in the newspapers’ “Help Wanted”
sections and talk with employers at job fairs on campus.

The newspaper route proved fruitless. Younger readers may not be aware
that newspapers had separate “Help Wanted Female” and “Help Wanted
Male” sections until the late 1960s or early 1970s when such practice even-
tually was ruled to be illegal sex discrimination. In 1960 advertised positions
using math skills and interest were in “Help Wanted Male,” and I assumed
that it would be futile to apply. Job interviews on campus with employers
played out similarly; all positions were segregated by gender and all technical
positions were for males. One vignette, among many, illustrates the employ-
ment culture for women in the US in 1960.

When I registered for an interview on campus with IBM, I was required to
take a math aptitude test. The IBM interviewer commented that he had never
seen such a high score from any applicant and offered me either a secretarial
or an entry sales position. I countered that I was interested in their advertised
technical positions that required a math background, especially given my score
on their math aptitude test, but he simply said that those positions were for
males. End of conversation.

7.4 Graduate school as a fallback option

Although it is hard for me to believe now, I did not view my failed employment
search in 1960 to be the result of systematic societal sex discrimination against
women in employment. Rather, I concluded that if I were more qualified,
I would be hired even though I was female.

Thus, I decided to pursue a Master’s degree in statistics. Looking back,
my search for graduate schools seems naive. I scanned available college cata-
logs at the Gettysburg College library, identified schools that had a separate
statistics department, and applied to three that somehow appealed to me. All
three accepted me and offered financial aid: University of Chicago, Columbia
University, and Purdue University. I chose Purdue because it was the least
expensive for me after credit from financial aid.
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7.5 Master’s degree in statistics at Purdue

Upon arriving at the Purdue Statistics Department in fall of 1960, three new
graduate students (including me) chose the M.S. applied statistics track while
the many remaining new stat graduate students chose the mathematical statis-
tics track. After one semester I noted that more than half of the math stat
track students switched to the applied statistics track. I had a fleeting concern
that I might have chosen a “flunky” track, but I loved it and continued on.
At the end of first semester I married a Purdue graduate student in English.

As part of my financial aid, I assisted in teaching undergraduate calculus
courses and gained valuable instructor experience which supplemented my
extensive math tutoring experience begun as an undergraduate. I began to
think that teaching college might not be a bad idea after all.

7.6 Thwarted employment search after Master’s degree

After my husband and I completed our Purdue Master’s degrees in 1962, we
moved to Ames, Iowa, where he began a faculty position in the English Depart-
ment at Iowa State University (ISU). I visited the ISU Statistics Department
to inquire about employment opportunities and was offered a technical typist
position. My interviewer was enthusiastic because I would understand many
formulas and thus make fewer typing errors. Upon inquiring about positions
using my statistical skills, I was told that no statistical staff positions were
available. Ames was a small town, so I searched in Des Moines, about 35 miles
away. I was able to find only clerical or secretarial positions; all technical po-
sitions were reserved for males.

7.7 Graduate school again as a fallback option

Since I was living in Ames, home to one of the best statistics departments
in the country, I decided to take additional courses to become more qualified
for a statistical position. I was not allowed to take ISU courses unless I was a
degree seeking student; thus I applied for the statistics doctoral program. Not
only was I accepted by the same department that had offered me a statistical
typist position, but I was awarded a prestigious and competitive university-
wide doctoral fellowship for one year that paid all expenses and an attractive
stipend. My daughter Jennifer was born at the end of my first year at ISU.
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For my second and subsequent years at ISU the department appointed me
to a National Institute of Health (NIH) biostatistics traineeship that paid all
expenses and an attractive stipend. I had never heard the word biostatistics.

I especially enjoyed my ISU sampling courses, building upon my initial
interest in this topic from the Kinsey et al. (1948, 1953) reports and the
Cochran et al. (1954) critique. Most of the other doctoral students disliked
sampling: boring topic and too many formulas. I found sampling fascinating,
but I frequently have been known for being out of the mainstream.

During the summer following my second ISU year my traineeship paid for
me to take courses in biostatistics and epidemiology at the School of Public
Health at University of North Carolina at Chapel Hill, since ISU did not offer
these courses. I began to understand the scope of biostatistics. The application
of statistical theory and methods to public health and medicine appealed to
me, combining my then current interests in statistics and psychology with my
earlier interest in medicine.

Now that I had taken all of the required coursework for a statistics doc-
toral degree, fulfilling my limited objective of learning more about statistics
to become more employable, I decided to take the scheduled doctoral exams.
If I did well, I would continue on to finish the work for a PhD, i.e., write a dis-
sertation. To my surprise, I received the George Snedecor Award for the most
outstanding PhD candidate that year, based on doctoral exam performance,
and shared the award with another student because we were tied.

7.8 Dissertation research and family issues

Completing my dissertation took longer than anticipated due to academic and
family issues. I began my dissertation research a few months after my doctoral
exams and the birth of my son Jeffrey. Unfortunately, he was diagnosed with
stomach cancer shortly thereafter and had a limited life expectancy. After one
year’s work on a dissertation topic that had been chosen for me, I discarded
my limited research results, feeling that I was not a good match for the topic or
for the dissertation advisor. I took a six-month leave of absence from graduate
school to spend more time with my two children.

Upon returning to school I requested, and was granted, permission by the
department to change my dissertation advisor and topic, an unusual occur-
rence. I felt this strategy was the only way I would ever finish my degree.
I began working with Dr. Joseph Sedransk on a sampling problem of interest
to me and, with his expert guidance and assistance, completed my dissertation
in a little over one year in summer of 1967. My son died during the middle of
this dissertation work, a few days before his second birthday.

This clearly was a difficult time period for me and my family, and I appre-
ciate very much the support given to me by the ISU Department of Statistics.
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7.9 Job offers — finally!

I planned to move to Chapel Hill after finishing my PhD because my husband
had been accepted at the University of North Carolina (UNC) as a linguis-
tics doctoral student for fall of 1967. Early that year I contacted the UNC
Biostatistics Department and the Duke University Medical Center to inquire
about available positions. Surprisingly, each school invited me for an inter-
view. I visited both schools and gave a seminar about my dissertation results
to date.

Within the next several weeks I received from each school an attractive
offer of a tenure-track Assistant Professor position. After much deliberation
I chose UNC, primarily because of an interesting and unique opportunity
there. Dr. Bernard Greenberg, Biostatistics Chair, offered to appoint me as
the director of an already funded training grant in the department from Na-
tional Institute of Mental Health (NIMH) to develop and implement an MSPH
program in mental health statistics. This offer combined my interests in statis-
tics and psychology; I had minored in psychology for both graduate degrees,
including some psychometrics during my doctoral studies.

7.10 Four years at UNC-Chapel Hill

Upon arrival at UNC another newly hired Assistant Professor and I met with
a human resources specialist to review our fringe benefits. At the end of the
meeting, the specialist informed the other faculty member that he would re-
ceive an attractive disability insurance policy paid for by UNC. When I in-
quired if I would receive this fringe benefit, the male specialist answered no,
explaining that women don’t need disability insurance since their husbands
take care of them financially. It did not matter to him, or the university, that
I was the wage earner for the family since my husband was a full-time graduate
student.

Finally I began to recognize these frequent occurrences as sex discrimi-
nation. I joined a women’s liberation group in Chapel Hill, and my feminist
consciousness was raised indeed. I became an activist on women’s barriers to
employment and education, primarily within the American Statistical Associ-
ation (ASA) but also at UNC. With others I founded the Caucus for Women
in Statistics in 1971 and served as its president the first three years. Con-
currently I spearheaded the formation of the ASA Committee on Women in
Statistics (COWIS) and served as a member in its early days. These and later
actions were the basis for my receiving the COPSS Elizabeth Scott Award
in 1994.
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At UNC I worked with collaborators in mental health and psychiatry to
develop, implement and administer the MSPH training program in mental
health statistics, and I created and taught three new courses in this track
(Brogan and Greenberg, 1973). Looking back, it seems to have been an un-
usual responsibility to be given to a brand new assistant professor just one
month after PhD completion. However, Dr. Greenberg and my mental health
colleagues seemed confident that I could do it, and I enjoyed the challenge of
creating a new MSPH track.

During my fourth year at UNC, I wrote a grant application to NIMH to
continue the MSPH program in mental health statistics but also to extend it
to a doctoral level training program. NIMH funded this training grant, and
my salary support within the department was covered for another five years.

However, I had a few concerns about what appeared to be the opportunity
for a potentially stellar academic future. First, my departmental teaching was
restricted to the specialized mental health statistics courses that I created
since I was the only faculty person who could (or would) teach them. I felt
that I wanted more variety in my teaching. Second, although the extension
of the training program to the doctoral level was a fantastic opportunity to
develop further the niche into which I had fortuitously fallen, and hopefully to
make substantial and needed contributions therein, I began to feel that I was
in a niche. For some reason I did not like the feeling of being so specialized.
Finally, I had tired of living in small college towns for the past 15 years and
was interested in locating to a metropolitan area, especially since my husband
and I had recently divorced.

7.11 Thirty-three years at Emory University

In what might have seemed to be irrational behavior to some of my UNC-
Biostatistics colleagues, I accepted a position in fall of 1971 at Emory Uni-
versity School of Medicine in the small and fledgling Department of Statistics
and Biometry, its first ever female faculty member. Emory transformed itself
over subsequent decades into a world destination university, including the for-
mation in 1990 of the Rollins School of Public Health (RSPH), currently one
of the top-tier public health schools in the country. I was one of only a few
female faculty members in RSPH upon its formation and the only female Full
Professor.

At Emory I had ample opportunity to be a biostatistical generalist by con-
ducting collaborative research with physicians and other health researchers in
different disciplines. My collaborative style was involvement with almost all
aspects of the research project rather than only the purely biostatistical com-
ponents, primarily because I was interested in the integrity of the data that
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I would be analyzing later. I enjoyed working with a few collaborators over ex-
tended time periods, including a medical sociologist colleague for thirty years.

In the early 1980s, I used my sample survey skills in an NHLBI funded
multi-site collaborative contract where I designed and implemented area prob-
ability samples of adults in Georgia in order to estimate hypertension related
parameters. I learned several nitty-gritty applied sampling techniques not in
textbooks from the sample survey statisticians at the other sites and first used
the SUDAAN software for analysis of complex survey data.

In the mid 1980s, I was diagnosed with breast cancer. My personal experi-
ence and my biostatistics background combined to make me a useful contrib-
utor to the founding group of the breast cancer advocacy movement, culmi-
nating in the formation of the National Breast Cancer Coalition (NBCC) and
similar organizations.

I served as Biostatistics chair in RSPH in the early 1990s, the first ever
female chair of the school. The so-called power of the position (money and
space, primarily) did not interest me. Rather, I attempted to maintain a col-
legial department that was successful in the typical academic arenas and was
supportive for each of its members (faculty, students, and staff). My best
training for the chair position was a few years that I had spent in group ther-
apy in earlier decades (another way of saying that my training was minimal).
After three years I resigned as chair because academic administration took
me away from what I really loved: being a practicing biostatistician.

During the early 1990s, I began to teach continuing education workshops
on analysis of complex survey data at summer programs in biostatistics and
epidemiology (e.g., University of Michigan), at government agencies such as
CDC and at annual meetings of health researchers. I continue this teaching
today, even after retirement, because I enjoy it. To date I have taught about
130 of these workshops to over 3000 participants.

Upon my retirement from Emory in 2004 the Biostatistics Department
and the RSPH sponsored a gala celebration with 140 guests, an exquisite sit-
down dinner, and a program with many speakers who reviewed aspects of my
professional life. I felt quite honored and much loved.

7.12 Summing up and acknowledgements

I enjoyed immensely my unintended academic career in biostatistics and highly
recommend the discipline to those who are interested and qualified. I liked the
diverse areas in which I worked as biostatistical collaborator, in essence ac-
quiring a mini medical education. I found teaching for very different audiences
to be great fun: graduate students in biostatistics and the health sciences,
health professionals, and health researchers. It took a while to find my enjoy-
able statistical niche: sample survey statistician. I was able to combine some
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major aspects of my personal life, feminism and breast cancer history, with
collaborative research and activism. I regret having had less enthusiasm for
biostatistical methodological research and was not as productive in this area
as I would have liked.

I am grateful to many people and institutions for helping me to prepare for
and navigate my career, some mentioned above. There are too many people to
mention individually here, but one must be recognized. I am indebted to my
ex-husband Dr. Charles Ruhl for his strong support and encouragement of my
educational and career goals; for his crucial role in our family life, especially
during Jeffrey’s illness; for living in Iowa longer than he wanted so that I could
finish my PhD degree; for encouraging me to join a women’s liberation group;
and for being a feminist long before I knew what the word meant.
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Developing a passion for statistics

Bruce G. Lindsay

Department of Statistics
Pennsylvania State University, University Park, PA

This chapter covers the major milestones of the early years of my career in
statistics. It is really the story of the transitions I made, from early uncertainty
about my choice of career and my level of talent, up to crossing the tenure
line and realizing that I had not only been deemed a success, I had a passion
for the subject. The focus will be on aspects of those adventures that seem
most relevant to young people who are partway along the same journey.

8.1 Introduction

I have had a long career in the academic world of statistics, something like
40 years. I have seen the whole process from many points of view, including
eight years as a department head. I have supervised 30 PhD students. I would
hope that from all that experience I might have forged something worthwhile
to say here, something not found in a research paper. I have chosen to focus
on the early part of my career, as those are the days of major transitions.

For those of you early in your career, there are many choices to make as you
navigate this world. It starts with the choice of statistics for your education,
then a graduate school, then an advisor, then a topic for the thesis, then a
place of employment. This is done while clearing a series of hurdles meant to
separate the qualified from the unqualified, starting with entrance exams and
ending with tenure. In this essay I will review some of these critical moments
in my early career. With each of these milestones, I gained some wisdom about
statistics and myself, and went from being an unsure young man to being a
passionate scholar of statistics.

Since I joined Penn State in 1979 I have been paid to do cutting edge
research that makes my university famous. I therefore have welcomed this
rare opportunity to look backward instead of forward, and think about the
roots of my career. One aspect of academic life that has been frustrating to
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me is its ruthless vitality, always rushing forward, often ending up looking
like a garden sadly in need of weeding. I wish there were more reflection,
more respect for the past. The intellectual rewards, however, have always
been largest for creativity, for those who till new soil, and so that is where
most of the energy is spent.

And to be fair, I too deserve criticism, as I have too rarely taken on the
role of oversight, the role of putting an order to what is important, and saying
why. One of my passions is for discovering something new. It is like being
Christopher Columbus, discovering a New World. My discoveries have some-
times involved basic understanding of scientific phenomena, but the big magic
for me comes from the beautiful way that statistics, through mathematics, can
find the signals in the midst of noise. In whatever way I can add something
to this, by discovery of new ways to build models, or compute statistics, or
generate mathematical understanding of scientific questions: that is part of
what makes me feel valuable.

However, I also have a passion for mentoring young people. After all, why
else 30 PhD students? I therefore take on the career counselor role here.

Before I describe my early career-changing events, let me touch on a couple
of personal perspectives.

There is an important element of philosophy to statistics, epitomized by
the frequentist/Bayesian schism. I was fortunate to be trained by a pair of
powerful statistical thinkers: Norman Breslow and David Cox. Their frequen-
tist thinking definitely colors my perspective on the philosophy of statistics to
this day. However, I am not passionate about the distinction between Bayes
and frequency. Although I am interested in the basic logic behind statistics,
it will be a small part of my essay. This will be more about the process of
becoming excited about the entire statistics culture, and what to do with that
excitement.

I am also someone who has learned to collaborate, and loves it. It is a key
part of maintaining my passion. For the first seven or so years of my career,
I only wrote solo papers. About 1985 or so, though, I had an eye-opening
research discussion with my colleague Clifford Clogg. We were both young
men then, about at the point of tenure. He had a joint appointment in the
Departments of Statistics and Sociology. In our discussion we realized that we,
from very different backgrounds and points of view, had just found the exact
same result by two completely different means (Lindsay et al., 1991). His was
computational, mine was geometric. He concluded our meeting by saying, with
wonder, “I can’t believe that I get paid to do this!” I wholeheartedly agreed
with him, but I must say that a lot of my joy came because I was doing it
with him. We became fast friends and collaborators.

Sad to say, Cliff died in 1995, at the age of 45, from a sudden heart attack.
It was working with him that I first learned, in a deep sense, that the biggest
joys in statistical work are those that are shared. Nowadays, I often think
about problem solving alone, but I very rarely work alone.
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8.2 The first statistical seeds

So now let me set the scene for my first contacts with statistics. I started
out with a mathematics degree from University of Oregon in 1969, but I had
virtually no statistics training there. I then went to Yale graduate school in
mathematics. I only lasted one year because I was drafted into the US military
in 1970. I had no probability or statistics at Yale, rather a shame given the
eminent faculty members there.

I took my first basic statistics course while in the US Coast Guard, about
1972. It was a night course at Berkeley, taught by an adjunct. Frankly, like
many other “Stat 100’s,” it was not very inspiring. My impression from it was
that statistics was a collection of strange recipes that had been generated by
a foreign culture. Surely this was not mathematics, but what was it?!

On the plus side, however, I did my first real statistical analysis during
those Coast Guard years. I had done poorly in an Armed Services exam that
the military used to screen applicants to their training schools. The particular
exam involved repeatedly looking at two long numbers side by side and saying
if they were identical or not. (I suspect my poor performance on that exam is
now reflected in my poor memory of phone numbers.)

As a result of my exam results, I had to get a waiver to get into Yeoman
School. Yeomen are the clerk typists of the Navy and Coast Guard. In the end
I did very well in the school, and was convinced that the screening exam was
worthless. And I knew that I would need statistics to prove it! My opportunity
arose because I had been assigned to the same Yeoman School as its secretary.
I analyzed the school’s data to show that there was zero correlation between
the screening exam result and performance in the school. However my letter
to the Coast Guard Commandant was never answered.

I must confess that at this time I was still a long ways from being a fan of
statistics. It seemed like a messy version of mathematics constructed from a
variety of disconnected black boxes. I could calculate a correlation, and look
up a significance level, but why? The fact that there were multiple ways to
measure correlation only made it less satisfactory. But the seeds of change
had been planted in me.

8.3 Graduate training

By the time I left the Coast Guard in 1974, I had decided to drop out of Yale
and out of pure mathematics. I wanted something closer to life on this planet.
This led me to switch to graduate school at University of Washington (UW).
It was an excellent choice.
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Their Biomathematics degree offered lots of room for me to explore my
applied mathematical interests. I took courses in ecology, fisheries, epidemiol-
ogy, and population genetics as I looked about for interesting applications and
interesting applied mathematical areas. Certainly I have no regrets about my
second choice of graduate schools. It had highly talented faculty and a broad
range of possibilities. I now always recommend that prospective graduate stu-
dents select schools based on these characteristics.

As I took the required Biomathematics courses, I began to find statistics,
and its applications, more deeply interesting. In particular, Bob Smythe’s
mathematical statistics course, where I first saw the magic of maximum like-
lihood, had me intrigued. And the more courses I took, the more I liked the
subject. It is not a cohesive subject, but it is a powerful one.

A very important part of my education was not conventional coursework.
I was in a consulting class in the Center for Quantitative Science unit, which
meant sitting in a room and seeing clients. My very positive experience there
has left me a proponent of graduate consulting classes all my life.

One of my clients brought in a fisheries problem that did not seem to fit
any of the traditional models we had learned in applied classes. If it was not
regression or ANOVA or discrete data, what could it be?

Salmon are fish with a complex life cycle. It starts when they are born in a
home river, but they soon leave this river to mature in the open ocean. They
return to their home river at the end of their lives in order to lay and fertilize
eggs and die. The set of fish coming from a single river are thus a distinct
subpopulation with its own genetic identity. This was important in fisheries
management, as many of the fish were caught in the open ocean, but with
some diagnostic measurements, one could learn about the river of origin.

In the problem I was asked to consult upon, the salmon were being caught
in the Puget Sound, a waterway that connects to both American and Canadian
rivers. Since each country managed its own stock of fish, the fisheries managers
wanted to know how many of the caught fish came from “Canadian” rivers
and how many “American.”

The data consisted of electrophoretic measurements, an early form of DNA
analysis, made on a sample of fish. It was important that the salmon from
various rivers were physically mixed together in this sample. It was also im-
portant that the scientists also had previously determined the genetic profile
of salmon from each river system. However, these genetic “fingerprints” did
not provide a 100% correct diagnosis of the river that each fish came from.
That would have made the problem a simple one of decoding the identities,
and labelling the salmon, creating a multinomial problem.

I now know that a very natural way to analyze such data is to build an
appropriate mixture model, and then use maximum likelihood or a Bayesian
solution. At the time, having never seen a mixture model in my coursework,
I was quite clueless about what to do. However, I did my due diligence as
a consultant, talked to a population geneticist Joseph Felsenstein, and found
a relevant article in the wider genetics literature — it had a similar struc-
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ture. In the so-called admixture problem, the goal was to determine the racial
components of a mixed human population; see, e.g., Wang (2003).

This whole process was a great discovery for me. I found the ability of
statistics to ferret out the hidden information (the home rivers of each salmon)
to be the most fascinating thing I had seen to date. It was done with the
magic of likelihood. The fact that I could find the methods on my own, in
the literature, and make some sense of them, also gave me some confidence.
My lesson was learned, statistics could be empowering. And I had ignited a
passion.

In retrospect, I was also in the right place at the right time. As I now
look back at the fisheries literature, I now see that the scientific team that
approached me with this problem was doing very cutting edge research. The
decade of the 80s saw considerable development of maximum likelihood meth-
ods for unscrambling mixed populations. Indeed, I later collaborated on a
paper that identified in detail the nature of the maximum likelihood solu-
tions, as well as the identifiability issues involved (Roeder et al., 1989). In this
case, the application was a different biological problem involving plants and
the fertility of male plants as it depended on the distance from the female
plants. In fact, there are many interesting applications of this model.

A consultant needs to do more than identify a model, he or she also needs to
provide an algorithm for computation. In providing a solution to this problem,
I also first discovered the EM algorithm in the literature. Mind you, there
existed no algorithm called the “EM” until 1977, a year or two after this
project (Dempster et al., 1977). But like many other discoveries in statistics,
there were many prequels. The version I provided to the client was called the
“gene-counting” algorithm, but the central idea of the EM, filling in missing
data by expectation, was already there (Ott, 1977).

This algorithm became its own source of fascination to me. How and why
did it work? Since that period the EM algorithm has become a powerful tool
for unlocking hidden structures in many areas of statistics, and I was fortunate
to be an early user, advocate, and researcher. Its key feature is its reliability in
complex settings, situations where other methods are likely to fail. Whenever
I teach a mixture models course, one of my first homework assignments is for
the student to understand and program the EM algorithm.

So there you have it. Through my choice of graduate education, by taking
a consulting class, and by drawing the right consulting client, I had entered at
an early stage into the arenas of mixture models and the EM algorithm, both
of which were to display considerable growth for the next thirty years. I got
in on the ground floor, so to speak. I think the message for young people is
to be open to new ideas, and be ready to head in surprising directions, even
if they are not popular or well known.

In many ways the growth of mixture models and the EM algorithm came
from a shift in computing power. As an old-timer, I feel some obligation to offer
here a brief side discussion on the history of computing in statistics during
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the first years of my career. There was a revolution underway, and it was to
change completely how we thought about “feasible” ways to do statistics.

As an undergraduate, I had used punch cards for computing in my com-
puter science course. All computing on campus was done through a single
“mainframe” computer. First one would “punch” the desired program onto
cards, one program line being one card, on a special machine. One would then
take this pile of cards to a desk in the computer center for submission. Some-
time later one would get the output, usually with some errors that needed
fixing. Turnaround to a completed successful program was very, very slow.

Computing was still in the “punch card” era when I went to graduate
school at UW in 1974. However, during my years there, the shift to “terminals”
and personal computing was starting. It was so much more attractive that the
focus on mainframe computing quickly faded out. At that point, efficiency
in programming was proving to be much more valuable than speed of the
machine.

This efficiency had immediate benefits in statistics. Previously there had
been a great emphasis on methods that could be computed explicitly. I hap-
pened, by chance, to be an observer at one of the most important events of the
new era. I attended a meeting in Seattle in 1979 when Bradley Efron gave one
the first talks on the bootstrap, a subject that blossomed in the 1980s (Efron,
1979). Statistics was waking up to the idea that computing power might drive
a revolution in methodology.

The Bayesian revolution was to come a little later. In 1986 I attended an
NSF–CBMS workshop by Adrian Smith on Bayesian methods — he gave a
lot of emphasis to techniques for numerical integration, but the upper limit
was seven dimensions, as I recall (Naylor and Smith, 1982). All this hard
work on integration techniques was to be swept away in the 90s by MCMC
methods (Smith and Gelfand, 1992). This created a revolution in access to
Bayes, although most of the rigor of error bounds was lost. In my mind, the
answers are a bit fuzzy, but then so is much of statistics based on asymptotics.

8.4 The PhD

Returning to my graduate education, after two years my exams were taken
and passed, and research about to begin. Like most young people I started
by examining projects that interested my possible PhD mentors. The UW
Biomathematics program was tremendously rich in opportunities for choosing
a thesis direction. It was clear to me that I preferred statistics over the other
possible biomathematics areas. In addition, it was clear from my qualifying
exam results that I was much better at mathematical statistics than applied
statistics. I liked the scientific relevance of applied statistics, but also I felt
more of a research curiosity about mathematical statistics.
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My first PhD investigation was with Ron Pyke of the UW math depart-
ment. The subject related to two-dimensional Brownian motion, but it gener-
ated little fascination in me — it was too remote from applications. I therefore
had to go through the awkward process of “breaking off” with Ron. Ever since
then I have always told students wishing to do research with me that they
should not be embarrassed about changing advisors to suit their own interests.

The best applied people at UW were in the Biostatistics group, and af-
ter talking to several of them, I ended up doing my dissertation with Norm
Breslow, who also had a pretty strong theoretical bent and a Stanford degree.

My first contact with Norm was not particularly auspicious. Norm taught a
course in linear models in about 1975 that had the whole class bewildered. The
textbook was by Searle (2012), which was, in that edition, doggedly matrix
oriented. However, for the lectures Norm used material from his graduate days
at Stanford, which involved new ideas from Charles Stein about “coordinate
free” analysis using projections. The mismatch of textbook and lecture was
utterly baffling to all the students — go ask anyone in my class. I think we all
flunked the first exam. But I dug in, bought and studied the book by Scheffé
(1999), which was also notoriously difficult. In the end I liked the subject
matter and learned quite a bit about how to learn on my own. I am sure the
geometric emphasis I learned there played a later role in my development of
geometric methods in likelihood analyses.

Fortunately my second class with Norm, on categorical variables, went
rather better, and that was where I learned he was quite involved in epidemi-
ology and cancer studies. I later learned that his father Lester Breslow was
also something of a celebrity in science, being Dean of the School of Public
Health at UCLA.

Although he was an Associate Professor, my years of military service meant
that Norm was only a few years older than me. He had already made a name for
himself, although I knew nothing about that. I found him inspiring through his
statistical talent and biological knowledge, but mainly his passion for statis-
tics.

I sometimes wonder if there was not some additional attraction because
of his youth. The mathematics genealogy website shows me to be his second
PhD student. Going up my family tree, Norm Breslow was Brad Efron’s first
student, and Brad Efron was Rupert Millers’ second. Going back yet further,
Rupert Miller was fifth of Samuel Karlin’s 43 offspring. Going down the tree,
Kathryn Roeder, a COPSS award winner, was my first PhD student. This
“first-born” phenomenon seems like more than chance. At least in my line of
descent, youthful passion and creativity created some sort of mutual attraction
between student and advisor.

One of the most important challenges of graduate life is settling on a
research topic with the advisor. This will, after all, set the direction for your
career, if you go into research. I would like to discuss my graduate experience
in some detail here because of combination of chance and risk taking that a
research career entails.
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In my experience, most students pick from a small list of suggestions by
their chosen advisor. Indeed, that is the way I started my research. Norm had
suggested the development of a sequential testing method based on partial
likelihood (Cox, 1975). I am sure Norm foresaw applications in clinical trials.
He probably had some confidence I could do the hard math involved.

Being a conscientious student, I started off on this problem but I was very
soon sidetracked onto related problems. I am not sure if I would recommend
this lack of focus to others. However, I do think you have to love what you
are doing, as there is no other way to succeed in the long run. I did not love
the problem he gave me. It seemed to be technically difficult without being
deep, and not really a chance to grow intellectually.

In the end I wrote a thesis on my own topic, about three steps removed
from Norm Breslow’s proposed topic. I started by studying partial likelihood,
which was then a very hot topic. But as I read the papers I asked myself this
— what is the justification for using this partial likelihood thing beyond its
ease of computation? A better focused student would have hewn to Norm’s
original suggestion, but I was already falling off the track. Too many questions
in my mind.

I assure you my independence was not derived from high confidence. On
the contrary, no matter my age, I have always felt inferior to the best of my
peers. But I am also not good at following the lead of others — I guess I like
marching to the beat of my own drummer. It does not guarantee external
success, but it gives me internal rewards.

One risk with research on a hot topic is that you will be scooped. As it
turns out, the justification, on an efficiency basis, for Cox’s partial likelihood
in the proportional hazards model was on Brad Efron’s research plate about
that time. So it was a lucky thing for me that I had already moved on to an
older and quieter topic.

The reason was that the more I read about the efficiency of likelihood
methods, the less that I felt like I understood the answers being given. It
all started with the classic paper by Neyman and Scott (1948) which demon-
strated severe issues with maximum likelihood when there were many nuisance
parameters and only a few parameters of interest. I read the papers that fol-
lowed up on Neyman and Scott, working forward to the current time. I have
to say that I found the results to that time rather unsatisfying, except for
models in which there was a conditional likelihood that could be used.

My early exposure to mixture models provided me with a new way to
think about consistency and efficiency in nuisance parameter problems, par-
ticularly as it related to the use of conditional and partial likelihoods. I put
these models in a semiparametric framework, where the nuisance parameters
were themselves drawn from a completely unknown “mixing distribution.” In
retrospect, it seems that no matter how much I evolved in my interests, I was
still drawing strength from that 1975 consulting project.

My research was mostly self-directed because I had wandered away from
Norm’s proposed topic. I would report to Norm what I was working on, and
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he would humor me. Kung Yee Liang, who followed me as a Breslow student,
once told me that Norm had asked him to read my thesis and explain it to him.

I tell this story not because I advise students to follow this kind of inde-
pendent course. The fact that Norm barely understood what I was doing and
where I was headed was something of a handicap to me. I spent years figur-
ing out the relevant literature. The real problem is that a graduate student
just does not know the background, has not seen the talks, and cannot know
whether the statistical community will think the research is important. I was
taking serious risks, and consider myself fortunate that things worked out in
the end.

After settling on a topic and doing the research, another big hurdle must
be crossed. I must say that at the beginning I found it very difficult to write
up my statistical research, and so I am very sympathetic to my PhD students
when they struggle with the organization, the motivation, the background,
and reporting the results. I keep telling them that they are simply telling a
story, just like they do when they give an oral presentation. If you can give
a good talk, you can write a good paper. At Penn State these days many
of the graduate students give multiple talks at meetings and in classes. I am
sure this must help them immensely when it comes to writing and defending
their dissertations, and going on job interviews. I had no such opportunities
at Washington, and I am sure it showed in my early writing.

At any rate, Norm returned my thesis drafts with lots of red marks. In the
beginning I felt like I had failed, but then bit by bit my writing became clearer
and more fitting to the statistical norm. I still had a problem with figuring out
the distinction between what was important and what was merely interesting.
In the end, I wrote a very long thesis titled “Efficiency in the presence of
nuisance parameters.” It was a long ways from being publishable.

I must say that in those days proper editing was very difficult. I would
start the process by turning my handwritten drafts over to a mathematical
typist. In those days mathematical results were usually typed on an IBM
Selectric typewriter. There were little interchangeable balls that had the var-
ious symbols and fonts. Typing in math meant stopping to change the ball,
maybe more than once for each equation. This slow typing system very dis-
tinctly discouraged editing manuscripts. Mistakes could mean redoing entire
pages, and revisions could mean retyping the whole manuscript. Changes in
an introduction would alter everything thereafter.

Thank goodness those days also disappeared with the advent of personal
computing. Now one can spend time refining a manuscript without retyping
it, and I am sure we have all benefited from the chance to polish our work.

At last the finish line was reached, my thesis submitted and approved
in 1978.
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8.5 Job and postdoc hunting

I was ready to move on, a bright-eyed 31 year old. I had enjoyed doing research,
and having received positive feedback about it, I was ready to try the academic
job market. I submitted applications to many schools. While I would have
preferred to stay on the West Coast, the list of job opportunities seemed
pretty limiting. With Norm’s encouragement, I also applied for an NSF–NATO
postdoctoral fellowship.

To my somewhat shocked surprise, I had six job interviews. I can only infer
that I must have had some good letters from well known scholars. In the end
I had interviews at UC Berkeley, UC Davis, Purdue, Florida State, Princeton,
and Penn State. I was quite awestruck about being paid to fly around the
country, as at that point in my life I had never flown anywhere. It was rather
nice to be treated like a celebrity for a couple of months.

Of course, the interviews could sometimes be intimidating. One color-
ful character was Herman Rubin of Purdue, who was notorious for cross-
examining job candidates in his office. At the end of my seminar, he raised
his hand and stated that my results could not possibly be correct. It was a
bit disconcerting. Another place that was frightening, mostly by the fame of
its scholars, was Berkeley. Peter Bickel, not much older than I, was already
Department Head there. Another place with some intellectual firepower was
Princeton, where John Tukey sat in the audience.

Wherever I did an interview, I told the school that I would like to take
the NATO postdoc if it became available, and that being able to do so would
be a factor in my decision. In the end, several did make me offers with an
open start date, and after considerable deliberation, and several coin tosses,
I accepted Penn State’s offer over Princeton’s. Since the Princeton department
closed soon thereafter, I guess I was right.

8.6 The postdoc years

In the end, I did garner the postdoc. With it, I went to Imperial College in
London for 1978–79, where my supervisor was the famous Sir David Cox. His
paper (Cox, 1972) was already on its way to being one of the most cited works
ever (Ryan and Woodall, 2005). My thanks to Norm for opening this door. All
those early career choices, like University of Washington and Breslow, were
paying off with new opportunities.

In London I went back to work on my dissertation topic. When I had
visited Berkeley, I learned that Peter Bickel had a student working on related
problems, and Peter pointed out some disadvantages about my approach to
asymptotics. I had drawn heavily on a monograph by Bahadur (1971). Neither
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I nor my advisors knew anything about the more attractive approaches coming
out of Berkeley. So my first agenda in London was to repair some of my work
before submitting it.

It was extremely inspiring to be around David Cox for a year. Although
David seemed to fall asleep in every seminar, his grasp of the problems people
were working on, as evidenced by his piercing questions and comments, was
astounding. He single-handedly ran Biometrika. He was the master of the
whole statistical domain.

David was very kind to me, even though he did not have a lot to say
to me about my research. I think it was not really his cup of tea. He did,
however, make one key link for me. He suggested that I read the paper by
Kiefer and Wolfowitz (1956) about a consistent method of estimation for the
Neyman–Scott problem. That paper was soon to pull me into the nascent
world of nonparametric mixture modelling. An article by Laird (1978) had
just appeared, unbeknownst to me, but for the most part the subject had
been dead since the Kiefer and Wolfowitz paper.

My postdoc year was great. It had all the freedom of being a grad student,
but with more status and knowledge. After a great year in London, I returned
to the US and Penn State, ready to start on my tenure track job.

8.7 Starting on the tenure track

Going back to my early career, I confess that I was not sure that I was up to
the high pressure world of publish-or-perish, get tenure or move on. In fact,
I was terrified. I worried about my mental health and about my ability to
succeed. I am sure that I was not the first or last to feel these uncertainties,
and have many times talked in sympathy with people on the tenure track, at
Penn State and elsewhere.

It took a number of years for the thesis research to end its stumbling
nature, and crystallize. I published several papers in The Annals of Statis-
tics that would later be viewed as early work on efficiency in semiparametric
models. I also made some contributions to the problem of estimating a mix-
ing distribution nonparametrically by maximum likelihood. In the process
I learned a great deal about convex optimization and inverse problems.

I often tell my students that I had plenty of doubts about my success when
I was an Assistant Professor. My publication list was too short. The first paper
from my 1978 thesis was not written until 1979, and appeared in 1980. It was
not even a statistics journal, it was The Philosophical Transactions of the
Royal Society of London (Lindsay, 1980).

My first ten papers were solo-authored, so I was definitely flying on my
own. It must have been a kinder era, as I don’t recall any rejections in that
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period. And that certainly helps with confidence. (You might find it reassuring
to know that I have had plenty of rejections since.)

I had six papers on my CV when I came up for tenure in 1984–85. And
I had published nothing at all in 1984. I know why: I had spent most of a
year trying to build a new EM theory, and then giving up on it. I was a
bit scared. Nowadays, and even then, my number would be considered below
average. Indeed, many of our recent Assistant Professor candidates at Penn
State University seem to have had that many when they arrived at Penn
State. Just the same, the people who wrote the external letters for me were
very supportive, and I was promoted with tenure.

Back then it was still not obvious to me that statistics was the right place
for me. My wife Laura likes to remind me that some time in the 1980s I told
a graduate student that “Statistics is dead.” I can understand why I said
it. The major conceptual and philosophical foundations of statistics, things
like likelihood, Bayes, hypothesis testing, multivariate analysis, robustness,
and more, had already been developed and investigated. A few generations
of ingenious thought had turned statistics into an academic subject in its
own right, complete with Departments of Statistics. But that highly energetic
creative era seemed to be over. Some things had already fossilized, and the
academic game contained many who rejected new or competing points of view.
It seemed that the mathematical-based research of the 1970s and 1980s had in
large part moved on to a refinement of ideas rather than fundamentally new
concepts.

But the granting of tenure liberated me from most of these doubts. I now
had a seal of approval on my research. With this new confidence, I realized
that, in a larger sense, statistics was hardly dead. In retrospect, I should have
been celebrating my participation in a subject that, relative to many sciences,
was a newborn baby. In particular, the computer and data revolutions were
about to create big new and interesting challenges. Indeed, I think statistics
is much livelier today than it was in my green age. It is still a good place for
discovery, and subject worthy of passion.

For example, multivariate analysis is now on steroids, probing ever deeper
into the mysteries of high-dimensional data analysis, big p and little n, and
more. New techniques, new thinking, and new theory are arising hand in
hand. Computational challenges that arise from complex models and enormous
data abound, and are often demanding new paradigms for inference. This is
exciting! I hope my experiences have shed some light on your own passionate
pursuits in the new statistics.
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Reflections on a statistical career and their
implications

R. Dennis Cook
School of Statistics
University of Minnesota, Minneapolis, MN

This chapter recounts the events that steered me to a career in statistics
and describes how my research and statistical temperament were set by my
involvement in various applications. The discussion encompasses the historical
and contemporary role of statistical diagnostics in practice and reflections on
the importance of applications in the professional life of a statistician.

9.1 Early years

It was mostly serendipity that led me to a career in statistics.
My introduction to statistics started between my Sophomore and Junior

years in high school. At the time I was looking for summer employment so
I could earn money to customize my car — neat cars elevated your social stand-
ing and attracted the girls. I was fortunate to secure summer and eventually
after-school employment with the Agronomy Department at Fort Assiniboine,
an agriculture experimentation facility located just outside Havre, Montana.
The surrounding area is largely devoted to wheat production, thousands and
thousands of acres of spring and winter wheat. The overarching goal of the
Agronomy Department was to develop contour maps of suggested fertiliza-
tion regimes for use by wheat farmers along the High Line, a run of about
130 miles between Havre and Cut Bank, Montana, and to occasionally de-
velop targeted recommendations for specific tracts of land at the request of
individual farmers.

I continued to work at Fort Assiniboine until I graduated from high school,
at which point I enlisted in the military to avoid the uncertainty of the draft.
After fulfilling my military obligation, which ended just before the buildup to
the Vietnam war, I returned to full-time employment at Fort Assiniboine while
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pursuing an undergraduate degree at Northern Montana College. In order to
meet the needs of the surrounding community, Northern offered four degree
programs — nursing, education, liberal arts and modern farming methods.
Given the choices, I decided that education was my best bet, although I was
ambivalent about a speciality. While in the military I developed a strong dis-
taste for standing in line, so on the first day of registration when I encountered
long lines everywhere except for mathematics education, my choice was clear.
I continued to work at Fort Assiniboine for four more years until I completed
my undergraduate degree in mathematics education with a minor in biology.

My duties during the seven years of employment at Fort Assiniboine fo-
cused on statistics at one level or another, the same cycle being repeated year
after year. Starting in the late winter, we would prepare the fertilizer combi-
nations to be tested in the next cycle and lay out the experimental designs
on paper. We typically used randomized complete block designs, but had to
be prepared with completely randomized and Latin square designs, since we
never knew what the experimental location was like before arriving with the
planting crew. Split plot and split block designs were also used from time to
time. Experimental plots would be planted in the spring (or the late fall in
the case of winter wheat), and tended throughout the summer by keeping
the alleys between the plots free of weeds. Plots were harvested in the fall,
followed by threshing and weighing the wheat. Most of the winter was spent
constructing analysis of variance tables with the aid of large desktop Monroe
calculators and drawing conclusions prior to the next cycle of experimentation.

During my first year or so at Fort Assiniboine, I functioned mostly as a
general laborer, but by the time I finished high school I had developed an
appreciation for the research. I was fortunate that, from the beginning, the
Department Head, who had a Master’s degree in agronomy with a minor
in statistics from a Canadian university, encouraged me to set aside time at
work to read about experimental design and statistical methods. This involved
studying Snedecor’s text on Statistical Methods and Fisher’s monograph on
The Design of Experiments, in addition to other references. The material came
quickly for me, mostly because nearly all that I read corresponded to some-
thing we were actually doing. But I recall being a bit baffled by the need
to select a significance level and the role of p-values in determining recom-
mendations. The possibility of developing a formal cost function to aid our
recommendations did not arise until graduate school some years later. My un-
dergraduate education certainly helped with the mathematics, but was little
help with statistics since the only directly relevant offering was a course in
probability with a cursory treatment of introductory statistics.

I was eventually given responsibility for nearly all aspects of the experimen-
tal trials at the Fort. I had learned to assess the experimental location, looking
for hollows and moisture gradients, and to select and arrange an appropriate
design. I learned that mis-entering a number could have costly consequences.
A yield of 39 bushels mis-entered as 93 bushels per acre could make a non-
significant factor seem highly significant, resulting in an unjustified costly
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recommendation to the wheat farmers. It is for this reason that I instituted
“parallel computing.” Two of us would sit at adjacent desks and simultane-
ously construct analysis of variance tables, checking that our results matched
at each step of the analysis. A mismatch meant that we had to repeat the
calculation in full, since there was no way of recovering what we had entered.
We would occasionally lose an experiment at a remote location because the
grain was too wet to harvest during the window of opportunity. In an effort to
recover some information, I came up with the idea of estimating the number
of seed heads per foot of row. That operation required only counting and the
moisture content of the grain was irrelevant. A few pilot experiments showed
that the count was usefully correlated with the grain weight, so we were able
to gain some information from experiments that would be otherwise lost.

During my final year at Northern Montana College, I was required to spend
six months student teaching at the local high school where I taught junior al-
gebra and sophomore biology. I found actual teaching quite rewarding, but my
overall experience was a disappointment because colorless non-teaching duties
dominated my days. The Department Head at the Fort had been encouraging
me to pursue a graduate degree in statistics or perhaps mathematics and, after
my experience student teaching, I decided to follow his advice. I applied to
four universities, two in mathematics and two in statistics, that did not require
a fee to process my application because finances were extremely tight. My de-
cision rule was to accept the first that offered a fellowship or assistantship.
The following fall I began my graduate studies in statistics at Kansas State
University, aided by a traineeship from the National Institutes of Health and
subsequently a fellowship under the National Defense Education Act, which
was enacted in response to the Soviet Union’s successful launch of Sputnik
and President Kennedy’s moon initiative.

Although my degree from Kansas State was in statistics, my dissertation
was in genetics; it was entitled “The Dynamics of Finite Populations: The Ef-
fects of Variable Selection Intensity and Population Size on the Expected Time
to Fixation and the Ultimate Probability of Fixation of an Allele.” I enjoyed
seeing genetic theory in action and many hours were spent during my gradu-
ate career conducting laboratory experiments with Drosophila melanogaster.
My first paper was on Bayes’ estimators of gene frequencies in natural popula-
tions. My background and fellowships enabled me to complete my PhD degree
in three years, at which point I joined the then nascent School of Statistics
at the University of Minnesota, with an appointment consisting of intramural
consulting, teaching and research, in roughly equal proportions. I continued
my genetics research for about four years until I had achieved tenure and then
began a transition to statistical research, which was largely stimulated and
guided by my consulting experiences.
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9.2 Statistical diagnostics

In his path-breaking 1922 paper “On the mathematical foundations of theoret-
ical statistics,” R.A. Fisher established the contemporary role of a statistical
model and anticipated the development of diagnostic methods for model as-
sessment and improvement. Diagnostics was a particularly active research area
from the time of Fisher’s death in 1962 until the late 1980s, and the area is
now an essential ingredient in Fisher modeling.

9.2.1 Influence diagnostics

My involvement with diagnostics began early in my career at Minnesota. A
colleague from the Animal Science Department asked me to review a regression
because his experiment had apparently produced results that were diametri-
cally opposed to his prior expectation. The experiment consisted of injecting
a number of rats with varying doses of a drug and then measuring the fraction
of the doses, which were the responses, that were absorbed by the rats’ livers.
The predictors were various measurements on the rats plus the actual dose.
I redid his calculations, looked at residual plots and performed a few other
checks that were standard for the time. This confirmed his results, leading to
the possibilities that either there was something wrong with the experiment,
which he denied, or his prior expectations were off. All in all, this was not a
happy outcome for either of us.

I subsequently decided to use a subset of the data for illustration in a
regression course that I was teaching at the time. Astonishingly, the selected
subset of the data produced results that clearly supported my colleague’s prior
expectation and were opposed to those from the full data. This caused some
anxiety over the possibility that I had made an error somewhere, but after
considerable additional analysis I discovered that the whole issue centered
on one rat. If the rat was excluded, my colleague’s prior expectations were
sustained; if the rat was included his expectations were contradicted. The
measurements on this discordant rat were accurate as far as anyone knew, so
the ball was back in my now quite perplexed colleague’s court.

The anxiety that I felt during my exploration of the rat data abated but
did not disappear completely because of the possibility that similar situations
had gone unnoticed in other regressions. There were no methods at the time
that would have identified the impact of the one unusual rat; for example,
it was not an outlier as judged by the standard techniques. I decided that
I needed a systematic way of finding such influential observations if they were
to occur in future regressions, and I subsequently developed a method that
easily identified the irreconcilable rat. My colleagues at Minnesota encouraged
me to submit my findings for publication (Cook, 1977), which quickly took on
a life of their own, eventually becoming known as Cook’s Distance, although
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no one sought my acquiescence. In 1982 I coauthored a fairly comprehensive
research monograph on the state of diagnostic methods (Cook and Weisberg,
1982).

Encouraged by the wide acceptance of Cook’s Distance and my other di-
agnostic contributions, and aided by a year-long fellowship from the Mathe-
matics Research Center at the University of Wisconsin, I continued working in
diagnostics with the goal of developing local differential geometric measures
that might detect various influential characteristics of a generic likelihood-
based analysis. In 1986 I read before the Royal Statistical Society a paper on
a local likelihood-based technique for the development of diagnostics to detect
influential aspects of an analysis (Cook, 1986).

Today models can be and often are much more complicated than those
likely entertained by Fisher or in common use around the time that I was
earnestly working on influence diagnostics. As a consequence, the methods
developed prior to the 1990s are generally not applicable in more complicated
contemporary contexts, and yet these contexts are no less affected by influ-
ential observations. Intricate models are prone to instability and the lack of
proper influence diagnostics can leave a cloud of doubt about the strength of
an analysis. While influence diagnostics have been keeping pace with model
development largely through a series of important papers by Hongtu Zhu and
his colleagues (Zhu et al., 2007, 2012), methods to address other diagnostic
issues, or issues unique to a particular modeling environment, are still lag-
ging far behind. Personally, I am reluctant to accept findings that are not
accompanied by some understanding of how the data and model interacted to
produce them.

9.2.2 Diagnostics more generally

A substantial battery of diagnostic methods for regression was developed dur-
ing the 1970s and 1980s, including transformation diagnostics, various graph-
ical diagnostics like residual plots, added variable plots (Cook and Weisberg,
1982), partial residual plots and CERES plots for predictor transformations
(Cook, 1993), methods for detecting outliers and influential observations, and
diagnostics for heteroscedasticity (Cook and Weisberg, 1983). However, it was
unclear how these methods should be combined in a systematic way to aid an
analysis, particularly since many of them addressed one issue at a time. For
instance, diagnostics for heteroscedasticity required that the mean function
be correct, regardless of the fact that an incorrect mean function and ho-
moscedastic errors can manifest as heteroscedasticity. Box’s paradigm (Box,
1980) for model criticism was the most successful of the attempts to bring
order to the application of diagnostic methods and was rapidly adopted by
many in the field. It consists essentially of iteratively improving a model based
on diagnostics: an initial model is posited and fitted to the data, followed by
applications of a battery of diagnostic methods. The model is then modified
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to correct the most serious deficiencies detected, if any. This process is then
iterated until the model and data pass the selected diagnostic checks.

Diagnostic methods guided by Box’s paradigm can be quite effective when
the number of predictors is small by today’s standards, say less than 20,
but in the early 1990s I began encountering many regressions that had too
many predictors to be addressed comfortably in this way. I once spent several
days analyzing a data set with 80 predictors (Cook, 1998, p. 296). Box’s
paradigm was quite useful and I was pleased with the end result, but the whole
process was torturous and not something I would look forward to doing again.
A different diagnostic paradigm was clearly needed to deal with regressions
involving a relatively large number of predictors.

9.2.3 Sufficient dimension reduction

Stimulated by John Tukey’s early work on computer graphics and the rev-
olution in desktop computing, many dynamic graphical techniques were de-
veloped in the late 1980s and 1990s, including linking, brushing, scatterplot
matrices, three-dimensional rotation and its extensions to grand tours, inter-
active smoothing and plotting with parallel coordinates. My first exposure to
dynamic graphics came through David Andrews’ Macintosh program called
McCloud. At one point I thought that these tools might be used effectively
in the context of diagnostics for regressions with a relatively large number of
predictors, but that proved not to be so. While dynamic graphical techniques
allow many plots to be viewed in relatively short time, most low-dimensional
projective views of data can be interesting and ponderable, but at the same
time do not necessarily provide useful information about the higher dimen-
sional data. In regression for example, two-dimensional plots of the response
against various one-dimensional projections of the predictors can be interest-
ing as individual univariate regressions but do not necessarily provide useful
information about the overarching multiple regression employing all predic-
tors simultaneously. Many projective views of a regression seen in short time
can quickly become imponderable, leaving the viewer with an array of dis-
connected facts about marginal regressions but little substantive knowledge
about the full regression.

My foray into dynamic computer graphics was methodologically unpro-
ductive, but it did stimulate a modest epiphany in the context of regression
that is reflected by the following question: Might it be possible to construct a
low-dimensional projective view of the data that contains all or nearly all of
the relevant regression information without the need to pre-specify a paramet-
ric model? If such a view could be constructed then we may no longer need to
inspect many diagnostic plots and Box’s paradigm could be replaced with a
much simpler one, requiring perhaps only a single low-dimensional display as
a guide to the regression. Stated more formally, can we find a low-dimensional
subspace S of the predictor space with the property that the response Y is
independent of the predictor vector X given the projection PSX of X onto S;
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that is, Y X|PSX? Subspaces with this property are called dimension re-
duction subspaces. The smallest dimension reduction subspace, defined as the
intersection of all dimension reduction subspaces when it is itself a dimension
reduction subspace, is called the central subspace SY |X (Cook, 1994, 1998).
The name “central subspace” was coined by a student during an advanced
topics course in regression that I was teaching in the early 1990s. This area
is now widely know as sufficient dimension reduction (SDR) because of the
similarity between the driving condition Y X|PSY |XX and Fisher’s funda-
mental notion of sufficiency. The name also serves to distinguish it from other
approaches to dimension reduction.

The central subspace turned out to be a very effective construct, and over
the past 20 years much work has been devoted to methods for estimating it; the
first two methods being sliced inverse regression (Li, 1991) and sliced average
variance estimation (Cook and Weisberg, 1991). These methods, like nearly
all of the subsequent methods, require the so-called linearity and constant co-
variance conditions on the marginal distribution of the predictors. Although
these conditions are largely seen as mild, they are essentially uncheckable and
thus a constant nag in application. Ma and Zhu (2012) recently took a sub-
stantial step forward by developing a semi-parametric approach that allows
modifications of previous methods so they no longer depend on these condi-
tions. The fundamental restriction to linear reduction PSY |XX has also been
long recognized as a limitation. Lee et al. (2013) recently extended the founda-
tions of sufficient dimension reduction to allow for non-linear reduction. This
breakthrough, like that from Ma and Zhu, opens a new frontier in dimension
reduction that promises further significant advances. Although SDR methods
were originally developed as comprehensive graphical diagnostics, they are
now serviceable outside of that context.

Technological advances resulted in an abundance of applied regressions
that Box’s paradigm could no longer handle effectively, and SDR methods
were developed in response to this limitation. But technology does not stand
still. While SDR methods can effectively replace Box’s paradigm in regressions
with many predictors, they seem ill suited for high-dimensional regressions
with many tens or hundreds of predictors. Such high-dimensional regressions
were not imagined during the rise of diagnostic or SDR methods, but are
prevalent today. We have reached the point where another diagnostic template
is needed.

9.2.4 High-dimensional regressions

High-dimensional regressions often involve issues that were not common in the
past. For instance, they may come with a sample size n that is smaller than
the number of predictors p, leading to the so called “n < p” and “n * p”
problems. Some type of specialized structure is needed for the analysis of
high-dimensional regressions since they cannot be addressed typically by using
traditional methods.



104 Reflections on a statistical career

One favored framework imposes a sparsity condition — only a few of the
many predictors are relevant for the regression — which reduces the regression
goal to finding the relevant predictors. This is now typically done by assuming
a model that is (generalized) linear in the predictors and then estimating the
relevant predictors by optimizing a penalize objective function. An analysis
of a high-dimensional regression based on this approach involves two acts of
faith.

The first act of faith is that the regression is truly sparse. While there are
contexts where sparsity is a driving concept, some seem to view sparsity as
akin to a natural law. If you are faced with a high-dimensional regression then
naturally it must be sparse. Others have seen sparsity as the only recourse. In
the logic of Bartlett et al. (2004), the bet-on-sparsity principle arose because,
to continue the metaphor, there is otherwise little chance of a reasonable
payoff. In contrast, it now seems that reasonable payoffs can be obtained also
in abundant regressions where many predictors contribute useful information
on the response, and prediction is the ultimate goal (Cook et al., 2012).

The second and perhaps more critical act of faith involves believing the
data and initial model are flawless, apart from the statistical variation that
is handled through the objective function. In particular, there are no outliers
or influential observations, any curvature in the mean function is captured
adequately by the terms in the model, interactions are largely absent, the
response and predictors are in compatible scales and the errors have constant
variation. It has long been recognized that regressions infrequently originate
in such an Elysian condition, leading directly to the pursuit of diagnostic
methods. I can think of no compelling reason these types of considerations
are less relevant in high-dimensional regressions. Diagnostic methods can and
perhaps should be used after elimination of the predictors that are estimated
to be unrelated with the response, but this step alone may be inadequate.
Failings of the types listed here will likely have their greatest impact during
rather than after penalized fitting. For instance, penalized fitting will likely
set the coefficient β of a standard normal predictor X to zero when the mean
function in fact depends on X only through a quadratic term βX2. Findings
that are not accompanied by an understanding of how the data and model
interacted to produce them should ordinarily be accompanied by a good dose
of skepticism.

9.3 Optimal experimental design

My interest in an optimal approach to experimental design arose when de-
signing a comprehensive trial to compare poultry diets at six universities. Al-
though the experimental diets came from a common source, the universities
had different capabilities and facilities which made classical Box–Fisher–Yates
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variance reduction designs difficult to employ, particularly since the underly-
ing non-linear model called for an unbalanced treatment design.

Optimal experimental design was for many years regarded as primarily a
mathematical subject. While applications were encountered from time to time,
it was seen as largely a sidelight. Few would have acknowledged optimal design
as having a secure place in statistical practice because the approach was too
dependent on knowledge of the model and because computing was often an
impediment to all but the most straightforward applications. During the 1970s
and most of the 1980s, I was occasionally a party to vigorous debates on the
relative merits of classical design versus optimal design, pejoratively referred to
by some as “alphabetic design” in reference to the rather unimaginative design
designations like D-, A- and G-optimality. Today classical and optimal design
are no longer typically seen as distinct approaches and the debate has largely
abated. The beginning of this coalescence can be traced back to technological
advances in computing and to the rise of unbalanced experimental settings
that were not amenable to classical design (Cook and Nachtsheim, 1980, 1989).

9.4 Enjoying statistical practice

Statistics has its tiresome aspects, to be sure, but for me the practice of
statistics has also been the source of considerable pleasure and satisfaction,
and from time to time it was even thrilling.

For several years I was deeply involved with the development of aerial sur-
vey methods. This included survey methods for snow geese on their molting
grounds near Arviat on the west shore of Hudson Bay, moose in northern
Minnesota, deer in southern Manitoba and wild horses near Reno, Nevada.
It became apparent early in my involvement with these studies that the de-
velopment of good survey methods required that I be actively involved in
the surveys themselves. This often involved weeks in the field observing and
participating in the surveys and making modifications on the fly.

The moose and deer surveys were conducted in the winter when foliage
was largely absent and the animals stood out against a snowy background.
Nevertheless, it soon became clear from my experience that aerial observers
would inevitably miss some animals, leading to underestimation of the pop-
ulation size. This visibility bias would be a constant source of uncertainty
unless a statistical method could be developed to adjust the counts. I devel-
oped different adjustment methods for moose and deer. Moose occur in herds,
and it seemed reasonable to postulate that the probability of seeing an ani-
mal is a function of the size of its herd, with solitary animals being missed
the most frequently. Adding a stable distribution for herd size then led to an
adjustment method that resulted in estimates of population size that were in
qualitative agreement with estimates from other sources (Cook and Martin,
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1974). A different adjustment method for deer censuses was developed based
on a design protocol that involved having two observers on the same side of
the aircraft. The primary observer in the front seat called out and recorded all
the deer that he saw. The secondary observer in the rear seat recorded only
deer that the primary observer missed. The resulting data plus a few reason-
able assumptions on the generation process led directly to adjusted population
counts (Cook and Jacobson, 1979).

A version of mark-capture was developed for estimating population sizes
of wild horses. The horses were marked by a tethered shooter leaning out the
right side of a helicopter flying near tree-top level above the then running
animals. The shooter’s demanding task was to use a fancy paint-ball gun to
mark the animal on its left rear quarter. I was the primary shooter during the
development phase, and I still recall the thrill when the helicopter pulled up
sharply to avoid trees or other obstacles.

9.5 A lesson learned

Beginning in my early days at Fort Assiniboine, my statistical perspectives
and research have been driven by applications. My work in diagnostic methods
originated with a single rat, and my attitude toward inference and diagnostics
was molded by the persistent finding that plausible initial models often do not
hold up when contrasted against the data. The development of SDR methods
was stimulated by the inability of the then standard diagnostic methods to
deal effectively with problems involving many variables. And, as mentioned
previously, we are now at a point where a new diagnostic paradigm is needed
to deal with the high-dimensional regressions of today. My interest in optimal
design arose because of the relative rigidity of classical design. My contribu-
tions to aerial surveys would have been impossible without imbedding myself
in the science. This has taught me a lesson that may seem retrospectively
obvious but was not so for me prospectively.

Statistics is driven by applications which are propelled by technological
advances, new data types and new experimental constructs. Statistical theory
and methods must evolve and adapt in response to technological innovation
that give rise to new data-analytic issues. High-dimensional data, which seems
to dominate the pages of contemporary statistics journals, may now be over-
shadowed by “Big Data,” a tag indicating a data collection so large that it
cannot be processed and analyzed with contemporary computational and sta-
tistical methods. Young statisticians who are eager to leave a mark may often
find themselves behind the curve when too far removed from application. The
greatest statistical advances often come early in the growth of a new area,
to be followed by a fleshing out of its nooks and crannies. Immersing oneself
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in an application can bring a type of satisfaction that may not otherwise be
possible.
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Science mixes it up with statistics

Kathryn Roeder

Department of Statistics
Carnegie Mellon University, Pittsburgh, PA

I have many people to thank for encouraging me to write this essay. Indeed
I believe I am among the very last group of stragglers to complete the task.
My biggest problem was deciding who was the likely audience. My wonderful
thesis advisor, Bruce Lindsay, also an author in this volume, told me to pick
my own audience. So, while I welcome any reader, I hope that the story of my
collaborative work might provide some insights for young researchers.

10.1 Introduction

An early inspiration for my career was a movie shown in an introductory
biology class “The Story of Louis Pasteur.” Paul Muni won an Academy
Award playing Pasteur, the renowned scientist who revolutionized microbi-
ology. Filmed in 1936, the movie was dark, creepy, and melodramatic. Some
people might have taken inspiration from the contributions Pasteur made to
mankind, but what struck me was that he was portrayed as a real person —
vain, egotistical, and driven by his ideas. It resonated with me and gave me a
glimpse of a future that I could not have imagined when I was growing up on
a farm in rural Kansas. It provided a clue that the crazy intensity I felt could
be put to good use. My next realization was that while I felt driven, I was not
a great scientist. After working for some years as a research assistant, it was
apparent that the life of a mediocre scientist would be dreary indeed; however,
I liked the mathematical and statistical stuff the other science majors found
dull. And so an academic statistician was born.
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10.2 Collaborators

Good collaborators make all the difference, both in terms of happiness and
productivity. But how does one find them? Good collaborators, like good
friends, cannot be found by direct search. They appear when you are pursu-
ing mutual interests. I’ve been lucky to collaborate with many great statistical
colleagues, post docs and graduate students. Here I’ll focus on scientific col-
laborators, because such bonds are not likely to happen by chance. To gain
entrance into good scientific collaborations requires a substantial investment
of time and effort. In some cases, even when you are an established researcher
you have to work for several years as part of the research team before you
get regular access to the leading scientist on a project. I have spent many
an hour talking with brilliant graduate students and post docs working for
leading researchers. This is a great way to participate in big science projects.
I find that if I provide them with statistical insights and guidance, they will
help me with the data. Sharing expertise and effort in this way is productive
and fun.

A successful applied project requires good data and typically a statistician
cannot produce data on her own. Invariably, scientists have invested years of
their lives to procure the data to which we want to gain access. Hence, it
is traditional for the lab director to be last author, a position of honor, on
any papers involving the initial publication of these data. In addition, typi-
cally a post doc or graduate student who has also played a substantial role
in getting the data is the first author of such papers. Because these data
are presented to us electronically, it is easy to forget the tremendous invest-
ment others have made. We too want to have a leading role for the statistics
team, and the authorship rules can be frustrating. But I have found that it
is immensely worthwhile to participate in such projects and contribute where
possible. Having made such an investment, it is usually possible to do more
involved statistical analysis in a follow-up paper. Naturally, this is where the
statisticians get key authorship roles.

Collaboration requires a tremendous amount of sharing and trust, so it is
not surprising that it can be challenging to succeed. Just as good collabora-
tions buoy our spirits, bad collaborations wear us down. My mother never went
to college, but she was fond of the maxims of economics: “Time is money” and
“Don’t throw good money after bad” were her favorites. Both of these shed
light on the dilemma of what to do about a bad collaboration. None of us likes
to invest a lot of effort and get nothing in return, and yet, an unsatisfying
or unhappy collaboration does not ultimately lead to good research. I have
had many experiences where I’ve walked away from a project after making
substantial investments of effort. I have never regretted getting out of such
projects. This leaves more time for other great collaborations.
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10.3 Some collaborative projects

I started my search for collaborators as a graduate student. Because I had
studied so much biology and chemistry as an undergraduate, it struck me
that all those years of training should not be ignored. I decided to hang out
with the evolutionary biology graduate students, attending their seminars and
social events. In time I found an opportunity to collaborate on a project. The
research involved plant paternity. Little did I know that this would be the first
joint paper in a long collaborative venture with Bernie Devlin. Years later we
married and to date we have co-published 76 papers. Since the early years
Bernie’s interests have evolved to human genetics and statistical genetics,
dovetailing very nicely with my own. So while I can’t recommend everyone
marry a collaborator, it has benefitted me immensely.

Genetic diversity has been a theme for much of our joint research. To
provide an example of how an initial investment in a research topic can lead
from one paper to another, I will explain this line of research. But first, to
promote understanding of this section, I will provide a very brief primer on
genetics. An allele is an alternative form of DNA, located at a specific position
on a chromosome. The allele frequency is the probability distribution of the
alleles among individuals in the population. Frequently this distribution is
estimated using a sample of alleles drawn from the reference database. For
example, sickle cell anemia is due to a single base pair change (A to a T)
in the beta-globin gene. The particular allelic form with a T is extremely
rare in Caucasian populations, but more common in African populations. The
reason for this difference in allele frequencies is that the T form provides some
benefit in resisting malaria. Thus the selective advantage of the T allele would
be felt more strongly in African populations, causing a shift in frequency
distribution. Finally, to complete the genetics primer, at each location, a pair
of alleles is inherited, one from each parent (except, of course, on chromosome
X). By Mendel’s law, a parent passes on half of their genetic material to an
offspring. It is through these simple inheritance rules that numerous genetic
relationships can be inferred (such as paternity).

In our first project we needed to infer the paternal source of inheritance
for all the seeds produced by a plant. The maternal source is obvious, because
the seeds are produced on the maternal plant. While plants don’t pay alimony,
paternity is interesting for other reasons. Plants are obviously stationary, but
the paternal genes are transmitted via pollen by natural vectors (butterflies
and such), so genetic material moves much more widely than expected. It
is important to know how far genes move naturally so that we can predict
the consequences of genetic engineering. From a statistical point of view, for
plants, paternity is inferred just as in humans. When a child matches the
alleged father at half her alleles, then he is not excluded for paternity. And if
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the chance of matching these alleles by chance is very low, then paternity is
inferred.

My work with plant paternity was about sex, but it could not be considered
sexy. I enjoyed this project very much, but it was of interest to a specialized
community. It was my next project that attracted the interest of other statis-
ticians. In the late 1980s and early 1990s, DNA forensic inference was in its
infancy. One of the earliest uses of this technique occurred in England. Based
on circumstantial evidence a boy was accused of the rape and murder of two
girls in his village. During his interrogation he asked for a blood test. As luck
would have it, Alec Jeffries, who had just developed a method of DNA finger-
printing, was located just six miles from the village. The boy’s blood was tested
and he was found to be innocent. This was done by comparing the observed
alleles at several genetic locations between the DNA left at the crime scene
to the DNA of the suspect. The choice of genetic locations was made so that
there were a large number of possible alleles at each location. Consequently
the probability of two people matching by chance was extremely low.

This method of garnering evidence was tremendously powerful and as such
was highly controversial. Genetic evidence had been used in paternity cases
for quite some time, but the impact of using DNA to convict people of serious
crimes was much more compelling and there was an obvious need for serious
statistical inquiry. Very early on, our colleague, Professor Neil Risch, was
invited to work on the problem by a private company, LIFECODES, and also
by the FBI. Neil invited us into collaboration. This was the beginning of an
exciting period of investigation. The three of us published several papers and
were occasionally quoted in the New York Times. Although the setting and
the technology were new, many statistical questions were familiar from the
paternity project. Although we did not set out with a plan to get involved in
this hot topic, we would never have had this opportunity if we hadn’t gained
expertise in the original botanical project.

There were many aspects to this controversy. Here I’ll discuss one issue
— the suitability of available reference databases for calculating the probabil-
ity of a match between a suspect and the perpetrator. The question at issue
was how much people vary in their allele frequencies across populations. For
instance, if an Asian reference sample is available, will it be suitable if the sus-
pect is Korean? Naturally, controversy always rages most keenly when there
are little data available from which to definitively answer the questions. Let’s
examine this one guided by Sewell Wright. If we divide the world up into
populations (continental groups) and subpopulations (ethnic groups within
a continent), then we can begin to examine this question. We can partition
the variance into various levels, among populations, among subpopulations
within a population, among individuals within a subpopulation, and finally,
layered over all of this is sampling error. Moderate sized samples were imme-
diately available at the population level and it was apparent that populations
did not differ strongly. But at the subpopulation level there was considerable
sampling error, making it impossible to determine empirically if subpopu-
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lations varied strongly. Finally, we could clearly see that individuals varied
tremendously, at least if we looked at individuals at the population level. The
question remained, could individuals in subpopulations be quite similar and
hence be falsely accused? I don’t want to rehash the controversy, but suffice
it to say that it was a profitable debate and it was great for statisticians to
be involved on both sides of the argument. By the end of the decade DNA
forensics became a model for solid forensic evidence. Not to mention that, in
the meantime, I earned tenure.

The impact of variability in allele frequencies also arises when looking for
associations between genetic variants and disease status. Assume two popula-
tions vary in allele frequency and they differ in disease prevalence. If the data
are pooled over populations, there will be an association between the locus
and disease that falsely implies that one allelic variant increases the risk of
disease. Indeed this is Simpson’s paradox. In most applications, confounding
is a frustration about which little can be done beyond taking care not to draw
causal inferences for association studies. However, in the genetic context there
is a fascinating option that allows us to get a little closer to making causal in-
ferences. It all goes back to population genetics where the variability in allele
frequencies is called population substructure.

Suppose we plan to test for association at many genetic locations (SNPs)
across the genome using a simple χ2 test for association at each SNP. Relying
on some statistical and population genetic models we can show that in the
presence of population substructure the test statistic approximately follows
an inflated χ2-distribution. And, under certain reasonable assumptions, the
inflation factor is approximately constant across the genome. Consequently
we can estimate this quantity and determine the severity of the confounding.
Based on this principle, the approach we developed is called Genomic Control
(GC). Applying GC is such a routine part of most tests of genetic association
that the original paper is no longer cited.

Recently large platforms of SNPs became available as part of genome wide
association studies, or GWAS. From this immense source of genetic informa-
tion, a very good proxy was discovered that creates an approximate map of
genetic ancestry. Using this as a covariate, one can essentially remove the con-
founding effect of population substructure. The map is generated using dimen-
sion reduction techniques such as principal components, or spectral analysis.
It is remarkable that while the subtle differences in allele frequency among
SNPs is small enough to allow forensic inference to be sufficiently accurate,
and yet when accumulated over a huge number of alleles, the combined effect
is quite informative about local ancestry.

More recently I’ve been involved in DNA sequence studies to find genes
that increase the risk of autism and other disorders and diseases. This type
of research involves large consortiums. Indeed, some papers have hundreds of
authors. In big science projects it may seem that there is no place for young
researchers to play a role, but this is not the case. Almost all of the established
researchers in our group are eager to support young researchers. Moreover,
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they understand that young researchers need to have primary authorship on
these ventures.

10.4 Conclusions

One theme in much of my work has been a willingness and desire to work
on things that are new and somewhat controversial. Not surprisingly, these
topics often garner more attention than others, and certainly more attention
than the statistical contributions would merit on their own. I personally find
that such topics excite my curiosity and push me to work more intensely.
While working on such topics has the benefit of leading to publication in top
journals, it also has drawbacks. When you’ve been on the opposite side of
an argument, tempers can flare, and in the process grants and papers can
be rejected. The best policy in this regard is to maintain good communica-
tion and try to respect the people on the other side of the argument, even
while disagreeing with their opinions. Regarding another controversial topic
we published on — heritability of IQ — we encountered some stiff criticism
at a leading journal. Our finding was that the so-called maternal effect had
a big impact on the IQ of a child. As a consequence it could be argued that
it was important that a mother experience a good environment during preg-
nancy, which hardly seems controversial. Nevertheless, a top researcher from
psychometrics said we would damage an entire field of scientific inquiry if we
published this paper. Fortunately, Professor Eric Lander argued for our paper
and we managed to publish it in Nature. Just last year David Brooks, a New
York Times columnist, mentioned the paper in one of his columns. For me,
knowing that an idea could stay alive for nearly two decades and rise to the
attention of someone like Brooks was enormously satisfying.

While I have been blessed with singular good luck in my life, writing only
about the successes of a career can leave the wrong impression. I wouldn’t want
young readers to think mine was a life of happy adventures, filled with praise.
Just before my first job interview a beloved faculty member told me I was only
invited because I was a girl. Nonplussed, I asked him if he could help me choose
my interview shoes. As a young faculty member the undergraduate students
insisted on calling me Mrs. Roeder until I finally listed my proper name on
the syllabus as Professor Roeder, offering helpfully — if you have trouble
pronouncing my last name, you can just call me Professor. More recently
I had three papers rejected in a month, and one was rejected within four
hours of submission. I believe it took me longer to upload it to the journal
web site than it took them to review it. But truth be told, I have not found
rejections hard to bear. Oddly it is success that can fill me with dread. The
year I won the COPSS award I was barely able to construct an adequate
acceptance speech. Any field that felt I was a winner was surely a sorry field.
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Since that year (1997) I have had many stretches of time wherein I received no
praise whatsoever. This gave me ample opportunity to regret my lack of joy
at such a wonderful gift. Yet, with or without external validation, I continue
to feel the greatest happiness when I see that an idea of mine has worked out.
It is at these times I still think of Louis Pasteur and his wild passion to try
the rabies vaccine (illegally) and the thrill he must have felt when it worked.

So many years later I cannot help but marvel on the randomness of life
and the paths we take in our careers. That biology professor, probably up
late writing a grant proposal, may have shown the Pasteur movie because he
didn’t have time to prepare a lecture. And in some small way it launched my
ship. Just thinking about that movie inspired me to look for it on Wikipedia.
Imagine my surprise when I discovered that it was a successful Hollywood
venture. Indeed it was nominated for best picture. Had I known that this was
an award-winning movie, I never would have put so much stock in the personal
message I felt it was conveying to me. And if I hadn’t, would I have had the
satisfying adventures of my career? Life is a mystery.
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Lessons from a twisted career path

Jeffrey S. Rosenthal

Department of Statistical Sciences
University of Toronto, Toronto, ON

I reflect upon my academic career path that ultimately led to receiving the
COPSS Presidents’ Award, with the hopes of providing lessons and insights
for younger researchers.

11.1 Introduction

On a chilly Toronto evening in February, 2007, my wife and I returned home
from a restaurant. My wife went into the kitchen to put some leftovers in
the fridge, while I flopped onto the couch and absent-mindedly picked up a
laptop computer to check my email. A minute later my wife heard a dazed
and confused “Oh my god!” and rushed back in to see what was wrong. I was
barely able to mutter that, to my amazement, I had just been selected to
receive that year’s COPSS Presidents’ Award.

The email message talked mostly about boring details, like the importance
of my keeping my award “STRICTLY CONFIDENTIAL” until the official
announcement (over five months later!). And the award’s web page focused
more on its sponsorship and eligibility requirements than on its actual meaning
and value. But none of that mattered to me: I knew full well that this award
was a biggie, generally regarded as the world’s top academic prize in statistics.
I couldn’t believe that they had chosen me to receive it.

Six years later, I still can’t.
I was struck then, as I often am, by my career’s twists and turns: how

some of the most interesting developments were also the least expected, and
how unlikely it would have seemed that I would ever win something like the
COPSS. In fact, I never set out to be a statistician at all.

Many young statisticians picture COPSS winners as having clear, linear
career paths, in which their statistical success always appeared certain. In
my case, nothing could be further from the truth. So, in this chapter, I will
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reflect upon some of the twists and turns of my academic career to date, with
the hopes of providing lessons and insights (written in italics) for younger
researchers.

11.2 Student days

I was an undergraduate student at the University of Toronto from 1984 to
1988. What I remember most from those years is the huge excitement that
I felt at being surrounded by so much knowledge and learning. I would run en-
thusiastically to lectures and meetings, unable to wait for what I would learn
next. In addition to my regular classes, I took or audited courses in other
subjects of interest (astronomy, chemistry, philosophy, linguistics), joined var-
ious clubs and activities, socialized a great deal, played music with friends,
developed my spoken French, went on fantastic camping and canoeing trips,
and discussed everything with everyone. Around that time, a high school ac-
quaintance (in fact, the young lady that I had taken to my high school prom)
remarked that she saw me on campus from time to time, but never managed
to talk to me, since I was always rushing off to somewhere else.

Subsequent years of pressure and deadlines have somewhat dulled that
initial sense of excitement, but I can still feel and remember it well, and it has
carried me through many difficult times. Indeed, if I could give just one piece
of advice to students and young academics, it would be this: maintain your
enthusiasm about learning as much as you can about everything. With enough
excitement and passion, everything else will follow.

In my undergraduate studies, I concentrated primarily on pure mathemat-
ics and physics, with some computer science on the side. You will notice that
“statistics” has not been mentioned here. Indeed, I am a COPSS winner who
never took a single statistics course. I did, however, benefit tremendously from
the rigorous mathematical training that I received instead.

11.2.1 Applying to graduate school

When my undergraduate studies were coming to an end, I was excited to apply
to graduate programs. All around me, students were rambling on about being
unsure what they wanted to study or what they would do next. I scoffed at
them, since I already “knew” what I wanted to study: mathematical analysis
with applications to physics! (Statistics never even crossed my mind.)

Despite my successful undergraduate years, I fretted enormously over my
grad school applications, applying to loads of programs, wondering what my
professors would write about me, thinking I wouldn’t get accepted, and so on.
That’s right: even future COPSS winners worry about succeeding in academics.



J.S. Rosenthal 119

My math professors advised me that, while there were many good mathe-
matics graduate programs, the best one was at Princeton University. So, I was
amazed and delighted to receive a letter accepting me into their PhD program!
They even offered a bit of money to help me visit their campus before decid-
ing. So, although I “knew” that I was planning to accept their offer, I found
myself on a flight to Newark to visit the famous Princeton campus.

And then a funny thing happened. My visit made me very depressed. It
did reinforce the amazing research depth of the Princeton math faculty. But
none of the PhD students there seemed happy. They felt a lot of pressure to
write very deep doctoral theses, and to finish in four years. They admitted
that there wasn’t much to “do” at Princeton, and that everyone spent all their
time on work with little time for fun. (I asked one of them if there were clubs
to go hear music, but they didn’t seem to even understand my question.)

I returned to Toronto feeling worried about my choice, and fearing that
I might be miserable at Princeton. At the same time, I wondered, did it
really make sense to consider such intangible factors when making important
academic decisions? I finally decided that the answer was yes, and I stand by
that conclusion today: it is perfectly reasonable to balance personal preferences
against academic priorities.

So, I decided to consider other graduate schools too. After some more travel
and much agonizing, I enrolled in the Harvard University Mathematics PhD
Program. Harvard also had incredible mathematical research depth, including
in mathematical physics, and in addition it was in a fun-seeming city (Boston)
with students who seemed to find at least a bit of time to enjoy themselves.

I had made a decision. I had even, I think, made the right decision. Un-
fortunately, I wasn’t sure I had made the right decision. Now, it should be
obvious that: once you have made a decision, stick with it and move on; don’t
waste time and effort worrying about whether it was correct. But I didn’t fol-
low that advice. For several years, I worried constantly, and absurdly, about
whether I should have gone to Princeton instead.

11.2.2 Graduate school beginnings

And so it was that I began my PhD in the Harvard Mathematics Depart-
ment. I struggled with advanced mathematics courses about strange-seeming
abstract algebraic and geometric concepts, while auditing a physics course
about the confusing world of quantum field theory. It was difficult, and stress-
ful, but exciting too.

My first big challenge was the PhD program’s comprehensive examina-
tion. It was written over three different afternoons, and consisted of difficult
questions about advanced mathematical concepts. New PhD students were
encouraged to take it “on a trial basis” just months after beginning their pro-
gram. I did my best, and after three grueling days I thought I was probably
“close” to the passing line. The next week I nervously went to the graduate
secretaries’ office to learn my result. When she told me that I passed (uncon-
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ditionally), I was so thrilled and amazed that I jumped up and down, patted
various office staff on their shoulders, raced down to the departmental library,
and danced in circles around the tables there. I couldn’t believe it.

Passing the comps had the added bonus that I was henceforth excused
from all course grades. Three months after arriving at Harvard, “all” I had
left to do was write my PhD thesis. Easy, right?

No, not right at all. I was trying to learn enough about state-of-the-art
mathematical physics research to make original contributions. But the re-
search papers on my little desk were so difficult and abstract, using technical
results from differential geometry and algebraic topology and more to prove
impenetrable theorems about 26-dimensional quantum field theories. I remem-
ber looking sadly at one such paper, and estimating that I would have to study
for about two more years to understand its first sentence.

I got worried and depressed. I had thought that applications of mathemat-
ics to physics would be concrete and intuitive and fun, not impossibly difficult
and abstract and intangible. It seemed that I would have to work so hard for
so many years to even have a chance of earning a PhD. Meanwhile, I missed
my friends from Toronto, and all the fun times we had had. I didn’t see the
point of continuing my studies, and considered moving back to Toronto and
switching to something more “practical” like computer programming. That’s
right: a COPSS winner nearly dropped out of school.

11.2.3 Probability to the rescue

While beating my head against the wall of mathematical physics, I had been
casually auditing a course in probability theory given by Persi Diaconis. In
contrast to all of the technical mathematics courses and papers I was strug-
gling with, probability with Persi seemed fun and accessible. He presented
numerous open research problems which could be understood (though not
solved) in just a few minutes. There were connections and applications to
other subjects and perhaps even to the “real world.” I had little to lose, so
I nervously asked Persi if I could switch into probability theory. He agreed,
and there I was.

I started a research project about random rotations in high dimensions
— more precisely, random walks on the compact Lie group SO(n). Although
today that sounds pretty abstract to me, at the time it seemed relatively
concrete. Using group representation theory, I got an initial result about the
mixing time of such walks. I was excited, and told Persi, and he was excited
too. I hoped to improve the result further, but for a few weeks I mostly just
basked in the glory of success after so much frustration.

And then a horrible thing happened. I realized that my result was wrong!
In the course of doing extensive calculations on numerous scraps of paper,
I had dropped an “unimportant” constant multiplier. One morning it sud-
denly occurred to me that this constant couldn’t be neglected after all; on the
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contrary, it nullified my conclusion. In short: a COPSS winner’s first research
result was completely bogus.

I felt sick and ashamed as I informed Persi of the situation, though for-
tunately he was very kind and understanding. It did teach me a lesson, that
I don’t always follow but always should: when you think you have a result,
write it down very carefully to make sure it is correct.

After that setback, I worked very hard for months. I wrote out long for-
mulas for group representation values. I simplified them using subtle calculus
tricks, and bounded them using coarse dominating integrals. I restricted to
a particular case (where each rotation was 180 degrees through some hyper-
plane) to facilitate computations. Finally, hundreds of pages of scrap paper
later, I had actually proved a theorem. I wrote it up carefully, and finally my
first research paper was complete. (All of the author’s research papers men-
tioned here are available at www.probability.ca.) I knew I had a long road
ahead — how long I could not estimate — but I now felt that I was on my
way. I enthusiastically attended lots of research seminars, and felt like I was
becoming part of the research community.

Over the next couple of years, I worked on other related research projects,
and slowly got a few other results. One problem was that I couldn’t really
judge how far along I was towards my PhD. Did I just need a few more results
to finish, or was I still years away? I was mostly too shy or nervous to ask
my supervisor, and he didn’t offer any hints. I finally asked him if I should
perhaps submit my random rotations paper for publication in a research jour-
nal (a new experience for me), but he demurred, saying it was “too much of
a special case of a special case,” which naturally discouraged me further. (As
it happens, after I graduated I submitted that very same random rotations
paper to the prestigious Annals of Probability, and it was accepted essentially
without change, leading me to conclude: PhD students should be encouraged
to submit papers for publication. But I didn’t know that then.)

I started to again despair for the future. I felt that if only I could finish
my PhD, and get tenure at a decent university, then life would be good. But
I wondered if that moment would ever come. Indeed, I was a future COPSS
winner who thought he would never graduate.

A few weeks later, I was lifted out of my funk by a rather awkward oc-
currence. One Friday in November 1990, as I was leaving a research meeting
with Persi, he casually mentioned that perhaps I should apply for academic
jobs for the following year. I was speechless. Did this mean he thought I was
already nearly finished my PhD, even while I was despairing of graduating
even in the years ahead? I left in a daze, and then spent the weekend puzzled
and enthusiastic and worried about what this all meant. When Monday finally
came, I sought out Persi to discuss details. In a quick hallway conversation,
I told him that if he really did think that I should apply for academic jobs,
then I should get on it right away since some of the deadlines were already ap-
proaching. Right before my eyes, he considered for several seconds, and then
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changed his mind! He said that it might be better for me to wait another year
instead.

This was quite a roller coaster for me, and I’ve tried to remember to
be as clear as possible with PhD students about expectations and prognoses.
Nevertheless, I was delighted to know that at least I would (probably) graduate
the following year, i.e., after a total of four years of PhD study. I was thrilled
to see light at the end of the tunnel.

Finally, the next year, I did graduate, and did apply for academic jobs. The
year 1992 was a bad time for mathematical employment, and I felt pessimistic
about my chances. I didn’t even think to include my full contact information in
my applications, since I doubted anyone would bother to contact me. Indeed,
when the photocopier added huge ink splotches to some of my application
materials, I almost didn’t bother to recopy them, since I figured no one would
read them anyway. Yes, a future COPSS winner barely even considered the
possibility that anyone would want to offer him a job.

11.3 Becoming a researcher

To my surprise, I did get job offers after all. In fact, negotiating the job
interviews, offers, terms, and acceptances turned out to be quite stressful in
and of itself — I wasn’t used to discussing my future with department chairs
and deans!

Eventually I arranged to spend 1.5 years in the Mathematics Department
at the University of Minnesota. They had a large and friendly probability
group there, and I enjoyed talking with and learning from all of them. It is
good to be part of a research team.

I also arranged that I would move from Minnesota to the Statistics Depart-
ment at my alma mater, the University of Toronto. I was pleased to return to
the city of my youth with all its fond memories, and to the research-focused
(though administration-heavy) university. On the other hand, I was joining a
Statistics Department even though I had never taken a statistics course.

Fortunately, my new department did not try to “mold” me into a statis-
tician; they let me continue to work as a mathematical probabilist. I applaud
them for this, and have come to believe that it is always best to let researchers
pursue interests of their own choosing.

Despite the lack of pressure, I did hear more about statistics (for the first
time) from my new colleagues. In addition, I noticed something interesting in
the way my research papers were being received. My papers that focused on
technical/mathematical topics, like random walks on Lie groups, were being
read by a select few. But my papers that discussed the theory of the newly-
popular Markov chain Monte Carlo (MCMC) computer algorithms, which
Persi with his usual foresight had introduced me to, were being cited by lots
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of statistical researchers. This caused me to focus more on MCMC issues, and
ultimately on other statistical questions too. Of course, research should never
be a popularity contest. Nevertheless, it is wise to work more on research
questions which are of greater interest to others.

In my case, these reactions led me to focus primarily on the theory of
MCMC, which served me very well in building my initial research career.
I still considered myself a probabilist (indeed, I recall someone referring to
me as “a statistician” around that time, and me feeling uncomfortable with
the designation), but my research more and more concerned applications to
statistical algorithms. I was publishing papers, and working very hard — my
initial small office was right off the main hallway, and colleagues commented
about seeing my light still on at 10:30 or 11:00 many evenings. Indeed, research
success always requires lots of hard work and dedication.

11.3.1 Footprints in the sand

My interactions with the research community developed a slightly odd flavor.
MCMC users were aware of my work and would sometimes cite it in gen-
eral terms (“for related theoretical issues, see Rosenthal”), but hardly anyone
would read the actual details of my theorems. Meanwhile, my department was
supportive from a distance, but not closely following my research. My statistics
colleagues were working on questions that I didn’t have the background to con-
sider. And probability colleagues wouldn’t understand the statistical/MCMC
motivation and thus wouldn’t see the point of my research direction. So, de-
spite my modest research success, I was becoming academically somewhat
isolated.

That was to change when I met Gareth Roberts. He was a young English
researcher who also had a probability background, and was also studying the-
oretical properties of MCMC. The summer of 1994 featured three consecutive
conferences that we would both be attending, so I looked forward to meet-
ing him and exploring common interests. Our first encounter didn’t go well:
I finally cornered him at the conference’s opening reception, only to hear him
retort “Look, I’ve just arrived from England and I’m tired and jet-lagged; I’ll
talk to you tomorrow.” Fortunately the next day he was in better form, and
we quickly discovered common interests not only in research, but also in mu-
sic, sports, chess, bridge, jokes, and more. Most importantly, he had a similar
(though more sophisticated) perspective about applying probability theory
to better understand the nature and performance of MCMC. We developed
a fast friendship which has now lasted through 19 years and 33 visits and
38 joint research papers (and counting). Gareth has improved my research
career and focus immeasurably; social relationships often facilitate research
collaborations.

My career still wasn’t all smooth sailing. Research projects always seemed
to take longer than they should, and lead to weaker results than I’d hoped.
Research, by its very nature, is a slow and frustrating process. Around that
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time, one of my PhD students had a paper rejected from a journal, and shyly
asked me if that had ever happened to me. I had to laugh; of course it did!
Yes, even COPSS winners get their papers rejected. Often. Nevertheless, I was
getting papers published and doing okay as a researcher — not making any
huge impact, but holding my own. I was honored to receive tenure in 1997,
thus fulfilling my youthful dream, though that did lead to a depressing few
months of drifting and wondering “what should I do next.” A very unexpected
answer to that question was to come several years later.

11.3.2 The general public

Like many mathematical researchers, sometimes I felt frustrated that
I couldn’t easily explain my work to non-academics (joking that I was the
guy no one wanted to talk to at a party), but I had never pursued this fur-
ther. In 2003, some writers and journalists in my wife’s family decided that
I should write a probability book for the general public. Before I knew it, they
had put me in touch with a literary agent, who got me to write a few sample
chapters, which quickly scored us an actual publishing contract with Harper-
Collins Canada. To my great surprise, and with no training or preparation,
I had agreed to write a book for a general audience about probabilities in
everyday life, figuring that it is good to occasionally try something new and
different.

The book took two years to write. I had to constantly remind myself that
writing for a general audience was entirely different from writing a research
paper or even a textbook. I struggled to find amusing anecdotes and catchy
examples without getting bogged down in technicalities. Somehow I pulled it
off: “Struck by Lightning: The Curious World of Probabilities” was published
in sixteen editions and ten languages, and was a bestseller in Canada. This
in turn led to numerous radio/TV/newspaper interviews, public lectures, ap-
pearances in several documentaries, and invitations to present to all sorts of
different groups and organizations. Completely unexpectedly, I became a lit-
tle bit of a “public persona” in Canada. This in turn led to several well-paid
consulting jobs (including one involving computer parsing of pdf files of cus-
tomers’ cell phone bills to compare prices), assisting with a high-profile media
investigation of a lottery ticket-swapping scandal and publishing about that in
the RCMP Gazette, serving as an expert witness in a brief to Supreme Court
of Canada, and more. You just can’t predict what twists your career will take.

11.3.3 Branching out: Collaborations

In a different direction, I have gradually started to do more interdisciplinary
work. As I have become slightly better known due to my research and/or
book and interviews, academics from a variety of departments have started
asking me to collaborate on their projects. I have found that it is impossible
to “prepare” for such collaborations — rather, you have to listen carefully and
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be open to whatever research input your partners require. Nevertheless, due to
some combination of my mathematical and computer and social skills, I have
managed to be more helpful than I would have predicted, leading to quite a
number of different joint papers. (I guess I am finally a statistician!)

For example, I provided mathematical analysis about generators of credit
rating transition processes for a finance colleague. I worked on several pa-
pers with computer science and economics colleagues (one of which led to a
tricky probability problem, which in turn led to a nice probability paper with
Robin Pemantle). I was also introduced to some psychologists working on an-
alyzing youth criminal offender data, which began a long-term collaboration
which continues to this day. Meanwhile, an economics colleague asked me to
help investigate temperature and population changes in pre-industrial Iceland.
And a casual chat with some philosophy professors led to a paper about the
probability-related philosophical dilemma called the Sleeping Beauty problem.

Meanwhile, I gradually developed a deeper friendship with my department
colleague Radu Craiu. Once again, social interaction led to discovering com-
mon research interests, in this case concerning MCMC methodology. Radu
and I ended up co-supervising a PhD student, and publishing a joint paper
in the top-level Journal of the American Statistical Association (JASA), with
two more papers in preparation. Having a longer-term collaborator within
my own department has been a wonderful development, and has once again
reminded me that it is good to be part of a research team.

More recently, I met a speech pathologist at a lecture and gave her my
card. She finally emailed me two years later, asking me to help her analyze
subjects’ tongue positions when producing certain sounds. Here my under-
graduate linguistic course — taken with no particular goal in mind — was
suddenly helpful; knowledge can provide unexpected benefits. Our resulting
collaboration led to a paper in the Journal of the Acoustical Society of Amer-
ica, a prestigious journal which is also my second one with the famous initials
“JASA.”

I was also approached by a law professor (who was the son-in-law of a
recently-retired statistics colleague). He wanted to analyze the text of supreme
court judgments, with an eye towards determining their authorship: did the
judge write it directly, or did their law clerks do it? After a few false starts, we
made good progress. I submitted our first methodological paper to JASA, but
they rejected it quickly and coldly, saying it might be more appropriate for
an educational journal like Chance. That annoyed me at the time, but made
its later acceptance in The Annals of Applied Statistics all the more sweet. A
follow-up paper was published in the Cornell Law Review, and later referred
to in the New York Times, and more related publications are on the way.

These collaborations were all very different, in both content and process.
But each one involved a personal connection with some other researcher(s),
which after many discussions eventually led to worthwhile papers published
in high-level research journals. I have slowly learned to always be on the
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lookout for such connections: Unexpected encounters and social interactions
can sometimes lead to major new research collaborations.

11.3.4 Hobbies to the fore

Another surprise for me has been the extent to which my non-research interests
and hobbies have in turn fed my academic activities in unexpected ways.

As a child I did a lot of computer programming of games and other silly
things. When email and bulletin boards first came out, I used them too, even
though they were considered unimportant compared to “real” computer ap-
plications like numerical computations. I thought this was just an idle past-
time. Years later, computer usage has become very central to my research and
consulting and collaborations: from Monte Carlo simulations to text process-
ing to internet communications, I couldn’t function without them. And I’ve
been helped tremendously by the skills acquired through my “silly” childhood
hobby.

I’d always played a lot of music with friends, just for fun. Later on, music
not only cemented my friendship with Gareth Roberts, it also allowed me to
perform at the infamous Bayesian conference “cabarets” and thus get intro-
duced to more top researchers. In recent years, I even published an article
about the mathematical relationships of musical notes, which in turn gave me
new material for my teaching. Not bad for a little “fun” music jamming.

In my late twenties I studied improvisational comedy, eventually perform-
ing in small local comedy shows. Unexpectedly, improv’s attitude of “em-
bracing the unexpected” helped me to be a more confident and entertaining
teacher and presenter, turning difficult moments into humorous ones. This in
turn made me better at media interviews when promoting my book. Coming
full circle, I was later asked to perform musical accompaniment to comedy
shows, which I continue to this day.

I’d always had a strong interest in Canadian electoral politics. I never
dreamed that this would impact my research career, until I suddenly found
myself using my computer skills to analyze polling data and projections from
the 2011 Canadian federal election, leading to a publication in The Canadian
Journal of Statistics.

Early in my teaching career, I experimented with alternative teaching ar-
rangements such as having students work together in small groups during
class time. (Such practices are now more common, but back in the early 1990s
I was slightly ahead of my time.) To my surprise, that eventually led to a
publication in the journal Studies in Higher Education.

In all of these cases, topics I had pursued on their own merits without
connection to my academic career, turned out to be useful in my career after
all. So, don’t hesitate to pursue diverse interests — they might turn out to be
useful in surprising ways.
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11.4 Final thoughts

Despite my thinking that I “had it all planned out,” my career has surprised
me many times over. I never expected to work in statistics. I had no idea that
MCMC would become such a central part of my research. I never planned to
write for the general public, or appear in the media. And I certainly never
dreamed that my music or improv or political interests would influence my
research profile in any way.

Nevertheless, I have been very fortunate: to have strong family and educa-
tional foundations, to attend top-level universities and be taught by top-level
professors, and to have excellent opportunities for employment and publishing
and more. I am very grateful for all of this. And, it seems that my ultimate
success has come because of all the twists and turns along the way, not in spite
of them. Perhaps that is the real lesson here — that, like in improv, we should
not fear unexpected developments, but rather embrace them.

My career, like most, has experienced numerous research frustrations, re-
jected papers, and dead ends. And my university’s bureaucratic rules and
procedures sometimes make me want to scream. But looking back, I recall my
youthful feeling that if only I could get tenure at a decent university, then life
would be good. I was right: it has been.
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12.1 Introduction

“I’m not a gentleman.” This phrase should alert everyone to the fact that this
is not a conventional statistics paper; rather it is about the issues of equity that
the Elizabeth Scott Award addresses. But that was the phrase that marked
my entry onto the path for which I received the award. It had become obvious
to me early in my career as a mathematician that women were not playing on a
level field in the profession. The overt and subtle discrimination was pervasive.
Of course, it was possible to ignore it and to get on with proving theorems. But
I had met Betty Scott and other women who were determined not to remain
passive. Where better to confront the issues but the Council of the American
Mathematical Society (AMS), the group that considered itself the guardian of
the discipline. I arrived at one of its meetings, eager to observe the operation
of the august group. “This meeting is open only to Council members,” I was
told. Secure in having read the AMS By-laws, I quoted the requirement that
the Council meetings be open to all AMS members. “Oh,” said the president
of the society, “it’s a gentlemen’s agreement that they be closed.” I uttered
my open-sesame and remained.

However, the way the “old boys’ network” operated inspired many math-
ematicians to raise questions at Council meetings and more generally. Results
were often discouraging. To the notion of introducing blind-refereeing of AMS
publications, the response from our distinguished colleagues was, “But how
would we know the paper was any good if we didn’t know who wrote it?”
Outside Council premises at a national mathematics meeting a well-known
algebraist mused, “We once hired a woman, but her research wasn’t very
good.” Faced with such attitudes about women in mathematics, a group of us
founded the Association for Women in Mathematics (AWM). In the 40+ years
of its existence, AWM has grown to thousands of members from around the
world (about 15% of whom are men) and has established many travel grant
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and fellowship programs to encourage women and girls to study mathematics
and to support those in the profession. Prizes are awarded by AWM for the
research of established mathematicians and undergraduates and for teaching.
Through grant support from NSF, NSA, other foundations and individuals the
organization supports “Sonya Kovalevskaya Days” for high school and mid-
dle school students at institutions throughout the country, events designed to
involve the participants in hands-on activities, to present a broad view of the
world of mathematics, and to encourage a sense of comradeship with others
who might be interested in mathematics.

And things got better, at least in part due to vigorous advocacy work. The
percentage of PhDs in math going to women went from 6% when I got my de-
gree to 30% before settling in the mid-twenties (the figure is more than 40% in
statistics). Even “at the top” there was progress. The most prestigious univer-
sity departments discovered that there were women mathematicians worthy of
tenure-track positions. A woman mathematician was elected to the National
Academy of Sciences, followed by several more. In its 100+ year history, the
AMS finally elected two women presidents (the first in 1983, the last in 1995),
compared with five of the seven most recent presidents of the American Statis-
tical Association (ASA). However, a combination of the still chilly climate for
women in math and the fact that the gap between very abstract mathematics
and the work for political and social rights that I considered important led
me to switch to applied statistics.

12.2 The Elizabeth Scott Award

To learn that I had been selected for the Elizabeth Scott Award was a par-
ticular honor for me. It was Betty Scott who was responsible in part for my
deciding to make the switch to statistics. Because I came to know of her ef-
forts to establish salary equity at Berkeley, when a committee of the American
Association of University Professors decided to try to help other institutions
accomplish a similar task, I thought of asking Betty to develop a kit (Scott,
1977) to assist them.

Using regression to study faculty salaries now seems an obvious technique;
there are probably not many colleges or universities who have not tried to do so
in the forty years since Title VII’s prohibition of discrimination in employment
based on sex became applicable to college professors. Few will remember that
when it first was enacted, professors were exempted on the grounds that the
qualifications and judgments involved were so subjective and specialized as
to be beyond the requirement of equity and that in any case, discrimination
would be too difficult to prove. It still is difficult to prove, and unfortunately
it still exists. That, through litigation or voluntary action, salary inequities
have generally diminished is due partly to the cascade of studies based on
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the kit and its refinements. As we know, discrimination cannot be proved by
statistics alone, but extreme gender-disproportionate hiring, promotion and
pay are extremely unlikely to occur by chance.

Professor Scott was not happy with the “remedies” that institutions were
using to “fix” the problem. Once women’s salaries were fitted to a male model,
administrators appeared to love looking at a regression line and circling the
observations below the line. “Oh look, if we add $2000 to the salaries of a few
women and $1000 to the salaries of a few more, we will fix the problem,” they
exclaimed. Such an implementation relied on a common misunderstanding of
variation. Sure, some women will be below the line and, of course, some women
(although probably not many) may be above the male line. But what the
regression models generally show is that the overall effect is that, on average,
women are paid less than similarly qualified men. What is even worse, all
too frequently administrators then engage in a process of showing that those
“circled” women really “deserve” to be underpaid on some subjective basis,
so that the discrimination continues.

Not only does the remedy described confuse the individual observation
with the average, but it may be rewarding exactly the wrong women. No
matter how many variables we throw in, we are unlikely entirely to account for
legitimate, objective variation. Some women are “better” than other women,
or other men, with ostensibly similar qualifications, no matter what metric the
institution uses: research, teaching, or service (Gray, 1988). But systematically
their salaries and those of all other women trail those of similarly qualified
men.

What is appropriate for a statistically identified problem is a statistically
based remedy. Thus Betty and I wrote an article (Gray and Scott, 1980),
explaining that if the average difference between men’s and women’s salaries
as shown by a regression model is $2000, then the salary of each woman should
be increased by that amount. Sorry to say, this is not an idea that has been
widely accepted. Women faculty are still paid less on the whole, there are
still occasional regression-based studies, there are spot remedies, and often
the very best women faculty continue to be underpaid.

The great interest in statistical evaluation of salary inequities, particularly
in the complex setting of academia, led to Gray (1993), which expanded on
the methods we used. Of course, statistical analysis may fail to show evidence
of inequity, but even when it does, a remedy may not be forthcoming because
those responsible may be disinclined to institute the necessary changes. If the
employers refuse to remedy inequities, those aggrieved may resort to litigation,
which is a long, expensive process, often not successful and almost always
painful.

Experience as an expert witness teaches that however convincing the sta-
tistical evidence might be, absent anecdotal evidence of discrimination and
a sympathetic plaintiff, success at trial is unlikely. Moreover, one should not
forget the frequent inability of courts to grasp the significance of statistical
evidence. Juries are often more willing to make the effort to understand and
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evaluate such evidence than are judges (or attorneys on both sides). My fa-
vorite example of the judicial lack of comprehension of statistics was a US
District Court judge’s inability to understand that if women’s initial salaries
were less than men’s and yearly increases were across-the-board fixed percent-
ages, the gap would grow progressively larger each year.

A 2007 Supreme Court decision (Ledbetter, 2007) made achieving pay eq-
uity for long-term victims of discrimination virtually impossible. The Court
declared that inequities in salary that had existed — and in many cases in-
creased — for many years did not constitute a continuing violation of Title
VII. Litigation would have had to be instituted within a short time after the
very first discriminatory pay check in order for a remedy to be possible. For-
tunately this gap in coverage was closed by the passage of the Lilly Ledbetter
Fair Pay Act (Ledbetter, 2009), named to honor the victim in the Supreme
Court case; the path to equity may prove easier as a result.

12.3 Insurance

Salary inequities are not the only obstacle professional women face. There
continues to exist discrimination in fringe benefits, directly financial as well
as indirectly through lab space, assignment of assistants, and exclusionary
actions of various sorts. Early in my career I received a notice from Teachers
Insurance and Annuity Association (TIAA), the retirement plan used at most
private and many public universities including American University, listing
what I could expect in retirement benefits from my contribution and those
of the university in the form of x dollars per $100,000 in my account at
age 65. There were two columns, one headed “women” and a second, with
amounts 15% higher, headed “men.” When I contacted the company to point
out that Title VII prohibited discrimination in fringe benefits as well as in
salary, I was informed that the figures represented discrimination on the basis
of “longevity,” not on the basis of sex.

When I asked whether the insurer could guarantee that I would live longer
than my male colleagues, I was told that I just didn’t understand statistics.
Learning that the US Department of Labor was suing another university that
had the same pension plan, I offered to help the attorney in charge, the late
Ruth Weyand, an icon in women’s rights litigation. At first we concentrated
on gathering data to demonstrate that the difference in longevity between
men and women was in large part due to voluntary lifestyle choices, most
notably smoking and drinking. In a settlement conference with the TIAA
attorneys, one remarked, “Well, maybe you understand statistics, but you
don’t understand the law.”

This provided inspiration for me to sign up for law courses, thinking
I would learn a little. However, it turned out that I really loved the study
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of law and it was easy (relatively). While I was getting a degree and qualify-
ing as an attorney, litigation in the TIAA case and a parallel case involving
a state employee pension plan in Arizona (Arizona Governing Committee,
1983) continued. The latter reached the US Supreme Court first, by which
time I was also admitted to the Supreme Court Bar and could not only help
the appellee woman employee’s lawyer but could write an amicus curiæ brief
on my own.

Working with a distinguished feminist economist, Barbara Bergmann, we
counteracted the legal argument of the insurer, namely that the law required
that similarly situated men and women be treated the same, but men and
women were not so situated because of differences in longevity. To show that
they are similarly situated, consider a cohort of 1000 men and 1000 women
at age 65. The death ages of 86% of them can be matched up. That is, a man
dies at 66 and a woman dies at 66, a man dies at 90 and a woman dies at 90,
etc. The remaining 14% consists of 7% who are men who die early unmatched
by the deaths of women and 7% who are women who live longer, unmatched
by long-lived men. But 86% of the cohort match up, i.e., men and women are
similarly situated and must be treated the same (Bergmann and Gray, 1975).

Although the decision in favor of equity mandated only prospective equal
payments, most plans, including TIAA, equalized retirement benefits resulting
from past contributions as well. Women who had been doubly disadvantaged
by discriminatorily low salaries and gender-based unjustly low retirement in-
come told of now being able to have meat and fresh fruit and vegetables a few
times a week as well as the security of a phone (this being before the so-called
“Obama phone”).

Whereas retirement benefits and employer-provided life insurance are cov-
ered by Title VII, the private insurance market is not. Insurance is state-
regulated and only a few states required sex equity; more, but not all, re-
quired race equity. A campaign was undertaken to lobby state legislatures,
state insurance commissions, and governors to establish legal requirements
for sex equity in all insurance. Of course, sex equity cuts both ways. Automo-
bile insurance and life insurance in general are more expensive for males than
for females. In fact an argument often used to argue against discriminatory
rates is that in some states a young male driver with a clean record was being
charged more than an older driver (of either sex) with two DUI convictions.

Today women are still underrepresented in the study of mathematics, but
thirty years ago, the disparity was even more pronounced. As a result, few
activists in the women’s movement were willing and able to dig into the rating
policies of insurance companies to make the case for equity in insurance on
the basis of statistics. One time I testified in Helena, Montana, and then was
driven in a snow storm to Great Falls to get the last flight out to Spokane
and then on to Portland to testify at a legislative session in Salem, leaving the
opposition lobbyists behind. The insurance industry, having many resources
in hand, had sent in a new team from Washington that was very surprised to
see in Salem the next day that they were confronted once again by arguments
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for equity. But with little or no money for political contributions, the judicial
victory was unmatched with legislative ones. It has been left to the Affordable
Care Act (2009) to guarantee non-discrimination in important areas like health
insurance. In the past, women were charged more on the ostensibly reasonable
grounds that childbirth is expensive and that even healthy women seek health
care more often than do men. However, eventually childbirth expenses were
no longer a major factor and men begin to accrue massive health care bills,
in particular due to heart attacks — in part, of course, because they fail to
visit doctors more frequently — but under the existing private systems, rates
were rarely adjusted to reflect the shift in the cost of benefits.

12.4 Title IX

Experience with the insurance industry led to more awareness of other areas
of sex discrimination and to work with the Women’s Equity Action League
(WEAL), a lobbying organization concentrating primarily on economic issues
and working for the passage and implementation of Title IX, which makes ille-
gal a broad range of sex discrimination in education. The success of American
women in sports is the most often cited result of Title IX, but the legislation
also led to about half of the country’s new doctors and lawyers being women,
once professional school admission policies were revised. Statistics also played
an important role in Title IX advances (Gray, 1996). Cohen versus Brown
University (Cohen, 1993) established that women and men must be treated
equitably with regard to opportunities to participate in and expenditures for
collegiate sports, relying on our statistical evidence of disparities. My favorite
case, however, involved Temple University, where the sports director testified
that on road trips women athletes were housed three to a room and men
two to a room because “women take up less space” (Haffer, 1982). As noted,
anecdotal evidence is always useful. In another Philadelphia case a course in
Italian was offered at Girls High as the “equal” of a calculus course at the
males-only Central High. The US Supreme Court let stand a lower court de-
cision that this segregation by sex was not unconstitutional, but girls were
admitted to Central High when the practice was later found unconstitutional
under Pennsylvania law (Vorchheimer, 1976).

12.5 Human rights

The Elizabeth Scott Award cites my work exposing discrimination and en-
couraging political action, which in fact extends beyond work for women in
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the mathematical sciences to more general defense of human rights. Hands-on
experience began when I represented the AMS in a delegation to Montevideo
that also included members of the French Mathematical Society, the Mexi-
can Mathematical Society, and the Brazilian Applied Mathematics Society.
The goal was to try to secure the release of José Luis Massera, a prominent
Uruguayan mathematician who had been imprisoned for many years. We vis-
ited prisons, officials, journalists and others, ending up with the colonel who
had the power to release the imprisoned mathematician. We spoke of Massera’s
distinguished mathematics, failing health, and international concern for his
situation. The colonel agreed that the prisoner was an eminent personage and
added, “He will be released in two months.” To our astonishment, he was.

Success is a great motivator; it led to work with Amnesty International
(AI) and other organizations on cases, not only of mathematicians, but of
many others unjustly imprisoned, tortured, disappeared, or murdered. Once
at the Council of the AMS, the issue of the people who had “disappeared”
in Argentina, several of them mathematicians known to some on the Council,
arose. Then another name came up, one that no one recognized, not surprising
because at the time she was a graduate student in mathematics. One of my
fellow Council members suggested that as such she was not a “real” mathe-
matician and thus not worthy of the attention of the AMS. Fortunately, that
view did not prevail.

Of the cases we worked on, one of the most memorable was that of Mon-
cef Ben Salem, a differential geometer, who had visited my late husband at
the University of Maryland before spending more than 20 years in prison or
under house arrest in his home country of Tunisia. As a result of the revolu-
tion in 2011, he became Minister of Higher Education and Scientific Research
there. Meeting in Tunis several times recently, we recalled the not-so-good old
days and focused on improvements in higher education and the mathematics
education of young people. Much of my work in international development
and human rights has come through my association with the American Mid-
dle East Education Foundation (Amideast) and Amnesty International, where
I served for a number of years as international treasurer — someone not afraid
of numbers is always welcome as a volunteer in non-profit organizations. Inte-
grating statistics into human rights work has now become standard in many
situations.

An opportunity to combine human rights work with statistics arose in the
aftermath of the Rwanda genocide in the 90s. As the liberating force moved
across Rwanda from Tanzania in the east, vast numbers of people were im-
prisoned; two years later essentially the only way out of the prisons was death.
The new government of Rwanda asserted quite correctly that the number of
prisoners overwhelmed what was left, or what was being rebuilt, of the judi-
cial system. On the other hand, major funders, including the US, had already
built some new prisons and could see no end in sight to the incarceration of
a substantial portion of the country’s population. A basic human rights prin-
ciple is the right to a speedy trial, with certain due process protections. The
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Assistant Secretary for Democracy, Human Rights and Labor in the US State
Department, a former AI board member, conceived a way out of the impasse.
Begin by bringing to trial a random sample of the internees. Unfortunately
the Rwandan government was unhappy that the sample selected did not in-
clude their favorite candidates for trial and the scheme was not adopted. It
took a decade to come up with a system including village courts to resolve
the problem.

A few months after the invasion of Iraq, it became imperative to identify
the location and needs of schools in the country. Initial efforts at repair and
rehabilitation had been unsuccessful because the schools could not be located
— no street addresses were available in Iraq. Using teachers on school holiday
for the survey, we managed within two weeks to find the locations (using GPS)
and to gather information on the status and needs of all but a handful of the
high schools in the country. A later attempt to do a census of the region in
Iraq around Kirkuk proved impossible as each interested ethnic group was
determined to construct the project in such a way as to inflate the proportion
of the total population that came from their group.

Other projects in aid of human rights include work with Palestinian univer-
sities in the Occupied Territories, as well as with universities elsewhere in the
Middle East, North Africa, Latin America, and the South Pacific on curricu-
lum, faculty governance, and training. A current endeavor involves working
the American Bar Association to survey Syrian refugees in Jordan, Lebanon,
and Turkey in order to document human rights abuses. Designing and imple-
menting an appropriate survey has presented a huge challenge as more than
half of the refugees are not in camps and thus are difficult to locate as well as
often reluctant to speak of their experiences.

12.6 Underrepresented groups

Women are by no means the only underrepresented group among mathemati-
cians. In the spirit of the Scott Award is my commitment to increasing the
participation of African Americans, Latinos, American Indians and Alaskan
Natives, Native Hawaiians and other Pacific Islanders. including National Sci-
ence Foundation and Alfred P. Sloan funded programs for young students
(Hayden and Gray, 1990), as well as support of PhD students, many of whom
are now faculty at HBCUs. But certainly much remains to be done, here and
abroad, in support of the internationally recognized right to enjoy the benefits
of scientific progress (ICESCR, 2013).

Efforts in these areas are designed to support what Elizabeth Scott worked
for — equity and excellence in the mathematical sciences — and I am proud
to have been given the award in her name for my work.
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Statistics in service to the nation
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13.1 Introduction

Let me begin with a technical question:

Who first implemented large-scale hierarchical Bayesian models, when,
and why?

I suspect the answer will surprise you. It was none other than John Tukey, in
1962, with David Wallace and David Brillinger, as part of the NBC Election
Night team. What I am referring to is their statistical model for predicting
election results based on early returns; see Fienberg (2007).

The methods and election night forecasting model were indeed novel, and
are now recognizable as hierarchical Bayesian methods with the use of em-
pirical Bayesian techniques at the top level. The specific version of hierarchi-
cal Bayes in the election night model remains unpublished to this day, but
Tukey’s students and his collaborators began to use related ideas on “borrow-
ing strength,” and all of this happened before the methodology was described
in somewhat different form by I.J. Good in his 1965 book (Good, 1965) and
christened as “hierarchical Bayes” in the classic 1970 paper by Dennis Lindley
and Adrian Smith (Lindley and Smith, 1972); see also Good (1980).

I was privileged to be part of the team in 1976 and 1978, and there were
close to 20 PhD statisticians involved in one form or another, working in
Cherry Hill, New Jersey, in the RCA Lab which housed a large mainframe
computer dedicated to the evening’s activities (as well as a back-up computer),
and a few in New York interacting with the NBC “decision desk.” The ana-
lysts each had a computer terminal and an assignment of states and political
races. A summary of each run of the model for a given race could be read eas-
ily from the terminal console but full output went to a nearby line printer and
was almost immediately available for detailed examination. Analysts worked
with the model, often trying different prior distributions (different past elec-
tions chosen as “models” for the ones for which they were creating forecasts)
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and checking on robustness of conclusions to varying specifications. This ex-
perience was one among many that influenced how I continue to think about
my approach to Bayesian hierarchical modeling and its uses to the present
day; see, e.g., Airoldi et al. (2010).

All too often academic statisticians think of their role as the production
of new theory and methods. Our motivation comes in large part from the
theoretical and methodological work of others. Our careers are built on, and
judged by, our publications in prestigious journals. And we often build our
careers around such research and publishing activities.

In this contribution, I want to focus on a different role that many statis-
ticians have and should play, and how this role interacts with our traditional
role of developing new methods and publishing in quality journals. This is
the role we can fulfill in support of national activities and projects requiring
statistical insights and rigor. Much of my story is autobiographical, largely
because I know best what has motivated my own efforts and research. Fur-
ther, I interpret the words “to the nation” in my title quite liberally, so that
it includes election night forecasts and other public uses of statistical ideas
and methods.

In exploring this theme, I will be paying homage to two of the most im-
portant influences on my view of statistics: Frederick Mosteller, my thesis
advisor at Harvard, and William Kruskal, my senior colleague at the Univer-
sity of Chicago, where I went after graduation; see Fienberg et al. (2007).

One of the remarkable features of Mosteller’s autobiography (Mosteller,
2010) is that it doesn’t begin with his early life. Instead, the volume begins
by providing chapter-length insider accounts of his work on six collaborative,
interdisciplinary projects: evaluating the pre-election polls of 1948, statistical
aspects of the Kinsey report on sexual behavior in the human male, mathe-
matical learning theory, authorship of the disputed Federalist papers, safety of
anesthetics, and a wide-ranging examination of the Coleman report on equal-
ity of educational opportunity. With the exception of mathematical learn-
ing theory, all of these deal with important applications, where new theory
and methodology or adaption of standard statistical thinking was important.
Mosteller not only worked on such applications but also thought it impor-
tant to carry the methodological ideas back from them into the mainstream
statistical literature.

A key theme I emphasize here is the importance of practical motivation
of statistical theory and methodology, and the iteration between application
and theory. Further, I want to encourage readers of this volume, especially
the students and junior faculty, to get engaged in the kinds of problems I’ll
describe, both because I’m sure you will find them interesting and also because
they may lead to your own professional development and advancement.



S.E. Fienberg 143

13.2 The National Halothane Study

I take as a point of departure The National Halothane Study (Bunker et al.,
1969). This was an investigation carried out under the auspices of the National
Research Council. Unlike most NRC studies, it involved data collection and
data analysis based on new methodology. The controversy about the safety of
the anesthetic halothane was the result of a series of published cases involving
deaths following the use of halothane in surgery. Mosteller offers the following
example:

“A healthy young woman accidentally slashed her wrists on a broken
windowpane and was rushed to the hospital. Surgery was performed
using the anesthetic halothane with results that led everyone to believe
that the outcome of the treatment was satisfactory, but a few days later
the patient died. The cause was traced to massive hepatic necrosis —
so many of her liver cells died that life could not be sustained. Such
outcomes are very rare, especially in healthy young people.” (Mosteller,
2010, p. 69)

The NRC Halothane Committee collected data from 50,000 hospital
records that were arrayed in the form of a very large, sparse multi-way contin-
gency table, for 34 hospitals, 5 anesthetics, 5 years, 2 genders, 5 age groups,
7 risk levels, type of operation, etc., and of course survival. There were 17,000
deaths. A sample of 25 cases per hospital to estimate the denominator made
up the residual 33,000 cases.

When we say the data are sparse we are talking about cells in a contingency
table with an average count less than 1! The common wisdom of the day, back
in the 1960s, was that to analyze contingency tables, one needed cell counts
of 5 or more, and zeros in particular were an anathema. You may even have
read such advice in recent papers and books.

The many statisticians involved in the halothane study brought a number
of standard and new statistical ideas to bear on this problem. One of these was
the use of log-linear models, work done largely by Yvonne Bishop, who was a
graduate student at the time in the Department of Statistics at Harvard. The
primary theory she relied upon was at that time a somewhat obscure paper
by an Englishman named Birch (1963), whose theorem on the existence of
maximum likelihood estimates assumed that all cell counts are positive. But
she needed a way to actually do the computations, at a time when we were
still carrying boxes of punched cards to the computer center to run batch
programs!

The simple version of the story — see Fienberg (2011) for a more technical
account — was that Yvonne used Birch’s results (ignoring the condition on
positive cell counts) to derive connections between log-linear and logit models,
and she computed maximum likelihood estimates (MLEs) using a version of
the method of iterative proportional fitting (IPF), developed by Deming and
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Stephan in 1940 for a different but related problem. She applied this new
methodology to the halothane study. Because the tables of interest from this
study exceeded the capacity of the largest available computers of the day,
she was led to explore ways to simplify the IPF calculations by multiplicative
adjustments to the estimates for marginal tables — an idea related to models
with direct multiplicative estimates such as conditional independence. The
amazing thing was that the ideas actually worked and the results were a
crucial part of the 1969 published committee report and formed the heart of
her 1967 PhD thesis (Bishop, 1967).

Now let me step back to the summer of 1966, when Mosteller suggested
a pair of different research problems to me involving contingency tables, one
of which involving Bayesian smoothing — the smoothing problem utilized the
idea of hierarchical models and thus linked in ways I didn’t understand at the
time to the election night forecasting model from NBC. Both of these problems
were motivated by the difficulties Mosteller had encountered in his work on
the halothane study and they ended up in my 1968 PhD thesis (Fienberg,
1968).

It was only later that I began to think hard about Yvonne’s problem
of zeros and maximum likelihood estimation. This work involved several of
my students (and later colleagues), most notably Shelby Haberman (1974)
and Mike Meyer. Today the computer programs for log-linear model methods
are rooted in code originally developed by Yvonne and Shelby; as for the
theoretical question of when zeros matter and when they do not for log-linear
models, it was finally resolved by my former Carnegie Mellon student and now
colleague, Alessandro Rinaldo (Rinaldo, 2005; Fienberg and Rinaldo, 2012).

The log-linear model work took on a life of its own, and it led to the book
with Yvonne and Paul Holland, “Discrete Multivariate Analysis” (1975). Oth-
ers refer to this book as “the jolly green giant” because of the color of the orig-
inal cover, and it included many new applications involving extensions of the
contingency table ideas. But, over my career, I have found myself constantly
returning to problems that treat this log-linear model work as a starting point.
I’d like to mention some of these, but only after introducing some additional
chronological touch-points.

13.3 The President’s Commission and CNSTAT

In 1970, when I was a junior faculty member at the University of Chicago,
my senior colleague, Bill Kruskal, seemed to be headed to Washington with
enormous frequency. After a while, I learned about his service on the Presi-
dent’s Commission on Federal Statistics, led by W. Allan Wallis, who was then
President of the University of Rochester, and Fred Mosteller. When the Com-
mission reported in 1971, it included many topics that provide a crosswalk
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between the academic statistics community and statisticians in the federal
government.

The release of the two-volume Report of the President’s Commission on
Federal Statistics was a defining moment not only for the Federal Statistical
System, but also for the National Academy of Sciences. It had many rec-
ommendations to improve aspects of the Federal statistical system and its
co-ordination. One topic explored at length in the report was privacy and
confidentiality — I’ll return to this shortly. For the moment I want to focus
on the emphasis in the report on the need for outside advice and assessment
for work going on the federal government:

Recommendation 5–4: The Commission recommends that a Na-
tional Academy of Sciences–National Research Council committee be
established to provide an outside review of federal statistical activities.

That committee was indeed established a few years later as the Committee
on National Statistics (CNSTAT) and it has blossomed to fulfill not only the
role envisioned by the Commission members, but also to serve as a repository
of statistical knowledge, both about the system and statistical methodology
for the NRC more broadly. The agenda was well set by the committee’s first
chair, William Kruskal, who insisted that its focus be “national statistics” and
not simply “federal statistics,” implying that its mandate reaches well beyond
the usual topics and problems associated with the federal statistics agencies
and their data series.

I joined the committee in 1978 and served as Chair from 1981 through
1987. CNSTAT projects over the past 35 years serve as the backdrop for the
other topics I plan to cover here.

13.4 Census-taking and multiple-systems estimation

One of the most vexing public controversies that has raged for the better
part of the last 40 years, has been the accuracy of the decennial census. As
early as 1950 the Census Bureau carried out a post enumeration survey to
gauge the accuracy of the count. NRC committees in 1969, and again in 1979,
addressed the topic of census accuracy and the possibility that the census
counts be adjusted for the differential undercount of Blacks. Following the
1980 census, New York City sued the Bureau, demanding that it use a pair of
surveys conducted at census time to carry out an adjustment. The proposed
adjustment methodology used a Bayesian version of something known as dual-
system estimation, or capture-recapture methodology. For those who have
read my 1972 paper (Fienberg, 1972) or Chapter 6 of Bishop, Fienberg and
Holland (1975), you will know that one can view this methodology as a variant
of a special case of log-linear model methodology.
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In the 1980s and again in the 1990s, I was a member of a CNSTAT panel
addressing this and other methodological issues. Several authors during this
period wrote about multiple-system estimation in the census context. I was
one of these authors, a topic to which I contributed.

Political pressure and lawsuits have thwarted the use of this methodology
as a formal part of the census. Much of this story is chronicled in my 1999
book with Margo Anderson, “Who Counts? The Politics of Census-Taking in
Contemporary America” (Anderson and Fienberg, 1999). In conjunction with
the 2000 decennial census, the Bureau used related log-linear methodology to
produce population estimates from a collection of administrative lists. This
work was revived following the 2010 census. In the meantime, I and others have
produced several variants on the multiple-recapture methodology to deal with
population heterogeneity, and I have a current project funded by the Census
Bureau and the National Science Foundation that is looking once again at
ways to use these more elaborate approaches involving multiple lists for both
enumeration and census accuracy evaluation.

I’m especially proud of the fact that the same tools have now emerged
as major methodologies in epidemiology in the 1990s (IWG, 1995a,b) and
in human rights over the past decade (Ball and Asher, 2002). This is an
amazing and unexpected consequence of work begun in a totally different
form as a consequence of the National Halothane Study and the methodology
it spawned.

13.5 Cognitive aspects of survey methodology

One of the things one learns about real sample surveys is that the measurement
problems, especially those associated with questionnaire design, are immense.
I learned this firsthand while working with data from the National Crime
Survey and as a technical advisor to the National Commission on Employment
and Unemployment Statistics, both in the 1970s. These matters rarely, if ever,
show up in the statistics classroom or in textbooks, and they had long been
viewed as a matter of art rather than science.

Triggered by a small 1980 workshop on victimization measurement and
cognitive psychology, I proposed that the NRC sponsor a workshop on cog-
nitive aspects of survey measurement that would bring together survey spe-
cialists, government statisticians, methodologically oriented statisticians, and
cognitive scientists. My motivation was simple: the creative use of statistical
thinking could suggest new ways of carrying out interviews that ultimately
could improve not only specific surveys, but the field as a whole. Under the
leadership of Judy Tanur and Miron Straf, the Committee on National Statis-
tics hosted such a workshop in the summer of 1983 and it produced a widely-
cited volume (Jabine et al., 1984), as well as a wide array of unorthodox ideas
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that have now been instantiated in three major US statistical agencies and
are part of the training of survey statisticians. Census Bureau surveys and
census forms are now regularly developed using cognitive principles. Today,
few students or practitioners understand the methodological roots of this en-
terprise. Tanur and I also linked these ideas to our ongoing work on combining
experiments and surveys (Fienberg and Tanur, 1989).

13.6 Privacy and confidentiality

I mentioned that the President’s Commission explored the topic of privacy
and confidentiality in depth in its report. But I failed to tell you that most of
the discussion was about legal and other protections for statistical databases.
Indeed, as I participated in discussions of large government surveys through-
out the 1970s and 1980s, the topic was always present but rarely in the form
that you and I would recognize as statistical. That began to change in the
mid-1980s with the work of my then colleagues George Duncan and Diane
Lambert (1986, 1989) interpreting several rules for the protection of confi-
dentiality in government practice using the formalism of statistical decision
theory.

I was finally drawn into the area when I was asked to review the statistics
literature on the topic for a conference in Dublin in 1992; see Fienberg (1994).
I discovered what I like to refer to as a statistical gold-mine whose veins I have
been working for the past 21 years. There has been a major change since the
President’s Commission report, linked to changes in the world of computing
and the growth of the World Wide Web. This has produced new demands
for access to statistical data, and new dangers of inappropriate record linkage
and statistical disclosures. These are not simply national American issues, but
rather they are international ones, and they have stimulated exciting technical
statistical research.

The Committee on National Statistics has been actively engaged in this
topic with multiple panels and workshops on different aspects of privacy and
confidentiality, and there is now substantial technical statistical literature on
the topic, and even a new online Journal of Privacy and Confidentiality ; see
http://repository.cmu.edu/jpc/.

How does this work link to other topics discussed here? Well, much of my
research has dealt with the protection of information in large sparse contin-
gency tables, and it will not surprise you to learn that it ties to theory on
log-linear models. In fact, there are also deep links to the algebraic geometry
literature and the geometry of 2×2 contingency tables, one of those problems
Fred Mosteller introduced me to in 1966. See Dobra et al. (2009) for some
details.
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FIGURE 13.1
Sensitivity and false positive rates in 52 laboratory datasets on polygraph
validity. Reprinted with permission from The Polygraph and Lie Detection
by the National Academy of Sciences (NRC, 2003). Courtesy of the National
Academies Press, Washington, DC.

13.7 The accuracy of the polygraph

In 2000, I was asked to chair yet another NRC committee on the accuracy of
polygraph evidence in the aftermath of the “Wen-Ho Lee affair” at Los Alamos
National Laboratory, and the study was in response to a congressional request.
My principal qualification for the job, beyond my broad statistical background
and my research and writing on forensic topics, was ignorance — I had never
read a study on the polygraph, nor had I been subjected to a polygraph exam.
I will share with you just one figure from the committee’s report (NRC, 2003).

Figure 13.1 takes the form of a receiver operating characteristic plot (or
ROC curve plot) that is just a “scatterplot” showing through connected lines
the sensitivity and specificity figures derived from each of the 52 laboratory
studies that met the committee’s minimal quality criteria. I like to refer to this
as our “show me the data” plot. Each study has its own ROC curve, points
connected by dotted lines. Each point comes from a 2× 2 contingency table.
You can clearly see why we concluded that the polygraph is better than chance
but far from perfect! Further, there are two smooth curves on the graph rep-
resenting the accuracy scores encompassed by something like the interquartile
range of the experimental results. (Since there does not exist a natural def-
inition for quartiles for multivariate data of this nature, the committee first
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computed the area under the curve for each study, A, rank-ordered the values
of A, and then used symmetric ROC curves corresponding to the quartiles for
these values. These curves also happen to enclose approximately 50% of the
data points as well.) The committee chose this scatterplot, which includes es-
sentially all of the relevant data on accuracy from the 52 studies, rather than a
single summary statistic or one with added standard error bounds because we
judged it important to make the variability in results visible, and because our
internal analyses of the characteristics of the studies left us suspicious that the
variability was non-random. Polygraph accuracy likely depends on unknown
specifics of the test situation, and we did not want to create the impression
that there is a single number to describe polygraph accuracy appropriately
across situations.

Although I thought this was going to be a one-of-a-kind activity, I guess
I should have known better. About a year after the release of the report,
I testified at a senate hearing on the Department of Energy’s polygraph pol-
icy (Fienberg and Stern, 2005), and continue to be called upon by the media
to comment on the accuracy of such methods for the detection of deception
— as recently as this month, over 10 years after the publication of our report.

13.8 Take-home messages

What are the lessons you might leave this chapter having learned?

(a) First, it’s fun to be a statistician, especially because we can ply our science
in a diverse set of ways. But perhaps most of you already knew that.

(b) Second, big problems, especially those confronting the nation, almost al-
ways have a statistical component and working on these can be rewarding,
both personally and professionally. Your work can make a difference.

(c) Third, working on even small aspects of these large national problems
can stimulate the creation of new statistical methodology and even theory.
Thus if you engage in such activities, you will still have a chance to publish
in the best journals of our field.

(d) Fourth, such new methods often have unplanned-for applications in other
fields. This will let you, as a statistician, cross substantive boundaries in
new and exciting ways.

Who would have thought that working on a few problems coming out of the
Halothane Study would lead to a new integrated set of models and methods
that would have impact in many fields and in different forms?
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Where are the majors?

Iain M. Johnstone
Department of Statistics
Stanford University, Stanford, CA

We present a puzzle in the form of a plot. No answers are given.

14.1 The puzzle

Figure 14.1 suggests that the field of statistics in the US is spectacularly and
uniquely unsuccessful in producing Bachelor’s degree graduates when com-
pared with every other undergraduate major for which cognate Advanced
Placement (AP) courses exist. In those same subject areas, statistics also pro-
duces by far the fewest Bachelor’s degrees when the normalization is taken
as the number of doctoral degrees in that field. We are in an era in which
demand for statistical/data scientists and analytics professionals is explod-
ing. The puzzle is to decide whether this plot is spur to action or merely an
irrelevant curiosity.

14.2 The data

The “Subjects” are, with some grouping, those offered in AP courses by the
College Board in 2006. The number of students taking these courses varies
widely, from over 500,000 in English to under 2,000 in Italian. In the 2006
data, the statistics number was about 88,000 (and reached 154,000 in 2012).

The National Center for Education Statistics (NCES) publishes data on
the number of Bachelor’s, Master’s and doctoral degrees conferred by degree
granting institutions.

Bachelor-to-AP ratio is, for each of the subjects, the ratio of the number
of Bachelor’s degrees in 2009–10 to the number of AP takers in 2006. One
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FIGURE 14.1
Normalized Bachelor’s degree productivity by discipline.

perhaps should not think of it as a “yield” of Bachelor’s degrees from AP
takers, but rather as a measure of the number of Bachelor’s degrees normalized
by Subject size.

Bachelor-to-PhD ratio, for each of the subjects, is the ratio of the number
of Bachelor’s degrees in 2009–10 to the number of doctoral degrees. Again it
is not a measure of the “yield” of doctoral degrees from Bachelor’s degrees.

The data (and sources) are in file degree.xls. This and other files, in-
cluding R code, are in directory Majors on the page that accompanies this
volume: http://www.crcpress.com/product/isbn/9781482204964.

14.3 Some remarks

1. It is likely that the number of Bachelors’ degrees in statistics is under-
counted, as many students may be getting the equivalent of a statistics
major in a Mathematics Department. The undercount would have to be
by a factor of five to ten to put statistics into the bulk of the plot.
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The NCES data shows almost three times as many Master’s degrees in
Statistics for 2009–10 as Bachelor’s degrees (1602 versus 593). This is
significant, and may in part reflect the undercount just cited. However, a
focus on the Bachelor’s level still seems important, as this is seen as the
flagship degree at many institutions.

2. There have always been many routes to a career in statistics. For a mathe-
matically inclined student, it often used to be said that an undergraduate
focus on statistics was too narrow, and that a broad training in math-
ematics was a better beginning. My own department did not offer an
undergraduate degree in statistics for this reason.

In 2013, it seems that young people who like data and mathematics should
study at least computing, mathematics, and statistics (the order is alpha-
betical) and that Statistics Departments might design and promote majors
that encourage that breadth.

3. An Academic Dean spends a lot of time reading letters of evaluation of
teaching, research, etc. In my own experience, the most consistently out-
standing student letters about teaching were in philosophy. Why? Here is
a conjecture rather than an explanation: in the US, philosophy is not a
high school subject — and there is no AP exam — and so its professors
have to “start from scratch” in winning converts to the philosophy major.
They appear to do this by dint of exemplary teaching.

What is the relevance of this to statistics? I’m not sure, but statistics
likewise has not traditionally been a high school subject (this is changing,
as the advent of AP statistics shows), and it seems that statisticians in
research universities have not in the past felt the same sense of mission
about recruiting to an undergraduate major in statistics.

4. These are data aggregated at a national level, and — perhaps — point
to a national phenomenon. The good news is that there are outstand-
ing examples of individual departments promoting and growing statistics
majors.
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We live in exciting times

Peter G. Hall
Department of Mathematics and Statistics
University of Melbourne, Australia
and
Department of Statistics
University of California, Davis, CA

15.1 Introduction

15.1.1 The beginnings of computer-intensive statistics

My involvement in statistics research started at about the time that signif-
icant interactive computing power began to become available in university
statistics departments. Up until that point, those of us using powerful elec-
tronic computers in universities generally were at the mercy of punch cards
operating main frame computers, typically at relatively distant locations. This
severely hindered the use of computers for assessing the performance of statis-
tical methodology, particularly for developing new approaches. However, once
computational experiments could be performed from one’s desk, and param-
eter settings adjusted as the results came in, vast new horizons opened up for
methodological development.

The new statistical approaches to which this led were able, by virtue of
powerful statistical computing, to do relatively complex things to data. For
many of us, Cox’s regression model (Cox, 1972), and Efron’s bootstrap (Efron,
1979a), became feasible only in the late 1970s and early 1980s. Efron (1979b)
gave a remarkably prescient account of the future relationship between theory
and computation in modern statistics, noting that:

“The need for a more flexible, realistic, and dependable statistical the-
ory is pressing, given the mountains of data now being amassed. The
prospect for success is bright, but I believe the solution is likely to
lie along the lines suggested in the previous sections — a blend of
traditional mathematical thinking combined with the numerical and
organizational aptitude of the computer.”
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Critically, Efron saw theory and computing working together to ensure the de-
velopment of future statistical methodology, meeting many different demands.
And, of course, that is what happened, despite the concerns of some (see, e.g.,
Hall, 2003, p. 165) that advances in computing threatened to replace theoret-
ical statistical argument.

15.1.2 Computer-intensive statistics and me

In this short paper I shall give a personal account of some of my experiences
at this very exciting time. My intention is to focus particularly on a 15-year
period, from the late 1970s to the early 1990s. However, it will be necessary
from time to time to stray to the present, in order to make a didactic point,
and to look back at the past, so as to see how much we still have in common
with our forebears like R.A. Fisher and E.J.G. Pitman.

I feel particularly fortunate to have been able to work on the development
of statistical methodology during such an era of seminal change. I’ll explain
how, as in many of the most important things in life, I came to this role
largely by accident, while looking for a steady job in probability rather than
statistics; and how the many advances in computing that have taken place
since then have actually created an increasingly high demand for theoretical
analysis, when some of my colleagues had predicted there would actually be
much less.

I’m going to begin, in Section 15.2, by trying to capture some of the recent
concerns I have heard about the directions being taken by statistics today, and
by indicating why I generally do not share the anxiety. To some extent, I feel,
the concerns exist only if we try to resist change that we should accept as
exciting and stimulating, rather than as a threat.

Also in Section 15.2 I’ll try to set this disquiet against the background of
the many changes that stimulated my work, particularly from the late 1970s
to the early 1990s, and argue that the changes we are seeing today are in part
a continuation of the many technological advances that have taken place over
a long period. The changes add to, rather than subtract from, our field.

In Section 15.3, with the reader’s indulgence I’ll focus more sharply on my
own experience — on how I came to be a theoretical statistician, and how
theory has always guided my intuition and led, somewhat indirectly, to my
work on computer-intensive statistical methods. I know that, for many of my
colleagues in Australia and elsewhere, my “cart” of theoretical analysis comes
before their “horse” of statistical computing. The opportunity to write this
short chapter gives me a chance of explaining to them what I’ve been doing
all these years, and why.
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15.2 Living with change

15.2.1 The diversification of statistics

Just a few years ago I had a conversation with a colleague who expressed grave
concern for the future of statistics. He saw it being taken over by, or subsumed
into, fields as diverse and disparate as computer science and bioinformatics,
to name only two. He was worried, and wondered what we could do to stop
the trend.

Similar disquiet has been articulated by others, and not just recently. The
eminent British statistician D.J. Finney expressed apprehensions similar to
those of my colleague, although at a time when my colleague had not detected
much that was perceptibly wrong. Writing in the newsletter of the Royal
Statistical Society (RSS News) in 2000, Professor Finney argued that:

“... professional statisticians may be losing control of — perhaps even
losing concern for — what is done in the name of our discipline. I began
[this article] by asking ‘Whither... [statistics]?’ My answer is ‘Down-
hill!’ Any road back will be long and tortuous, but unless we find it we
fail to keep faith with the lead that giants gave us 75 years ago.”

I’m not sure whether it is pragmatism or optimism that keeps me from wor-
rying about these issues — pragmatism because, even if these portents of
calamity were well founded, there would not be much that we could do about
them, short of pretending we had the powers of Cnut the Great and com-
manding the tide of statistical change to halt; or optimism, on the grounds
that these changes are actually healthy, and more likely to enrich statistics
than destroy it.

In 1986 the UCLA historian Theodore Porter wrote that:

“Statistics has become known in the twentieth century as the math-
ematical tool for analysing experimental and observational data. En-
shrined by public policy as the only reliable basis for judgements such
as the efficacy of medical procedures or the safety of chemicals, and
adopted by business for such uses as industrial quality control, it is
evidently among the products of science whose influence on public and
private life has been most pervasive.”

The years since then have only deepened the involvement of statistics in sci-
ence, technology, social science and culture, so that Porter’s comments about
the 20th Century apply with even greater force in the early 21st. Hal Var-
ian’s famous remark in The McKinsey Quarterly, in January 2009, that “the
sexy job in the next ten years will be statisticians,” augments and reinforces
Porter’s words almost 30 years ago. Statistics continues to be vibrant and
vital, I think because of, not despite, being in a constant state of change.



160 Exciting times

In general I find that the changes lamented by Finney, and applauded by
Varian, invigorate and energize our field. I’m not troubled by them, except
for the fact that they can make it more challenging to get funding for posi-
tions in statistics, and more generally for research and teaching in the field.
Indeed, it is not just in Australia, but across the globe, that the funding pool
that is notionally allocated to statistics is being challenged by many different
multi-disciplinary pressures, to such an extent that financial support for core
research and teaching in statistics has declined in many cases, at least relative
to the increasing size of our community.

Funding is flowing increasingly to collaborative research-centre type ac-
tivities, where mathematical scientists (including statisticians) are often not
involved directly at all. If involved, they are often present as consultants,
rather than as true collaborators sharing in the funding. This is the main
danger that I see, for statisticians, in the diversification of statistics.

15.2.2 Global and local revolutions

The diversification has gone hand in hand with a revolution, or rather several
revolutions, that have resulted in the past from the rapid development of inex-
pensive computing power since the 1970s, and from technologies that have led
to an explosion in machine recorded data. Indeed, we might reasonably think
that massive technological change has altered our discipline mainly through
the ways our data are generated and the methods we can now use to analyse
them.

However, while those changes are very important, they are perhaps minor
when set against the new questions that new sorts of data, and new compu-
tational tools, enable scientists to ask, and the still newer data types, and
data analyses, that they must address in order to respond to those questions.
Statisticians, and statistical methods, are at the heart of exploring these new
puzzles and clarifying the new directions in which they point.

Some aspects of the revolutions are “global,” in the sense that, although
the motivation might come from a particular area of application, the result-
ing changes influence many fields. Others are more local; their impact is not
so widespread, and sometimes does not stray terribly far from the area of
application that first motivated the new developments.

During the last 30 years or so we have seen examples of both global and lo-
cal revolutions in statistical methodology. For example, Efron’s (1979a) boot-
strap was definitely global. Although it arguably had its origins in methodol-
ogy for sample survey data, for example in work of Hubback (1946), Maha-
lanobis (1946), Kish (1957), Guerney (1963), and McCarthy (1966, 1969), it
has arguably touched all fields of statistics. [Hall (2003) gave a brief account of
the prehistory of the bootstrap.] Statistical “revolutions” that are more local,
in terms of influence, include work during the 1980s on image analysis, and
much of today’s statistical research on very high-dimensional data analysis.
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Some of this work is having as much influence on statistics itself as on
the fields of science and technology that motivated it, and some of that influ-
ence is particularly significant. For example, we have benefited, and are still
benefiting, from appreciating that entropy is a metric that can be used to as-
sess the performance of statistical smoothing in general, non-imaging contexts
(Donoho et al., 1992). And we are using linear models to select variables in
relatively low-dimensional settings, not just for high-dimensional data. (The
linear model is, after all, a wonderful parametric surrogate for monotonicity in
general contexts.) Some of these new methodologies have broken free from sta-
tistical gravity and risen above the turmoil of other developments with which
they are associated. They include, in the setting of modern high-dimensional
data analysis, the lasso and basis pursuit; see, e.g., Tibshirani (1996, 2014a,b)
and Chen et al. (1998).

15.3 Living the revolution

15.3.1 A few words to the reader

A great deal of Section 15.3, particularly Section 15.3.2, is going to be about
me, and for that I must apologize. Please feel free to skip Section 15.3.2, and
come back in at Section 15.3.3.

15.3.2 A little background

Einstein’s (1934) advocacy of mathematics as a pillar for creative reasoning
in science, or at least in physics, has been cited widely:

“... experience of course remains the sole criterion of the serviceabil-
ity of a mathematical construction for physics, but the truly creative
principle resides in mathematics.”

I’m not going to suggest for a moment that all statisticians would agree that
Einstein’s argument is valid in their field. In fact, I know some who regard
theory as a downright hindrance to the way they do research, although it
works for me. However, let’s begin at the beginning.

I spent my high school days happily, at a very good government school
in Sydney. However, the school’s science curriculum in the 1960s effectively
permitted no experimental work for students. This saved money, and since
there were no state-wide exams in practical work then the effects of that
privation were not immediately apparent. It meant that my study of science
was almost entirely theoretical, and that suited me just fine. But it didn’t
prepare me well for my first year at university, where in each of biology,
chemistry and physics I had several hours of practical work each week.
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I entered the University of Sydney as an undergraduate in early 1970,
studying for a science degree and convinced I would become a theoretical
physicist, but I hadn’t bargained for all the lab work I would have to do before
I reached that goal. Moreover, the mathematics in my physics classes was not
rigorous enough for me. Asymptotic mathematical formulae abounded, but
they were never proved “properly.” I quickly came to the conclusion that it
would be better for all concerned, including those around me (I once flooded
the physics lab), if I devoted my energies to mathematics.

However, for my second year I needed three subjects. I was delighted to
be able to study pure mathematics and applied mathematics in separate pro-
grams, not just one as had been the case in first year. But I had to find a third
subject, one that didn’t require any lab work. I saw in the student handbook
that there was a subject called mathematical statistics, which in those days,
at the University of Sydney, started as a major in second year — so I hadn’t
missed anything in my first year. And it had “mathematical” in its title, so
I felt it would probably suit.

Indeed it did, particularly the course on probability from Feller’s wonderful
Volume I (Feller, 1968). In second and third years the mathematical statistics
course was streamed into “pass” and “honors” levels, and for the latter I had
to take extra lectures, which were invariably at a high mathematical level and
which I found fascinating. I even enjoyed the classes that led to Ramsey’s
theorem, although I could not any longer reproduce the proof!

I took a course on measure theory in the third year pure mathematics
curriculum, and it prepared me very well for a fourth year undergraduate
mathematical statistics course in probability theory, based on Chung’s gradu-
ate text (Chung, 1968). That course ran for a full year, three lectures a week,
and I loved both it and Chung’s book.

I appreciate that the book is not for everyone. Indeed, more than a few
graduate students have confided to me how difficult they have found it to get
into that text. But for me it had just the right mix of intuition, explanation,
and leave-it-up-to-the-reader omissions to keep my attention. Chung’s style
captivated me, and I’m pleased to see that I’m still not alone. (I’ve just read
the five reviews of the third edition on Amazon, and I’m delighted to say that
each of them gives the book five stars.)

Another attraction of the course was that I could give every third lecture
myself. It turned out I was the only student in the course, although a very
amiable logician, Gordon Monro from the Department of Pure Mathematics,
also attended. The two of us, and our assigned lecturer Malcolm Quine, shared
the teaching among us. It was a wonderful experience. It gave me a lifelong
love of probability, and also of much of the theory that underpins statistics.

Now let’s fast forward to late 1976, when I returned to Australia from
the UK after completing my doctorate in probability. I had a short-term con-
tract job at the University of Melbourne, with no opportunity in 1976 for
anything more permanent. In particular, I was having significant difficulty
finding a longer-term position in probability. So I applied for any job that
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had some connection to probability or theoretical statistics, including one at
the Australian National University that was advertised with a preference for
a biometrician.

This was in 1977, and I assume that they had no plausible applicants in
biometrics, since they offered the position to me. However, the Head of De-
partment, Chip Heathcote, asked me (quite reasonably) to try to migrate my
research interests from probability to statistics. (Biometrics wasn’t required.)
He was very accommodating and nice about it, and in particular there was
no deadline for making the switch.

I accepted the position and undertook to make the change, which I found
that I quite enjoyed. On my reckoning, it took me about a decade to move
from probability to statistics, although some of my colleagues, who perhaps
wouldn’t appreciate that Einstein’s remark above, about physics, might apply
to statistics as well, would argue that I have still got a way to go. I eased myself
into statistics by taking what I might call the “contemporary nonparametric”
route, which I unashamedly admit was much easier than proceeding along a
parametric path.

At least in the 1970s and 1980s, much of nonparametric statistics (func-
tion estimation, the jackknife, the bootstrap, etc) was gloriously ad hoc. The
basic methodology, problems and concepts (kernel methods, bias and vari-
ance estimation, resampling, and so forth) were founded on the fact that they
made good intuitive sense and could be justified theoretically, for example
in terms of rates of convergence. To undertake this sort of research it was
not necessary to have at your fingertips an extensive appreciation of classical
statistical foundations, based for example on sufficiency and efficiency and
ancillarity and completeness and minimum variance unbiasedness. Taking a
nonparametric route, I could start work immediately. And it was lots of fun.

I should mention, for the benefit of any North American readers who have
got this far, that in Australia at that time there was virtually no barrier
between statistics and probability. Practitioners of both were in the same
department, typically a Department of Statistics, and a Mathematics Depart-
ment was usually devoid of probabilists (unless the department also housed
statisticians). This was one of many structures that Australian universities
inherited from the United Kingdom, and I have always found it to be an at-
tractive, healthy arrangement. However, given my background you’d probably
expect me to have this view.

The arrangement persists to a large extent today, not least because many
Australian Statistics Departments amalgamated with Mathematics Depart-
ments during the budget crises that hit universities in the mid to late 1990s.
A modern exception, more common today than thirty years ago, is that strong
statistics groups exist in some economics or business areas in Australian uni-
versities, where they have little contact with probability.
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15.3.3 Joining the revolution

So, this is how I came to statistics — by necessity, with employment in mind
and having a distinct, persistently theoretical outlook. A paper on nonpara-
metric density estimation by Eve Bofinger (1975), whom I’d met in 1974 while
I was an MSc student, drew a connection for me between the theory of order
statistics and nonparametric function estimation, and gave me a start there
in the late 1970s.

I already had a strong interest in rates of convergence in the central limit
theorem, and in distribution approximations. That gave me a way, in the
1980s, of accessing theory for the bootstrap, which I found absolutely fasci-
nating.

All these methodologies — function estimation, particularly techniques for
choosing tuning parameters empirically, and of course the bootstrap — were
part of the “contemporary nonparametric” revolution in the 1970s and 1980s.
It took off when it became possible to do the computation. I was excited to
be part of it, even if mainly on the theoretical side. In the early 1980s a senior
colleague, convinced that in the future statistical science would be developed
through computer experimentation, and that the days of theoretical work in
statistics were numbered, advised me to discontinue my interests in theory
and focus instead on simulation. However, stubborn as usual, I ignored him.

It is curious that the mathematical tools used to develop statistical theory
were regarded firmly as parts of probability theory in the 1970s, 80s and even
the 90s, whereas today they are seen as statistical. For example, recent expe-
rience serving on an IMS committee has taught me that methods built around
empirical processes, which were at the heart of wondrous results in probability
in the 1970s (see, e.g., Komlós et al., 1975, 1976), are today seen by more than
a few probabilists as distinctly statistical contributions. Convergence rates in
the central limit theorem are viewed in the same light. Indeed, most results
associated with the central limit theorem seem today to be seen as statisti-
cal, rather than probabilistic. (So, I could have moved from probability to
statistics simply by standing still, while time washed over me!)

This change of viewpoint parallels the “reinterpretation” of theory for
special functions, which in the era of Whittaker andWatson (1902), and indeed
also of the more widely used fourth edition in 1927, was seen as theoretical
mathematics, but which, by the advent of Abramowitz and Stegun (1964)
(planning for that volume had commenced as early as 1954), had migrated to
the realm of applied mathematics.

Throughout all this work in nonparametric statistics, theoretical develop-
ment was my guide. Using it hand in hand with intuition I was able to go
much further than I could have managed otherwise. This has always been my
approach — use theory to augment intuition, and allow them to work together
to elucidate methodology.

Function estimation in the 1970s and 1980s had, to a theoretician like
myself, a fascinating character. Today we can hardly conceive of constructing
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a nonparametric function estimator without also estimating an appropriate
smoothing parameter, for example a bandwidth, from the data. But in the
1970s, and indeed for part of the 80s, that was challenging to do without
using a mainframe computer in another building and waiting until the next
day to see the results. So theory played a critical role.

For example, Mike Woodroofe’s paper (Woodroofe, 1970) on asymptotic
properties of an early plug-in rule for bandwidth choice was seminal, and was
representative of related theoretical contributions over the next decade or so.
Methods for smoothing parameter choice for density estimation, using cross-
validation and suggested by Habemma et al. (1974) in a Kullback–Leibler
setting, and by Rudemo (1982) and Bowman (1984) for least squares, were
challenging to implement numerically at the time they were introduced, espe-
cially in Monte Carlo analysis. However, they were explored enthusiastically
and in detail using theoretical arguments; see, e.g., Hall (1983, 1987) and
Stone (1984).

Indeed, when applied to a sample of size n, cross-validation requires O(n2)
computations, and even for moderate sample sizes that could be difficult in a
simulation study. We avoided using the Gaussian kernel because of the sheer
computational labour required to compute an exponential. Kernels based on
truncated polynomials, for example the Bartlett–Epanechnikov kernel and the
biweight, were therefore popular.

In important respects the development of bootstrap methods was no dif-
ferent. For example, the double bootstrap was out of reach, computationally,
for most of us when it was first discussed (Hall, 1986; Beran, 1987, 1988).
Hall (1986, p. 1439) remarked of the iterated bootstrap that “it could not be
regarded as a general practical tool.” Likewise, the computational challenges
posed by even single bootstrap methods motivated a variety of techniques
that aimed to provide greater efficiency to the operation of sampling from
a sample, and appeared in print from the mid 1980s until at least the early
1990s. However, efficient methods for bootstrap simulation are seldom used
today, so plentiful is the computing power that we have at our disposal.

Thus, for the bootstrap, as for problems in function estimation, theory
played a role that computation really couldn’t. Asymptotic arguments pointed
authoritatively to the advantages of some bootstrap techniques, and to the
drawbacks associated with others, at a time when reliable numerical corrobo-
ration was hard to come by. The literature of the day contains muted versions
of some of the exciting discussions that took place in the mid to late 1980s
on this topic. It was an extraordinary time — I feel so fortunate to have been
working on these problems.

I should make the perhaps obvious remark that, even if it had been possible
to address these issues in 1985 using today’s computing resources, theory
still would have provided a substantial and unique degree of authority to the
development of nonparametric methods. In one sweep it enabled us to address
issues in depth in an extraordinarily broad range of settings. It allowed us to
diagnose and profoundly understand many complex problems, such as the high
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variability of a particular method for bandwidth choice, or the poor coverage
properties of a certain type of bootstrap confidence interval. I find it hard to
believe that numerical methods, on their own, will ever have the capacity to
deliver the level of intuition and insightful analysis, with such breadth and
clarity, that theory can provide.

Thus, in those early developments of methodology for function estima-
tion and bootstrap methods, theory was providing unrivaled insights into new
methodology, as well as being ahead of the game of numerical practice. Meth-
ods were suggested that were computationally impractical (e.g., techniques
for bandwidth choice in the 1970s, and iterated bootstrap methods in the
1980s), but they were explored because they were intrinsically attractive from
an intuitive viewpoint. Many researchers had at least an impression that the
methods would become feasible as the cost of computing power decreased, but
there was never a guarantee that they would become as easy to use as they are
today. Moreover, it was not with a view to today’s abundant computing re-
sources that those computer-intensive methods were proposed and developed.
To some extent their development was unashamedly an intellectual exercise,
motivated by a desire to push the limits of what might sometime be feasible.

In adopting this outlook we were pursuing a strong precedent. For example,
Pitman (1937a,b, 1938), following the lead of Fisher (1935, p. 50), suggested
general permutation test methods in statistics, well in advance of computing
technology that would subsequently make permutation tests widely applica-
ble. However, today the notion that we might discuss and develop computer-
intensive statistical methodology, well ahead of the practical tools for imple-
menting it, is often frowned upon. It strays too far, some colleagues argue,
from the practical motivation that should underpin all our work.

I’m afraid I don’t agree, and I think that some of the giants of the past,
perhaps even Fisher, would concur. The nature of revolutions, be they in
statistics or somewhere else, is to go beyond what is feasible today, and devise
something remarkable for tomorrow. Those of us who have participated in
some of the statistics revolutions in the past feel privileged to have been
permitted free rein for our imaginations.
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Komlós, J., Major, P., and Tusnády, G. (1976). An approximation of par-
tial sums of independent RV’s and the sample DF. II. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 34:33–58.

Mahalanobis, P. (1946). Recent experiments in statistical sampling in the
Indian Statistical Institute (with discussion). Journal of the Royal Statis-
tical Society, 109:325–378.

McCarthy, P. (1966). Replication: An Approach to the Analysis of Data From
Complex Surveys. Vital Health Statistics. Public Health Service Publica-
tion 1000, Series 2, No. 14, National Center for Health Statistics, Public
Health Service, US Government Printing Office.

McCarthy, P. (1969). Pseudo-replication: Half samples. Review of the Inter-
national Statistical Institute, 37:239–264.

Pitman, E.J.G. (1937a). Significance tests which may be applied to samples
from any population. Royal Statistical Society Supplement, 4:119–130.

Pitman, E.J.G. (1937b). Significance tests which may be applied to samples
from any population, II. Royal Statistical Society Supplement, 4:225–232.



P.G. Hall 169

Pitman, E.J.G. (1938). Significance tests which may be applied to samples
from any population. Part III. The analysis of variance test. Biometrika,
29:322–335.

Rudemo, M. (1982). Empirical choice of histograms and kernel density esti-
mators. Scandinavian Journal of Statistics, 9:65–78.

Stone, C.J. (1984). An asymptotically optimal window selection rule for ker-
nel density estimates. The Annals of Statistics, 12:1285–1297.

Tibshirani, R.J. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288.

Tibshirani, R.J. (2014a). In praise of sparsity and convexity. Past, Present,
and Future of Statistical Science (X. Lin, C. Genest, D.L. Banks, G.
Molenberghs, D.W. Scott, and J.-L. Wang, Eds.). Chapman & Hall, Lon-
don, pp. 497–505.

Tibshirani, R.J. (2014b). Lasso and sparsity in statistics. Statistics in Action:
A Canadian Outlook (J.F. Lawless, Ed.). Chapman & Hall, London, pp.
79–91.

Whittaker, E.T. and Watson, G.N. (1902). A Course of Modern Analysis.
Cambridge University Press, Cambridge, UK.

Woodroofe, M. (1970). On choosing a delta-sequence. The Annals of Math-
ematical Statistics, 41:1665–1671.





16

The bright future of applied statistics

Rafael A. Irizarry

Department of Biostatistics and Computational Biology,
Dana-Farber Cancer Institute
and
Department of Biostatistics
Harvard School of Public Health, Boston, MA

16.1 Introduction

When I was asked to contribute to this book, titled Past, Present, and Future
of Statistical Science, I contemplated my career while deciding what to write
about. One aspect that stood out was how much I benefited from the right
circumstances. I came to one clear conclusion: it is a great time to be an
applied statistician. I decided to describe the aspects of my career that I have
thoroughly enjoyed in the past and present and explain why this has led me
to believe that the future is bright for applied statisticians.

16.2 Becoming an applied statistician

I became an applied statistician while working with David Brillinger on my
PhD thesis. When searching for an advisor I visited several professors and
asked them about their interests. David asked me what I liked and all I came
up with was “I don’t know. Music?” to which he responded, “That’s what
we will work on.” Apart from the necessary theorems to get a PhD from the
Statistics Department at Berkeley, my thesis summarized my collaborative
work with researchers at the Center for New Music and Audio Technology. The
work involved separating and parameterizing the harmonic and non-harmonic
components of musical sound signals (Irizarry, 2001). The sounds had been
digitized into data. The work was indeed fun, but I also had my first glimpse
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into the incredible potential of statistics in a world becoming more and more
data-driven.

Despite having expertise only in music, and a thesis that required a CD
player to hear the data, fitted models and residuals (http://www.biostat.
jhsph.edu/~ririzarr/Demo/index.html), I was hired by the Department of
Biostatistics at Johns Hopkins School of Public Health. Later I realized what
was probably obvious to the school’s leadership: that regardless of the subject
matter of my thesis, my time series expertise could be applied to several public
health applications (Crone et al., 2001; DiPietro et al., 2001; Irizarry, 2001).
The public health and biomedical challenges surrounding me were simply too
hard to resist and my new department knew this. It was inevitable that I would
quickly turn into an applied biostatistician.

16.3 Genomics and the measurement revolution

Since the day that I arrived at Johns Hopkins University 15 years ago, Scott
Zeger, the department chair, fostered and encouraged faculty to leverage their
statistical expertise to make a difference and to have an immediate impact in
science. At that time, we were in the midst of a measurement revolution that
was transforming several scientific fields into data-driven ones. Being located
in a School of Public Health and next to a medical school, we were surrounded
by collaborators working in such fields. These included environmental science,
neuroscience, cancer biology, genetics, and molecular biology. Much of my
work was motivated by collaborations with biologists that, for the first time,
were collecting large amounts of data. Biology was changing from a data poor
discipline to a data intensive one.

A specific example came from the measurement of gene expression. Gene
expression is the process in which DNA, the blueprint for life, is copied into
RNA, the templates for the synthesis of proteins, the building blocks for life.
Before microarrays were invented in the 1990s, the analysis of gene expression
data amounted to spotting black dots on a piece of paper (Figure 16.1, left).
With microarrays, this suddenly changed to sifting through tens of thousands
of numbers (Figure 16.1, right). Biologists went from using their eyes to cat-
egorize results to having thousands (and now millions) of measurements per
sample to analyze. Furthermore, unlike genomic DNA, which is static, gene
expression is a dynamic quantity: different tissues express different genes at
different levels and at different times. The complexity was exacerbated by un-
polished technologies that made measurements much noisier than anticipated.
This complexity and level of variability made statistical thinking an important
aspect of the analysis. The biologists that used to say, “If I need statistics, the
experiment went wrong” were now seeking out our help. The results of these
collaborations have led to, among other things, the development of breast can-
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FIGURE 16.1
Illustration of gene expression data before and after microarrays.

cer recurrence gene expression assays making it possible to identify patients
at risk of distant recurrence following surgery (van’t Veer, 2002).

When biologists at Johns Hopkins first came to our department for help
with their microarray data, Scott put them in touch with me because I had
experience with (what was then) large datasets (digitized music signals are
represented by 44,100 points per second). The more I learned about the sci-
entific problems and the more data I explored, the more motivated I became.
The potential for statisticians having an impact in this nascent field was clear
and my department was encouraging me to take the plunge. This institu-
tional encouragement and support was crucial as successfully working in this
field made it harder to publish in the mainstream statistical journals; an ac-
complishment that had traditionally been heavily weighted in the promotion
process. The message was clear: having an immediate impact on specific sci-
entific fields would be rewarded as much as mathematically rigorous methods
with general applicability.

As with my thesis applications, it was clear that to solve some of the chal-
lenges posed by microarray data I would have to learn all about the technol-
ogy. For this I organized a sabbatical with Terry Speed’s group in Melbourne
where they helped me accomplish this goal. During this visit I reaffirmed my
preference for attacking applied problems with simple statistical methods, as
opposed to overcomplicated ones or developing new techniques. Learning that
discovering clever ways of putting the existing statistical toolbox to work was
good enough for an accomplished statistician like Terry gave me the neces-
sary confidence to continue working this way. More than a decade later this
continues to be my approach to applied statistics. This approach has been
instrumental for some of my current collaborative work. In particular, it led
to important new biological discoveries made together with Andy Feinberg’s
lab (Irizarry, 2009).
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During my sabbatical we developed preliminary solutions that improved
precision and aided in the removal of systematic biases from microarray data
(Irizarry, 2003). I was aware that hundreds, if not thousands, of other scientists
were facing the same problematic data and were searching for solutions. There-
fore I was also thinking hard about ways in which I could share whatever solu-
tions I developed with others. During this time I received an email from Robert
Gentleman asking if I was interested in joining a new software project for the
delivery of statistical methods for genomics data. This new collaboration even-
tually became the Bioconductor project (http://www.bioconductor.org),
which to this day continues to grow its user and developer base (Gentleman
et al., 2004). Bioconductor was the perfect vehicle for having the impact that
my department had encouraged me to seek. With Ben Bolstad and others
we wrote an R package that has been downloaded tens of thousands of times
(Gautier et al., 2004). Without the availability of software, the statistical
method would not have received nearly as much attention. This lesson served
me well throughout my career, as developing software packages has greatly
helped disseminate my statistical ideas. The fact that my department and
school rewarded software publications provided important support.

The impact statisticians have had in genomics is just one example of
our field’s accomplishments in the 21st century. In academia, the num-
ber of statisticians becoming leaders in fields such as environmental sci-
ences, human genetics, genomics, and social sciences continues to grow. Out-
side of academia, sabermetrics has become a standard approach in sev-
eral sports (not just baseball) and inspired the Hollywood movie Money
Ball. A PhD statistician led the team that won the Netflix million dol-
lar prize (http://www.netflixprize.com/). Nate Silver (http://mashable.
com/2012/11/07/nate-silver-wins/) proved the pundits wrong by once
again using statistical models to predict election results almost perfectly.
R has become a widely used programming language. It is no surprise that
statistics majors at Harvard have more than quadrupled since 2000 (http:
//nesterko.com/visuals/statconcpred2012-with-dm/] and that statistics
MOOCs are among the most popular (http://edudemic.com/2012/12/
the-11-most-popular-open-online-courses/).

The unprecedented advance in digital technology during the second half
of the 20th century has produced a measurement revolution that is trans-
forming science. Scientific fields that have traditionally relied upon simple
data analysis techniques have been turned on their heads by these technolo-
gies. Furthermore, advances such as these have brought about a shift from
hypothesis-driven to discovery-driven research. However, interpreting infor-
mation extracted from these massive and complex datasets requires sophis-
ticated statistical skills as one can easily be fooled by patterns that arise by
chance. This has greatly elevated the importance of our discipline in biomed-
ical research.
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16.4 The bright future

I think that the data revolution is just getting started. Datasets are currently
being, or have already been, collected that contain, hidden in their complex-
ity, important truths waiting to be discovered. These discoveries will increase
the scientific understanding of our world. Statisticians should be excited and
ready to play an important role in the new scientific renaissance driven by the
measurement revolution.
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In this chapter, I will attempt to describe how a series of problems in statis-
tical genetics, starting from a project about estimation of risk for BRCA1/2
mutation carriers, have driven a major part of my research at the National
Cancer Institute over the last fourteen years. I try to share some of the sta-
tistical and scientific perspectives in this field that I have developed over the
years during which I myself have transformed from a theoretical statistician
to a statistical scientist. I hope my experience would draw the attention of
other statisticians, especially young researchers who have perceived strength
in statistical theory but are keen on using their knowledge to advance science,
about the tremendous opportunity that lies ahead.

17.1 Introduction

I have been wondering for a while now what would I like to share with the
readers about my experience as a statistician. Suddenly, a news event that has
captivated the attention of the world in the last few days gave me the impetus
to start on this piece. Angelina Jolie, the beautiful and famous Hollywood ac-
tress, also well-known for her humanitarian work across the globe, has made
the bold decision to opt for bilateral mastectomy after knowing that she car-
ries a mutation in the gene called BRCA1 which, according to her doctors,
gives her a risk of 87% for developing breast cancers and 50% for developing
ovarian cancer (Jolie, May 14, 2013). The print and online media, blogosphere
and social media sites are all buzzing with the discussion about her courage
of not only making the drastic decision to take control of her own health, but
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also to help increase awareness about the issues by sharing the deeply personal
story with the general public. At the same time, a debate is also raging about
whether she got the right estimates of her risks and whether she could have
made alternative, less drastic choices, to minimize and manage her long-term
risks of these two cancers. And of course, all of these are embedded in a much
broader debate in the community about the appropriate use of comprehen-
sive genome sequencing information for personalized medicine (treatment and
prevention) in the future.

17.2 Kin-cohort study: My gateway to genetics

This debate about Angelina Jolie’s decision is taking me back through the
memory lane to May of 1999 when I joined the Division of Cancer Epidemi-
ology and Genetics of the National Cancer Institute as a post-doctoral fel-
low after finishing my PhD in Statistics from the University of Washington,
Seattle. The very first project my mentor, Sholom Wacholder, introduced me
to involved estimation of risk of certain cancers, including those of breast
and ovary, associated with mutations in genes BRCA1 and BRCA2 from the
Washington Ashkenazi Study (WAS) (Struewing et al., 1997). My mentor
and his colleagues had previously developed the novel “kin-cohort” approach
that allowed estimation of age-specific cumulative risk of a disease associated
with a genetic mutation based on the disease history of the set of relatives of
genotyped study participants (Wacholder et al., 1998). This approach, when
applied to the WAS study, estimated the lifetime risk or penetrance of breast
cancer to be between 50–60%, substantially lower than the estimates of pen-
etrance around 90–100% that have been previously obtained from analysis
of highly disease enriched families. It was thought that WAS, which were
volunteer-based and not as prone to ascertainment bias as family-studies, pro-
vided more unbiased estimate of risk for BRCA1/2 mutation carriers in the
general population. Other studies, that have employed “un-selected” designs,
have estimated the penetrance to be even lower.

The approach my mentor and colleagues had previously developed was
very simple and elegant. It relied on the observation that since approximately
half of the first-degree relatives of BRCA1/2 mutation carriers are expected
to be carriers by themselves due to Mendelian laws of transmission, the risks
of the disease in this group of relatives should be approximately 50:50 mixture
of the risk of the disease associated with carriers and non-carriers. Further, for
a rare mutation, since very few of the first degree relatives of the non-carriers
are expected to be carriers themselves, the risk of the disease in the group of
relatives should be approximately the same as that for non-carriers themselves.
Thus they employed a simple method-of-moment approach to estimate the
age-specific cumulative risks associated with carriers and non-carriers using
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the Kaplan–Meyer estimators of risk for the first-degree relative of carriers
and those for non-carriers.

I attempted to formulate the problem in terms of a composite likelihood
framework (Chatterjee and Wacholder, 2001) so that the resulting estimator
has desirable statistical properties such as monotonicity of the age-specific
cumulative risk curve and are robust to strong assumptions about residual
familial correlation of disease among family members. The likelihood-based
framework was quite attractive due to its flexibility for performing various
additional analyses and I was happy that I was able to make a quick method-
ologic contribution, even being fairly novice to the field. However, the actual
application of the method to WAS hardly changed the estimate of penetrance
for BRCA1/2 mutation compared to the method of moment estimates previ-
ously available.

In retrospect, I learned several lessons from my first post-doctoral project.
First, it is often hard to beat a simple but sensible statistical method. Although
this may be obvious to many seasoned applied statisticians, this first-hand
experience was an important lesson for me, fresh out of graduate school where
my PhD thesis involved understanding of semi-parametric efficient estimation
methodology, the purpose of which is to get the last drop of information
from the data with minimal assumption about “nuisance” parameters. Second,
although the substantive contribution of my first project was modest, it was
an invaluable exercise for me as it opened my gateway to the whole new area
of statistical genetics. To get a solid grasp of the problem without having any
knowledge of genetics a priori, I had to teach myself concepts of population
as well as molecular genetics. Self-teaching and my related struggles were an
invaluable experience for me that help me to date to think about each problem
in my own way.

17.3 Gene-environment interaction: Bridging
genetics and theory of case-control studies

As I was wrapping up my work on kin-cohort studies, one day Sholom asked
me for some help to analyze data from a case-control study of Ovarian Cancer
to assess interaction between BRCA1/2 mutations and certain reproductive
factors, such as oral contraceptive use, which are known to reduce the risk for
the disease in the general population (Modan et al., 2001). Because BRCA1/2
mutations are very rare in the general population, standard logistic regression
analysis of interaction would have been very imprecise. Instead, the investiga-
tors in this study were pursuing an alternative method that uses a log-linear
modeling approach that can incorporate the reasonable assumption that re-
productive factors are distributed independently of genetic mutation status
in the general population. Earlier work has shown that incorporation of the
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gene-environment independence assumption can greatly enhance the efficiency
of interaction analysis in case-control studies (Piegorsch et al., 1994; Umbach
and Weinberg, 1997).

While I was attempting to analyze the study using the log-linear model
framework, I realized it is a bit of a cumbersome approach that requires creat-
ing massive contingency tables by categorizing all of the variables under study,
carefully tracking different sets of parameters (e.g., parameters related to dis-
ease odds-ratios and exposure frequency distributions) and then constraining
specific parameters to zero for incorporation of the gene-environment indepen-
dence assumption. I quickly realized that all of these details can be greatly
simplified by some of the techniques I had learned from my advisors Norman
Breslow and Jon Wellner during my PhD thesis regarding semi-parametric
analysis of case-control and other types of studies that use complex outcome
dependent sampling designs (Chatterjee et al., 2003). In particular, I was able
to derive a profile-likelihood technique that simplifies fitting of logistic regres-
sion models to case-control data under the gene-environment independence
assumption(Chatterjee and Carroll, 2005). Early in the development, I told
Ray Carroll, who has been a regular visitor at NCI for a long time, about
some of the results I have derived, and he got everyone excited because of his
own interest and earlier research in this area. Since then Ray and I have been
partners in crime in many papers related to inference on gene-environment
interactions from case-control studies.

This project also taught me a number of important lessons. First, there is
tremendous value to understanding the theoretical underpinning of standard
methods that we routinely use in practice. Without the understanding of the
fundamentals of semi-parametric inference for analysis of case-control data
that I developed during my graduate studies, I would never have made the
connection of this problem to profile-likelihood, which is essentially the back-
bone for many standard methods, such as Cox’s partial likelihood analysis of
lifetime data. The approach not only provided a simplified framework for ex-
ploiting the gene-environment independence assumption for case-control stud-
ies, but also led to a series of natural extensions of practical importance so that
the method is less sensitive to the violation of the critical gene-environment in-
dependence assumption. My second lesson was that it is important not to lose
the applied perspective even when one is deeply involved in the development
of theory. Because we paid close attention to the practical limitation of the
original methods and cutting-edge developments in genetic epidemiology, my
collaborators, trainee and I (Ray Carroll, Yi-Hau Chen, Bhramar Mukher-
jee, Samsiddhi Bhattacharjee to name a few) were able to propose robust
extensions of the methodology using conditional logistic regression, shrinkage
estimation techniques and genomic control methods (Chatterjee et al., 2005;
Mukherjee and Chatterjee, 2008; Bhattacharjee et al., 2010).
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17.4 Genome-wide association studies (GWAS):
Introduction to big science

BRCA1/2 mutations, which pose high-risks for breast and ovarian cancer but
rare in the general population, were originally discovered in the early 1990s
through linkage studies that involve analysis of the co-segregation of genetic
mutations and disease within highly affected families (Hall et al., 1990). From
the beginning of the 21st century, after the human genome project got com-
pleted and large scale genotyping technologies evolved, the genetic community
started focusing on genome-wide association studies (GWAS). The purpose of
these studies was to identify genetic variants which may pose more modest
risk of diseases, like breast cancer, but are more common in the general pop-
ulations. Early in this effort, the leadership of our Division decided to launch
two such studies, one for breast cancer and one for prostate cancer, under the
rubric of the Cancer Genetics Marker of Susceptibility of Studies (CGEMS)
(Hunter et al., 2007; Yeager et al., 2007).

I participated in these studies as a four-member team of statisticians who
provided the oversight of the quantitative issues in the design and analysis
aspect of these studies. For me, this was my first exposure to large “team sci-
ence,” where progress could only be made through collaborations of a team of
researchers with diverse background, such as genomics, epidemiology, bioin-
formatics, and statistics. Getting into the nitty-gritty of the studies gave me
an appreciation of the complexities of large scale genomic studies. I realized
that while we statisticians are prone to focus on developing an “even more
optimal” method of analysis, some of the most fundamental and interesting
quantitative issues in these types of studies lies elsewhere, in particular in the
areas of study design, quality control and characterization following discovery
(see next section for more on the last topic).

I started thinking seriously about study design when I was helping one
of my epidemiologic collaborators put together a proposal for conducting a
genome-wide association study for lung cancer. As a principled statistician,
I felt some responsibility to show that the proposed study is likely to make
new discoveries beyond three GWAS of lung cancer that were just published
in high-profile journals such as Nature and Nature Genetics. I realized that
standard power calculations, where investigators typically show that the study
has 80–90% power to detect certain effect sizes, is not satisfactory for ever-
growing GWA studies. I realized if I had to do a more intelligent power calcu-
lation, I first needed to make an assessment of what might be the underlying
genetic architecture of the trait, in particular how many genetic variants might
be associated with the trait and what are their effect-sizes.

I made a very simple observation that the discoveries made in an existing
study can be thought of as a random sample from the underlying “popu-
lation” of susceptibility markers where the probability of discovery of any
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given marker is proportional to the power of the study at the effect-size as-
sociated with that marker. My familiarity with sample-survey theory, which
I developed during my PhD thesis on two-phase study design, again came very
handy here. I worked with a post-doctoral Fellow, JuHyun Park, to develop
an “inverse-power-weighted” method, similar to the widely used “inverse-
probability-weighted” (IPW) methods for analysis of survey data, for inferring
the number of underlying susceptibility markers for a trait and their effect-size
distribution using published information on known discoveries and the study
design of the underlying GWA studies (Park et al., 2010). We inferred genetic
architecture for several complex traits using this method and made projec-
tions about the expected number of discoveries in GWAS of these traits. We
have been very pleased to see that our projections were quite accurate when
results from larger and larger GWA studies have come out for these traits
since the publication of our report (Allen et al., 2010; Anderson et al., 2011;
Eeles et al., 2013; Michailidou et al., 2013).

Realizing how optimal study design is fundamentally related to the un-
derlying genetic architecture of traits, both JuHyun and I continued to delve
into these related issues. Again using known discoveries from published stud-
ies and information on design of existing studies, we showed that there is
very modest or no evidence of an inverse relationship between effect-size and
allele frequency for genetic markers, a hypothesis in population genetics pos-
tulated from a selection point of view and one that often has been used in the
past by scientists to motivate studies of less common and rare variants using
sequencing technologies (Park et al., 2011). From the design point of view,
we conjectured that lack of strong relationship between allele frequency and
effect-size implies future studies for less common and rare variants will require
even larger sample sizes than current GWAS to make comparable numbers of
discoveries for underlying susceptibility loci.

Understanding its implications for discoveries made us question the impli-
cation of genetic architecture for risk-prediction, another hotly debated topic.
Interestingly, while the modern statistical literature is very rich regarding op-
timal algorithms for building models, very little attention is given to more
fundamental design questions, such as how our ability to predict a trait is
inherently limited by sample-size of the training datasets and the genetic ar-
chitecture of the trait, or more generally the etiologic architecture that may
involve both genetic and non-genetic factors. This motivated us to develop a
mathematical approximation for the relationship between expected predictive
performance of models, sample size of training datasets and genetic architec-
ture of traits. Based on these formulations, we projected that highly polygenic
nature of complex traits implies future GWAS will require extremely large
sample sizes, possibly of a higher order magnitude than even some of the
largest GWAS to date, for substantial improvement of risk-prediction based
on genetic information (Chatterjee et al., 2013).

Although the study of genetic architecture and its implications for study
designs is now a significant part of my research portfolio, it was not by design
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by any means. I just stumbled upon the problem when I was attempting to do
basic power calculations for a collaborator. Looking back, it was a risky thing
to undertake as I was not sure where my effort was going to lead to, other
than maybe I could advise my collaborators a little more intelligently about
study designs. It was more tempting to focus, like many of my peers have done,
sometimes very successfully, on so-called “hot” problems such as developing an
optimal association test. Although I have put some effort in those areas as well,
today I am really glad that instead of chasing more obvious problems, I gave
myself the freedom to venture into unknown territories. The experimentation
has certainly helped me, and hopefully the larger scientific community, to
obtain some fresh insights into study designs, statistical power calculations
and risk-prediction in the context of modern high-throughput studies.

17.5 The post-GWAS era: What does it all mean?

It is quite amazing that even more than two decades after the BRCA1/2
mutations were discovered, there is so much ambiguity about what are the true
risks associated with these genes for various cancers. In the literature, available
estimates of lifetime-risk of breast cancer, for example, vary from 20–90%. As
noted above, while estimates available from highly-enriched cancer families
tend to reside at the higher range, their counterparts from population-based
studies tend to be more at the lower range. Risk for an individual carrier would
also depend on other information, such as the specific mutation type, cancer
history among family members and information on other risk-factors. The
problem of estimation of risk associated with rare highly penetrant mutations
poses many interesting statistical challenges and has generated a large volume
of literature.

Discoveries from genome-wide association studies are now fueling the de-
bate how discovery of low penetrant common variants can be useful for public
health. Some researchers argue that common variants, irrespective of how
modest their effects are, can individually or collectively highlight interesting
biologic pathways that are involved in the pathogenesis of a disease and hence
potentially be useful for development of drug targets. Although this would be
a highly desirable outcome, skepticism exists given that discoveries of even
major genes like BRCA1/2 have seldom led to successful development of drug
targets. Utility of common variants for genetic risk prediction is also now a
matter of great debate. While a number of early studies painted mostly a
negative picture, large numbers of discoveries from the most recent very large
GWAS suggests that there is indeed potential for common variants to improve
risk-prediction.

I am an avid follower of this debate. While the focus of the genetics commu-
nity is quickly shifting towards what additional discoveries are possible using
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future whole-exome or genome sequencing studies, I keep wondering about
how the knowledge from GWAS could be further refined and ultimately ap-
plied to improve public health. In general, I see the pattern that whenever
a new technology emerges, there is tremendous interest about making new
“discovery,” but the effort is not proportionate when it comes to following-up
these discoveries for better “characterization” of risk or/and the underlying
causal mechanism. Interestingly, while in the discovery effort statisticians face
stiff competition from researchers in other quantitative disciplines, like geneti-
cists, bioinformaticians, computer scientists and physicists, statisticians have
the potential to develop a more exclusive niche in the “characterization” steps
where the underlying inferential issues are often much more of complex nature
than simple hypothesis testing.

17.6 Conclusion

In the last fourteen years, the biggest change I observe within myself is how
I think about a problem. When I started working on refinement of kin-cohort
methods, I focused on developing novel methods but was not very aware of
all the underlying very complex clinical and epidemiologic subject-matter is-
sues. Now that I am struggling with the question of what would the discover-
ies from current GWAS and future sequencing studies mean for personalized
medicine and public health, I feel I have a better appreciation of those per-
tinent scientific issues and the related debate. For this, I owe much to the
highly stimulating scientific environment of our Division, created and fostered
over decades by our recently retired director Dr. Joseph Fraumeni Jr. and a
number of other leaders. The countless conversations and debates I had with
my statistician, epidemiologist and geneticist colleagues in the meeting rooms,
corridors and cafeteria of DCEG about cutting-edge issues for cancer genetics,
epidemiology and prevention had a major effect on me. At the same time, my
training in theory and methods always guides my thinking about these applied
problems in a statistically rigorous way. I consider myself to be fortunate to
inherit my academic “genes” through training in statistics and biostatistics
from the Indian Statistical Institute and the University of Washington, and
then be exposed to the great “environment” of DCEG for launching my career
as a statistical scientist.

Congratulations to COPSS for sustaining and supporting such a great
profession as ours for 50 years! It is an exciting time to be a statistician
in the current era of data science. There are tremendous opportunities for
our profession which also comes with tremendous responsibility. While I was
finishing up this chapter, the US Supreme Court ruled that genes are not
“patentable,” implying genetic tests would become more openly available to
consumers in the future. The debate about whether Angelina Jolie got the
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right information about her risk from BRCA1/2 testing is just a reminder
about the challenge that lies ahead for all of us to use genetic and other types
of biomedical data to create objective “knowledge” that will benefit, and not
misguide or harm, medical researchers, clinicians and most importantly the
public.
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A journey into statistical genetics and
genomics

Xihong Lin
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This chapter provides personal reflections and lessons I learned through my
journey into the field of statistical genetics and genomics in the last few years.
I will discuss the importance of being both a statistician and a scientist;
challenges and opportunities in analyzing massive genetic and genomic data,
and training the next generation statistical genetic and genomic scientists in
the ’omics era.

18.1 The ’omics era

The human genome project in conjunction with the rapid advance of high
throughput technology has transformed the landscape of health science re-
search in the last ten years. Scientists have been assimilating the implica-
tions of the genetic revolution, characterizing the activity of genes, messenger
RNAs, and proteins, studying the interplay of genes and the environment in
causing human diseases, and developing strategies for personalized medicine.
Technological platforms have advanced to a stage where many biological en-
tities, e.g., genes, transcripts, and proteins, can be measured on the whole
genome scale, yielding massive high-throughput ’omics data, such as genetic,
genomic, epigenetic, proteomic, and metabolomic data. The ’omics era pro-
vides an unprecedented promise of understanding common complex diseases,
developing strategies for disease risk assessment, early detection, and preven-
tion and intervention, and personalized therapies.

The volume of genetic and genomic data has exploded rapidly in the last
few years. Genome-wide association studies (GWAS) use arrays to genotype
500,000–5,000,000 common Single Nucleotide Polymorphisms (SNPs) across
the genome. Over a thousand of GWASs have been conducted in the last
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few years. They have identified hundreds of common genetic variants that
are associated with complex traits and diseases (http://www.genome.gov/
gwastudies/). The emerging next generation sequencing technology offers an
exciting new opportunity for sequencing the whole genome, obtaining informa-
tion about both common and rare variants and structural variation. The next
generation sequencing data allow to explore the roles of rare genetic variants
and mutations in human diseases. Candidate gene sequencing, whole exome
sequencing and whole genome sequencing studies are being conducted. High-
throughput RNA and epigenetic sequencing data are also becoming rapidly
available to study gene regulation and functionality, and the mechanisms of
biological systems. A large number of public genomic databases, such as the
HapMap Project (http://hapmap.ncbi.nlm.nih.gov/), the 1000 genomes
project (www.1000genomes.org), are freely available. The NIH database of
Genotypes and Phenotypes (dbGaP) archives and distributes data from many
GWAS and sequencing studies funded by NIH freely to the general research
community for enhancing new discoveries.

The emerging sequencing technology presents many new opportunities.
Whole genome sequencing measures the complete DNA sequence of the
genome of a subject at three billion base-pairs. Although the current cost
of whole genome sequencing prohibits conducting large scale studies, with the
rapid advance of biotechnology, the “1000 dollar genome” era will come in the
near future. This provides a new era of predictive and personalized medicine
during which the full genome sequencing for an individual or patient costs
only $1000 or lower. Individual subject’s genome map will facilitate patients
and physicians with identifying personalized effective treatment decisions and
intervention strategies.

While the ’omics era presents many exciting research opportunities, the
explosion of massive information about the human genome presents extraor-
dinary challenges in data processing, integration, analysis and result interpre-
tation. The volume of whole genome sequencing data is substantially larger
than that of GWAS data, and is in the magnitude of tens or hundreds of
terabites (TBs). In recent years, limited quantitative methods suitable for an-
alyzing these data have emerged as a bottleneck for effectively translating rich
information into meaningful knowledge. There is a pressing need to develop
statistical methods for these data to bridge the technology and information
transfer gap in order to accelerate innovations in disease prevention and treat-
ment. As noted by John McPherson, from the Ontario Institute for Cancer
Research,

“There is a growing gap between the generation of massively parallel
sequencing output and the ability to process and analyze the resulting
data. Bridging this gap is essential, or the coveted $1000 genome will
come with a $20,000 analysis price tag.” (McPherson, 2009)

This is an exciting time for statisticians. I discuss in this chapter how I be-
came interested in statistical genetics and genomics a few years ago, lessons
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I learned while making my journey into this field. I will discuss a few open
and challenging problems to demonstrate statistical genetics and genomics is
a stimulating field with many opportunities for statisticians to make method-
ological and scientific contributions. I will also discuss training the next gen-
eration quantitative scientists in the ’omics era.

18.2 My move into statistical genetics and genomics

Moving into statistical genetics and genomics is a significant turn in my career.
My dissertation work was on GLMMs, i.e., generalized linear mixed models
(Breslow and Clayton, 1993). In the first twelve years out of graduate school,
I had been primarily working on developing statistical methods for analysis of
correlated data, such as mixed models, measurement errors, and nonparamet-
ric and semiparametric regression for longitudinal data. When I obtained my
PhD degree, I had quite limited knowledge about nonparametric and semi-
parametric regression using kernels and splines. Learning a new field is chal-
lenging. One is more likely to be willing to invest time and energy to learn
a new field when stimulated by problems in an open new area and identify-
ing niches. I was fascinated by the opportunities of developing nonparametric
and semiparametric regression methods for longitudinal data as little work
had been done in this area and there were plenty of open problems. Such an
experience can be rewarding if timing and environment are right and good
collaborators are found. One is more likely to make unique contributions to
a field when it is still at an early stage of development. This experience also
speaks well of the lessons I learned in my journey into statistical genetics and
genomics.

After I moved to the Harvard School of Public Health in 2005, I was
interested in exploring new areas of research. My collaborative projects turned
out to be mainly in genetic epidemiological studies and environmental genetic
studies, a field I had little knowledge about. In the next several years, I was
gradually engaged in several ongoing genome-wide association studies, DNA
methylation studies, and genes and environment studies. I was fascinated by
the challenges in the analysis of large genetic and genomic data, and rich
methodological opportunities for addressing many open statistical problems
that are likely to facilitate new genetic discovery and advance science. At
the same time, I realized that to make contributions in this field, one has to
understand genetics and biology well enough in order to identify interesting
problems and develop methods that are practically relevant and useful. In my
sabbatical year in 2008, I decided to audit a molecular biology course, which
was very helpful for me to build a foundation in genetics and understand the
genetic jargon in my ongoing collaborative projects. This experience prepared
me to get started working on methodological research in statistical genetics



192 Journey into genetics and genomics

and genomics. Looking back, a good timing and a stimulating collaborative
environment made my transition easier. In the mean time, moving into a new
field with limited background requires patience, courage, and willingness to
sacrifice, e.g., having a lower productivity in the first few years, and more
importantly, identifying a niche.

18.3 A few lessons learned

Importance to be a scientist besides a statistician: While working on
statistical genetics in the last few years, an important message I appreciate
more and more is to be a scientist first and then a statistician. To make a
quantitative impact in the genetic field, one needs to be sincerely interested
in science, devote serious time to learn genetics well enough to identify im-
portant problems, and closely collaborate with subject-matter scientists. It is
less a good practice to develop methods first and then look for applications in
genetics to illustrate the methods. By doing so, it would be more challenging
to make such methods have an impact in real world practice, and it is more
likely to follow the crowd and work on a problem at a later and more ma-
tured stage of the area. Furthermore, attractive statistical methods that are
likely to be popular and advance scientific discovery need to integrate genetic
knowledge well in method development. This will require a very good knowl-
edge of genetics, and identifying cutting-edge scientific problems that require
new method development, and developing a good sense of important and less
important problems.

Furthermore, the genetic field is more technology-driven than many other
health science areas, and technology moves very fast. Statistical methods that
were developed for data generated by an older technology might not be ap-
plicable for data generated by new technology. For example, normalization
methods that work well for array-based technology might not work well for
sequencing-based technology. Statistical geneticists hence need to closely fol-
low technological advance.

Simple and computationally efficient methods carry an impor-
tant role: To make analysis of massive genetic data feasible, computationally
efficient and simple enough methods that can be easily explained to practition-
ers are often more advantageous and desirable. An interesting phenomenon is
that simple classical methods seem to work well in practice. For example, in
GWAS, simple single SNP analysis has been commonly used in both the dis-
covery phase and the validation phase, and has led to discovery of hundreds of
SNPs that are associated with disease phenotypes. This presents a significant
challenge to statisticians who are interested in developing more advanced and
sophisticated methods that can be adopted for routine use and outperform
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these simple methods in practical settings, so that new scientific discoveries
can be made that are missed by the simple methods.

Importance of developing user-friendly open-access software: As
the genetic field moves fast especially with the rapid advance of biotechnol-
ogy, timely development of user-friendly and computationally efficient open
access software is critical for a new method to become popular and used by
practitioners. The software is more likely to be used in practice if it allows
data to be input using the standard formats of genetic data. For example, for
GWAS data, it is useful to allow to input data in the popular Plink format.
Furthermore, a research team is likely to make more impact if a team mem-
ber has a strong background in software engineering and facilitates software
development.

Importance of publishing methodological papers in genetic jour-
nals: To increase the chance for a new statistical method to be used in the
genetic community, it is important to publish the method in leading genetic
journals, such as Nature Genetics, American Journal of Human Genetics, and
Plos Genetics, and make the paper readable to this audience. Thus strong com-
munication skills are needed. Compared to statistical journals, genetic journals
not only have a faster review time, but also and more importantly have the
readership that is more likely to be interested in these methods and be imme-
diate users of these methods. By publishing methodological papers in genetic
journals, the work is more likely to have an impact in real-world practice and
speed up scientific discovery; also, as a pleasant byproduct a paper gets more
citations. It is a tricky balance in terms of publishing methodological papers
in genetic journals or statistical journals.

18.4 A few emerging areas in statistical genetics and
genomics

To demonstrate the excitement of the field and attract more young researchers
to work on this field, I provide in this section a few emerging areas in statistical
genetics that require advanced statistical method developments.

18.4.1 Analysis of rare variants in next generation
sequencing association studies

GWAS has been successful in identifying susceptible common variants associ-
ated with complex diseases and traits. However, it has been found that dis-
ease associated common variants only explain a small fraction of heritability
(Manolio et al., 2009). Taking lung cancer as an example, the relative risks of
the genetic variants found to be associated with lung cancer in GWAS (Hung
et al., 2008) are much smaller than those from traditional epidemiological or
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environmental risk factors, such as cigarette smoking, radon and asbestos ex-
posures. Different from the “common disease, common variants” hypothesis
behind GWAS, the hypothesis of “common disease, multiple rare variants”
has been proposed (Dickson et al., 2010; Robinson, 2010) as a complementary
approach to search for the missing heritability.

The recent development of Next Generation Sequencing (NGS) technolo-
gies provides an exciting opportunity to improve our understanding of com-
plex diseases, their prevention and treatment. As shown by the 1000 Genome
Project (The 1000 Genomes Project Consortium, 2010) and the NHLBI Ex-
ome Sequencing Project (ESP) (Tennessen et al., 2012), a vast majority of
variants on the human genome are rare variants. Numerous candidate genes,
whole exome, and whole genome sequencing studies are being conducted to
identify disease-susceptibility rare variants. However, analysis of rare variants
in sequencing association studies present substantial challenges (Bansal et al.,
2010; Kiezun et al., 2012) due to the presence of a large number of rare vari-
ants.

Individual SNP based analysis commonly used in GWAS has little power
to detect the effects of rare variants. SNP set analysis has been advocated to
improve power by assessing the effects of a group of SNPs in a set, e.g., using
a gene, a region, or a pathway. Several rare variant association tests have been
proposed recently, including burden tests (Morgenthaler and Thilly, 2007; Li
and Leal, 2008; Madsen and Browning, 2009), and non-burden tests (Lin and
Tang, 2011; Neale et al., 2011; Wu et al., 2011; Lee et al., 2012). A common
theme of these methods is to aggregate individual variants or individual test
statistics within a SNP set. However, these tests suffer from power loss when
a SNP set has a large number of null variants. For example, a large gene
often has a large number of rare variants, with many of them being likely to
be null. Aggregating individual variant test statistics is likely to introduce a
large amount of noises when the number of causal variants is small.

To formulate the problem in a statistical framework, assume n subjects
are sequenced in a region, e.g., a gene, with p variants. For the ith subject, let
Yi be a phenotype (outcome variable), Gi = (Gi1, . . . , Gip)$ be the genotypes
of p variants (Gij = 0, 1, 2) for 0, 1, or 2 copies of the minor allele in a SNP
set, e.g., a gene/region, Xi = (xi1, . . . , xiq)$ be a covariate vector. Assume
the Yi are independent and follow a distribution in the exponential family
with E(yi) = µi and var(yi) = φv(µi), where v is a variance function. We
model the effects of p SNPs Gi in a set, e.g., a gene, and covariates Xi on a
continuous/categorical phenotype using the generalized linear model (GLM)
(McCullagh and Nelder, 1989),

g(µi) = X$
i α+G$

i β, (18.1)

where g is a monotone link function, α = (α1, . . . ,αq)$ and β = (β1, . . . ,βp)$

are vectors of regression coefficients for the covariates and the genetic variants,
respectively. The n×p design matrix G = (G1, . . . ,Gn)$ is very sparse, with
each column containing only a very small number of 1 or 2 and the rest being
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0’s. The association between a region consisting of the p rare variants Gi and
the phenotype Y can be tested by evaluating the null hypothesis that H0:
β = (β1, . . . ,βp)$ = 0. As the genotype matrix G is very sparse and p might
be moderate or large, estimation of β is difficult. Hence the standard p-DF
Wald and LR tests are difficult to carry out and also lose power when p is large.
Further, if the alternative hypothesis is sparse, i.e., only a small fraction of
β’s are non-zero but one does not know which ones are non-zeros, the classical
tests do not effectively take the knowledge of the sparse alternative and the
sparse design matrix into account.

18.4.2 Building risk prediction models using whole genome
data

Accurate and individualized prediction of risk and treatment response plays
a central role in successful disease prevention and treatment. GWAS and
Genome-wide Next Generation Sequencing (NGS) studies present rich op-
portunities to develop a risk prediction model using massive common and
rare genetic variants across the genome and well known risk factors. These
massive genetic data hold great potential for population risk prediction, as
well as improving prediction of clinical outcomes and advancing personalized
medicine tailored for individual patients. It is a very challenging statistical
task to develop a reliable and reproducible risk prediction model using mil-
lions or billions of common and rare variants, as a vast majority of these
variants are likely to be null variants, and the signals of individual variants
are often weak.

The simple strategy of building risk prediction models using only the vari-
ants that are significantly associated with diseases and traits after scanning the
genome miss a substantial amount of information. For breast cancer, GWASs
have identified over 32 SNPs that are associated with breast cancer risk. Al-
though a risk model based on these markers alone can discriminate cases
and controls better than risk models incorporating only non-genetic factors
(Hüsing et al., 2012), the genetic risk model still falls short of what should
be possible if all the genetic variants driving the observed familial aggrega-
tion of breast cancer were known: the AUC is .58 (Hüsing et al., 2012) versus
the expected maximum of .89 (Wray et al., 2010). Early efforts of including a
large number of non-significant variants from GWAS in estimating heritability
models show encouraging promises (Yang et al., 2010).

The recent advancement in NGS holds great promises in overcoming such
difficulties. The missing heritability could potentially be uncovered by rare and
uncommon genetic variants that are missed by GWAS (Cirulli and Goldstein,
2010). However, building risk prediction models using NGS data present sub-
stantial challenges. First, there are a massive number of rare variants cross the
genome. Second, as variants are rare and the data dimension is large, their
effects are difficult to be estimated using standard MLEs. It is of substan-
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FIGURE 18.1
Causal mediation diagram: S is a SNP; G is a mediator, e.g., gene expression;
Y is an outcome; and X a vector of covariates.

tial interest to develop statistical methods for risk prediction using massive
NGS data.

18.4.3 Integration of different ’omics data and mediation
analysis

An important emerging problem in genetic and genomic research is how to
integrate different types of genetic and genomic data, such as SNPs, gene
expressions, DNA methylation data, to improve understanding of disease sus-
ceptibility. The statistical problem of jointly modeling different types of ge-
netic and genomic data and their relationships with a disease can be described
using a causal diagram (Pearl, 2001) and be framed using a causal mediation
model (VanderWeele and Vansteelandt, 2010) based on counterfactuals. For
example, one can jointly model SNPs, gene expressions and a disease outcome
using the causal diagram in Figure 18.1, with gene expression serving as a
potential mediator.

To formulate the problem, assume for subject i ∈ {1, . . . , n}, an outcome
of interest Yi is dichotomous (e.g., case/control), whose mean is associated
with q covariates (Xi), p SNPs (Si), mRNA expression of a gene (Gi) and
possibly interactions between the SNPs and the gene expression as

logit{Pr(Yi = 1|Si, Gi,Xi)} = X$
i βX + S$

i βS +GiβG + S$
i GiβGS , (18.2)

where βX ,βS ,βG,βGS are the regression coefficients for the covariates, the
SNPs, the gene expression, and the interactions of the SNPs and the gene



X. Lin 197

expression, respectively. The gene expression Gi (i.e., the mediator) depends
on the q covariates (Xi) and the p SNPs (Si) through a linear model, as

Gi = X$
i αX + S$

i αS + εi, (18.3)

where αX and αS are the regression coefficients for the covariates and the
SNPs, respectively. Here, εi follows a Normal distribution with mean 0 and
variance σ2

G.
The total effect (TE) of SNPs of the disease outcome Y can be decomposed

into the Direct Effect (DE) and the Indirect Effect (IE). The Direct Effect of
SNPs is the effect of the SNPs on the disease outcome that is not through
gene expression, whereas the Indirect Effect of the SNPs is the effect of the
SNPs on the disease outcome that is through the gene expression. Under no
unmeasured confounding assumptions (VanderWeele and Vansteelandt, 2010),
the TE, DE and IE can be estimated from the joint causal mediation models
(18.2)–(18.3). In genome-wide genetic and genomic studies, the numbers of
SNPs (S) and gene expressions (G) are both large. It is of interest to develop
mediation analysis methods in such settings.

18.5 Training the next generation statistical genetic and
genomic scientists in the ’omics era

To help expedite scientific discovery in the ’omics era and respond to the press-
ing quantitative needs for handling massive ’omics data, there is a significant
need to train a new generation of quantitative genomic scientists through an
integrative approach designed to meet the challenges of today’s biomedical sci-
ence. The traditional biostatistical training does not meet the need. We need
to train a cadre of interdisciplinary biostatisticians with strong quantitative
skills and biological knowledge to work at the interface of biostatistics, com-
putational biology, molecular biology, and population and clinical science ge-
nomics. They will be poised to become quantitative leaders in integrative and
team approaches to genetic research in the public health and medical arenas.
Trainees are expected to (1) have strong statistical and computational skills
for development of statistical and computational methods for massive ’omics
data and for integration of large genomic data from different sources; (2) have
sufficient biological knowledge and understanding of both basic science and
population science; (3) work effectively in an interdisciplinary research en-
vironment to conduct translation research from basic science to population
and clinical sciences; (4) play a quantitative leadership role in contributing to
frontier scientific discovery and have strong communication skills to be able
to engage in active discussions of the substance of biomedical research.
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Recent advances in genomic research have shown that such integrated
training is critical. First, biological systems are complex. It is crucial to un-
derstand how the biological systems work. Such knowledge facilitates result
interpretation and new scientific discovery in population sciences and clinical
sciences. Computational biology plays a pivotal role in understanding the com-
plexity of the biological system and integrating sources of different genomic
data. Statistical methods provide systematic and rigorous tools for analyzing
complex biological data and allow for making statistical inference account-
ing for randomness in data. Second, many complex diseases are likely to be
governed by the interplay of genes and environment. The 2003 IOM Com-
mittee on “Assuring the Public’s Health” has argued that advances in health
will require a population health perspective that integrates understanding of
biological and mechanistic science, human behavior, and social determinants
of health. Analysis of GWAS and whole genome sequencing (WGS) data re-
quires development of advanced biostatistical, computational, and epidemio-
logical methods for big data. The top SNPs identified from the GWAS and
WGS scan often have unknown functions. Interpretation of these findings re-
quires bioinformatics tools and data integration, e.g., connecting SNP data
with gene expression or RNA-seq data (eQTL data). Furthermore, to increase
analysis power, integration with other genomic information, such as pathways
and networks, in statistical analysis is important.

Ground breaking research and discovery in the life sciences in the 21st
century are more interdisciplinary than ever, and students studying within
the life sciences today can expect to work with a wider range of scientists
and scholars than their predecessors could ever have imagined. One needs
to recognize this approach to scientific advancement when training the next
generation of quantitative health science students. Rigorous training in the
core statistical theory and methods remains important. In addition, students
must have a broad spectrum of quantitative knowledge and skills, especially
in the areas of statistical methods for analyzing big data, such as statistical
and machine learning methods, more training in efficient computational meth-
ods for large data, programming, and information sciences. Indeed, analysis
of massive genomic data requires much stronger computing skills than what
is traditionally offered in biostatistics programs. Besides R, students are ad-
vantageous to learn other programming languages, such as scripts, python
and perl.

The next generation statistical genetic and genomic scientists should use
rigorous statistical methods to analyze the data, interpret results, harness
the power of computational biology to inform scientific hypotheses, and work
effectively as leading quantitative scientists with subject-matter scientists en-
gaged in genetic research in basic sciences, population science and clinical
science. To train them, we need to develop an interdisciplinary curriculum,
foster interactive research experiences in laboratory rotations ranging from
wet labs on biological sciences to dry labs (statistical genetics, computational
biology, and genetic epidemiology), developing leadership and communication
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skills through seminars, workshops and projects to enable our trainees to meet
modern challenges for conducting translational genomic research.

18.6 Concluding remarks

We are living in an exciting time of genetic and genomic science, where massive
’omics data present statisticians with many opportunities and challenges. To
take a full advantage of the opportunities and meet the challenges, we need
to strategically broaden our roles and quantitative and scientific knowledge,
so that we can play a quantitative leadership role as statistical genetic and
genomic scientists in both method development and scientific discovery. It is
important to develop new strategies to train our students along these lines
so they can succeed in the increasingly interdisciplinary research environment
with massive data. With the joint effort of our community, we can best position
ourselves and the younger generation as quantitative leaders for new scientific
discovery in the ’omics era.
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Reflections on women in statistics in
Canada

Mary E. Thompson

Department of Statistics and Actuarial Science
University of Waterloo, Waterloo, ON

Having been a recipient of the Elizabeth L. Scott Award, I have chosen the
subject of women in statistics in Canada. The chapter is a selective history,
combined with a series of reflections, and is intended as a tribute to women
in statistics in Canada — past, present, and future.

Elizabeth L. Scott touches the story herself in a couple of ways, though
fleetingly. I am fortunate to have met her in Delhi in December 1977, at the
41st Session of the International Statistical Institute. I had studied some of
her work in modeling and inference — and had recently become aware of her
pioneering approaches to the study of gender disparities in faculty salaries.

I have written about some individuals by name, mainly senior people.
Because there are many women in the field in Canada, I have mentioned
few whose last degree is more recent than 1995. Even so, I am conscious of
omissions, and hope that this essay may inspire others to tell the story more
completely.

19.1 A glimpse of the hidden past

The early history of statistics in Canada is not unrecorded, but apart from
a few highlights, has never been processed into a narrative. Quite possibly
women were involved in statistics from the beginning. Before the Statistical
Society of Canada brought statisticians together and began to record their
contributions, there were no chronicles of the profession. There may be other
stories like the following, told by historian of statistics David Bellhouse:

“Last summer on a family holiday in Winnipeg, we had dinner with
my father-in-law at his seniors’ apartment building in the downtown
area. Seated at our table in the dining room were four sisters. Since

203
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mealtime conversations at any dinner party I have ever attended rarely
turn to the topic of statistics, I was surprised by the turn of events.
For some reason that I cannot recall one of the sisters, a diminutive
and exuberant nonagenarian, stated that she was a statistician. After
asking where she had worked and when, and where, when and with
whom she had studied, I came to the conclusion that I was talking not
only to the oldest surviving statistician in the province of Manitoba,
but also to one of the first women, if not the first, to work professionally
as a statistician in Canada.” (Bellhouse, 2002)

The statistician was Isobel Loutit, who was born in Selkirk, Manitoba, in
July of 1909. She obtained a BA in mathematics with a minor in French from
the University of Manitoba in 1929. She was taught statistics by Professor
Lloyd Warren, using textbooks by Gavett and Yule. She started out as a
teacher — in those days, school teaching, nursing and secretarial work were
virtually the only career paths open to women on graduation — but with the
World War II, as positions for women in industry opened up, she began a
career in statistical quality control. In 1969, at a time where it was still rare
for women to hold leadership positions, Loutit became chair of the Montréal
Section of the American Society for Quality Control (ASQC).

She was made an Honorary Member of the Statistical Society of Canada in
2009, and the Business and Industrial Statistics Section instituted the Isobel
Loutit Invited Address in her honor. She died in April 2009 at the age of 99.

19.2 Early historical context

Although the first census in North America was conducted in New France by
Intendant Jean Talon in 1665–66, data gathering in Canada more generally
seems to have become serious business only in the 19th century. Canadians
of the time were avidly interested in science. Zeller (1996) credits Alexander
von Humboldt’s encouragement of worldwide studies of natural phenomena
and the culture of the Scottish Enlightenment with leading to the Victorian
“tradition of collecting ‘statistics’... using detailed surveys to assess resources
and quality of life in various districts.” In Canada, such surveys for agricultural
potential began as early as 1801 in Nova Scotia. Natural history societies
were founded in the 1820s and later, while scientific organizations began to be
formed in the 1840s. Statistics was used in analyses related to public health in
Montréal as early as the 1860s (Bellhouse and Genest, 2003), a few years after
the pioneering work of Florence Nightingale and John Snow in the 1850s.

In both Britain and North America there were substantial increases in op-
portunity for education of women in the late 19th and early 20th centuries,
and women began to enter the scientific professions. At the same time, statis-
tics as a mathematical discipline came into being, through the efforts of Karl
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Pearson in England. Always on the lookout for references to the practice of
statistics in Canada, Dr. Bellhouse has recently come across a 1915 letter in
the files of Karl Pearson from one of his assistants in the field of craniometry,
New Zealander Kathleen Ryley, who had by 1915 emigrated to Canada. We
find that she had first visited Canada on a trip to Winnipeg in August 1909,
among many women from abroad attending the meetings of the British Asso-
ciation for the Advancement of Science at the University of Manitoba. When
she moved to Canada, she undertook the running of the Princess Patricia
Ranch in Vernon, British Columbia — a fascinating story in itself (Yarmie,
2003). Pearson’s biographer notes that the women who studied or worked with
Karl Pearson in the early days generally had trouble finding positions in which
they could continue statistical work (Porter, 2004).

Official statistics came into its own in Québec with the founding in 1912
of the Bureau de la statistique du Québec (Beaud and Prévost, 2000), and the
Dominion Bureau of Statistics (now Statistics Canada) came about through
the Statistics Act in 1918; for a detailed account, see Worton (1998). Data
from censuses conducted at least every ten years since 1851 can now be studied
to provide a picture of the evolution of the status of women in the country,
particularly following digitization of samples from the census beginning with
1911; see Thomas (2010).

Statistics was slow to enter the academy in North America, in both the
United States and Canada (Huntington, 1919). According to Watts (Watts,
1984), statistics courses were taught at the University of Manitoba beginning
in 1917 by Lloyd A.H. Warren — Isobel Loutit’s professor — who was de-
veloping curricula for actuarial science and commerce (Rankin, 2011). Watts
cites a 1918 article by E.H. Godfrey as saying that no Canadian university
was then teaching statistics as “a separate branch of science.” However, there
were at that time in the École des hautes études commerciales in Montréal
(now HEC Montréal) a Chair of Statistics and “a practical and comprehen-
sive curriculum”; at the University of Toronto, statistics was a subject in the
second year of the course in Commerce and Finance.

The first teachers of statistics as a subject in its own right in mathe-
matics departments included E.S. Keeping in Alberta, and George L. Edgett
at Queen’s, who taught a statistics course in 1933. Daniel B. DeLury, who
taught my first course in statistics in 1962 at the University of Toronto, had
begun teaching at the University of Saskatchewan in the period 1932–35. Some
statistics was taught by biologists, particularly those involved in genetics. Ge-
neticist and plant breeder Cyril H. Goulden is said to have written the first
North American textbook in biostatistics in 1937, for the students he was
teaching at the University of Manitoba. Yet as late as 1939, Dominion Statis-
tician Robert H. Coats lamented that “five of our twenty-two universities do
not know the word in their curricula” (Coats, 1939).
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In 1950, the University of Manitoba was the first to recognize statistics
in the name of a department (the Department of Actuarial Mathematics and
Statistics). The two first Departments of Statistics were formed at the Uni-
versity of Waterloo and the University of Manitoba in 1967. There are now
four other separate statistics or statistics and actuarial science departments,
at the University of Toronto, Western University in Ontario, the University of
British Columbia, and Simon Fraser University in Burnaby, British Columbia.

19.3 A collection of firsts for women

When I was a university student in the years 1961–65, there were few women
professors in departments of mathematics in Canada. One of the exceptions
was Constance van Eeden, who had come in the early 1960s (Clarke, 2003).
Dr. van Eeden was born in 1927 in the Netherlands. She finished high school
in 1944, and when the Second World War was over, she attended university,
graduating in 1949 with a first degree in mathematics, physics and astronomy.
She then entered a new actuarial program for her second degree, and in 1954
began as a part-time assistant at the Statistics Department at the Math Re-
search Center in Amsterdam. She received her PhD cum laude in 1958. After
some time at Michigan State and some time in Minneapolis, she and her hus-
band (Charles Kraft, also a statistician) moved to the Université de Montréal
— where, in contrast to the situation at their previous two institutions, there
was no regulation against both members of a couple having tenure in the same
department.

A specialist in mathematical statistics and in particular estimation in re-
stricted parameter spaces, van Eeden was the first woman to receive the Gold
Medal of the Statistical Society of Canada, in 1990. She has an extensive scien-
tific “family tree”; two of her women students went on to academic careers in
Canada: Louise Dionne (Memorial University of Newfoundland) and Sorana
Froda (Université du Québec à Montréal).

There are, or were, other women statisticians in Canada born in the 1920s,
but most have had their careers outside academia. The 34th Session of the
International Statistical Institute was held in Ottawa fifty years ago, in 1963
— the only time the biennial meeting of the ISI has been held in Canada. The
Proceedings tell us the names of the attendees. (Elizabeth L. Scott, from the
University of California, Berkeley, was one.) Of the 136 Canadian “guests,”
14 were women. Their names are listed in Table 19.1.

One of the two from universities in this list is the first and so far the
only woman to hold the position of Chief Statistician of Canada: Winnipeg-
born Sylvia Ostry, CC OM FRSC, an economist (PhD 1954) who was Chief
Statistician from 1972 to 1975. In 1972, as she began her mandate, Dr. Ostry
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TABLE 19.1
The 14 Canadian women who attended the 34th Session of the International
Statistical Institute held in Ottawa, Ontario, in 1963.

Marjorie M. Baskerville Dominion Foundries and Steel Ltd, Hamilton
M. Anne Corbet Department of Secretary of State, Ottawa
I. June Forgie Department of Transport, Ottawa
Geraldine E. Fulton Sir George Williams University, Montréal
Irene E. Johnson Department of Labour, Ottawa
Elma I. Kennedy Department of Forestry, Ottawa
Pamela M. Morse Department of Agriculture, Ottawa
Monique Mousseau Radio-Canada, Montréal
Sylvia Ostry Université de Montréal
Dorothy J. Powell Bank of Nova Scotia, Toronto
Margaret R. Prentis Department of Finance, Ottawa
Jean R. Proctor Department of Agriculture, Ottawa
Joan Grace Sloman Ontario Department of Health, Toronto
Dorothy Walters National Energy Board, Ottawa

was the first woman working in Canada to be elected a Fellow of the American
Statistical Association.

Among statistical researchers in Canada who were born in the 1930s and
early 1940s, many (both men and women) have worked in the area of the design
of experiments. One such is Agnes M. Herzberg, who was a student of Dr.
Norman Shklov at the University of Saskatchewan in Saskatoon. Dr. Herzberg
went to England on an Overseas Fellowship in 1966, soon after obtaining her
PhD, and stayed as a member of the Department of Mathematics at Imperial
College until 1988, when she moved back to Canada and a professorship at
Queen’s University. She was the first woman to serve as President of the
Statistical Society of Canada, in 1991–92, and the first to be awarded the
SSC Distinguished Service Award in 1999. In recent years, in addition to
her research, Dr. Herzberg has focused much of her energy on organizing a
series of annual conferences on Statistics, Science and Public Policy, held at
Herstmonceux Castle in England. These meetings are attended by a wide
variety of participants, from science, public service and the press (Lawless,
2012).

Canada is the adopted home of Priscilla E. (Cindy) Greenwood of the
University of British Columbia (PhD 1963, University of Wisconsin, Madison),
a distinguished probabilist who has also worked in mathematical statistics and
efficient estimation in stochastic processes. Her work and love of science have
been celebrated in a special Festschrift volume of Stochastics published in
2008 (vol. 80). In 1997, she was awarded a grant of $500,000 from the Peter
Wall Institute of Advanced Studies for their first topic study: “Crisis Points
and Models for Decision.”
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A rise in consciousness of the status of women in the late 1960s and early
1970s was marked by several initiatives in Canada; a landmark was the tabling
of the Royal Commission on the Status of Women in 1970, which recom-
mended that gender-based discrimination in employment be prohibited across
the country (as it had been in several provinces). Women began to be elected
in greater numbers to positions in the learned societies in those years. In
1975, Audrey Duthie of the University of Regina and Kathleen (Subrahma-
niam) Kocherlakota of the University of Manitoba were the first women to
be elected to the Board of Directors of the Statistical Science Association of
Canada, one of the ancestors of the Statistical Society of Canada (SSC); this
story is chronicled in Bellhouse and Genest (1999). Gail Eyssen (now of the
University of Toronto) was elected to the SSC Board in 1976. Since that year,
there has always been at least one woman serving on the Board; beginning in
about 1991, there have been several each year.

The second woman to become President of the SSC was Jane F. Gentle-
man, whom I met first when I came to Waterloo in 1969. She was a fine role
model and supportive mentor. Dr. Gentleman moved to Statistics Canada
in 1982, and in 1999 she became the Director of the Division of Health In-
terview Statistics at the National Center for Health Statistics in Maryland.
She was the winner of the first annual Janet L. Norwood Award in 2002 for
Outstanding Achievement by a Woman in the Statistical Sciences.

I met K. Brenda MacGibbon-Taylor of the Université du Québec à
Montréal in 1993, when I was appointed to the Statistical Sciences Grant Se-
lection Committee by the Natural Sciences and Engineering Research Council
of Canada (NSERC). Dr. MacGibbon was Chair of the Committee that year,
the first woman to fill that position, and I came to have a great admiration for
her expertise and judgment. She obtained her PhD at McGill in 1970, working
in K-analytic spaces and countable operations in topology under the super-
vision of Donald A. Dawson. During her career, Dr. MacGibbon has worked
in many areas of statistics, with a continuing interest in minimax estimation
in restricted parameter spaces.

Another student of Dawson, probabilist Gail Ivanoff, was the first woman
to fill the position of Group Chair of the Mathematical and Statistical Sciences
Evaluation Group at NSERC, from 2009 to 2012. Dr. Ivanoff, who works on
stochastic processes indexed by sets, as well as point processes and asymp-
totics, is a key member of the very strong group of probabilists and mathe-
matical statisticians in the Ottawa–Carleton Institute for Mathematics and
Statistics.

A third Dawson student, Colleen D. Cutler, was the first woman to be
awarded the CRM–SSC Prize, awarded jointly by the SSC and the Centre
de recherches mathématiques (Montréal) in recognition of accomplishments
in research by a statistical scientist within 15 years of the PhD. The award,
which she received in the third year of its bestowing, recognizes her work at
the interface of non-linear dynamics and statistics, and in particular non-linear
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time series, the study of determinism in time series, and the computation of
fractal dimension.

Professor Nancy M. Reid of the University of Toronto, another former
President of the SSC, is the owner of “firsts” in several categories. Most no-
tably, she was the first woman, and the first statistician working in Canada,
to receive the COPSS Presidents’ Award, in 1992. She is the only Canadian-
based statistician to have served as President of the Institute of Mathematical
Statistics (IMS), in 1997. In 1995 she was awarded the first Krieger–Nelson
Prize of the Canadian Mathematical Society — a prize “in recognition of an
outstanding woman in mathematics.” She was also the first woman in Canada
to be awarded a Canada Research Chair in the statistical sciences, and is the
only woman to have served as Editor of The Canadian Journal of Statistics.

In this International Year of Statistics, for the first time ever, the Program
Chair and the Local Arrangements Chair of the 41st SSC Annual Meeting
are both women, respectively Debbie Dupuis of HEC Montréal and Rhonda
Rosychuk of the University of Alberta. The meeting was held in Edmonton,
Alberta, May 26–29, 2013.

19.4 Awards

I have always had conflicted feelings about awards which, like the Elizabeth
L. Scott Award, are intended to recognize the contributions of women. Why
do we have special awards for women? Is it to compensate for the fact that
relatively few of us win prestigious research awards in open competition? Or
is it rather to recognize that it takes courage to be in the field as a woman,
and that those of us who are here now should be mindful of the sacrifices and
difficulties faced by our forerunners.

In general, the awards in an academic or professional field recognize a few
in the context of achievements by the many. Perhaps it is as well to remember
that awards are really mainly pretexts for celebrations. I will never forget the
toast of a student speaker at a Waterloo awards banquet: “Here’s to those
who have won awards, and to those who merely deserve them.”

The SSC has two awards named after women, and open to both men
and women. Besides the Isobel Loutit Invited Address, there is the biennial
Lise Manchester Award. Lise Manchester of Dalhousie University in Halifax
was the first woman to receive The Canadian Journal of Statistics Award, in
1991, the second year of its bestowing, for a paper entitled “Techniques for
comparing graphical methods.” The community was saddened at the passing
of this respected young researcher, teacher, and mother. The Lise Manchester
Award, established in 2007, commemorates her “abiding interest in making
use of statistical methods to provide insights into matters of relevance to
society at large.”
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The other awards of the Statistical Society of Canada are also open to
both men and women. One is the afore-mentioned The Canadian Journal of
Statistics Award, for the best paper appearing in a volume of the journal.
Of 23 awards from 1990 to 2012, women have been authors or co-authors of
10; Nancy E. Heckman of the University of British Columbia has received it
twice, the first time (with John Rice, 1997) for a paper on line transects of
two-dimensional random fields, and the second time (with James O. Ramsay,
2000) for penalized regression with model-based penalties.

Women are well represented among winners of the CRM–SSC Prize since
its creation in 1999 (Colleen Cutler, Charmaine Dean, Grace Y. Yi). To date,
three of us have received the SSC Gold Medal (Constance van Eeden, Nancy
Reid and myself) since it was first awarded in 1985. In the first 27 awards of the
Pierre Robillard Award for the best thesis in probability or statistics defended
at a Canadian university in a given year, three of the winners were women
(Maureen Tingley, Vera Huse-Eastwood, and Xiaoqiong Joan Hu) but since
the year 2001 there have been eight: Grace Chiu, Rachel MacKay-Altman,
Zeny Zhe-Qing Feng, Mylène Bédard, Juli Atherton, Jingjing Wu, Qian Zhou,
and Bei Chen.

There are just eight women who have been elected Fellow of the Institute
of Mathematical Statistics while working in Canada. The one not so far men-
tioned is Hélène Massam of York University, who combines mathematics and
statistics in the study of hierarchical and graphical models. I count sixteen
who have been elected Fellow of the American Statistical Association, includ-
ing Thérèse Stukel of the Institute for Clinical Evaluative Sciences in Toronto
(2007), Keumhee C. Chough of the University of Alberta (2009), Xiaoqiong
Joan Hu of Simon Fraser University (2012), Sylvia Esterby of UBC Okanagan
(2013), and W. Y. Wendy Lou of the University of Toronto (2013).

19.5 Builders

Since the late 1980s, women in Canada have begun to find themselves more
welcome in leadership positions in academia and in the statistics profession. It
is as though society suddenly realized at about that time that to consider only
men for such roles was to miss out on a significant resource. In some cases,
despite the ephemeral nature of “service” achievements, our leaders have left
lasting legacies.

One builder in academia is Charmaine B. Dean, who came to Canada
from San Fernando, Trinidad. She completed an Honours Bachelor’s Degree in
Mathematics at the University of Saskatchewan and her PhD at the University
of Waterloo. She joined the Department of Mathematics and Statistics at
Simon Fraser University in 1989, and several years later played a major role
in setting up the Department of Statistics and Actuarial Science, becoming
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the founding Chair in 2001. She received the CRM–SSC Prize in 2003 for her
work on inference for over-dispersed generalized linear models, the analysis of
recurrent event data, and spatial and spatio-temporal modelling for disease
mapping. In 2002, Dr. Dean was President of WNAR, the Western North
American Region of the Biometric Society; she was also President of the SSC in
2006–07 and is currently Dean of the Faculty of Science at Western University,
London, Ontario.

Another example is Shelley Bull, a graduate of the University of Waterloo
and Western University in Ontario. As a faculty member in biostatistics in
the Samuel Lunenfeld Institute of Mount Sinai General Hospital, in Toronto,
she became interested in research in statistical genetics in the 1990s. When
the Networks of Centres of Excellence MITACS (Mathematics of Information
Technology for Complex Systems) began in 1999, Dr. Bull became the leader
of a national team pursuing research at the interface of statistics and genetics,
in both modeling and analysis, with emphasis on diseases such as breast cancer
and diabetes. The cohesiveness of the group of statistical genetics researchers
in Canada owes much of its origin to her project.

I am proud to count myself among the builders, having chaired the De-
partment of Statistics and Actuarial Science at the University of Waterloo
from 1996 to 2000. Besides Charmaine Dean and myself, other women in
statistics who have chaired departments include Nancy Reid (Toronto), Nancy
Heckman (UBC), Karen Campbell (Epidemiology and Biostatistics, Western),
Cyntha Struthers (St. Jerome’s), Sylvia Esterby (UBC Okanagan) and Chris-
tiane Lemieux (Waterloo).

Nadia Ghazzali, formerly at Université Laval, has held since 2006 the
NSERC Chair for Women in Science and Engineering (Québec Region). She
is the first woman statistician to become President of a university in Canada.
She was appointed Rector of the Université du Québec à Trois-Rivières in
2012.

Since the late 1990s, the SSC has had an active Committee on Women in
Statistics, which sponsors events at the SSC annual meetings jointly with the
Canadian Section of the Caucus for Women in Statistics. Cyntha Struthers
was both the founding Chair of the Caucus section, in 1987–89, and Chair of
the SSC Committee on Women in Statistics in 1998–2000.

For professional leadership, an early example was Nicole P.-Gendreau of
the Bureau de la statistique du Québec (which has since become the Institut
de la statistique du Québec). Mme Gendreau was Public Relations Officer in
the Statistical Society of Canada from 1986 to 1989. She was the founder of the
Newsletter, SSC Liaison, the chief communication vehicle of the community
in Canada, now in online and print versions, and still very much in keeping
with her original vision.

The process of developing SSC Accreditation was brought to fruition in
2003–04 (when I was President of the SSC) under the dedicated leadership
of Judy-Anne Chapman, now at Queen’s University. (At least 30 of the 140
PStat holders to date are women.) As Chair of the SSC Education Committee,
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Alison Gibbs of the University of Toronto led the takeover of responsibility
by the SSC of the highly successful educational program, Census at School
Canada. Shirley Mills of Carleton University is the first woman to lead the
day-to-day operations of the SSC as Executive Director.

Few of us in the earlier cohorts have followed a career path in the private
sector. A notable exception is Janet E.A. McDougall, PStat, the founder and
President of McDougall Scientific, a leading Clinical Research Organization
which has been in operation since 1984.

19.6 Statistical practice

Statistics is a profession as well as an academic subject. Some of the best
statisticians I know spend much of their time in statistical practice, and re-
search that arises from practical problems.

To name just two — Dr. Jeanette O’Hara Hines was Director of the Statis-
tical Consulting Service (and teacher of consulting) at the University of Water-
loo for many years, and specialized in working with faculty in the Department
of Biology on a very diverse set of problems; Hélène Crépeau, Nancy Reid’s
first Master’s student, who has been working at the Service de consultation
statistique de l’Université Laval since 1985, has been involved in biometrics
research and studies of the quantification of wildlife populations.

As in 1963, many women statisticians work in government agencies. In
earlier days at Statistics Canada, Estelle Bee Dagum developed the X–11–
ARIMA method, variants of which are used for seasonal adjustment of times
series around the world. Survey statistician Georgia Roberts of Statistics
Canada is an expert on methodology and the analytical uses of complex survey
data, and has led the Data Analysis Resource Centre for several years. In the
same area of data analysis is Pat Newcombe-Welch, Statistics Canada analyst
at the Southwestern Ontario Research Data Centre, who is on the front lines
of assisting researchers of many disciplines in the access to Statistics Canada
data. Susana Rubin-Bleuer, Ioana Schiopu-Kratina and Lenka Mach of Statis-
tics Canada have published research papers in advanced theoretical topics in
the analysis of complex survey data and in sample coordination.

Women statisticians have also achieved leadership roles in statistical agen-
cies. To name just a few: Louise Bourque was Directrice de la méthodologie
for several years at the BSQ/ISQ; Nanjamma Chinnappa served as Director of
the Business Survey Methods Division at Statistics Canada; Marie Brodeur is
Director General of the Industry Statistics Branch of Statistics Canada; and
Rosemary Bender is Assistant Chief Statistician of Analytical Studies and
Methodology.
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19.7 The current scene

Statistics is an important profession in Canada today. Despite a steady inflow
of capable young people, the demand for talented statisticians outstrips the
supply. It is fortunate that women are entering the field in greater numbers
than ever before. The cohorts with PhDs in the 1990s are now mid-career and
making their mark on the profession, while those just beginning are achieving
things that I would never have dreamed of at the same stage. Are there still
barriers that are particular to women? Is it still harder for women to enter
the profession, and to rise high in its ranks?

The answer is probably “yes.” When we think of it, some of the obstacles
that were always there are hardly likely to disappear: The difficulties of com-
bining career and family life, the “two-body” problem, despite the adoption by
most universities of family-friendly “spousal hiring policies”; and the physical
toll of long working hours and dedication. Other barriers might continue to
become less pervasive over time, such as the prejudices that have contributed
to the adoption of double-blind refereeing by many journals. The Canadian
Journal of Statistics was among the first to adopt this policy, in 1990.

In academia, examples of anomalies in salary and advancement may be
fewer these days. At least at the University of Waterloo, statistical approaches
something like those pioneered by Elizabeth L. Scott are now taken to identify
and rectify such anomalies. There are still however several departments across
the country with a surprisingly small number of women faculty in statistics.

It used to be the case that in order to succeed in a field like statistics,
a woman had to be resolute and determined, and be prepared to work very
hard. It was often said that she would have to work twice as hard as a man to
achieve the same degree of recognition. It now seems to be the case that both
men and women entering the field have to be either consummately brilliant
or resolute and determined, to about the same degree — but it is still an
easier road for those who can afford to be single-minded. I remember the days
when women who pursued a career, particularly in academia, were considered
rather odd, and in some ways exceptional. We are now no longer so odd, but
those who make the attempt, and those who succeed, are still exceptional, in
one way or another.
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“The whole women thing”

Nancy M. Reid

Department of Statistical Sciences
University of Toronto, Toronto, ON

It is an honor and a pleasure to contribute to this celebratory volume, and I am
grateful to the editors for their efforts. The temptation to discuss non-technical
aspects of our profession and discipline has caught me too, and I have, with
some trepidation, decided to look at the past, present and future of statistical
science through a gender-biased lens. In the past fifty years, a great deal has
changed for the better, for the position of women in science and in statistical
science, but I believe we still have some way to go.

20.1 Introduction

The title of this chapter is a quote, as I remember it, from a dear friend
and colleague. The occasion was a short discussion we had while rushing in
opposite directions to catch talks at a Joint Statistical Meeting, probably in
the early 1990s, and he asked me if I might consider being nominated to run
for election as President of the Institute of Mathematical Statistics (IMS).
I was completely surprised by the question, and my immediate reactions were
to be honored that we were discussing it, and to assume that the question was
rhetorical. He said no, this was within the realm of possibility, and I should
give it careful consideration, for all the reasons one might expect: an honor
for me, a chance to influence an organization I cared about, etc. He ended by
saying “plus, you know, there’s the whole women thing. I guess you’d be the
first.” In fact, Elizabeth Scott was the first woman President of the IMS, in
1978.

For various reasons, a number of unconnected events recently got me think-
ing about “the whole women thing.” Despite many years of on-and-off thinking
about issues surrounding gender and a professional career, I find I still have
a lot of questions and not many answers. I have no training in social sci-
ence, nor in womens’ studies, nor in psychology, and no experience of what
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seems to me the difficult world outside academia. I will present a handful of
anecdotes, haphazardly chosen published studies, and personal musings. My
vantage point is very North American, but I hope that some of the issues
resonate with women in other countries as well.

20.2 “How many women are there in your department?”

In September, 2012, the small part of the blogosphere that I sometimes wander
through lit up with an unusual amount of angst. A study on gender bias (Moss-
Racusin et al., 2012a,b) appeared in the Proceedings of the National Academy
of Sciences (PNAS), not in itself so unusual, but this one got us rattled. By
“us” I mean a handful of internet colleagues that worry about issues of women
in science, at least some of the time. I was alerted to the article through
Isabella Laba’s blog (Laba, 2012a, 2013), but the story was also picked up
by many of the major news organizations. The PNAS paper reported on a
study in which faculty members in biology, chemistry and physics departments
were asked to evaluate an application for a position as a student laboratory
manager, and the participants were told that this was part of a program to
develop undergraduate mentoring. From Moss-Racusin et al. (2012b):

“Following conventions established in previous experimental work...,
the laboratory manager application was designed to reflect slightly am-
biguous competence, allowing for variability in participant responses...
if the applicant had been described as irrefutably excellent, most par-
ticipants would likely rank him or her highly, obscuring the variability
in responses to most students for whom undeniable competence is fre-
quently not evident.”

In other words, the applicant would likely not be at the top of anyone’s short
list, but was qualified for the position. Faculty were asked to evaluate the
application as if they were hiring the student into their own lab. The appli-
cations were all identical, but for half the scientists the student was named
“John,” and for the other half, “Jennifer.”

The headline story was that scientists rated applications from a male stu-
dent higher than those from a female student. Scores assigned to qualities
of competence, hireability, and mentoring, were systematically higher for the
male student application, and

“The mean starting salary offered the female student, $26,507.94, was
significantly lower than that of $30,238.10 to the male student [t =
3.42, P < 0.01]” (Moss-Racusin et al., 2012a)

Many more details about the methods for the study, the relevant litera-
ture, and the results, are available from the original publication (Moss-Racusin
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et al., 2012a), and the accompanying supplementary material (Moss-Racusin
et al., 2012b). A particularly concerning result was that female scientists ex-
hibited the same gender bias as their male counterparts.

These results reverberated because they felt real, and indeed I felt I rec-
ognized myself in this study. During my many years on search committees,
and during my five-year tenure as department chair, efforts to hire female
research-stream faculty were not successful. It took me a surprisingly long
time to come to the conclusion that it was easy to decide to make an offer to
the best female candidate in any given hiring season, but much, much harder
for females in the next tier ‘down’ to be ranked as highly as the men in the
same tier. Our intentions were good, but our biases not easily identified. With
reference to the PNAS study, Laba says:

“The scientists were not actively seeking to discriminate... They offered
similar salaries to candidates that they perceived as equally compe-
tent, suggesting that, in their minds, they were evaluating the candi-
date purely on merit. The problem is that the female candidate was
judged to be less competent, evidently for no reason other than gender,
given that the resumes were exactly identical except for the name. [· · · ]
I’m sure that most of the participants, believing themselves unbiased,
would be shocked to see the results.” (Laba, 2012a)

I’ve presented this study in two talks, and mentioned it in a number of
conversations. The reaction from women is often to note other related studies
of gender bias; there are a number of these, with similar designs. An early
study of refereeing (Goldberg, 1968) involved submitting identical articles for
publication with the author’s name either Joan or John; this study featured
in the report of an IMS committee to investigate double-blind refereeing; see
Cox et al. (1993). A more common reaction is to speculate more broadly on
whether or not women self-select out of certain career paths, are genuinely
less interested in science and so on. This deflects from the results of the study
at hand, and also diffuses the discussion to such an extent that the complexity
of “the women thing” can seem overwhelming. Here is Laba in a related post:

“Let’s recap what the study actually said: that given identical paper-
work from two hypothetical job candidates, one male and one female,
the woman was judged as less competent and offered a lower salary.
This is not about whether girls, statistically speaking, are less inter-
ested in science. It’s about a specific candidate who had already met
the prerequisites... and was received much better when his name was
John instead of Jennifer.” (Laba, 2012b)

We all have our biases. The ABC News report (Little, 2012) on the paper
described a “small, non-random experiment,” but the study was randomized,
and the authors provided considerable detail on the size of the study and the
response rate. The authors themselves have been criticized for their bar chart
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of the salary differential. By conveniently starting the y-axis at $25,000, the
visual appearance suggests a three-fold salary differential.

That the biases are subtle, and often unconscious, is much better than
what many of the pioneers faced. Elizabeth Scott’s first ambition was to be
an astronomer, but she soon realized that this was a hopeless career for a
woman (Billard and Ferber, 1991). We’ve heard the jaw-dropping stories of
blatant sexism from days gone by, and to the extent that this is behind us, this
is progress of a sort. But biases that we don’t even recognize should concern
us all.

How to move forward? I hope this study will help: by highlighting biases
that seem to be operating well below the surface, perhaps the next search
committees will work even harder. Genuine efforts are being made at my
university, and my department, and I believe at universities and departments
around the world, to increase the number of women hired, and to treat them
well. There is progress, but it seems to be slow and imperfect.

20.3 “Should I ask for more money?”

This might be the most common question I am asked by our graduating stu-
dents who are considering job offers, in academia or not. Of course uncertainty
about how to negotiate as one starts a career affects men and women, and
there are many aspects to the dialogue between a candidate and prospective
employer, including the hiring landscape at the time, the trade-off between
salary and other aspects of the position, and so on.

When I arrived at the University of Toronto in 1986, both the government
of Canada, and the government of Ontario, had passed pay equity laws, en-
shrining the principle of “equal pay for work of equal value.” This is broader
than “equal pay for equal work,” which had already been in force for some
years in most jurisdictions in Canada. The laws led to a flurry of work on
pay equity at that time, and one of my first consulting projects, undertaken
jointly with Ruth Croxford of our department, was to review the salaries of
all faculty at the University of Toronto, with a view to identifying pay equity
issues.

I was at the time unaware of a strong legacy for statistical analyses of
faculty salaries initiated by Elizabeth Scott (Gray and Scott, 1980; Scott,
1975), who led the charge on this issue; see Billard and Ferber (1991). Lynne
Billard made important follow-up contributions to the discussion in 1991 and
1994 (Billard, 1991, 1994). Lynne’s 1994 paper asked: “Twenty years later: Is
there parity for academic women?”; her answer was “no” (the title referred to a
US government law, Title IX of the Education Amendments, enacted in 1972).
This continues to be the case. For example, the University of British Columbia
(UBC) recommended in October 2012 an across-the-board salary increase of
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2% to all female faculty (Boyd et al., 2012). The detailed review of university
practices on this issue in the UBC report noted that many universities have
implemented ongoing reviews and adjustments of female faculty salaries on a
regular schedule.

As with hiring, it is easy to get distracted in the salaries debate by poten-
tial factors contributing to this. One is rank; it continues to be the case that
women are under-represented in the professorial rank; the London Mathemat-
ical Society has just published a report highlighting this fact in mathematics
(London Mathematical Society, 2013). A point very clearly explained in Gray
and Scott (1980) is that systematic differences in rank are themselves a form of
gender bias, so not appropriate defence against salary remedies. Even setting
this aside, however, the UBC report concluded that after adjusting for rank,
departmental unit, merit pay and experience, “there remains an unexplained
female disadvantage of about $3000” (Boyd et al., 2012).

It may be the case that on average, women are less aggressive in negoti-
ating starting salaries and subsequent raises, although of course levels of skill
in, and comfort with, negotiation vary widely across both genders. Other ex-
planations, related to publication rate, lack of interest in promotion, time off
for family matters, and so on, seem to need to be addressed in each equity
exercise, although this seems to me to be once again “changing the subject.”
As just one example in support of this view, the UBC report, referring to
an earlier salary analysis, concluded: “our assumptions would be supported
by a more complete analysis, and... parental leave does not alter the salary
disadvantage.”

Over the years I have often met statistical colleagues, usually women, who
were also asked by their university to consult on an analysis of female faculty
salary data, and it often seemed that we were each re-inventing the wheel.
The pioneering work of Gray and Scott (Gray and Scott, 1980) touches on all
the main issues that are identified in the UBC report, and it would be good
to have a central repository for the now quite large number of reports from
individual universities, as well as some of these key references.

20.4 “I’m honored”

The Elizabeth L. Scott Award was established by COPSS in 1992 to honor
individuals who have “helped foster opportunities in statistics for women.”
The first winner was Florence Nightingale David, and the second, Donna Bro-
gan, said in her acceptance speech that she looked forward to the day when
such awards were no longer needed. While women are well-represented in this
volume, I think that day is not here yet.

I was involved in a number of honor-related activities over the past year
or two, including serving on the Program Committee for a major meeting,
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on an ad hoc committee of the Bernoulli Society to establish a new prize in
statistics, and as Chair of the F.N. David Award Committee.

On the Program Committee, the first task for committee members was
to create a long list of potential candidates for the plenary lecture sessions.
In a hurry, as usual, I jotted down my personal list of usual suspects, i.e.,
people whose work I admire and who I thought would give interesting and
important presentations. I examined my list more critically when I realized
that my usual suspects were all about the same age (my age or older), and
realized I’d better have another think. Some on my list had already given
plenary lectures at the same meeting in earlier years, so off they came. I’m
embarrassed to admit that it took me several passes before I realized I had
no women on my list; another round of revisions was called for. At that point
I did some research, and discovered that for this particular meeting, there had
been no women plenary speakers since 1998, which seemed a pretty long time.

Then things got interesting. I sent an email to the Program Committee
pointing this out, and suggesting that we should commit to having at least
one female plenary lecturer. Email is the wrong medium in which to rational-
ize opposing views, and it turned out there were indeed opposing, as well as
supporting, views of this proposal. Extremes ranged from “I do not consider
gender, race or any other non-scientific characteristics to be relevant criteria”
to “I do find it important for the field and for the meeting that female re-
searchers are well represented.” Without the diplomatic efforts of the Chair,
we might still be arguing.

What did I learn from this? First, we all have our biases, and it takes some
effort to overcome them. The more well-known people are, the more likely they
are to be suggested for honors, awards, plenary lectures, and so on. The older
they are, the more likely they are to be well-known. Statistical science is aging,
and we have a built-in bias in favor of established researchers, that I think
makes it difficult for young people to get the opportunities and recognition
that I had when I was young(er). Second, our biases are unintentional, much
as they surely were for the scientists evaluating lab manager applications. We
are all busy, we have a lot of demands on our time, and the first, quick, answer
is rarely the best one. Third, it is important to have women on committees.
I wish it were not so; I have served on far too many committees in my career,
and every woman I know says the same thing. It turned out I was the only
woman on this particular Program Committee, and while I had good support
from many members, I found it lonely.

The Bernoulli Society recently established the Wolfgang Doeblin prize in
probability (see Bernoulli Society (2012)), and I chaired an ad hoc committee
to consider a new prize in statistics. Wolfgang Doeblin died in 1940, just
25 years old, and shortly before his death wrote a manuscript later found to
contain many important ideas of stochastic calculus (Göbel, 2008). The award
is thus given to a single individual with outstanding work, and intended for
researchers at the beginning of their mathematical career.
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A parallel to this could be a prize for statisticians at the beginning of their
career, and my personal bias was to restrict the award to women. On discussion
with colleagues, friends, and members of the committee, it became apparent
that this was not quite as good an idea as I had thought. In particular, it
seemed likely that a prize for women only might have a negative connotation
— “not a ‘real’ prize” — not among the curmudgeonly senior colleagues of
the awardees, but among the potential awardees themselves. In fact I am sure
I would have felt that way myself.

On to the next challenge. We decided to recommend naming the prize after
a female statistician, no longer living. Well, we already have the E.L. Scott
prize, the F.N. David Award, and the Gertrude Cox scholarship. Quick, how
many can you name? How many of your colleagues will recognize the name?

We discovered Ethel Newbold (1882–1933), the first woman to be awarded
a Guy Medal in Silver from the Royal Statistical Society, in 1928. We also
discovered that the second woman to be awarded a Guy Medal in Silver was
Sylvia Richardson, in 2002. Get nominating, ladies! We needn’t feel smug on
this side of the Atlantic, either; see Gray and Ghosh-Dastidar (2010) and Palta
(2010).

The F.N. David Award is the only international award in statistical sci-
ences that I am aware of that is restricted to women. It was established jointly
by COPSS and the Caucus for Women in Statistics in 2001. The nominees
this year were amazing, with nomination letters and vitae that could induce
strong feelings of inadequacy in any reader. But a side remark from one nom-
inator got me thinking. The nominator pointed out that the selection criteria
for the award were daunting indeed, although his nominee did indeed fulfill
all the criteria, and then some. I had a more careful look at these criteria, and
they are

“Excellence in the following: as a role model to women; statistical
research; leadership in multidisciplinary collaborative groups; statistics
education; service to the profession.”

Hello Caucus! We are much too hard on each other! But perhaps I’m being
unfair, and the intention was “one of,” rather than “all of.” I can say though,
that our leading female colleagues do seem to manage to excel in “all of.”
Here’s Laba again on a similar point:

“The other way to make progress, of course, is for women to be ‘twice
as good,’ [· · · ] That’s what many women in science have been doing
all along. It takes a toll on us. It’s not a good solution. Unfortunately,
sometimes it’s the only one we’ve got.” (Laba, 2012b)
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20.5 “I loved that photo”

The 1992 Joint Statistical Meetings coincided with our first daughter’s first
birthday, so we joined the legions of families who combine meetings with
children. If you’ve done this you’ll know how hard it can be, and if you haven’t,
well, be assured that it is an adventure. George Styan snapped a picture of
me with Ailie in a back carrier, and this photo ended up being printed in the
IMS Bulletin. At the time I was quite embarrassed by this — I thought that
this photo would suggest that I wasn’t taking the meeting, and by extension
research, seriously enough. But in fact I received so many emails and notes and
comments from colleagues, expressing the sentiment in the section heading,
that in the end I was, and am, grateful to George for his sixth sense for a good
snapshot.

For me the most difficult aspect of the discussion around women and
academia is children. Decisions around having and raising children are so
deeply personal, cultural, and emotional, that it often seems better to leave
this genie in the bottle. It is also the most disruptive part of an academic
career, and by and large still seems to be more disruptive for women than for
men. It risks being a two-edged sword. If differences in opportunities are tied
to child-rearing, then is there a temptation to assume that women without
children face no hurdles, or that men who choose to become more involved in
child care should be prepared to sacrifice advancement at work? Again it is
easy to get distracted by the complexity and depth of the issues, and lose the
main thread.

The main thread to me, is the number of women who ask me whether or
not it is possible to have an academic career in a good department and still
have time for your family. When is the ‘best’ time to have children — grad
school? Post-doc? Pre-tenure? If I wait until I have tenure, will I have waited
too long? What about promotion to full professor? I don’t know the answer to
any of these questions, but I do know women who have had children at each
of these stages, and who have had, and are having, very successful academic
careers.

I can only speak for academia, but exceptionally talented and successful
women are speaking about government and industry: Anne-Marie Slaughter,
(Slaughter, 2012) and Sheryl Sandberg (Sandberg, 2013), to name just two.

Slaughter, a Princeton professor who spent two years in a high profile
position in Washington, DC, writes:

“I still strongly believe that women can ‘have it all’ (and that men
can too). I believe that we can ‘have it all at the same time.’ But not
today, not with the way America’s economy and society are currently
structured. My experiences over the past three years have forced me
to confront a number of uncomfortable facts that need to be widely
acknowledged — and quickly changed.” (Slaughter, 2012)
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Happily for most readers of this article, Slaughter contrasts the flexibility
and freedom she has with her academic appointment with the demands of a
high-profile position in government. While the very heavy demands on her
time at Princeton would make most of us weep, “I had the ability to set my
own schedule most of the time. I could be with my kids when I needed to be,
and still get the work done” (Slaughter, 2012). This article is a great reference
to provide to your graduate students, if they start wondering whether an
academic career is too difficult to combine with family life. However, much of
what she describes as barriers to women in high-level government positions
resonates in a thoughtful analysis of the difficulties faced by women moving
into the leadership ranks of universities; see Dominici et al. (2009).

Sandberg has been criticized for implying that at least some of the bar-
riers for advancement of women are created by the womens’ own attitudes,
particularly around family, and she exhorts women to make sure that they are
aggressively pursuing opportunities. The position set out in her book (Sand-
berg, 2013) is much more nuanced than that, but the notion that women are
sometimes their own worst enemies did resonate with me. In an interesting ra-
dio interview with the BBC (BBC News, 2013), Sandberg suggested that the
phrases “work-life balance” and “having it all” should de facto be mistrusted,
as they are themselves quite gender-specific.

Recently I visited the lovely new building that is now home to the Depart-
ment of Statistics at North Carolina State University. As it happened, there
was a career mentoring event taking place in the department at the same
time, and over coffee I met an enthusiastic young woman who is completing
a PhD in statistics. Her first question was about balancing career and fam-
ily in a tenure-stream position; I think I relied on the rather bland “advice”
mentioned above. But the most encouraging part of the day was the tour of
the department. There, between the faculty offices, department lounge, sem-
inar rooms, and banks of computer terminals, was a wonderful sight: a Baby
Room! I imagine that Gertrude Cox would be surprised to see this, but I hope
she would also be proud of the department she founded.

20.6 Conclusion

The position of women in academia is vastly improved from the days when
Elizabeth Scott was discouraged from studying astronomy, and from the days
when my probability professor could state in class that “women are not suited
for mathematics.” Determined and forceful pioneers through the 1950s and
1960s, followed by much larger numbers of female students from the 1970s on,
has meant that women do have many opportunities to succeed in academic
work, and many are succeeding on a number of levels.
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I find it difficult to discuss all these issues without seeming plaintive. I write
from a privileged position, and I can say without hesitation that I personally
do not feel disadvantaged; my career has coincided with a concerted effort to
hire and promote women in academia. And yet I’ve felt the energy drain from
trying to tackle some of the issues described here. I’ve experienced the well-
documented attrition through the ranks: although my undergraduate statistics
class had nine women in a class of 23, and my graduating PhD class had
four women and three men, I continue to be the only female research stream
faculty member in my department. While I enjoy my colleagues and I love my
job, I believe this stark imbalance means our department is missing out on
something intangible and important.

So while I don’t stress about gender issues all the time, I do find that after
all these years there still are many things to discuss, to ponder, to wonder
over, and with luck and determination, to solve.
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Reflections on diversity

Louise M. Ryan
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University of Technology, Sydney, Australia

21.1 Introduction

I recall quite vividly the start in the early 1990s of my interest in fostering
diversity in higher education. Professor James Ware had just been appointed
as the Academic Dean at Harvard School of Public Health and was letting go
of some of his departmental responsibilities. He asked if I would take over as
director of the department’s training grant in environmental statistics, funded
through the National Institute of Environmental Health Sciences (NIEHS).
Being an ambitious young associate professor, I eagerly accepted. It wasn’t
long before I had to start preparing the grant’s competitive renewal. These
were the days when funding agencies were becoming increasingly proactive in
terms of pushing Universities on the issue of diversity and one of the required
sections in the renewal concerned minority recruitment and retention. Not
knowing much about this, I went for advice to the associate dean for student
affairs, a bright and articulate African American woman named Renee (not her
true name). When I asked her what the School was doing to foster diversity,
she chuckled and said “not much!” She suggested that I let her know when
I was traveling to another city and she would arrange for me to visit some
colleges with high minority enrollments so that I could engage with students
and teachers to tell them about opportunities for training in biostatistics at
Harvard.

Not long after this, I received an invitation to speak at the University of
Mississippi in Oxford, Mississippi. I excitedly called Renee to tell her about
my invitation, naively commenting that since I would be visiting a university
in the South, there must be lots of minority students there with whom I could
talk about opportunities in Biostatistics. She laughed and said “Louise, it’s
a bit more complicated than that...” She went on to tell me about some of
the history associated with “Ole Miss,” including the riots in the early 60s
triggered by the brave efforts of African American, James Meredith, to enroll
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as a student — for a fascinating, “can’t put the book down” read, try Nadine
Cohodas’s “The Band Played Dixie” (Cohodas, 1997). Renee encouraged me
to accept the invitation, but also offered to arrange visits to a couple of other
schools within driving distance of Oxford, that had high enrollments of mi-
nority students. Rust College and Lemoyne-Owen College were both members
of the network of Historically Black Colleges and Universities (HBCU). This
network comprises 105 schools that were originally established in the days
of segregation to educate black students, but which continue today, proud of
their rich heritage and passionate about educating African American students
and preparing them to become tomorrow’s leaders. While students of any race
or ethnicity can apply for admission to a HBCU, the majority of students are
of African American heritage. Some HBCUs, especially the more well-known
ones such as Howard University in Washington, DC, and Spelman College
in Atlanta, are well endowed and have the same atmosphere of privilege and
learning that one finds on so many modern liberal arts college campuses. Oth-
ers, while unquestionably providing a sound college education, were not so
wealthy. Rust and Lemoyne–Owen Colleges were definitely in the latter cat-
egory. My visit to those two colleges felt to be in stark contrast to the sense
of wealth and privilege that I encountered at Ole Miss. The experience for
me was a major eye-opener and I came away with a sense of determination
to do something to open up an avenue for more minority students to pursue
graduate work in biostatistics.

21.2 Initiatives for minority students

Serendipitously, the NIEHS had just announced the availability of supplemen-
tary funds for universities with existing training grants to establish summer
programs for minority students. We successfully applied, and the next sum-
mer (1992) ran our first ever Summer Program in Biostatistics, with six math-
majors from various HBCUs, including one student from Lemoyne–Owen. The
4-week program comprised an introductory course in biostatistics, along with
a series of faculty seminars designed to expose students to the breadth of
interesting applications in which biostatisticians engage. We also organized
practical sessions focussed on things such as how to prepare for the Grad-
uate Record Examination (GRE) and tips on applying for graduate school.
We built in lots of time for the summer students to meet more informally
with students and faculty from our department. Finally, we organized various
social activities and outings in Boston, always involving department students
and faculty. Our goal was to create an immersive experience, with a view to
giving the students a taste of what a graduate experience might be, and es-
pecially demystifying the Harvard experience. I recall very clearly one of our
earlier participants saying that without having attended the Program, she
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would never have even considered applying for graduate studies, particularly
at a place like Harvard. This particular student did apply to Harvard, was ac-
cepted and went on to be one of the strongest students in her class. She is now
a successful faculty member at a major university near Washington, DC, and
has published her work in top statistical journals. This student’s story is just
one of many similar ones and represents a measurable successful outcome of
the Program. After a few years of running the Summer Program, we succeeded
in winning a so-called IMSD (Initiative for Minority Student Development)
grant available at that time from the National Institute of General Medical
Sciences. This grant was much larger, supporting not only an expansion of
our Summer Program, but also providing funds for doctoral and postdoctoral
training and expanding beyond biostatistics into other departments.

The IMSD grant had a major impact on the Department and the School
as a whole. It strengthened the legitimacy of our diversity efforts by gen-
erating substantial funds and also by influencing the nature of the research
that many of us were doing. The IMSD grant required us to develop a strong
research theme, and we had chosen to look at the development and appli-
cation of quantitative methods for community-based research, with a strong
emphasis on understanding and reducing health disparities. While it would
be an inappropriate generalization to expect that every minority student will
be interested in the study of health disparities, the reality was that many
of our students were. I’ll come back to this point presently, but I believe an
important element of academic success is giving students the opportunity to
pursue research in areas that ignite their passion. Embracing diversity will
inevitably involve being exposed to new ideas and perspectives and this was
just one example of how that played out in the department. We ran a weekly
seminar/discussion group that provided an opportunity to not only have for-
mal seminars on health disparities research, but also to create a supportive
community where the students could talk about the various issues, academic
and other, that they were encountering.

21.3 Impact of the diversity programs

Our Diversity programs had profound impacts, over time. I think it is fair to
say that the students weren’t exposed to overtly racist attitudes, certainly not
of the extreme kind described in Nadine Cohodas’s book. However, they were
most definitely affected by many subtle aspects, especially in the early days of
the Program. Examples included faculty expectations of lowered performance
or resentment from fellow students at a perception of special treatment. By
making such observations, I am not trying to criticize or cast judgment, or
even excluding myself from having stereotyped views. As discussed by Malcolm
Gladwell in his excellent book entitled “Outliers” (Gladwell, 2011), virtually
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all of us do, and this can have strong and negative effects. Gladwell discusses
extensively the impact, positive and negative, of the social environment on
academic performance and general success in life. He also describes some very
interesting experiments designed to measure very subtle aspects of negative
racial stereotyping. Recognizing our own tendency to stereotype others is in
fact an important first step towards making progress towards a more equi-
table society. Working closely with the students over so many years provided
an opportunity for me to observe and, to at least some extent, empathize
with the challenges of being a minority student, even in today’s relatively
enlightened educational system. Internal and external expectations of under-
performance very easily turn into reality. Self-doubt can erode confidence,
leading students to isolate themselves, thus cutting themselves off from the
beneficial effects of being in student study groups. On the flip side, however,
we saw the positive and reinforcing effects of growing numbers and student
success stories. I will never forget the shock we all experienced one year when
a particularly bright young African American man failed the department’s
doctoral qualifying exam. To his credit, he dusted himself off and developed a
steely determination to succeed the following year. He did so with flying col-
ors, winning the departmental award for the top score in the exam (an award
that is assigned purely on the basis of exam performance and blind to student
identity). That same year, another African American, a young woman, also
failed the exam. Although devastated, she was also determined to not only
try again, but to repeat the outstanding performance of her classmate and
win the prize. And she did. I still get cold shivers thinking about it! These
were the kinds of things, along with growing critical mass, that got things
changing. It is quite awe-inspiring to think about what some of our program
graduates are doing today and how through their success they are inspiring
and encouraging the next generation to thrive as well.

I don’t feel like I have the language or skill to describe many of the profound
things that I learned and experienced through directing the minority program
at Harvard for so many years. However I recently read an excellent book,
“Whistling Vivaldi,” (Steele, 2011) by someone who does — Claude Steele,
a renowned social scientist and Dean of the Graduate School of Education
at Stanford. Much of Steele’s work has been on the concept of stereotype
threat. The idea is that when a person is being evaluated (e.g., through a
test), their performance can be significantly undermined if they believe that
the evaluators will be looking at them through the lens of a stereotype. While
stereotyping happens anytime where there are broad-based characterizations
of a person’s ability or character, based on their social standing, ethnicity or
race, the ones that most readily come to mind in the educational context are
gender and math/science ability as well as race and general academic perfor-
mance. Steele describes some fascinating experiments where test scores can
be significantly impacted according to whether or not subjects are conscious
of stereotype threat. Not only a great read, “Whistling Vivaldi” is a definite
eye-opener.
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21.4 Gender issues

I’ve thought a lot over the years about the issue of gender in our field of statis-
tics. During my almost thirty years in US academia, I was never particularly
conscious of experiencing any obvious bias or discrimination because I was a
woman. I was even beginning to think that the days were over where special
efforts were still needed to encourage and support women in science. In fact,
I even felt slightly guilty when I received the COPSS award that recognizes
Elizabeth L. Scott’s lifelong efforts in the furtherance of the careers of women.
Since returning to Australia in early 2009, however, my thinking has changed
a bit. I’ve found the research environment here much harder to navigate than
in the US and my confidence has suffered as a result. At a meeting of the
Australian Academy of Science earlier this year, I had something of a light-
bulb moment talking with Terry Speed and several others who assured me
that the problem wasn’t just me, but rather I was experiencing the impact of
working in an environment that was inherently more difficult for women than
for men. A telling symptom of this was that none of the 20 new fellows elected
to the Australian Academy of Science in 2013 were women! While this situ-
ation was something of an embarrassment to the Academy, it did provide an
important opportunity for collective self reflection and dialogue on the issue
of gender diversity in Australian science. I realized that I was struggling with
some of the same challenges that I had worked so hard years earlier to help
my students overcome. Because there were fewer successful academic women
in Australia, I felt more isolated. Also, because the guidelines for assessing
success reflected a more male perspective, I was not measuring up so well. For
example, because of some family responsibilities, I was generally reluctant to
accept many invitations to speak at international conferences. However, such
activities were seen as very important when it came to evidence of track record
for grant applications. Finally, my interests didn’t quite align. In the US, I had
been very fortunate to spend my career in an environment that embraced in-
terdisciplinary research and where the model of a biostatistician combining
collaborative and methodological research was not only well understood, but
seen as an ideal. In Australia, the model was a more traditional one of a suc-
cessful, independent academic heading up a team of students, postdocs and
junior staff. For me, this model just didn’t fit. For all these reasons, it made
sense that I was having some difficulty in finding my place within the Aus-
tralian academic environment. But instead of seeing this bigger picture, I was
personalizing it and starting to believe that I simply didn’t have the talent to
succeed. I see now that I have an opportunity to put into practice some of the
advice I used to give my students about believing in myself, keeping in mind
the bigger picture and understanding that by persevering, I can help change
the system. My experience also underscores why having a diverse workforce
helps the whole system to be healthier and more effective. A diverse work-
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force means a diversity of opinions and values, and a diversity of approaches
to problem solving. Diversity broadens the scope of what’s important, how
workplaces are organized and how people are valued. In the end, a diverse
workplace is good for everyone.
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Why does statistics have two theories?

Donald A.S. Fraser
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The public image of statistics is changing, and recently the changes have been
mostly for the better, as we’ve all seen. But occasional court cases, a few con-
spicuous failures, and even appeals to personal feelings suggest that careful
thought may be in order. Actually, statistics itself has more than one the-
ory, and these approaches can give contradictory answers, with the discipline
largely indifferent. Saying “we are just exploring!” or appealing to mysticism
can’t really be appropriate, no matter the spin. In this paper for the COPSS
50th Anniversary Volume, I would like to examine three current approaches
to central theory. As we will see, if continuity that is present in the model is
also required for the methods, then the conflicts and contradictions resolve.

22.1 Introduction

L’Aquila and 300 deaths. The earthquake at L’Aquila, Italy on April 5, 2009
had been preceded by many small shocks, and Italy’s Civil Protection Depart-
ment established a committee of seismologists to address the risks of a major
earthquake. The committee reported before the event that there was no par-
ticularly good reason to think that a major earthquake was coming and the
Department’s Deputy Head even allowed that the small shocks were reducing
the seismic stresses, lowering the chances of a major quake. This gave some
reassurance to many who were concerned for their lives; but the earthquake
did come and more than 300 died. For some details, see Pielke (2011). Charges
were then brought against the seismologists and seven were sentenced to six
years in prison for manslaughter, “for falsely reassuring the inhabitants of
L’Aquila.” Part of the committee’s role had been the communication of their
findings, statistics being intrinsically involved. See Marshall (2012) and Prats
(2012).
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Vioxx and 40,000 deaths. The pain killer Vioxx was approved by the US
Food and Drug Administration (FDA) in 1999 after a relatively short eight
years in the approval process and then withdrawn by the pharmaceutical com-
pany Merck in 2004 after an acknowledged excess of cardiovascular thrombotic
(CVT) events under Vioxx in a placebo controlled study. But statistical as-
sessments as early as 2000 had indicated the heightened rate of CVT events
with the use of Vioxx. Statistician David Madigan of Columbia University
rose to the challenge as litigation consultant against Merck, and a five billion
dollar penalty against Merck went to the injured and their survivors; some felt
this was a bargain for Merck, as the company had made billions in profit from
the drug. One estimate from the FDA of the number of deaths attributed to
the use of the drug was 40,000. See Abraham (2009).

Challenger and 7 deaths. The space shuttle Challenger had completed nine
successful flights but on its tenth take-off on January 28, 1986 disintegrated
within the first two minutes. The failure was attributed to the breakdown of
an O-ring on a solid rocket booster. The external temperature before the flight
was well below the acknowledged tolerance for the O-rings, but the flight was
given the go-ahead. The 7 crew members died. See Dalai and Fowlkes (1989)
and Bergin (2007).

The preceding events involve data, data analysis, determinations, predic-
tions, presentations, then catastrophic results. Where does responsibility fall?
With the various levels of the application of statistics? Or with the statistical
discipline itself with its contradicting theories? Or with the attitude of many
statisticians. We are just exploring and believe in the tools we use?

Certainly the discipline of statistics has more than one theory and these
can give contradictory results, witness frequency-based, Bayes-based, and
bootstrap-based methodology; these provide a wealth of choice among the
contraindicating methods. Here I would like to briefly overview the multiple
theories with a view to showing that if continuity as present in the typical
model is also required for the methods, an equivalence emerges among the
frequency, the bootstrap, and partially the Bayesian approach to inference.

But also, there is attitude within the discipline that tolerates the contradic-
tions and indeed affects within-discipline valuations of statistics and statisti-
cians. In recent years, an important Canadian grant adjudication process had
mathematicians and statisticians evaluating applications from mathematicians
and statisticians using standardized criteria but with a panel from mathemat-
ics for the mathematicians and a panel from statistics for the statisticians;
and it was found that mathematicians rate mathematicians much higher than
statisticians rate statisticians, even though it was clear that benefits would be
apportioned accordingly. For details, see Léger (2013). The contradictory the-
ory and the contradictory attitude provide a potential for serious challenges
for statistics, hopefully not at the level of L’Aquila, Vioxx and Challenger.
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22.2 65 years and what’s new

I did my undergraduate studies in mathematics in my home town of Toronto,
Ontario. An opportunity to study analysis and algebra in the doctoral pro-
gram at Princeton University arose in 1947. But then, with a side interest
in actuarial things, I soon drifted to the Statistics Group led by Sam Wilks
and John Tukey. A prominent theme was Neyman–Pearson theory but a per-
sistent seminar interest focussed on Fisher’s writings, particularly those on
fiducial inference which had in turn triggered the Neyman (Neyman, 1937)
confidence methodology. But also, a paper by Jeffreys (Jeffreys, 1946) kept
reemerging in discussions; it offered a default Bayes (Bayes, 1763) approach,
often but incorrectly called objective Bayes in present Bayes usage. The strik-
ing thing for me at that time was the presence of two theories for statistics
that gave contradictory results: if the results were contradictory, then simple
logic on theories says that one or the other, or both, are wrong. This latter
view, however, was not part of the professional milieu at the time, though
there was some puzzlement and vague acceptance of contradictions, as being
in the nature of things; and this may even be part of current thinking! “One
or the other, or both, could be wrong?” Physics manages to elicit billions in
taxpayer money to assess their theories! Where does statistics stand?

With a completed thesis that avoided the frequency-Bayes contradictions,
I returned to Canada and accepted a faculty position in the Department of
Mathematics at the University of Toronto. The interest in the frequency-
Bayes contradictions, however, remained and a conference talk in 1959 and
two resulting papers (Fraser, 1961a,b) explored a broad class of statistical
models for which the two approaches gave equivalent results: the location
model f(y − θ), of course, and the locally-generated group extensions, the
transformation-parameter models. Then an opportunity for a senior faculty
position in the Mathematics Department at Princeton arose in 1963, but I was
unable to accept. The concerns for the frequency-Bayes contradictions, how-
ever, remained!

Now in 2013 with COPSS celebrating its 50th anniversary, we can look
about and say “What’s new?” And even more we are encouraged to remi-
nisce! There is very active frequency statistics and related data analysis; and
there is very active Bayesian statistics; and they still give contradictory an-
swers. So nothing has changed on the frequency-Bayes disconnect: what goes
around comes around... Does that apply to statistical theory in the 65 years
I have been in the profession? Oh, of course, there have been massive exten-
sions to data exploration, to computer implementation, to simulations, and to
algorithmic approaches. Certainly we have Precision, when sought! But what
about Accuracy? I mean Accuracy beyond Precision? And what about the
frequency-Bayes contradictions in the theory? And even, indeed, the fact that
no one seems to care? And then L’Aquila, Vioxx, Challenger, and of course the
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contradictory theory? Are perceptions being suppressed? It might wind up in
a court, as with L’Aquila, an inappropriate place to address a scientific issue
but perhaps not to address a conflict coming from discipline contradictions.

Well yes, something has changed! Now a general feeling in the milieu is
acceptance of the frequency-Bayes contradiction: it just doesn’t matter, we
are just exploring; our models and calculations are just approximations; and
we can acquire any Precision we want, even though we may not have used the
full information provided by the model, so just run the MCMC longer, even
though several million cycles only give two decimal places for some wanted
probability or confidence calculation. Or put together an algorithm for pro-
cessing numbers. Or use personal feelings as in some Bayes methods.

But even for explorations it certainly behooves one to have calibrated
tools! And more generally to know with Precision and Accuracy what a model
with data implies? Know as a separate issue quite apart from the descriptive
Accuracy of the model in a particular context, which of course in itself is
an important but separate issue! This Accuracy is rarely addressed! Indeed,
as L’Aquila, Vioxx, and Challenger indicate, a concern for Accuracy in the
end products of statistics may have an elusive presence in many professional
endeavours. An indictment of statistics?

22.3 Where do the probabilities come from?

(i) The starting point. The statistical model f(y; θ) with data y0 forms
the starting point for the Bayes and often the frequency approach. The
Bayesian approach calculates and typically uses just the observed likelihood
L0(θ) = f(y0; θ), omitting other model information as part of a Bayes commit-
ment. The frequency approach uses more than the observed likelihood func-
tion: it can use distribution functions and full model calculations, sometimes
component model calculations that provide relevant precision information,
and more.

(ii) The ingredients for inference. In the model-data context, y0 is an ob-
served value and is thus a known constant, and θ is an unknown constant.
And if a distribution π(θ) is present, assumed, proposed or created, as the
source for θ, then a second distribution is on offer concerning the unknown
constant. Probabilities are then sought for the unknown constant, in the con-
text of one or two distributional sources: one part of the given and the other
objective, subjective, or appended for computational or other reasons. Should
these distributions be combined, or be examined separately, or should the
added distribution be ignored? No over-riding principle says that distribu-
tions of different status or quality should be combined rather than having
their consequences judged separately! Familiar Bayes methodology, however,
takes the combining as a given, just as the use of only the observed likelihood
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function is taken as a given, essentially axioms in the Bayes methodology! For
a recent discussion, see Fraser (2011).

(iii) The simple location model. Consider the location model f(y−θ). This
is of course rather special in that the error, the variable minus the parame-
ter, has a fixed known distributional shape, free of the parameter. A common
added or proposed prior is the flat prior π(θ) = 1 representing the translation
invariance of the model. As it stands the model almost seems too simple for
consideration here; but the reality is that this simple model exists as an em-
bedded approximation in an incredibly broad class of models where continuity
of parameter effect is present and should thus have its influence acknowledged.

(iv) Location case: p-value or s-value. The generic version of the p-value
from observed data y0 is

p0(θ) =

∫ y0

f(y − θ)dy = F 0(θ),

which records just the statistical position of the data relative to the param-
eter. As such it is just the observed distribution function. This p(θ) function
is uniform on the interval (0, 1), which in turn implies that any related con-
fidence bound or confidence interval has validity in the sense that it bounds
or embraces the true parameter value with the stated reliability; see Fisher
(1930) and Neyman (1937). In parallel, the observed Bayes survivor value is

s0(θ) =

∫

θ
f(y0 − α)dα.

The two different directions of integration correspond to data left of the
parameter and parameter right of the data, at least in this stochastically in-
creasing case. The two integrals are mathematically equal as is seen from a
routine calculus change of variable in the integration. Thus the Bayes sur-
vivor s-value acquires validity here, validity in the sense that it is uniformly
distributed on (0, 1); and validity also in the sense that a Bayes quantile at
a level β will have the confidence property and bound the parameter at the
stated level. This validity depends entirely on the equivalence of the integrals
and no reference or appeal to conditional probability is involved or invoked.
Thus in this location model context, a sample space integration can routinely
be replaced by a parameter space integration, a pure calculus formality. And
thus in the location model context there is no frequency-Bayes contradiction,
just the matter of choosing the prior that yields the translation property which
in turn enables the integration change of variable and thus the transfer of the
integration from sample space to parameter space.

(v) The simple scalar model. Now consider a stochastically increasing scalar
model f(y; θ) with distribution function F (y; θ) and some minimum continuity
and regularity. The observed p-value is

p0(θ) = F 0(θ) =

∫ y0

Fy(y; θ)dy =

∫

θ
−Fθ(y

0; θ)dθ,
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where the subscripts to F denote partial differentiation with respect to the in-
dicated argument. Each of the integrals records an F (y, θ) value as an integral
of its derivative — the fundamental theorem of calculus — one with respect to
θ and the other with respect to y. This is pure computation, entirely without
Bayes! And then, quite separately, the Bayes survivor value using a proffered
prior π(θ) is

s0(θ) =

∫

θ
π(θ)Fy(y

0; θ)dθ.

(vi) Validity of Bayes posterior: Simple scalar model. The second integral
for p0(θ) and the integral for s0(θ) are equal if and only if the integrands are
equal. In other words if and only if

π(θ) = −Fθ(y0; θ)

Fy(y0; θ)
=

∂y(θ;u)

∂θ

∣∣∣
fixedF (y;θ);y0

with an appropriate norming constant included. The second equality comes
from the total derivative of u = F (y; θ) set equal to 0, thus determining
how a θ-change affects y for fixed probability position. We can also view
v(θ) = ∂y(θ;u)/∂θ for fixed u as being the change in y caused by a change in
θ, thus giving at y0 a differential version of the y, θ analysis in the preceding
subsection.

Again, with this simple scalar model analysis, there is no frequency-Bayes
contradiction; it is just a matter of getting the prior right. The correct prior
does depend on the data point y0 but this should cause no concern. If the
objective of Bayesian analysis is to extract all accessible information from an
observed likelihood and if this then requires the tailoring of the prior to the
particular data, then this is in accord with that objective. Data dependent
priors have been around for a long time; see, e.g., Box and Cox (1964). But of
course this data dependence does conflict with a conventional Bayes view that
a prior should be available for each model type. The realities of data analysis
may not be as simple as Bayes might wish.

(vii) What’s the conclusion? With a location model, Bayes and frequency
approaches are in full agreement: Bayes gets it right because the Bayes cal-
culation is just a frequency confidence calculation in mild disguise. However,
with a non-location model, the Bayes claim with a percentage attached to
an interval does require a data-dependent prior. But to reference the condi-
tional probability lemma, relabeled as Bayes lemma, requires that a missing
ingredient for the lemma be created, that a density not from the reality being
investigated be given objective status in order to nominally validate the term
probability: this violates mathematics and science.
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22.4 Inference for regular models: Frequency

(i) Normal, exponential, and regular models. Much of contemporary infer-
ence theory is organized around Normal statistical models with side concerns
for departures from Normality, thus neglecting more general structures. Re-
cent likelihood methods show, however, that statistical inference is easy and
direct for exponential models and more generally for regular models using an
appropriate exponential approximation. Accordingly, let us briefly overview
inference for exponential models.

(ii) Exponential statistical model. The exponential family of models is
widely useful both for model building and for model-data analysis. The full ex-
ponential model with canonical parameter ϕ and canonical variable u(y) both
of dimension p is f(y;ϕ) = exp{ϕ′u(y) + k(ϕ)}h(y). Let y0 with u0 = u(y0)
be observed data for which statistical inference is wanted. For most purposes
we can work with the model in terms of the canonical statistic u:

g(u;ϕ) = exp{!0(ϕ) + (ϕ− ϕ̂0)′(u− u0)}g(u),

where !0(ϕ) = a+ ln f(y0;ϕ) is the observed log-likelihood function with the
usual arbitrary constant chosen conveniently to subtract the maximum log-
likelihood ln f(y0; ϕ̂0), using ϕ̂0 as the observed maximum likelihood value.
This representative !0(ϕ) has value 0 at ϕ̂0, and −!0(ϕ) relative to ϕ̂0 is the
cumulant generating function of u − u0, and g(u) is a probability density
function. The saddle point then gives a third-order inversion of the cumulant
generating function −!0(ϕ) leading to the third-order rewrite

g(u;ϕ) =
ek/n

(2π)p/2
exp{−r2(ϕ;u)/2}|ϕϕ(ϕ̂)|−1/2,

where ϕ̂ = ϕ̂(u) is the maximum likelihood value for the tilted likelihood

!(ϕ;u) = !0(ϕ) + ϕ′(u− u0),

r2(ϕ;u)/2 = !(ϕ̂;u)− !(ϕ;u) is the related log-likelihood ratio quantity,

ϕϕ(ϕ̂) = −
∂

∂ϕ∂ϕ′ !(ϕ;u)|ϕ̂(u)

is the information matrix at u, and finally k/n is constant to third order. The
density approximation g(u;ϕ0) gives an essentially unique third-order null
distribution (Fraser and Reid, 2013) for testing the parameter value ϕ = ϕ0.

Then if the parameter ϕ is scalar, we can use standard r∗-technology to
calculate the p-value p(ϕ0) for assessing ϕ = ϕ0; see, e.g., Brazzale et al.
(2007). For a vector ϕ, a directed r∗ departure is available; see, e.g., Davison
et al. (2014). Thus p-values are widely available with high third-order accuracy,
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all with uniqueness coming from the continuity of the parameter’s effect on
the variable involved; see in part Fraser et al. (2010b).

(iii) Testing component parameters. Now consider more generally a com-
ponent parameter ψ(ϕ) of dimension d with d < p. If ψ is linear in ϕ, then
a rotation of coordinates lets us write ϕ = (χ,λ) with χ equivalent to ψ and
with say (s, t) as the corresponding canonical coordinates. Statistical inference
is available from the d-dimensional conditional distribution on the profile line
or plane L0 = {(s, t0)} with parameter χ. This uses in an essential way the
profile likelihood ratio

r2(χ; s)/2 = !P(χ̂; s)− !P(χ; s) = !(s, t0; χ̂, λ̂)− !(s, t0;χ, λ̂χ)

and related saddle point, but does need a norming constant dependent on χ.
But more generally when the interest parameter ψ is non-linear and thus

curved in the initial ϕ parameterization, the conditional approach just de-
scribed is effectively unavailable and a marginal approach coming from recent
likelihood asymptotics is needed. This involves integrating out over a nuisance
parameter variable, and gives to third order the marginal distribution for an
ancillary variable under ψ = ψ0, viz.

fm(s;ψ0) =
ek/n

(2π)d/2
exp(!̃− !̂)

× |ϕϕ{ϕ̂(s, t0)}|−1/2|(λλ)(ψ0, λ̂ψ0 ; s, t
0)|1/2, (22.1)

on L0 = {(s, t0)} using rotated coordinates (χ,λ) and (s, t) having χ = χ0

first derivative equivalent to ψ = ψ0 at ϕ̂0
ψ0
. Here !̂ − !̃ is the log-likelihood

ratio at (s, t0) for the tested value ψ0, and the nuisance information uses
λ with given ψ = ψ0 and λ derivatives for fixed ψ = ψ0 then rescaled in
terms of the ϕ parameterization at ϕ̂(s, t0) as indicated by the parentheses
and described in Brazzale et al. (2007), Fraser and Reid (1993) or Davison
et al. (2014). This distribution is essentially unique if continuity of parameter
effect is respected; and it is simple, involving only the log-likelihood ratio
for ψ0 and information determinants. In the linear parameter case where the
conditional approach is available, this agrees with that conditional result;
but here with curvature where no easily accessible conditional approach is
available the present marginal approach is the reference standard. My only
purpose here is to report on the availability of these unique null distributions
and on the availability of p-values, for both linear and curved parameters; for
details see, e.g., Fraser and Reid (2013).

(iv) Regular statistical model. Now consider a statistical model f(y; θ) with
continuity in parameter effect and general regularity. For such models we can
find, quite widely, a quantile representation y = y(θ, u) as discussed briefly
for a simple case earlier. Such is widely used for simulations and is routinely
and definitively available in cases where the model has independent scalar
coordinates. Let V (θ, y) = ∂y(θ;u)/∂θ be the n× p matrix giving the vectors



D.A.S. Fraser 245

that record the effect on y of change in the parameter coordinates θ1, . . . , θp;

and let V = V (θ̂0, y0) = V̂ 0 be the observed matrix. Then V records tangents
to an intrinsic ancillary contour, say a(y) = a(y0), that passes through the
observed y0. Thus V represents directions in which the data can be viewed as
measuring the parameter, and LV gives the tangent space to the ancillary at
the observed data, with V having somewhat the role of a design matrix. For
development details, see Fraser and Reid (1995).

From ancillarity it follows that likelihood conditionally is equal to the
full likelihood L0(θ), to an order one higher than that of the ancillary used.
And it also follows that the sample space gradient of the log-likelihood in the
directions V along the ancillary contour gives the canonical parameter, viz.

ϕ(θ) =
∂

∂V
!(θ; y)

∣∣∣
y0
,

whenever the conditional model is exponential, or gives the canonical param-
eter of an approximating exponential model otherwise. In either case, !0(θ)
with the preceding ϕ(θ) provides third order statistical inference for scalar
parameters using the saddle point expression and the above technology. And
this statistical inference is uniquely determined provided the continuity in the
model is required for the inference (Fraser and Rousseau, 2008). For further
discussion and details, see Fraser et al. (2010a) and Fraser and Reid (1995).

22.5 Inference for regular models: Bootstrap

Consider a regular statistical model and the exponential approximation as
discussed in the preceding section, and suppose we are interested in testing a
scalar parameter ψ(ϕ) = ψ0 with observed data y0. The bootstrap distribu-
tion is f(y;ψ0, λ̂0

ψ0
), as used in Fraser and Rousseau (2008) from a log-model

perspective and then in DiCiccio and Young (2008) for the exponential model
case with linear interest parameter.

The ancillary density in the preceding section is third-order free of the
nuisance parameter λ. Thus the bootstrap distribution f(y;ψ0, λ̂0

ψ0
) provides

full third-order sampling for this ancillary, equivalent to that from the true
sampling f(y;ψ0,λ), just the use of a different λ value when the distribution
is free of λ.

Consider the profile line L0 through the data point y0. In developing the
ancillary density (22.1), we made use of the presence of ancillary contours
cross-sectional to the line L0. Now suppose we have a d-dimensional quan-
tity t(y,ψ) that provides likelihood centred and scaled departure for ψ, e.g.,
a signed likelihood root as in Barndorff-Nielsen and Cox (1994) or a Wald
quantity, thus providing the choice in DiCiccio and Young (2008). If t(y) is a
function of the ancillary, say a(y), then one bootstrap cycle gives third order,
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a case of direct sampling; otherwise the conditional distribution of y|a also be-
comes involved and with the likelihood based t(y) gives third order inference
as in the third cycle of Fraser and Rousseau (2008).

This means that the bootstrap and the usual higher-order calculations are
third-order equivalent in some generality, and in reverse that the bootstrap
calculations for a likelihood centred and scaled quantity can be viewed as
consistent with standard higher-order calculations, although clearly this was
not part of the bootstrap design. This equivalence was presented for the lin-
ear interest parameter case in an exponential model in DiCiccio and Young
(2008), and we now have that it holds widely for regular models with linear or
curved interest parameters. For a general regular model, the higher order rou-
tinely gives conditioning on full-model ancillary directions while the bootstrap
averages over this conditioning.

22.6 Inference for regular models: Bayes

(i) Jeffreys prior. The discussion earlier shows that Bayes validity in gen-
eral requires data-dependent priors. For the scalar exponential model, how-
ever, it was shown by Welch and Peers (1963) that the root information prior
of Jeffreys (1946), viz.

π(θ) = j1/2θθ ,

provides full second-order validity, and is presented as a globally defined prior
and indeed is not data-dependent. The Welch–Peers presentation does use
expected information, but with exponential models the observed and expected
informations are equivalent. Are such results then available for the vector
exponential model?

For the vector regression-scale model, Jeffreys subsequently noted that his
root information prior (Jeffreys, 1946) was unsatisfactory and proposed an
effective alternative for that model. And for more general contexts, Bernardo
(1979) proposed reference posteriors and thus reference priors, based on max-
imizing the Kullback–Leibler distance between prior and posterior. These pri-
ors have some wide acceptance, but can also miss available information.

(ii) The Bayes objective: Likelihood based inference. Another way of view-
ing Bayesian analysis is as a procedure to extract maximum information from
an observed likelihood function L0(θ). This suggests asymptotic analysis and
Taylor expansion about the observed maximum likelihood value θ̂0. For this
we assume a p-dimensional exponential model g(u;ϕ) as expressed in terms
of its canonical parameter ϕ and its canonical variable u, either as the given
model or as the higher-order approximation mentioned earlier. There are also
some presentation advantages in using versions of the parameter and of the
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variable that give an observed information matrix ̂0ϕϕ = I equal to the identity
matrix.

(iii) Insightful local coordinates. Now consider the form of the log-model in
the neighborhood of the observed data (u0, ϕ̂0). And let e be a p-dimensional
unit vector that provides a direction from ϕ̂0 or from u0. The conditional
statistical model along the line u0 + Le is available from exponential model
theory and is just a scalar exponential model with scalar canonical param-
eter ρ, where ϕ = ϕ̂0 + ρe is given by polar coordinates. Likelihood theory
also shows that the conditional distribution is second-order equivalent to the

marginal distribution for assessing ρ. The related prior 1/2ρρ dρ for ρ would use
λ = λ̂0, where λ is the canonical parameter complementing ρ.

(iv) The differential prior. Now suppose the preceding prior 1/2ρρ dρ is used
on each line ϕ̂0 + Le. This composite prior on the full parameter space can
be called the differential prior and provides crucial information for Bayes in-
ference. But as such it is of course subject to the well-known limitation on
distributions for parameters, both confidence and Bayes; they give incorrect
results for curved parameters unless the pivot or prior is targeted on the
curved parameter of interest; for details, see, e.g., Dawid et al. (1973) and
Fraser (2011).

(v) Location model: Why not use the location property? The appropri-
ate prior for ρ would lead to a constant-information parameterization, which
would provide a location relationship near the observed (y0, ϕ̂0). As such the
p-value for a linear parameter would have a reflected Bayes survivor s-value,
thus leading to second order. Such is not a full location model property, just
a location property near the data point, but this is all that is needed for the
reflected transfer of probability from the sample space to the parameter space,
thereby enabling a second-order Bayes calculation.

(vi) Second-order for scalar parameters? But there is more. The conditional
distribution for a linear parameter does provide third order inference and it
does use the full likelihood but that full likelihood needs an adjustment for the
conditioning (Fraser and Reid, 2013). It follows that even a linear parameter in
an exponential model needs targeting for Bayes inference, and a local or global
prior cannot generally yield second-order inference for linear parameters, let
alone for the curved parameters as in Dawid et al. (1973) and Fraser (2013).

22.7 The frequency-Bayes contradiction

So is there a frequency-Bayes contradiction? Or a frequency-bootstrap-Bayes
contradiction? Not if one respects the continuity widely present in regular
statistical models and then requires the continuity to be respected for the
frequency calculations and for the choice of Bayes prior.
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Frequency theory of course routinely leaves open the choice of pivotal
quantity which provides the basis for tests, confidence bounds, and related
intervals and distributions. And Bayes theory leaves open the choice of the
prior for extracting information from the likelihood function. And the boot-
strap needs a tactical choice of initial statistic to succeed in one bootstrap
cycle. Thus on the surface there is a lot of apparent arbitrariness in the usual
inference procedures, with a consequent potential for serious contradictions.
In the frequency approach, however, this arbitrariness essentially disappears
if continuity of parameter effect in the model is respected, and then required
in the inference calculations; see Fraser et al. (2010b) and the discussion in
earlier sections. And for the Bayes approach above, the arbitrariness can dis-
appear if the need for data dependence is acknowledged and the locally based
differential prior is used to examine sample space probability on the parameter
space. This extracts information from the likelihood function to the second
order, but just for linear parameters (Fraser, 2013).

The frequency and the bootstrap approaches can succeed without arbi-
trariness to third order. The Bayes approach can succeed to second order
provided the parameter is linear, otherwise the prior needs to target the par-
ticular interest parameter. And if distributions are used to describe unknown
parameter values, the frequency joins the Bayes in being restricted to linear
parameters unless there is targeting; see Dawid et al. (1973) and Fraser (2011).

22.8 Discussion

(i) Scalar case. We began with the simple scalar location case, feeling that
clarity should be present at that transparent level if sensible inference was to
be available more generally. And we found at point (ii) that there were no
Bayes-frequency contradictions in the location model case so long as model
continuity was respected and the Bayes s-value was obtained from the location
based prior. Then at point (v) in the general scalar case, we saw that the p-
value retains its interpretation as the statistical position of the data and has
full repetition validity, but the Bayes requires a prior determined by the form
of the model and is typically data dependent. For the scalar model case this
is a radical limitation on the Bayes approach; in other words inverting the
distribution function as pivot works immediately for the frequency approach
whereas inverting the likelihood using the conditional probability lemma as
a tool requires the prior to reflect the location property, at least locally. For
the scalar model context, this represents a full vindication of Fisher (1930),
subject to the Neyman (1937) restriction that probabilities be attached only
to the inverses of pivot sets.

(ii) Vector case. Most models however involve more than just a scalar pa-
rameter. So what about the frequency-Bayes disconnect away from the very
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simple scalar case? The Bayes method arose from an unusual original exam-
ple (Bayes, 1763), where at the analysis stage the parameter was retroactively
viewed as generated randomly by a physical process, indeed an earlier per-
formance of the process under study. Thus a real frequency-based prior was
introduced hypothetically and became the progenitor for the present Bayes
procedure. In due course a prior then evolved as a means for exploring, for
inserting feelings, or for technical reasons to achieve analysis when direct meth-
ods seemed unavailable. But do we have to make up a prior to avoid admitting
that direct methods of analysis were not in obvious abundance?

(iii) Distributions for parameters? Fisher presented the fiducial distribu-
tion in Fisher (1930, 1935) and in various subsequent papers. He was criticized
from the frequency viewpoint because his proposal left certain things arbitrary
and thus not in a fully developed form as expected by the mathematics com-
munity at that time: welcome to statistics as a developing discipline! And he
was criticized sharply from the Bayes (Lindley, 1958) because Fisher proposed
distributions for a parameter and such were firmly viewed as Bayes territory.
We now have substantial grounds that the exact route to a distribution for a
parameter is the Fisher route, and that Bayes becomes an approximation to
the Fisher confidence and can even attain second-order validity (Fraser, 2011)
but requires targeting even for linear parameters.

But the root problem is that a distribution for a vector parameter is inher-
ently invalid beyond first order (Fraser, 2011). Certainly in some generality
with a linear parameter the routine frequency and routine Bayes can agree.
But if parameter curvature is allowed then the frequency p-value and the Bayes
s-value change in opposite directions : the p-value retains its validity, having
the uniform distribution on the interval (0, 1) property, while the Bayes loses
this property and associated validity, yet chooses to retain the label “proba-
bility” by discipline commitment, as used from early on. In all the Bayes cases
the events receiving probabilities are events in the past, and the prior probabil-
ity input to the conditional probability lemma is widely there for expediency:
the lemma does not create real probabilities from hypothetical probabilities
except when there is location equivalence.

(iv) Overview. Most inference contradictions disappear if continuity
present in the model is required for the inference calculations. Higher order
frequency and bootstrap are consistent to third order for scalar parameters.
Bayes agrees but just for location parameters and then to first order for other
parameters, and for this Bayes does need a prior that reflects or approximates
the location relationship between variable and parameter. Some recent prelim-
inary reports are available at http://www.utstat.toronto.edu/dfraser/
documents/ as 260-V3.pdf and 265-V3.pdf.
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Conditioning is the issue

James O. Berger
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Duke University, Durham, NC

The importance of conditioning in statistics and its implementation are high-
lighted through the series of examples that most strongly affected my under-
standing of the issue. The examples range from “oldies but goodies” to new
examples that illustrate the importance of thinking conditionally in modern
statistical developments. The enormous potential impact of improved handling
of conditioning is also illustrated.

23.1 Introduction

No, this is not about conditioning in the sense of “I was conditioned to be a
Bayesian.” Indeed I was educated at Cornell University in the early 1970s, by
Jack Kiefer, Jack Wolfowitz, Roger Farrell and my advisor Larry Brown, in
a strong frequentist tradition, albeit with heavy use of prior distributions as
technical tools. My early work on shrinkage estimation got me thinking more
about the Bayesian perspective; doesn’t one need to decide where to shrink,
and how can that decision not require Bayesian thinking? But it wasn’t until
I encountered statistical conditioning (see the next section if you do not know
what that means) and the Likelihood Principle that I suddenly felt like I had
woken up and was beginning to understand the foundations of statistics.

Bayesian analysis, because it is completely conditional (depending on the
statistical model only through the observed data), automatically conditions
properly and, hence, has been the focus of much of my work. But I never
stopped being a frequentist and came to understand that frequentists can
also appropriately condition. Not surprisingly (in retrospect, but not at the
time) I found that, when frequentists do appropriately condition, they obtain
answers remarkably like the Bayesian answers; this, in my mind, makes con-
ditioning the key issue in the foundations of statistics, as it unifies the two
major perspectives of statistics.
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The practical importance of conditioning arises because, when it is not
done in certain scenarios, the results can be very detrimental to science. Un-
fortunately, this is the case for many of the most commonly used statistical
procedures, as will be discussed.

This chapter is a brief tour of old and new examples that most influenced
me over the years concerning the need to appropriately condition. The new
ones include performing a sequence of tests, as is now common in clinical trials
and is being done badly, and an example involving a type of false discovery rate.

23.2 Cox example and a pedagogical example

As this is more of an account of my own experiences with conditioning, I have
not tried to track down when the notion first arose. Pierre Simon de Laplace
likely understood the issue, as he spent much of his career as a Bayesian
in dealing with applied problems and then, later in life, also developed fre-
quentist inference. Clearly Ronald Fisher and Harold Jeffreys knew all about
conditioning early on. My first introduction to conditioning was the example
of Cox (1958).

A variant of the Cox example: Every day an employee enters a lab to
perform assays, and is assigned an unbiased instrument to perform the assays.
Half of the available instruments are new and have a small variance of 1, while
the other half are old and have a variance of 3. The employee is assigned each
type with probability 1/2, and knows whether the instrument is old or new.

Conditional inference: For each assay, report variance 1 or 3, depending on
whether a new or an old instrument is being used.

Unconditional inference: The overall variance of the assays is .5×1+.5×3 = 2,
so report a variance of 2 always.

It seems silly to do the unconditional inference here, especially when noting
that the conditional inference is also fully frequentist; in the latter, one is just
choosing different subset of events over which to do a long run average.

The Cox example contains the essence of conditioning, but tends to be
dismissed because of the issue of “global frequentism.” The completely pure
frequentist position is that one’s entire life is a huge experiment, and so the
correct frequentist average is over all possibilities in all situations involving
uncertainty that one encounters in life. As this is clearly impossible, frequen-
tists have historically chosen to condition on the experiment actually being
conducted before applying frequentist logic; then Cox’s example would seem
irrelevant. However, the virtually identical issue can arise within an experi-
ment, as demonstrated in the following example, first appearing in Berger and
Wolpert (1984).
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Pedagogical example: Two observations, X1 and X2, are to be taken, where

Xi =

{
θ + 1 with probability 1/2,
θ − 1 with probability 1/2.

Consider the confidence set for the unknown θ ∈ IR:

C(X1, X2) =

{
the singleton {(X1 +X2)/2} if X1 '= X2,
the singleton {X1 − 1} if X1 = X2.

The frequentist coverage of this confidence set is

Pθ{C(X1, X2) contains θ} = .75,

which is not at all a sensible report once the data is at hand. Indeed, if x1 '= x2,
then we know for sure that (x1 + x2)/2 is equal to θ, so that the confidence
set is then actually 100% accurate. On the other hand, if x1 = x2, we do not
know whether θ is the data’s common value plus 1 or their common value
minus 1, and each of these possibilities is equally likely to have occurred;
the confidence interval is then only 50% accurate. While it is not wrong to
say that the confidence interval has 75% coverage, it is obviously much more
scientifically useful to report 100% or 50%, depending on the data. And again,
this conditional report is still fully frequentist, averaging over the sets of data
{(x1, x2) : x1 '= x2} and {(x1, x2) : x1 = x2}, respectively.

23.3 Likelihood and stopping rule principles

Suppose an experiment E is conducted, which consists of observing data X
having density f(x|θ), where θ is the unknown parameters of the statistical
model. Let xobs denote the data actually observed.

Likelihood Principle (LP): The information about θ, arising from just E
and xobs, is contained in the observed likelihood function

L(θ) = f(xobs|θ) .

Furthermore, if two observed likelihood functions are proportional, then they
contain the same information about θ.

The LP is quite controversial, in that it effectively precludes use of fre-
quentist measures, which all involve averages of f(x|θ) over x that are not
observed. Bayesians automatically follow the LP because the posterior distri-
bution of θ follows from Bayes’ theorem (with p(θ) being the prior density for
θ) as

p(θ|xobs) =
p(θ)f(xobs|θ)∫

p(θ′)f(xobs|θ′)dθ′
,
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which clearly depends on E and xobs only through the observed likelihood
function. There was not much attention paid to the LP by non-Bayesians,
however, until the remarkable paper of Birnbaum (1962), which deduced the
LP as a consequence of the conditionality principle (essentially the Cox exam-
ple, saying that one should base the inference on the measuring instrument
actually used) and the sufficiency principle, which states that a sufficient
statistic for θ in E contains all information about θ that is available from the
experiment. At the time of Birnbaum’s paper, almost everyone agreed with
the conditionality principle and the sufficiency principle, so it was a shock
that the LP was a direct consequence of the two. The paper had a profound
effect on my own thinking.

There are numerous clarifications and qualifications relevant to the LP, and
various generalizations and implications. Many of these (and the history of the
LP) are summarized in Berger and Wolpert (1984). Without going further,
suffice it to say that the LP is, at a minimum, a very powerful argument for
conditioning.

Stopping Rule Principle (SRP): The reasons for stopping experimentation
have no bearing on the information about θ arising from E and xobs.

The SRP is actually an immediate consequence of the second part of the
LP, since “stopping rules” affect L(θ) only by multiplicative constants. Serious
discussion of the SRP goes back at least to Barnard (1947), who wondered why
thoughts in the experimenter’s head concerning why to stop an experiment
should affect how we analyze the actual data that were obtained.

Frequentists typically violate the SRP. In clinical trials, for instance, it is
standard to “spend α” for looks at the data — i.e., if there are to be interim
analyses during the trial, with the option of stopping the trial early should
the data look convincing, frequentists view it to be mandatory to adjust the
allowed error probability (down) to account for the multiple analyses.

In Berger and Berry (1988), there is extensive discussion of these issues,
with earlier references. The complexity of the issue was illustrated by a com-
ment of Jimmy Savage:

“I learned the stopping rule principle from Professor Barnard, in con-
versation in the summer of 1952. Frankly, I then thought it a scan-
dal that anyone in the profession could advance an idea so patently
wrong, even as today I can scarcely believe that people resist an idea
so patently right.” (Savage et al., 1962)
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The SRP does not say that one is free to ignore the stopping rule in any
statistical analysis. For instance, common practice in some sciences, when
testing a null hypothesis H0, is to continue collecting data until the p-value
satisfies p < .05 and then report the result as if no optional stopping had
been involved. This is obviously bad science in that, even if H0 is true, one
is guaranteed to obtain p < .05 if one just collects enough data. This fact
was noted as early as 1938 by Berkson (Berkson, 1938), who humorously
observed that, since one would be sure to obtain p < .05 in this way, we
should save everyone trouble and the cost of experimentation and just declare
every hypothesis rejected with p < .05! The correct calculation of a p-value
would have to include the stopping rule used and the problem of “sampling
to a foregone conclusion” would then disappear.

What the SRP is saying is that methods of statistical inference should
be used which are compatible with the SRP. Bayesian analysis is compatible
with the SRP; it will ignore the stopping rule and will not suffer for doing
so. As but one illustration, in testing H0, a Bayesian would often use a Bayes
factor B(X) (defined later) of H0 to the alternative, which will not depend on
the stopping rule. But Birnbaum (1962) observed that, for any stopping rule,
Pr{B(X) < ε|H0} < ε, so that optional stopping cannot ensure that a small
Bayes factor (small is evidence against H0) will be obtained. Surprisingly,
there are also frequentist methods that are compatible with the SRP, but
these are inevitably conditional frequentist methods. See Berger et al. (1999)
and Berger et al. (1994) for examples.

23.4 What it means to be a frequentist

As we move to more complicated examples, it is necessary to define the fre-
quentist principle of statistics.

Frequentist Principle: In repeated practical use of a statistical procedure,
the long-run average actual accuracy should not be less than (and ideally should
equal) the long-run average reported accuracy.

Suppose, for instance, that a particular statistical model and procedure
are to be repeatedly used — for instance, a 95% classical confidence interval
for a Normal mean. This procedure will, in practice, be used on a series of
different problems involving a series of different Normal means with different
data. In evaluating the procedure, we should simultaneously be averaging over
all possible practical instances of utilization of the procedure.

Textbook statements of the frequentist principle tend to focus on fixing
the value of, say, the Normal mean, and imagining repeatedly drawing data
from the given model and utilizing the confidence procedure repeatedly on the
different data draws. The word imagining is highlighted because this is solely
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a thought experiment. What is done in practice is to use the confidence proce-
dure on a series of different problems — not a series of imaginary repetitions
of the same problem with different data.

Neyman himself often pointed out that the motivation for the frequentist
principle is in its use on differing real problems; see, e.g., Neyman (1977). Of
course, the reason textbooks typically give the imaginary repetition of an ex-
periment version is because of the mathematical fact that if, say, a confidence
procedure has 95% frequentist coverage for each fixed parameter value, then
it will necessarily also have 95% coverage when used repeatedly on a series
of differing problems. And, if the coverage is not constant over each fixed pa-
rameter value, one can always find the minimum coverage over the parameter
space, since it will follow that the real frequentist coverage in repeated use
of the procedure on real problems will never be worse than this minimum
coverage.

Pedagogical example continued: Reporting 50% and 100% confidence, as
appropriate, is fully frequentist, in that the long run reported coverage will
average .75, which is the long run actual coverage.

p-values: p-values are not frequentist measures of evidence in any long run
average sense. Suppose we observeX, have a null hypothesisH0, and construct
a proper p-value p(X). Viewing the observed p(xobs) as a conditional error rate
when rejecting H0 is not correct from the frequentist perspective. To see this,
note that, under the null hypothesis, a proper p-value will be Uniform on the
interval (0, 1), so that if rejection occurs when p(X) ≤ α, the average reported
p-value under H0 and rejection will be

E[p(X)|H0, {p(·) ≤ α}] =
∫ α

0
p

1

α
dp =

α

2
,

which is only half the actual long run error α. There have been other efforts to
give a real frequentist interpretation of a p-value, none of them successful in
terms of the definition at the beginning of this section. Note that the procedure
{reject H0 when p(X) ≤ α} is a fully correct frequentist procedure, but the
stated error rate in rejection must be α, not the p-value.

There have certainly been other ways of defining frequentism; see, e.g.,
Mayo (1996) for discussion. However, it is only the version given at the begin-
ning of the section that strikes me as being compelling. How could one want to
give statistical inferences that, over the long run, systematically distort their
associated accuracies?
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23.5 Conditional frequentist inference

23.5.1 Introduction

The theory of combining the frequentist principle with conditioning was for-
malized by Kiefer in Kiefer (1977), although there were many precursors to the
theory initiated by Fisher and others. There are several versions of the theory,
but the most useful has been to begin by defining a conditioning statistic S
which measures the “strength of evidence” in the data. Then one computes
the desired frequentist measure, but does so conditional on the strength of
evidence S.

Pedagogical example continued: S = |X1 − X2| is the obvious choice,
S = 2 reflecting data with maximal evidential content (corresponding to the
situation of 100% confidence) and S = 0 being data of minimal evidential
content. Here coverage probability is the desired frequentist criterion, and an
easy computation shows that conditional coverage given S is given by

Pθ{C(X1, X2) contains θ |S = 2} = 1,

Pθ{C(X1, X2) contains θ |S = 0} = 1/2,

for the two distinct cases, which are the intuitively correct answers.

23.5.2 Ancillary statistics and invariant models

An ancillary statistic is a statistic S whose distribution does not depend on
unknown model parameters θ. In the pedagogical example, S = 0 and S = 2
have probability 1/2 each, independent of θ, and so S is ancillary. When ancil-
lary statistics exist, they are usually good measures of the strength of evidence
in the data, and hence provide good candidates for conditional frequentist in-
ference.

The most important situations involving ancillary statistics arise when the
model has what is called a group-invariance structure; cf. Berger (1985) and
Eaton (1989). When this structure is present, the best ancillary statistic to use
is what is called the maximal invariant statistic. Doing conditional frequentist
inference with the maximal invariant statistic is then equivalent to performing
Bayesian inference with the right-Haar prior distribution with respect to the
group action; cf. Berger (1985), Eaton (1989), and Stein (1965).

Example–Location Distributions: Suppose X1, . . . , Xn form a random
sample from the location density f(xi− θ). This model is invariant under the
group operation defined by adding any constant to each observation and θ; the
maximal invariant statistic (in general) is S = (x2− x1, x3− x1, . . . , xn− x1),
and performing conditional frequentist inference, conditional on S, will give
the same numerical answers as performing Bayesian inference with the right-
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Haar prior, here simply given by p(θ) = 1. For instance, the optimal condi-
tional frequentist estimator of θ under squared error loss would simply be the
posterior mean with respect to p(θ) = 1, namely

θ̂ =

∫
θ
∏n

i=1 f(xi − θ)1dθ∫ ∏n
i=1 f(xi − θ)1dθ

,

which is also known as Pitman’s estimator.

Having a model with a group-invariance structure leaves one in an incred-
ibly powerful situation, and this happens with many of our most common
statistical problems (mostly from an estimation perspective). The difficulties
of the conditional frequentist perspective are (i) finding the right strength of
evidence statistic S, and (ii) carrying out the conditional frequentist computa-
tion. But, if one has a group-invariant model, these difficulties can be bypassed
because theory says that the optimal conditional frequentist answer is the an-
swer obtained from the much simpler Bayesian analysis with the right-Haar
prior.

Note that the conditional frequentist and Bayesian answers will have dif-
ferent interpretations. For instance both approaches would produce the same
95% confidence set, but the conditional frequentist would say that the frequen-
tist coverage, conditional on S (and also unconditionally), is 95%, while the
Bayesian would say the set has probability .95 of actually containing θ. Also
note that it is not automatically true that analysis conditional on ancillary
statistics is optimal; see, e.g., Brown (1990).

23.5.3 Conditional frequentist testing

Upon rejection of the H0 in unconditional Neyman–Pearson testing, one re-
ports the same error probability α regardless of where the test statistic is in
the rejection region. This has been viewed as problematical by many, and is
one of the main reasons for the popularity of p-values. But as we saw earlier,
p-values do not satisfy the frequentist principle, and so are not the conditional
frequentist answer.

A true conditional frequentist solution to the problem was proposed in
Berger et al. (1994), with modification (given below) from Sellke et al. (2001)
and Wolpert (1996). Suppose that we wish to test that the data X arises from
the simple (i.e., completely specified) hypotheses H0 : f = f0 or H1 : f = f1.
The recommended strength of evidence statistic is

S = max{p0(x), p1(x)},

where p0(x) is the p-value when testing H0 versus H1, and p1(x) is the p-
value when testing H1 versus H0. It is generally agreed that smaller p-values
correspond to more evidence against an hypothesis, so this use of p-values
in determining the strength of evidence statistic is natural. The frequentist
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conditional error probabilities (CEPs) are computed as

α(s) = Pr(Type I error|S = s) ≡ P0{reject H0|S(X) = s},
β(s) = Pr(Type II error|S = s) ≡ P1{accept H0|S(X) = s}, (23.1)

where P0 and P1 refer to probability under H0 and H1, respectively.
The corresponding conditional frequentist test is then

If p0 ≤ p1, reject H0 and report Type I CEP α(s);
If p0 > p1, accept H0 and report Type II CEP β(s);

(23.2)

where the CEPs are given in (23.1).
These conditional error probabilities are fully frequentist and vary over the

rejection region as one would expect. In a sense, this procedure can be viewed
as a way to turn p-values into actual error probabilities.

It was mentioned in the introduction that, when a good conditional fre-
quentist procedure has been found, it often turns out to be numerically equiv-
alent to a Bayesian procedure. That is the case here. Indeed, Berger et al.
(1994) shows that

α(s) = Pr(H0|x) , β(s) = Pr(H1|x) , (23.3)

where Pr(H0|x) and Pr(H1|x) are the Bayesian posterior probabilities of H0

and H1, respectively, assuming the hypotheses have equal prior probabilities
of 1/2. Therefore, a conditional frequentist can simply compute the objective
Bayesian posterior probabilities of the hypotheses, and declare that they are
the conditional frequentist error probabilities; there is no need to formally
derive the conditioning statistic or perform the conditional frequentist com-
putations. There are many generalizations of this beyond the simple versus
simple testing.

The practical import of switching to conditional frequentist testing (or the
equivalent objective Bayesian testing) is startling. For instance, Sellke et al.
(2001) uses a nonparametric setting to develop the following very general lower
bound on α(s), for a given p-value:

α(s) ≥ 1

1− 1

e p ln(p)

. (23.4)

Some values of this lower bound for common p-values are given in Table 23.1.
Thus p = .05, which many erroneously think implies strong evidence against
H0, actually corresponds to a conditional frequentist error probability at least
as large as .289, which is a rather large error probability. If scientists un-
derstood that a p-value of .05 corresponded to that large a potential error
probability in rejection, the scientific world would be a quite different place.
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TABLE 23.1
Values of the lower bound α(s) in (23.4) for various values of p.

p .2 .1 .05 .01 .005 .001 .0001 .00001
α(s) .465 .385 .289 .111 .067 .0184 .0025 .00031

23.5.4 Testing a sequence of hypotheses

It is common in clinical trials to test multiple endpoints but to do so sequen-
tially, only considering the next hypothesis if the previous hypothesis was a
rejection of the null. For instance, the primary endpoint for a drug might be
weight reduction, with the secondary endpoint being reduction in an aller-
gic reaction. (Typically, these will be more biologically related endpoints but
the point here is better made when the endpoints have little to do with each
other.) Denote the primary endpoint (null hypothesis) by H1

0, and the statis-
tical analysis must first test this hypothesis. If the hypothesis is not rejected
at level α, the analysis stops — i.e., no further hypotheses can be considered.
However, if the hypothesis is rejected, one can go on and consider the sec-
ondary endpoint, defined by null hypothesis H2

0. Suppose this hypothesis is
also rejected at level α.

Surprisingly, the overall probability of Type I error (rejecting at least one
true null hypothesis) for this procedure is still just α — see, e.g., Hsu and
Berger (1999) — even though there is the possibility of rejecting two separate
hypotheses. It appears that the second test comes “for free,” with rejection
allowing one to claim two discoveries for the price of one. This actually seems
too remarkable; how can we be as confident that both rejections are correct
as we are that just the first rejection is correct?

If this latter intuition is not clear, note that one does not need to stop
after two hypotheses. If the second has rejected, one can test H3

0 and, if that
is rejected at level α, one can go on to test a fourth hypothesisH4

0, etc. Suppose
one follows this procedure and has rejected H1

0, . . . ,H10
0 . It is still true that

the probability of Type I error for the procedure — i.e., the probability that
the procedure will result in an erroneous rejection — is just α. But it seems
ridiculous to think that there is only probability α that at least one of the 10
rejections is incorrect. (Or imagine a million rejections in a row, if you do not
find the argument for 10 convincing.)

The problem here is in the use of the unconditional Type I error to judge
accuracy. Before starting the sequence of tests, the probability that the pro-
cedure yields at least one incorrect rejection is indeed, α, but the situation
changes dramatically as we start down the path of rejections. The simplest
way to see this is to view the situation from the Bayesian perspective. Consider
the situation in which all the hypotheses can be viewed as a priori indepen-
dent (i.e., knowing that one is true or false does not affect perceptions of the
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others). If x is the overall data from the trial, and a total of m tests are
ultimately conducted by the procedure, all claimed to be rejections (i.e., all
claimed to correspond to the Hi

0 being false), the Bayesian computes
Pr (at least one incorrect rejection |x)

= 1− Pr(no incorrect rejections|x)

= 1−
m∏

i=1

{1− Pr(Hi
0|x)} , (23.5)

where Pr(Hi
0|x) is the posterior probability that Hi

0 is true given the data.
Clearly, as m grows, (23.5) will go to 1 so that, if there are enough tests,
the Bayesian becomes essentially sure that at least one of the rejections was
wrong. From Section 23.5.3, recall that Bayesian testing can be exactly equiv-
alent to conditional frequentist testing, so it should be possible to construct a
conditional frequentist variant of (23.5). This will, however, be pursued else-
where.

While we assumed that the hypotheses are all a priori independent, it
is more typical in the multiple endpoint scenario that they will be a priori
related (e.g., different dosages of a drug). This can be handled within the
Bayesian approach (and will be explored elsewhere), but it is not clear how
a frequentist could incorporate this information, since it is information about
the prior probabilities of hypotheses.

23.5.5 True to false discovery odds

A very important paper in the history of genome wide association studies (the
effort to find which genes are associated with certain diseases) was Burton
et al. (2007). Consider testing H0 : θ = 0 versus an alternative H1 : θ '= 0,
with rejection region R and corresponding Type I and Type II errors α and
β(θ). Let p(θ) be the prior density of θ under H1, and define the average power

1− β̄ =

∫
{1− β(θ)}p(θ)dθ.

Frequentists would typically just pick some value θ∗ at which to evaluate the
power; this is equivalent to choosing p(θ) to be a point mass at θ∗.

The paper observed that, pre-experimentally, the odds of correctly reject-
ing H0 to incorrectly rejecting are

Opre =
π1

π0
× 1− β̄

α
, (23.6)

where π0 and π1 = 1 − π0 are the prior probabilities of H0 and H1. The
corresponding false discovery rate would be (1 +Opre)−1.

The paper went on to assess the prior odds π1/π0 of a genome/disease
association to be 1/100, 000, and estimated the average power of a GWAS
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test to be .5. It was decided that a discovery should be reported if Opre ≥ 10,
which from (23.6) would require α ≤ 5× 10−7; this became the recommended
standard for significance in GWAS studies. Using this standard for a large data
set, the paper found 21 genome/disease associations, virtually all of which have
been subsequently verified.

An alternative approach that was discussed in the paper is to use the
posterior odds rather than pre-experimental odds — i.e., to condition. The
posterior odds are

Opost(x) =
π1

π0
× m(x|H1)

f(x|0) , (23.7)

where m(x|H1) =
∫
f(x|θ)p(θ)dθ is the marginal likelihood of the data x

under H1. (Again, this prior could be a point mass at θ∗ in a frequentist
setting.) It was noted in the paper that the posterior odds for the 21 claimed
associations ranged between 1/10 (i.e., evidence against the association being
true) to 1068 (overwhelming evidence in favor of the association). It would
seem that these conditional odds, based on the actual data, are much more
scientifically informative than the fixed pre-experimental odds of 10/1 for the
chosen α, but the paper did not ultimately recommend their use because it
was felt that a frequentist justification was needed.

Actually, use of Opost is as fully frequentist as is use of Opre, since it
is trivial to show that E{Opost(x)|H0,R} = Opre, i.e., the average of the
conditional reported odds equals the actual pre-experimental reported odds,
which is all that is needed to be fully frequentist. So one can have the much
more scientifically useful conditional report, while maintaining full frequentist
justification. This is yet another case where, upon getting the conditioning
right, a frequentist completely agrees with a Bayesian.

23.6 Final comments

Lots of bad science is being done because of a lack of recognition of the
importance of conditioning in statistics. Overwhelmingly at the top of the list
is the use of p-values and acting as if they are actually error probabilities.
The common approach to testing a sequence of hypotheses is a new addition
to the list of bad science because of a lack of conditioning. The use of pre-
experimental odds rather than posterior odds in GWAS studies is not so much
bad science, as a failure to recognize a conditional frequentist opportunity
that is available to improve science. Violation of the stopping rule principle
in sequential (or interim) analysis is in a funny position. While it is generally
suboptimal (for instance, one could do conditional frequentist testing instead),
it may be necessary if one is committed to certain inferential procedures such
as fixed Type I error probabilities. (In other words, one mistake may require
the incorporation of another mistake.)
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How does a frequentist know when a serious conditioning mistake is being
made? We have seen a number of situations where it is clear but, in general,
there is only one way to identify if conditioning is an issue — Bayesian analysis.
If one can find a Bayesian analysis for a reasonable prior that yields the same
answer as the frequentist analysis, then there is probably not a conditioning
issue; otherwise, the conflicting answers are probably due to the need for
conditioning on the frequentist side.

The most problematic situations (and unfortunately there are many) are
those for which there exists an apparently sensible unconditional frequentist
analysis but Bayesian analysis is unavailable or too difficult to implement given
available resources. There is then not much choice but to use the unconditional
frequentist analysis, but one might be doing something silly because of not
being able to condition and one will not know. The situation is somewhat
comparable to seeing the report of a Bayesian analysis but not having access
to the prior distribution.

While I have enjoyed reminiscing about conditioning, I remain as perplexed
today as 35 years ago when I first learned about the issue; why do we still not
treat conditioning as one of the most central issues in statistics?
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Statistical inference from a
Dempster–Shafer perspective

Arthur P. Dempster
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Harvard University, Cambridge, MA

24.1 Introduction

What follows is a sketch of my 2013 viewpoint on how statistical inference
should be viewed by applied statisticians. The label DS is an acronym for
“Dempster–Shafer” after the originators of the technical foundation of the
theory. Our foundation remains essentially unchanged since the 1960s and
1970s when I and then Glenn Shafer were its initial expositors.

Present issues concern why and how the theory has the potential to develop
into a major competitor of the “frequentist” and “Bayesian” outlooks. This for
me is a work in progress. My understanding has evolved substantially over the
past eight years of my emeritus status, during which DS has been my major
focus. It was also a major focus of mine over the eight years beginning in 1961
when I first had the freedom that came with academic tenure in the Harvard
Statistics Department. Between the two periods I was more an observer and
teacher in relation to DS than a primary developer. I do not attempt here to
address the long history of how DS got to where I now understand it to be,
including connections with R.A. Fisher’s controversial “fiducial” argument.

DS draws on technical developments in fields such as stochastic modeling
and Bayesian posterior computation, but my DS-guided perception of the na-
ture of statistical inference is in different ways both narrower and broader than
that of its established competitors. It is narrower because it maintains that
what “frequentist” statisticians call “inference” is not inference in the natural
language meaning of the word. The latter means to me direct situation-specific
assessments of probabilistic uncertainties that I call “personal probabilities.”
For example, I might predict on September 30, 2013 that with personal prob-
ability .31 the Dow Jones Industrials stock index will exceed 16,000 at the end
of business on December 31, 2013.

267
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From the DS perspective, statistical prediction, estimation, and signifi-
cance testing depend on understanding and accepting the DS logical frame-
work, as implemented through model-based computations that mix proba-
bilistic and deterministic logic. They do not depend on frequentist properties
of hypothetical (“imagined”) long runs of repeated application of any defined
repeatable statistical procedure, which properties are simply mathematical
statements about the procedure. Knowledge of such long run properties may
guide choosing among statistical procedures, but drawing conclusions from a
specific application of a chosen procedure is something else again.

Whereas the logical framework of DS inference has long been defined and
stable, and presumably will not change, the choice of a model to be processed
through the logic must be determined by a user or user community in each
specific application. It has long been known that DS logic subsumes Bayesian
logic. A Bayesian instantiation of DS inference occurs automatically within
the DS framework when a Bayesian model is adopted by a user. My argu-
ment for the importance of DS logic is not primarily that it encapsulates
Bayes, however, but is that it makes available important classes of models
and associated inferences that narrower Bayesian models are unable to rep-
resent. Specifically, it provides models where personal probabilities of “don’t
know” are appropriately introduced. In particular, Bayesian “priors” become
optional in many common statistical situations, especially when DS probabil-
ities of “don’t know” are allowed. Extending Bayesian thinking in this way
promises greater realism in many or even most applied situations.

24.2 Personal probability

DS probabilities can be studied from a purely mathematical standpoint, but
when they have a role in assessing uncertainties about specific real world un-
knowns, they are meant for interpretation as “personal” probabilities. To my
knowledge, the term “personal” was first used in relation to mathematical
probabilities by Émile Borel in a book (Borel, 1939), and then in statistics by
Jimmie Savage, as far back as 1950, and subsequently in many short contribu-
tions preceding his untimely death in 1971. Savage was primarily concerned
with Bayesian decision theory, wherein proposed actions are based on poste-
rior expectations. From a DS viewpoint, the presence of decision components
is optional.

The DS inference paradigm explicitly recognizes the role of a user in con-
structing and using formal models that represent his or her uncertainty. No
other role for the application of probabilities is recognized. Ordinary speech
often describes empirical variation as “random,” and statisticians often re-
gard probabilities as mathematical representations of “randomness,” which
they are, except that in most if not all of statistical practice “random” varia-
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tion is simply unexplained variation whose associated probabilities are quite
properly interpretable as personal numerical assessments of specific targeted
uncertainties. Such models inevitably run a gamut from objective to subjec-
tive, and from broadly accepted to proposed and adopted by a single analyst
who becomes the “person” in a personalist narrative. Good statistical practice
aims at the left ends of both scales, while actual practice necessarily makes
compromises. As Jack Good used to say, “inference is possible.”

The concept of personalist interpretation of specific probabilities is usually
well understood by statisticians, but is mostly kept hidden as possibly unscien-
tific. Nevertheless, all approaches to statistical inference imply the exercise of
mature judgment in the construction and use of formal models that integrate
descriptions of empirical phenomena with prescriptions for reasoning under
uncertainty. By limiting attention to long run averages, “frequentist” inter-
pretations are designed to remove any real or imagined taint from personal
probabilities, but paradoxically do not remove the presence of nonprobabilistic
reasoning about deterministic long runs. The latter reasoning is just as per-
sonalist as the former. Why the fear of reasoning with personal probabilities,
but not a similar fear of ordinary propositional logic? This makes no sense to
me, if the goal is to remove any role for a “person” performing logical analysis
in establishing valid scientific findings.

I believe that, as partners in scientific inquiry, applied statisticians should
seek credible models directly aimed at uncertainties through precisely formu-
lated direct and transparent reasoning with personal probabilities. I argue
that DS logic is at present the best available system for doing this.

24.3 Personal probabilities of “don’t know”

DS “gives up something big,” as John Tukey once described it to me, or as
I now prefer to describe it, by modifying the root concepts of personal prob-
abilities “for” and “against” that sum to one, by appending a third personal
probability of “don’t know.” The extra term adds substantially to the flex-
ibility of modeling, and to the expressiveness of inputs and outputs of DS
probabilistic reasoning.

The targets of DS inference are binary outcomes, or equivalent assertions
that the true state of some identified small world is either in one subset of the
full set of possible true states, or in the complementary subset. Under what
I shall refer to as the “ordinary” calculus of probability (OCP), the user is
required to supply a pair of non-negative probabilities summing to one that
characterize “your” uncertainty about which subset contains the true state.
DS requires instead that “you” adopt an “extended” calculus of probability
(ECP) wherein the traditional pair of probabilities that the true state lies or
does not lie in the subset associated with a targeted outcome is supplemented
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by a third probability of “don’t know,” where all three probabilities are non-
negative and sum to one. It needs to be emphasized that the small world
of possible true states is characterized by binary outcomes interpretable as
true/false assertions, while uncertainties about such two-valued outcomes are
represented by three-valued probabilities.

For a given targeted outcome, a convenient notation for a three-valued
probability assessment is (p, q, r), where p represents personal probability “for”
the truth of an assertion, while q represents personal probability “against,”
and r represents personal probability of “don’t know.” Each of p, q, and r is
non-negative and together they sum to unity. The outcome complementary to
a given target associated with (p, q, r) has the associated personal probability
triple (q, p, r). The “ordinary” calculus is recovered from the “extended” cal-
culus by limiting (p, q, r) uncertainty assessments to the form (p, q, 0), or (p, q)
for short. The “ordinary” calculus permits “you” to be sure that the assertion
is true through (p, q, 0) = (1, 0, 0), or false through (p, q, r) = (0, 1, 0), while
the “extended” calculus additionally permits (p, q, r) = (0, 0, 1), representing
total ignorance.

Devotees of the “ordinary” calculus are sometimes inclined, when con-
fronted with the introduction of r > 0, to ask why the extra term is needed.
Aren’t probabilities (p, q) with p + q = 1 sufficient to characterize scientific
and operational uncertainties? Who needs probabilities of “don’t know”? One
answer is that every application of a Bayesian model is necessarily based on
a limited state space structure (SSS) that does not assess associated (p, q)
probabilities for more inclusive state space structures. Such extended state
space structures realistically always exist, and may be relevant to reported
inferences. In effect, every Bayesian analysis makes implicit assumptions that
evidence about true states of variables omitted from an SSS is “independent”
of additional probabilistic knowledge, including ECP expressions thereof, that
should accompany explicitly identifiable state spaces. DS methodology makes
available a wide range of models and analyses whose differences from narrower
analyses can point to “biases” due to the limitations of state spaces associated
with reported Bayesian analyses. Failure of narrower assumptions often accen-
tuates non-reproducibility of findings from non-DS statistical studies, casting
doubts on the credibility of many statistical studies.

DS methodology can go part way at least to fixing the problem through
broadening of state space structures and indicating plausible assignments of
personal probabilities of “don’t know” to aspects of broadened state spaces,
including the use of (p, q, r) = (0, 0, 1) when no empirical basis “whatever” to
quote Keynes exists for the use of “a good Benthamite calculation of a series of
prospective advantages and disadvantages, each multiplied by its appropriate
probability, waiting to he summed” that can be brought to bear. DS allows a
wide range of possible probabilistic uncertainty assessments between complete
ignorance and the fully “Benthamite” (i.e., Bayesian) models that Keynes
rejected for many applications.
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As the world of statistical analysis moves more and more to “big data”
and associated “complex systems,” the DS middle ground can be expected to
become increasingly important. DS puts no restraints on making state space
structures as large as judged essential for bias protection, while the accompa-
nying increases in many probabilities of “don’t know” will often require pay-
ing serious attention to the introduction of more evidence, including future
research studies. Contrary to the opinion of critics who decry all dependence
on mathematical models, the need is for more inclusive and necessarily more
complex mathematical models that will continue to come on line as associated
information technologies advance.

24.4 The standard DS protocol

Developing and carrying out a DS analysis follows a prescribed sequence of
activities and operations. First comes defining the state space structure, re-
ferred to henceforth by its acronym SSS. The purpose of initializing an SSS
is to render precise the implied connection between the mathematical model
and a piece of the actual real world. Shafer introduced the insightful term
“frame of discernment” for what I am calling the SSS. The SSS is a mathe-
matical set whose elements are the possible true values of some “small world”
under investigation. The SSS is typically defined by a vector or multi-way
array of variables, each with its own known or unknown true value. Such an
SSS may be very simple, such as a vector of binary variables representing the
outcomes of successive tosses of a bent coin, some observed, and some such as
future tosses remaining unobserved. Or, an SSS may be huge, based on a set
of variables representing multivariate variation across situations that repeat
across times and spatial locations, in fields such as climatology, genomics, or
economics.

The requirement of an initialized SSS follows naturally from the desirabil-
ity of clearly and adequately specifying at the outset the extent of admissible
queries about the true state of a small world under analysis. Each such query
corresponds mathematically to a subset of the SSS. For example, before the
first toss of a coin in an identified sequence of tosses, I might formulate a
query about the outcome, and respond by assigning a (p, q, r) personal prob-
ability triple to the outcome “head,” and its reordered (q, p, r) triple to the
“complementary” outcome “tail.” After the outcome “head” is observed and
known to “you,” the appropriate inference concerning the outcome “head” is
(1, 0, 0), because the idealized “you” is sure about the outcome. The assertion
“head on the first toss” is represented by the “marginal” subset of the SSS
consisting of all possible outcomes of all the variables beyond the first toss,
which has been fixed by observation. A DS inference (1, 0, 0) associated with
“head” signifies observed data.
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The mindset of the user of DS methods is that each assignment of a (p, q, r)
judgment is based on evidence. Evidence is a term of art, not a formal concept.
Statistical data is one source of evidence. If the outcome of a sequence of n =
10 tosses of a certain bent coin is observed to result in data HTTHHHTHTT,
then each data point provides evidence about a particular toss, and queries
with (1, 0, 0) responses can be given with confidence concerning individual
margins of the 10-dimensional SSS. The user can “combine” these marginal
inferences so as to respond to queries depending on subsets of the sequence,
or about any interesting properties of the entire sequence.

The DS notion of “combining” sources of evidence extends to cover prob-
abilistically represented sources of evidence that combine with each other and
with data to produce fused posterior statistical inferences. This inference pro-
cess can be illustrated by revising the simple SSS of 10 binary variables to
include a long sequence of perhaps N = 10,000 coin tosses, of which the ob-
served n = 10 tosses are only the beginning. Queries may now be directed at
the much larger set of possible outcomes concerning properties of subsets, or
about any or all of the tosses, whether observed or not. We may be interested
primarily in the long run fraction P of heads in the full sequence, then shrink
back the revised SSS to the sequence of variables X1, . . . , X10, P , whence to
work with approximate mathematics that treats N as infinite so that P may
take any real value on the closed interval [0, 1]. The resulting inference sit-
uation was called “the fundamental problem of practical statistics” by Karl
Pearson in 1920 giving a Bayesian solution. It was the implicit motivation for
Jakob Bernoulli writing circa 1700 leading him to introduce binomial sampling
distributions. It was again the subject of Thomas Bayes’s seminal posthumous
1763 note introducing what are now known as uniform Bayesian priors and
associated posterior distributions for an unknown P .

My 1966 DS model and analysis for this most basic inference situation,
when recast in 2013 terminology, is best explained by introducing a set of
“auxiliary” variables U1, . . . , U10 that are assigned a uniform personal proba-
bility distribution over the 10-dimensional unit cube. The Ui do not represent
any real world quantities, but are simply technical crutches created for math-
ematical convenience that can be appropriately marginalized away in the end
because inferences concerning the values of the Ui have no direct real world
interpretation.

Each of the independent and identically distributed Ui provides the con-
nection between a known Xi and the target unknown P . The relationships
among Xi, P , and Ui are already familiar to statisticians because they are
widely used to “computer-generate” a value of Xi for given P . Specifically,
my suggested relations are

Xi = 1 if 0 ≤ Ui ≤ P and Xi = 0 if P < Ui ≤ 1,

for each i, where Xi = 1 means “head” and Xi = 0 means “tail.”
In practice, the above relations can be applied under DS inference logic

either when P is assumed known and inferences about the Xi are sought, or
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when the Xi are assumed known and inferences about P are sought. The jus-
tification for the less familiar “inverse” application is tied to the fundamental
DS “rule of combination” under “independence” that was the pivotal innova-
tion of my earliest papers. The attitude here is that the Xi and P describe
features of the real world, with values that may be known or unknown accord-
ing to context, thereby avoiding the criticism that P and Xi must be viewed
asymmetrically because P is “fixed” and Xi is “random.” Under a personalist
viewpoint the argument based on asymmetry is not germane. Either or both
of the two independence assumptions may be assumed according as P or Xi

or both have known values. (In the case of “both,” the Ui become partially
known according to the above formulas.)

Precise details of the concepts and operations of the “extended calculus of
probability” (ECP) arise naturally when the Xi are fixed, whence the above
relations do not determine P uniquely, but instead limit P to an interval as-
sociated with personal probabilities determined by the Ui. Under the ECP
in its general form, personal probabilities are constructed from a distribution
over subsets of the SSS that we call a “mass distribution.” The mass distribu-
tion determines by simple sums the (p, q, r) for any desired subset of the SSS,
according as mass is restricted to the subset in the case of p, or is restricted
to the complement of the subset in the case of q, or has positive accumulated
mass in both subsets in the case of r. DS combination of independent com-
ponent mass distributions involves both intersection of subsets as in proposi-
tional logic, and multiplication of probabilities as in the ordinary calculus of
probability (OCP). The ECP allows not only projecting a mass distribution
“down” to margins, as in the OCP, but also inverse projection of a marginal
mass distribution “up” to a finer margin of the SSS, or to an SSS that has
been expanded by adjoining arbitrarily many new variables. DS combination
takes place in principle across input components of evidence that have been
projected up to a full SSS, although in practice computational shortcuts are
often available. Combined inferences are then computed by projecting down
to obtain marginal inferences of practical interest.

Returning to the example called the “fundamental problem of practical
statistics,” it can be shown that the result of operating with the inputs of data-
determined logical mass distributions, together with inputs of probabilistic
mass distributions based on the Ui, leads to a posterior mass distribution
that in effect places the unknown P on the interval between the Rth and
(R + 1)st ordered values of the Ui, where R denotes the observed number of
“heads” in the n observed trials. This probabilistic interval is the basis for
significance testing, estimation and prediction.

To test the null hypothesis that P = .25, for example, the user computes
the probability p that the probabilistic interval for P is either completely to
the right or left of P = .25. The complementary 1 − p is the probability r
that the interval covers P = .25, because there is zero probability that the
interval shrinks to precisely P . Thus (p, 0, r) is the triple corresponding to the
assertion that the null hypothesis fails, and r = 1−p replaces the controversial
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“p-value” of contemporary applied statistics. The choice offered by such a DS
significance test is not to either “accept” or “reject” the null hypothesis, but
instead is either to “not reject” or “reject.”

In a similar vein a (p, q, r) triple can be associated with any specified
range of P values, such as the interval (.25, .75), thus creating an “interval
estimate.” Similarly, if so desired, a “sharp” null hypothesis such as P = .25
can be rendered “dull” using an interval such as (.24, .26). Finally, if the
SSS is expanded to include a future toss or tosses, then (p, q, r) “predictions”
concerning the future outcomes of such tosses can be computed given observed
sample data.

There is no space here to set forth details concerning how independent
input mass distributions on margins of an SSS are up-projected to mass dis-
tributions on the full SSS, and are combined there and used to derive infer-
ences as in the preceding paragraphs. Most details have been in place, albeit
using differing terminology, since the 1960s. The methods are remarkably sim-
ple and mathematically elegant. It is surprising to me that research on the
standard protocol has not been taken up by any but an invisible sliver of the
mathematical statistics community.

The inference system outlined in the preceding paragraphs can and should
be straightforwardly developed to cover many or most inference situations
found in statistical textbooks. The result will not only be that traditional
Bayesian models and analyses can be re-expressed in DS terms, but more sig-
nificantly that many “weakened” modifications of such inferences will become
apparent, for example, by replacing Bayesian priors with DS mass distribu-
tions that demand less in terms of supporting evidence, including limiting
“total ignorance” priors concerning “parameter” values. In the case of such
(0, 0, 1)-based priors, traditional “likelihood functions” assume a restated DS
form having a mass distribution implying stand-alone DS inferences. But when
a “prior” includes limited probabilities of “don’t know,” the OCP “likelihood
principle” no longer holds, nor is it needed. It also becomes easy in principle
to “weaken” parametric forms adopted in likelihood functions, for example,
by exploring DS analyses that do not assume precise normality, but might
assume that cumulative distribution functions (CDFs) are within, say, .10 of
a Gaussian CDF. Such “robustness” research is in its infancy, and is without
financial support, to my knowledge, at the present time.

The concepts of DS “weakening,” or conversely “strengthening,” provide
basic tools of model construction and revision for a user to consider in the
course of arriving at final reports. In particular, claims about complex systems
may be more appropriately represented in weakened forms with increased
probabilities of “don’t know.”



A.P. Dempster 275

24.5 Nonparametric inference

When I became a PhD student in the mid-50s, Sam Wilks suggested to me
that the topic of “nonparametric” or “distribution-free” statistical inference
had been largely worked through in the 1940s, in no small part through his
efforts, implying that I might want to look elsewhere for a research topic.
I conclude here by sketching how DS could introduce new thinking that goes
back to the roots of this important topic.

A use of binomial sampling probabilities similar to that in my coin-tossing
example arises in connection with sampling a univariate continuous observ-
able. In a 1939 obituary for “Student” (W.S. Gosset), Fisher recalled that
Gosset had somewhere remarked that given a random sample of size 2 with a
continuous observable, the probability is 1/2 that the population median lies
between the observations, with the remaining probabilities 1/4 and 1/4 evenly
split between the two sides of the data. In a footnote, Fisher pointed out how
Student’s remark could be generalized to use binomial sampling probabilities
to locate with computed probabilistic uncertainty any nominated population
quantile in each of the n + 1 intervals determined by the data. In DS terms,
the same ordered uniformly distributed auxiliaries used in connection with
“binomial” sampling a dichotomy extend easily to provide marginal mass dis-
tribution posteriors for any unknown quantile of the population distribution,
not just the quantiles at the observed data points. When the DS analysis is
extended to placing an arbitrary population quantile in intervals other than
exactly determined by the observations, (p, q, r) inferences arise that in gen-
eral have r > 0, including r = 1 for assertions concerning the population CDF
in regions in the tails of the data beyond the largest and smallest observations.
In addition, DS would have allowed Student to extend his analysis to predict
that a third sample draw can be predicted to lie in each of the three regions
determined by the data with equal probabilities 1/3, or more generally with
equal probabilities 1/(n+1) in the n+1 regions determined by n observations.

The “nonparametric” analysis that Fisher pioneered in his 1939 footnote
serves to illustrate DS-ECP logic in action. It can also serve to illustrate the
need for critical examination of particular models and consequent analyses.
Consider the situation of a statistician faced with analysis of a sample of
modest size, such as n = 30, where a casual examination of the data suggests
that the underlying population distribution has a smooth CDF but does not
conform to an obvious simple parametric form such as Gaussian. After plotting
the data, it would not be surprising to see that the lengths of intervals between
successive ordered data point over the middle ranges of the data vary by a
factor of two or three. The nonparametric model asserts that these intervals
have equal probabilities 1/(n+ 1) = 1/31 of containing the next draw, but a
broker offering both sides of bets based on these probabilities would soon be
losing money because takers would bet with higher and lower probabilities for
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longer and shorter intervals. The issue here is a version of the “multiplicity”
problem of applied inferential statistics.

Several modified DS-ECP strategies come to mind. One idea is to
“strengthen” the broad assumption that allows all continuous population
CDFs, by imposing greater smoothness, for example by limiting considera-
tion to population distributions with convex log probability density function.
If the culprit is that invariance over all monotone continuous transforms of
the scale of the observed variable is too much, then maybe back off to just
linear invariance as implied by a convexity assumption. Alternatively, if it is
desired to retain invariance over all monotone transforms, then the auxiliaries
can be “weakened” by requiring “weakened” auxiliary “don’t know” terms
to apply across ranges of intervals between data points. The result would be
bets with increased “don’t know” that could help protect the broker against
bankruptcy.

24.6 Open areas for research

Many opportunities exist for both modifying state space structures through
alternative choices that delete some variables and add others. The robustness
of simpler models can be studied when only weak or nonexistent personal
probability restrictions can be supported by evidence concerning the effects of
additional model complexity. Many DS models that mimic standard multipa-
rameter models can be subjected to strengthening or weakening modifications.
In particular, DS methods are easily extended to discount for cherry-picking
among multiple inferences. There is no space here to survey a broad range
of stochastic systems and related DS models that can be re-expressed and
modified in DS terms.

DS versions of decision theory merit systematic development and study.
Decision analysis assumes a menu of possible actions each of which is associ-
ated with a real-valued utility function defined over the state space structure
(SSS). Given an evidence-based posterior mass distribution over the SSS, each
possible action has an associated lower expectation and upper expectation de-
fined in an obvious way. The lower expectation is interpreted as “your” guar-
anteed expected returns from choosing alternative actions, so is a reasonable
criterion for “optimal” decision-making.

In the case of simple bets, two or more players compete for a defined prize
with their own DS mass functions and with the same utility function on the
same SSS. Here, Borel’s celebrated observation applies:

“It has been said that, given two bettors, there is always one thief
and one imbecile; that is true in certain cases when one of the two
bettors is much better informed than the other, and knows it; but it



A.P. Dempster 277

can easily happen that two men of good faith, in complex matters
where they possess exactly the same elements of information, arrive
at different conclusions on the probabilities of an event, and that in
betting together, each believes... that it is he who is the thief and the
other the imbecile.” (Borel, 1924)

A typical modern application involves choices among different investment
opportunities, through comparisons of DS posterior lower expectations of fu-
ture monetary gains for buyers or losses for sellers, and for risk-taking brokers
who quote bid/ask spreads while bringing buyers and sellers together. For
mathematical statisticians, the field of DS decision analysis is wide open for
investigations of models and analyses, of interest both mathematically and
for practical use. For the latter in particular there are many potentially use-
ful models to be defined and studied, and to be implemented numerically by
software with acceptable speed, accuracy, and cost.

A third area of potential DS topics for research statisticians concerns
modeling and inference for “parametric” models, as originally formulated by
R.A. Fisher in his celebrated pair of 1920s papers on estimation. The concept
of a statistical parameter is plagued by ambiguity. I believe that the term
arose in parallel with similar usage in physics. For example, the dynamics of
physical systems are often closely approximated by classical Newtonian phys-
ical laws, but application of the laws can depend on certain “parameters”
whose actual numerical values are left “to be determined.” In contemporary
branches of probabilistic statistical sciences, stochastic models are generally
described in terms of parameters similarly left “to be determined” prior to
direct application. The mathematics is clear, but the nature of the task of
parameter determination for practical application is murky, and in statistics
is a chief source of contention between frequentists and Bayesians.

In many stochastic sampling models, including many pioneered by Fisher,
parameters such as population fractions, means, and standard deviations, can
actually represent specific unknown real world population quantities. Often-
times, however, parameters are simply ad hoc quantities constructed on the
fly while “fitting” mathematical forms to data. To emphasize the distinction,
I like to denote parameters of the former type by Roman capital letters such as
P , M , and S, while denoting analogous “parameters” fitted to data by Greek
letters π, µ and σ. The distinction here is important, because the parame-
ters of personalist statistical science draw on evidence and utilities that can
only be assessed one application at a time. “Evidence-based” assumptions, in
particular, draw upon many types of information and experience.

Very little published research exists that is devoted to usable personalist
methodology and computational software along the lines of the DS standard
protocol. Even the specific DS sampling model for inference about a popu-
lation with k exchangeable categories that was proposed in my initial 1966
paper in The Annals of Mathematical Statistics has not yet been implemented
and analyzed beyond the trivially simple case of k = 2. I published a brief
report in 2008 on estimates and tests for a Poisson parameter L, which is a
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limiting case of the binomial P . I have given eight or so seminars and lectures
in recent years, more in Europe than in North America, and largely outside
of the field of statistics proper. I have conducted useful correspondences with
statisticians, most notably Paul Edlefsen, Chuanhai Liu, and Jonty Rougier,
for which I am grateful.

Near the end of my 1966 paper I sketched an argument to the effect that
a limiting case of my basic multinomial model for data with k exchangeable
cells, wherein the observables become continuous in the limit, leads to defined
limiting DS inferences concerning the parameters of widely adopted paramet-
ric sampling models. This theory deserves to pass from conjecture to theorem,
because it bears on how specific DS methods based on sampling models gener-
alize traditional methods based on likelihood functions that have been studied
by mathematical statisticians for most of the 20th century. Whereas individual
likelihood functions from each of the n data points in a random sample multi-
ply to yield the combined likelihood function for a complete random sample of
size n, the generalizing DS mass distributions from single observations com-
bine under the DS combination rule to provide the mass distribution for DS
inference under the full sample. In fact, values of likelihood functions are seen
to be identical to “upper probabilities” p+ r obtained from DS (p, q, r) infer-
ences for singleton subsets of the parameters. Ordinary likelihood functions
are thus seen to provide only part of the information in the data. What they
lack is information associated with the “don’t know” feature of the extended
calculus of probability.

Detailed connections between the DS system and its predecessors invite
illuminating research studies. For example, mass distributions that general-
ize likelihood functions from random samples combine under the DS rule of
combination with prior mass distributions to provide DS inferences that gen-
eralize traditional Bayesian inferences. The use of the term “generalize” refers
specifically to the recognition that when the DS prior specializes to an ordi-
nary calculus of probability (OCP) prior, the DS combination rule reproduces
the traditional “posterior = prior × likelihood” rule of traditional Bayesian
inference. In an important sense, the DS rule of combination is thus seen to
generalize the OCP axiom that the joint probability of two events equals the
marginal probability of one multiplied by the conditional probability of the
other given the first.

I believe that an elegant theory of parametric inference is out there just
waiting to be explained in precise mathematical terms, with the potential to
render moot many of the confusions and controversies of the 20th century over
statistical inference.
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Borel, É. (1939). Valeur pratique et philosophie des probabilités. Gauthiers-
Villars, Paris.

Dempster, A.P. (1966). New methods for reasoning towards posterior dis-
tributions based on sample data. The Annals of Mathematical Statistics,
37:355–374.

Dempster, A.P. (1967). Upper and lower probabilities induced by a multi-
valued mapping. The Annals of Mathematical Statistics, 38:325–339.

Dempster, A.P. (1968). A generalization of Bayesian inference (with discus-
sion). Journal of the Royal Statistical Society, Series B, 30:205–247.

Dempster, A.P. (1990). Bayes, Fisher, and belief functions. In Bayesian and
Likelihood Methods in Statistics and Econometrics: Essays in Honor of
George Barnard (S. Geisser, J.S. Hodges, S.J. Press, and A. Zellner, Eds.).
North-Holland, Amsterdam.

Dempster, A.P. (1990). Construction and local computation aspects of net-
worked belief functions. In Influence Diagrams, Belief Nets and Decision
Analysis (R.M. Oliver and J.Q. Smith, Eds.). Wiley, New York.

Dempster, A.P. (1998). Logicist statistics I. Models and modeling. Statistical
Science, 13:248–276.

Dempster, A.P. (2008). Logicist Statistics II. Inference. (Revised version of
the 1998 COPSS Fisher Memorial Lecture) Classic Works of Dempster–
Shafer Theory of Belief Functions (L. Liu and R.R. Yager, Eds.).

Dempster, A.P. (2008). The Dempster–Shafer calculus for statisticians. In-
ternational Journal of Approximate Reasoning, 48:365–377.

Dempster, A.P. and Chiu, W.F. (2006). Dempster–Shafer models for object
recognition and classification. International Journal of Intelligent Sys-
tems, 21:283–297.

Fisher, R.A. (1922). On the mathematical foundations of theoretical statis-
tics. Philosophical Transactions, Series A, 222:309–368.

Fisher, R.A. (1925). Theory of statistical estimation. Proceedings of the Cam-
bridge Philosophical Society, 22:200–225.



280 DS perspective on statistical inference

Fisher, R.A. (1939). “Student.” Annals of Eugenics, 9:1–9.

Keynes, J.M. (1937). The general theory of employment. Quarterly Journal
of Economics, 51:209–223.

Pearson, K. (1920). The fundamental problem of practical statistics.
Biometrika, 20:1–16.

Savage, L.J. (1950). The role of personal probability in statistics. Economet-
rica, 18:183–184.

Savage, L.J. (1981). The Writings of Leonard Jimmie Savage — A Memo-
rial Selection. Published by the American Statistical Association and the
Institute of Mathematical Statistics, Washington, DC.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University
Press, Princeton, NJ.

Wilks, S.S. (1948). Order statistics. Bulletin of the American Mathematical
Society, 54:6–48.



25

Nonparametric Bayes
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Duke University, Durham, NC

I reflect on the past, present, and future of nonparametric Bayesian statistics.
Current nonparametric Bayes research tends to be split between theoretical
studies, seeking to understand relatively simple models, and machine learn-
ing, defining new models and computational algorithms motivated by prac-
tical performance. I comment on the current landscape, open problems and
promising future directions in modern big data applications.

25.1 Introduction

25.1.1 Problems with parametric Bayes

In parametric Bayesian statistics, one chooses a likelihood function L(y|θ)
for data y, which is parameterized in terms of a finite-dimensional unknown
θ. Choosing a prior distribution for θ, one updates this prior with the like-
lihood L(y|θ) via Bayes’ rule to obtain the posterior distribution π(θ|y) for
θ. This framework has a number of highly appealing characteristics, ranging
from flexibility to the ability to characterize uncertainty in θ in an intuitively
appealing probabilistic manner. However, one unappealing aspect is the in-
trinsic assumption that the data were generated from a particular probability
distribution (e.g., a Gaussian linear model).

There are a number of challenging questions that arise in considering,
from both philosophical and practical perspectives, what happens when such
an assumption is violated, as is arguably always the case in practice. From a
philosophical viewpoint, if one takes a parametric Bayesian perspective, then
a prior is being assumed that has support on a measure zero subset of the set
of possible distributions that could have generated the data. Of course, as it is
commonly accepted that all models are wrong, it seems that such a prior does
not actually characterize any individual’s prior beliefs, and one may question
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the meaning of the resulting posterior from a subjective Bayes perspective. It
would seem that a rational subjectivist would assign positive prior probability
to the case in which the presumed parametric model is wrong in unanticipated
ways, and probability zero to the case in which the data are generated exactly
from the presumed model. Objective Bayesians should similarly acknowledge
that any parametric model is wrong, or at least has a positive probability of
being wrong, in order to truly be objective. It seems odd to spend an enormous
amount of effort showing that a particular prior satisfies various objectivity
properties in a simple parametric model, as has been the focus of much of the
Bayes literature.

The failure to define a framework for choosing priors in parametric models,
which acknowledge that the “working” model is wrong, leads to some clear
practical issues with parametric Bayesian inference. One of the major ones is
the lack of a framework for model criticism and goodness-of-fit assessments.
Parametric Bayesians assume prior knowledge of the true model which gen-
erated the data, and hence there is no allowance within the Bayesian frame-
work for incorrect model choice. For this reason, the literature on Bayesian
goodness-of-fit assessments remains under-developed, with most of the exist-
ing approaches relying on diagnostics that lack a Bayesian justification. A
partial solution is to place a prior distribution over a list of possible models
instead of assuming a single model is true a priori. However, such Bayesian
model averaging/selection approaches assume that the true model is one of
those in the list, the so-called M -closed viewpoint, and hence do not solve the
fundamental problem.

An alternative pragmatic view is that it is often reasonable to operate
under the working assumption that the presumed model is true. Certainly,
parametric Bayesian and frequentist inferences often produce excellent re-
sults even when the true model deviates from the assumptions. In parametric
Bayesian models, it tends to be the case that the posterior distribution for
the unknown θ will concentrate at the value θ0, which yields a sampling dis-
tribution that is as close as possible to the true data-generating model in
terms of the Kullback–Leibler (KL) divergence. As long as the parametric
model provides an “adequate” approximation, and this divergence is small,
it is commonly believed that inferences will be “reliable.” However, there has
been some research suggesting that this common belief is often wrong, such
as when the loss function is far from KL (Owhadi et al., 2013).

Results of this type have provided motivation for “quasi” Bayesian ap-
proaches, which replace the likelihood with other functions (Chernozhukov
and Hong, 2003). For example, quantile-based substitution likelihoods have
been proposed, which avoid specifying the density of the data between quan-
tiles (Dunson and Taylor, 2005). Alternatively, motivated by avoiding specifi-
cation of parametric marginal distributions in considering copula dependence
models (Genest and Favre, 2007; Hoff, 2007; Genest and Nešlehová, 2012;
Murray et al., 2013), use an extended rank-based likelihood. Recently, the
idea of a Gibbs posterior (Jiang and Tanner, 2008; Chen et al., 2010) was in-
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troduced, providing a generalization of Bayesian inference using a loss-based
pseudo likelihood. Appealing properties of this approach have been shown in
various contexts, but it is still unclear whether such methods are appropri-
ately calibrated so that the quasi posterior distributions obtained provide a
valid measure of uncertainty. It may be the case that uncertainty intervals
are systematically too wide or too narrow, with asymptotic properties such as
consistency providing no reassurance that uncertainty is well characterized.

Fully Bayesian nonparametric methods require a full characterization of
the likelihood, relying on models with infinitely-many parameters having care-
fully chosen priors that yield desirable properties. In the remainder of this
chapter, I focus on such approaches.

25.1.2 What is nonparametric Bayes?

Nonparametric (NP) Bayes seeks to solve the above problems by choosing
a highly flexible prior, which assigns positive probability to arbitrarily small
neighborhoods around any true data-generating model f0 in a large class.
For example, as an illustration, consider the simple case in which y1, . . . , yn
form a random sample from density f . A parametric Bayes approach would
parameterize the density f in terms of finitely-many unknowns θ, and induce
a prior for f through a prior for θ. Such a prior will in general have support on
a vanishingly small subset of the set of possible densities F (e.g., with respect
to Lebesgue measure on R). NP Bayes instead lets f ∼ Π, with Π a prior
over F having large support, meaning that Π{f : d(f, f0) < ε} > 0 for some
distance metric d, any ε > 0, and any f0 in a large subset of F . Large support
is the defining property of an NP Bayes approach, and means that realizations
from the prior have a positive probability of being arbitrarily close to any f0,
perhaps ruling out some irregular ones (say with heavy tails).

In general, to satisfy the large support property, NP Bayes probability
models include infinitely-many parameters and involve specifying stochastic
processes for random functions. For example, in the density estimation exam-
ple, a very popular prior is a Dirichlet process mixture (DPM) of Gaussians
(Lo, 1984). Under the stick-breaking representation of the Dirichlet process
(Sethuraman, 1994), such a prior lets

f(y) =
∞∑

h=1

πh N (y;µh, τ
−1
h ), (µh, τh)

iid∼ P0, (25.1)

where the weights on the normal kernels follow a stick-breaking process, πh =
Vh

∏
!<h(1 − V!), with Vh ∼ B(1,α) independently, α is the concentration

parameter in the Dirichlet process, and P0 is the base measure. Such kernel
mixture priors satisfy the large support property and can be defined so that the
resulting posterior concentrates around the unknown true f0 at the minimax
optimal rate up to a log factor (de Jonge and van Zanten, 2010).
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Prior (25.1) is intuitively appealing in including infinitely-many Gaussian
kernels having stochastically decreasing weights. In practice, there will tend to
be a small number of kernels having large weights, with the remaining having
vanishingly small weights. Only a modest number of kernels will be occupied
by the subjects in a sample, so that the effective number of parameters may
actually be quite small and is certainly not infinite, making posterior compu-
tation and inferences tractable. Of course, prior (25.1) is only one particularly
simple example (to quote Andrew Gelman, “No one is really interested in den-
sity estimation”), and there has been an explosion of literature in recent years
proposing an amazing variety of NP Bayes models for broad applications and
data structures.

Section 25.2 contains an (absurdly) incomplete timeline of the history of
NP Bayes up through the present. Section 25.3 comments briefly on interesting
future directions.

25.2 A brief history of NP Bayes

Although there were many important earlier developments, the modern view
of nonparametric Bayes statistics was essentially introduced in the papers of
Ferguson (1973, 1974), which proposed the Dirichlet process (DP) along with
several ideal criteria for a nonparametric Bayes approach including large sup-
port, interpretability and computational tractability. The DP provides a prior
for a discrete probability measure with infinitely many atoms, and is broadly
employed within Bayesian models as a prior for mixing distributions and for
clustering. An equally popular prior is the Gaussian process (GP), which is
instead used for random functions or surfaces. A non-neglible proportion of
the nonparametric Bayes literature continues to focus on theoretical proper-
ties, computational algorithms and applications of DPs and GPs in various
contexts.

In the 1970s and 1980s, NP Bayes research was primarily theoretical and
conducted by a narrow community, with applications focused primarily on
jointly conjugate priors, such as simple cases of the gamma process, DP and
GP. Most research did not consider applications or data analysis at all, but
instead delved into characterizations and probabilistic properties of stochas-
tic processes, which could be employed as priors in NP Bayes models. These
developments later had substantial applied implications in facilitating com-
putation and the development of richer model classes.

With the rise in computing power, development of Gibbs sampling and
explosion in use of Markov chain Monte Carlo (MCMC) algorithms in the
early 1990s, nonparametric Bayes methods started to become computation-
ally tractable. By the late 1990s and early 2000s, there were a rich variety of
inferential algorithms available for general DP mixtures and GP-based mod-
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els in spatial statistics, computer experiments and beyond. These algorithms,
combined with increasing knowledge of theoretical properties and characteri-
zations, stimulated an explosion of modeling innovation starting in the early
2000s but really gaining steam by 2005. A key catalyst in this exponential
growth of research activity and innovation in NP Bayes was the dependent
Dirichlet process (DDP) of Steve MacEachern, which ironically was never
published and is only available as a technical report. The DDP and other key
modeling innovations were made possible by earlier theoretical work provid-
ing characterizations, such as stick-breaking (Sethuraman, 1994; Ishwaran and
James, 2001) and the Polya urn scheme/Chinese restaurant process (Black-
well and MacQueen, 1973). Some of the circa 2005–10 innovations include the
Indian buffet process (IBP) (Griffiths and Ghahramani, 2011), the hierarchi-
cal Dirichlet process (HDP) (Teh et al., 2006), the nested Dirichlet process
(Rodŕıguez et al., 2008), and the kernel stick-breaking process (Dunson and
Park, 2008).

One of the most exciting aspects of these new modeling innovations was
the potential for major applied impact. I was fortunate to start working on
NP Bayes just as this exponential growth started to take off. In the NP Bayes
statistics community, this era of applied-driven modeling innovation peaked
at the 2007 NP Bayes workshop at the Issac Newton Institute at Cambridge
University. The Newton Institute is an outstanding facility and there was an
energy and excited vibe permeating the workshop, with a wide variety of top-
ics being covered, ranging from innovative modeling driven by biostatistical
applications to theoretical advances on properties. One of the most exciting
aspects of statistical research is the ability to fully engage in a significant
applied problem, developing methods that really make a practical difference
in inferences or predictions in the motivating application, as well as in other
related applications. To me, it is ideal to start with an applied motivation,
such as an important aspect of the data that is not captured by existing sta-
tistical approaches, and then attempt to build new models and computational
algorithms that have theoretical support and make a positive difference to the
bottom-line answers in the analysis. The flexibility of NP Bayes models makes
this toolbox ideal for attacking challenging applied problems.

Although the expansion of the NP Bayes community and impact of the
research has continued since the 2007 Newton workshop, the trajectory and
flavor of the work has shifted substantially in recent years. This shift is due
in part to the emergence of big data and to some important cultural hur-
dles, which have slowed the expansion of NP Bayes in statistics and scientific
applications, while stimulating increasing growth in machine learning. Cultur-
ally, statisticians tend to be highly conservative, having a healthy skepticism
of new approaches even if they seemingly improve practical performance in
prediction and simulation studies. Many statisticians will not really trust an
approach that lacks asymptotic justification, and there is a strong preference
for simple methods that can be studied and understood more easily. This is
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perhaps one reason for the enormous statistical literature on minor variations
of the lasso.

NP Bayes methods require more of a learning curve. Most graduate pro-
grams in statistics have perhaps one elective course on Bayesian statistics,
and NP Bayes is not a simple conceptual modification of parametric Bayes.
Often models are specified in terms of infinite-dimensional random probability
measures and stochastic processes. On the surface, this seems daunting and
the knee-jerk reaction by many statisticians is negative, mentioning unnec-
essary complexity, concerns about over-fitting, whether the data can really
support such complexity, lack of interpretability, and limited understanding
of theoretical properties such as asymptotic behavior. This reaction restricts
entry into the field and makes it more difficult to get publications and grant
funding.

However, these concerns are largely unfounded. In general, the perceived
complexity of NP Bayes models is due to lack of familiarity. Canonical model
classes, such as DPs and GPs, are really quite simple in their structure and
tend to be no more difficult to implement than flexible parametric models.
The intrinsic Bayesian penalty for model complexity tends to protect against
over-fitting. For example, consider the DPM of Gaussians for density esti-
mation shown in equation (25.1). The model is simple in structure, being a
discrete mixture of normals, but the perceived complexity comes in through
the incorporation of infinitely many components. For statisticians unfamil-
iar with the intricacies of such models, natural questions arise such as “how
can the data inform about all these parameters” and “there certainly must
be over-fitting and huge prior sensitivity.” However, in practice, the prior
and the penalty that comes in through integrating over the prior in deriving
the marginal likelihood tends to lead to allocation of all the individuals in the
sample to relatively few clusters. Hence, even though there are infinitely many
components, only a few of these are used and the model behaves like a finite
mixture of Gaussians, with sieve behavior in terms of using more components
as the sample size increases. Contrary to the concern about over-fitting, the
tendency is instead to place a high posterior weight on very few components,
potentially under-fitting in small sample sizes. DPMs are a simple example
but the above story applies much more broadly.

The lack of understanding in the broad statistical community of the behav-
ior of NP Bayes procedures tempered some of the enthusiastic applications-
driven modeling of the 2000s, motivating an emerging field focused on studying
frequentist asymptotic properties. There is a long history of NP Bayes asymp-
totics, showing properties such as consistency and rates of concentration of
the posterior around the true unknown distribution or function. In the past
five years, this field has really taken off and there is now a rich literature
showing strong properties ranging from minimax optimal adaptive rates of
posterior concentration (Bhattacharya et al., 2013) to Bernstein–von Mises
results characterizing the asymptotic distribution of functionals (Rivoirard
and Rousseau, 2012). Such theorems can be used to justify many NP Bayes
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methods as also providing an optimal frequentist procedure, while allowing
frequentist statisticians to exploit computational methods and probabilistic
interpretations of Bayes methods. In addition, an appealing advantage of NP
Bayes nonparametric methods is the allowance for uncertainty in tuning pa-
rameter choice through hyperpriors, bypassing the need for cross-validation.
The 2013 NP Bayes conference in Amsterdam was notable in exhibiting a dra-
matic shift in topics compared with the 2007 Newton conference, away from
applications-driven modeling and towards asymptotics.

The other thread that was very well represented in Amsterdam was NP
Bayes machine learning, which has expanded into a dynamic and important
area. The machine learning (ML) community is fundamentally different cultur-
ally from statistics, and has had a very different response to NP Bayes methods
as a result. In particular, ML tends to be motivated by applications in which
bottom-line performance in metrics, such as out-of-sample prediction, takes
center stage. In addition, the ML community prefers peer-reviewed proceed-
ings for conferences, such as Neural Information Processing Systems (NIPS)
and the International Conference on Machine Learning Research (ICML), over
journal publications. These conference proceedings are short papers, and there
is an emphasis on innovative new ideas which improve bottom line perfor-
mance. ML researchers tend to be aggressive and do not shy away from new
approaches which can improve performance regardless of complexity. A sub-
stantial proportion of the novelty in NP Bayes modeling and computation has
come out of the ML community in recent years. With the increased empha-
sis on big data across fields, the lines between ML and statistics have been
blurring. However, publishing an initial idea in NIPS or ICML is completely
different than publishing a well-developed and carefully thought out methods
paper in a leading statistical theory and methods journal, such as the Jour-
nal of the American Statistical Association, Biometrika or the Journal of the
Royal Statistical Society, Series B. My own research has greatly benefited by
straddling the asymptotic, ML and applications-driven modeling threads, at-
tempting to develop practically useful and innovative new NP Bayes statistical
methods having strong asymptotic properties.

25.3 Gazing into the future

Moving into the future, NP Bayes methods have rich promise in terms of
providing a framework for attacking a very broad class of ‘modern’ problems
involving high-dimensional and complex data. In big complex data settings, it
is much more challenging to do model checking and to carefully go through the
traditional process of assessing the adequacy of a parametric model, making
revisions to the model as appropriate. In addition, when the number of vari-
ables is really large, it becomes unlikely that a particular parametric model
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works well for all these variables. This is one of the reasons that ensemble
approaches, which average across many models/algorithms, tend to produce
state of the art performance in difficult prediction tasks. Combining many sim-
ple models, each able to express different characteristics of the data, is useful
and similar conceptually to the idea of Bayesian model averaging (BMA),
though BMA is typically only implemented within a narrow parametric class
(e.g., normal linear regression).

In considering applications of NP Bayes in big data settings, several ques-
tions arise. The first is “Why bother?” In particular, what do we have to gain
over the rich plethora of machine learning algorithms already available, and
which are being refined and innovated upon daily by thousands of researchers?
There are clear and compelling answers to this question. ML algorithms almost
always rely on convex optimization to obtain a point estimate, and uncertainty
is seldom of much interest in the ML community, given the types of applica-
tions they are faced with. In contrast, in most scientific applications, predic-
tion is not the primary interest and one is usually focused on inferences that
account for uncertainty. For example, the focus may be on assessing the con-
ditional independence structure (graphical model) relating genetic variants,
environmental exposures and cardiovascular disease outcomes (an application
I’m currently working on). Obtaining a single estimate of the graph is clearly
not sufficient, and would be essentially uninterpretable. Indeed, such graphs
produced by ML methods such as graphical lasso have been deemed “ridicu-
lograms.” They critically depend on a tuning parameter that is difficult to
choose objectively and produce a massive number of connections that cannot
be effectively examined visually. Using an NP Bayes approach, we could in-
stead make highly useful statements (at least according to my collaborators),
such as (i) the posterior probability that genetic variants in a particular gene
are associated with cardiovascular disease risk, adjusting for other factors, is
P%; or (ii) the posterior probability that air pollution exposure contributes to
risk, adjusted for genetic variants and other factors, is Q%. We can also obtain
posterior probabilities of an edge between each variable without parametric
assumptions, such as Gaussianity. This is just one example of the utility of
probabilistic NP Bayes models; I could list dozens of others.

The question then is why aren’t more people using and working on the
development of NP Bayes methods? The answer to the first part of this ques-
tion is clearly computational speed, simplicity and accessibility. As mentioned
above, there is somewhat of a learning curve involved in NP Bayes, which is
not covered in most graduate curriculums. In contrast, penalized optimization
methods, such as the lasso, are both simple and very widely taught. In addi-
tion, convex optimization algorithms for very rapidly implementing penalized
optimization, especially in big data settings, have been highly optimized and
refined in countless publications by leading researchers. This has led to sim-
ple methods that are scalable to big data, and which can exploit distributed
computing architectures to further scale up to enormous settings. Researchers
working on these types of methods often have a computer science or engineer-
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ing background, and in the applications they face, speed is everything and
characterizing uncertainty in inference or testing is just not a problem they
encounter. In fact, ML researchers working on NP Bayes methods seldom re-
port inferences or use uncertainty in their analyses; they instead use NP Bayes
methods combined with approximations, such as variational Bayes or expec-
tation propagation, to improve performance on ML tasks, such as prediction.
Often predictive performance can be improved, while avoiding cross-validation
for tuning parameter selection, and these gains have partly led to the relative
popularity of NP Bayes in machine learning.

It is amazing to me how many fascinating and important unsolved prob-
lems remain in NP Bayes, with the solutions having the potential to sub-
stantially impact practice in analyzing and interpreting data in many fields.
For example, there is no work on the above nonparametric Bayes graphi-
cal modeling problem, though we have developed an initial approach we will
submit for publication soon. There is very limited work on fast and scalable
approximations to the posterior distribution in Bayesian nonparametric mod-
els. Markov chain Monte Carlo (MCMC) algorithms are still routinely used
despite their problems with scalability due to the lack of decent alternatives.
Variational Bayes and expectation propagation algorithms developed in ML
lack theoretical guarantees and often perform poorly, particularly when the
focus goes beyond obtaining a point estimate for prediction. Sequential Monte
Carlo (SMC) algorithms face similar scalability problems to MCMC, with a
daunting number of particles needed to obtain adequate approximations for
high-dimensional models. There is a clear need for new models for flexible
dimensionality reduction in broad settings. There is a clear lack of approaches
for complex non-Euclidean data structures, such as shapes, trees, networks
and other object data.

I hope that this chapter inspires at least a few young researchers to focus
on improving the state of the art in NP Bayes statistics. The most effec-
tive path to success and high impact in my view is to focus on challenging
real-world applications in which current methods have obvious inadequacies.
Define innovative probability models for these data, develop new scalable ap-
proximations and computational algorithms, study the theoretical properties,
implement the methods on real data, and provide software packages for rou-
tine use. Given how few people are working in such areas, there are many
low hanging fruit and the clear possibility of major breakthroughs, which are
harder to achieve when jumping on bandwagons.
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How do we choose our default methods?

Andrew Gelman
Department of Statistics
Columbia University, New York

The field of statistics continues to be divided into competing schools of
thought. In theory one might imagine choosing the uniquely best method
for each problem as it arises, but in practice we choose for ourselves (and
recommend to others) default principles, models, and methods to be used in a
wide variety of settings. This chapter briefly considers the informal criteria we
use to decide what methods to use and what principles to apply in statistics
problems.

26.1 Statistics: The science of defaults

Applied statistics is sometimes concerned with one-of-a-kind problems, but
statistical methods are typically intended to be used in routine practice. This
is recognized in classical theory (where statistical properties are evaluated
based on their long-run frequency distributions) and in Bayesian statistics
(averaging over the prior distribution). In computer science, machine learn-
ing algorithms are compared using cross-validation on benchmark corpuses,
which is another sort of reference distribution. With good data, a classical
procedure should be robust and have good statistical properties under a wide
range of frequency distributions, Bayesian inferences should be reasonable
even if averaging over alternative choices of prior distribution, and the rela-
tive performance of machine learning algorithms should not depend strongly
on the choice of corpus.

How do we, as statisticians, decide what default methods to use? Here I am
using the term “method” broadly, to include general approaches to statistics
(e.g., Bayesian, likelihood-based, or nonparametric) as well as more specific
choices of models (e.g., linear regression, splines, or Gaussian processes) and
options within a model or method (e.g., model averaging, L1 regularization,
or hierarchical partial pooling). There are so many choices that it is hard to
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imagine any statistician carefully weighing the costs and benefits of each before
deciding how to solve any given problem. In addition, given the existence of
multiple competing approaches to statistical inference and decision making,
we can deduce that no single method dominates the others.

Sometimes the choice of statistical philosophy is decided by convention
or convenience. For example, I recently worked as a consultant on a legal
case involving audits of several random samples of financial records. I used
the classical estimate p̂ = y/n with standard error

√
p̂(1− p̂)/n, switching

to p̂ = (y + 2)/(n + 4) for cases where y = 0 or y = n. This procedure is
simple, gives reasonable estimates with good confidence coverage, and can be
backed up by a solid reference, namely Agresti and Coull (1998), which has
been cited over 1000 times according to Google Scholar. If we had been in
a situation with strong prior knowledge on the probabilities p, or interest in
distinguishing between p = .99, .999, and .9999, it would have made sense
to consider something closer to a full Bayesian approach, but in this setting
it was enough to know that the probabilities were high, and so the simple
(y+2)/(n+4) estimate (and associated standard error) was fine for our data,
which included values such as y = n = 75.

In many settings, however, we have freedom in deciding how to attack a
problem statistically. How then do we decide how to proceed?

Schools of statistical thoughts are sometimes jokingly likened to religions.
This analogy is not perfect — unlike religions, statistical methods have no
supernatural content and make essentially no demands on our personal lives.
Looking at the comparison from the other direction, it is possible to be agnos-
tic, atheistic, or simply live one’s life without religion, but it is not really pos-
sible to do statistics without some philosophy. Even if you take a Tukeyesque
stance and admit only data and data manipulations without reference to prob-
ability models, you still need some criteria to evaluate the methods that you
choose.

One way in which schools of statistics are like religions is in how we end
up affiliating with them. Based on informal observation, I would say that
statisticians typically absorb the ambient philosophy of the institution where
they are trained — or else, more rarely, they rebel against their training or
pick up a philosophy later in their career or from some other source such as
a persuasive book. Similarly, people in modern societies are free to choose
their religious affiliation but it typically is the same as the religion of parents
and extended family. Philosophy, like religion but not (in general) ethnicity, is
something we are free to choose on our own, even if we do not usually take the
opportunity to take that choice. Rather, it is common to exercise our free will
in this setting by forming our own personal accommodation with the religion
or philosophy bequeathed to us by our background.

For example, I affiliated as a Bayesian after studying with Don Rubin
and, over the decades, have evolved my own philosophy using his as a starting
point. I did not go completely willingly into the Bayesian fold — the first
statistics course I took (before I came to Harvard) had a classical perspective,
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and in the first course I took with Don, I continued to try to frame all the
inferential problems into a Neyman–Pearson framework. But it didn’t take me
or my fellow students long to slip into comfortable conformity.

My views of Bayesian statistics have changed over the years — in partic-
ular, I have become much more fond of informative priors than I was during
the writing of the first two editions of Bayesian Data Analysis (published 1995
and 2004) — and I went through a period of disillusionment in 1991, when
I learned to my dismay that most of the Bayesians at the fabled Valencia
meeting had no interest in checking the fit of their models. In fact, it was
a common view among Bayesians at the time that it was either impossible,
inadvisable, or inappropriate to check the fit of a model to data. The idea
was that the prior distribution and the data model were subjective and thus
uncheckable. To me, this attitude seemed silly — if a model is generated sub-
jectively, that would seem to be more of a reason to check it — and since
then my colleagues and I have expressed this argument in a series of papers;
see, e.g., Gelman et al. (1996), and Gelman and Shalizi (2012). I am happy
to say that the prevailing attitude among Bayesians has changed, with some
embracing posterior predictive checks and others criticizing such tests for their
low power (see, e.g., Bayarri and Castellanos, 2007). I do not agree with that
latter view: I think it confuses different aspects of model checking; see Gelman
(2007). On the plus side, however, it represents an acceptance of the idea that
Bayesian models can be checked.

But this is all a digression. The point I wanted to make here is that the
division of statistics into parallel schools of thought, while unfortunate, has
its self-perpetuating aspects. In particular, I can communicate with fellow
Bayesians in a way that I sometimes have difficulty with others. For example,
some Bayesians dislike posterior predictive checks, but non-Bayesians mostly
seem to ignore the idea — even though Xiao-Li Meng, Hal Stern, and I wrote
our paper in general terms and originally thought our methods might appeal
more strongly to non-Bayesians. After all, those statisticians were already
using p-values to check model fit, so it seemed like a small step to average over
a distribution. But this was a step that, by and large, only Bayesians wanted
to take. The reception of this article was what convinced me to focus on
reforming Bayesianism from the inside rather than trying to develop methods
one at a time that would make non-Bayesians happy.

26.2 Ways of knowing

How do we decide to believe in the effectiveness of a statistical method? Here
are a few potential sources of evidence (I leave the list unnumbered so as not
to imply any order of priority):
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(a) mathematical theory (e.g., coherence of inference or convergence);

(b) computer simulations (e.g., demonstrating approximate coverage of inter-
val estimates under some range of deviations from an assumed model);

(c) solutions to toy problems (e.g., comparing the partial pooling estimate for
the eight schools to the no pooling or complete pooling estimates);

(d) improved performance on benchmark problems (e.g., getting better pre-
dictions for the Boston Housing Data);

(e) cross-validation and external validation of predictions;

(f) success as recognized in a field of application (e.g., our estimates of the
incumbency advantage in congressional elections);

(g) success in the marketplace (under the theory that if people are willing to
pay for something, it is likely to have something to offer).

None of these is enough on its own. Theory and simulations are only as good
as their assumptions; results from toy problems and benchmarks don’t nec-
essarily generalize to applications of interest; cross-validation and external
validation can work for some sorts of predictions but not others; and subject-
matter experts and paying customers can be fooled.

The very imperfections of each of these sorts of evidence gives a clue as
to why it makes sense to care about all of them. We can’t know for sure so it
makes sense to have many ways of knowing.

I do not delude myself that the methods I personally prefer have some ab-
solute status. The leading statisticians of the twentieth century were Neyman,
Pearson, and Fisher. None of them used partial pooling or hierarchical models
(well, maybe occasionally, but not much), and they did just fine. Meanwhile,
other statisticians such as myself use hierarchical models to partially pool as
a compromise between complete pooling and no pooling. It is a big world,
big enough for Fisher to have success with his methods, Rubin to have suc-
cess with his, Efron to have success with his, and so forth. A few years ago
(Gelman, 2010) I wrote of the methodological attribution problem:

“The many useful contributions of a good statistical consultant, or
collaborator, will often be attributed to the statistician’s methods or
philosophy rather than to the artful efforts of the statistician himself
or herself. Don Rubin has told me that scientists are fundamentally
Bayesian (even if they do not realize it), in that they interpret uncer-
tainty intervals Bayesianly. Brad Efron has talked vividly about how
his scientific collaborators find permutation tests and p-values to be the
most convincing form of evidence. Judea Pearl assures me that graph-
ical models describe how people really think about causality. And so
on. I am sure that all these accomplished researchers, and many more,
are describing their experiences accurately. Rubin wielding a posterior
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distribution is a powerful thing, as is Efron with a permutation test or
Pearl with a graphical model, and I believe that (a) all three can be
helping people solve real scientific problems, and (b) it is natural for
their collaborators to attribute some of these researchers’ creativity to
their methods.

The result is that each of us tends to come away from a collabora-
tion or consulting experience with the warm feeling that our methods
really work, and that they represent how scientists really think. In stat-
ing this, I am not trying to espouse some sort of empty pluralism —
the claim that, for example, we would be doing just as well if we were
all using fuzzy sets, or correspondence analysis, or some other obscure
statistical method. There is certainly a reason that methodological ad-
vances are made, and this reason is typically that existing methods
have their failings. Nonetheless, I think we all have to be careful about
attributing too much from our collaborators’ and clients’ satisfaction
with our methods.”

26.3 The pluralist’s dilemma

Consider the arguments made fifty years ago or so in favor of Bayesian in-
ference. At that time, there were some applied successes (e.g., I.J. Good re-
peatedly referred to his successes using Bayesian methods to break codes in
the Second World War) but most of the arguments in favor of Bayes were
theoretical. To start with, it was (and remains) trivially (but not unimpor-
tantly) true that, conditional on the model, Bayesian inference gives the right
answer. The whole discussion then shifts to whether the model is true, or, bet-
ter, how the methods perform under the (essentially certain) condition that
the model’s assumptions are violated, which leads into the tangle of various
theorems about robustness or lack thereof.

Forty or fifty years ago one of Bayesianism’s major assets was its mathe-
matical coherence, with various theorems demonstrating that, under the right
assumptions, Bayesian inference is optimal. Bayesians also spent a lot of time
writing about toy problems, for example, Basu’s example of the weights of
elephants (Basu, 1971). From the other direction, classical statisticians felt
that Bayesians were idealistic and detached from reality.

How things have changed! To me, the key turning points occurred around
1970–80, when statisticians such as Lindley, Novick, Smith, Dempster, and
Rubin applied hierarchical Bayesian modeling to solve problems in education
research that could not be easily attacked otherwise. Meanwhile Box did sim-
ilar work in industrial experimentation and Efron and Morris connected these
approaches to non-Bayesian theoretical ideas. The key in any case was to use
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partial pooling to learn about groups for which there was only a small amount
of local data.

Lindley, Novick, and the others came at this problem in several ways.
First, there was Bayesian theory. They realized that, rather than seeing certain
aspects of Bayes (for example, the need to choose priors) as limitations, they
could see them as opportunities (priors can be estimated from data!) with
the next step folding this approach back into the Bayesian formalism via
hierarchical modeling. We (the Bayesian community) are still doing research
on these ideas; see, for example, the recent paper by Polson and Scott (2012)
on prior distributions for hierarchical scale parameters.

The second way that the Bayesians of the 1970s succeeded was by applying
their methods on realistic problems. This is a pattern that has happened with
just about every successful statistical method I can think of: an interplay
between theory and practice. Theory suggests an approach which is modified
in application, or practical decisions suggest a new method which is then
studied mathematically, and this process goes back and forth.

To continue with the timeline: the modern success of Bayesian methods
is often attributed to our ability using methods such as the Gibbs sampler
and Metropolis algorithm to fit an essentially unlimited variety of models:
practitioners can use programs such as Stan to fit their own models, and
researchers can implement new models at the expense of some programming
but without the need of continually developing new approximations and new
theory for each model. I think that’s right —Markov chain simulation methods
indeed allow us to get out of the pick-your-model-from-the-cookbook trap —
but I think the hierarchical models of the 1970s (which were fit using various
approximations, not MCMC) showed the way.

Back 50 years ago, theoretical justifications were almost all that Bayesian
statisticians had to offer. But now that we have decades of applied successes,
that is naturally what we point to. From the perspective of Bayesians such as
myself, theory is valuable (our Bayesian data analysis book is full of mathe-
matical derivations, each of which can be viewed if you’d like as a theoretical
guarantee that various procedures give correct inferences conditional on as-
sumed models) but applications are particularly convincing. And applications
can ultimately become good toy problems, once they have been smoothed
down from years of teaching.

Over the years I have become pluralistic in my attitudes toward statistical
methods. Partly this comes from my understanding of the history described
above. Bayesian inference seemed like a theoretical toy and was considered by
many leading statisticians as somewhere between a joke and a menace — see
Gelman and Robert (2013) — but the hardcore Bayesians such as Lindley,
Good, and Box persisted and got some useful methods out of it. To take a
more recent example, the bootstrap idea of Efron (1979) is an idea that in
some way is obviously wrong (as it assigns zero probability to data that did
not occur, which would seem to violate the most basic ideas of statistical
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sampling) yet has become useful to many and has since been supported in
many cases by theory.

In this discussion, I have the familiar problem that might be called the plu-
ralist’s dilemma: how to recognize that my philosophy is just one among many,
that my own embrace of this philosophy is contingent on many things beyond
my control, while still expressing the reasons why I believe this philosophy to
be preferable to the alternatives (at least for the problems I work on).

One way out of the dilemma is to recognize that different methods are
appropriate for different problems. It has been said that R.A. Fisher’s methods
and the associated 0.05 threshold for p-values worked particularly well for
experimental studies of large effects with relatively small samples — the sorts
of problems that appear over and over again in books of Fisher, Snedecor,
Cochran, and their contemporaries. That approach might not work so well in
settings with observational data and sample sizes that vary over several orders
of magnitude. I will again quote myself (Gelman, 2010):

“For another example of how different areas of application merit
different sorts of statistical thinking, consider Rob Kass’s remark: ‘I tell
my students in neurobiology that in claiming statistical significance
I get nervous unless the p-value is much smaller than .01.’ In politi-
cal science, we are typically not aiming for that level of uncertainty.
(Just to get a sense of the scale of things, there have been barely 100
national elections in all of US history, and political scientists studying
the modern era typically start in 1946.)”

Another answer is path dependence. Once you develop facility with a sta-
tistical method, you become better at it. At least in the short term, I will be a
better statistician using methods with which I am already familiar. Occasion-
ally I will learn a new trick but only if forced to by circumstances. The same
pattern can hold true with research: we are more equipped to make progress
in a field along directions in which we are experienced and knowledgeable.
Thus, Bayesian methods can be the most effective for me and my students,
for the simple reason that we have already learned them.

26.4 Conclusions

Statistics is a young science in which progress is being made in many areas.
Some methods in common use are many decades or even centuries old, but
recent and current developments in nonparametric modeling, regularization,
and multivariate analysis are central to state-of-the-art practice in many ar-
eas of applied statistics, ranging from psychometrics to genetics to predictive
modeling in business and social science. Practitioners have a wide variety of
statistical approaches to choose from, and researchers have many potential
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directions to study. A casual and introspective review suggests that there are
many different criteria we use to decide that a statistical method is worthy
of routine use. Those of us who lean on particular ways of knowing (which
might include performance on benchmark problems, success in new applica-
tions, insight into toy problems, optimality as shown by simulation studies or
mathematical proofs, or success in the marketplace) should remain aware of
the relevance of all these dimensions in the spread of default procedures.
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Consider the model y = Xβ+u, where y is an n-vector of dependent variables,
X is a matrix of n×k independent variables, and u is a n-vector of unobserved
disturbance. Let z = y−Xb, where b is the least squares estimate of β. The d-
statistic tests the hypothesis that the components of u are independent versus
the alternative that the components follow a Markov process. The Durbin–
Watson bounds pertain to the distribution of the d-statistics.

27.1 Introduction

A time series is composed of a sequence of observations y1, . . . , yn, where the
index i of the observation yi represents time. An important feature of a time
series is the order of observations: yi is observed after y1, . . . , yi−1 are ob-
served. The correlation of successive observations is called a serial correlation.
Related to each yi may be a vector of independent variables (x1i, . . . , xki).
Many questions of time series analysis relate to the possible dependence of yi
on x1i, . . . , xki; see, e.g., Anderson (1971).

A serial correlation (first-order) of a sequence y1, . . . , yn is

n∑

i=2

yiyi−1

/ n∑

i=1

y2i .

This coefficient measures the correlation between y1, . . . , yn−1 and y2, . . . , yn.
There are various modifications of this correlation coefficient such as replacing
yi by yi − ȳ. See below for the circular serial coefficient. The term “auto-
correlation” is also used for serial correlation.

I shall discuss two papers coauthored by James Durbin and Geoffrey Wat-
son entitled “Testing for serial correlation in least squares regression I and II,”
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published in 1950 and 1951 respectively (Durbin and Watson, 1950, 1951).
The statistical analysis developed in these papers has proved very useful in
econometric research.

The Durbin–Watson papers are based on a model in which there is a
set of “independent” variables x1i, . . . , xni associated with each “dependent”
variable yi for i ∈ {1, . . . , n}. The dependent variable of yi is considered as
the linear combination

yi = β1x1i + · · ·+ βRxRi + wi, i ∈ {1, . . . , n},

where wi is an unobservable random disturbance. The questions that Durbin
and Watson address have to do with the possible dependence in a set of
observations y1, . . . , yn beyond what is explained by the independent variables.

27.2 Circular serial correlation

R.L. Anderson (Anderson, 1942), who was Watson’s thesis advisor, studied
the statistic

n∑
i=1

(yi − yi−1)
2

n∑
i=1

y2i

= 2− 2

n∑
i=1

yiyi−1

n∑
i=1

y2i

,

where y0 = yn. The statistic

n∑

i=1

yiyi−1

/ n∑

i=1

y2i

is known as the “circular serial correlation coefficient.” Defining y0 = yn is
a device to make the mathematics simpler. The serial correlation coefficient
measures the relationship between the sequence y1, . . . , yn and y0, . . . , yn−1.

In our exposition we make repeated use of the fact that the distribution of
x$Ax is the distribution of

∑n
i=1 λiz2i , where λ1, . . . ,λn are the characteristic

roots (latent roots) of A, i.e., the roots of

|A− λIn| = 0, A = A$,

and x and z have the density N
(
0,σ2I

)
. The numerator of the circular serial

correlation is x$Ax, where

A =
1

2





0 1 0 · · · 1
1 0 1 · · · 0
0 1 0 · · · 0
...

...
...

...
1 0 0 · · · 0




.
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The characteristic roots are λj = cos 2πj/n and sin 2πj/n, j ∈ {1, . . . , n}.
If n is even, the roots occur in pairs. The distribution of the circular serial
correlation is the distribution of

n∑

j=1

λjz
2
j

/ n∑

j=1

z2j , (27.1)

where z1, . . . , zn are independent standard Normal variables. Anderson stud-
ied the distribution of the circular serial correlation, its moments, and other
properties.

27.3 Periodic trends

During World War II, R.L. Anderson and I were members of the Princeton
Statistical Research Group. We noticed that the jth characteristic vector of
A had the form cos 2πjh/n and/or sin 2πjh/n, h ∈ {1, . . . , n}. These func-
tions are periodic and hence are suitable to represent seasonal variation. We
considered the model

yi = β1x1i + · · ·+ βkxki + ui,

where xhi = cos 2πhi/n and/or sin 2πhi/n. Then the distribution of

r =

∑
(yi −

∑
βhxhi) (yi−1 −

∑
βhxh,i−1)∑

(yi −
∑

βhxhi)
2

is the distribution of (27.1), where the sums are over the z’s corresponding to
the cos and sin terms that did not occur in the trends. The distributions of
the serial correlations have the same form as before.

Anderson and Anderson (1950) found distributions of r for several cyclical
trends as well as moments and approximate distributions.

27.4 Uniformly most powerful tests

As described in Anderson (1948), many problems of serial correlation are
included in the general model

K exp
[
−α

2

{
(y − µ)$ Ψ (y − µ) + λ (y − µ)$ Θ (y − µ)

}]
,

where K is a constant, α > 0, Ψ a given positive definite matrix, Θ a given
symmetric matrix, λ a parameter such that Ψ − λΘ is positive definite, and
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µ is the expectation of y,

Ey = µ =
∑

βjφj .

We shall consider testing the hypothesis

H : λ = 0.

The first theorem characterizes tests such that the probability of the accep-
tance region when λ = 0 does not depend on the values of β1, . . . ,βk. The
second theorem gives conditions for a test being uniformly most powerful when
λ > 0 is the alternative.

These theorems are applicable to the circular serial correlation when Ψ =
σ2I and Θ = σ2A defined above.

The equation

∑
(yi − yi−1)

2 =
∑(

y2i + y2i−1

)
− 2

∑
ytyt−1

suggests that a serial correlation can be studied in terms of
∑

(yt − yt−1)
2

which may be suitable to test that y1, . . . , yn are independent against the al-
ternative that y1, . . . , yn satisfy an autoregressive process. Durbin and Watson
prefer to study

d =
∑

(zi − zi−1)
2
/∑

z2i ,

where z is defined below.

27.5 Durbin–Watson

The model is
y

n×1
= X

n×k
β

k×1
+ u

n×1
.

We consider testing the null hypothesis that u has a Normal distribution with
mean 0 and covariance σ2In against the alternative that u has a Normal
distribution with mean 0 and covariance σ2A, a positive definite matrix. The
sample regression of y is b = (X$X)−1X$y and the vector of residuals is

z = y −Xb = {I −X(X$X)−1X$}y
= {I −X(X$X)−1X$}(Xβ + u)

= Mu,

where
M = I −X(X$X)−1X$.
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Consider the serial correlation of the residuals

r =
z$Az

z$z
=

u$M$AMu

u$M$Mu
.

The matrix M is idempotent, i.e., Mm = M , and symmetric. Its latent roots
are 0 and 1 and it has rank n− k. Let the possibly nonzero roots of M$AM
be ν1, . . . , νn−k. There is an n × (n − k) matrix H such that H$H = In−k

and

H$M$AMH =





ν1 0 · · · 0
0 ν2 · · · 0
...

...
...

...
0 0 · · · νn−k




.

Let w = H$v. Then

r =
n−k∑

j=1

νjw
2
j

/n−k∑

j=1

w2
j .

Durbin and Watson prove that

λj ≤ νj ≤ λj+k, j ∈ {1, . . . , n− k}.

Define

rL =
n−k∑

j=1

λjw
2
j

/n−k∑

j=1

w2
j , rU =

n−k∑

j=1

λj+kw
2
j

/n−k∑

j=1

w2
j .

Then rL ≤ r ≤ rU .
The “bounds procedure” is the following. If the observed serial correlation

is greater than r)U conclude that the hypothesis of no serial correlation of the
disturbances is rejected. If the observed correlation is less than r)L, conclude
that the hypothesis of no serial correlation of the disturbance is accepted.
The interval (r)L, r

)
U ) is called “the zone of indeterminacy.” If the observed

correlation falls in the interval (r)L, r
)
U ), the data are considered as not leading

to a conclusion.
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A non-asymptotic walk in probability and
statistics

Pascal Massart
Département de mathématiques
Université de Paris-Sud, Orsay, France

My research is devoted to the derivation of non-asymptotic results in proba-
bility and statistics. Basically, this is a question of personal taste: I have been
struggling with constants in probability bounds since the very beginning of my
career. I was very lucky to learn from the elegant work of Michel Talagrand
that the dream of a non-asymptotic theory of independence could actually
become reality. Thanks to my long-term collaboration with my colleague and
friend Lucien Birgé, I could realize the importance of a non-asymptotic ap-
proach to statistics. This led me to follow a singular path, back and forth
between concentration inequalities and model selection, that I briefly describe
below in this (informal) paper for the 50th anniversary of the COPSS.

28.1 Introduction

The interest in non-asymptotic tail bounds for functions of independent ran-
dom variables is rather recent in probability theory. Apart from sums, which
have been well understood for a long time, powerful tools for handling more
general functions of independent random variables were not introduced before
the 1970s. The systematic study of concentration inequalities aims at bound-
ing the probability that such a function differs from its expectation or its
median by more than a given amount. It emerged from a remarkable series of
papers by Michel Talagrand in the mid-1990s.

Talagrand provided a major new insight into the problem, around the idea
summarized in Talagrand (1995): “A random variable that smoothly depends
on the influence of many independent random variables satisfies Chernoff type
bounds.” This revolutionary approach opened new directions of research and
stimulated numerous applications in various fields such as discrete mathemat-
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ics, statistical mechanics, random matrix theory, high-dimensional geometry,
and statistics.

The study of random fluctuations of suprema of empirical processes has
been crucial in the application of concentration inequalities to statistics and
machine learning. It also turned out to be a driving force behind the develop-
ment of the theory. This is exactly what I would like to illustrate here while
focusing on the impact on my own research in the 1990s and beyond.

28.2 Model selection

Model selection is a classical topic in statistics. The idea of selecting a model by
penalizing some empirical criterion goes back to the early 1970s with the pio-
neering work of Mallows and Akaike. The classical parametric view on model
selection as exposed in Akaike’s seminal paper (Akaike, 1973) on penalized
log-likelihood is asymptotic in essence. More precisely Akaike’s formula for
the penalty depends on Wilks’ theorem, i.e., on an asymptotic expansion of
the log-likelihood.

Lucien Birgé and I started to work on model selection criteria based on a
non-asymptotic penalized log-likelihood early in the 1990s. We had in mind
that in the usual asymptotic approach to model selection, it is often unrealistic
to assume that the number of observations tends to infinity while the list of
models and their size are fixed. Either the number of observations is not that
large (a hundred, say) and when playing with models with a moderate number
of parameters (five or six) you cannot be sure that asymptotic results apply, or
the number of observations is really large (as in signal de-noising, for instance)
and you would like to take advantage of it by considering a potentially large
list of models involving possibly large numbers of parameters.

From a non-asymptotic perspective, the number of observations and the
list of models are what they are. The purpose of an ideal model selection
procedure is to provide a data-driven choice of model that tends to optimize
some criterion, e.g., minimum expected risk with respect to the quadratic
loss or the Kullback–Leibler loss. This provides a well-defined mathematical
formalization of the model selection problem but it leaves open the search for
a neat generic solution.

Fortunately for me, the early 1990s turned out to be a rich period for
the development of mathematical statistics, and I came across the idea that
letting the size of models go to infinity with the number of observations makes
it possible to build adaptive nonparametric estimators. This idea can be traced
back to at least two different sources: information theory and signal analysis.

In particular, Lucien and I were very impressed by the beautiful paper
of Andrew Barron and Tom Cover (Barron and Cover, 1991) on density es-
timation via minimum complexity model selection. The main message there
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(at least for discrete models) is that if you allow model complexity to grow
with sample size, you can then use minimum complexity penalization to build
nonparametric estimators of a density which adapts to the smoothness.

Meanwhile, David Donoho, Iain Johnstone, Gérard Kerkyacharian and Do-
minique Picard were developing their approach to wavelet estimation. Their
striking work showed that in a variety of problems, it is possible to build adap-
tive estimators of a regression function or a density through a remarkably sim-
ple procedure: thresholding of the empirical wavelet coefficients. Many papers
could be cited here but Donoho et al. (1995) is possibly the mostly useful re-
view on the topic. Wavelet thresholding has an obvious model selection flavor
to it, as it amounts to selecting a set of wavelet coefficients from the data.

At some point, it became clear to us that there was room for building a
general theory to help reconcile Akaike’s classical approach to model selection,
the emerging results by Barron and Cover or Donoho et al. in which model
selection is used to construct nonparametric adaptive estimators, and Vapnik’s
structural minimization of the risk approach for statistical learning; see Vapnik
(1982).

28.2.1 The model choice paradigm

Assume that a random variable ξ(n) is observed which depends on a parameter
n. For concreteness, you may think of ξ(n) as an n-sample from some unknown
distribution. Consider the problem of estimating some quantity of interest, s,
which is known to belong to some (large) set S. Consider an empirical risk
criterion γn based on ξ(n) such that the mapping

t .→ E {γn (t)}

achieves a minimum at point s. One can then define a natural (non negative)
loss function related to this criterion by setting, for all t ∈ S,

! (s, t) = E {γn (t)}− E {γn (s)} .

When ξ(n) = (ξ1, . . . , ξn), the empirical risk criterion γn is usually defined as
some empirical mean

γn (t) = Pn {γ (t, ·)} =
1

n

n∑

i=1

γ (t, ξi) (28.1)

of an adequate risk function γ. Two typical examples are as follows.

Example 1 (Density estimation) Let ξ1, . . . , ξn be a random sample from
an unknown density s with respect to a given measure µ. Taking γ(t, x) =
− ln{t(x)} in (28.1) leads to the log-likelihood criterion. The corresponding
loss function, !, is simply the Kullback–Leibler information between the prob-
ability measures sµ and tµ. Indeed, !(s, t) =

∫
s ln(s/t)dµ if sµ is abso-

lutely continuous with respect to tµ and !(s, t) = ∞ otherwise. However if
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γ(t, x) = ‖t‖2−2t(x) in (28.1), where ‖·‖ denotes the norm in L2(µ), one gets
the least squares criterion and the loss function is given by !(s, t) = ‖s− t‖2
for every t ∈ L2(µ).

Example 2 (Gaussian white noise) Consider the process ξ(n) on [0, 1] de-
fined by dξ(n) (x) = s (x) + n−1/2dW (x) with ξ(n) (0) = 0, where W de-
notes the Brownian motion. The least squares criterion is defined by γn (t) =

‖t‖2 − 2
∫ 1
0 t (x) dξ(n)(x), and the corresponding loss function ! is simply the

squared L2 distance defined for all s, t ∈ [0, 1] by !(s, t) = ‖s− t‖2.

Given a model S (which is a subset of S), the empirical risk minimizer is
simply defined as a minimizer of γn over S. It is a natural estimator of s whose
quality is directly linked to that of the model S. The question is then: How can
one choose a suitable model S? It would be tempting to choose S as large as
possible. Taking S as S itself or as a “big” subset of S is known to lead either
to inconsistent estimators (Bahadur, 1958) or to suboptimal estimators (Birgé
and Massart, 1993). In contrast if S is a “small” model (e.g., some parametric
model involving one or two parameters), the behavior of the empirical risk
minimizer on S is satisfactory as long as s is close enough to S, but the model
can easily end up being completely wrong.

One of the ideas suggested by Akaike is to use the risk associated to the loss
function ! as a quality criterion for a model. To illustrate this idea, it is conve-
nient to consider a simple example for which everything is easily computable.
Consider the white noise framework. If S is a linear space with dimension
D, and if φ1, . . . ,φD denotes some orthonormal basis of S, the least squares
estimator is merely a projection estimator, viz.

ŝ =
D∑

j=1

{∫ 1

0
φj(x)dξ

(n)(x)

}
φj

and the expected quadratic risk of ŝ is equal to

E(‖s− ŝ‖2) = d2(s, S) +D/n.

This formula for the quadratic risk reflects perfectly the model choice
paradigm: if the model is to be chosen in such a way that the risk of the
resulting least squares estimator remains under control, a balance must be
struck between the bias term d2(s, S) and the variance term D/n.

More generally, given an empirical risk criterion γn, each model Sm in
an (at most countable and usually finite) collection {Sm : m ∈ M} can be
represented by the corresponding empirical risk minimizer ŝm. One can use the
minimum of E {! (s, ŝm)} over M as a benchmark for model selection. Ideally
one would like to choose m (s) so as to minimize the risk E {! (s, ŝm)} with
respect to m ∈M. This is what Donoho and Johnstone called an oracle; see,
e.g., Donoho and Johnstone (1994). The purpose of model selection is to design
a data-driven choice m̂ which mimics an oracle, in the sense that the risk of the
selected estimator ŝm̂ is not too far from the benchmark infm∈M E {! (s, ŝm)}.
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28.2.2 Non-asymptopia

The penalized empirical risk model selection procedure consists in considering
an appropriate penalty function pen: M→ R+ and choosing m̂ to minimize

crit (m) = γn (ŝm) + pen (m)

over M. One can then define the selected model Sm̂ and the penalized empir-
ical risk estimator ŝm̂.

Akaike’s penalized log-likelihood criterion corresponds to the case where
the penalty is taken as Dm/n, where Dm denotes the number of parame-
ters defining the regular parametric model Sm. As mentioned above, Akaike’s
heuristics heavily relies on the assumption that the dimension and the num-
ber of models are bounded with respect to n, as n → ∞. Various penalized
criteria have been designed according to this asymptotic philosophy; see, e.g.,
Daniel and Wood (1971).

In contrast a non-asymptotic approach to model selection allows both the
number of models and the number of their parameters to depend on n. One
can then choose a list of models which is suitable for approximation purposes,
e.g., wavelet expansions, trigonometric or piecewise polynomials, or artificial
neural networks. For example, the hard thresholding procedure turns out to
be a penalized empirical risk procedure if the list of models depends on n.

To be specific, consider once again the white noise framework and consider
an orthonormal system φ1, . . . ,φn of L2[0, 1] that depends on n. For every
subset m of {1, . . . , n}, define the model Sm as the linear span of {φj : j ∈ m}.
The complete variable selection problem requires the selection of a subset m
from the collection of all subsets of {1, . . . , n}. Taking a penalty function of the
form pen (m) = T 2 |m| /n leads to an explicit solution for the minimization
of crit(m) because in this case, setting β̂j =

∫
φj (x) dξ(n) (x), the penalized

empirical criterion can be written as

crit (m) = −
∑

j∈m

β̂2
j +

T 2 |m|
n

=
∑

j∈m

(
−β̂2

j +
T 2

n

)
.

This criterion is obviously minimized at

m̂ = {j ∈ {1, . . . , n} :
√
n |β̂j | ≥ T},

which is precisely the hard thresholding procedure. Of course the crucial issue
is to choose the level of thresholding, T .

More generally the question is: what kind of penalty should be recom-
mended from a non-asymptotic perspective? The naive notion that Akaike’s
criterion could be used in this context fails in the sense that it may typically
lead to under-penalization. In the preceding example, it would lead to the
choice T =

√
2 while it stems from the work of Donoho et al. that the level of

thresholding should be at least of order
√
2 ln(n) as n→∞.
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28.2.3 Empirical processes to the rescue

The reason for which empirical processes have something to do with the anal-
ysis of penalized model selection procedures is roughly the following; see Mas-
sart (2007) for further details. Consider the centered empirical risk process

γ̄n(t) = γn(t)− E{γn(t)}.

Minimizing crit(m) is then equivalent to minimizing

crit(m)− γn(s) = !(s, ŝm)− {γ̄n(s)− γ̄n(ŝm)}+ pen(m).

One can readily see from this formula that to mimic an oracle, the penalty
pen(m) should ideally be of the same order of magnitude as γ̄n(s)− γ̄n(ŝm).
Guessing what is the exact order of magnitude for γ̄n (s) − γ̄n (ŝm) is not an
easy task in general, but one can at least try to compare the fluctuations of
γ̄n(s)−γ̄n(ŝm) to the quantity of interest, ! (s, ŝm). To do so, one can introduce
the supremum of the weighted process

Zm = sup
t∈Sm

γ̄n (s)− γ̄n (t)

w {! (s, t)} ,

where w is a conveniently chosen non-decreasing weight function. For instance
if w {! (s, t)} = 2

√
! (s, t) then, for every θ > 0,

! (s, ŝm)− {γ̄n (s)− γ̄n (ŝm)} ≥ (1− θ) ! (s, ŝm)− Z2
m/θ.

Thus by choosing pen(m) in such a way that Z2
m ≤ θ pen(m) (with high

probability), one can hope to compare the model selection procedure with the
oracle.

We are at the very point where the theory of empirical processes comes
in, because the problem is now to control the quantity Zm, which is indeed
the supremum of an empirical process — at least when the empirical risk is
defined through (28.1). Lucien Birgé and I first used this idea in 1994, while
preparing our contribution to the Festschrift for Lucien Le Cam to mark
his 70th birthday. The corresponding paper, Birgé and Massart (1997), was
published later and we generalized it in Barron et al. (1999).

In the context of least squares density estimation that we were inves-
tigating, the weight function w to be considered is precisely of the form
w (x) = 2

√
x. Thus if the model Sm happens to be an finite-dimensional

subspace of L2(µ) generated by some orthonormal basis {φλ : λ ∈ Λm}, the
quantity of interest

Zm = sup
t∈Sm

γ̄n (s)− γ̄n (t)

2 ‖s− t‖ (28.2)

can easily be made explicit. Indeed, assuming that s belongs to Sm (this as-
sumption is not really needed but makes the analysis much more illuminating),

Zm =

√ ∑

λ∈Λm

(Pn − P )2(φλ), (28.3)
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where P = sµ. In other words, Zm is simply the square root of a χ2-type
statistic. Deriving exponential bounds for Zm from (28.3) does not look es-
pecially easier than starting from (28.2). However, it is clear from (28.3) that
E(Z2

m) can be computed explicitly. As a result one can easily bound E(Zm)
using Jensen’s inequality, viz.

E(Zm) ≤
√

E(Z2
m).

By shifting to concentration inequalities, we thus hoped to escape the heavy-
duty “chaining” machinery, which was the main tool available at that time to
control suprema of empirical processes.

It is important to understand that this is not merely a question of taste or
elegance. The disadvantage with chaining inequalities is that even if you opti-
mize them, at the end of the day the best you can hope for is to derive a bound
with the right order of magnitude; the associated numerical constants are typ-
ically ridiculously large. When the goal is to validate (or invalidate) penalized
criteria such as Mallows’ or Akaike’s criterion from a non-asymptotic perspec-
tive, constants do matter. This motivated my investigation of the fascinating
topic of concentration inequalities.

28.3 Welcome to Talagrand’s wonderland

Motivated by the need to understand whether one can derive concentration
inequalities for suprema of empirical processes, I intensified my readings on
the concentration of measures. By suprema of empirical processes, I mean

Z = sup
t∈T

n∑

i=1

Xi,t,

where T is a set and X1,t, . . . , Xn,t are mutually independent random vectors
taking values in RT .

For applications such as that which was described above, it is important to
cover the case where T is infinite, but for the purpose of building structural
inequalities like concentration inequalities, T finite is in fact the only case
that matters because one can recover the general case from the finite case by
applying monotone limit procedures, i.e., letting the size of the index set grow
to infinity. Henceforth I will thus assume the set T to be finite.

When I started investigating the issue in 1994, the literature was domi-
nated by the Gaussian Concentration Theorem for Lipschitz functions of in-
dependent standard Gaussian random variables. This result was proved inde-
pendently by Borell (1975) and by Cirel’son and Sudakov (1974). As a side
remark, note that these authors actually established the concentration of Lip-
schitz functions around the median; the analogous result for the mean is due
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to Cirel’son et al. (1976). At any rate, it seemed to me to be somewhat of
a beautiful but isolated mountain, given the abundance of results by Michel
Talagrand on the concentration of product measures. In the context of em-
pirical processes, the Gaussian Concentration Theorem implies the following
spectacular result.

Assume that X1,t, . . . , Xn,t are Gaussian random vectors centered at their
expectation. Let v be the maximal variance of X1,t+ · · ·+Xn,t when t varies,
and use M to denote either the median or the mean of Z. Then

Pr (Z ≥M + z) ≤ exp

(
− z2

2v

)
.

In the non-Gaussian case, the problem becomes much more complex. One
of Talagrand’s major achievements on the topic of concentration inequalities
for functions on a product space X = X 1 × · · · × Xn is his celebrated con-
vex distance inequality. Given any vector α = (α1, . . . ,αn) of non-negative
real numbers and any (x, y) ∈ X × X , the weighted Hamming distance dα is
defined by

dα(x, y) =
n∑

i=1

αi1(xi '= yi),

where 1(A) denotes the indicator of the set A. Talagrand’s convex distance
from a point x to some measurable subset A of X is then defined by

dT (x,A) = sup
|α|22≤1

dα(x,A),

where |α|22 = α2
1 + · · ·+ α2

n.
If P denotes some product probability measure P = µ1 ⊗ · · · ⊗ µn on X ,

the concentration of P with respect to dT is specified by Talagrand’s convex
distance inequality, which ensures that for any measurable set A, one has

P {dT (·, A) ≥ z} ≤ P (A) exp

(
−z2

4

)
. (28.4)

Typically, it allows the analysis of functions that satisfy the regularity condi-
tion

f(x)− f(y) ≤
n∑

i=1

αi(x)1(xi '= yi). (28.5)

One can then play the following simple but subtle game. Choose A = {f ≤
M} and observe that in view of condition (28.5), one has f(x) < M +z for all
x such that dα(x)(x,A) < z. Thus if v ≥ supx{α2

1(x) + · · ·+ α2
n(x)}, one finds

{f ≥M + z} ⊆
{
dα(·) (·, A) ≥ z

}
⊆

{
sup

|α|22≤v

dα (·, A) ≥ z

}
.
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Hence by Talagrand’s convex distance inequality (28.4), one gets

P (f ≥M + z) ≤ 2 exp

(
− z2

4v

)
(28.6)

whenever M is a median of f under P . The preceding inequality applies to a
Rademacher process, which is a special case of an empirical process. Indeed,
setting X = {−1, 1}n and defining

f (x) = sup
t∈T

n∑

i=1

αi,txi =
n∑

i=1

αi,t∗(x)xi

in terms of real numbers αi,t, one can see that, for every x and y,

f(x)− f(y) ≤
n∑

i=1

αi,t∗(x)(xi − yi) ≤ 2
n∑

i=1

∣∣αi,t∗(x)

∣∣1(xi '= yi).

This means that the function f satisfies the regularity condition (28.5) with
αi(x) = 2 |αi,t∗(x)|. Thus if X = (X1,t, . . . , Xn,t) is uniformly distributed
on the hypercube {−1, 1}n, it follows from (28.6) that the supremum of the
Rademacher process

Z = sup
t∈T

n∑

i=1

αi,tXi,t = f(X)

satisfies the sub-Gaussian tail inequality

Pr(Z ≥M + z) ≤ 2 exp

(
− z2

4v

)
,

where the variance factor v can be taken as v = 4 supt∈T (α
2
1,t + · · ·+ α2

n,t).
This illustrates the power of Talagrand’s convex distance inequality. Alas,

while condition (28.5) is perfectly suited for the analysis of Rademacher pro-
cesses, it does not carry over to more general empirical processes.

At first, I found it a bit frustrating that there was no analogue of the
Gaussian concentration inequality for more general empirical processes and
that Talagrand’s beautiful results were seemingly of no use for dealing with
suprema of empirical processes like (28.2). Upon reading Talagrand (1994)
carefully, however, I realized that it contained at least one encouraging result.
Namely, Talagrand (1994) proved a sub-Gaussian Bernstein type inequality
for Z − C E(Z), where C is a universal constant. Of course in Talagrand’s
version, C is not necessarily equal to 1 but it was reasonable to expect that
this should be the case. This is exactly what Lucien Birgé and I were able
to show. We presented our result at the 1994 workshop organized at Yale in
honor of Lucien Le Cam. A year later or so, I was pleased to hear from Michel
Talagrand that, motivated in part by the statistical issues described above,
and at the price of some substantial deepening of his approach to concentration
of product measures, he could solve the problem and obtain his now famous
concentration inequality for the supremum of a bounded empirical process;
see Talagrand (1996).
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28.4 Beyond Talagrand’s inequality

Talagrand’s new result for empirical processes stimulated intense research,
part of which was aimed at deriving alternatives to Talagrand’s original ap-
proach. The interested reader will find in Boucheron et al. (2013) an account
of the transportation method and of the so-called entropy method that we
developed in a series of papers (Boucheron et al., 2000, 2003, 2005; Massart,
2000) in the footsteps of Michel Ledoux (1996). In particular, using the en-
tropy method established by Olivier Bousquet (2002), we derived a version
of Talagrand’s inequality for empirical processes with optimal numerical con-
stants in the exponential bound.

Model selection issues are still posing interesting challenges for empirical
process theory. In particular, the implementation of non-asymptotic penaliza-
tion methods requires data-driven penalty choice strategies. One possibility
is to use the concept of “minimal penalty” that Lucien Birgé and I intro-
duced in Birgé and Massart (2007) in the context of Gaussian model selection
and, more generally, the “slope heuristics” (Arlot and Massart, 2009), which
basically relies on the idea that the empirical loss

γn(s)− γn(ŝm) = sup
t∈Sm

{γn(s)− γn(t)}

has a typical behavior for large dimensional models. A complete theoretical
validation of these heuristics is yet to be developed but partial results are
available; see, e.g., Arlot and Massart (2009), Birgé and Massart (2007), and
Saumard (2013).

A fairly general concentration inequality providing a non-asymptotic ana-
logue to Wilks’ Theorem is also established in Boucheron and Massart (2011)
and used in Arlot and Massart (2009). This result stems from the entropy
method, which is flexible enough to capture the following rather subtle self-
localization effect. The variance of supt∈Sm

{γn(s) − γn(t)} can be proved to
be of the order of the variance of γn(s) − γn(t) at t = ŝm, which may be
much smaller than the maximal variance. This is typically the quantity that
would emerge from a direct application of Talagrand’s inequality for empirical
processes.

The issue of calibrating model selection criteria from data is of great im-
portance. In the context where the list of models itself is data dependent
(think, e.g., of models generated by variables selected from an algorithm such
as LARS), the problem is related to the equally important issue of choos-
ing regularization parameters; see Meynet (2012) for more details. This is a
new field of investigation which is interesting both from a theoretical and a
practical point of view.
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Orsay, France.

Saumard, A. (2013). Optimal model selection in heteroscedastic regression
using piecewise polynomial functions. Electronic Journal of Statistics,
7:1184–1223.

Talagrand, M. (1994). Sharper bounds for empirical processes. The Annals
of Probability, 22:28–76.



P. Massart 321

Talagrand, M. (1995). Concentration of measure and isoperimetric inequali-
ties in product spaces. Publications mathématiques de l’Institut des hautes
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The past’s future is now: What will the
present’s future bring?

Lynne Billard

Department of Statistics
University of Georgia, Athens, GA

Articles published in the early years of the Journal of the American Statistical
Association, i.e., 1888–1910s, posited new theories mostly by using arithmeti-
cal arguments. Starting around the mid-1910s the arguments became algebraic
in nature and by the 1920s this trend was well established. Today, a century
later, in addition to cogent mathematical arguments, new statistical develop-
ments are becoming computational, such is the power and influence of the
modern computer (a device un-dreamed of in those earlier days). Likewise,
we see enormous changes in the size and nature of assembled data sets for
our study. Therefore, entirely new paradigms are entering our discipline, rad-
ically changing the way we go about our art. This chapter focuses on one
such method wherein the data are symbolically valued, i.e., hypercubes in
p-dimensional space Rp, instead of the classically valued points in Rp.

29.1 Introduction

The advent of modern computer capabilities has a consequence that entirely
new paradigms are entering our discipline radically changing the way we go
about our art. One hundred years ago, researchers were transitioning from us-
ing arithmetical arguments when developing their new mathematically-based
ideas to using algebraic arguments (i.e., mathematical tools, algebra, calculus,
and the like). Today’s transition lies more along the lines of computational
mathematical/statistical developments as we struggle with the massively huge
data sets at hand. This chapter focuses on one such method — symbolic data
— projected by Goodman (2011) as one of the two most important new de-
velopments on the horizon wherein the data are symbolically valued, i.e., hy-
percubes in p-dimensional space Rp, instead of points in Rp as for classical

323



324 The present’s future

data. In Section 29.2, we describe briefly what symbolic data are and how
they might arise. Then, in Section 29.3, we illustrate some symbolic method-
ological analyses and compare the results with those obtained when using
classical surrogates. Some concluding remarks about the future of such data
are presented in Section 29.4.

29.2 Symbolic data

Symbolic data consist of lists, intervals, histograms and the like, and arise
in two broadly defined ways. One avenue is when data sets of classical point
observations are aggregated into smaller data sets. For example, consider a
large medical data set of millions of individual observations with informa-
tion such as demographic (e.g., age, gender, etc.), geographical (e.g., town
of residence, country, region, ...), basic medical diagnostics (pulse rate, blood
pressure, weight, height, previous maladies and when, etc.), current ailments
(e.g., cancer type such as liver, bone, etc.; heart condition, etc.), and so on.
It is unlikely the medical insurer (or medical researcher, or...) is interested in
the details of your specific visit to a care provider on a particular occasion;
indeed, the insurer may not even be interested in your aggregated visits over a
given period of time. Rather, interest may focus on all individuals (and their
accumulated history) who have a particular condition (such as heart valve fail-
ure), or, maybe interest centers on the collection of individuals of a particular
gender-age group with that condition. Thus, values are aggregated across all
individuals in the specific categories of interest. It is extremely unlikely that
all such individuals will have the same pulse rate, the same weight, and so
forth. Instead, the aggregated values can take values across an interval, as a
histogram, as a list of possible values, etc. That is, the data set now consists
of so-called symbolic data.

Automobile insurers may be interested in accident rates of categories such
as 26-year-old male drivers of red convertibles, and so on. Census data are
frequently in the form of symbolic data; e.g., housing characteristics for regions
may be described as {owner occupied, .60; renter occupied, .35; vacant, .05}
where 60% of the homes are owner occupied, etc.

There are countless examples. The prevailing thread is that large data sets
of single classical observations are aggregated in some way with the result
that symbolic data perforce emerge. There are a myriad of ways these original
data sets can be aggregated, with the actual form being driven by the scientific
question/s of interest.

On the other hand, some data are naturally symbolic in nature. For ex-
ample, species are typically described by symbolic values; e.g., the mushroom
species bernardi has a pileus cap width of [6, 7] cm. However, the particular
mushroom in your hand may have a cap width of 6.2 cm, say. Pulse rates
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bounce around, so that an apparent rate of 64 (say) may really be 64± 2, i.e.,
the interval [62, 66]. There are numerous examples.

Detailed descriptions and examples can be found in Bock and Diday (2000)
and Billard and Diday (2006). A recent review of current methodologies is
available in Noirhomme-Fraiture and Brito (2011), with a non-technical in-
troduction in Billard (2011). The original concept of symbolic data was intro-
duced in Diday (1987). Note that symbolic data are not the same as fuzzy data;
however, while they are generally different from the coarsening and grouping
concepts of, e.g., Heitjan and Rubin (1991), there are some similarities.

The major issue then is how do we analyse these intervals (or, histo-
grams, ...)? Taking classical surrogates, such as the sample mean of aggre-
gated values for each category and variable, results in a loss of information.
For example, the intervals [10, 20] and [14, 16] both have the same midpoint;
yet they are clearly differently valued observations. Therefore, it is important
that analytical methods be developed to analyse symbolic data directly so as
to capture these differences. There are other underlying issues that pertain
such as the need to develop associated logical dependency rules to maintain
the integrity of the overall data structure; we will not consider this aspect
herein however.

29.3 Illustrations

Example 29.1 Table 29.1 displays (in two parts) a data set of histogram
valued observations, extracted from Falduti and Taibaly (2004), obtained by
aggregating by airline approximately 50,000 classical observations for flights
arriving at and departing from a major airport. For illustrative simplicity,
we take three random variables Y1 = flight time, Y2 = arrival-delay-time,
and Y3 = departure-delay-time for 10 airlines only. Thus, for airline u =
1, . . . , 10 and variable j = 1, 2, 3, we denote the histogram valued observation
by Yuj = {[aujk, bujk), pujk : k = 1, . . . , suj} where the histogram sub-interval
[aujk, bujk) has relative frequency pujk with

∑
k pujk = 1. The number of

subintervals suj can vary across observations (u) and across variables (j).
Figure 29.1 shows the tree that results when clustering the data by a

Ward’s method agglomerative hierarchy algorithm applied to these histogram
data when the Euclidean extended Ichino–Yaguchi distance measure is used;
see Ichino and Yaguchi (1994) and Kim and Billard (2011, 2013), for details.
Since there are too many classical observations to be able to build an equiva-
lent tree on the original observations themselves, we resort to using classical
surrogates. In particular, we calculate the sample means for each variable
and airline. The resulting Ward’s method agglomerative tree using Euclidean
distances between the means is shown in Figure 29.2.
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TABLE 29.1
Airline data.

Y1 [0, 70) [70, 110) [110, 150) [150, 190) [190, 230) [230, 270)
1 .00017 .10568 .33511 .20430 .12823 .045267
2 .13464 .10799 .01823 .37728 .35063 .01122
3 .70026 .22415 .07264 .00229 .00065 .00000
4 .26064 .21519 .34916 .06427 .02798 .01848
5 .17867 .41499 .40634 .00000 .00000 .00000
6 .28907 .41882 .28452 .00683 .00076 .00000
7 .00000 .00000 .00000 .00000 .03811 .30793
8 .39219 .31956 .19201 .09442 .00182 .00000
9 .00000 .61672 .36585 .00348 .00174 .00000

10 .76391 .20936 .01719 .00645 .00263 .00048
Y2 [−40,−20) [−20, 0) [0, 20) [20, 40) [40, 60) [60, 80)
1 .09260 .38520 .28589 .09725 .04854 .03046
2 .09537 .45863 .30014 .07433 .03226 .01683
3 .12958 .41361 .21008 .09097 .04450 .02716
4 .06054 .44362 .33475 .08648 .03510 .01865
5 .08934 .44957 .29683 .07493 .01729 .03746
6 .07967 .36646 .28376 .10698 .06070 .03794
7 .14024 .30030 .29573 .18293 .03659 .01067
8 .03949 .40899 .33727 .12483 .04585 .02224
9 .07840 .44599 .21603 .10627 .04530 .03310

10 .10551 .55693 .22989 .06493 .02363 .01074
Y3 [−15, 5) [5, 25) [25, 45) [45, 65) [65, 85) [85, 105)
1 .67762 .16988 .05714 .03219 .01893 .01463
2 .84993 .07293 .03086 .01964 .01683 .00421
3 .65249 .14071 .06872 .04025 .02749 .01669
4 .77650 .14516 .04036 .01611 .01051 .00526
5 .63112 .24784 .04323 .02017 .02882 .00288
6 .70030 .12064 .06297 .04628 .02049 .01290
7 .73323 .16463 .04726 .01677 .01220 .00305
8 .78711 .12165 .05311 .01816 .00772 .00635
9 .71080 .12369 .05749 .03310 .01916 .00523

10 .83600 .10862 .03032 .01408 .00573 .00286

It is immediately apparent that the trees differ, even though both have
the same “determinant” — agglomerative, Ward’s method, and Euclidean
distances. However, one tree is based on the means only while the other is
based on the histograms; i.e., the histogram tree of Figure 29.1, in addition to
the information in the means, also uses information in the internal variances of
the observed values. Although the details are omitted, it is easy to show that,
e.g., airlines (1, 2, 4) have similar means and similar variances overall; however,
by omitting the information contained in the variances (as in Figure 29.2),



L. Billard 327

TABLE 29.1
Airline data (continued).

Y1 [270, 310) [310, 350) [350, 390) [390, 430) [430, 470) [470, 540]
1 .07831 .07556 .02685 .00034 .00000 .00000
2 .00000 .00000 .00000 .00000 .00000 .00000
3 .00000 .00000 .00000 .00000 .00000 .00000
4 .03425 .02272 .00729 .00000 .00000 .00000
5 .00000 .00000 .00000 .00000 .00000 .00000
6 .00000 .00000 .00000 .00000 .00000 .00000
7 .34299 .21494 .08384 .01220 .00000 .00000
8 .00000 .00000 .00000 .00000 .00000 .00000
9 .00523 .00174 .00348 .00000 .00000 .00174
10 .00000 .00000 .00000 .00000 .00000 .00000
Y2 [80, 100) [100, 120) [120, 140) [140, 160) [160, 200) [200, 240]
1 .01773 .01411 .00637 .00654 .01532 .00000
2 .01403 .00281 .00281 .00000 .00281 .00000
3 .02094 .01440 .01276 .00884 .02716 .00000
4 .00797 .00661 .00356 .00051 .00220 .00000
5 .00865 .00576 .00576 .00576 .00865 .00000
6 .02883 .00835 .01366 .00835 .00531 .00000
7 .00762 .00305 .00152 .00762 .01372 .00000
8 .00817 .00635 .00227 .00136 .00318 .00000
9 .01916 .01394 .00871 .01220 .02091 .00000
10 .00286 .00143 .00167 .00095 .00143 .00000
Y3 [105, 125) [125, 145) [145, 165) [165, 185) [185, 225) [225, 265]
1 .00878 .00000 .00361 .00947 .00775 .00000
2 .00281 .00000 .00000 .00140 .00140 .00000
3 .01407 .00000 .01014 .01407 .01538 .00000
4 .00305 .00000 .00085 .00068 .00153 .00000
5 .00865 .00000 .00865 .00000 .00865 .00000
6 .01897 .00000 .00986 .00607 .00152 .00000
7 .00457 .00000 .00152 .00762 .00915 .00000
8 .00227 .00000 .00136 .00045 .00182 .00000
9 .01045 .00000 .01742 .01394 .00871 .00000
10 .00095 .00000 .00072 .00048 .00024 .00000

while airlines (1, 2) have comparable means, they differ from those for airline 4.
That is, the classical surrogate analysis is based on the means only.

A polythetic divisive tree built on the Euclidean extended Ichino–Yaguchi
distances for the histograms is shown in Figure 29.3; see Kim and Billard
(2011) for this algorithm. The corresponding monothetic divisive tree is com-
parable. This tree is different again from those of Figures 29.1 and 29.2; these
differences reflect the fact that different clustering algorithms, along with dif-
ferent distance matrices and different methods, can construct quite differ-
ent trees.
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1 2 4 3 5 6 9 8 10 7

FIGURE 29.1
Ward’s method agglomerative tree based on histograms.

Example 29.2 Figure 29.4 displays simulated individual classical observa-
tions (Y1, Y2) drawn from bivariate normal distributions N2(µ,Σ). There
are five samples each with n = 100 observations. Sample S = 1 has mean
µ = (5, 0), standard deviations σ1 = σ2 = .25 and correlation coefficient
ρ = 0; samples S=2,3 have µ = (1, 1), σ1 = σ2 = .25 and ρ = 0; and samples
S = 4, 5 have µ = (1, 1), σ1 = σ2 = 1 and ρ = .8. Each of the samples can be
aggregated to produce a bivariate histogram observation Ys, s = 1, . . . , 5.

When a divisive algorithm for histogram data is applied to these data, three
clusters emerge containing the observations C1 = {Y1}, C2 = {Y2, Y3}, and
C3 = {Y4, Y5}, respectively. In contrast, applying algorithms, e.g., a K-means

1 2 7 3 10 4 9 5 6 8

FIGURE 29.2
Ward’s method agglomerative tree based on means.
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6 5 9 3 10 8 2 4 7 1

FIGURE 29.3
Polythetic divisive tree based on histograms.

FIGURE 29.4
Simulated data — How many clusters?
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method, to the classical observations (or, to classical surrogates such as the
means), identifies only two clusters, viz., C1 = {Y1} and C2 = {Y2, Y3, Y4, Y5}.
That is, since information such as the internal variations is not part of a
classical analysis, the classical clustering analyses are unable to identify ob-
servations Y2 and Y3 as being different from observations Y4 and Y5.

Example 29.3 Consider the data of Table 29.2 where for simplicity, we re-
strict attention to minimum and maximum monthly temperatures for four
months only, January, April, July, and October, Y1−Y4, respectively, in 1988
for n = 10 weather stations. The interval values for station u = 1, . . . , 10
and variable j = 1, . . . , 4 are denoted by Yuj = [auj , buj ]. Elevation is also
included as Y5; note Y5 is a classical value and so is a special case of an
interval value with au5 ≡ [au5, au5]. The data are extracted from http:
//dss.ucar.edu/datasets/ds578.5 which contain annual monthly weather
values for several variables for many stations in China over many years.

TABLE 29.2
Temperature intervals and elevation.

Station January April July October Elevation
u [au1, bu1] [au2, bu2] [au3, bu3] [au4, bu4] au5
1 [−18.4,−7.5] [−0.1, 13.2] [17.0, 26.5] [0.6, 13.1] 4.82

2 [−20.0,−9.6] [0.2, 11.9] [17.8, 27.2] [−0.2, 12.5] 3.44

3 [−23.4,−15.5] [−4.5, 9.5] [12.9, 23.0] [−4.0, 8.9] 14.78

4 [−27.9,−16.0] [−1.5, 12.0] [16.1, 25.0] [−2.6, 10.9] 4.84

5 [−8.4, 9.0] [1.7, 16.4] [10.8, 23.2] [1.4, 18.7] 73.16

6 [2.3, 16.9] [9.9, 24.3] [17.4, 22.8] [14.5, 23.5] 32.96

7 [2.8, 16.6] [10.4, 23.4] [16.9, 24.4] [12.4, 19.7] 37.82

8 [10.0, 17.7] [15.8, 23.9] [24.2, 33.8] [19.2, 27.6] 2.38

9 [11.5, 17.7] [17.8, 24.2] [25.8, 33.5] [20.3, 26.9] 1.44

10 [11.8, 19.2] [16.4, 22.7] [25.6, 32.6] [20.4, 27.3] 0.02

A principal component analysis on these interval-valued data produces
the projections onto the PC1 × PC2 space shown in Figure 29.5. Details
of the methodology and the visualization construction can be found in Le-
Rademacher and Billard (2012), and further details of this particular data set
are in Billard and Le-Rademacher (2012).

Notice in particular that since the original observations are hypercubes
in Rp space, so we observe that the corresponding principal components are
hypercubes in PC-space. The relative sizes of these PC hypercubes reflect the
relative sizes of the data hypercubes. For example, if we compare the observed
values of stations u = 5 and u = 10 in Table 29.2, it is clear that the inter-
vals across the variables for u = 5 are on balance wider than are those for
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FIGURE 29.5
PCA based on intervals.

u = 10; thus, the principal component hypercube is larger for u = 5 than for
u = 10. That is, the observation u = 5 has a larger internal variation. These
internal variations are a component of the covariance terms in the covariance
(and correlation) matrix. This feature is not possible in a classical analysis,
with the point observation in Rp being transformed into but a point value in
PC-space, as shown in Figure 29.6 for the classical principal component anal-
ysis performed on the interval means. While both the symbolic and classical
analyses showed the temperatures as being of comparable importance to PC1

with elevation being important only for PC2, the visualizations through the
PC hypercubes of Figure 29.5 are more informative than are the PC points of
Figure 29.6.

29.4 Conclusion

By the time that Eddy (1986) considered the future of computers in statistical
research, it was already clear that a computer revolution was raising its head
over the horizon. This revolution was not simply focussed on bigger and better
computers to do traditional calculations on a larger scale, though that too was
a component, then and now. Rather, more expansively, entirely new ways of
approaching our art were to be the new currency of the looming 21st century.
Early signs included the emergence of new methodologies such as the boot-
strap (Efron, 1979) and Gibbs sampler (Geman and Geman, 1984), though
both owed their roots to earlier researchers. While clearly these and similar
computational methodologies had not been feasible in earlier days thereby be-
ing a product of computer advances, they are still classical approaches per se.
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FIGURE 29.6
PCA based on means.

By the 1990s, COPSS Presidential Addresses referred to the upcoming infor-
mation and technological revolution, its waves already heading for the unwary;
see, e.g., Kettenring (1997) and Billard (1995, 1997).

However, the real advances will take quite different formats to those pre-
dicted in the 1990s. In a very prescient comment, Schweizer (1984) declared
that “distributions are the numbers of the future.” The present is that future.
Furthermore, today’s future consists of a new paradigm whereby new method-
ologies, and new theories to support those methodologies, must be developed
if we are to remain viable players as data analysts. These new methods must
also be such that the classical models of the still-present and past come out
correctly as special cases of the new approaches.

In this chapter, one such approach, viz., symbolic data, has been described
albeit ever so briefly. While a study of the literature may at first suggest there
are many symbolic techniques currently available, in reality there are very few
and even then those few handle relatively narrowly defined situations.

There are two major directions for future work: one is to develop the new
methodologies for new data structures and to extend the plethora of situations
that a century or more of research in so-called classical statistics produced,
while the other is to establish mathematical underpinning to support those
new methods (somewhat akin to the theoretical foundations provided initially
by Bickel and Freedman (1981), and Singh (1981), which validated the early
bootstrap work). One certainty is sure — the present-future demands that we
engage our energies in addressing the myriad of issues surrounding large and
complex data sets. It is an exciting time to be a part of this undertaking.
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Diday, E. (1987). Introduction à l’approche symbolique en analyse des
données. Premières Journées Symbolique-Numérique, CEREMADE, Uni-
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Lessons in biostatistics

Norman E. Breslow
Department of Biostatistics
University of Washington, Seattle, WA

Today’s medical journals are full of factual errors and false conclusions arising
from lack of statistical common sense. Reflecting on personal experiences, I ar-
gue that statisticians can substantially improve medical science by informed
application of standard statistical principles. Two specific areas are identified
where lack of such input regularly produces faulty research. Statisticians are
needed more than ever to bring rigor to clinical research.

30.1 Introduction

Biostatisticians develop and apply statistical concepts and methods to clinical
medicine, to laboratory medicine and to population medicine or public health.
During the fifty years since COPSS was organized, their work has become
increasingly important. Major medical journals often insist on biostatistical
review of submitted articles. Biostatistics graduates are in high demand for
work in industry, government and academia. They occupy prominent positions
as heads of corporations and universities, deans of schools of public health and
directors of major research programs.

In spite of the heightened visibility of the profession, much of today’s med-
ical research is conducted without adequate biostatistical input. The result is
not infrequently a waste of public resources, the promulgation of false conclu-
sions and the exposure of patients to possible mistreatment. I describe a few
of the more common episodes of flawed research with which I have come in
contact, which involve “immortal time” in follow-up studies and lack of proper
validation of discriminant rules. I discuss the lessons learned both from these
episodes and more generally from my decades of work in childhood cancer.
The primary focus of the chapter is on biostatistics in clinical medicine. Other
chapters in this volume discuss the role of statistics in laboratory medicine,
especially genetics, and in public health.
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30.2 It’s the science that counts

My introduction to biostatistics was in graduate school. During the school year
a small group from the Stanford statistics department made the trek to the
medical school for a weekly seminar. There we learned from medical faculty
and our professors about the research problems on which they were collab-
orating. During the summer we took jobs with local research organizations.
At weekly meetings back on campus, we presented the problems stemming
from our work and got advice from each other and the professors on how to
approach them.

One summer I worked at the state health department. There was con-
siderable interest in the possibility of an infectious origin for leukemia and
speculation that transmission of the putative infectious agent might occur be-
tween animals and humans. The health department was conducting a census
of cancer occurrence in dogs and cats in Alameda county, and the epidemi-
ologists wanted to evaluate possible space-time clustering of leukemia cases
in people and in cats. The maps at their disposal, however, were inaccurate.
Ascertainment of the geographic coordinates needed for quantitative analysis
was subject to substantial error. My assignment was to read up on spatial
statistical distributions and develop a measurement error model. I was having
considerable difficulty.

I will never forget the stern advice I received from Professor Lincoln Moses
following my presentation at the weekly meeting back on campus. “What you
need is a good set of maps,” he said. “Try the water company!” Obviously,
in his mind, as later in mine, the best method of dealing with measurement
error was to avoid it! Bradford Hill gave similar advice:

“One must go and seek more facts, paying less attention to the tech-
niques of handling the data and far more to the development and
perfection of the methods of obtaining them.” (Hill, 1953)

As it turned out, the East Bay Municipal Utilities District (EBMUD)
had just completed a very extensive and costly mapping program. The maps
were so accurate that you had to decide where in the residence to plot the
case to determine the coordinates. Executives in charge of the program were
delighted to learn that their maps would serve not only corporate interests
but also those of public health. Instead of working on a statistical methods
problem, I spent my remaining time that summer on administrative issues
related to the use of the maps by the health department. A photograph of
me with health department and EBMUD officials poring over the maps was
published in the corporate magazine and hangs in my office today. The lesson
learned was invaluable.

I had a similar experience shortly after my arrival at the University of
Washington in 1968. Having applied for a position in the Mathematics De-
partment, not realizing it was in the process of downsizing and discharging
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most of its statisticians, I wound up as a biostatistician in the Medical School.
My support came mainly from service as statistician to the Children’s Cancer
Study Group. In those days the MDs who chaired the protocol study commit-
tees sometimes compiled the data themselves (one dedicated researcher metic-
ulously arranged the flow sheets on her living room floor) and sent me simple
data summaries with a request for calculation of some standard statistic. I was
appalled by the routine exclusion from randomized treatment comparisons of
patients who had “inadequate trials” of chemotherapy due to early discontin-
uation of the assigned treatment regimen or early death. It was clear that a
more systematic approach to data collection and analysis was needed.

My colleague Dick Kronmal, fortunately, had just developed a computer
system to store and summarize data from longitudinal studies that gener-
ated multiple records per patient (Kronmal et al., 1970). This system was
perfect for the needs of the children’s cancer group. It allowed me to quickly
establish a Data and Statistical Center both for the group and for the Na-
tional Wilms Tumor Study (NWTS), whose steering committee I joined as a
founding member in 1969. (Wilms is an embryonal tumor of the kidney that
occurs almost exclusively in children.) Once again the lesson learned was that
“development and perfection of the methods of obtaining the data” were at
least as important to the overall scientific enterprise as were the statistical
methods I subsequently helped develop to “handle” right censored survival
data. Having me, as statistician, take control of data collection and process-
ing, while sharing responsibility for data quality with the clinicians, made it
easier for me to then also exercise some degree of control over which patients
were included in any given analysis.

My experience was not unusual. The role of biostatisticians in cooperative
clinical research was rapidly evolving as the importance of their contributions
became more widely appreciated. It soon became commonplace for them to
occupy leadership positions within the cooperative group structure, for exam-
ple, as heads of statistics departments or as directors of independently funded
coordinating centers.

A steady diet of service to clinical trial groups, however, can with time
become tedious. It also interferes with production of the first-authored papers
needed for promotion in academia. One way to relieve the tedium, and to gen-
erate the publications, is to get more involved in the science. For example, the
biostatistician can propose and conduct ancillary studies that utilize the valu-
able data collected through the clinical trials mechanism. The first childhood
leukemia study in which I was involved was not atypical in demonstrating that
treatment outcomes varied much more with baseline host and disease charac-
teristics, in this case age and the peripheral white blood cell count, than with
the treatments the study was designed to assess (Miller et al., 1974). This
result was apparently a revelation to the clinicians. They jumped on it to pro-
pose treatment stratification based on prognostic factor groups in subsequent
trials, so that the most toxic and experimental treatments were reserved for
those who actually needed them. Subsequently, I initiated several studies of
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prognosis in Wilms tumor that resulted in greater appreciation for the adverse
outcomes associated with tumor invasion of regional lymph nodes and ulti-
mately to changes in the staging system. Fascinated by how well Knudson’s
(Knudson, Jr., 1971) 2-hit mutational model explained the genetic epidemi-
ology of retinoblastoma, another embryonal tumor of a paired organ (in this
case the eye rather than the kidney), I conducted studies of the epidemiology
of Wilms tumor that provided strong evidence for genetic heterogeneity, an
explanation for its lower incidence and younger ages-at-onset in Asians and a
hypothesis regarding which survivors were at especially high risk of end stage
renal disease in young adulthood (Breslow and Beckwith, 1982; Breslow et al.,
2006; Lange et al., 2011). Since 1991, I have served as Principal Investigator
on the NIH grant that funds the continued follow-up of NWTS survivors for
“late effects” associated with Wilms tumor and its treatment. This study has
occupied an increasingly important place in my research repertoire.

30.3 Immortal time

In my opening lecture to a class designed primarily for second year doctoral
students in epidemiology, I state the First Rule of survival analysis: Selection
into the study cohort, or into subgroups to be compared in the analysis, must
not depend on events that occur after the start of follow-up. While this point
may be obvious to a statistician, certainly one trained to use martingale ar-
guments to justify inferences about how past history influences rates of future
events, it was not obvious to many of the epidemiologists. The “immortal
time” bias that results from failure to follow the rule has resulted, and con-
tinues regularly to result, in grossly fraudulent claims in papers published in
the most prestigious medical journals.

My first exposure to the issue came soon after I started work with the
children’s cancer group. The group chair was puzzled by a recently published
article that called into question the standard criteria for evaluation of treat-
ment response in acute leukemia. These included the stipulation that patients
with a high bone marrow lymphocyte count (BMLC) be excluded from the ex-
cellent response category. Indeed, a high BMLC often presaged relapse, defined
as 5% or higher blast cells in the marrow. The article in question, however,
reported that patients whose lymphocytes remained below the threshold level
of 20% of marrow cells throughout the period of remission tended to have
shorter remissions than patients whose BMLC exceeded 20% on at least one
occasion. Although I knew little about survival analysis, and had not yet artic-
ulated the First Rule, I was familiar with random variation and the tendency
of maxima to increase with the length of the series. Intuition suggested that
the article’s conclusion, that there was “no justification for excluding a patient
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from complete remission status because of bone marrow lymphocytosis,” was
erroneous.

Accordingly, using new data from the children’s cancer group, I attempted
to convince my clinical colleagues that the reasoning was fallacious (Bres-
low and Zandstra, 1970). I first replicated the earlier findings by demon-
strating that, when patients were classified into three categories according
to the BMLC values observed during remission, the “remission duration”
(progression-free survival) curve for the group with highest maximum BMLC
was on top and that for the group with lowest maximum BMLC was on the
bottom. When patients were classified according to the average of their BMLC
values during remission, however, the ordering was reversed. Both compar-
isons were highly statistically significant. Of course, even the analysis based
on average counts violated the First Rule. Nowadays one would employ time-
dependent covariates or stratification to evaluate how the history of BMLC
affected future relapse rates. The experience was a valuable lesson about the
importance of “statistical thinking” in clinical research.

Many biostatisticians were sensitized to the issue of immortal time by
Mitch Gail’s critique of early claims of the efficacy of heart transplantation
(Gail, 1972). To illustrate the problems with the statistical approach taken
by cardiac surgeons in those days, he compared survival curves from time
of admission as a transplant candidate according to whether or not the pa-
tient had subsequently received a transplant. He pointed out that patients
who died early had less opportunity to receive a transplant, whereas those
who did receive one were guaranteed, by definition, to have survived long
enough for a suitable donor to be found. In effect, person-months of observa-
tion prior to transplant were unfairly subtracted from the total person-months
for the control group, biasing their survival rate downwards, and added to the
person-months for the transplant group, biasing their survival rate upwards.
Correct accounting for the timing of transplant in the statistical compari-
son was subsequently undertaken by several statistical teams, for example, by
use of time-dependent covariates in the Cox model (Crowley and Hu, 1977).
When the data were properly analyzed, transplant as performed at the time
was found to have little benefit.

Nick Day and I, in the section of our second IARC monograph (Breslow
and Day, 1987) on allocation of person-time to time-dependent exposure cat-
egories, called attention to a fallacious claim of decreasing death rates with
increasing duration of work in the polyvinyl-chloride industry. Here the inves-
tigators had contrasted standardized mortality ratios (of numbers of deaths
observed to those expected from age-specific population rates) among work-
ers employed for 0–14 versus 15+ years in the industry. Not only all deaths
occurring beyond 15 years, however, but also all person-time accumulated by
persons employed for 15+ years, had been allocated to the latter group. Day
and I stated: “The correct assignment of each increment in person-years of
follow-up is to that same exposure category to which a death would be assigned
should it occur at that time.” In other words, the first 15 years of employment
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time for the vinyl-chloride workers whose employment continued beyond that
point should have been assigned to the 0–14 group. When this correction was
made, the 15+ year exposure group had a slightly higher mortality ratio than
did the 0–14 year group.

Faculty at McGill University in Montréal, Canada, have repeatedly called
attention to erroneous conclusions in the medical literature stemming from
immortal time bias. One recent article takes issue with the finding that actors
who won an Oscar lived on average nearly four years longer than those in a
matched control group (Sylvestre et al., 2006). The authors pointed out that,
as long ago as 1843, William Farr warned against the hazards of “classifying
persons by their status at the end of follow-up and analyzing them as if they
had been in these categories from the outset” (Farr, 1975). Farr continued

“... certain professions, stations and ranks are only attained by persons
advanced in years; and some occupations are followed only in youth;
hence it requires no great amount of sagacity to perceive that ‘the mean
age at death’ [· · · ] cannot be depended on in investigating the influence
of occupation, rank and profession upon health and longevity.”

Noting the relatively early ages at death of Cornets, Curates and Juvenile
Barristers, he concluded wryly: “It would be almost necessary to make them
Generals, Bishops and Judges — for the sake of their health.”

Mistakes are made even when investigators are seemingly aware of the
problem. A 2004 report in The New England Journal of Medicine examined
the effect on survival of a delay in kidney transplantation among children with
end stage renal disease. The authors stated:

“Delay in kidney transplantation as a potential risk factor for early
death was analyzed by comparing mortality among groups with differ-
ent lengths of time until transplantation. To account for survival bias,
delay as a predictor of death was analyzed beginning 2 years after the
initiation of renal replacement therapy. There was no significant dif-
ference in mortality observed among groups with different lengths of
time until transplantation (Fig 3)” (McDonald and Craig, 2004).

Close examination of their Figure 3, however, leads to a different conclu-
sion. Survival curves from two years after onset of renal replacement therapy
(dialysis or transplant) were shown separately for those with preemptive trans-
plant (no delay), less than one-year delay and 1–2 years delay, categories based
on information available at the start of follow-up at two years. They are in
the anticipated order, with the survival outcomes best for those having had
an immediate transplant followed in succession by those having had a 0–1 or
1–2 year delay. Had the authors simply added a fourth curve for those not yet
transplanted by year 2, they would have found that it lay below the others.
This would have confirmed the anticipated rank order in survival outcomes
under the hypothesis that longer delay increased subsequent mortality. How-
ever, they mistakenly split the fourth group into those who never received a
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transplant and those who did so at some point after two years. The survival
curve for the “no transplant” group was far below all the others, with many
deaths having occurred early on prior to a suitable donor becoming available,
while the curve for the “≥ 2 years” group was second from highest due to im-
mortal time. The clear message in the data was lost. I have used this widely
cited paper as the basis for several exam and homework questions. Students
often find the lessons about immortal time to be the most important they
learned from the class.

I mentioned earlier my dissatisfaction with the exclusion of patients with
“inadequate trials” from randomized treatment comparisons, a policy that
was widely followed by the children’s cancer group when I joined it. Such “per
protocol” analyses constitute another common violation of the First Rule.
Exclusion of patients based on events that occur after the start of follow-up,
in particular, the failure to receive protocol treatment, invites bias that is
avoided by keeping all eligible patients in the study from the moment they
are randomized. Analyses using all the eligible patients generate results that
apply to a real population and that are readily compared with results from like
studies. Attempts to clearly describe the fictitious populations to which the per
protocol analyses apply are fraught with difficulty. My colleague Tom Fleming
has thoughtfully discussed the fundamental principle that all patients be kept
in the analysis following randomization, its rationale and its ramifications
(Fleming, 2011).

30.4 Multiplicity

Whether from cowardice or good sense, I consciously strived throughout my
career to avoid problems involving vast amounts of data collected on individual
subjects. There seemed to be enough good clinical science to do with the
limited number of treatment and prognostic variables we could afford to collect
for the childhood cancer patients. The forays into the epidemiology of Wilms
tumor similarly used limited amounts of information on gender, ages at onset,
birth weights, histologic subtypes, precursor lesions, congenital malformations
and the like. This allowed me to structure analyses using a small number of
variables selected a priori to answer specific questions based on clearly stated
hypotheses.

My successors do not have this luxury. Faced with the revolution in molec-
ular biology, they must cope with increasingly high dimensional data in an at-
tempt to assist clinicians deliver “personalized medicine” based on individual
“omics” (genomics, epigenomics, proteomics, transcriptomics, metabolomics,
etc.) profiles. I hope that widespread enthusiasm for the new technologies does
not result in a tremendous expenditure of resources that does little to advance
public health. This can be avoided if statisticians demand, and are given, a
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meaningful role in the process. I am impressed by how eagerly my younger
colleagues, as well as some of my peers, have responded to the challenge.

The problems of multiplicity were brought home to me in a forceful way
when I read an article based on data from the 3rd and 4th NWTS trials
supplied by our pathologist to a group of urologists and pathologists at the
prestigious Brady Institute at Johns Hopkins Hospital (JHH); see Partin et al.
(1994). Regrettably, they had not solicited my input. I was embarrassed that
a publication based on NWTS data contained such blatant errors. For one
thing, although our pathologist had supplied them with a case-control sample
that was overweighted with children who had relapsed or had advanced disease
at onset, they ignored the design and analysed the data as a simple random
sample. Consequently their Kaplan–Meier estimates of progression-free sur-
vival were seriously in error, suggesting that nearly half the patients with
“favorable histology” relapsed or died within five years of diagnosis, whereas
the actual fraction who did so was about 11%.

A more grievous error, however, was using the same data both to con-
struct and to validate a predictive model based on a new technology that
produced moderately high dimensional quantitative data. Determined to im-
prove on the subjectivity of the pathologist, the JHH team had developed a
technique they called nuclear morphometry to quantify the malignancy grad-
ing of Wilms and other urologic tumors, including prostate. From the archived
tumor slide submitted by our pathologist for each patient, they selected 150
blastemal nuclei for digitizing. The digitized images were then processed using
a commercial software package known as Dyna CELL. This produced for each
nucleus a series of 16 shape descriptors including, for example, area, perime-
ter, two measures of roundness and two of ellipticity. For each such measure
17 descriptive statistics were calculated from the distribution of 150 values:
Mean, variance, skewness, kurtosis, means of five highest and five lowest val-
ues, etc. This yielded 16 × 17 = 242 nuclear morphometric observations per
patient. Among these, the skewness of the nuclear roundness factor (SNRF)
and the average of the lowest five values for ellipticity as measured by the feret
diameter (distance between two tangents on opposite sides of a planar figure)
method (LEFD) were found to best separate cases from controls, each yield-
ing p = .01 by univariate logistic regression. SNRF, LEFD and age, a variable
I had previously identified as an important prognostic factor, were confirmed
by stepwise regression analysis as the best three of the available univariate
predictors. They were combined into a discriminant function that, needless to
say, did separate the cases from the controls used in its development, although
only with moderate success.
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TABLE 30.1
Regression coefficients (± SEs) in multivariate nuclear morphometric discrim-
inant functions fitted to three data sets†.

Prospective
Case-Control Sample Sample

Risk NWTS + JHH NWTS Alone NWTS

Factor (n = 108)∗ (n = 95) (n = 218)
Age (yr) .02 .013± .008 .017± .005

SNRF 1.17 1.23± .52 −.02± .26

LEFD 90.6 121.6± 48.4 .05± 47.5
†From Breslow et al. (1999). Reproduced with permission. c©1999
American Society of Clinical Oncology. All rights reserved.
∗From Partin et al. (1994)

I was convinced that most of this apparent success was due to the failure
to account for the multiplicity of comparisons inherent in the selection of
the best 2 out of 242 measurements for the discriminant function. With good
cooperation from JHH, I designed a prospective study to validate the ability of
their nuclear morphometric score to predict relapse in Wilms tumor (Breslow
et al., 1999). I identified 218 NWTS-4 patients who had not been included in
the case-control study, each of whom had an archived slide showing a diagnosis
by our pathologist of a Wilms tumor having the same “favorable” histologic
subtype as considered earlier. The slides were sent to the JHH investigators,
who had no knowledge of the treatment outcomes, and were processed in the
same manner as for the earlier case-control study. We then contrasted results
obtained by re-analysis of data for the 95 NWTS patients in the case-control
study, excluding 13 patients from JHH who also had figured in the earlier
report, with those obtained by analysis of data for the 218 patients in the
prospective study.

The results, reproduced in Table 30.1, were instructive. Regression coeffi-
cients obtained using a Cox regression model fitted to data for the 95 NWTS
patients in the original study are shown in the third column. They were compa-
rable to those reported by the JHH group based on logistic regression analysis
of data for the 95 NWTS plus 13 JHH patients. These latter coefficients, shown
in the second column of the table, were used to construct the nuclear morpho-
metric score. Results obtained using Cox regression fitted to the 218 patients
in the prospective study, of whom 21 had relapsed and one had died of tox-
icity, were very different. As I had anticipated, the only variable that was
statistically significant was the known prognostic factor age. Coefficients for
the two nuclear morphometric variables were near zero. When the original
nuclear morphometric score was applied to the prospective data, using the
same cutoff value as in the original report, the sensitivity was reduced from
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75% to 71% and the specificity from 69% to 56%. Only the inclusion of age
in the score gave it predictive value when applied to the new data.

No further attempts to utilize nuclear morphometry to predict outcomes
in patients with Wilms tumor have been reported. Neither the original paper
from JHH nor my attempt to correct its conclusions have received more than
a handful of citations. Somewhat more interest was generated by use of the
same technique to grade the malignancy of prostate cancer, for which the
JHH investigators identified the variance of the nuclear roundness factor as
the variable most predictive of disease progression and disease related death.
While their initial studies on prostate cancer suffered from the same failure to
separate test and validation data that compromised the Wilms tumor case-
control study, variance of the nuclear roundness factor did apparently predict
adverse outcomes in a later prospective study.

Today the public is anxiously awaiting the anticipated payoff from their in-
vestment in omics research so that optimal medical treatments may be selected
based on each patient’s genomic or epigenomic make-up. Problems of multi-
plicity inherent in nuclear morphometry pale in comparison to those posed by
development of personalized medicine based on omics data. A recent report
from the Institute of Medicine (IOM) highlights the important role that statis-
ticians and statistical thinking will play in this development (IOM, 2012). This
was commissioned following the exposure of serious flaws in studies at Duke
University that had proposed tests based on gene expression (microarray)
profiles to identify cancer patients who were sensitive or resistant to specific
chemotherapeutic agents (Baggerly and Coombes, 2009). Sloppy data man-
agement led to major data errors including off-by-one errors in gene lists and
reversal of some of the sensitive/resistant labels. The corrupted data, coupled
with inadequate information regarding details of computational procedures,
made it impossible for other researchers to replicate the published findings.
Questions also were raised regarding the integrity of the validation process.
Ultimately, dozens of papers were retracted from major journals, three clini-
cal trials were suspended and an investigation was launched into financial and
intellectual/professional conflicts of interest.

The IOM report recommendations are designed to prevent a recurrence
of this saga. They emphasize the need for evaluation of a completely “locked
down” computational procedure using, preferably, an independent validation
sample. Three options are proposed for determining when a fully validated test
procedure is ready for clinical trials that use the test to direct patient manage-
ment. To ensure that personalized treatment decisions based on omics tests
truly do advance the practice of medicine, I hope eventually to see randomized
clinical trials where test-based patient management is compared directly with
current standard care.
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30.5 Conclusion

The past 50 years have witnessed many important developments in statistical
theory and methodology, a few of which are mentioned in other chapters of
this COPSS anniversary volume. I have focussed on the place of statistics in
clinical medicine. While this sometimes requires the creation of new statistical
methods, more often it entails the application of standard statistical principles
and techniques. Major contributions are made simply by exercising the rigor-
ous thinking that comes from training in mathematics and statistics. Having
statisticians take primary responsibility for data collection and management
often improves the quality and integrity of the entire scientific enterprise.

The common sense notion that definition of comparison groups in survival
analyses should be based on information available at the beginning of follow-
up, rather than at its end, has been around for over 150 years. When dealing
with high-dimensional biomarkers, testing of a well defined discriminant rule
on a completely new set of subjects is obviously the best way to evaluate its
predictive capacity. Related cross-validation concepts and methods have been
known for decades. As patient profiles become more complex, and biology
more quantitative, biostatisticians will have an increasingly important role to
play in advancing modern medicine.

References

Baggerly, K.A. and Coombes, K.R. (2009). Deriving chemosensitivity from
cell lines: Forensic bioinformatics and reproducible research in high-
throughput biology. The Annals of Applied Statistics, 3:1309–1334.

Breslow, N.E. and Beckwith, J.B. (1982). Epidemiological features of Wilms
tumor — Results of the National Wilms Tumor Study. Journal of the
National Cancer Institute, 68:429–436.

Breslow, N.E., Beckwith, J.B., Perlman, E.J., and Reeve, A.E. (2006). Age
distributions, birth weights, nephrogenic rests, and heterogeneity in the
pathogenesis of Wilms tumor. Pediatric Blood Cancer, 47:260–267.

Breslow, N.E. and Day, N.E. (1987). Statistical Methods in Cancer Research
II: The Design and Analysis of Cohort Studies. IARC Scientific Publica-
tions. International Agency for Research on Cancer, Lyon, France.

Breslow, N.E., Partin, A.W., Lee, B.R., Guthrie, K.A., Beckwith, J.B., and
Green, D.M. (1999). Nuclear morphometry and prognosis in favorable



346 Lessons in biostatistics

histology Wilms tumor: A prospective reevaluation. Journal of Clinical
Oncology, 17:2123–2126.

Breslow, N.E. and Zandstra, R. (1970). A note on the relationship between
bone marrow lymphocytosis and remission duration in acute leukemia.
Blood, 36:246–249.

Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant sur-
vival data. Journal of the American Statistical Association, 72:27–36.

Farr, W. (1975). Vital Statistics: A Memorial Volume of Selections from the
Writings of William Farr. Scarecrow Press, Metuchen, NJ.

Fleming, T.R. (2011). Addressing missing data in clinical trials. Annals of
Internal Medicine, 154:113–117.

Gail, M.H. (1972). Does cardiac transplantation prolong life? A reassessment.
Annals of Internal Medicine, 76:815–817.

Hill, A.B. (1953). Observation and experiment. New England Journal of
Medicine, 248:995–1001.

Institute of Medicine (2012). Evolution of Translational Omics: Lessons
Learned and the Path Forward. The National Acadamies Press, Wash-
ington, DC.

Knudson, A.G. Jr. (1971). Mutation and cancer: Statistical study of
retinoblastoma. Proceedings of the National Academy of Sciences, 68:820–
823.

Kronmal, R.A., Bender, L., and Mortense, J. (1970). A conversational statis-
tical system for medical records. Journal of the Royal Statistical Society,
Series C, 19:82–92.

Lange, J., Peterson, S.M., Takashima, J.R., Grigoriev, Y., Ritchey, M.L.,
Shamberger, R.C., Beckwith, J.B., Perlman, E., Green, D.M., and Bres-
low, N.E. (2011). Risk factors for end stage renal disease in non-WT1-
syndromic Wilms tumor. Journal of Urology, 186:378–386.

McDonald, S.P. and Craig, J.C. (2004). Long-term survival of children with
end-stage renal disease. New England Journal of Medicine, 350:2654–
2662.

Miller, D.R., Sonley, M., Karon, M., Breslow, N.E., and Hammond, D. (1974).
Additive therapy in maintenance of remission in acute lymphoblastic
leukemia of childhood — Effect of initial leukocyte count. Cancer, 34:508–
517.



N.E. Breslow 347

Partin, A.W., Yoo, J.K., Crooks, D., Epstein, J.I., Beckwith, J.B., and
Gearhart, J.P. (1994). Prediction of disease-free survival after therapy
in Wilms tumor using nuclear morphometric techniques. Journal of Pe-
diatric Surgery, 29:456–460.

Sylvestre, M.P., Huszti, E., and Hanley, J.A. (2006). Do Oscar winners live
longer than less successful peers? A reanalysis of the evidence. The Annals
of Internal Medicine, 145:361–363.





31

A vignette of discovery

Nancy Flournoy

Department of Statistics
University of Missouri, Columbia, MO

This story illustrates the power of statistics as a learning tool. Through an
interplay of exploration and carefully designed experiments, each with their
specific findings, an important discovery is made. Set in the 1970s and 80s,
procedures implemented with the best intentions were found to be deadly.
Before these studies, only hepatitis was known to be transmitted through con-
taminated blood products. We discovered that the cytomegalovirus could be
transferred through contaminated blood products and developed novel blood
screening techniques to detect this virus just before it become well known for
its lethality among persons with AIDS. We conclude with some comments
regarding the design of experiments in clinical trials.

31.1 Introduction

Today blood banks have institutionalized sophisticated procedures for pro-
tecting the purity of blood products. The need for viral screening procedures
are now taken for granted, but 40 years ago transmission of viral infections
through the blood was understood only for hepatitis. Here I review the genesis
of a hypothesis that highly lethal cytomegalovirus (CMV) pneumonia could
result from contaminated blood products and the experiments that were con-
ducted to test this hypothesis. The question of cytomegalovirus infection re-
sulting from contaminated blood products arose in the early days of bone
marrow transplantation. So I begin by describing this environment and how
the question came to be asked.

E. Donnell Thomas began to transplant bone marrow into patients from
donors who were not their identical twins in 1969. By 1975, his Seattle trans-
plant team had transplanted 100 patients with acute leukemia (Thomas et al.,
1977). Bone marrow transplantation is now a common treatment for childhood
leukemia with a good success rate for young people with a well-matched donor.
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Early attempts to transplant organs, such as kidneys, livers and hearts, were
not very successful until it was determined that matching patient and donor
at a few key genetic loci would substantially reduce the risk of rejection. Drugs
to suppress the natural tendency of the patient’s immune system to attack a
foreign object further reduced the risk of rejection. In bone marrow transplan-
tation, a good genetic match was also needed to prevent rejection. However,
because a new and foreign immune system was being transplanted with the
bone marrow, drugs were used not only to reduce the risk of rejection, but
to keep the transplanted marrow from deciding that the whole patient was a
foreign object and mounting an auto-immune-like attack called graph versus
host disease (GVHD). Furthermore, in order both to destroy diseases of the
blood and to prevent rejection of the new bone marrow, high doses of irradi-
ation and drugs were given prior to the transplant. Eradicating as completely
as possible all the patient’s bone marrow destroys the bulk of the patient’s
existing immune system.

Since typically two to three weeks are required before the transplanted
bone marrow’s production of blood cells resumes, the Seattle team tried to
anticipate problems that could result from a patient having an extended pe-
riod of severely compromised blood production, and hence extremely poor
immune function. It was well known that granulocytes (the white blood cells)
fight infection. In order to protect the patient from bacterial infection, an
elaborate and expensive system was devised to assure that the patient would
be supported with plenty of donated granulocytes. When the transplant team
moved into the newly built Fred Hutchinson Cancer Research Center in 1975,
a large portion of one floor was dedicated to this task. On rows of beds, the
bone marrow donors lay for hours each day with needles in both arms. Blood
was taken from one arm, and passed through a machine that filtered off the
granulocytes and returned the rest of the blood to the donor through the
other arm.

Typically, the same person donated both the bone marrow and the granu-
locytes, with the hope that the genetic match would prevent the patient from
becoming allergic to the granulocyte transfusions. The bone marrow donor was
expected to stay in town for at least six weeks and lie quietly with needles in
both arms every day so that the transplant patient could fight off threats of
infection. Being a marrow donor required a huge time commitment.

31.2 CMV infection and clinical pneumonia

Early in the development of the bone marrow transplant procedure, it was
clear that patients with sibling donors who were not identical twins were at
high risk of death caused by CMV pneumonia (Neiman et al., 1977). Fig-
ure 31.1 — displaying ten years of data from Meyers et al. (1982) — shows
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FIGURE 31.1
Incidence of CMV and all nonbacterial pneumonias expressed as percentage
per patient-day for each week after allogeneic marrow transplant.

the incidence of pneumonia as a function of time following transplantation
from genetically matched siblings who were not identical twins. The incidence
distribution, expressed as the percentage per patient-day each week, is slightly
skewed toward the time of transplant with a mode at about seven weeks. Of
525 patients, 215 (38%) had nonbacterial pneumonia, with CMV isolated in
40% of the cases and other viruses identified in 29% of the cases.

Eighty-four percent of the 215 pneumonia cases were fatal. In contrast,
CMV pneumonia was not a cause of death among those patients whose bone
marrow donors were identical twins (Appelbaum et al., 1982). At the time, we
erroneously speculated that this difference was due to the fact that patients
without identical twin donors received more drugs to suppress the immune sys-
tem than did patients with identical twin donors with no risk of graft rejection.
However, the identical twins did not receive their transplant care at the Fred
Hutchinson Cancer Research Center, but at University of Washington Hospi-
tal, where there was no provision for providing prophylactic granulocytes. We
failed to recognize that the twins’ reduced drug therapy was confounded with
their not getting prophylactic granulocyte transfusions.

CMV is a common virus in the environment and by the time people reach
adulthood, it can be found in about half the population. CMV does not cause
problems in healthy individuals, but because it was diagnosed most frequently
in pneumonia cases and these were the most fatal, the push was on to charac-
terize the course of the illness, identify prognostic factors and find therapies.
In order to standardize diagnostic procedures so that the course of the risk
period could be established and to identify cases of viral infection early so
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that intervention trials might be feasible, we instituted a standard schedule
of testing blood and urine samples for the presence of CMV virus and mea-
suring anti-CMV antibody titers. CMV infection was defined to be present if
the CMV virus was isolated in the routine blood and urine tests, or if it was
found in the course of diagnosing pneumonia, or if antibody titers rose four
fold (seroconverted). Between October 1977 and August 1979, surveillance
testing of blood and urine samples and antibody to CMV was measured in
158 patients and their donors prior to transplantation and periodically follow-
ing transplant. The incidence of CMV infection in urine samples was approx-
imately the same, regardless of the presence or absence of antibody to CMV
before transplant, in either the donor or the recipient (Meyers et al., 1980).
However, antibody titers increased (as measured by a summary statistic, the
mean response stimulation index) after 41–60 days following transplant among
patients who contracted CMV pneumonia (Figure 31.2). Note how the mode
of the simulation index among patients with CMV pneumonia coincides with
the time of peak incidence shown in Figure 31.1. Among patients whose CMV
titers were positive pretransplant (seropositive), average titers remained high
(see Figure 31.3). But among patients whose pretransplant titers were nega-
tive (seronegative), the stimulation index remained low until about 60 days
after transplant and then began to rise without regard to the marrow donor’s
pretransplant titer. So although we dismissed the idea that CMV infection
was being transferred through the donor’s bone marrow, this study suggested
prognostic factors that might be manipulated in an intervention.

FIGURE 31.2
Mean response of lymphocytes to cytomegalovirus antigen. Numbers in paren-
theses represent the sample size in each group.
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FIGURE 31.3
Mean response of lymphocytes to cytomegalovirus. Numbers in parentheses
represent the sample size in each group.

Having designed and implemented a multidisciplinary research informa-
tion system (Flournoy and Hearne, 1990) before the advent of commercial
systems, we began mining the data for prognostic factors for CMV infection
among those patients transplanted between 1979 and 1982 who had at least
four surveillance cultures (Meyers et al., 1986). The surveillance data showed
that just over half (51.5%) of the 545 recipients of marrow transplants with-
out an identical twin donor became infected with CMV. CMV was cultured
from 280 (51.4%) of the patients; 168 (30.8%) had at least a four-fold rise in
titers (seroconverted). Much attention in this study focused on the relation-
ship between the surveillance test results and the subsequent development
of pneumonia. Also, the relationship between surveillance results, pneumonia
and the complication of the transplant procedure GVHD were investigated.
An association between GVHD and CMV clearly existed, suggesting that fa-
talities due to CMV would be reduced by eliminating GVHD. This was a false
lead down another blind alley.

Among patients who had CMV in their blood prior to transplant, 69%
subsequently became infected (i.e., they either seroconverted and/or began to
excrete CMV in their urine). Among patients without CMV in their blood
prior to transplant, 57% of those whose donors did and 28% of those whose
donors did not have CMV in their blood subsequently became infected. These
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observations suggested that patients having CMV in their blood prior to trans-
plant were at high risk of infections; and that in patients without CMV in
their blood prior to transplant, the donor might be passing the infection to
the patient, either through the marrow transplant itself or through the blood
transfusions given after transplant. This was our first clue that the granulocyte
transfusions might be transmitting CMV; but it was impossible to fathom that
our large effort dedicated to providing prophylactic granulocyte transfusions
was so harmful. We believed that a randomized clinical trial would confirm
that there was some unknown confounding variable that would explain away
this association.

A proportional hazards regression analysis was performed separately for
patients with and without CMV in their blood prior to transplant. Among
seropositive patients, all the significant covariates were demographic variables,
disease characteristics or treatment complications for which no known control
was possible. Thus the models did not suggest possible interventions. However,
among seronegative patients, the relative rate of CMV infection was 2.3 times
greater (p = .0006) if the granulocyte transfusions were also found to be
positive for CMV. This was the second clue.

31.3 Interventions

To run a clinical trial of subjects receiving and not receiving prophylactic
granulocytes required developing a higher throughput procedure for identify-
ing CMV in blood products. While exploratory discussions began with the
King County Blood Bank about how to develop the needed screening proce-
dures, we began an alternative clinical trial that did not require novel blood
analytic methods be developed.

In light of the data mining results, we focused on the patients whose pre-
transplant titers were negative. Thinking that prophylactic anti-CMV immune
globulin might prevent CMV infection from developing, eligible patients were
randomized to receive globulin or nothing, with stratifications for the use of
prophylactic granulocyte transfusions and the donor’s titer to CMV. At the
onset of the CMV immune globulin study, we took the association between
CMV infection and granulocyte transfusions seriously enough to stratify for
it, but not so seriously as to study it directly. To be eligible for this study
(Meyers et al., 1983), a patient had to be seronegative for antibody to CMV
prior to transplant and to not excrete the virus into the urine for the first two
weeks after transplantation. Patients excreting virus during this period were
presumed to have been infected with CMV before transplantation and were
excluded from final analysis.

Figure 31.4 compares Kaplan–Meier estimates of the probability of CMV
infection as a function of week after transplant for globulin recipients and
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FIGURE 31.4
Kaplan–Meier probabilities of acquiring cytomegalovirus infection. The num-
bers in parentheses indicate the sample size of patients still at risk of infection
at the beginning of each interval. The risk is different for globulin recipients
and controls at p = .03 by the Mantel–Cox test.

control patients. The overall difference in infection rates between globulin re-
cipients and controls was not significant. CMV infection rates by strata are
shown in Table 31.1. Seeking any lead to act upon, the difference observed
among patients receiving no granulocytes provided hope that globulin might
be effective in a larger study of some subset of subjects. The difference in
rates depending upon whether or not the granulocyte donor was seronega-
tive or seropositive finally led us to question seriously the role of granulocyte
transfusions in CMV infection.

We were thunderstruck by the possibility that we were transmitting CMV
through the blood. The impact should this observation be confirmed in a
controlled randomized study is described by Meyers et al. (1983):

“Screening blood products for antibody to cytomegalovirus, or more
appropriately for virus or viral antigens (techniques that are not yet
available), increases the burden on blood-banking facilities, decreases
the pool of blood donors, and, most importantly, decreases the rapid
availability of fresh blood products such as platelets. The use of an im-
mune globulin is therefore an attractive practical alternative among pa-
tients who need large amounts of fresh blood products such as platelets
and for whom screening of blood products is less practical.”

The New England Journal of Medicine rejected our paper (Meyers et al., 1983)
because our observations concerning granulocyte transfusions were external
to the hypotheses postulated in the initial experimental design. But these
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TABLE 31.1
Incidence of CMV infection.

No
Patient Treatment Globulin Globulin
Granulocytes from seropositive donors 7/8 (88.5%) 6/7 (85.7%)
Granulocytes from seronegative donors 1/5 (20.0%) 0/6 (00.0%)
No granulocytes 2/17 (11.8%) 8/19 (42.1%)

observations led to new hypotheses and the next randomized study. While
it is extremely important to distinguish between observations obtained by
controlled randomized intervention and those obtained otherwise, hypothesis
generation is an essential task.

We spent a year working with King County Blood Bank to develop screen-
ing procedures, set up laboratory equipment and train technicians in order to
conduct a randomized clinical trial. Although we restricted the study to pa-
tients who were seronegative for CMV in two consecutive tests and who had
not received any unscreened blood recently, more patients were available for
study than the blood bank could handle. Therefore, we studied the prophy-
lactic capability of immune globulin at the same time in a randomized 2× 2
factorial design. CMV immune globulin had no effect [data not shown] on the
rate of CMV infection (Bowden et al., 1986).

The effect of only giving CMV seronegative blood transfusions, controlling
for the marrow donor’s CMV status, is summarized in Table 31.2.

Among patients whose marrow donors were seronegative, those random-
ized to receive seronegative granulocyte transfusions had a 4.5% infection rate,
whereas those randomized to receive unscreened transfusions had a 32% in-
fection rate. What is more, the one patient with a seronegative donor who
was assigned to receive seronegative blood products and subsequently became
infected with CMV actually mistakenly received several seropositive transfu-
sions.

TABLE 31.2
Incidence of CMV infection among 85 patients studied for at least 62 days
after transplantation.

Marrow Donor’s Randomized to Granulocytes
CMV Status Seronegative Unscreened
Seronegative 1/22 (04.5%) 8/25 (32.0%)
Seropositive 3/12 (25.0%) 5/16 (31.3%)
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As the study proceeded, blood bank personnel became increasingly agi-
tated as they considered the ramifications of a significant finding. Blood banks
all over the country would have to set up screening programs; the cost would be
enormous, they warned. The study results went out to blood banks, however,
and viral screening procedures were put into place. The timing was fortuitous
because the AIDS crisis was building. Today the idea that viral infections can
be transmitted through the blood is taken for granted.

31.4 Conclusions

Our experience suggests three key steps to successful experimental designs.
First, ask an important, well defined question. Too often this step receives
insufficient attention and resources, and it may be the most difficult. De-
termining a well structured and important question can involve considerable
data collection, exploratory analysis and data mining. Data mining without
data collection targeted to a specific question may yield valuable findings,
but many important questions now go begging in the push to devote time
and resources to analyzing existing databases. (When medical fellows began
rotating through the Fred Hutchinson Cancer Center wards, they had to con-
ceive of a study, execute it and draft a paper. The questions they raised were
inventive and some resulted in life-saving findings. When I left in 1986, hav-
ing created a shared interdisciplinary research information system, the fellows
typically looked at what data was available and studied a question that could
be answered with the available data. I found the relative lack of imagination
in the questions being asked extremely distressing, and feel responsible for
enabling it.)

The problem associated with moving too quickly to confirmatory studies
has fairly recently been acknowledged by the pharmaceutical industry. But
this acknowledgement seems slow to translate into substantially increased re-
sources being devoted to early phase studies.

The second key step is to develop interventions that focus sharply on the
question at hand and to randomize subjects to the interventions and to the
standard of care or a placebo. This step is operationally well developed. The
third step is to replicate the experiment and encourage others to do likewise.

While this series of studies resulted in important discoveries, other series
of studies were not so fruitful. In particular, two-arm randomized studies of
chemotherapy and radiation schedules were largely uninformative. These vari-
ables are virtually continuous, whereas the important variables in the studies
of CMV were mostly inherently discrete. With such multidimensional contin-
uous random variables in an environment in which ethics preclude utilizing a
large sample space covering unknown territory, our unbridled enthusiasm for
the two-arm clinical trial as a learning tool was misplaced. Coming to appre-
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ciate the necessity of exploratory analysis in such settings led to my current
work in adaptive designs and their analysis.
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Statistical thinking and methods have much to contribute in the area of mul-
tidisciplinary public health research. Often barriers to research progress can
only be addressed using innovative statistical methods. Furthermore, statis-
ticians have an important role to play in helping to shape the population
science research agenda. These points will be illustrated using topics in nu-
tritional epidemiology, preventive intervention development, and randomized
trial design and analysis.

32.1 Introduction

It is a pleasure to join the celebration of the 50th anniversary of COPSS,
which continues to fulfill a stimulatory and valuable coordinating role among
the participating statistical societies. This anniversary provides a reminder of
the impressive advances in statistical theory and application over the past 50
years, as is certainly the case in the biomedical research context, and in the
public health research area more specifically.

Much of biomedical research involves the follow-up of cohorts of individuals
to observe health-related outcomes. Most frequently this work involves human
studies, but the statistical methods employed may also apply to studies in
model systems. A typical study may involve relating some treatment, or some
set of study subject characteristics or exposures, to the time until a disease
event occurs. Early statistical proposals for the analysis of such “failure time”
data in therapeutic trial settings involved the use of linear models, usually for
the logarithm of failure time. Because of the usual presence of right censor-
ship, error distributions having closed-form right tails were often employed,
rather than traditional Normal models. At the same time, methodology for
epidemiological applications were developing a focus on relative disease rates,
or closely related odds ratios with the Mantel and Haenszel (1959) summary
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odds ratio estimator standing out as a key statistical and epidemiological con-
tribution. Also nonparametric methods, and hazard rate estimators, entered
through the Kaplan and Meier (1958) survivor function estimator.

These modeling approaches came together in the Cox (1972) regression
model, one of the most influential and highly cited statistical papers of all
time. The semiparametric Cox model extended the ratio modeling into a full
hazard ratio regression approach, while also incorporating a nonparametric
baseline hazard rate that valuably relaxed parametric models, such as the
Weibull model, that had previously been used. Furthermore, the paramet-
ric hazard ratio component of this semiparametric model could be relaxed in
important ways by including, for example, stratification on key confounding
factors, treatment by time interactions to relax proportionality assumptions,
and stochastic time-dependent covariates to examine associations for covari-
ates collected during study follow-up. For relatively rare outcomes, the Cox
model proportional hazards special case is well approximated by a correspond-
ing odds ratio regression model, and logistic regression soon became the main-
stay approach to the analysis of case-control epidemiological data (Prentice
and Pyke, 1979).

Over the past 30 years, valuable statistical methods have been developed
for data structures that are more complex than a simple cohort follow-up with
a univariate failure time outcome. Many such developments were motivated
by substantive challenges in biomedicine. These include nested case-control
and case-cohort sampling procedures to enhance estimation efficiency with
rare disease outcomes; methods for the joint analysis of longitudinal and fail-
ure time data; sequential data analysis methods; missing and mismeasured
data methods; multivariate failure time methods, including recurrent event
and correlated/clustered failure time methods; and event history models and
methods more generally. Many of these developments along with correspond-
ing statistical theory have been summarized in book form where pertinent
references may be found; see, e.g., Andersen et al. (1993) and Kalbfleisch and
Prentice (2002).

In the last decade, foci for the development of statistical methods in
biomedical applications have included the incorporation of high-dimensional
genomic data, with regularization approaches to deal with dimensionality and
data sparsity as in, e.g., Tibshirani (1994); methods for the development,
evaluation and utilization of biomarkers for many purposes, including early
disease detection, disease recurrence detection, and objective exposure assess-
ment; and methods for disease risk prediction that integrate with concepts
from the diagnostic testing literature. Relative disease rate modeling, and the
Cox model in particular, provided a foundation for many of these develop-
ments.
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32.2 Public health research

While many of the developments just listed were motivated by clinical research
applications, the public health and disease prevention areas also provided con-
siderable stimulation. In fact, the public health research arena is one that
merits consideration as a career emphasis for many more statistically trained
investigators: If we look back over this same 50-year period, we will see that
50 years ago papers were just starting to emerge on cigarette smoking and
lung cancer, with tobacco companies advertising the many virtues of smok-
ing, including the ability to “soothe the throat.” Currently, with the smoking
patterns in place since women adopted patterns of smoking behavior similar to
those for men over the past 20–30 years, the estimated lung cancer mortality
rate among current smokers, whether male or female, is a whopping 25 times
that in never smokers, with substantial elevations also in mortality rates for
chronic obstructive pulmonary disease, multiple other cancers, and coronary
heart disease as well; see, e.g., Thun et al. (2013). Vigorous and organized
research programs are needed for exposures having these types of horrendous
health consequences to be identified early, and for the responsible exposures
to be eliminated or reduced.

An example of the potential of public health research when supported by
regulatory action is provided by the use of postmenopausal hormones. Post-
menopausal estrogens came on the market about 50 years ago, and the use
of estrogens throughout the lifespan was promoted as the way for women to
retain youth and vitality, while avoiding the vasomotor symptoms associated
with menopause. By the mid-1970s, it was apparent that the widely used estro-
gens that derived from the urine of pregnant mares led to a 5–10 fold increase
in the risk of uterine cancer, so a progestin was added to protect the uterus.
Observational epidemiological data mostly collected over the subsequent 20
years seemed supportive of the utility of those preparations (conjugated equine
estrogens for women who were post-hysterectomy; estrogens plus medroxypro-
gesterone acetate for women with a uterus), with reported benefits for heart
disease, fracture and dementia prevention, among other health benefits.

However, a different picture emerged when these regimens were put to the
test in randomized controlled trials (Writing Group for the Women’s Health
Initiative Investigators, 2002; Anderson et al., 2004). This was especially the
case for combined estrogens plus progestin, where health benefits were ex-
ceeded by health risks, including an early elevation in heart disease, sustained
elevations in stroke, a major elevation in breast cancer risk, and an increase in
probable dementia. These trial results were instrumental in leading to suitable
package insert warnings by the US Food and Drug Administration, and to a
major change in the use of these regimens, with about 70% of women taking
estrogens plus progestin stopping abruptly in 2002, along with about 40%
of women taking estrogens alone. One can project that this and subsequent



362 Statistics and public health research

changes in hormone therapy practices have led, for example, to about 15,000
to 20,000 fewer women developing breast cancer each year since 2003 in the
United States alone, along with tens of thousands of additional such women
elsewhere in the world.

Moving to another public health topic, obesity is the epidemic of our time.
It is clear that overweight and obesity arise from a sustained imbalance over
time in energy consumed in the diet compared to energy expended at rest and
through physical activity. Obesity is an established risk factor for many of
the chronic diseases that are experienced in great excess in Western societies,
including vascular diseases and several major cancers, and diabetes. However,
specific knowledge from nutritional or physical activity epidemiology as to
which dietary and activity patterns can be recommended are substantially
lacking and, at any rate, are not sufficiently compelling to stimulate the so-
cietal changes that may be needed to begin to slow and reverse the obesity
epidemic. For example, needed changes may involve personal choices in food
selection, preparation and consumption patterns; choices away from a seden-
tary lifestyle; food supply and distribution changes; changes in city design;
restrictions in advertising; and taxation changes, to cite but a few. Of course,
favorable dietary and physical activity patterns may have health benefits that
go well beyond normal weight maintenance.

The remainder of this short contribution will elaborate some of the research
barriers to public health research progress in some areas just mentioned, with
focus on statistical issues.

32.3 Biomarkers and nutritional epidemiology

While other application areas also grapple with exposure assessment issues,
these problems appear to dominate in the nutritional epidemiology research
area. For example, an international review (World Health Organization, 2003)
of nutritional epidemiology research identified few dietary exposures that are
associated with vascular diseases or cancer, with most reports based on self-
reported diet, typically using a food frequency questionnaire (FFQ) approach
where the study subject reports consumption frequency and serving size over
the preceding few months for a list of foods.

A lack of consistency among epidemiological reports on specific dietary as-
sociations has stimulated a modest focus on dietary assessment measurement
error over the past 25–30 years. Much of this work has involved comparisons
of FFQ data to corresponding data using other self-report tools, such as 24-
hour dietary recalls (24-HRs), or several days of food records, to examine FFQ
measurement error properties. However, for a few important dietary factors,
including total energy consumption and protein consumption, one can obtain
objective dietary assessments, at least for relativity short periods of time,
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from urinary excretion markers. When those biomarker measures are com-
pared to self-report data, one sees strong positive measurement error correla-
tions among FFQs, 24-HRs and four-day food records (4-DFRs); see Prentice
et al. (2011).

The implication is that biomarker data, but not data using another self-
report, need to be used to assess self-report measurement error, and to cali-
brate the self-report data for use in nutritional epidemiology association stud-
ies. Studies to date using this type of regression calibration approach tend
to give quite different results from traditional analyses based on self-report
data alone, for example, with strong positive associations between total en-
ergy consumption with heart disease and breast, colorectal and total cancer
incidence; see, e.g., Prentice and Huang (2011).

From a statistical modeling perspective, calibrated dietary exposure es-
timates typically arise from linear regression of (log-transformed) biomarker
values on corresponding self-report estimates and on such study subject char-
acteristics as body mass index, age, and ethnicity. These latter variables are
quite influential in explaining biomarker variation, as may in part reflect sys-
tematic biases in dietary reporting. For example, while persons of normal
weight tend to show little energy under-reporting, obese persons underesti-
mate substantially, in the 30–50% range on average (Heitmann and Lissner,
1995). These types of systematic biases can play havoc with disease association
analyses if not properly addressed.

Measurement error correction methods are not easy for nutritional epi-
demiologists to grasp, and are not so easy even for nutritionally-oriented
statisticians. A logical extension of the biomarker calibration work conducted
to date is a major research emphasis on nutritional biomarker development, to
produce measurement error–corrected consumption estimates for many more
nutrients and foods. Statisticians, in conjunction with nutritional and epi-
demiological colleagues, can play a major role in establishing the rationale
for, and the design of, such a nutritional biomarker development enterprise,
which may entail the conduct of sizeable human feeding studies. For exam-
ple, such a feeding study among 150 free-living Seattle participants in the
Women’s Health Initiative is currently nearing completion, and will exam-
ine candidate biomarkers and higher dimensional metabolic profiles for novel
nutritional biomarker development.

32.4 Preventive intervention development and testing

Closely related to the development of biomarkers of exposure, is the use of
biomarkers for preventive intervention development. While there is a rather
large enterprise for the development of therapeutic interventions, the devel-
opment of innovative disease prevention interventions is less impressive. One
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reason for this discrepancy is that prevention may not share the same fis-
cal incentives as treatment, since persons whose disease has been delayed or
averted are usually not individually identifiable. Furthermore, the types of
specimens needed for relevant biological measures (e.g., gene expression pro-
files), are frequently not available in the context of studies of large cohorts of
healthy persons. As a result, preventive interventions that have been studied
in randomized controlled trials have mostly involved pill taking approaches,
with rationale derived from observational epidemiology or borrowed from pre-
ceding therapeutic trials.

Specifically, there have been few trials of behavioral interventions with
chronic disease outcomes. As an exception, the Diabetes Prevention Program
Research Group (Diabetes Prevention Program Research Group, 2002) ran-
domized trial among 3234 persons having impaired glucose tolerance demon-
strated a major benefit for Type 2 diabetes incidence with a combined dietary
and physical activity intervention. Also, the Women’s Health Initiative low-
fat dietary modification trial (Prentice et al., 2006) among 48,835 ostensibly
healthy postmenopausal women demonstrated a modest reduction in its breast
cancer primary outcome, but the reduction didn’t meet the usual requirements
for statistical significance (log-rank significance level of .07). There has never
been a full-scale physical activity intervention trial with chronic disease out-
comes.

Statistical methods for high-dimensional data analysis and biological net-
work development may be able to help fill the preventive intervention devel-
opment gap. For example, changes in proteomic or metabolomic profiles may
be able to combine with changes in conventional risk factors for targeted dis-
eases in intermediate outcome intervention trials of practical size and expense
to select among, and provide the initial evaluation of, potential preventive
interventions in a manner that considers both efficacy and safety.

Also, because of cost and logistics, few full-scale disease prevention trials
can be conducted, regardless of the nature of the intervention. Innovative
hybrid designs that combine the rather comprehensive profiling of the previous
paragraph with case-control data for targeted outcomes that also include the
same types of high-dimensional biologic data may be able to produce tests
of intervention effects on chronic disease of acceptable reliability for most
purposes, at costs that are not extreme. Interventions meeting criteria in such
hybrid designs, that also have large public health potential, could then be put
forward with a strong rationale for the few full-scale randomized trials with
disease outcomes that can be afforded.



R.L. Prentice 365

32.5 Clinical trial data analysis methods

As noted in the Introduction, statistical methods are rather well developed for
the comparison of failure times between randomized groups in clinical trials.
However, methods for understanding the key biological pathways leading to
an observed treatment effect are less well developed. Efforts to explain treat-
ment differences in terms of post-randomization biomarker changes may be
limited by biomarker sample timing issues and temporal aspects of treatment
effects. Furthermore, such efforts may be thwarted by measurement error is-
sues in biomarker assessment. Biomarker change from baseline may be highly
correlated with treatment assignment, implying likely sensitivity of mediation
analysis to even moderate error in intermediate variable assessment.

Another area in need of statistical methodology development is that of
multivariate failure time data analysis. While Kaplan–Meier curves, censored
data rank tests, and Cox regression provide well-developed tools for the anal-
ysis of univariate failure time data, corresponding established tools have not
stabilized for characterizing dependencies among failure times, and for exam-
ining treatment effects jointly with a set of failure time outcomes. For example,
in the context of the postmenopausal hormone therapy trials mentioned ear-
lier (Anderson et al., 2004; Writing Group for the Women’s Health Initiative
Investigators, 2002), one could ask whether data on stroke occurrence can
be used to strengthen the estimation of treatment effects on coronary heart
disease, and vice versa, in a nonparametric manner. The lack of standardized
approaches to addressing this type of question can be traced to the lack of
a suitable nonparametric maximum likelihood estimation of the multivariate
survivor function, which could point the way to nonparametric and semipara-
metric likelihood approaches to the analysis of more complex multivariate
failure time data structures.

32.6 Summary and conclusion

Statistical thinking and innovation have come to play a major role throughout
biomedical research during the 50 years of COPSS’ existence. Public health
aspects of these developments have lagged somewhat due to the need to rely
substantially on purely observational data for most purposes, for practical
reasons. Such observational data are valuable and adequate for many pur-
poses, but they may require innovative biomarker supplementation for ex-
posures that are difficult to assess, as in nutritional and physical activity
epidemiology. This could include supplementation by intermediate outcome,
or full-scale, randomized prevention trials for topics of great public health
importance, such as postmenopausal hormone therapy; and supplementation
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by mechanistic and biological network data for timely identification of the
health effects of exposures, such as cigarette smoking, that are not amenable
to human experimentation.

These are among the most important research needs for the health of the
populations we serve. These populations are keenly interested in, and highly
supportive of, public health and disease prevention research. Statisticians have
as crucial a role as any other disciplinary group in responding to this interest
and trust, and statistical training is highly valuable for participation and
leadership roles in shaping and carrying out the needed research.
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Statistics in a new era for finance and
health care
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We are entering a new era in finance in the wake of the recent financial crisis
and financial reform, and in health care as the provisions of the Affordable
Care Act are being implemented from 2010 to 2020. We discuss opportunities
and challenges for the field of statistics in this new era.

33.1 Introduction

The past few years witnessed the beginning of a new era in financial markets
and in the US health care system. In March 2010, landmark health care reform
was passed through two federal statutes: the Patient Protection and Afford-
able Care Act and subsequently amended by the Health Care and Education
Reconciliation Act. A few months later, the Dodd–Frank Wall Street Reform
and Consumer Protection Act was signed into federal law on July 21, 2010,
in response to widespread calls for regulatory reform following the 2007–08
financial crisis. Since this year marks the 50th anniversary of the COPSS, it
seems timely to discuss how statistical science can help address the challenges
of this new era for finance and health care and to suggest some outreach
opportunities for the field of statistics.

We begin with health care in Section 33.2. One of the provisions of the Pa-
tient Protection and Affordable Care Act is the establishment of a non-profit
Patient-Centered Outcomes Research Institute to undertake comparative ef-
fectiveness research (CER), examining the “relative health outcomes, clinical
effectiveness, and appropriateness” of different medical treatments. This in-
volves the design of comparative studies of the treatments and their statistical
analysis, and Section 33.2 discusses the limitations of standard study designs
when applied to CER and describes some innovative designs for compara-
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tive effectiveness trials. Section 33.3 proceeds further to discuss innovative
designs to improve the efficiency of clinical trials in the development of new
treatments.

In Section 33.4, after reviewing the flaws in credit risk modeling and man-
agement that led to the 2007–08 financial crisis, we discuss how these flaws
can be addressed by using better statistical methods. Section 33.5 continues
this discussion on the role of statistics in financial and risk modeling in the
new era after the Dodd–Frank Act. Some concluding remarks are given in
Section 33.6.

33.2 Comparative effectiveness research clinical studies

One approach to CER is to use observational studies, including analysis of
claims or registry data; see, e.g., Stukel et al. (2007). As pointed out by Shih
and Lavori (2013), such an approach involves “confounding by indication,”
the tendency for clinicians and patients to choose treatments with their an-
ticipated effects in mind. This leads to bias in estimating the effectiveness,
which has to be handled by statistical adjustments and modeling techniques,
or instrumental variables methods, or some combination. An obvious way to
remove confounding is a randomized trial. However, conventional randomized
trial designs are not only too costly but also ineffective in changing medi-
cal practice. An example is the Antihypertensive and Lipid Lowering Treat-
ment to Prevent Heart Attack Trial (ALLHAT), which was a randomized,
double-blind, multi-center clinical trial designed to recruit 40,000 hyperten-
sive patients to be randomized to a diuretic treatment (chlorthalidone) and
three alternative antihypertensive pharmacologic treatments. Patients were
followed every three months for the first year and every four months there-
after for an average of six years of follow-up. This landmark CER trial cost
over $100 million. The results showed no difference in the prevention of heart
attack and the superiority of chlorthalidone in preventing one or more forms of
cardiovascular disease (ALLHAT Collaborative Research Group, 2002). Yet, a
few years later, the impact of the trial was found to be disappointing because
of difficulty in pursuading doctors to change, scientific disagreement about
the interpretation of the results, and heavy marketing by the pharmaceutical
companies of their own drugs; see Lai and Lavori (2011).

Section 4 of Lai and Lavori (2011) describes some innovative approaches
that are promising to meet the challenges of designing CER clinical trials. One
is sequential multiple-assignment randomization for dynamic treatment strate-
gies in the management of patients with chronic diseases, as in Thall et al.
(2007) who describe a two-stage randomized trial of twelve different strategies
of first-line and second-line treatments of androgen-independent prostate can-
cer. Another is equipoise-stratified randomization used by the STAR*D trial
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(Rush et al., 2004) that compares seven treatment options in patients who did
not attain a satisfactory response with citalopram, an inhibitor antidepressant.
After receiving citalopram, participants without sufficient symptomatic ben-
efit were eligible for randomization among these options. A novel feature of
the study design is that it ascertains before randomization the set of options
that the patient-clinician dyad consider to be equally reasonable, given the
patient’s preferences, and his or her state after a trial of citalopram. This
set of options characterizes the patient’s Equipoise Stratum (ES). A total of
1429 patients were randomized under this scheme. The largest ES were the
“Medication Switch Only” group, allowing randomization among the three
medications (40%) and the “Medication Augmentation Only,” allowing ran-
domization between two options (29%). The “Any Augmentation” (10%) and
“Any Switch” (7%) were the next largest, and only 5% of patients were ran-
domized among options that contrasted a switch and augment condition. In
retrospect, it became clear that patients (and their clinicians) were roughly
divided into two groups, those who obtained partial benefit from citalopram
and therefore were interested in augmentation, and those who obtained no
benefit and were interested only in switching. Thus, the ES design allowed
the study to self-design in assigning patients to the parts of the experiment
that were relevant to current practice and to patient preferences.

A third approach is to design point-of-care (POC) clinical trials which can
be regarded as experiments embedded into clinical care; see Fiore et al. (2011)
on a VA-sponsored trial that compares the effectiveness of two insulin dosing
regimens for hospitalized diabetic patients. In POC trials, subjects are ran-
domized at the health care encounter, clinician equipoise defines the reference
population, and baseline and/or outcome data are captured through electronic
medical records. By using outcome-adaptive randomization, POC trials inte-
grate experimentation into implementation and learn sequentially the superior
treatment(s). This is similar to the classical multi-arm bandit problem (Lai,
2001) except that POC uses adaptive randomization to implement it in a
clincial setting with clinician equipoise and patient’s informed consent. Group
sequential generalized likelihood ratio tests with efficient outcome-adaptive
randomization to multiple arms have recently been developed and can be
used for POC trials (Lai and Liao, 2012; Shih and Lavori, 2013).

33.3 Innovative clinical trial designs in translational
medicine

Besides CER studies, Lai and Lavori (2011) describe novel design methods
for clinical studies of personalized treatments and targeted cancer therapies in
translational medicine. “From bench to bedside” — in which “bench” refers to
laboratory experiments to study new biochemical principles and novel molec-
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ular compounds and “bedside” refers to new treatments developed after pre-
clinical animal studies and Phase I, II, and III trials involving human subjects
— is a maxim of evidence-based translational medical research.

The development of imatinib, the first drug to target the genetic defects
of a particular cancer while leaving healthy cells unharmed, exemplifies this
maxim and has revolutionized the treatment of cancer. A Phase I clinical
trial treating CML (chronic myeloid leukemia) patients with the drug began
in June 1998, and within six months remissions had occurred in all patients
as determined by their white blood cell counts returning to normal. In a
subsequent five-year study on survival, which followed 553 CML patients who
had received imatinib as their primary therapy, only 5% of the patients died
from CML and 11% died from all causes during the five-year period. Moreover,
there were few significant side effects; see Druker et al. (2006). Such remarkable
success of targeted therapies has led to hundreds of kinase inhibitors and
other targeted drugs that are in various stages of development in the present
anticancer drug pipeline.

Most new targeted treatments, however, have resulted in only modest
clinical benefit, with less than 50% remission rates and less than one year
of progression-free survival, unlike a few cases such as trastuzumab in HER2-
positive breast cancer, imatinib in CML and GIST, and gefitinib and erlotinib
in non-small cell lung cancer. While the targeted treatments are devised to at-
tack specific targets, the “one size fits all” treatment regimens commonly used
may have diminished their effectiveness, and genomic-guided and risk-adapted
personalized therapies that are tailored for individual patients are expected
to substantially improve the effectiveness of these treatments. To achieve this
potential for personalized therapies, the first step is to identify and measure
the relevant biomarkers. The markers can be individual genes or proteins or
gene expression signatures. The next step is to select drugs (standard cytotox-
ins, monoclonal antibodies, kinase inhibitors and other targeted drugs) based
on the genetics of the disease in individual patients and biomarkers of drug
sensitivity and resistance. The third step is to design clinical trials to provide
data for the development and verification of personalized therapies. This is
an active area of research and several important developments are reviewed
in Lai and Lavori (2011) and Lai et al. (2012). It is an ongoing project of ours
at Stanford’s Center for Innovative Study Design.

Despite the sequential nature of Phase I–III trials, in which Phase I studies
are used to determine a safe dose or dosage regimen, Phase II trials are used
to evaluate the efficacy of the drug for particular indications (endpoints) in
patients with the disease, and Phase III trials aim to demonstrate the effec-
tiveness of the drug for its approval by the regulatory agency, the trials are
often planned separately, treating each trial as an independent study whose
design depends on studies in previous phases. Since the sample sizes of the
trials are often inadequate because of separate planning, an alternative strat-
egy is to expand a trial seamlessly from one phase into the next phase, as
in the Phase II–III cancer trial designs of Inoue et al. (2002) and Lai et al.
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(2012). The monograph by Bartroff et al. (2012) gives an overview of recent
developments in sequential and adaptive designs of Phase I, II, and III clinical
trials, and statistical analysis and inference following these trials.

33.4 Credit portfolios and dynamic empirical Bayes in
finance

The 2007–08 financial crisis began with unpreparedly high default rates of sub-
prime mortgage loans in 2007 and culminated in the collapse of large financial
institutions such as Bear Stearns and Lehman Brothers in 2008. Parallel to
the increasing volume of subprime mortgage loans whose value was estimated
to be $1.3 trillion by March 2007, an important development in financial mar-
kets from 2000 to 2007 was the rapid growth of credit derivatives, culminating
in $32 trillion worth of notional principal for outstanding credit derivatives by
December 2009. These derivative contracts are used to hedge against credit
loss of either a single corporate bond, as in a credit default swap (CDS), or
a portfolio of corporate bonds, as in a cash CDO (collateralized debt obli-
gation), or variant thereof called synthetic CDO. In July 2007, Bear Stearns
disclosed that two of its subprime hedge funds which were invested in CDOs
had lost nearly all their value following a rapid decline in the subprime mort-
gage market, and Standard & Poor’s (S&P) downgraded the company’s credit
rating. In March 2008, the Federal Reserve Bank of New York initially agreed
to provide a $25 billion collateralized 28-day loan to Bear Stearns, but sub-
sequently changed the deal to make a $30 billion loan to JPMorgan Chase to
purchase Bear Stearns. Lehman Brothers also suffered unprecedented losses
for its large positions in subprime and other lower-rated mortgage-backed se-
curities in 2008. After attempts to sell it to Korea Development Bank and then
to Bank of America and to Barclays failed, it filed for Chapter 11 bankruptcy
protection on September 15, 2008, making the largest bankruptcy filing, with
over $600 billion in assets, in US history. A day after Lehman’s collapse, Amer-
ican International Group (AIG) needed bailout by the Federal Reserve Bank,
which gave the insurance company a secured credit facility of up to $85 billion
to enable it to meet collateral obligations after its credit ratings were down-
graded below AA, in exchange for a stock warrant for 79.9% of its equity.
AIG’s London unit had sold credit protection in the form of CDS and CDO
to insure $44 billion worth of securities originally rated AAA. As Lehman’s
stock price was plummeting, investors found that AIG had valued its subprime
mortgage-backed securities at 1.7 to 2 times the values used by Lehman and
lost confidence in AIG. Its share prices had fallen over 95% by September 16,
2008. The “contagion” phenomenon, from increased default probabilities of
subprime mortgages to those of counterparties in credit derivative contracts
whose values vary with credit ratings, was mostly neglected in the models of



374 Statistics in a new era

joint default intensities that were used to price CDOs and mortgage-backed
securities. These models also failed to predict well the “frailty” traits of la-
tent macroeconomic variables that underlie mortgages and mortgage-backed
securities.

For a multiname credit derivative such as CDO involving k firms, it is
important to model not only the individual default intensity processes but
also the joint distribution of these processes. Finding tractable models that
can capture the key features of the interrelationships of the firms’ default in-
tensities has been an active area of research since intensity-based (also called
reduced-form) models have become a standard approach to pricing the default
risk of a corporate bond; see Duffie and Singleton (2003) and Lando (2004).
Let Φ denote the standard Normal distribution function, and let Gi be the dis-
tribution function of the default time τi for the ith firm, where i ∈ {1, . . . ,M}.
Then Zi = Φ−1{Gi(τi)} is standard Normal. Li (2000) went on to assume that
(Z1, . . . , ZM ) is multivariate Normal and specifies its correlation matrix Γ by
using the correlations of the stock returns of the M firms. This is an example
of a copula model; see, e.g., Genest and Favre (2007) or Genest and Nešlehová
(2012).

Because it provides a simple way to model default correlations, the Gaus-
sian copula model quickly became a widely used tool to price CDOs and other
multi-name credit derivatives that were previously too complex to price, de-
spite the lack of convincing argument to connect the stock return correlations
to the correlations of the Normally distributed transformed default times. In
a commentary on “the biggest financial meltdown since the Great Depres-
sion,” Salmon (2012) mentioned that the Gaussian copula approach, which
“looked like an unambiguously positive breakthrough,” was used uncritically
by “everybody from bond investors and Wall Street banks to rating agen-
cies and regulators” and “became so deeply entrenched — and was making
people so much money — that warnings about its limitations were largely ig-
nored.” In the wake of the financial crisis, it was recognized that better albeit
less tractable models of correlated default intensities are needed for pricing
CDOs and risk management of credit portfolios. It was also recognized that
such models should include relevant firm-level and macroeconomic variables
for default prediction and also incorporate frailty and contagion.

The monograph by Lai and Xing (2013) reviews recent works on dynamic
frailty and contagion models in the finance literature and describes a new ap-
proach involving dynamic empirical Bayes and generalized linear mixed models
(GLMM), which have been shown to compare favorably with the considerably
more complicated hidden Markov models for the latent frailty processes or the
additive intensity models for contagion. The empirical Bayes (EB) methodol-
ogy, introduced by Robbins (1956) and Stein (1956), considers n independent
and structurally similar problems of inference on the parameters θi from ob-
served data Y1, . . . , Yn, where Yi has probability density f(y|θi). The θi are
assumed to have a common prior distribution G that has unspecified hyper-
parameters. Letting dG(y) be the Bayes decision rule (with respect to some
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loss function and assuming known hyperparameters) when Yi = y is observed,
the basic principle underlying EB is that a parametric form of G (as in Stein,
1956) or even G itself (as in Robbins, 1956) can be consistently estimated
from Y1, . . . , Yn, leading to the EB rule dĜ. Dynamic EB extends this idea to
longitudinal data Yit; see Lai et al. (2013). In the context of insurance claims
over time for n contracts belonging to the same risk class, the conventional
approach to insurance rate-making (called “evolutionary credibility” in actu-
arial science) assumes a linear state-space for the longitudinal claims data so
that the Kalman filter can be used to estimate the claims’ expected values,
which are assumed to form an autoregressive time series. Applying the EB
principle to the longitudinal claims from the n insurance contracts, Lai and
Sun (2012) have developed a class of linear mixed models as an alternative
to linear state-space models for evolutionary credibility and have shown that
the predictive performance is comparable to that of the Kalman filter when
the claims are generated by a linear state-space model. This approach can be
readily extended to GLMMs not only for longitudinal claims data but also for
default probabilities of n firms, incorporating frailty, contagion, and regime
switching. Details are given in Lai and Xing (2013).

33.5 Statistics in the new era of finance

Statistics has been assuming an increasingly important role in quantitative
finance and risk management after the financial crisis, which exposed the
weakness and limitations of traditional financial models, pricing and hedging
theories, risk measures and management of derivative securities and structured
products. Better models and paradigms, and improvements in risk manage-
ment systems are called for. Statistics can help meet these challenges, which
in turn may lead to new methodological advances for the field.

The Dodd–Frank Act and recent financial reforms in the European Union
and other countries have led to new financial regulations that enforce trans-
parency and accountability and enhance consumer financial protection. The
need for good and timely data for risk management and regulatory supervi-
sion is well recognized, but how to analyze these massive datasets and use
them to give early warning and develop adaptive risk control strategies is
a challenging statistical problem that requires domain knowledge and inter-
disciplinary collaboration. The monograph by Lai and Xing (2013) describes
some recent research in sequential surveillance and early warning, particularly
for systemic risk which is the risk of a broad-based breakdown in the finan-
cial system as experienced in the recent financial crisis. It reviews the critical
financial market infrastructure and core-periphery network models for math-
ematical representation of the infrastructure; such networks incorporate the
transmission of risk and liquidity to and from the core and periphery nodes
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of the network. After an overview of the extensive literature in statistics and
engineering on sequential change-point detection and estimation, statistical
process control, and stochastic adaptive control, it discusses how these meth-
ods can be modified and further developed for network models to come up
with early warning indicators for financial instability and systemic failures.
This is an ongoing research project with colleagues at the Financial and Risk
Modeling Institute at Stanford, which is an interdisciplinary research center
involving different schools and departments.

Besides risk management, the field of statistics has played an important
role in algorithmic trading and quantitative investment strategies, which have
gained popularity after the financial crisis when hedge funds employing these
strategies outperformed many equity indices and other risky investment op-
tions. Statistical modeling of market microstructure and limit-order book dy-
namics is an active area of research; see for example, Ait-Sahalia et al. (2005)
and Barndorff-Nielsen et al. (2008). Even the foundational theory of mean-
variance portfolio optimization has received a new boost from contempora-
neous developments in statistics during the past decade. A review of these
developments is given by Lai et al. (2011) who also propose a new statistical
approach that combines solution of a basic stochastic optimization problem
with flexible modeling to incorporate time series features in the analysis of
the training sample of historical data.

33.6 Conclusion

There are some common threads linking statistical modeling in finance and
health care for the new era. One is related to “Big Data” for regulatory su-
pervision, risk management and algorithmic trading, and for emerging health
care systems that involve electronic medical records, genomic and proteomic
biomarkers, and computer-assisted support for patient care. Another is related
to the need for collaborative research that can integrate statistics with domain
knowledge and subject-matter issues. A third thread is related to dynamic
panel data and empirical Bayes modeling in finance and insurance. Health
insurance reform is a major feature of the 2010 Affordable Care Act, and has
led to a surge of interest in the new direction of health insurance in actuar-
ial science. In the US, insurance contracts are predominantly fee-for-service
(FFS). In such arrangements the FFS contracts offer perverse incentives for
providers, typically resulting in over-utilization of medical care. Issues with
FFS would be mitigated with access to more reliable estimates of patient het-
erogeneity based on administrative claims information. If the health insurer
can better predict future claims, it can better compensate providers for caring
for patients with complicated conditions. This is an area where the field of
statistics can have a major impact.
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Meta-analyses: Heterogeneity can be a
good thing

Nan M. Laird
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Meta-analysis seeks to summarize the results of a number of different studies
on a common topic. It is widely used to address important and dispirit prob-
lems in public health and medicine. Heterogeneity in the results of different
studies is common. Sometimes perceived heterogeneity is a motivation for the
use of meta-analysis in order to understand and reconcile differences. In other
cases the presence of heterogeneity is regarded as a reason not to summarize
results. An important role for meta-analysis is the determination of design
and analysis factors that influence the outcome of studies. Here I review some
of the controversies surrounding the use of meta-analysis in public health and
my own experience in the field.

34.1 Introduction

Meta-analysis has become a household word in many scientific disciplines.
The uses of meta-analysis vary considerably. It can be used to increase power,
especially for secondary endpoints or when dealing with small effects, to recon-
cile differences in multiple studies, to make inferences about a very particular
treatment or intervention, to address more general issues, such as what is
the magnitude of the placebo effect or to ask what design factors influence
the outcome of research? In some cases, a meta-analysis indicates substantial
heterogeneity in the outcomes of different studies.

With my colleague, Rebecca DerSimonian, I wrote several articles on meta-
analysis in the early 1980s, presenting a method for dealing with heterogeneity.
In this paper, I provide the motivation for this work, advantages and difficul-
ties with the method, and discuss current trends in handling heterogeneity.
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34.2 Early years of random effects for meta-analysis

I first learned about meta-analysis in the mid-1970s while I was still a gradu-
ate student. Meta-analysis was being used then and even earlier in the social
sciences to summarize the effectiveness of treatments in psychotherapy, the ef-
fects of class size on educational achievement, experimenter expectancy effects
in behavioral research and results of other compelling social science research
questions.

In the early 1980s, Fred Mosteller introduced me to Warner Slack and Doug
Porter at Harvard Medical School who had done a meta-analysis on the effec-
tiveness of coaching students for the Scholastic Aptitude Tests (SAT). Fred
was very active in promoting the use of meta-analysis in the social sciences,
and later the health and medical sciences. Using data that they collected on
sixteen studies evaluating coaching for verbal aptitude, and thirteen on math
aptitude, Slack and Porter concluded that coaching is effective on raising apti-
tude scores, contradicting the principle that the SATs measure “innate” ability
(Slack and Porter, 1980).

What was interesting about Slack and Porter’s data was a striking relation-
ship between the magnitude of the coaching effect and the degree of control
for the coached group. Many studies evaluated only coached students and
compared their before and after coaching scores with national norms provided
by the ETS on the average gains achieved by repeat test takers. These stud-
ies tended to show large gains for coaching. Other studies used convenience
samples as comparison groups, and some studies employed either matching or
randomization. This last group of studies showed much smaller gains. Fred’s
private comment on their analysis was “Of course coaching is effective; oth-
erwise, we would all be out of business. The issue is what kind of evidence is
there about the effect of coaching?”

The science (or art) of meta-analysis was then in its infancy. Eugene Glass
coined the phrase meta-analysis in 1976 to mean the statistical analysis of
the findings of a collection of individual studies (Glass, 1976). Early papers in
the field stressed the need to systematically report relevant details on study
characteristics, not only about design of the studies, but characteristics of
subjects, investigators, interventions, measures, study follow-up, etc. However
a formal statistical framework for creating summaries that incorporated het-
erogeneity was lacking. I was working with Rebecca DerSimonian on random
effects models at the time, and it seemed like a natural approach that could be
used to examine heterogeneity in a meta-analysis. We published a follow-up
article to Slack and Porter in the Harvard Education Review that introduced
a random effects approach for meta-analysis (DerSimonian and Laird, 1983).
The approach followed that of Cochran who wrote about combining the effects
of different experiments with measured outcomes (Cochran, 1954). Cochran
introduced the idea that the observed effect of each study could be partitioned
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into the sum of a “true” effect plus a sampling (or within-study) error. An esti-
mate of the within-study error should be available from each individual study,
and can be used to get at the distribution of “true” effects. Many of the social
science meta-analyses neglected to identify within-study error, and in some
cases, within-study error variances were not reported. Following Cochran, we
proposed a method for estimating the mean of the “true” effects, as well as the
variation in “true” effects across studies. We assumed that the observed study
effect was the difference in two means on a measured scale and also assumed
normality for the distribution of effects and error terms. However normality
is not necessary for validity of the estimates.

The random effects method for meta-analysis is now widely used, but in-
troduces stumbling blocks for some researchers who find the concept of a
distribution of effects for treatments or interventions unpalatable. A major
conceptual problem is imagining the studies in the analysis as a sample from
a recognizable population. As discussed in Laird and Mosteller (1990), ab-
sence of a sampling frame to draw a random sample is a ubiquitous problem
in scientific research in most fields, and so should not be considered as a spe-
cial problem unique to meta-analysis. For example, most investigators treat
patients enrolled in a study as a random sample from some population of pa-
tients, or clinics in a study as a random sample from a population of clinics
and they want to make inferences about the population and not the particu-
lar set of patients or clinics. This criticism does not detract from the utility
of the random effects method. If the results of different research programs
all yield similar results, there would not be great interest in a meta-analysis.
The principle behind a random effects approach is that a major purpose of
meta-analysis is to quantify the variation in the results, as well as provide an
overall mean summary.

Using our methods to re-analyze Slack and Porter’s results, we concluded
that any effects of coaching were too small to be of practical importance (Der-
Simonian and Laird, 1983). Although the paper attracted considerable media
attention (articles about the paper were published in hundreds of US news
papers), the number of citations in the scientific literature is comparatively
modest.

34.3 Random effects and clinical trials

In contrast to our paper on coaching, a later paper by DerSimonian and
myself has been very highly cited, and led to the moniker “DerSimonian and
Laird method” when referring to a random-effects meta-analysis (DerSimonian
and Laird, 1986). This paper adapted the random effects model for meta-
analysis of clinical trials; the basic idea of the approach is the same, but here
the treatment effect was assumed to be the difference in Binomial cure rates
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between a treated and control group. Taking the observed outcome to be a
difference in Binomial cure rates raised various additional complexities. The
difference in cure rates is more relevant and interpretable in clinical trials,
but statistical methods for combining a series of 2× 2 tables usually focus on
the odds ratio. A second issue is that the Binomial mean and the variance
are functionally related. As a result, the estimate of the within-study variance
(which was used to determine the weight assigned to each study) is correlated
with the estimated study effect size. We ignored this problem, with the result
that the method can be biased, especially with smaller samples, and better
approaches are available (Emerson et al., 1996; Wang et al., 2010). The final
issue is estimating and testing for heterogeneity among the results, and how
choice of effect measure (rate difference, risk ratio, or odds ratio) can affect
the results. Studies have shown that choice of effect measure has relatively
little effect on assessment of heterogeneity (Berlin et al., 1989).

The clinical trials setting can be very different from data synthesis in the
social sciences. The endpoint of interest may not correspond to the primary
endpoint of the trial and the number of studies can be much smaller. For
example, many clinical trials may be designed to detect short term surrogate
endpoints, but are under-powered to detect long term benefits or important
side effects (Hine et al., 1989). In this setting a meta-analysis can be the best
solution for inferences about long term or untoward side effects. Thus the
primary purpose of the meta-analysis may be to look at secondary endpoints
when the individual studies do not have sufficient power to detect the effects of
secondary endpoints. Secondly, it is common to restrict meta-analyses to ran-
domized controlled trials (RTCs) and possibly also to trials using the same
treatment. This is in direct contrast to meta-analyses that seek to answer
very broad questions; such analyses can include many types of primary stud-
ies, studies with different outcome measures, different treatments, etc. In one
of the earliest meta-analyses, Beecher (1955) sought to measure the “placebo”
effect by combining data from 15 clinical studies of pain for a variety of dif-
ferent indications treated by different placebo techniques.

Yusuf et al. (1985) introduced a “fixed effects” method for combining the
results of a series of controlled clinical trials. They proposed a fixed-effect
approach to the analysis of all trials ever done, published or not, that pre-
sumes we are only interested in the particular set of studies we have found
in our search (which is in principle all studies ever done). In practice, statis-
ticians are rarely interested in only the particular participants in our data
collection efforts, but want findings that can be generalized to similar partic-
ipants, whether they be clinics, hospitals, patients, investigators, etc. In fact,
the term “fixed” effects is sometimes confused with the equal effects setting,
where the statistical methods used implicitly assume that the “true” effects
for each study are the same. Yusuf et al. (1985) may have partly contributed
to this confusion by stating that their proposed estimate and standard error
of the overall effect do not require equality of the effects, but then cautioning
that the interpretation of the results is restricted to the case where the effects
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are “approximately similar.” As noted by Cochran, ignoring variation in the
effects of different studies generally gives smaller standard errors that do not
account for this variance.

34.4 Meta-analysis in genetic epidemiology

In recent years, meta-analysis is increasingly used in a very different type of
study: large scale genetic epidemiology studies. Literally thousands of reports
are published each year on associations between genetic variants and diseases.
These reports may look at only a few genetic variants in specified genes,
or they may test hundreds of thousands of variants in all the chromosomes
in Genome Wide Association Scans (GWAS). These GWAS reports are less
than ten years old, but now are the standard approach for gene “discovery”
in complex diseases. Because there are so many variants being tested, and
because the effect sizes tend to be quite small, replication of positive findings in
independent samples has been considered a requirement for publication right
from the beginning. But gradually there has been a shift from reporting the
results of the primary study and a small but reasonable number of replications,
to pooling the new study and the replication studies, and some or all available
GWAS studies using the same endpoint.

In contrast to how the term meta-analysis is used elsewhere, the term
meta-analysis is often used in the genetic epidemiology literature to describe
what is typically called “pooling” in the statistical literature, that is, analyz-
ing individual level data together as a single study, stratifying or adjusting
by source. The pooling approach is popular and usually viewed as more de-
sirable, despite the fact that studies (Lin and Zeng, 2010) have shown that
combining the summary statistics in a meta-analysis is basically equivalent
to pooling under standard assumptions. I personally prefer meta-analysis be-
cause it enables us to better account for heterogeneity and inflated variance
estimates.

Like all epidemiological studies, the GWAS is influenced by many design
factors which will affect the results, and they do have a few special features
which impact on the use of pooling or meta-analysis, especially in the context
of heterogeneity. First, the cost of genotyping is great, and to make these
studies affordable, samples have been largely opportunistic. Especially early
on, most GWAS used pre-existing samples where sufficient biological material
was available for genotyping, and the traits of interest were already available.
This can cause considerable heterogeneity. For example, I was involved in
the first GWAS to find association between a genetic variant and obesity as
measured by body mass index (BMI); it illustrates the importance of study
design.
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The original GWAS (with only 100,000 genetic markers) was carried out
in the Framingham Heart Study (Herbert et al., 2006). We used a novel ap-
proach to the analysis and had data from five other cohorts for replication.
All but one of the five cohorts reproduced the result. This was an easy study
to replicate, because virtually every epidemiological study of disease has also
measured height and weight, so that BMI is available, even though the study
was not necessarily designed to look at factors influencing BMI. In addition,
replication required genotyping only one genetic marker. In short order, hun-
dreds of reports appeared in the literature, many of them non-replications.
A few of us undertook a meta-analysis of these reported replications or non-
replications with the explicit hypothesis that the study population influences
the results; over 76,000 subjects were included in this analysis. We considered
three broad types of study populations. The first is general population cohort
where subjects were drawn from general population samples without restrict-
ing participants on the basis of health characteristics. Examples of this are the
Framingham Heart Study and a German population based sample (KORA).
The second is healthy population samples where subjects are drawn from pop-
ulations known to be healthier than those in the general population, typically
from some specific work force. The third category of studies included those
specifically designed to study obesity; those studies used subjects chosen on
the basis of obesity, including case-control samples where obese and non-obese
subjects were selected to participate and family-controlled studies that used
only obese subjects and their relatives.

In agreement with our hypothesis, the strongest result we found was that
the effect varied by study population. The general population samples and
the selected samples replicated the original study in finding a significant as-
sociation, but the healthy population studies showed no evidence of an effect.
This is a critically important finding. Many fields have shown that random-
ized versus non-randomized, blinded versus unblinded, etc., can have major
effects, but this finding is a bit different. Using healthy subjects is not in-
trinsically a poor design choice, but may be so for many common, complex
disorders. One obvious reason is that genetic studies of healthy subjects may
lack sufficient variation in outcome to have much power. More subtle factors
might include environmental or other genetic characteristics which interact
to modify the gene effect being investigated. In any event, it underscores the
desirability of assessing and accounting for heterogeneity in meta-analyses of
genetic associations.

A second issue is related to the fact that there are still relatively few
GWAS of specific diseases, so many meta-analyses involve only a handful of
studies. The random effects approach of DerSimonian and Laird does not work
well with only a handful of studies because it estimates a variance, where
the sample size for the variance estimate is the number of studies. Finally
for a GWAS, where hundreds of thousands of genetic markers are tested,
often on thousands of subjects, any meta-analysis method needs to be easily
implemented in order to be practically useful. Software for meta-analysis is
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included in the major genetic analysis statistical packages (Evangelou and
Ioannidis, 2013), but most software packages only implement a fixed effects
approach. As a result, the standard meta-analyses of GWAS use the fixed
effects approach and potentially overstate the precision in the presence of
heterogeneity.

34.5 Conclusions

The DerSimonian and Laird method has weathered a great deal of criticism,
and undoubtedly we need better methods for random effects analyses, espe-
cially when the endpoints of interest are proportions and when the number
of studies being combined is small and or the sample sizes within each study
are small. Most meta-analyses involving clinical trials acknowledge the impor-
tance of assessing variation in study effects, and new methods for quantifying
this variation are widely used (Higgins and Thompson, 2002). In addition,
meta-regression methods for identifying factors influencing heterogeneity are
available (Berkey et al., 1995; Thompson and Higgins, 2002); these can be used
to form subsets of studies which are more homogeneous. There is an extensive
literature emphasizing the necessity and desirability of assessing heterogene-
ity, and many of these reinforce the role of study design in connection with
heterogeneity. The use of meta-analysis in genetic epidemiology to find disease
genes is still relatively new, but the benefits are widely recognized (Ioannidis
et al., 2007). Better methods for implementing random effects methods with
a small number of studies will be especially useful here.
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personalizing disease prevention

Alice S. Whittemore
Department of Health Research and Policy
Stanford University, Stanford, CA

Increasingly, patients and clinicians are basing healthcare decisions on statis-
tical models that use a person’s covariates to assign him/her a probability of
developing a disease in a given future time period. In this chapter, I describe
some of the statistical problems that arise when evaluating the accuracy and
utility of these models.

35.1 Introduction

Rising health care costs underscore the need for cost-effective disease preven-
tion and control. To achieve cost-efficiency, preventive strategies must focus on
individuals whose genetic and lifestyle characteristics put them at highest risk.
To identify these individuals, statisticians and public health professionals are
developing personalized risk models for many diseases and other adverse out-
comes. The task of checking the accuracy and utility of these models requires
new statistical methods and new applications for existing methods.

35.2 How do we personalize disease risks?

We do this using a personalized risk model, which is an algorithm that assigns
a person a probability of developing an adverse outcome in a given future time
period (say, five, ten or twenty years). The algorithm combines his/her values
for a set of risk-associated covariates with regional incidence and mortality
data and quantitative evidence of the covariates’ effects on risk of the outcome.
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FIGURE 35.1
Genetic tests sold directly to consumers for medical conditions.

For example, the Breast Cancer Risk Assessment Tool (BCRAT) assigns a
woman a probability of developing breast cancer in the next five years, using
her self-reported risk factors, relative risk estimates obtained from randomized
trials or observational studies, and national rates for breast cancer incidence
and death from all causes (Costantino et al., 1999; Gail et al., 1989).

Personal risk models play important roles in the practice of medicine, as
standards for clinical care become increasingly tailored to patients’ individual
characteristics and preferences. The need to evaluate risk models is increas-
ing as personalized medicine evolves. A PUBMED search using the key words
validating risk models produced nearly 4000 hits, indicating substantial in-
terest in this topic in current medical practice. Moreover there are now more
than 370 online direct-to-consumer genetic tests with risk assessments for ad-
verse health outcomes (Figure 35.1). The Food and Drug Administration is
considering regulating these assessments, so we need reliable methods to val-
idate them.

Determining the probability of a future adverse outcome for a particular
person is not unlike determining the chance of a hurricane or earthquake in a
particular area during a given time period. Not surprisingly therefore, many
of the statistical problems involved in developing and evaluating risk models
have intrigued meteorologists and seismologists for decades, and their findings
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form a useful foundation for this work; see, e.g., Brier (1950), Hsu and Murphy
(1986), Murphy (1973), and Wilks (1995).

35.3 How do we evaluate a personal risk model?

Risk models for long-term future outcomes are commonly assessed with re-
spect to two attributes. Their calibration reflects how well their assigned risks
agree with observed outcome occurrence within subgroups of the population.
Their discrimination (also called precision or resolution) reflects how well they
distinguish those who ultimately do and do not develop the outcome. Good
calibration does not imply good discrimination. For example, if the actual
disease risks of a population show little inter-personal variation, discrimina-
tion will be poor even for a perfectly calibrated risk model. Conversely, good
discrimination does not imply good calibration. Discrimination depends only
on the ranks of a model’s assigned risks, so any rank-invariant transformation
of a model’s risks will affect its calibration but not its discrimination.

An important task is to quantify how much a model’s calibration and
discrimination can be improved by expanding it with additional covariates,
such as newly discovered genetic markers. However, the discrimination of a
risk model depends on the distribution of risk-associated covariates in the
population of interest. As noted in the previous paragraph, no model can
discriminate well in a population with a homogeneous covariate distribution.
Thus while large discrimination gains from adding covariates to a model are
informative (indicating substantial additional risk variation detected by the
expanded model), a small precision gain is less so, as it may merely reflect
underlying risk homogeneity in the population.

Several metrics have been proposed to assess and compare models with
respect to their calibration and discrimination. Their usefulness depends on
how they will be used, as shown by the following examples.

Example 1. Risk models are used to determine eligibility for randomized
clinical trials involving treatments with serious potential side effects. For in-
stance, the BCRAT model was used to determine eligibility for a randomized
trial to determine if tamoxifen can prevent breast cancer (Fisher et al., 1998,
2005). Because tamoxifen increases the risks of stroke, endometrial cancer and
deep-vein thrombosis, eligibility was restricted to women whose breast cancer
risks were deemed high enough to warrant exposure to these side effects. Thus
eligible women were those whose BCRAT-assigned five-year breast cancer risk
exceeded 1.67%. For this type of application, a good risk model should yield
a decision rule with few false positives, i.e., one that excludes women who
truly are at low breast cancer risk. A model without this attribute could in-
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flict tamoxifen’s side effects on women with little chance of gaining from the
experience.

Example 2. Risk models are used to improve the cost-efficiency of preventive
interventions. For instance, screening with breast magnetic resonance imaging
(MRI) detects more breast cancers but costs more and produces more false
positive scans, compared to mammography. Costs and false positives can be
reduced by restricting MRI to women whose breast cancer risk exceeds some
threshold (Plevritis et al., 2006). For this type of application, a good risk
model should give a classification rule that assigns mammography to those
truly at low risk (i.e., has a low false positive rate), but also assigns MRI to
those truly at high risk (i.e., has a high true positive rate).

Example 3. Risk models are used to facilitate personal health care decisions.
Consider, for instance, a postmenopausal woman with osteoporosis who must
choose between two drugs, raloxifene and alendronate, to prevent hip fracture.
Because she has a family history of breast cancer, raloxifene would seem a
good choice, since it also reduces breast cancer risk. However she also has a
family history of stroke, and raloxifene is associated with increased stroke risk.
To make a rational decision, she needs a risk model that provides accurate
information about her own risks of developing three adverse outcomes (breast
cancer, stroke, hip fracture), and the effects of the two drugs on these risks.

The first two examples involve classifying people into “high” and “low”
categories; thus they require risk models with low false positive and/or false
negative rates. In contrast, the third example involves balancing one person’s
risks for several different outcomes, and thus it requires risk models whose
assigned risks are accurate enough at the individual level to facilitate rational
healthcare decisions. It is common practice to summarize a model’s calibration
and discrimination with a single statistic, such as a chi-squared goodness-of-
fit test. However, such summary measures do not reveal subgroups whose
risks are accurately or inaccurately pegged by a model. This limitation can be
addressed by focusing on subgroup-specific performance measures. Evaluating
performance in subgroups also helps assess a model’s value for facilitating per-
sonal health decisions. For example, a woman who needs to know her breast
cancer risk is not interested in how a model performs for others in the popula-
tion; yet summary performance measures involve the distribution of covariates
in the entire population to which she belongs.

35.4 How do we estimate model performance measures?

Longitudinal cohort studies allow comparison of actual outcomes to model-
assigned risks. At entry to a cohort, subjects report their current and past co-
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variate values. A risk model then uses these baseline covariates to assign each
subject a risk of developing the outcome of interest during a specified subse-
quent time period. For example, the Breast Cancer Family Registry (BCFR),
a consortium of six institutions in the United States, Canada and Australia,
has been monitoring the vital statuses and cancer occurrences of registry par-
ticipants for more than ten years (John et al., 2004). The New York site
of the BCFR has used the baseline covariates of some 1900 female registry
participants to assign each of them a ten-year probability of breast cancer
development according to one of several risk models (Quante et al., 2012).
These assigned risks are then compared to actual outcomes during follow-up.
Subjects who die before outcome occurrence are classified as negative for the
outcome, so those with life-threatening co-morbidities may have low outcome
risk because they are likely to die before outcome development.

Using cohort data to estimate outcome probabilities presents statistical
challenges. For example, some subjects may not be followed for the full risk
period; instead they are last observed alive and outcome-free after only a frac-
tion of the period. An analysis that excludes these subjects may yield biased
estimates. Instead, censored time-to-failure analysis is needed, and the analy-
sis must accommodate the competing risk of death (Kalbfleisch and Lawless,
1998; Kalbfleisch and Prentice, 2002; Putter et al., 2007). Another challenge
arises when evaluating risk models that include biomarkers obtained from
blood collected at cohort entry. Budgetary constraints may prohibit costly
biomarker assessment for the entire cohort, and cost-efficient sampling de-
signs are needed, such as a nested case-control design (Ernster, 1994), a case-
cohort design (Prentice, 1986), or a two-stage sampling design (Whittemore
and Halpern, 2013).

Model calibration is often assessed by grouping subjects into quantiles of
assigned risk, and comparing estimated outcome probability to mean assigned
risk within each quantile. Results are plotted on a graph called an attribu-
tion diagram (AD) (Hsu and Murphy, 1986). For example, the top two panels
of Figure 35.2 show ADs for subjects from the NY-BCFR cohort who have
been grouped in quartiles of breast cancer risk as assigned by two breast
cancer risk models, the BCRAT model and the International Breast Cancer
Intervention Study (IBIS) model (Tyrer et al., 2004). The null hypothesis of
equality between quantile-specific mean outcome probabilities and mean as-
signed risks is commonly tested by classifying subjects into risk groups and
applying a chi-squared goodness-of-fit statistic. This approach has limitations:
1) the quantile grouping is arbitrary and varies across cohorts sampled from
the same population; 2) the averaging of risks over subjects in a quantile can
obscure subsets of subjects with poor model fit; 3) when confidence intervals
for estimated outcome probabilities exclude the diagonal line it is difficult to
trouble-shoot the risk model; 4) assuming a chi-squared asymptotic distribu-
tion for the goodness-of-fit statistic ignores the heterogeneity of risks within
quantiles.
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FIGURE 35.2
Grouped and individualized goodness-of-fit of BCRAT- and IBIS-assigned
breast cancer risks in NY BCFR data.

Some of these limitations are addressed by an alternative approach that
uses nearest-neighbor (NN) methods to estimate an outcome probability for
each set of subjects with a given assigned risk (Akritas, 1994; Heagerty et al.,
2000). The NN estimate of actual risk for a subject with assigned risk r is
based on the set of all individuals with risks r′ such that |G(r) −G(r′)| < ε,
where G(r) the empirical cumulative distribution function of assigned risks
and ε (which determines the maximum neighborhood size) is a small positive
number that decreases with total cohort sample size. The lower two panels of
Figure 35.2 show the NN ADs for BCRAT and IBIS risk models as applied
to the NY BCFR data. Notice that these ADs are similar to, but more in-
formative than, the discretized ADs in the upper panels. The NN ADs show
for which assigned risks (and thus which individuals) the 95% CIs exclude the
diagonal line, suggesting significant poor fit.

The NN estimates are not without problems. The lower panels of Fig-
ure 35.2 suggest that both models fit poorly in the right tails of their as-
signed risk distributions. However, unpublished simulations using a perfectly-
calibrated model reveal that this conclusion is likely to be erroneous, and that
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the observed flattening of the estimated outcome probability curves in the
right tails is an artifact of the NN method. Such flattening reflects the clump-
ing of sparse subjects in the tails into the same neighborhood to estimate a
single common outcome probability. New methods are needed to address these
issues.

Model discrimination is commonly assessed using the concordance statistic
or C-statistic, also called the area under the receiver-operating-characteristic
curve (Hanley and McNeil, 1982; Pepe, 2003). This statistic estimates the
probability that the risk assigned to a randomly sampled individual who de-
velops the outcome exceeds that of a randomly sampled individual who does
not. The C-statistic has several limitations. Like all summary statistics, it fails
to indicate subgroups for whom a model discriminates poorly, or subgroups
for which one model discriminates better than another. In addition, patients
and health professionals have difficulty interpreting it. A more informative
measure is the Case Risk Percentile (CRP), defined for each outcome-positive
subject (case) as the percentile of his/her assigned risk in the distribution of
assigned risks of all outcome-negative subjects. The CRP equals 1 SPV, where
SPV denotes her standardized placement value (Pepe and Cai, 2004; Pepe and
Longton, 2005). The CRP can be useful for comparing the discrimination of
two risk models.

For example, Figure 35.3 shows the distribution of CRPs for 81 breast
cancer cases in the NY-BCFR data, based on the BCRAT& IBIS models. Each
point in the figure corresponds to a subject who developed breast cancer within
10 years of baseline. Each of the 49 points above the diagonal represents a case
whose IBIS CRP exceeds her BCRAT CRP (i.e., IBIS better discriminates her
risk from that of non-cases than does BCRAT), and the 32 points below the
line represent cases for whom BCRAT discriminates better than IBIS. (Note
that CRPs can be computed for any assigned risk, not just those of cases.)
A model’s C-statistic is just the mean of its CRPs, averaged over all cases.
Importantly, covariates associated with having a CRP above or below the
diagonal line can indicate which subgroups are better served by one model
than the other. The CRPs are individualized measures of model sensitivity.

Research is needed to develop alternatives to the C-statistic that are more
useful for evaluating model discrimination. Further discussion of this issue can
be found in Pepe et al. (2010) and Pepe and Janes (2008).

35.5 Can we improve how we use epidemiological data
for risk model assessment?

We need better methods to accommodate the inherent limitations of epidemi-
ological data for assessing risk model performance. For example, the subjects
in large longitudinal cohort studies are highly selected, so that findings may
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FIGURE 35.3
Scatterplot of BCRAT and IBIS case risk percentiles for NY BCFR data.

not be generalizable. Thus we need methods for accommodating bias in esti-
mated performance measures due to cohort selection. Also, because large co-
hort studies are costly, we need ways to evaluate model discrimination using
case-control data that is not nested within a cohort. Finally, we need meth-
ods for developing, applying and evaluating multi-state models for multiple
adverse events. The following is a brief description of these problem areas.

35.5.1 Cohort selection bias

The covariate distributions of individuals in the general population are not
well represented by those of the highly selected participants in large, long-term
cohort studies. For example, we found that a published ovarian cancer risk
model developed using postmenopausal women in the Nurses’ Health Study
(Rosner et al., 2005) was well-calibrated to postmenopausal subjects in the
California Teachers Study (CTS) (Bernstein et al., 2002) but poorly calibrated
to those in the Women’s Health Initiative (WHI) (Luo et al., 2011). We found
that although covariate-specific hazard-ratios are similar in the two cohorts,
their covariate distributions are very different: e.g., parity is much higher
in WHI than CTS. Moreover the distributions of covariates like education and
parity among cohort subjects tend to be more homogeneous than those of the
general population. Work is needed to compare the distributions of covariates
among subjects in cohort studies with those of the general US population, as
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represented, for example, by participants in one of the cross-sectional studies
conducted by the National Health Interview Survey (NHANES). Methods are
needed to use these distributions to estimate the model performance measures
we would see if the model were applied to subjects whose covariates reflect
those of the general population.

35.5.2 Evaluating risk models with case-control data

Data from case-control studies nested within a cohort are not useful for eval-
uating model calibration, which concerns the agreement between a model’s
assigned risks and the actual probabilities of adverse outcome occurrence
within a future risk period. Sampling only the outcome-positive and outcome-
negative subjects (ignoring the time at risk contributed by censored subjects)
can lead to severe bias in calibration measures, due to overestimation of out-
come probabilities (Whittemore and Halpern, 2013). However under certain
assumptions, unbiased (though inefficient) estimates of discrimination mea-
sures can be obtained from nested case-control studies. The critical assump-
tion is that the censoring be uninformative; i.e., that subjects censored at a
given follow-up time are a random sample of all cohort members alive and
outcome-free at that time (Heagerty et al., 2000). This assumption is reason-
able for the type of censoring encountered in most cohort studies. There is
a need to evaluate the efficiency loss in estimated discrimination measures
associated with excluding censored subjects.

However when interest centers on special populations, such as those at high
risk of the outcome, it may not be feasible to find case-control data nested
within a cohort to evaluate model discrimination. For example, we may want
to use breast cancer cases and cancer-free control women ascertained in a high-
risk cancer clinic to determine and compare discrimination of several models
for ten-year breast cancer risk. Care is needed in applying the risk models to
non-nested case-control data such as these, and interpreting the results. To
mimic the models’ prospective setting, two steps are needed: 1) the models
must assign outcome risks conditional on the absence of death during the risk
period; and 2) subjects’ covariates must be assessed at a date ten years before
outcome assessment (diagnosis date for cases, date of interview for controls).
In principle, the data can then be used to estimate ten-year breast cancer
probabilities ignoring the competing risk of death. In practice, the rules for
ascertaining cases and controls need careful consideration to avoid potential
selection bias (Wacholder et al., 1992).

35.5.3 Designing and evaluating models for
multiple outcomes

Validating risk models that focus on a single adverse outcome (such as devel-
oping breast cancer within ten years) involves estimating a woman’s ten-year
breast cancer probability in the presence of co-morbidities causing her death
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FIGURE 35.4
Graphs showing transition probabilities for transient and absorbing states for
breast cancer (single outcome; left graph), and for breast cancer and stroke
(two outcomes; right graph). In both graphs death before outcome occurrence
is a competing risk.

before breast cancer occurrence. This competing risk of death is illustrated in
the left graph of Figure 35.4. Based on her follow-up during the risk period
she is classified as: a) outcome-positive (develops breast cancer); b) outcome-
negative (dies before breast cancer or is alive and breast-cancer-free at end of
period); or c) censored (last observed alive and free of breast cancer before
end of period). Competing risk theory is needed to estimate her breast cancer
probability in these circumstances. Most risk models assume that mortality
rates depend only on age at risk, sex and race/ethnicity. However covariates for
co-morbidities are likely to be available and could be important in risk model
performance and validation among older cohort subjects. Thus we need to
expand existing risk models to include covariates associated with mortality
risk, and to examine the effect of this expansion on risk model performance.

There also is need to examine the feasibility of expanding existing risk
models to include multiple outcomes of interest. For example, an osteo-
porotic woman might need to weigh the risks and benefits of several fracture-
preventive options (e.g., tamoxifen, a bisphosphonate, or no drug). If she has
a strong family history of certain chronic diseases (e.g., breast cancer, stroke)
she needs a model that provides accurate estimates of her risks of these out-
comes under each of the options she is considering. Her marginal outcome
risks may be estimable from existing single-outcome risk models, but these
models do not accommodate correlated risks for different outcomes. Also they
were calibrated to cohorts with different selection factors and different covari-
ate distributions, so their estimates may not be comparable. The graph on
the right of Figure 35.4 indicates that the complexity of multi-state models
for stochastic processes increases exponentially with the number of outcomes
considered. (Here breast cancer (B) and stroke (S) are transient states, since
subjects in these states are at risk for the other outcome, while death (D) and
development of both breast cancer and stroke (BS) are absorbing states.)

Work is needed to determine whether the rich body of work on multi-
state stochastic processes can be applied to cohort data to provide more re-
alistic risk estimates for multiple, competing and noncompeting outcomes.
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Consider, for example, the simple problem of combining existing models for
breast cancer and stroke to assign to each cohort subject a vector of the
form (P (B), P (S), P (D), P (BS)), where, for example, P (B) is her assigned
risk of developing breast cancer, and P (BS) is her assigned risk of devel-
oping both breast cancer and stroke, during the risk period. The resulting
multistate model would allow the possibility of within-person correlation in
outcome-specific risks.

35.6 Concluding remarks

This chapter has outlined some statistical problems that arise when assigning
people individualized probabilities of adverse health outcomes, and when eval-
uating the utility of these assignments. Like other areas in statistics, this work
rests on foundations that raise philosophical issues. For example, the discus-
sion of risk model calibration assumes that each individual has an unknown
probability of developing the outcome of interest in the given time period. This
presumed probability depends on his/her values for a set of risk factors, only
some of which are known. But, unlike a parameter that governs a statistical
distribution, one person’s “true risk” does not lend itself to straightforward
definition. Yet, much of the previous discussion requires this assumption.

Even when the assumption is accepted, fundamental issues arise. How can
we estimate one woman’s breast cancer probability without aggregating her
survival data with those of others who may have different risks? And how
much of a woman’s breast cancer risk is due purely to chance? If we knew the
combined effects of all measurable breast cancer risk factors, and if we could
apply this knowledge to assign risks to disease-free women, how much residual
variation in subsequent outcomes might we see?

These issues notwithstanding, it seems clear that the need for cost-efficient,
high quality health care will mandate individualized strategies for prevention
and treatment. Difficult cost-benefit tradeoffs will become increasingly com-
mon as we discover new drugs and therapies with adverse side effects. Patients
and their clinical caregivers need rigorous, evidence-based guidance in making
the choices confronting them.
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Buried treasures

Michael A. Newton
Departments of Statistics and of Biostatistics and Medical Informatics
University of Wisconsin, Madison, WI

Keeping pace with the highly diversified research frontier of statistics is hard
enough, but I suggest that we also pay ever closer attention to great works
of the past. I offer no prescription for how to do this, but reflect instead on
three cases from my own research where my solution involved realizing a new
interpretation of an old, interesting but possibly uncelebrated result which
had been developed in a different context.

36.1 Three short stories

36.1.1 Genomics meets sample surveys

Assessing differential expression patterns between cancer subtypes provides
some insight into their biology and may direct further experimentation. On
similar tissues cancer may follow distinct developmental pathways and thus
produce distinct expression profiles. These differences may be captured by the
sample variance statistic, which would be large when some members of a gene
set (functional category) have high expression in one subtype compared to the
other, and other members go the opposite way. A case in point is a collection
of cell-cycle regulatory genes and their expression pattern in tumors related to
human papilloma virus (HPV) infection. Pyeon et al. (2007) studied the tran-
scriptional response in n = 62 head, neck and cervical cancer samples, some of
which were positive for virus (HPV+) and some of which were not (HPV−).
Gene-level analysis showed significant differential expression in both direc-
tions. Set-level analysis showed that one functional category stood out from
the several thousands of known categories in having an especially large value
of between-gene/within-set sample variance. This category was detected using
a standardized sample variance statistic. The detection launched a series of
experiments on the involved genes, both in the same tissues under alternative
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measurement technology and on different tissues. The findings lead to a new
hypothesis about how HPV+/− tumors differentially deregulate the cell-cycle
processes during tumorigenesis as well as to biomarkers for HPV−associated
cancers (Pyeon et al., 2011). Figure 36.1 shows a summary of gene-level dif-
ferential expression scores between HPV+ and HPV− cancers (so-called log
fold changes), for all genes in the genome (left), as well as for m = 99 genes
from a cell-cycle regulatory pathway.

A key statistical issue in this case was how to standardize a sample vari-
ance statistic. The gene-level data were first reduced to the log-scale fold
change between HPV+ and HPV− cell types; these xg, for genes g, were then
considered fixed in subsequent calculations. For a known functional category
c ⊆ {1, . . . , G} of size m, the statistic u(x, c) measured the sample variance
of the xg’s within c. This statistic was standardized by imagining the distri-
bution of u(x,C), for random sets C, considered to be drawn uniformly from
among all

(G
m

)
possible size-m subsets of the genome. Well forgetting about

all the genomics, the statistical question concerned the distribution of the
sample variance in without-replacement finite-population sampling; in partic-
ular, I needed an expected value and variance of u(x,C) under this sampling.
Not being especially well versed in the findings of finite-population sampling,
I approached these moment questions from first principles and with a novice’s
vigor, figuring that something simple was bound to emerge. I did not make
much progress on the variance of u(x,C), but was delighted to discover a beau-
tiful solution in Tukey (1950, p. 517), which had been developed far from the
context of genomics and which was not widely cited. Tukey’s buried treasure
used so-called K functions, which are set-level statistics whose expected value
equals the same statistic computed on the whole population. Subsequently
I learned that earlier R.A. Fisher had also derived this variance; see also Cho
et al. (2005). In any case, I was glad to have gained some insight from Tukey’s
general framework.

36.1.2 Bootstrapping and rank statistics

Researchers were actively probing the limits of bootstrap theory when I began
my statistics career. A case of interest concerned generalized bootstrap means.
From a real-valued random sample X1, . . . , Xn, one studied the conditional
distribution of the randomized statistic

X̄W
n =

1

n

n∑

i=1

Wn,iXi,

conditional on the data Xi, and where the random weights Wn,i were gen-
erated by the statistician to enable the conditional distribution of X̄W

n to
approximate the marginal sampling distribution of X̄n. Efron’s bootstrap cor-
responds to weights having a certain multinomial distribution, but indications
were that useful approximations were available for beyond the multinomial.
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FIGURE 36.1
The relative positions of m = 99 cell-cycle genes (KEGG 04110) (right) are
shown in the context of all measured genes (left) when genes are sorted by log
fold change between HPV+ and HPV− tumors (vertical axis). Widths in the
red violin plot indicate the empirical density. KEGG 04110 had higher stan-
dardized sample variance than any functional category in GO or KEGG. Based
on this high variance, further experiments were performed on the 10 named
genes (right) leading to a new hypothesis about how the HPV virus deregu-
lates the control of cell cycle, and to biomarkers for HPV-associated cancer.
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In a most rewarding collaboration, David Mason and I tackled the case
where the Wn,i were exchangeable, making the seemingly superfluous obser-
vation that X̄W

n must have the same conditional distribution, given data Xi,
as the additionally randomized

Tn =
1

n

n∑

i=1

Wn,πn,iXi,

where, for each n, πn,i is a uniform random permutation of the integers
1, . . . , n. While the usual bootstrap statistic has two sources of randomness
(one from the data and from the bootstrap weights), this Tn had yet a third
source, neither generated by nature or the statistician, but just imagined ow-
ing to the exchangeability of the weights. Having all three sources allowed us
to condition on both the data Xi and the statistician-generated weights Wn,i,
and still have some randomness in Tn.

A quite unconnected and somewhat amazing treasure from the theory of
linear rank statistics now became relevant. Given two triangular arrays of
constants, an,i and bn,i, the randomized mean

Sn =
n∑

i=1

an,πn,ibn,i

had been studied extensively in nonparametric testing, because this is the
form of the linear rank statistic. Hájek (1961) presented weak conditions on
the triangular arrays such that Sn is asymptotically normal, owing to the
random shuffling caused by the πn,i. Thus, reconsidering Hájek’s result in
the new bootstrap context was the key to making progress on the weighted
bootstrap problem (Mason and Newton, 1992).

36.1.3 Cancer genetics and stochastic geometry

A tumor is monoclonal in origin if all its cells trace by descent to a single initi-
ated cell that is aberrant relative to the surrounding normal tissue (e.g., incurs
some critical genetic mutation). Tumors are well known to exhibit internal
heterogeneity, but this does not preclude monoclonal origin, since mutation,
clonal expansion, and selection are dynamic evolutionary processes occurring
within a tumor that move the single initiated cell to a heterogeneous col-
lection of descendants. Monoclonal origin is the accepted hypothesis for most
cancers, but evidence is mounting that tumors may initiate through some form
of molecular interaction between distinct clones. As advanced as biotechnol-
ogy has become, the cellular events at the point of tumor initiation remain
beyond our ability to observe directly, and so the question of monoclonal ver-
sus polyclonal origin has been difficult to resolve. I have been fortunate to
work on the question in the context of intestinal cancer, in series of projects
with W.F. Dove, A. Thliveris, and R. Halberg.
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When measured at several months of age, intestinal tracts from mice used
in the experiments were dotted with tumors. By some rather elaborate exper-
imental techniques cell lineages could be marked by one of two colors: some
tumors were pure in color, as one would expect under monoclonal origin, yet
some contained cells of both colors, and were thus overtly polyclonal. The
presence of such polyclonal tumors did not raise alarm bells, since it was pos-
sible that separate tumors were forming in close proximity, and that they had
merged into a single tumor mass by the time of observation. If so, the polyclon-
ality was merely a consequence of random collision of independently initiated
clones, and did not represent a mechanistically important phenomenon. The
investigators suspected, however, that the frequency of these overtly poly-
clonal (heterotypic) tumors was too high to be explained by random colli-
sion, especially considering the tumor size, the overall tumor frequency, and
the lineage marker patterns. It may have been, and subsequent evidence has
confirmed, that cellular interactions are critical in the initial stages of tumor
development. The statistical task at hand was to assess available data in terms
of evidence against the random collision hypothesis.

In modeling data on frequencies of various tumor types, it became neces-
sary to calculate the expected number of monoclonal tumors, biclonal tumors,
and triclonal tumors when initiation events occur randomly on the intestinal
surface. This is a problem in stochastic geometry, as clones will collide if they
are sufficiently close. Like in the gene-set-variance problem, I tackled the ex-
pected value using first principles and with hopes that a simple approximation
might emerge. The monoclonal and biclonal expectations were not so hard, but
the triclonal calculation gave me fits. And then I found Armitage (1949). In
a problem on the overlap of dust particles on a sampling plate, Armitage had
faced the same expected value calculation and had provided a rather thorough
solution, with error bounds. If N particles land at random in a region of area
A, and if they clump when they lie within δ units, then the expected numbers
of singletons, clumps-of-two, and clumps-of-three particles are approximately

µ1 = Ne−4ψ, µ2 = 2N

(
ψ − 4π + 3

√
3

π
ψ2

)
, µ3 = N

{
4(2π + 3

√
3)

3π
ψ2

}
,

where ψ = Nπδ2/(4A). Fortunately I could use the framework of stochastic
geometry to link the quite different contexts (particle counting and tumor
formation) and identify a path to testing the random collision hypothesis
(Newton et al., 2006). The biological consequences continue to be investigated.

36.2 Concluding remarks

I have found great utility in beautiful statistical findings that have been rela-
tively uncelebrated by the field and that were developed in response to prob-
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lems different than I was facing. I expect there are many such buried treasures,
and I encourage statisticians to seek them out even as they push forward ad-
dressing all kinds of new statistical problems. Perhaps there is very little to
what I’m saying. Had I been more prepared when launching into any of the
three cases above I might have known right away how to use the available
statistical results. But this seems like a lot to ask; our training programs are
bursting with course work and cannot be expected to explain all of the disci-
pline’s treasures. You might also argue that the great thing about statistics
and mathematics is that a single formalism works equally in all kinds of dif-
ferent contexts; my case studies do no more than express how the formalism is
not dependent upon context. Perhaps my point is more that we must continue
to exercise this formalism, continue to find analogies between distinct prob-
lems, and continue to support and develop tools that make these connections
easier to identify.

Thank goodness for archiving efforts like JSTOR and the modern search
engines that help us find these treasures. All of us can help by continuing
to support efforts, like open access, aiming to minimize barriers to informa-
tion flow. Authors and journals can help by making a greater effort to cite
key background references and suggest links to related problems. Instructors,
especially of courses in mathematical statistics, can help by emphasizing the
distinct contexts that enliven each statistical fact. Grant reviewers and tenure
committees can help by recognizing that innovation comes not only in conjur-
ing up new theory and methodology but also by the thoughtful development
of existing statistical ideas in new and important contexts. Finally, thanks to
John Tukey, Peter Armitage, and Jaroslav Hájek and others for the wonderful
results they’ve left for us to find.

“There is more treasure in books than in all the pirate’s loot on Trea-
sure Island and best of all, you can enjoy these riches every day of your
life.”

–Walt Disney
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Survey sampling: Past controversies,
current orthodoxy, and future paradigms

Roderick J.A. Little
Department of Biostatistics
University of Michigan, Ann Arbor, MI

37.1 Introduction

My contribution to this historic celebration of the COPSS concerns the field of
survey sampling, its history and development since the seminal paper by Ney-
man (1934), current orthodoxy, and a possible direction for the future. Many
encounter survey sampling through the dull prism of moment calculations,
but I have always found the subject fascinating. In my first sampling course,
I remember being puzzled by the different forms of weighting in regression —
by the inverse of the probability of selection, or by the inverse of the residual
variance (Brewer and Mellor, 1973). If they were different, which was right?
My early practical exposure was at the World Fertility Survey, where I learnt
some real-world statistics, and where the sampling guru was one of the giants
in the field, Leslie Kish (Kish et al., 1976). Kish was proud that the devel-
oping countries in the project were more advanced than developed countries
in publishing appropriate estimates of standard error that incorporated the
sample design. Always engaging, he shared my love of western classical music
and tolerated my model-based views. More recently, I spent time helping to
set up a research directorate at the US Census Bureau, an agency that was at
the forefront of advances in applied sampling under the leadership of Maurice
Hansen.

What distinguishes survey sampling from other branches of statistics? The
genesis of the subject is a simple and remarkable idea — by taking a simple
random sample from a population, reasonably reliable estimates of population
quantities can be obtained with quantifiable accuracy by sampling around a
thousand units, whether the population size is ten thousand or twenty mil-
lion. Simple random sampling is neither optimal or even practical in many
real-world settings, and the main developments in the field concerned com-
plex sample designs, which include features like stratification, weighting and

413
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clustering. Another important aspect is its primary focus on finite population
quantities rather than parameters of models. The practical concerns of how to
do probability sampling in the real world, such as the availability of sampling
frames, how to exploit administrative data, and alternative modes of survey
administration, are an important part of the field; valuable, since currently
statistical training tends to focus on estimation and inference, neglecting de-
signs for collecting data.

Survey sampling is notable as the one field of statistics where the prevailing
philosophy is design-based inference, with models playing a supporting role.
The debates leading up to this current status quo were heated and fascinat-
ing, and I offer one view of them here. I also present my interpretation of the
current status quo in survey sampling, what I see as its strengths and draw-
backs, and an alternative compromise between design-based and model-based
inference, Calibrated Bayes, which I find more satisfying.

The winds of change can be felt in this field right now. Robert Groves, a
recent Director of the US Census Bureau, wrote:

“For decades, the Census Bureau has created ‘designed data’ in
contrast to ‘organic data’ [· · · ] What has changed is that the volume
of organic data produced as auxiliary to the Internet and other sys-
tems now swamps the volume of designed data. In 2004 the monthly
traffic on the internet exceeded 1 exabyte or 1 billion gigabytes. The
risk of confusing data with information has grown exponentially... The
challenge to the Census Bureau is to discover how to combine designed
data with organic data, to produce resources with the most efficient
information-to-data ratio. This means we need to learn how surveys
and censuses can be designed to incorporate transaction data contin-
uously produced by the internet and other systems in useful ways.
Combining data sources to produce new information not contained in
any single source is the future. I suspect that the biggest payoff will
lie in new combinations of designed data and organic data, not in one
type alone.” (Groves, 2011)

I believe that the standard design-based statistical approach of taking a
random sample of the target population and weighting the results up to the
population is not adequate for this task. Tying together information from tra-
ditional surveys, administrative records, and other information gleaned from
cyberspace to yield cost-effective and reliable estimates requires statistical
modeling. However, robust models are needed that have good repeated sam-
pling properties.

I now discuss two major controversies in survey sampling that shaped the
current state of the field.
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37.2 Probability or purposive sampling?

The first controversy concerns the utility of probability sampling itself. A
probability sample is a sample where the selection probability of each of the
samples that could be drawn is known, and each unit in the population has
a non-zero chance of being selected. The basic form of probability sample is
the simple random sample, where every possible sample of the chosen size n
has the same chance of being selected.

When the distribution of some characteristics is known for the population,
a measure of representativeness of a sample is how close the sample distribu-
tion of these characteristics matches the population distribution. With simple
random sampling, the match may not be very good, because of chance fluctu-
ations. Thus, samplers favored methods of purposive selection where samples
were chosen to match distributions of population characteristics. The precise
nature of purposive selection is often unclear; one form is quota sampling,
where interviewers are given a quota for each category of a characteristic
(such as age group) and told to sample until that quota is met.

In a landmark early paper on sampling, Neyman (1934) addressed the
question of whether the method of probability sampling or purposive selection
was better. His resolution was to advocate a method that gets the best of both
worlds, stratified sampling. The population is classified into strata based on
values of known characteristics, and then a random sample of size nj is taken
from stratum j, of size Nj . If fj = nj/Nj , the sampling fraction in stratum j,
is a constant, an equal probability sample is obtained where the distribution
of the characteristics in the sample matches the distribution of the population.

Stratified sampling was not new; see, e.g., Kaier (1897); but Neyman ex-
panded its practical utility by allowing fj to vary across strata, and weighting
sampled cases by 1/fj . He proposed what is now known as Neyman alloca-
tion, which optimizes the allocations for given variances and costs of sampling
within each strata. Neyman’s paper expanded the practical utility of probabil-
ity sampling, and spurred the development of other complex sample designs
by Mahalanobis, Hansen, Cochran, Kish and others, greatly extending the
practical feasibility and utility of probability sampling in practice. For exam-
ple, a simple random sampling of people in a country is not feasible since a
complete list of everyone in the population from which to sample is not avail-
able. Multistage sampling is needed to implement probability sampling in this
setting.

There were dissenting views — simple random sampling (or equal prob-
ability sampling in general) is an all-purpose strategy for selecting units to
achieve representativeness “on average” — it can be compared with random-
ized treatment allocation in clinical trials. However, statisticians seek optimal
properties, and random sampling is very suboptimal for some specific pur-
poses. For example, if the distribution of X is known in population, and the
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objective is the slope of the linear regression of Y on X, it’s obviously much
more efficient to locate half the sample at each of the extreme values of X —
this minimizes the variance of the least squares slope, achieving large gains
of efficiency over equal probability sampling (Royall, 1970). But this is not a
probability sample — units with intermediate values of X have zero chance
of selection. Sampling the extremes of X does not allow checks of linearity,
and lacks robustness. Royall argues that if this is a concern, choose sample
sizes at intermediate values of X, rather than letting these sizes be deter-
mined by chance. The concept of balanced sampling due to Royall and Herson
(1973) achieves robustness by matching moments of X in the sample and
population. Even if sampling is random within categories of X, this is not
probability sampling since there is no requirement that all values of X are
included. Royall’s work is persuasive, but random sampling has advantages in
multipurpose surveys, since optimizing for one objective often comes at the
expense of others.

Arguments over the utility of probability sampling continue to this day. A
recent example concerns the design of the National Children’s Study (Michael,
2008; Little, 2010), planned as the largest long-term study of children’s health
and development ever to be conducted in the US. The study plans to follow
100,000 children from before birth to early adulthood, together with their
families and environment, defined broadly to include chemical, physical, be-
havioral, social, and cultural influences. Lively debates were waged over the
relative merits of a national probability sample over a purposive sample from
custom-chosen medical centers. In discussions, some still confused “probabil-
ity sample” with “simple random sample.” Probability sampling ideas won
out, but pilot work on a probability sample of households did not produce
enough births. The latest plan is a form of national probability sample based
on hospitals and prenatal clinics.

An equal probability design is indicated by the all-purpose nature of the
National Children’s Study. However, a sample that includes high pollution
sites has the potential to increase the variability of exposures, yielding more
precise estimates of health effects of contaminants. A compromise with at-
tractions is to do a combination — say choose 80% of the sample by equal
probability methods, but retain 20% of the sample to ensure coverage of areas
with high contaminant exposures.

37.3 Design-based or model-based inference?

The role of probability sampling relates to ideas about estimation and infer-
ence — how we analyze the data once we have it. Neyman (1934) is widely
celebrated for introducing confidence intervals as an alternative to “inverse
probability” for inference from a probability sample. This laid the foundation
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for the “design-based approach” to survey inference, where population values
are fixed and inferences are based on the randomization distribution in the
selection of units. . . although Neyman never clearly states that he regards pop-
ulation values as fixed, and his references to Student’s t distribution suggest
that he had a distribution in mind. This leads me to the other topic of con-
troversy, concerning design-based vs model-based inference; see, e.g., Smith
(1976, 1994), Kish and Frankel (1974), Hansen et al. (1983), Kish (1995), and
Chambers and Skinner (2003).

In design-based inference, population values are fixed, and inference is
based on the probability distribution of sample selection. Obviously, this as-
sumes that we have a probability sample (or “quasi-randomization,” where
we pretend that we have one). In model-based inference, survey variables are
assumed to come from a statistical model. Probability sampling is not the ba-
sis for inference, but is valuable for making the sample selection ignorable; see
Rubin (1976), Sugden and Smith (1984), and Gelman et al. (1995). There are
two main variants of model-based inference: Superpopulation modeling, where
frequentist inference is based on repeated samples from a “superpopulation”
model; and Bayesian modeling, where fixed parameters in the superpopulation
model are assigned a prior distribution, and inferences about finite popula-
tion quantities or parameters are based on their posterior distributions. The
argument about design-based or model-based inference is a fascinating com-
ponent of the broader debate about frequentist versus Bayesian inference in
general: Design-based inference is inherently frequentist, and the purest form
of model-based inference is Bayes.

37.3.1 Design-based inference

More formally, for i ∈ {1, . . . , N}, let yi be the survey (or outcome) variable
of the ith unit, where N < ∞ is the number of units in the population, and
let Ii be the inclusion indicator variable of the ith unit. Let Z represent de-
sign information, such as stratum or cluster indicators. We consider inference
about a finite population quantity Q(Y, Z), for example the population total
Q(Y, Z) = y1 + · · ·+ yN , where Y = (y1, . . . , yN ).

In the design-based or randomization approach as described, e.g., by
Cochran (1977), inferences are based on the distribution of I = (I1, . . . , IN ),
and the outcome variables y1, . . . , yN are treated as fixed quantities. Infer-
ence involves (a) the choice of an estimator for Q, q̂ = q̂(Yinc, I, Z), where
Yinc is the included part of Y ; and (b) the choice of a variance estimator
ν̂ = ν̂(Yinc, I, Z) that is unbiased or approximately unbiased for the vari-
ance of q̂ with respect to the distribution of I. Inferences are then generally
based on normal large-sample approximations. For example, a 95% confidence
interval for Q is q̂ ± 1.96

√
ν̂.
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Estimators q̂ are chosen to have good design-based properties, such as

(a) Design unbiasedness: E(q̂|Y ) = Q, or

(b) Design consistency : q̂ → Q as the sample size gets large (Brewer, 1979;
Isaki and Fuller, 1982).

It is natural to seek an estimate that is design-efficient, in the sense of
having minimal variance. However, it became clear that that kind of optimality
is not possible without an assumed model (Horvitz and Thompson, 1952;
Godambe, 1955). Design-unbiasedness tends to be too stringent, and design-
consistency is a weak requirement (Firth and Bennett, 1998), leading to many
choices of estimates; in practice, choices are motivated by implicit models, as
discussed further below. I now give some basic examples of the design-based
approach.

Example 1 (Estimate of a population mean from a simple random
sample): Suppose the target of inference is the population mean Q = Y =
(y1+ · · ·+yN )/N and we have a simple random sample of size n, (y1, . . . , yn).
The usual unbiased estimator is the sample mean q̂ = y = (y1 + · · ·+ yn)/n,
which has sampling variance V = (1 − n/N)S2

y , where S2
y is the population

variance of Y . The estimated variance v̂ is obtained by replacing S2
y in V by

its sample estimate s2y. A 95% confidence interval for Y is y ± 1.96
√
v̂.

Example 2 (Design weighting): Suppose the target of inference is the
population total T = (y1+ · · ·+yN ), and we have a sample (y1, . . . , yn) where
the ith unit is selected with probability πi, i ∈ {1, . . . , n}. Following Horvitz
and Thompson (1952), an unbiased estimate of T is given by

t̂HT =
N∑

i=1

wiyiIi,

where wi = 1/πi is the sampling weight for unit i, namely the inverse of the
probability of selection. Estimates of variance depend on the specifics of the
design.

Example 3 (Estimating a population mean from a stratified random
sample: For a stratified random sample with selection probability πj = nj/Nj

in stratum j, the Horvitz–Thompson estimator of the population mean Q =
Y = (y1 + · · ·+ yN )/N is the stratified mean, viz.

yHT =
1

N

J∑

j=1

nj∑

i=1

Nj

nj
yij = yst =

J∑

j=1

Pjyj ,

where Pj = Nj/N and yj is the sample mean in stratum j. The corresponding
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estimate of variance is

v̂st =
J∑

j=1

(
1− nj

Nj

)
s2j
nj

,

where s2j is the sample variance of Y in stratum j. A corresponding 95%

confidence interval for Y is yst ± 1.96
√
v̂st.

Example 4 (Estimating a population mean from a PPS sample):
In applications such as establishment surveys or auditing, it is common to
have measure of size X available for all units in the population. Since large
units often contribute more to summaries of interest, it is efficient to sample
them with higher probability. In particular, for probability proportional to
size (PPS) sampling, unit i with size X = xi is sampled with probability
cxi, where c is chosen to yield the desired sample size; units that come in
with certainty are sampled and removed from the pool. Simple methods of
implementation are available from lists of population units, with cumulated
ranges of size. The Horvitz–Thompson estimator

t̂HT = c
N∑

i=1

yi
xi

Ii

is the standard estimator of the population total in this setting.

The Horvitz–Thompson estimator often works well in the context of PPS
sampling, but it is dangerous to apply it to all situations. A useful guide is to
ask when it yields sensible predictions of nonsampled values from a modeling
perspective. A model corresponding to the HT estimator is the HT model

yi
iid∼ N (βxi,σ

2x2
i ), (37.1)

where N (µ, τ2) denotes the Normal distribution with mean µ and variance

τ2. This leads to predictions β̂xi, where

β̂ = n−1
N∑

i=1

yi
xi

Ii,

so t̂HT = β̂(x1 + · · · + xN ) is the result of using this model to predict the
sampled and nonsampled values. If the HT model makes very little sense,
the HT estimator and associated estimates of variance can perform poorly.
The famous elephant example of Basu (1971) provides an extreme and comic
illustration.

Models like the HT estimator often motivate the choice of estimator in
the design-based approach. Another, more modern use of models is in model-
assisted inference, where predictions from a model are adjusted to protect
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against model misspecification. A common choice is the generalized regression
(GREG) estimator, which for a total takes the form:

t̂GREG =
N∑

i=1

ŷi +
N∑

i=1

yi − ŷi
πi

,

where ŷi are predictions from a model; see, e.g., Särndal et al. (1992). This
estimator is design-consistent whether or not the model is correctly specified,
and foreshadows “doubly-robust” estimators in the mainline statistics litera-
ture.

37.3.2 Model-based inference

The model-based approach treats both I = (I1, . . . , IN ) and Y = (y1, . . . , yN )
as random variables. A model is assumed for the survey outcomes Y with
underlying parameters θ, and this model is used to predict the nonsampled
values in the population, and hence the finite population total. Inferences are
based on the joint distribution of Y and I. Rubin (1976) and Sugden and
Smith (1984) show that under probability sampling, inferences can be based
on the distribution of Y alone, provided the design variables Z are conditioned
in the model, and the distribution of I given Y is independent of the distri-
bution of Y conditional on the survey design variables. In frequentist super-
population modeling, the parameters θ are treated as fixed; see, e.g., Valliant
et al. (2000). In Bayesian survey modeling, the parameters are assigned a prior
distribution, and inferences for Q(Y ) are based on its posterior predictive dis-
tribution, given the sampled values; see, e.g., Ericson (1969), Binder (1982),
Rubin (1987), Ghosh and Meeden (1997), Little (2004), Sedransk (2008), Fien-
berg (2011), and Little (2012). I now outline some Bayesian models for the
examples discussed above.

Example 1 continued (Bayes inference for a population mean from
a simple random sample): A basic model for simple random sampling is

yi|µ,σ2 iid∼ N (µ,σ2),

with a Jeffreys’ prior on the mean and variance p(µ, log σ2) = a constant. A
routine application of Bayes theorem yields a t distribution for the posterior
distribution of Y , with mean y, scale s

√
1− n/N and degrees of freedom n−1.

The 95% credibility interval is the same as the frequentist confidence interval
above, except that the normal percentile, 1.96, is replaced by the t percentile,
as is appropriate since the variance is estimated. Arguably this interval is
superior to the normal interval even if the data is not normal, although better
models might be developed for that situation.
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Example 2 continued (Bayesian approaches to design weighting):
Weighting of cases by the inverse of the probability of selection is not really
a model-based tool, although (as in the next example) model-based estimates
correspond to design-weighted estimators for some problems. Design weights
are conceived more as covariates in a prediction model, as illustrated in Ex-
ample 4 below.

Example 3 continued (Estimating a population mean from a strati-
fied random sample): For a stratified random sample, the design variables
Z consist of the stratum indicators, and conditioning on Z suggests that mod-
els need to have distinct stratum parameters. Adding a subscript j for stratum
to the normal model for Example 1 leads to

yi|µj ,σ
2
j

ind∼ N (µj ,σ
2
j ),

with prior p(µj , log σ2
j ) = a constant. The resulting posterior distribution re-

covers the stratified mean as the posterior mean and the stratified variance for
the posterior variance, when the variances σ2

j are assumed known. Estimating
the variances leads to the posterior distribution as a mixture of t distributions.
Many variants of this basic normal model are possible.

Example 4 continued (Estimating a population mean from a PPS
sample): The posterior mean from the HT model (37.1) is equivalent to
the HT estimator, aside from finite population. Zhen and Little (2003) relax
the linearity assumption of the mean structure, modeling the mean of Y given
size X as a penalized spline; see also and Zheng and Little (2005). Simulations
suggest that this model yields estimates of the total that have superior mean
squared error than the HT estimator when the HT model is misspecified.
Further, posterior credible intervals from the expanded model have better
confidence coverage.

37.3.3 Strengths and weakness

A simplified overview of the two schools of inference is that weighting is a fun-
damental feature of design-based methods, with models playing a secondary
role in guiding the choice of estimates and providing adjustments to increase
precision. Model-based inference is much more focused on predicting non-
sampled (or nonresponding) units with estimates of uncertainty. The model
needs to reflect features of the design like stratification and clustering to limit
the effects of model misspecification, as discussed further below. Here is my
personal assessment of the strengths and weaknesses of the approaches.

The attraction of the design-based perspective is that it avoids direct de-
pendence on a model for the population values. Models can help the choice
of estimator, but the inference remains design-based, and hence somewhat
nonparametric. Models introduce elements of subjectivity — all models are
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wrong, so can we trust results? Design-based properties like design consistency
are desirable since they apply regardless of the validity of a model. Computa-
tionally, weighting-based methods have attractions in that they can be applied
uniformly to a set of outcomes, and to domain and cross-class means, whereas
modeling needs more tailoring to these features.

A limitation of the design-based perspective is that inference is based on
probability sampling, but true probability samples are harder and harder to
come by. In the household sample setting, contact is harder — there are fewer
telephone land-lines, and more barriers to telephonic contact; nonresponse is
increasing, and face-to-face interviews are increasingly expensive. As Groves
noted in the above-cited quote, a high proportion of available information is
now not based on probability samples, but on ill-defined population frames.

Another limitation of design-based inference is that it is basically asymp-
totic, and provides limited tools for small samples, such as for small area
estimation. The asymptotic nature leads to (in my opinion) too much empha-
sis on estimates and estimated standard errors, rather than obtaining intervals
with good confidence coverage. This is reflected by the absence of t corrections
for estimating the variances in Examples 1 and 3 above.

On a more theoretical level, design-based inference leads to ambiguities
concerning what to condition on in the “reference set” for repeated sampling.
The basic issue is whether to condition on ancillary statistics — if conditioning
on ancillaries is taken seriously, it leads to the likelihood principle (Birnbaum,
1962), which design-based inference violates. Without a model for predicting
non-sampled cases, the likelihood is basically uninformative, so approaches
that follow the likelihood principle are doomed to failure.

As noted above, design-based inference is not explicitly model-based, but
attempting design-based inference without any reference to implicit models
is unwise. Models are needed in design-based approach, as in the “model-
assisted” GREG estimator given above.

The strength of the model-based perspective is that it provides a flexible,
unified approach for all survey problems — models can be developed for sur-
veys that deal with frame, nonresponse and response errors, outliers, small
area models, and combining information from diverse data sources. Adopting
a modeling perspective moves survey sample inference closer to mainstream
statistics, since other disciplines like econometrics, demography, public health,
rely on statistical modeling. The Bayesian modeling requires specifying pri-
ors, but has that benefit that it is not asymptotic, and can provide better
small-sample inferences. Probability sampling justified as making sampling
mechanism ignorable, improving robustness.

The disadvantage of the model-based approach is more explicit dependence
on the choice of model, which has subjective elements. Survey statisticians are
generally conservative, and unwilling to trust modeling assumptions, given the
consequences of lack of robustness to model misspecification. Developing good
models requires thought and an understanding of the data, and models have
the potential for more complex computations.
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37.3.4 The design-model compromise

Emerging from the debate over design-based and model-based inference is
the current consensus, which I have called the Design-Model Compromise
(DMC); see Little (2012). Inference is design-based for aspects of surveys that
are amenable to that approach, mainly inferences about descriptive statistics
in large probability samples. These design-based approaches are often model
assisted, using methods such as regression calibration to protect against model
misspecification; see, e.g., Särndal et al. (1992). For problems where the design-
based approach is infeasible or yields estimates with insufficient precision,
such as small area estimation or survey nonresponse, a model-based approach
is adopted. The DMC approach is pragmatic, and attempts to exploit the
strengths of both inferential philosophies. However, it lacks a cohesive over-
arching philosophy, involving a degree of “inferential schizophrenia” (Little,
2012).

I give two examples of “inferential schizophrenia.” More discussion and
other examples are given in Little (2012). Statistical agencies like the US
Census Bureau have statistical standards that are generally written from a
design-based viewpoint, but researchers from social science disciplines like
economics are trained to build models. This dichotomy leads to friction when
social scientists are asked to conform to a philosophy they view as alien. Social
science models need to incorporate aspects like clustering and stratification to
yield robust inferences, and addressing this seems more likely to be successful
from a shared modeling perspective.

Another example is that the current paradigm generally employs direct
design-based estimates in large samples, and model-based estimates in small
samples. Presumably there is some threshold sample size where one is design
based for larger samples and model based for smaller samples. This leads to
inconsistency, and ad-hoc methods are needed to match direct and model
estimates at different levels of aggregation. Estimates of precision are less
easily reconciled, since confidence intervals from the model tend to be smaller
than direct estimates because the estimates “borrow strength.” Thus, it is
quite possible for a confidence interval for a direct estimate to be wider than
a confidence interval for a model estimate based on a smaller sample size,
contradicting the notion that uncertainty decreases as information increases.

37.4 A unified framework: Calibrated Bayes

Since a comprehensive approach to survey inference requires models, a unified
theory has to be model-based. I have argued (Little, 2012) that the appropriate
framework is calibrated Bayes inference (Box, 1980; Rubin, 1984; Little, 2006),
where inferences are Bayesian, but under models that yield inferences with
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good design-based properties; in other words, Bayesian credibility intervals
when assessed as confidence intervals in repeated sampling should have close
to nominal coverage. For surveys, good calibration requires that Bayes models
should incorporate sample design features such as weighting, stratification and
clustering. Weighting and stratification is captured by included weights and
stratifying variables as covariates in the prediction model; see, e.g., Gelman
(2007). Clustering is captured by Bayesian hierarchical models, with clusters
as random effects. Prior distributions are generally weakly informative, so that
the likelihood dominates the posterior distribution.

Why do I favor Bayes over frequentist superpopulation modeling? Theo-
retically, Bayes has attractive properties if the model is well specified, and
putting weakly informative prior distributions over parameters tends to prop-
agate uncertainty in estimating these parameters, yielding better frequentist
confidence coverage than procedures that fix parameters at their estimates.
The penalized spline model in Example 4 above is one example of a calibrated
Bayes approach, and others are given in Little (2012). Here is one more con-
cluding example.

Example 5 (Calibrated Bayes modeling for stratified sampling with
a size covariate): A common model for estimating a population mean of a
variable Y from a simple random sample (y1, . . . , yn), with a size variable X
measured for all units in the population, is the simple ratio model

yi|xi, µ,σ
2 ind∼ N (βxi,σ

2xi),

for which predictions yield the ratio estimator yrat = X × y/x, where y and
x are sample means of Y and X and X is the population mean of X. Hansen
et al. (1983) suggest that this model is deficient when the sample is selected
by disproportionate stratified sampling, yielding biased inferences under rela-
tively minor deviations from the model. From a calibrated Bayes perspective,
the simple ratio model does not appropriately reflect the sample design. An
alternative model that does this is the separate ratio model

yi|xi, zi = j, µj ,σ
2
j

ind∼ N (βjxi,σ
2
jxi),

where zi = j indicates stratum j. Predictions from this model lead to the
separate ratio estimator

ysep =
J∑

j=1

yj
xj

PjXj ,

where Pj is the proportion of the population in stratum j. This estimator
can be unstable if sample sizes in one or more strata are small. A Bayesian
modification is to treat the slopes βj as N (β, τ2), which smooths the es-
timate towards something close to the simple ratio estimate. Adding prior
distributions for the variance components provides Bayesian inferences that
incorporate errors for estimating the variances, and also allows smoothing of
the stratum-specific variances.
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37.5 Conclusions

I am a strong advocate of probability sampling, which has evolved into a flex-
ible and objective design tool. However, probability samples are increasingly
hard to achieve, and the strict design-based view of survey inference is too
restrictive to handle all situations. Modeling is much more flexible, but mod-
els need to be carefully considered, since poorly chosen models lead to poor
inferences. The current design-model compromise is pragmatic, but lacks a
coherent unifying principle. Calibrated Bayes provides a unified perspective
that blends design-based and model-based ideas. I look forward to further de-
velopment of this approach, leading to more general acceptance among survey
practitioners. More readily-accessible and general software is one area of need.

Hopefully this brief traverse of survey sampling in the last eighty years
has piqued your interest. It will be interesting to see how the field of survey
sampling evolves in the next eighty years of the existence of COPSS.
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38.1 Introduction

This exposition of environmental informatics is an attempt to bring current
thinking about uncertainty quantification to the environmental sciences. En-
vironmental informatics is a term that I first heard being used by Bronwyn
Harch of Australia’s Commonwealth Scientific and Industrial Research Organ-
isation to describe a research theme within her organization. Just as bioinfor-
matics has grown and includes biostatistics as a sub-discipline, environmental
informatics, or EI, has the potential to be much broader than classical envi-
ronmental statistics; see, e.g., Barnett (2004).

Which came first, the hypothesis or the data? In EI, we start with envi-
ronmental data, but we use them to reveal, quantify, and validate scientific
hypotheses with a panoply of tools from statistics, mathematics, computing,
and visualization.

There is a realization now in science, including the environmental sciences,
that there is uncertainty in the data, the scientific models, and the parameters
that govern these models. Quantifying that uncertainty can be approached in a
number of ways. To some, it means smoothing the data to reveal interpretable
patterns; to data miners, it often means looking for unusual data points in
a sea of “big data”; and to statisticians, it means all of the above, using
statistical modeling to address questions like, “Are the patterns real?” and
“Unusual in relation to what?”

In the rest of this chapter, I shall develop a vision for EI around the be-
lief that Statistics is the science of uncertainty, and that behind every good
data-mining or machine-learning technique is an implied statistical model.
Computing even something as simple as a sample mean and a sample vari-
ance can be linked back to the very simplest of statistical models with a
location parameter and additive homoscedastic errors. The superb book by

429
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Hastie, Tibshirani, and Friedman (Hastie et al., 2009) shows the fecundity of
establishing and developing such links. EI is a young discipline, and I would
like to see it develop in this modern and powerful way, with uncertainty quan-
tification through Statistics at its core.

In what follows, I shall develop a framework that is fundamentally about
environmental data and the processes that produced them. I shall be partic-
ularly concerned with big, incomplete, noisy datasets generated by processes
that may be some combination of non-linear, multi-scale, non-Gaussian, mul-
tivariate, and spatio-temporal. I shall account for all the known uncertainties
coherently using hierarchical statistical modeling, or HM (Berliner, 1996),
which is based on a series of conditional-probability models. Finally, through
loss functions that assign penalties as a function of how far away an estimate
is from its estimand, I shall use a decision-theoretic framework (Berger, 1985)
to give environmental policy-makers a way to make rational decisions in the
presence of uncertainty, based on competing risks (i.e., probabilities).

38.2 Hierarchical statistical modeling

The building blocks of HM are the data model, the (scientific) process model,
and the parameter model. If Z represents the data, Y represents the pro-
cess, and θ represents the parameters (e.g., measurement-error variance and
reaction-diffusion coefficients), then the data model is

[Z|Y, θ], (38.1)

the process model is
[Y |θ], (38.2)

and the parameter model is
[θ], (38.3)

where [A|B,C] is generic notation for the conditional-probability distribution
of the random quantity A given B and C.

A statistical approach represents the uncertainties coherently through the
joint-probability distribution, [Z, Y, θ]. Using the building blocks (38.1)–(38.3),
we can write

[Z, Y, θ] = [Z|Y, θ]× [Y |θ]× [θ]. (38.4)

The definition of entropy of a random quantity A is E(ln[A]) By re-writing
(38.4) as

E(ln[Z, Y, θ]) = E(ln[Z|Y, θ]) + E(ln[Y |θ]) + E(ln[θ]),

we can see that the joint entropy can be partitioned into data-model entropy,
process-model entropy, and parameter-model entropy. This results in a “divide
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and conquer” strategy that emphasizes where scientists can put effort into
understanding the sources of uncertainty and into designing scientific studies
that control (and perhaps minimize some of) the entropy components.

The process Y and the parameters θ are unknown, but the data Z are
known. (Nevertheless, the observed Z is still thought of as one of many possible
that could have been observed, with a distribution [Z].) At the beginning of all
statistical inference is a step that declares what to condition on, and I propose
that EI follow the path of conditioning on what is known, namely Z. Then
the conditional probability distribution of all the unknowns given Z is

[Y, θ|Z] = [Z, Y, θ]/[Z] = [Z|Y, θ]× [Y |θ]× [θ]/[Z], (38.5)

where the first equality is known as Bayes’ Theorem (Bayes, 1763); (38.5) is
called the posterior distribution, and we call (38.1)–(38.3) a Bayesian hier-
archical model (BHM). Notice that [Z] on the right-hand side of (38.5) is a
normalizing term that ensures that the posterior distribution integrates (or
sums) to 1.

There is an asymmetry associated with the role of Y and θ, since (38.2)
very clearly emphasises that [Y |θ] is where the “science” resides. It is equally
true that [Y, θ] = [θ|Y ] × [Y ]. However, probability models for [θ|Y ] and [Y ]
do not follow naturally from the way that uncertainties are manifested. The
asymmetry emphasizes that Y is often the first priority for inference. As a con-
sequence, we define the predictive distribution, [Y |Z], which can be obtained
from (38.5) by marginalization:

[Y |Z] = ∫ [Z|Y, θ]× [Y |θ]× [θ] dθ/[Z]. (38.6)

Then inference on Y is obtained from (38.6). While (38.5) and (38.6) are
conceptually straightforward, in EI we may be trying to evaluate them in
global spatial or spatio-temporal settings where Z might be on the order of
Gb or Tb, and Y might be of a similar order. Thus, HM requires innova-
tive conditional-probability modeling in (38.1)–(38.3), followed by innovative
statistical computing in (38.5) and (38.6). Leading cases involve spatial data
(Cressie, 1993; Banerjee et al., 2004) and spatio-temporal data (Cressie and
Wikle, 2011). Examples of dynamical spatio-temporal HM are given in Chap-
ter 9 of Cressie and Wikle (2011), and we also connect the literature in data
assimilation, ensemble forecasting, blind-source separation, and so forth to the
HM paradigm.

38.3 Decision-making in the presence of uncertainty

Let Ŷ (Z) be one of many decisions about Y based on Z. Some decisions are
better than others, which can be quantified through a (non-negative) loss func-
tion, L{Y, Ŷ (Z)}. The Bayes expected loss is E{L(Y, Ŷ )}, and we minimize
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this with respect to Ŷ . Then it is a consequence of decision theory (Berger,
1985) that the optimal decision is

Y ∗(Z) = arg inf
Ŷ

E{L(Y, Ŷ )|Z}, (38.7)

where for some generic function g, the notation E{g(Y )|Z} is used to represent
the conditional expectation of g(Y ) given Z.

Sometimes E{L(Y, Ŷ )|θ} is called the risk, but I shall call it the expected
loss; sometimes E{L(Y, Ŷ )} is called the Bayes risk, but see above where I have
called it the Bayes expected loss. In what follows, I shall reserve the word risk
to be synonymous with probability.

Now, if θ were known, only Y remains unknown, and HM involves just
(38.1)–(38.2). Then Bayes’ Theorem yields

[Y |Z, θ] = [Z|Y, θ]× [Y |θ]/[Z|θ]. (38.8)

In this circumstance, (38.8) is both the posterior distribution and the pre-
dictive distribution; because of the special role of Y , I prefer to call it the
predictive distribution. The analogue to (38.7) when θ is known is, straight-
forwardly,

Y ∗(Z) = arg inf
Ŷ

E{L(Y, Ŷ )|Z, θ}. (38.9)

Clearly, Y ∗(Z) in (38.9) also depends on θ.
Using the terminology of Cressie and Wikle (2011), an empirical hierar-

chical model (EHM) results if an estimate θ̂(Z), or θ̂ for short, is used in
place of θ in (38.8): Inference on Y is then based on the empirical predictive
distribution,

[Y |Z, θ̂] = [Z, Y, θ̂]× [Y |θ̂]/[Z|θ̂], (38.10)

which means that θ̂ is also used in place of θ in (38.9).
BHM inference from (38.5) and (38.6) is coherent in the sense that it em-

anates from the well defined joint-probability distribution (38.4). However,
the BHM requires specification of the prior [θ], and one often consumes large
computing resources to obtain (38.5) and (38.6). The EHM’s inference from
(38.10) can be much more computationally efficient, albeit with an empirical
predictive distribution that has smaller variability than the BHM’s predictive
distribution (Sengupta and Cressie, 2013). Bayes’ Theorem applied to BHM
or EHM for spatio-temporal data results in a typically very-high-dimensional
predictive distribution, given by (38.6) or (38.10), respectively, whose com-
putation requires dimension reduction and statistical-computing algorithms
such as EM (McLachlan and Krishnan, 2008), MCMC (Robert and Casella,
2004), and INLA (Rue et al., 2009). For additional information on dimension
reduction, see, e.g., Wikle and Cressie (1999), Wikle et al. (2001), Cressie and
Johannesson (2006), Banerjee et al. (2008), Cressie and Johannesson (2008),
Kang and Cressie (2011), Katzfuss and Cressie (2011), Lindgren et al. (2011),
and Nguyen et al. (2012).
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In the last 20 years, methodological research in Statistics has seen a shift
from mathematical statistics towards statistical computing. Deriving an ana-
lytical form for (38.6) or (38.10) is almost never possible, but being able to
sample realizations from them often is. This shift in emphasis has enormous
potential for EI.

For economy of exposition, I feature the BHM in the following discussion.
First, if I can sample from the posterior distribution, [Y, θ|Z], I can automat-
ically sample from the predictive distribution, [Y |Z], by simply ignoring the
θ’s in the posterior sample of (Y, θ). This is called a marginalization property
of sampling. Now suppose there is scientific interest in a summary g(Y ) of Y
(e.g., regional averages, or regional extremes). Then an equivariance property
of sampling implies that samples from [g(Y )|Z] are obtained by sampling from
[Y |Z] and simple evaluating each member of the sample at g. This equivari-
ance property is enormously powerful, even more so when the sampling does
not require knowledge of the normalizing term [Z] in (38.5). The best known
statistical computing algorithm that samples from the posterior and predictive
distributions is MCMC; see, e.g., Robert and Casella (2004).

Which summary of the predictive distribution [g(Y )|Z] will be used to
estimate the scientifically interesting quantity g(Y )? Too often, the posterior
mean,

E{g(Y )|Z} =

∫
g(Y )[Y |Z] dY,

is chosen as a “convenient” estimator of g(Y ). This is an optimal estimator
when the loss function is squared-error: L{g(Y ), ĝ} = {ĝ − g(Y )}2; see, e.g.,
Berger (1985). However, squared-error loss assumes equal consequences (i.e.,
loss) for under-estimation as for over-estimation. When a science or policy
question is about extreme events, the squared-error loss function is strikingly
inadequate, yet scientific inference based on the posterior mean is ubiquitous.

Even if squared-error loss were appropriate, it would be incorrect to com-
pute E(Y |Z) and produce g{E(Y |Z)} as an optimal estimate, unless g is a
linear functional of Y . However, this is also common in the scientific litera-
ture. Under squared-error loss, the optimal estimate is E{g(Y )|Z}, which is
defined above. Notice that aggregating over parts of Y defines a linear func-
tional g, but that taking extrema over parts of Y results in a highly non-linear
functional g. Consequently, the supremum/infimum of the optimal estimate
of Y (i.e., g{E(Y |Z)}) is a severe under-estimate/over-estimate of the supre-
mum/infimum of Y , i.e., g(Y ).

38.4 Smoothing the data

EI is fundamentally linked to environmental data and the questions that re-
sulted in their collection. Questions are asked of the scientific process Y , and
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the data Z paint an imperfect and incomplete picture of Y . Often, the first
tool that comes to a scientist’s hand is a “data smoother,” which here I shall
call f . Suppose one defines

Ỹ ≡ f(Z); (38.11)

notice that f “de-noises” (i.e., filters out highly variable components) and
“fills in” where there are missing data. The scientist might be tempted to
think of Ỹ as data coming directly from the process model, [Y |θ], and use
classical statistical likelihoods based on [Y = Ỹ |θ] to fit θ and hence the
model [Y |θ]. But this paradigm is fundamentally incorrect; science should
incorporate uncertainty using a different paradigm. Instead of (38.11), suppose
I write

Z̃ ≡ f(Z). (38.12)

While the difference between (38.11) and (38.12) seems simply notational,
conceptually it is huge.

The smoothed data Z̃ should be modelled according to [Z̃|Y, θ], and the
process Y can be incorporated into an HM through [Y |θ]. Scientific inference
then proceeds from [Y |Z̃] in a BHM according to (38.6) or from [Y |Z̃, θ̂] in an
EHM according to (38.10). The definition given by (38.12) concentrates our
attention on the role of data, processes, and parameters in an HM paradigm
and, as a consequence, it puts uncertainty quantification on firm inferential
foundations (Cressie and Wikle, 2011, Chapter 2).

Classical frequentist inference could also be implemented through a
marginal model (i.e., the likelihood),

[Z̃|θ] =
∫
[Z̃|Y, θ]× [Y |θ] dY,

although this fact is often forgotten when likelihoods are formulated. As a
consequence, these marginal models can be poorly formulated or unnecessar-
ily complicated when they do not recognize the role of Y in the probability
modelling.

38.5 EI for spatio-temporal data

This section of the chapter gives two examples from the environmental sciences
to demonstrate the power of the statistical-modelling approach to uncertainty
quantification in EI.

38.5.1 Satellite remote sensing

Satellite remote sensing instruments are remarkable in terms of their optical
precision and their ability to deliver measurements under extreme conditions.
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Once the satellite has reached orbit, the instrument must function in a near
vacuum with low-power requirements, sensing reflected light (in the case of a
passive sensor) through a highly variable atmospheric column.

The specific example I shall discuss here is that of remote sensing of at-
mospheric CO2, a greenhouse gas whose increase is having, and will have, a
large effect on climate change. The global carbon cycle describes where carbon
is stored and the movement of carbon between these reservoirs. The oceans
and vegetation/soil are examples of CO2 sinks, and fires and anthropogenic
emissions are examples of CO2 sources; of the approximately 8 Gt per year
that enters the atmosphere, about half is anthropogenic. About 4 Gt stays
in the atmosphere and the other 4 Gt is absorbed roughly equally by the
oceans and terrestrial processes. This global increase of approximately 4 Gt
of atmospheric CO2 per year is unsustainable in the long term.

It is of paramount importance to be able to characterize precisely where
and when sinks (and sources) occur. Because of a lack of globally exten-
sive, extremely precise, and very densely sampled CO2 data, these are largely
unknown. Once the spatial and temporal variability of the carbon cycle is
understood, regional climate projections can be made, and rational mitiga-
tion/adaptation policies can be implemented.

Although the atmosphere mixes rapidly (compared to the oceans), there
is a lot of spatial variability as a function of both surface location and (geo-
potential) height. There is also a lot of temporal variability at any given
location, as is clear from the US National Oceanic and Atmospheric Admin-
istration’s CO2 daily measurements from their Mauna Loa (Hawaii) observa-
tory. Hence, we define atmospheric CO2 as a spatio-temporal process, Y (s; t),
at spatial co-ordinates s and time t. Here, s consists of (lon, lat) = (x, y) and
geo-potential height h, that belongs to the spatial domain Ds, the extent of
the atmosphere around Earth; and t belongs to a temporal domain Dt (e.g.,
t might index days in a given month).

There are several remote sensing instruments that measure atmospheric
CO2 (e.g., NASA’s AIRS instrument and the Japanese space agency’s GOSAT
instrument); to improve sensitivity to near-surface CO2, NASA built the
OCO-2 instrument. (The original OCO satellite failed to reach orbit in 2009.)
It allows almost pinpoint spatial-locational accuracy (the instrument’s foot-
print is 1.1×2.25 km), resulting in high global data densities during any given
month. However, its small footprint results in quite a long repeat-cycle of 16
days, making it harder to capture daily temporal variability at high spatial
resolution. I am a member of NASA’s OCO-2 Science Team that is concerned
with all components of the data-information-knowledge pyramid referred to
below in Section 38.6.

The physics behind the CO2 retrieval requires measurements of CO2 in the
so-called strong CO2 and weak CO2 bands of the spectrum, and of O2 in the
oxygen A-band (Crisp et al., 2004). The result is a data vector of radiances
Z(x, y; t), where (x, y) = (lon, lat) is the spatial location on the geoid, Dg ≡
(−180◦,+180◦)× (−90◦,+90◦), of the atmospheric column from footprint to
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satellite; and t is the time interval (e.g., a day or a week) during which the
measurements (i.e., radiances) for that column were taken, where t ranges
over the period of interest Dt. This vector is several-thousand dimensional,
and there are potentially many thousands of such vectors per time interval.
Hence, datasets can be very large.

The data are “noisy” due to small imperfections in the instrument, ubiq-
uitous detector noise, and the presence of aerosols and clouds in the column.
After applying quality-control flags based on aerosol, cloud, albedo conditions,
some data are declared unreliable and hence “missing.” The ideal is to esti-
mate the (dry air mole fraction) CO2 amount, Y (x, y, h; t) in units of ppm, as
h varies down the atmospheric column centred at (x, y), at time t. When the
column is divided up into layers centred at geo-potential heights h1, . . . , hK ,
we may write

Y0(x, y; t) ≡ (Y (x, y, h1; t), . . . , Y (x, y, hK ; t))$, (38.13)

as the scientific process (i.e., state) of interest. The dimension of the state
vector (38.13) is 20 for OCO-2, although 40 or so additional state variables,
Y1(x, y; t), are incorporated into Y(x, y; t) ≡ (Y0(x, y; t)$,Y1(x, y; t)$)$,
from which the radiative-transfer relation can be modeled as

Z(x, y; t) = Fθ{Y(x, y; t)}+ ε(x, y; t). (38.14)

In (38.14), the functional form of Fθ is known (approximately) from the
physics, but typically it requires specification of parameters θ. If θ were
known, (38.14) is simply the data model, [Z(x, y; t)|Y, θ] on the right-hand
side of (38.4). The process model, [Y |θ], on the right-hand side of (38.4) is
the joint distribution of Y ≡ {Y(x, y; t) : (x, y) ∈ Dg, t ∈ Dt}, whose in-
dividual multivariate distributions are specified by OCO-2 ATB Document
(2010) to be multivariate Gaussian with mean vectors and covariance ma-
trices calculated from forecast fields produced by the European Centre for
Medium-Range Weather Forecasting (ECMWF). However, this specification
of the multivariate marginal distributions does not specify spatial dependen-
cies in the joint distribution, [Y |θ]. Furthermore, informed guesses are made
for the parameters in θ. The predictive distribution is given by (38.8), but this
is not computed; a summary is typically used (e.g., the predictive mode). For
more details, see Crisp et al. (2012) and O’Dell et al. (2012). Validation of
the estimated CO2 values is achieved through TCCON data from a globally
sparse but carefully calibrated network of land-based, upward-looking CO2

monitoring sites; see, e.g., Wunch et al. (2011).
Ubiquitously in the literature on remote sensing retrievals (Rodgers, 2000),

it is the predictive mode of [Y(x, y; t)|Z(x, y; t), θ] that is chosen as the optimal
estimator of Y(x, y; t). The subsequent error analysis in that literature is then
concerned with deriving the mean vector and the covariance matrix of this
estimator assuming that Fθ is a linear function of its state variables (Connor
et al., 2008). However, the atmosphere involves highly complex interactions,
and the radiative transfer function is known to be highly non-linear.
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FIGURE 38.1
Locations of six GOSAT soundings where retrievals of XCO2 were obtained
(between June 5, 2009 and July 26, 2009).

In Cressie and Wang (2013), we enhanced the linear approximation by
including the quadratic term of a second-order Taylor-series approximation,
and we calculated the non-linearity biases of retrievals of CO2 that were ob-
tained from data collected by the GOSAT satellite at the locations in Australia
shown in Figure 38.1. For the six retrievals (i.e., predictive modes), we cal-
culated the following biases of column-averaged CO2, or XCO2 (in units of
ppm): .86, 1.15, .19, 1.15,−.78, and 1.40. Biases of this order of magnitude are
considered to be important, and hence a systematic error analysis of remote
sensing retrievals should recognize the non-linearity in Fθ.

It is important to note here that the predictive distribution, [Y(x, y; t)|
Z(x, y; t), θ], is different from the predictive distribution, [Y(x, y; t)|Z, θ], and
I propose that it is the latter that we should use when computing the optimal
estimate of Y(x, y; t) from (38.9). This is based on the left-hand side of (38.8),
which represents the “gold standard” to which all approximations should be
compared. In practice, it would be difficult to obtain the predictive distri-
bution, [Y(x, y; t)|Z, θ], for every retrieval, so it makes sense to summarize
it with its first two moments. In future research, I shall compare the linear
approximations of Connor et al. (2008) to the quadratic approximations of
Cressie and Wang (2013) by comparing them to the gold standard.
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The mode should be considered to be just one possible summary of the
predictive distribution; its corresponding loss function is

L(Y, Ŷ ) =

{
0 if Y = Ŷ ,

1 if Y '= Ŷ ;

see, e.g., Berger (1985). I shall refer to this as the 0–1 loss function. That is,
should even one element of the approximately 60-dimensional estimated state
vector miss its target, a fixed loss is declared, no matter how close it is to the
missed target. And the same fixed loss is declared when all or some of the
elements miss their targets, by a little or a lot. From this decision-theoretic
point of view, the predictive mode looks to be an estimate that in this context
is difficult to justify.

The next phase of the analysis considers the dry air mole fraction (in
ppm) of CO2 averaged through the column from Earth’s surface to the satel-
lite, which recall is called XCO2. Let Y∗

0(x, y; t) denote the predictive mode
obtained from (38.8), which is the optimal estimate given by (38.9) with the
0-1 loss function. Then XCO2(x, y; t) is estimated by

X̂CO2(x, y; t) ≡ Y∗
0(x, y; t)

$w, (38.15)

where the weights w are given in OCO-2 ATB Document (2010). From this
point of view, X̂CO2(x, y; t) is the result of applying a smoother f to the
raw radiances Z(x, y; t). The set of “retrieval data” over the time period Dt

are {X̂CO2(xi, yi; ti) : i = 1, . . . , n} given by (38.15), which we saw from
(38.12) can be written as Z̃; and Y is the multivariate spatio-temporal field
{Y(x, y; t) : (x, y) ∈ Dg, t ∈ Dt}, where recall that Dg is the geoid and the
period of interest Dt might be a month, say.

The true column-averaged CO2 field over the globe is a function of Y , viz.

gV (Y ) ≡ {XCO2(x, y; t) : (x, y) ∈ Dg, t ∈ Dt} , (38.16)

where the subscript V signifies vertical averaging of Y through the column of
atmosphere from the satellite’s footprint on the Earth’s surface to the satel-
lite. Then applying the principles set out in the previous sections, we need to
construct spatio-temporal probability models for [Z̃|Y, θ] and [Y |θ], and either
a prior [θ] or an estimate θ̂ of θ. This will yield the predictive distribution of Y
and hence that of gV (Y ). Katzfuss and Cressie (2011, 2012) have implemented
both the EHM where θ is estimated and the BHM where θ has a prior dis-
tribution, to obtain respectively, the empirical predictive distribution and the
predictive distribution of gV (Y ) based on Z̃. The necessary computational effi-
ciency is achieved by dimension reduction using the Spatio-Temporal Random
Effects (STRE) model; see, e.g., Katzfuss and Cressie (2011). Animated global
maps of the predictive mean of gV (Y ) using both approaches, based on AIRS
CO2 column averages, are shown in the SSES Web-Project, “Global Mapping
of CO2” (see Figure 2 at www.stat.osu.edu/∼sses/collab co2.html). The
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regional and seasonal nature of CO2 becomes obvious by looking at these
maps. Uncertainty is quantified by the predictive standard deviations, and
their heterogeneity (due to different atmospheric conditions and different sam-
pling rates in different regions) is also apparent from the animated maps.

It is worth pointing out that the “smoothed” data, Z̃ ≡ {X̂CO2(xi, yi; ti) :
i = 1, . . . , n}, are different from the original radiances, Z ≡ {Z(xi, yi; ti) : i =
1, . . . , n}. Thus, [Y |Z̃, θ] is different from [Y |Z, θ]. Basing scientific inference
on the latter, which contains all the data, is to be preferred, but practical
considerations and tradition mean that the information-reduced, Z̃ = f(Z),
is used for problems such as flux estimation.

Since there is strong interest from the carbon-cycle-science community in
regional surface fluxes, horizontal averaging should be a more interpretable
summary of Y than vertical averaging. Let g1{Y(x, y; t)} denote the surface
CO2 concentration with units of mass/area. For example, this could be ob-
tained by extrapolating the near-surface CO2 information in Y0(x, y; t). Then
define

Y (x, y; t) ≡
∫

R(x,y)
g1{Y (u, v; t)} dudv

/∫

R(x,y)
dudv

and
gH(Y ) ≡ {Y (x, y; t) : (x, y) ∈ Dg, t ∈ Dt}, (38.17)

where the subscript H signifies horizontal averaging, and where R(x, y) is
a pre-specified spatial process of areal regions on the geoid that defines the
horizontal averaging. (It should be noted that R could also be made a function
of t, and indeed it probably should change with season.) For a pre-specified
time increment τ , define

∆(x, y; t) ≡ Y (x, y; t+ τ)− Y (x, y; t)

τ
,

with units of mass/(area× time). Then the flux field is

gF (Y ) ≡ {∆(x, y; t) : (x, y) ∈ Dg, t ∈ Dt}. (38.18)

At this juncture, it is critical that the vector of estimated CO2 in the col-
umn, namely, Y∗

0(xi, yi; ti), replaces X̂CO2(xi, yi; ti) to define the smoothed
data, Z̃. Then the data model [Z̃|Y, θ] changes, but critically the spatio-
temporal statistical model for [Y |θ] is the same as that used for vertical aver-
aging. Recall the equivariance property that if Y is sampled from the predic-
tive distribution (38.6) or (38.8), the corresponding samples from gH(Y ) and
gF (Y ) yield their corresponding predictive distributions. The HM paradigm
allows other data sources (e.g., in situ TCCON measurements, data from
other remote sensing instruments) to be incorporated into Z̃ seamlessly; see,
e.g., Nguyen et al. (2012).
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The choice of τ is at the granularity of Dt, and the choice of R depends on
the question being asked and the roughness of Earth’s surface relative to the
question. In a classical bias-variance trade-off, one wants R(x, y) to be large
enough for gF (x, y; t) to capture the dominant variability and small enough
that the flux in R(x, y) is homogeneous.

Carbon-cycle science has accounted for much of the dynamics of CO2,
but the carbon budget has consistently shown there to be a missing sink
(or sinks). The OCO-2 instrument, with its almost pinpoint accuracy and
high sensitivity near Earth’s surface, offers an unprecedented opportunity to
accurately estimate the sinks. From that point of view, the parts of Y that
are of interest are lower quantiles of gF (Y ), along with the (lon, lat)-regions
where those quantiles occur. In Section 38.6, I argue that these queries of the
process gF (Y ) can be formalized in terms of loss functions; Zhang et al. (2008)
give an illustration of this for decadal temperature changes over the Americas.

This different approach to flux estimation is centrally statistical, and it
is based on a spatio-temporal model for [Y |θ]. There is another approach,
one that bases [Y |θ] on an atmospheric transport model to incorporate the
physical movement of voxels in the atmosphere and, consequently, the physical
movement of CO2; see, e.g., Houweling et al. (2004), Chevallier et al. (2007),
Gourdji et al. (2008), and Lauvaux et al. (2012). Motivated by articles such
as Gourdji et al. (2008), I expect that the two approaches could be combined,
creating a physical-statistical model.

When [Y |θ] is different, the predictive distribution given by (38.8) is dif-
ferent, and clearly when L in (38.9) is different, the optimal estimate given
by (38.9) is different. This opens up a whole new way of thinking about flux
estimation and quantifying its uncertainty, which is something I am actively
pursuing as part of the OCO-2 Science Team.

38.5.2 Regional climate change projections

Climate is not weather, the latter being something that interests us on daily
basis. Generally speaking, climate is the empirical distribution of temperature,
rainfall, air pressure, and other quantities over long time scales (30 years, say).
The empirical mean (i.e., average) of the distribution is one possible summary,
often used for monitoring trends, although empirical quantiles and extrema
may often be more relevant summaries for natural-resource management. Re-
gional climate models (RCMs) at fine scales of resolution (20–50 km) produce
these empirical distributions over 30-year time periods and can allow decision-
makers to project what environmental conditions will be like 50–60 years in
the future.

Output from an RCM is obtained by discretizing a series of differential
equations, coding them efficiently, and running the programs on a fast com-
puter. From that point of view, an RCM is deterministic, and there is nothing
stochastic or uncertain about it. However, uncertainties in initial and bound-
ary conditions, in forcing parameters, and in the approximate physics asso-
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ciated with the spatial and temporal discretizations (Fennessy and Shukla,
2000; Xue et al., 2007; Evans and Westra, 2012), allow us to introduce a prob-
ability model for the output, from which we can address competing risks (i.e.,
probabilities) of different projected climate scenarios. The RCM output can
certainly be summarised statistically; in particular, it can be mapped. There is
a small literature on spatial statistical analyses of RCMs, particularly of out-
put from the North American Regional Climate Change Assessment Program
(NARCCAP), administered by NCAR in Boulder, Colorado; see Kaufman and
Sain (2010), Salazar et al. (2011), Kang et al. (2012), and Kang and Cressie
(2013). My work in this area has involved collaboration with NCAR scientists.

Kang and Cressie (2013) give a comprehensive statistical analysis of the
11,760 regions (50 × 50 km pixels) in North America, for projected average
temperature change, projected out to the 30-year-averaging period, 2041–70.
The technical features of our article are: it is fully Bayesian; data dimension is
reduced from the order of 100,000 down to the order of 100 through a Spatial
Random Effects, or SRE, model (Cressie and Johannesson, 2008); seasonal
variability is featured; and consensus climate-change projections are based on
more than one RCM. Suppose that the quantity of scientific interest, Y , is
temperature change in degrees Celsius by the year 2070, which is modeled
statistically as

Y (s) = µ(s) + S(s)$η + ξ(s), s ∈ North America (38.19)

where µ captures large-scale trends, and the other two terms on the right-
hand side of (38.19) are Gaussian processes that represent, respectively, small-
scale spatially dependent random effects and fine-scale spatially independent
variability. The basis functions in S include 80 multi-resolutional bisquare
functions and five indicator functions that capture physical features such as
elevation and proximity to water bodies. This defines [Y |θ].

Importantly, the 30-year-average temperature change obtained from the
NARCCAP output (i.e., the data, Z) is modeled as the sum of a spatial process
Y and a spatial error term that in fact captures spatio-temporal interaction,
viz.

Z(s) = Y (s) + ε(s), s ∈ North America (38.20)

where ε is a Gaussian white-noise process with a variance parameter σ2
ε . This

defines [Z|Y, θ]. The target for inference is the spatial climate-change process
Y , which is “hidden” behind the spatio-temporal “noisy” process Z. A prior
distribution, [θ], is put on θ, and (38.6) defines the predictive distribution.

Here, θ is made up of the vector of spatial-mean effects µ, cov(η), var(ξ),
and σ2

ε , and the prior [θ] is specified in the Appendix of Kang and Cressie
(2013). From (38.6), we can deduce the shaded zone of North America in Fig-
ure 38.2. There, with 97.5% probability calculated pixel-wise, any 50×50 km
pixel’s Y (s) that is above a 2◦C sustainability threshold is shaded. Here, Y and
θ together are over 100, 000 dimensional, but the computational algorithms
based on dimension reduction in the SRE model do not “break.”
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FIGURE 38.2
Regions of unsustainable (> 2◦C with predictive probability .975) temperature
increase obtained from pixel-wise predictive distributions, [Y (s)|Z], where s ∈
North America.

Since MCMC samples are taken from a (more than) 100,000-dimensional
posterior distribution, many such probability maps like Figure 38.2 can be
produced. For example, there is great interest in extreme temperature changes,
so let k denote a temperature-change threshold; define the spatial probability
field,

Pr(Y > k|Z), k ≥ 0. (38.21)

As k increases in (38.21), the regions of North America that are particularly
vulnerable to climate change stand out. Decision-makers can query the BHM
where, for NARCCAP, the query might involve the projected temperature
increase in the 50 × 50 km pixel containing Columbus, Ohio. Or, it might
involve the projected temperature increase over the largely agricultural Olen-
tangy River watershed (which contains Columbus). From (38.6), one can ob-
tain the probabilities (i.e., risks) of various projected climate-change scenarios,
which represent real knowledge when weighing up mitigation and adaptation
strategies at the regional scale.

This HM approach to uncertainty quantification opens up many possibili-
ties: Notice that the occurrence-or-not of the events referred to above can be
written as

1{Y (sC) > k} and 1

{∫

O
Y (s) ds

/∫

O
ds > k

}
,

where 1 is an indicator function, sC is the pixel containing Columbus, and O
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is the set of all pixels in the Olentangy River watershed. Then squared-error
loss implies that E[1{Y (sC) > k}|Z] = Pr{Y (sC) > k|Z} given by (38.21) is
optimal for estimating 1{Y (sC) > k}. Critically, other loss functions would
yield different optimal estimates, since (38.7) depends on the loss function
L. A policy-maker’s question translated into a loss function yields a tailored
answer to that question. Quite naturally in statistical decision theory, different
questions are treated differently and result in different answers.

More critically, the average (climate change over 30 years) Y can be re-
placed with an extreme quantile, say the .95 quantile, which I denote here as
g(.95)(Y ); this hidden process corresponds to temperature change that could
cause extreme stress to agricultural production in, for example, the Hunter
Valley, NSW, Australia. Such projections for farmers in the “stressed” regions
would be invaluable for planning crop varieties that are more conducive to
higher temperature/lower rainfall conditions. That is, I propose making in-
ference directly on extremal processes, and decisions should be made with
loss functions that are tailor-made to the typical “what if” queries made by
decision-makers.

Furthermore, output could have non-Gaussian distributions; for example,
quantiles of temperature or rainfall would be skewed, for which spatial gener-
alised linear models (Diggle et al., 1998; Sengupta and Cressie, 2013) would
be well suited: In this framework, (38.20) is replaced with the data model,

[Z(s) = z|Y, θ] = EF[z; E{Z(s)|Y (s), θ}], (38.22)

which are conditionally independent for pixels s ∈ North America. In (38.22),
EF denotes the one-parameter exponential family of probability distributions.
Now consider a link function ! that satisfies, ![E{Z(s)|Y (s), θ}] = Y (s); on this
transformed scale, climate change Y is modelled as the spatial process given
by (38.19). In Sengupta and Cressie (2013) and Sengupta et al. (2012), we
have developed spatial-statistical methodology for very large remote sensing
datasets based on (38.22), that could be adapted to RCM projections. That
methodology gives the predictive distribution, (38.10), which is summarised by
mapping the predictive means, the predictive standard deviations (a measure
of uncertainty), and the predictive extreme quantiles. Other data models could
also be used in place of (38.20), such as the extreme-value distributions.

Increases in temperature generally lead to decreases in water availability,
due to an increase in evaporation. By developing conditional-probability dis-
tributions of [Temperature] and [Rainfall | Temperature], we can infer the
joint behaviour of [Rainfall,Temperature]. This is in contrast to the bivariate
analysis in Sain et al. (2011), and it is a further example of the utility of a
conditional-probability modelling approach, here embedded in a multivariate
hierarchical statistical model.
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38.6 The knowledge pyramid

The knowledge pyramid has data at its base, information at its next tier,
knowledge at its third tier, and decision-making at its apex. In the presence of
uncertainty, I propose that EI have at its core the following steps: convert data
into information by exploring the data for structure; convert information into
knowledge by modeling the variability and inferring the etiology; and prepare
the knowledge for decision-makers by translating queries into loss functions.
These may not be the usual squared-error and 0–1 loss functions, which are
often chosen for convenience. They may be asymmetric and multivariable, to
reflect society’s interest in extreme environmental events. Associated with each
loss function (i.e., a query) is an optimal estimator (i.e., a wise answer) based
on minimising the predictive expected loss; see (38.7) where the predictive
risks (i.e., probabilities) and the loss interact to yield an optimal estimator.

The societal consequences of environmental change, mitigation, and adap-
tation will lead to modeling of complex, multivariate processes in the social
and environmental sciences. Difficult decisions by governments will involve
choices between various mitigation and adaptation scenarios, and these choices
can be made, based on the risks together with the losses that are built into
EI’s uncertainty quantification.

38.7 Conclusions

Environmental informatics has an important role to play in quantifying uncer-
tainty in the environmental sciences and giving policy-makers tools to make
societal decisions. It uses data on the world around us to answer questions
about how environmental processes interact and ultimately how they affect
Earth’s organisms (including Homo sapiens). As is the case for bioinformatics,
environmental informatics not only requires tools from statistics and math-
ematics, but also from computing and visualisation. Although uncertainty
in measurements and scientific theories mean that scientific conclusions are
uncertain, a hierarchical statistical modelling approach gives a probability
distribution on the set of all possibilities. Uncertainty is no reason for lack
of action: Competing actions can be compared through competing Bayes ex-
pected losses.

The knowledge pyramid is a useful concept that data analysis, HM, op-
timal estimation, and decision theory can make concrete. Some science and
policy questions are very complex, so I am advocating an HM framework to
capture the uncertainties and a series of queries (i.e., loss functions) about the
scientific process to determine an appropriate course of action. Thus, a major



N. Cressie 445

challenge is to develop rich classes of loss functions that result in wise answers
to important questions.
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A journey with statistical genetics

Elizabeth A. Thompson

Department of Statistics
University of Washington, Seattle, WA

With the work of R.A. Fisher and Sewall Wright, the early years of the de-
velopment of methods for analysis of genetic data were closely paralleled by
the broader development of methods for statistical inference. In many ways,
the parallel over the last 40 years is no less striking, with genetic and genomic
data providing an impetus for development of broad new areas of statistical
methodology. While molecular and computational technologies have changed
out of all recognition over the last 40 years, the basic questions remain the
same: Where are the genes? What do they do? How do they do it? These
questions continue to provide new challenges for statistical science.

39.1 Introduction

“Plus ça change, plus c’est la même chose.”
– Alphonse Karr (1849)

No doubt when things work out well, past events seem opportune, but
I never cease to marvel how incredibly lucky I was to enter the field of sta-
tistical genetics in 1970. Two foundational books on the theory (Crow and
Kimura, 1970) and application (Cavalli-Sforza and Bodmer, 1971) of popula-
tion genetics were newly published. Together with the new edition of Stern
(1973), these were the bibles of my early graduate-student years. While the
available data seem primitive by today’s standards, the extensive updates in
1976 of the earlier work of Mourant (1954) and colleagues provided a wider
view of the genetic variation among human populations than had been previ-
ously available. Computing power for academic research was also fast expand-
ing, with the new IBM 370 series in 1970, and virtual memory capabilities
soon after.
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TABLE 39.1
The changing study designs and data structures and relationship to developing
statistical approaches.

Date Data Design/Structure Statistical Approach
1970s pedigrees; evolutionary trees Latent variables and EM
1980s genetic maps HMM methods

linkage analysis Graphical models
1990s more complex traits Monte Carlo likelihood; MCMC

more complex pedigrees Complex stochastic systems
2000s large scale association mapping FDR, p3 n
2010s descent of genomes; IBD MC realization of latent structure

It is often commented, how, in an earlier era, genome science and statisti-
cal science developed in parallel. In 1922, Fisher started to develop likelihood
inference (Fisher, 1922a), while in the same year his first example of maximum
likelihood estimation was of estimating genetic recombination frequencies in
drosophila (Fisher, 1922b). His first use of the term variance was in developing
the theory of genetic correlations among relatives (Fisher, 1918), while anal-
ysis of variance was established in Fisher (1925). In parallel, Wright (1922)
was also developing the theory of the dependence structure of quantitative
genetic variation among related individuals, leading to the theory of path co-
efficients (Wright, 1921) and structural equation modeling (Pearl, 2000). The
changes in genetics and genomics, statistical science, and both molecular and
computational technologies over the last 40 years (1970–2010) are arguably
many times greater than over the preceding 40 (1930–1970), but the same
complementary developments of statistics and genetics are as clear as those
of Fisher and Wright; see Table 39.1. Moreover the basic scientific questions
remain the same: Where are the genes? What do they do? How do they do it?

39.2 The 1970s: Likelihood inference and the
EM algorithm

The basic models of genetics are fundamentally parametric. The dependence
structure of data on a pedigree dates to Elston and Stewart (1971) and is
shown in Figure 39.1(a). First, population-level parameters provide the prob-
abilities of genotypes G(F ) of founder members, across a small set of marker
(M) or trait (T ) loci. Parameters of the process of transmission of DNA from
parents to offspring then determine the probabilities of the genotypes (G)
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FIGURE 39.1
The two orthogonal conditional independence structures of genetic data on re-
lated individuals. (a) Left: The conditional independence of haplotypes among
individuals. (b) Right: The conditional independence of inheritance among
genetic loci. Figures from Thompson (2011), reproduced with permission of
S. Karger AG, Basel.

of descendant individuals. Finally, penetrance parameters specify the proba-
bilistic relationship between these genotypes and observable genetic data (Y )
on individuals, again at each trait (T ) or marker (M) locus. These pene-
trance models can incorporate typing error in marker genotypes, as well as
more complex relationships between phenotype and genotype. The structured
parametric models of statistical genetics lead naturally to likelihood inference
(Edwards, 1972), and it is no accident that from Fisher (1922b) onwards, a
major focus has been the computation of likelihoods and of maximum likeli-
hood estimators.

Methods for the computation of likelihoods on pedigree structures make
use of the conditional independence structure of genetic data. Under the laws
of Mendelian genetics, conditional on the genotypes of parents, the genotypes
of offspring are independent of each other, and of those of any ancestral and
lateral relatives of the parents. Data on individuals depends only on their geno-
types; see Figure 39.1(a). Methods for computation of probabilities of observed
data on more general graphical structures are now widely known (Lauritzen
and Spiegelhalter, 1988), but these methods were already standard in pedigree
analysis in the 1970s. In fact the first use of this conditional independence in
computing probabilities of observed data on three-generation pedigrees dates
to Haldane and Smith (1947), while the Elston–Stewart algorithm (Elston and
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Stewart, 1971) provided a general approach for simple pedigrees. Extension
of this approach to complex pedigree structures (Cannings et al., 1978) and
to more general trait models (Cannings et al., 1980) was a major advance in
statistical genetics of the 1970s, enabling inference of gene ancestry in human
populations (Thompson, 1978), the computation of risk probabilities in the
complex pedigrees of genetic isolates (Thompson, 1981) and the analysis of
gene extinction in the pedigrees of endangered species (Thompson, 1983).

Statistical genetics is fundamentally a latent variable problem. The under-
lying processes of descent of DNA cannot be directly observed. The observed
data on individuals result from the types of the DNA they carry at certain
genome locations, but these locations are often unknown. In 1977, the EM
algorithm (Dempster et al., 1977) was born. In particular cases it had existed
much earlier, in the gene-counting methods of Ceppelini et al. (1955), in the
variance component methods of quantitative genetics (Patterson and Thomp-
son, 1971) and in the reconstruction of human evolutionary trees (Thompson,
1975), but the EM algorithm provided a framework unifying these examples,
and suggesting approaches to maximum likelihood estimation across a broad
range of statistical genetics models.

39.3 The 1980s: Genetic maps and hidden Markov
models

The statistical methodology of human genetic linkage analysis dates back to
the 1930s work of J.B.S. Haldane (1934) and R.A. Fisher (1934), and the like-
lihood framework for inferring and estimating linkage from human family data
was established in the 1950s by work of C.A.B. Smith (1953) and N.E. Morton
(1955). However, genetic linkage findings were limited: there were no genetic
marker maps.

That suddenly changed in 1980 (Botstein et al., 1980), with the arrival
of the first DNA markers, the restriction fragment polymorphisms or RFLPs.
For the first time, there was the vision we now take for granted, of genetic
markers available at will throughout the genome, providing the framework
against which traits could be mapped. This raised new statistical questions in
the measurement of linkage information (Thompson et al., 1978). The devel-
opment of DNA markers progressed from RFLP to (briefly) multilocus vari-
able number of tandem repeat or VNTR loci used primarily for relationship
inference (Jeffreys et al., 1991; Geyer et al., 1993) and then to STR (short
tandem repeat or microsatellite) loci (Murray et al., 1994); see Table 39.2.
These DNA markers, mapped across the genome, brought a whole new frame-
work of conditional independence to the computation of linkage likelihoods
(Lander and Green, 1987; Abecasis et al., 2002). Rather than the conditional
independence in the transmission of DNA from parents to offspring, the rel-
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TABLE 39.2
The changing pattern of genetic data (1970–2010).

Date Marker Type Data Structure Trait Type
1970 Blood types Nuclear families Mendelian
1980 RFLPs Large pedigrees Simple traits
1990 STRs Small pedigrees Quantitative traits

(Microsatellites)
2000 SNPs and Case/Control Complex traits

mRNA expression data (“unrelated”)
2010 RNAseq and Relatives in Complex

Sequence data populations quantitative traits

evant structure became the Markov dependence of inheritance (S) of DNA
at successive marker (M) or hypthesized trait (T) locations across a chromo-
some, as shown in Figure 39.1(b). As before the population model provides
probabilities of the allelic types (A) of founders (F ), at trait (T ) or marker
(M) loci. At a locus, the observable data (Y ) is determined by the founder
allelic types (A) and the inheritance (S) at that locus, possibly through a
penetrance model in the case of trait loci.

39.4 The 1990s: MCMC and complex stochastic systems

The earlier methods (Figure 39.1(a)) are computationally exponential in the
number of genetic loci analyzed jointly, the hidden Markov model (HMM)
methods (Figure 39.1(b)) are exponential in the number of meioses in a pedi-
gree. Neither could address large numbers of loci, observed on large numbers
of related individuals. However, the same conditional independence structures
that make possible the computation of linkage likelihoods for few markers or
for small pedigrees, lend themselves to Markov chain Monte Carlo (MCMC).
Genetic examples, as well as other scientific areas, gave impetus to the huge
burst of MCMC in the early 1990s. However, unlike other areas, where MCMC
was seen as a tool for Bayesian computation (Gelfand and Smith, 1990; Be-
sag and Green, 1993) in statistical genetics the focus on likelihood inference
led rather to Monte Carlo likelihood (Penttinen, 1984; Geyer and Thompson,
1992).

The discreteness and the constraints of genetic models provided chal-
lenges for MCMC algorithms. Earlier methods (Lange and Sobel, 1991) used
the genotypes of individuals as latent variables (Figure 39.1(a)) and encoun-
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FIGURE 39.2
Imputation and specification of inheritance of DNA. (a) Left: The MCMC
structure of meiosis and linkage (Thompson, 2000). (b) Right: The IBD graph
specifying DNA shared by descent among observed individuals (Thompson,
2003).

tered problems of non-irreducibility of samplers (Sheehan and Thomas, 1993)
and other mixing problems (Lin et al., 1993). Significant improvements were
obtained by instead using the inheritance patterns of Figure 39.1(b) as la-
tent variables (Thompson, 1994). The a priori independence of meioses, the
Markov dependence of inheritance at successive loci, and the dependence of
observable data on the inheritance pattern at a locus (Figure 39.2(a)) lead
to a variety of block-Gibbs samplers of increasing computational efficiency
(Heath, 1997; Thompson and Heath, 1999; Tong and Thompson, 2008).

An additional aspect of these later developments is the change from use of
the conditional independence structure of a pedigree to that of an IBD-graph
(Figure 39.2(b)). This graph specifies the individuals who share genome iden-
tical by descent (IBD) at a locus; that is, DNA that has descended to current
individuals from a single copy of the DNA in a recent common ancestor. The
observed trait phenotypes of individuals are represented by the edges of the
IBD graph. The nodes of the graph represent the DNA carried by these indi-
viduals; the DNA types of the nodes are independent. Each individual’s edge
joins the two DNA nodes which he/she caries at the locus, and his/her trait
phenotype is determined probabilistically by the latent allelic types of these
two nodes. In the example shown in Figure 39.2(b), individuals D, G, and F
all share IBD DNA at this locus, as represented by the node labeled 4. Also,
individuals B and J share both their DNA nodes, while C carries two copies of
a single node. Computation of probabilities of observed data on a graph such
as that of Figure 39.2(b) is described by Thompson (2003). This approach
gives a much closer parallel to graphical models in other areas of statistical
science; see, e.g., Lauritzen (1996) and Pearl (2000).
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39.5 The 2000s: Association studies and gene expression

STR markers are highly variable, but expensive to type, and occur relatively
sparsely in the genome. The advent of single nucleotide polymorphism (SNP)
markers in essentially unlimited numbers (International HapMap Consortium,
2005) brought a new dimension and new issues to the genetic mapping of com-
plex traits. Genome-wide association studies (GWAS) became highly popular
due to their expected ability to locate causal genes without the need for pedi-
gree data. However, early GWAS were underpowered. Only with large-scale
studies (Wellcome Trust, 2007) and better methods to control for population
structure and heterogeneity (Price et al., 2006) did association methods start
to have success. Modern GWAS typically consider a few thousand individu-
als, each typed for up to one million SNPs. New molecular technologies also
provided new measures of gene expression variation based on the abundance
of mRNA transcripts (Schena et al., 1995). Again the statistical question is
one of association of a trait or sample phenotype with the expression of some
small subset of many thousands of genes.

The need to make valid statistical inferences from both GWAS and from
gene expression studies prompted the development of new general statistical
approaches. Intrinsic to these problems is that the truth may violate the null
hypothesis in many (albeit a small fraction) of the tests of significance made.
This leads to a focus on false discovery rates rather than p-values (Storey,
2002, 2003). Both GWAS and gene expression studies also exhibit the mod-
ern phenomenon of high-dimensional data (p 3 n) or very large numbers of
observations on relatively few subjects (Cai and Shen, 2010), giving scope for
new methods for dimension reduction and inducing sparsity (Tibshirani et al.,
2005).

Genomic technologies continue to develop, with cDNA sequence data re-
placing SNPs (Mardis, 2008) and RNAseq data (Shendure, 2008) replacing
the more traditional microarray expression data. Both raise new statistical
challenges. The opportunities for new statistical modeling and inference are
immense:

“... next-generation [sequencing] platforms are helping to open entirely
new areas of biological inquiry, including the investigation of ancient
genomes, the characterization of ecological diversity, and the identifi-
cation of unknown etiologic agents.” (Mardis, 2008)

But so also are the challenges:

“Although these new [RNAseq] technologies may improve the quality
of transcriptome profiling, we will continue to face what has probably
been the larger challenge with microarrays — how best to generate
biologically meaningful interpretations of complex datasets that are
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sufficiently interesting to drive follow-up experimentation.” (Shendure,
2008)

39.6 The 2010s: From association to relatedness

For several reasons there is a move back from population studies to a consider-
ation of related individuals. As the sizes of case-control GWAS grow, problems
of population structure increase (Price et al., 2006). Further, these samples of-
ten contain related individuals. Closely related individuals may be discarded,
but large numbers of distant relatives also impact results. In addition to other
heterogeneity between cases and controls, the relationship structure of the
case sample may differ from that of the controls. Secondly, GWAS are predi-
cated on the “common disease, common variant” model, but there is growing
recognition of the role of rare variants in many diseases (Cohen et al., 2004).
There are many different mutations that can affect the function of any given
gene, and many different genes that function jointly in gene networks. While
association tests for rare variant effects in GWAS designs have been developed
(Madsen and Browning, 2009), the use of inferred shared descent can provide
a more powerful approach (Browning and Thompson, 2012).

Not only does using family information in conjunction with association
testing provide more power (Thornton and McPeek, 2007, 2010), but, using
modern SNP data, genome shared IBD (Section 39.4) can be detected among
individuals not known to be related (Brown et al., 2012; Browning and Brown-
ing, 2012). Once IBD in a given region of the genome is inferred from genetic
marker data, whether using a known pedigree or from population data, its
source is irrelevant. The IBD graph (Figure 39.2(b)) summarizes all the rel-
evant information for the analysis of trait data on the observed individuals.
The use of inferred IBD, or more generally estimated relatedness (Lee et al.,
2011), is becoming the approach of choice in many areas of genetic analysis.

39.7 To the future

Computational and molecular technologies change ever faster, and the relevant
probability models and statistical methodologies will likewise change. For the
researchers of the future, more important than any specific knowledge is the
approach to research. As has been said by statistical philosopher Ian Hacking:

“Statisticians change the world not by new methods and techniques
but by ways of thinking and reasoning under uncertainty.”
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I have given many lectures in diverse academic settings, and received many
generous and kind introductions, but one which I treasure was given at a recent
seminar visit to a Department of Statistics. I was introduced by one of my
former PhD students, who said that I had taught him three things:

Think science: Think positive: Think why.

Think science: For me, the scientific questions motivate the statistical think-
ing. Although, as a student taking exams, I did better with the clearly defined
world of mathematical proofs than with the uncertainties of statistical think-
ing, I could never have become a research mathematician. Answering exam
questions was easy; knowing what questions to ask was for me impossible. For-
tunately, genetic science came to my rescue: there the questions are endless
and fascinating.

Think positive: Another of my former students has said that he got through
his (excellent) PhD work, because whenever he came to me in despair that
his results were not working out, my response was always “But that’s really
interesting”. Indeed, many things in research do not work out the way we
expect, and often we learn far more from what does not work than from what
does.

Think why: And when it does not work (or even when it does) the first and
most important question is “Why?” (Thompson, 2004). If there is anything
that distinguishes the human species from other organisms it is not directly
in our DNA, but in our capacity to ask “Why?”. In research, at least, this is
the all-important question.

Think science: Think positive: Think why.

If my students have learned this from me, this is far more important to their
futures and to their students’ futures than any technical knowledge I could
have provided.
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Targeted learning: From MLE to TMLE

Mark van der Laan
Division of Biostatistics, School of Public Health
University of California, Berkeley, CA

In this chapter I describe some of the essential elements of my past scien-
tific journey from the study of nonparametric maximum likelihood estimation
(NPMLE) to the field targeted learning and the resulting new general tool
targeted minimum loss based estimation (TMLE). In addition, I discuss our
current and future research program involving the further development of tar-
geted learning to deal with dependent data. This journey involved mastering
difficult statistical concepts and ideas, and combining them into an evolving
roadmap for targeted learning from data under realistic model assumptions.
I hope to convey the message that this is a highly inspiring evolving unifying
and interdisciplinary project that needs input for many future generations to
come, and one that promises to deal with the current and future challenges
of statistical inference with respect to a well-defined typically complex tar-
geted estimand based on extremely highly dimensional data structures per
unit, complex dependencies between the units, and very large sample sizes.

40.1 Introduction

Statistical practice has been dominated by the application of statistical meth-
ods relying on parametric model assumptions such as linear, logistic, and Cox
proportional hazards regression methodology. Most of these methods use max-
imum likelihood estimation, but others rely on estimating equations such as
generalized estimating equations (GEE). These maximum likelihood estima-
tors are known to be asymptotically Normally distributed, and asymptotically
efficient under weak regularity conditions, beyond the key condition that the
true data generating distribution satisfies the restrictions assumed by these
parametric models.

When I started my PhD in 1990, my advisor Richard Gill inspired me
to work on maximum likelihood estimation and estimating equation meth-
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ods for nonparametric or semi-parametric statistical models, with a focus on
models for censored data (van der Laan, 1996). Specifically, I worked on the
construction of a semi-parametric efficient estimator of the bivariate survival
function based on bivariate right-censored failure time data, generalizing the
Kaplan–Meier estimator of a univariate survival function. At that time the
book by Bickel et al. (1997) on semi-parametric models was about to appear
and earlier versions were circulating. There was an enormous interest among
the theoreticians, and I had the fortune to learn from various inspiring intel-
lectual leaders such as Richard Gill, Aad van der Vaart, Sara van de Geer,
Peter Bickel, Jon Wellner, Richard Dudley, David Pollard, James Robins, and
many more.

In order to deal with the challenges of these semi-parametric models I had
to learn about efficiency theory for semi-parametric models, relying on a so
called least favorable parametric submodel for which estimation of the desired
finite dimensional estimand is as hard as it is in the actual infinite-dimensional
semi-parametric model. I also had to compute projections in Hilbert spaces
to calculate efficient influence curves and corresponding least favorable sub-
models. Richard Gill taught me how to represent an estimator as a functional
applied to the empirical distribution of the data, and how to establish func-
tional differentiability of these estimator-functionals. I was taught about the
functional delta-method which translates a) the convergence in distribution
of the plugged in empirical process, and b) the functional differentiability of
the estimator into the convergence in distribution of the standardized esti-
mator to a Gaussian process; see, e.g., Gill et al. (1995). I learned how to
compute the influence curve of a given estimator and that it is the object
that identifies the asymptotic Gaussian process of the standardized estima-
tors. In addition, Aad van der Vaart taught me about weak convergence of
empirical processes indexed by a class of functions, and Donsker classes de-
fined by entropy integral conditions (van der Vaart and Wellner, 1996), while
Richard Gill taught me about models for the intensity of counting processes
and continuous time martingales (Andersen et al., 1993). Right after my PhD
thesis Jamie Robins taught me over the years a variety of clever methods for
calculating efficient influence curves in complex statistical models for com-
plex longitudinal data structures, general estimating equation methodology
for semi-parametric models, and I learned about causal inference for multi-
ple time-point interventions (Robins and Rotnitzky, 1992; van der Laan and
Robins, 2003).

At that time, I did not know about a large statistical community that
would have a hard time accepting the formulation of the statistical estima-
tion problem in terms of a true statistical semi-parametric model, and an
estimand/target parameter as a functional from this statistical model to the
parameter space, as the way forward, but instead used quotes such as “All
models are wrong, but some are useful” to justify the application of wrong
parametric models for analyzing data. By going this route, this community
does not only accept seriously biased methods for analyzing data in which
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confidence intervals and p-values have no real meaning, but it also obstructs
progress by not formulating the true statistical challenge that needs to be
addressed to solve the actual estimation problem. In particular, due to this
resistance, we still see that most graduate students in biostatistics and statis-
tics programs do not know much about the above mentioned topics, such as
efficiency theory, influence curves, and efficient influence curves. I would not
have predicted at that time that I would be able to inspire new generations
with the very topics I learned in the 1990s.

Throughout my career, my only goal has been to advance my understand-
ing of how to formulate and address the actual estimation problems in a large
variety of real world applications, often stumbling on the need for new theo-
retical and methodological advances. This has been my journey that started
with my PhD thesis and is a product of being part of such a rich community
of scientists and young dynamic researchers that care about truth and stand
for progress. I try and hope to inspire next generations to walk such journeys,
each person in their own individual manner fully utilizing their individual
talents and skills, since it is a path which gives much joy and growth, and
thereby satisfaction.

In the following sections, I will try to describe my highlights of this scien-
tific journey, resulting in a formulation of the field targeted learning (van der
Laan and Rose, 2012), and an evolving roadmap for targeted learning (Pearl,
2009; Petersen and van der Laan, 2012; van der Laan and Rose, 2012) dealing
with past, current and future challenges that require the input for many gen-
erations to come. To do this in a reasonably effective way we start out with
providing some succinct definitions of key statistical concepts such as statis-
tical model, model, target quantity, statistical target parameter, and asymp-
totic linearity of estimators. Subsequently, we will delve into the construction
of finite sample robust, asymptotically efficient substitution estimators in re-
alistic semi-parametric models for experiments that generate complex high
dimensional data structures that are representative of the current flood of in-
formation generated by our society. These estimators of specified estimands
utilize the state of the art in machine learning and data adaptive estimation,
while preserving statistical inference. We refer to the field that is concerned
with construction of such targeted estimators and corresponding statistical
inference as targeted learning.

40.2 The statistical estimation problem

40.2.1 Statistical model

The statistical model encodes known restrictions on the probability distribu-
tion of the data, and thus represents a set of statistical assumptions. Let’s
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denote the observed random variable on a unit with O and let P0 be the prob-
ability distribution of O. In addition, let’s assume that the observed data is a
realization of n independent and identically distributed copies O1, . . . , On of
O ∼ P0. Formally, a statistical model is the collection of possible probability
distributions of O, and we denote this set with M.

Contrary to most current practice, a statistical model should contain the
true P0, so that the resulting estimation problem is a correct formulation,
and not a biased approximation of the true estimation problem. The famous
quote that all statistical models are wrong represents a false statement, since
it is not hard to formulate truthful statistical models that only incorporate
true knowledge, such as the nonparametric statistical model that makes no
assumptions at all. Of course, we already made the key statistical assump-
tion that the n random variables O1, . . . , On are independent and identically
distributed, and, that assumption itself might need to be weakened to a statis-
tical model for (O1, . . . , On) ∼ Pn

0 that contains the true distribution Pn
0 . For

a historical and philosophical perspective on “models, inference, and truth,”
we refer to Starmans (2012).

40.2.2 The model encoding both statistical and non-testable
assumptions

A statistical model could be represented as M = {Pθ : θ ∈ Θ} for some map-
ping θ .→ Pθ defined on an infinite-dimensional parameter space Θ. We refer
to this mapping θ .→ Pθ as a model, and it implies the statistical model for the
true data distribution P0 = Pθ0 . There will always exist many models that are
compatible with a particular statistical model. It is important to note that the
statistical model is the only relevant information for the statistical estimation
problem. Examples of models are censored data and causal inference models
in which case the observed data structure O = Φ(C,X) is represented as a
many to one mapping Φ from the full-data X and censoring variable C to
O, in which case the observed data distribution is indexed by the full-data
distribution PX and censoring mechanism PC|X . So in this case Θ represents
the set of possible (PX , PC|X), and Pθ is the distribution of Φ(C,X) implied
by the distribution θ of (C,X). Different models for (PX , PC|X) might im-
ply the same statistical model for the data distribution of O. We note that
a model encodes assumptions beyond the statistical model, and we refer to
these additional assumptions as non-testable assumptions since they put no
restrictions on the distribution of the data. Assumptions such as O = Φ(C,X),
and the coarsening or missing at random assumption on the conditional dis-
tribution PC|X are examples of non-testable assumptions that do not affect
the statistical model.
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40.2.3 Target quantity of interest, and its identifiability from
observed data distribution

The importance of constructing a model is that it allows us to define interest-
ing target quantities ΨF (θ) for a given mapping ΨF : Θ→ IRd that represent
the scientific question of interest that we would like to learn from our data
O1, . . . , On. Given such a definition of target parameterΨF : Θ→ IRd one likes
to establish that there exists a mapping Ψ : M→ IRd so that ΨF (θ) = Ψ(Pθ).
If such a mapping Ψ exists we state that the target quantity ΨF (θ) is iden-
tifiable from the observed data distribution. This is often only possible by
making additional non-testable restrictions on θ in the sense that one is only
able to write ΨF (θ) = Ψ(Pθ) for θ ∈ Θ∗ ⊂ Θ.

40.2.4 Statistical target parameter/estimand, and the
corresponding statistical estimation problem

This identifiability result defines a statistical target parameter Ψ : M →
IRd. The goal is to estimate ψ0 = Ψ(P0) based on n i.i.d. observations on
O ∼ P0 ∈ M. The estimand ψ0 can be interpreted as the target quantity
ΨF (θ0) if both the non-testable and the statistical model assumptions hold.
Nonetheless, due to the statistical model containing the true data distribution
P0, ψ0 always has a pure statistical interpretation as the feature Ψ(P0) of the
data distribution P0. A related additional goal is to obtain a confidence interval
for ψ0. A sensitivity analysis can be used to provide statistical inference for the
underlying target quantity ψF

0 under a variety of violations of the assumptions
that were needed to state that ψF

0 = ψ0, as we will discuss shortly below.

40.3 The curse of dimensionality for the MLE

40.3.1 Asymptotically linear estimators and influence curves

An estimator is a Euclidean valued mapping Ψ̂ on a statistical model that
contains all empirical probability distributions. Therefore, one might repre-
sent an estimator as a mapping Ψ̂ : MNP → IRd from the nonparametric
statistical model MNP into the parameter space. In order to allow for statis-
tical inference, one is particularly interested in estimators that behave in first
order as an empirical mean of i.i.d. random variables so that it is asymptot-
ically Normally distributed. An estimator Ψ̂ is asymptotically linear at data
distribution P0 with influence curve D0 if

Ψ̂(Pn)− ψ0 =
1

n

n∑

i=1

D0(Oi) + oP (1/
√
n).
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Such an estimator is asymptotically Normally distributed in the sense that√
n (ψn − ψ0) converges in distribution to N (0,σ2), where σ2 is the variance

of D0(O).

40.3.2 Efficient influence curve

Efficiency theory teaches us that an estimator is efficient if and only if it is
asymptotically linear with influence curve D∗

0 equal to the canonical gradient
of the pathwise derivative of Ψ : M → IRd. This canonical gradient is also
called the efficient influence curve. Due to this fundamental property, the
efficient influence curve is one of the most important objects in statistics.
There are general representation theorems and corresponding methods for
calculation of efficient influence curves based on Hilbert space projections; see
Bickel et al. (1997) and van der Laan and Robins (2003). Indeed, the efficient
influence curve forms a crucial ingredient in any methodology for construction
of efficient estimators.

40.3.3 Substitution estimators

Efficient estimators fully utilize the local constraints at P0 in the model, but
they provide no guarantee of full utilization of the fact that P0 ∈M and that
ψ0 = Ψ(P0) for some P0 ∈ M. The latter global information of the estima-
tion problem is captured by making sure that the estimator is a substitution
estimator that can be represented as Ψ̂(Pn) = Ψ(P ∗

n) for some P ∗
n ∈ M.

Alternatively, if Ψ(P ) only depends on P through an (infinite-dimensional)
parameter Q(P ), and we denote the target parameter with Ψ(Q) again, then
a substitution estimator can be represented as Ψ(Qn) for a Qn in the parame-
ter space {Q(P ) : P ∈M}. Efficient estimators based on estimating equation
methodology (van der Laan and Robins, 2003) provide no guarantee of ob-
taining substitution estimators, and are thereby not as finite sample robust
as efficient substitution estimators we discuss here.

40.3.4 MLE and curse of dimensionality

Maximum likelihood estimators are examples of substitution estimators. Un-
fortunately, due to the curse of dimensionality of infinite-dimensional statis-
tical models, the MLE is often ill defined. For example, consider the MLE
for the bivariate failure time distribution based on bivariate right-censored
failure time data. In this case, an MLE can be implicitly defined (through
the so called self-consistency equation) as an estimator that assigns mass 1/n
to each observation and redistributes this mass over the coarsening for the
bivariate failure time implied by this observation according to the MLE it-
self. In this case, the coarsenings are singletons for the doubly uncensored
observations (i.e., both failure times are observed), half-lines for the singly-
censored observations (i.e., one failure time is censored), and quadrants for
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the doubly censored observations. For continuously distributed failure times,
all the half-lines contain zero uncensored bivariate failure times, and as a
consequence the likelihood does essentially provide no information about how
these masses 1/n should be distributed over the half-lines. That is the MLE
is highly non-unique, and thereby also inconsistent.

Similarly, consider the estimation of Ψ(P0) = E0E0(Y |A = 1,W ) based on
n i.i.d. observations on (W,A, Y ) ∼ P0, and suppose the statistical model is
the nonparametric model. The MLE of E0(Y |A = 1,W = w) is the empirical
mean of the outcome among the observations with Ai = 1,Wi = w, while
the MLE of the distribution of W is the empirical distribution of W1, . . . ,Wn.
This estimator is ill-defined since most-strata will have no observations.

40.3.5 Regularizing MLE through smoothing

In order to salvage the MLE the literature suggests to regularize the MLE
in some manner. This often involves either smoothing or sieve-based MLE
where the fine-tuning parameters need to be selected based on some empirical
criterion. For example, in our bivariate survival function example, we could
put strips around the half-lines of the single censored observations, and com-
pute the MLE as if the half-lines implied by the single censored observations
are now these strips. Under this additional level of coarsening, the MLE is
now uniquely defined as long as the strips contain at least one uncensored
observation. In addition, if one makes sure that the number of observations in
the strips converge to infinity as sample size increases, and the width of the
strips converges to zero, then the MLE will also be consistent. Unfortunately,
there is still a bias/variance trade-off that needs to be resolved in order to ar-
range that the MLE of the bivariate survival function is asymptotically linear.
Specifically, we need to make sure that the width of the strips converges fast
enough to zero so that the bias of the MLE with respect to the conditional
densities over the half-lines is o(1/

√
n). This would mean that the width of

the strips is o(1/
√
n). For an extensive discussion of this estimation problem,

and alternative smoothing approach to repair the NPMLE we refer to van der
Laan (1996).

Similarly, we could estimate the regression function E0(Y |A = 1,W ) with
a histogram regression method. If the dimension of W is k-dimensional, then
for the sake of arranging that the bin contains at least one observation, one
needs to select a very large width so that the k-dimensional cube with width
h contains one observation with high probability. That is, we will need to
select h so that nhk → ∞. This binning causes bias O(h) for the MLE of
EE(Y |A = 1,W ). As a consequence, we will need that n−1/k converges to
zero faster than n−1/2, which only holds when k = 1. In other words, there is
no value of the smoothing parameter that results in a regularized MLE that
is asymptotically linear.

Even though there is no histogram-regularization possible, there might ex-
ist other ways of regularizing the MLE. The statistics and machine learning
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literature provides many possible approaches to construct estimators of the
required objects Q0, and thereby ψ0 = Ψ(Q0). One strategy would be to de-
fine a large class of submodels that contains a sequence of submodels that
approximates the complete statistical model (a so called sieve), and construct
for each submodel an estimator that achieves the minimax rate under the
assumption that Q0 is an element of this submodel. One can now use a data
adaptive selector to select among all these submodel-specific candidate esti-
mators. This general strategy, which is often referred to as sieve-based MLE,
results in a minimax adaptive estimator of Q0, i.e., the estimator converges
at the minimax rate of the smallest submodel (measured by entropy) that
still contains the true Q0. Such an estimator is called minimax adaptive. We
refer to van der Laan and Dudoit (2003) and van der Laan et al. (2006) for
such general minimum loss-based estimators relying on cross-validation to se-
lect the subspace. This same strategy can be employed with kernel regression
estimators that are indexed by the degree of orthogonality of the kernel and
a bandwidth, and one can use a data-adaptive selector to select this kernel
and bandwidth. In this manner the resulting data adaptive kernel regression
estimator will achieve the minimax rate of convergence corresponding with
the unknown underlying smoothness of the true regression function.

40.3.6 Cross-validation

Cross-validation is a particularly powerful tool to select among candidate es-
timators. In this case, one defines a criterion that measures the performance
of a given fit of Q0 on a particular sub-sample: typically, this is defined as an
empirical mean of a loss function that maps the fit Q and observation Oi into
a real number and is such that the minimizer of the expectation of the loss
over all Q equals the desired true Q0. For each candidate estimator, one trains
the estimator on a training sample and one evaluates the resulting fit on the
complement of the training sample, which is called the validation sample. This
is carried out for a number of sample splits in training and validation samples,
and one selects the estimator that has the best average performance across the
sample splits. Statistical theory teaches us that this procedure is asymptoti-
cally optimal in great generality in the sense that it performs asymptotically
as well as an oracle selector that selects the estimator based on the criterion
applied to an infinite validation sample; see, e.g., Györfi et al. (2002), van der
Laan and Dudoit (2003), van der Laan et al. (2006), and van der Vaart et al.
(2006). The key conditions are that the loss-function needs to be uniformly
bounded, and the size of the validation sample needs to converge to infinity.
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40.4 Super learning

These oracle results for the cross-validation selector teach us that it is possible
to construct an ensemble estimator that asymptotically outperforms any user
supplied library of candidate estimators. We called this estimator the super-
learner due to its theoretical properties: it is defined as a combination of all
the candidate estimators where the weights defining the combination (e.g.,
convex combination) are selected based on cross-validation; see, e.g., van der
Laan et al. (2007) and Polley et al. (2012). By using the super-learner as a way
to regularize the MLE, we obtain an estimator with a potentially much better
rate of convergence to the true Q0 than a simple regularization procedure such
as the one based on binning discussed above. The bias of this super-learner
will converge to zero at the same rate as the rate of convergence of the super-
learner. The bias of the plug-in estimator of ψ0 based on this super-learner will
also converge at this rate. Unfortunately, if none of our candidate estimators
in the library achieve the rate 1/

√
n (e.g., a MLE according to a correctly

specified parametric model), then this bias will be larger than 1/
√
n, so that

this plug-in estimator will not converge at the desired
√
n rate. To conclude,

although super-learner has superior performance in estimation of Q0, it still
results in an overly biased estimator of the target Ψ(Q0).

40.4.1 Under-smoothing fails as general method

Our binning discussion above argues that for typical definitions of adaptive
estimators indexed by a fine-tuning parameter (e.g., bandwidth, number of
basis functions), there is no value of the fine-tuning parameter that would
result in a bias for ψ0 of the order 1/

√
n. This is due to the fact that the

fine-tuning parameter needs to exceed a certain value in order to define an
estimator in the parameter space of Q0. So even when we would have selected
the estimator in our library of candidate estimators that minimizes the MSE
with respect to ψ0 (instead of the one minimizing the cross-validated risk),
then we would still have selected an estimator that is overly biased for ψ0.

The problem is that our candidate estimators rely on a fine tuning pa-
rameter that controls overall bias of the estimator. Instead we need candidate
estimators that have an excellent overall fit of Q0 but also rely on a tuning
parameter that only controls the bias of the resulting plug-in estimator for
ψ0, and we need a way to fit this tuning parameter. For that purpose, we
need to determine a submodel of fluctuations {Qn(ε) : ε} through a candi-
date estimator Qn at ε = 0, indexed by an amount of fluctuation ε, where
fitting ε is locally equivalent with fitting ψ0 in the actual semi-parametric
statistical model M. It appears that the least-favorable submodel from effi-
ciency theory can be utilized for this purpose, while ε can be fitted with the
parametric MLE. This insight resulted in so called targeted maximum like-



474 Targeted learning

lihood estimators (van der Laan and Rubin, 2006). In this manner, we can
map any candidate estimator into a targeted estimator and we can use the
super-learner based on the library of candidate targeted estimators. Alterna-
tively, one computes this targeted fit of a super-learner based on a library of
non-targeted candidate estimators.

40.5 Targeted learning

The real message is that one needs to make the learning process targeted
towards its goal. The goal is to construct a good estimator of Ψ(Q0), and
that is not the same goal as constructing a good estimator of the much more
ambitious infinite-dimensional object Q0. For example, estimators of Ψ(Q0)
will have a variance that behaves as 1/n, while a consistent estimator of Q0

at a point will generally only use local data so that its variance converges at a
significant slower rate than 1/n. The bias of an estimator of Q0 is a function,
while the bias of an estimator of ψ0 is just a finite dimensional vector of real
numbers. For parametric maximum likelihood estimators one fits the unknown
parameters by solving the score equations. An MLE in a semi-parametric
model would aim to solve all (infinite) score equations, but due to the curse of
dimensionality such an MLE simply does not exist for finite samples. However,
if we know what score equation really matters for fitting ψ0, then we can make
sure that our estimator will solve that ψ0-specific score equation. The efficient
influence curve of the target parameter mapping Ψ : M→ IRd represents this
score.

40.5.1 Targeted minimum loss based estimation (TMLE)

The above mentioned insights evolved into the following explicit procedure
called Targeted Minimum Loss Based Estimation (TMLE); see, e.g., van der
Laan and Rubin (2006), van der Laan (2008) and van der Laan and Rose
(2012). Firstly, one constructs an initial estimator of Q0 such as a loss-based
super-learner based on a library of candidate estimators of Q0. One now de-
fines a loss function L(Q) so that Q0 = argminQ P0L(Q), and a least-favorable
submodel {Q(ε) : ε} ⊂M so that the generalized score d

dεL{Q(ε)}
∣∣
ε=0

equals
or spans the efficient influence curve D∗(Q, g). Here we used the notation
P0f =

∫
f(o)dP0(o). This least-favorable submodel might depend on an un-

known nuisance parameter g = g(P ). One is now ready to target the fit Qn

in such a way that its targeted version solves the efficient score equation
PnD∗(Q∗

n, g0) = 0. That is, one defines εn = argminε PnL{Qn(ε)}, and the
resulting update Q1

n = Qn(εn). This updating process can be iterated till con-
vergence at which point εn = 0 so that the final update Q∗

n solves the score
equation at εn = 0, and thus PnD∗(Q∗

n, g0) = 0. The efficient influence curve
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has the general property that

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R(Q,Q0, g, g0)

for a second order term R(Q,Q0, g, g0) . In fact, in many applications, we have
that R(Q,Q0, g, g0) equals an integral of (Q − Q0)(g − g0) so that it equals
zero if either Q = Q0 or g = g0, which is often referred to as double robustness
of the efficient influence curve. In that case, PnD∗(Q∗

n, g0) = 0 implies that
Ψ(Q∗

n) is a consistent estimator of ψ0. In essence, the norm of PnD∗(Q∗
n, g0)

represents a criterion measuring a distance between Ψ(Q∗
n) and ψ0, so that

minimizing the Euclidean norm of PnD∗(Q∗
n, gn) corresponds with fitting ψ0.

Since in many applications, the nuisance parameter g0 is unknown, one will
have to replace g0 in the updating procedure by an estimator gn. In that case,
we have

P0D
∗(Q∗

n, gn) = ψ0 −Ψ(Q∗
n) +R(Q∗

n, Q0, gn, g0),

where the remainder is still a second order term but now also involving cross-
term differences (Q∗

n −Q0)(gn − g0).

40.5.2 Asymptotic linearity of TMLE

If this second order remainder term R(Q∗
n, Q0, gn, g0) converges to zero in

probability at a rate faster than 1/
√
n, then it follows that

ψ∗
n − ψ0 = (Pn − P0)D

∗(Q∗
n, gn) + oP (1/

√
n),

so that, if P0{D∗(Q∗
n, gn)−D∗(Q0, g0)}2 → 0 in probability, and the random

function D∗(Q∗
n, gn) of O falls in a P0-Donsker class, it follows that

ψ∗
n − ψ0 = (Pn − P0)D

∗(Q0, g0) + oP (1/
√
n).

That is,
√
n (ψ∗

n−ψ0) is asymptotically Normally distributed with mean zero
and variance equal to the variance of the efficient influence curve. Thus, if
Q∗

n, gn are consistent at fast enough rates, then ψ∗
n is asymptotically efficient.

Statistical inference can now be based on the Normal limit distribution and
an estimator of its asymptotic variance, such as σ2

n = PnD∗(Q∗
n, gn)

2. This
demonstrates that the utilization of the state of the art in adaptive estimation
was not a hurdle for statistical inference, but, on the contrary, it is required to
establish the desired asymptotic Normality of the TMLE. Establishing asymp-
totic linearity of TMLE under misspecification of Q0 (in the context that the
efficient influence curve is double robust), while still allowing the utilization of
very adaptive estimators of g0, has to deal with additional challenges resolved
by also targeting the fit of g; see, e.g., van der Laan (2012) and van der Laan
and Rose (2012).
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40.6 Some special topics

40.6.1 Sensitivity analysis

The TMLEmethodology provides us with statistical inference for the estimand
ψ0. One typically wants to report findings about the actual target quantity
of interest ψF

0 , but it might not be reasonable to assume that ψ0 = ψF
0 . One

simple way forward we recently proposed is to define the bias ψ0 − ψF
0 , and

for each assumed value δ, one can now estimate ψF
0 with ψn − δ and report

a corresponding confidence interval or p-value for the test that H0 : ψF
0 = 0.

Subject matter knowledge combined with data analysis and or simulations
might now provide a reasonable upper bound for δ and one can then determine
if such an upper bound would still provide significant results for the target
quantity of interest. This sensitivity analysis can be made more conservative
in exchange for an enhanced interpretation of the sensitivity parameter δ by
defining δ as a particular upper bound of the causal bias ψ0 − ψF

0 . Such an
upper bound might be easier to interpret and thereby improve the sensitivity
analysis. We refer to Diaz and van der Laan (2012) for an introduction of
this type of sensitivity analysis, a practical demonstration with a few data
examples, and a preceding literature using alternative approaches; see, e.g.,
Rotnitzky et al. (2001), Robins et al. (1999), and Scharfstein et al. (1999).

40.6.2 Sample size 1 problems

Above we demonstrated that the statistical inference relies on establishing
asymptotic linearity and thereby asymptotic Normality of the standardized
estimator of ψ0. The asymptotic linearity was heavily relying on the central
limit theorem and uniform probability bounds for sums of independent vari-
ables (e.g., Donsker classes). In many applications, the experiment resulting
in the observed data cannot be viewed as a series of independent experiments.
For example, observing a community of individuals over time might truly be a
single experiment since the individuals might be causally connected through a
network. In this case, the sample size is one. Nonetheless, one might know for
each individual what other individuals it depends on, or one might know that
the data at time t only depends on the past through the data collected over the
last x months. Such assumptions imply conditional independence restrictions
on the likelihood of the data. As another example, in a group sequential clin-
ical trial one might make the randomization probabilities for the next group
of subjects a function of the observed data on all the previously recruited
individuals. The general field of adaptive designs concerns the construction
of a single experiment that involves data adaptive changes in the design in
response to previously observed data, and the key challenge of such designs is
develop methods that provide honest statistical inference; see, e.g., Rosenblum
and van der Laan (2011). These examples demonstrate that targeted learning
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should also be concerned with data generated by single experiments that have
a lot of structure. This requires the development of TMLE to such statistical
models, integration of the state of the art in weak convergence theory for de-
pendent data, and advances in computing due to the additional complexity
of estimators and statistical inference in such data generating experiments.
We refer to a few recent examples of targeted learning in adaptive designs,
and to estimate effects of interventions on a single network of individuals; see
van der Laan (2008), Chambaz and van der Laan (2010, 2011a,b), van der
Laan (2012), and van der Laan et al. (2012).

40.6.3 Big Data

Targeted learning involves super-learning, complex targeted update steps,
evaluation of an often complex estimand, and estimation of the asymptotic
variance of the estimator. In addition, since the estimation is tailored to each
question separately, for example, the assessment of the effect of a variable
(such as the effect of a DNA-mutation on a phenotype) across a large col-
lection of variables requires many times repeating these computer intensive
estimation procedures. Even for normal size data sets, such data analyses can
already be computationally very challenging.

However, nowadays, many applications contain gigantic data sets. For ex-
ample, one might collect complete genomic profiles on each individual, so
that one collects hundreds of thousands or even millions of measurements on
one individual, possibly at various time points. In addition, there are various
initiatives in building large comprehensive data bases, such as the sentinel
project which builds a data base for all American citizens which is used to
evaluate safety issues for drugs. Such data sets cover hundreds of millions of
individuals. Many companies are involved in analyzing data on the internet,
which can result in data sets with billions of records.

40.7 Concluding remarks

The biggest mistake we can make is to give up on sound statistics, and be
satisfied with the application of algorithms that can handle these data sets in
one way or another, without addressing a well defined statistical estimation
problem. As we have seen, the genomic era has resulted in an erosion of sound
statistics, and as a counterforce many advocate to only apply very simple
statistics such as sample means, and univariate regressions. Neither approach
is satisfying, and fortunately, it is not needed to give up on sound and complex
statistical estimation procedures targeting interesting questions of interest.

Instead, we need to more fully integrate with the computer science, train
our students in software that can handle these immense computational and
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memory challenges, so that our methods can be implemented and made acces-
sible to the actual users, but simultaneously we need to stick to our identity
as statisticians as part of collaborative highly interdisciplinary teams, pushing
forward the development of optimal statistical procedures and corresponding
statistical inference to answer the questions of interest. The statistician is ful-
filling an absolute crucial role in the design of the experiments, the statistical
and causal formulation of the question of interest, the estimation procedure
and thereby the design of the software, the development of valid statisti-
cal tools for statistical inference, and benchmarking these statistical methods
with respect to statistical performance (van der Laan and Rose, 2010).
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Statistical model building, machine
learning, and the ah-ha moment

Grace Wahba
Statistics, Biostatistics and Medical Informatics, and Computer Sciences
University of Wisconsin, Madison, WI

Highly selected “ah-ha” moments from the beginning to the present of my
research career are recalled — these are moments when the main idea just
popped up instantaneously, sparking sequences of future research activity —
almost all of these moments crucially involved discussions/interactions with
others. Along with a description of these moments we give unsought advice to
young statisticians. We conclude with remarks on issues relating to statistical
model building/machine learning in the context of human subjects data.

41.1 Introduction: Manny Parzen and RKHS

Many of the “ah-ha” moments below involve Reproducing Kernel Hilbert
Spaces (RKHS) so we begin there. My introduction to RKHS came while
attending a class given by Manny Parzen on the lawn in front of the old
Sequoia Hall at Stanford around 1963; see Parzen (1962).

For many years RKHS (Aronszajn, 1950; Wahba, 1990) were a little niche
corner of research which suddenly became popular when their relation to Sup-
port Vector Machines (SVMs) became clear — more on that later. To under-
stand most of the ah-ha moments it may help to know a few facts about RKHS
which we now give.

An RKHS is a Hilbert space H where all of the evaluation functionals are
bounded linear functionals. What this means is the following: let the domain
of H be T , and the inner product < ·, · >. Then, for each t ∈ T there exists
an element, call it Kt in H, with the property f(t) =< f,Kt > for all f in H.
Kt is known as the representer of evaluation at t. Let K(s, t) =< Ks,Kt >;
this is clearly a positive definite function on T ⊗ T . By the Moore–Aronszajn
theorem, every RKHS is associated with a unique positive definite function, as
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we have just seen. Conversely, given a positive definite function, there exists
a unique RKHS (which can be constructed from linear combinations of the
Kt, t ∈ T and their limits). Given K(s, t) we denote the associated RKHS
as HK . Observe that nothing has been assumed concerning the domain T . A
second role of positive definite functions is as the covariance of a zero mean
Gaussian stochastic process on T . In a third role that we will come across later
— let O1, . . . , On be a set of n abstract objects. An n × n positive definite
matrix can be used to assign pairwise squared Euclidean distances dij between
Oi and Oj by dij = K(i, i)+K(j, j)−2K(i, j). In Sections 41.1.1–41.1.9 we go
through some ah-ha moments involving RKHS, positive definite functions and
pairwise distances/dissimilarities. Section 41.2 discusses sparse models and the
lasso. Section 41.3 has some remarks involving complex interacting attributes,
the “Nature-Nurture” debate, Personalized Medicine, Human subjects privacy
and scientific literacy, and we end with conclusions in Section 41.4.

I end this section by noting that Manny Parzen was my thesis advisor, and
Ingram Olkin was on my committee. My main advice to young statisticians
is: choose your advisor and committee carefully, and be as lucky as I was.

41.1.1 George Kimeldorf and the representer theorem

Back around 1970 George Kimeldorf and I both got to spend a lot of time
at the Math Research Center at the University of Wisconsin Madison (the
one that later got blown up as part of the anti-Vietnam-war movement). At
that time it was a hothouse of spline work, headed by Iso Schoenberg, Carl
deBoor, Larry Schumaker and others, and we thought that smoothing splines
would be of interest to statisticians. The smoothing spline of order m was the
solution to: find f in the space of functions with square integral mth derivative
to minimize

n∑

i=1

{yi − f(ti)}2 + λ

∫ 1

0
{f (m)(t)}2dt, (41.1)

where t1, . . . , tn ∈ [0, 1]. Professor Schoenberg many years ago had character-
ized the solution to this problem as a piecewise polynomial of degree 2m− 1
satisfying some boundary and continuity conditions.

Our ah-ha moment came when we observed that the space of functions
with square integrable mth derivative on [0, 1] was an RKHS with seminorm
‖Pf‖ defined by

‖Pf‖2 =

∫ 1

0
{f (m)(t)}2dt

and with an associatedK(s, t) that we could figure out. (A seminorm is exactly
like a norm except that it has a non-trivial null space, here the null space of
this seminorm is the span of the polynomials of degree m−1 or less.) Then by
replacing f(t) by < Kt, f > it was not hard to show by a very simple geometric
argument that the minimizer of (41.1) was in the span of the Kt1 , . . . ,Ktn and
a basis for the null space of the seminorm. But furthermore, the very same
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geometrical argument could be used to solve the more general problem: find
f ∈ HK , an RKHS, to minimize

n∑

i=1

C(yi, Lif) + λ‖Pf‖2K , (41.2)

where C(yi, Lif) is convex in Lif , with Li a bounded linear functional in
HK and ‖Pf‖2K a seminorm in HK . A bounded linear functional is a linear
functional with a representer in HK , i.e., there exists ηi ∈ HK such that
Lif =< ηi, f > for all f ∈ HK . The minimizer of (41.2) is in the span of
the representers ηi and a basis for the null space of the seminorm. That is
known as the representer theorem, which turned out to be a key to fitting
(mostly continuous) functions in an infinite-dimensional space, given a finite
number of pieces of information. There were two things I remember about our
excitement over the result: one of us, I’m pretty sure it was George, thought
the result was too trivial and not worthwhile to submit, but submit it we did
and it was accepted (Kimeldorf and Wahba, 1971) without a single complaint,
within three weeks. I have never since then had another paper accepted by a
refereed journal within three weeks and without a single complaint. Advice:
if you think it is worthwhile, submit it.

41.1.2 Svante Wold and leaving-out-one

Following Kimeldorf and Wahba, it was clear that for practical use, a method
was needed to choose the smoothing or tuning parameter λ in (41.1). The
natural goal was to minimize the mean square error over the function f , for
which its values at the data points would be the proxy. In 1974 Svante Wold
visited Madison, and we got to mulling over how to choose λ. It so happened
that Mervyn Stone gave a colloquium talk in Madison, and Svante and I were
sitting next to each other as Mervyn described using leaving-out-one to de-
cide on the degree of a polynomial to be used in least squares regression.
We looked at each other at that very minute and simultaneously said some-
thing, I think it was “ah-ha,” but possibly “Eureka.” In those days computer
time was $600/hour and Svante wrote a computer program to demonstrate
that leaving-out-one did a good job. It took the entire Statistics department’s
computer money for an entire month to get the results in Wahba and Wold
(1975). Advice: go to the colloquia, sit next to your research pals.

41.1.3 Peter Craven, Gene Golub and Michael Heath and
GCV

After much struggle to prove some optimality properties of leaving-out-one,
it became clear that it couldn’t be done in general. Considering the data
model y = f + ε, where y = (y1, . . . , yn)$, f = (f(t1), . . . , f(tn))$ and ε =
(ε1, . . . , εn)$ is a zero mean i.i.d. Gaussian random vector, the information in
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the data is unchanged by multiplying left and right hand side by an orthogonal
matrix, since Γε with Γ orthogonal is still white Gaussian noise. But leaving-
out-one can give you a different answer. To explain, we define the influence
matrix: let fλ be the minimizer of (41.1) when C is sum of squares. The
influence matrix relates the data to the prediction of the data, fλ = A(λ)y,
where fλ = (fλ(t1), . . . , fλ(tn)). A heuristic argument fell out of the blue,
probably in an attempt to explain some things to students, that rotating the
data so that the influence matrix was constant down the diagonal, was the
trick. The result was that instead of leaving-out-one, one should minimize the
GCV function

V (λ) =

∑n
i=1{yi − f(ti)}2

[trace{I −A(λ)}]2

(Craven and Wahba, 1979; Golub et al., 1979). I was on sabbatical at Oxford
in 1975 and Gene was at ETH visiting Peter Huber, who had a beautiful
house in Klosters, the fabled ski resort. Peter invited Gene and me up for the
weekend, and Gene just wrote out the algorithm in Golub et al. (1979) on the
train from Zürich to Klosters while I snuck glances at the spectacular scenery.
Gene was a much loved mentor to lots of people. He was born on February
29, 1932 and died on November 16, 2007. On February 29 and March 1, 2008
his many friends held memorial birthday services at Stanford and 30 other
locations around the world. Ker-Chau Li (Li, 1985, 1986, 1987b) and others
later proved optimality properties of the GCV and popular codes in R will
compute splines and other fits using GCV to estimate λ and other important
tuning parameters. Advice: pay attention to important tuning parameters
since the results can be very sensitive to them. Advice: appreciate mentors
like Gene if you are lucky enough to have such great mentors.

41.1.4 Didier Girard, Mike Hutchinson, randomized trace
and the degrees of freedom for signal

Brute force calculation of the trace of the influence matrix A(λ) can be daunt-
ing to compute directly for large n. Let fy

λ be the minimizer of (41.1) with

the data vector y and let fy+δ
λ be the minimizer of (41.1) given the perturbed

data y + δ. Note that

δ$(fy
λ − fy+δ

λ ) = δ$A(λ)(y + δ)−A(λ)(y) =
n∑

i,j=1

δiδjaij ,

where δi and aij are the components of δ and A(λ) respectively. If the pertur-
bations are i.i.d. with variance 1, then this sum is an estimate of trace A(λ).
This simple idea was proposed in Girard (1989) and Hutchinson (1989), with
further theory in Girard (1991). It was a big ah-ha when I saw these papers
because further applications were immediate. In Wahba (1983), p. 139, I de-
fined the trace of A(λ) as the “equivalent degrees of freedom for signal,” by
analogy with linear least squares regression with p < n where the influence
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matrix is a rank p projection operator. The degrees of freedom for signal is an
important concept in linear and nonlinear nonparametric regression, and it
was a mistake to hide it inconspicuously in Wahba (1983). Later Brad Efron
(2004) gave an alternative definition of degrees of freedom for signal. The def-
inition in Wahba (1983) depends only on the data; Efron’s is essentially an
expected value. Note that in (41.1),

trace{A(λ)} =
n∑

i=1

∂ŷi
∂yi

,

where ŷi is the predicted value of yi. This definition can reasonably be applied
to a problem with a nonlinear forward operator (that is, that maps data
onto the predicted data) when the derivatives exist, and the randomized trace
method is reasonable for estimating the degrees of freedom for signal, although
care should be taken concerning the size of δ. Even when the derivatives don’t
exist the randomized trace can be a reasonable way of getting at the degrees
of freedom for signal; see, e.g., Wahba et al. (1995).

41.1.5 Yuedong Wang, Chong Gu and smoothing spline
ANOVA

Sometime in the late 80s or early 90s I heard Graham Wilkinson expound
on ANOVA (Analysis of Variance), where data was given on a regular d-
dimensional grid, viz.

yijk, tijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K,

for d = 3 and so forth. That is, the domain is the Cartesian product of
several one-dimensional grids. Graham was expounding on how fitting a model
from observations on such a domain could be described as set of orthogonal
projections based on averaging operators, resulting in main effects, two factor
interactions, etc. “Ah-ha” I thought, we should be able to do exactly same
thing and more where the domain is the Cartesian product T = T1 ⊗ · · ·⊗ Td
of d arbitrary domains. We want to fit functions on T , with main effects
(functions of one variable), two factor interactions (functions of two variables),
and possibly more terms given scattered observations, and we just need to
define averaging operators for each Tα.

Brainstorming with Yuedong Wang and Chong Gu fleshed out the results.
Let Hα,α = 1, . . . , d be d RKHSs with domains Tα, each Hα containing the
constant functions. H = H1 ⊗ · · ·⊗Hd is an RKHS with domain T . For each
α = 1, . . . , d, construct a probability measure dµα on Tα, with the property
that the symbol (Eαf)(t), the averaging operator, defined by

(Eαf)(t) =
∫

T (α)
f(t1, . . . , td)dµα(tα),
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is well defined and finite for every f ∈ H and t ∈ T . Consider the decomposi-
tion of the identity operator:

I =
∏

α

(Eα + (I − Eα)) =
∏

α

Eα +
∑

α

(I − Eα)
∏

β +=α

Eβ

+
∑

α<β

(I − Eα)(I − Eβ)
∏

γ +=α,β

Eγ + · · ·+
∏

α

(I − Eα). (41.3)

This decomposition of the identity then always generates a unique (ANOVA-
like) decomposition of f ∈ H of the form

f(t) = µ+
∑

α

fα(tα) +
∑

α<β

fαβ(tα, tβ) +
∑

α<β<γ

fαβγ(tα, tβ , tγ) + · · · (41.4)

where the expansion is unique and (usually) truncated in some manner in
practice. Here

µ =

(
∏

α

Eα

)
f, fα =



(I − Eα)
∏

β +=α

Eβ



 f,

fαβ =



(I − Eα)(I − Eβ)
∏

γ +=α,β

Eγ



 f,

etc., are the mean, main effects, two factor interactions, etc. The result is
usually called an SS ANOVA model, although the components are not limited
to splines. For details on how to fit the terms see Gu (2002), Gu and Wahba
(1993), Wahba (1990), Wang (2011) and the assist and gss codes in R. Note
that nothing has been said about T and very little regarding Hα, other than
that the constant functions are in each of the constituent spaces and averaging
operators can be defined.

41.1.6 Vladimir Vapnik, the mystery caller and the SVM

The AMS–IMS–SIAM Joint Summer Research Conference on Adaptive Selec-
tion of Models and Statistical Procedures was held on the campus of Mount
Holyoke College in South Hadley, Massachusetts on Sunday, June 23 through
Thursday, June 27, 1996. On one of those fine days a session met on a grassy
lawn of Mount Holyoke College, when Vladimir Vapnik and I were both invited
speakers. I talked first, and noted how the solution to the optimization prob-
lem (41.2) led to a function involving the span of the representers. Vladimir
spoke next, describing the support vector machine (SVM), a well known and
highly successful method for classification, describing something he called the
“kernel trick.” He exhibited an SVM that was fitted in the span of representers
in an RKHS. We will explain the SVM in a moment, but the original SVM,
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as proposed by Vapnik and coworkers (Vapnik, 1995) was derived from an
argument nothing like what I am about to give. Somewhere during Vladimir’s
talk, an unknown voice towards the back of the audience called out “That
looks like Grace Wahba’s stuff.” It looked obvious that the SVM as proposed
by Vapnik with the “kernel trick,” could be obtained as the the solution to
the optimization problem of (41.2) with C(yi, Lif) replaced by the so called
hinge function, (1− yif(ti))+, where (τ)+ = τ if τ > 0 and 0 otherwise. Each
data point is coded as ±1 according as it came from the “plus” class or the
“minus” class. For technical reasons the null space of the penalty function
consists at most of the constant functions. Thus it follows that the solution
is in the span of the representers Kti from the chosen RKHS plus possibly a
constant function. Yi Lin and coworkers (Lin et al., 2002a,b) showed that the
SVM was estimating the sign of the log odds ratio, just what is needed for two
class classification. The SVM may be compared to the case where one desires
to estimate the probability that an object is in the plus class. If one begins
with the penalized log likelihood of the Bernoulli distribution and codes the
data as ±1 instead of the usual coding as 0 or 1, then we have the same opti-
mization problem with C(yi, f(ti)) = ln{1+e−yif(ti)} instead of (1−yif(ti))+
with solution in the same finite dimensional space, but it is estimating the log
odds-ratio, as opposed to the sign of the log odds ratio. It was actually a big
deal that the SVM could be directly compared with penalized likelihood with
Bernoulli data, and it provided a pathway for statisticians and computer sci-
entists to breach a major divide between them on the subject of classification,
and to understand each others’ work.

For many years before the Hadley meeting, Olvi Mangasarian and I would
talk about what we were doing in classification, neither of us having any under-
standing of what the other was doing. Olvi complained that the statisticians
dismissed his work, but it turned out that what he was doing was related to
the SVM and hence perfectly legitimate not to mention interesting, from a
classical statistical point of view. Statisticians and computer scientists have
been on the same page on classification ever since.

It is curious to note that several patents have been awarded for the SVM.
One of the early ones, issued on July 15, 1997 is “5649068 Pattern recognition
system using support vectors.” I’m guessing that the unknown volunteer was
David Donoho. Advice: keep your eyes open to synergies between apparently
disparate fields.

41.1.7 Yoonkyung Lee, Yi Lin and the multi-category SVM

For classification, when one has k > 2 classes it is always possible to apply
an SVM to compare membership in one class versus the rest of the k classes,
running through the algorithm k times. In the early 2000s there were many
papers on one-vs-rest, and designs for subsets vs. other subsets, but it is pos-
sible to generate examples where essentially no observations will be identified
as being in certain classes. Since one-vs-rest could fail in certain circumstances
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it was something of an open question how to do multi-category SVMs in one
optimization problem that did not have this problem. Yi Lin, Yoonkyung Lee
and I were sitting around shooting the breeze and one of us said “how about a
sum-to-zero constraint?” and the other two said “ah-ha,” or at least that’s the
way I remember it. The idea is to code the labels as k-vectors, with a 1 in the
rth position and −1/(k− 1) in the k− 1 other positions for a training sample
in class r. Thus, each observation vector satisfies the sum-to-zero constraint.
The idea was to fit a vector of functions satisfying the same sum-to-zero con-
straint. The multi-category SVM fit estimates f(t) = (f1(t), . . . , fk(t)), t ∈ T
subject to the sum-to-zero constraint everywhere and the classification for a
subject with attribute vector t is just the index of the largest component of
the estimate of f(t). See Lee and Lee (2003) and Lee et al. (2004a,b). Advice:
shooting the breeze is good.

41.1.8 Fan Lu, Steve Wright, Sunduz Keles, Hector Corrada
Bravo, and dissimilarity information

We return to the alternative role of positive definite functions as a way to
encode pairwise distance observations. Suppose we are examining n objects
O1, . . . , On and are given some noisy or crude observations on their pairwise
distances/dissimilarities, which may not satisfy the triangle inequality. The
goal is to embed these objects in a Euclidean space in such a way as to re-
spect the pairwise dissimilarities as much as possible. Positive definite matrices
encode pairwise squared distances dij between Oi and Oj as

dij(K) = K(i, i) +K(j, j)− 2K(i, j), (41.5)

and, given a non-negative definite matrix of rank d ≤ n, can be used to embed
the n objects in a Euclidean space of dimension d, centered at 0 and unique
up to rotations. We seek a K which respects the dissimilarity information dobsij

while constraining the complexity of K by

min
K∈Sn

∑
|dobsij − dij(K)|+ λ trace(K), (41.6)

where Sn is the convex cone of symmetric positive definite matrices. I looked
at this problem for an inordinate amount of time seeking an analytic solution
but after a conversation with Vishy (S.V.N. Vishwanathan) at a meeting in
Rotterdam in August of 2003 I realized it wasn’t going to happen. The ah-
ha moment came about when I showed the problem to Steve Wright, who
right off said it could be solved numerically using recently developed convex
cone software. The result so far is Corrada Bravo et al. (2009) and Lu et al.
(2005). In Lu et al. (2005) the objects are protein sequences and the pairwise
distances are BLAST scores. The fitted kernel K had three eigenvalues that
contained about 95% of the trace, so we reduced K to a rank 3 matrix by
truncating the smaller eigenvalues. Clusters of four different kinds of proteins
were readily separated visually in three-d plots; see Lu et al. (2005) for the
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details. In Corrada Bravo et al. (2009) the objects are persons in pedigrees
in a demographic study and the distances are based on Malecot’s kinship
coefficient, which defines a pedigree dissimilarity measure. The resulting kernel
became part of an SS ANOVA model with other attributes of persons, and
the model estimates a risk related to an eye disease. Advice: find computer
scientist friends.

41.1.9 Gábor Székely, Maria Rizzo, Jing Kong and distance
correlation

The last ah-ha experience that we report is similar to that involving the ran-
domized trace estimate of Section 41.1.4, i.e., the ah-ha moment came about
upon realizing that a particular recent result was very relevant to what we
were doing. In this case Jing Kong brought to my attention the important pa-
per of Gábor Székely and Maria Rizzo (Székely and Rizzo, 2009). Briefly, this
paper considers the joint distribution of two random vectors, X and Y , say,
and provides a test, called distance correlation that it factors so that the two
random vectors are independent. Starting with n observations from the joint
distribution, let {Aij} be the collection of double-centered pairwise distances
among the

(n
2

)
X components, and similarly for {Bij}. The statistic, called

distance correlation, is the analogue of the usual sample correlation between
the A’s and B’s. The special property of the test is that it is justified for X
and Y in Euclidean p and q space for arbitrary p and q with no further dis-
tributional assumptions. In a demographic study involving pedigrees (Kong
et al., 2012), we observed that pairwise distance in death age between close
relatives was less than that of unrelated age cohorts. A mortality risk score
for four lifestyle factors and another score for a group of diseases was devel-
oped via SS ANOVA modeling, and significant distance correlation was found
between death ages, lifestyle factors and family relationships, raising more
questions than it answers regarding the “Nature-Nurture” debate (relative
role of genetics and other attributes).

We take this opportunity to make a few important remarks about pairwise
distances/dissimilarities, primarily how one measures them can be important,
and getting the “right” dissimilarity can be 90% of the problem. We remark
that family relationships in Kong et al. (2012) were based on a monotone
function of Malecot’s kinship coefficient that was different from the monotone
function in Corrada Bravo et al. (2009). Here it was chosen to fit in with the
different way the distances were used. In (41.6), the pairwise dissimilarities
can be noisy, scattered, incomplete and could include subjective distances like
“very close, close.. ” etc. not even satisfying the triangle inequality. So there is
substantial flexibility in choosing the dissimilarity measure with respect to the
particular scientific context of the problem. In Kong et al. (2012) the pairwise
distances need to be a complete set, and be Euclidean (with some specific
metric exceptions). There is still substantial choice in choosing the definition
of distance, since any linear transformation of a Euclidean coordinate system
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defines a Euclidean distance measure. Advice: think about how you measure
distance or dissimilarity in any problem involving pairwise relationships, it
can be important.

41.2 Regularization methods, RKHS and sparse models

The optimization problems in RKHS are a rich subclass of what can be called
regularization methods, which solve an optimization problem which trades
fit to the data versus complexity or constraints on the solution. My first en-
counter with the term “regularization” was Tikhonov (1963) in the context
of finding numerical solutions to integral equations. There the Li of (41.2)
were noisy integrals of an unknown function one wishes to reconstruct, but
the observations only contained a limited amount of information regarding
the unknown function. The basic and possibly revolutionary idea at the time
was to find a solution which involves fit to the data while constraining the
solution by what amounted to an RKHS seminorm, (

∫
{f ′′(t)}2dt) standing in

for the missing information by an assumption that the solution was “smooth”
(O’Sullivan, 1986; Wahba, 1977). Where once RKHS were a niche subject,
they are now a major component of the statistical model building/machine
learning literature.

However, RKHS do not generally provide sparse models, that is, models
where a large number of coefficients are being estimated but only a small but
unknown number are believed to be non-zero. Many problems in the “Big
Data” paradigm are believed to have, or want to have sparse solutions, for
example, genetic data vectors that may have many thousands of components
and a modest number of subjects, as in a case-control study. The most popular
method for ensuring sparsity is probably the lasso (Chen et al., 1998; Tibshi-
rani, 1996). Here a very large dictionary of basis functions (Bj(t), j = 1, 2, . . . )
is given and the unknown function is estimated as f(t) =

∑
j βjBj(t) with

the penalty functional λ
∑

j |βj | replacing an RKHS square norm. This will
induce many zeroes in the βj , depending, among other things on the size of
λ. Since then, researchers have commented that there is a “zoo” of proposed
variants of sparsity-inducing penalties, many involving assumptions on struc-
tures in the data; one popular example is Yuan and Lin (2006). Other recent
models involve mixtures of RKHS and sparsity-inducing penalty functionals.
One of our contributions to this “zoo” deals with the situation where the data
vectors amount to very large “bar codes,” and it is desired to find patterns
in the bar codes relevant to some outcome. An innovative algorithm which
deals with a humongous number of interacting patterns assuming that only
a small number of coefficients are non-zero is given in Shi et al. (2012), Shi
et al. (2008) and Wright (2012).
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As is easy to see here and in the statistical literature, the statistical modeler
has overwhelming choices in modeling tools, with many public codes available
in the software repository R and elsewhere. In practice these choices must be
made with a serious understanding of the science and the issues motivating
the data collection. Good collaborations with subject matter researchers can
lead to the opportunity to participate in real contributions to the science.
Advice: learn absolutely as much as you can about the subject matter of the
data that you contemplate analyzing. When you use “black boxes” be sure
you know what is inside them.

41.3 Remarks on the nature-nurture debate,
personalized medicine and scientific literacy

We and many other researchers have been developing methods for combining
scattered, noisy, incomplete, highly heterogenous information from multiple
sources with interacting variables to predict, classify, and determine patterns
of attributes relevant to a response, or more generally multiple correlated
responses.

Demographic studies, clinical trials, and ad hoc observational studies based
on electronic medical records, which have familial (Corrada Bravo et al., 2009;
Kong et al., 2012), clinical, genetic, lifestyle, treatment and other attributes
can be a rich source of information regarding the Nature-Nurture debate, as
well informing Personalized Medicine, two popular areas reflecting much ac-
tivity. As large medical systems put their records in electronic form interesting
problems arise as to how to deal with such unstructured data, to relate sub-
ject attributes to outcomes of interest. No doubt a gold mine of information
is there, particularly with respect to how the various attributes interact. The
statistical modeling/machine learning community continues to create and im-
prove tools to deal with this data flood, eager to develop better and more
efficient modeling methods, and regularization and dissimilarity methods will
no doubt continue to play an important role in numerous areas of scientific en-
deavor. With regard to human subjects studies, a limitation is the problem of
patient confidentiality — the more attribute information available to explore
for its relevance, the trickier the privacy issues, to the extent that de-identified
data can actually be identified. It is important, however, that statisticians be
involved from the very start in the design of human subjects studies.

With health related research, the US citizenry has some appreciation of
scientific results that can lead to better health outcomes. On the other hand
any scientist who reads the newspapers or follows present day US politics is
painfully aware that a non-trivial portion of voters and the officials they elect
have little or no understanding of the scientific method. Statisticians need to
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participate in the promotion of increased scientific literacy in our educational
establishment at all levels.

41.4 Conclusion

In response to the invitation from COPSS to contribute to their 50th Anniver-
sary Celebration, I have taken a tour of some exciting moments in my career,
involving RKHS and regularization methods, pairwise dissimilarities and dis-
tances, and lasso models, dispensing un-asked for advice to new researchers
along the way. I have made a few remarks concerning the richness of mod-
els based on RKHS, as well as models involving sparsity-inducing penalties
with some remarks involving the Nature-Nurture Debate and Personalized
Medicine. I end this contribution with thanks to my many coauthors — iden-
tified here or not — and to my terrific present and former students. Advice:
Treasure your collaborators! Have great students!
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In praise of sparsity and convexity

Robert J. Tibshirani
Department of Statistics
Stanford University, Stanford, CA

To celebrate the 50th anniversary of the COPSS, I present examples of exciting
developments of sparsity and convexity, in statistical research and practice.

42.1 Introduction

When asked to reflect on an anniversary of their field, scientists in most fields
would sing the praises of their subject. As a statistician, I will do the same.
However, here the praise is justified! Statistics is a thriving discipline, more
and more an essential part of science, business and societal activities. Class
enrollments are up — it seems that everyone wants to be a statistician —
and there are jobs everywhere. The field of machine learning, discussed in this
volume by my friend Larry Wasserman, has exploded and brought along with
it the computational side of statistical research. Hal Varian, Chief Economist
at Google, said “I keep saying that the sexy job in the next 10 years will
be statisticians. And I’m not kidding.” Nate Silver, creator of the New York
Times political forecasting blog “538” was constantly in the news and on
talk shows in the runup to the 2012 US election. Using careful statistical
modelling, he forecasted the election with near 100% accuracy (in contrast
to many others). Although his training is in economics, he (proudly?) calls
himself a statistician. When meeting people at a party, the label “Statistician”
used to kill one’s chances of making a new friend. But no longer!

In the midst of all this excitement about the growing importance of statis-
tics, there are fascinating developments within the field itself. Here I will
discuss one that has been the focus my research and that of many other
statisticians.
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FIGURE 42.1
Estimation picture for the lasso (left) and ridge regression (right). Shown
are contours of the error and constraint functions. The solid areas are the
constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively, while the

ellipses are the contours of the least squares error function. The sharp corners
of the constraint region for the lasso yield sparse solutions. In high dimensions,
sparsity arises from corners and edges of the constraint region.

42.2 Sparsity, convexity and !1 penalties

One of the earliest proposals for using !1 or absolute-value penalties, was the
lasso method for penalized regression. Given a linear regression with predictors
xij and response values yi for i ∈ {1, . . . , N} and j ∈ {1, . . . , p}, the lasso
solves the !1-penalized regression

minimizeβ





1

2

N∑

i=1



yi −
p∑

j=1

xijβj




2

+ λ
p∑

j=1

|βj |





.

This is equivalent to minimizing the sum of squares with constraint |β1|+· · ·+
|βp| ≤ s. It is similar to ridge regression, which has constraint β2

1+· · ·+β2
p ≤ s.

Because of the form of the !1 penalty, the lasso does variable selection and
shrinkage; while ridge regression, in contrast, only shrinks. If we consider a
more general penalty of the form (βq

1 + · · ·+ βq
p)

1/q, then the lasso uses q = 1
and ridge regression has q = 2. Subset selection emerges as q → 0, and the
lasso corresponds to the smallest value of q (i.e., closest to subset selection)
that yields a convex problem. Figure 42.1 gives a geometric view of the lasso
and ridge regression.

The lasso and !1 penalization have been the focus of a great deal of work
recently. Table 42.1, adapted from Tibshirani (2011), gives a sample of this
work.
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TABLE 42.1
A sampling of generalizations of the lasso.

Method Authors
Adaptive lasso Zou (2006)
Compressive sensing Donoho (2004), Candès (2006)
Dantzig selector Candès and Tao (2007)
Elastic net Zou and Hastie (2005)
Fused lasso Tibshirani et al. (2005)
Generalized lasso Tibshirani and Taylor (2011)
Graphical lasso Yuan and Lin (2007b), Friedman et al. (2010)
Grouped lasso Yuan and Lin (2007a)
Hierarchical interaction models Bien et al. (2013)
Matrix completion Candès and Tao (2009), Mazumder et al. (2010)
Multivariate methods Joliffe et al. (2003), Witten et al. (2009)
Near-isotonic regression Tibshirani et al. (2011)

The original motivation for the lasso was interpretability: it is an alterna-
tive to subset regression for obtaining a sparse model. Since that time, two
unforeseen advantages of convex !1-penalized approaches have emerged: Com-
putational and statistical efficiency. On the computational side, convexity of
the problem and sparsity of the final solution can be used to great advantage.
When most parameter estimates are zero in the solution, those parameters
can be handled with minimal cost in the search for the solution. Powerful and
scalable techniques for convex optimization can be unleashed on the problem,
allowing the solution of very large problems. One particularly promising ap-
proach is coordinate descent (Fu, 1998; Friedman et al., 2007, 2010), a simple
one-at-a-time method that is well-suited to the separable lasso penalty. This
method is simple and flexible, and can also be applied to a wide variety of other
!1-penalized generalized linear models, including Cox’s proportional hazards
model for survival data. Coordinate descent is implemented in the popular
glmnet package in the R statistical language, written by Jerome Friedman,
Trevor Hastie, and myself, with help in the Cox feature from Noah Simon.

On the statistical side, there has also been a great deal of deep and inter-
esting work on the mathematical aspects of the lasso, examining its ability to
produce a model with minimal prediction error, and also to recover the true
underlying (sparse) model. Important contributors here include Bühlmann,
Candès, Donoho, Greenshtein, Johnstone, Meinshausen, Ritov, Wainwright,
Yu, and many others. In describing some of this work, Hastie et al. (2001)
coined the informal “Bet on Sparsity” principle. The !1 methods assume that
the truth is sparse, in some basis. If the assumption holds true, then the pa-
rameters can be efficiently estimated using !1 penalties. If the assumption
does not hold — so that the truth is dense — then no method will be able to
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recover the underlying model without a large amount of data per parameter.
This is typically not the case when p3 N , a commonly occurring scenario.

42.3 An example

I am currently involved in a cancer diagnosis project with researchers at Stan-
ford University. They have collected samples of tissue from 10 patients un-
dergoing surgery for stomach cancer. The aim is to build a classifier that can
distinguish three kinds of tissue: normal epithelial, stromal and cancer. Such a
classifier could be used to assist surgeons in determining, in real time, whether
they had successfully removed all of the tumor. It could also yield insights into
the cancer process itself. The data are in the form of images, as sketched in
Figure 42.2. A pathologist has labelled each region (and hence the pixels in-
side a region) as epithelial, stromal or cancer. At each pixel in the image, the
intensity of metabolites is measured by a kind of mass spectrometry, with the
peaks in the spectrum representing different metabolites. The spectrum has
been finely sampled at about 11,000 sites. Thus the task is to build a classifier
to classify each pixel into one of the three classes, based on the 11,000 features.
There are about 8000 pixels in all.

For this problem, I have applied an !1-regularized multinomial model. For
each class k ∈ {1, 2, 3}, the model has a vector (β1k, . . . ,βpk) of parameters
representing the weight given to each feature in that class. I used the glmnet
package for fitting the model: it computes the entire path of solutions for all
values of the regularization parameter λ, using cross-validation to estimate
the best value of λ (I left one patient out at a time). The entire computation
required just a few minutes on a standard Linux server.

The results so far are encouraging. The classifier shows 93–97% accuracy
in the three classes, using only around 100 features. These features could yield
insights about the metabolites that are important in stomach cancer. There is
much more work to be done — collecting more data, and refining and testing
the model. But this shows the potential of !1-penalized models in an important
and challenging scientific problem.

42.4 The covariance test

So far, most applications of the lasso and !1 penalties seem to focus on large
problems, where traditional methods like all-subsets-regression can’t deal with
the problem computationally. In this last section, I want to report on some
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Spectrum sampled at 11,000 m/z values

Spectrum for each pixel

FIGURE 42.2
Schematic of the cancer diagnosis problem. Each pixel in each of the three
regions labelled by the pathologist is analyzed by mass spectrometry. This
gives a feature vector of 11,000 intensities (bottom panel), from which we try
to predict the class of that pixel.

very recent work that suggest that !1 penalties may have a more fundamental
role in classical mainstream statistical inference.

To begin, consider standard forward stepwise regression. This procedure
enters predictors one a time, choosing the predictor that most decreases the
residual sum of squares at each stage. Defining RSS to be the residual sum
of squares for the model containing j predictors and denoting by RSSnull the
residual sum of squares for the model omitting the predictor k(j), we can form
the usual statistic

Rj = (RSSnull − RSS)/σ2

(with σ assumed known for now), and compare it to a χ2
(1) distribution.

Although this test is commonly used, we all know that it is wrong. Fig-
ure 42.3 shows an example. There are 100 observations and 10 predictors in
a standard Gaussian linear model, in which all coefficients are actually zero.
The left panel shows a quantile-quantile plot of 500 realizations of the statis-
tic R1 versus the quantiles of the χ2

(1) distribution. The test is far too liberal

and the reason is clear: the χ2
(1) distribution is valid for comparing two fixed

nested linear models. But here we are adaptively choosing the best predictor,
and comparing its model fit to the null model.

In fact it is difficult to correct the chi-squared test to account for adaptive
selection: half-sample splitting methods can be used (Meinshausen et al., 2009;
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FIGURE 42.3
A simple example with n = 100 observations and p = 10 orthogonal predic-
tors. All true regression coefficients are zero, β∗ = 0. On the left is a quantile-
quantile plot, constructed over 1000 simulations, of the standard chi-squared
statistic R1, measuring the drop in residual sum of squares for the first pre-
dictor to enter in forward stepwise regression, versus the χ2

1 distribution. The
dashed vertical line marks the 95% quantile of the χ2

(1) distribution. The right
panel shows a quantile-quantile plot of the covariance test statistic T1 for the
first predictor to enter in the lasso path, versus its asymptotic distribution
E(1). The covariance test explicitly accounts for the adaptive nature of lasso
modeling, whereas the usual chi-squared test is not appropriate for adaptively
selected models, e.g., those produced by forward stepwise regression.

Wasserman and Roeder, 2009), but these may suffer from lower power due to
the decrease in sample size.

But the lasso can help us! Specifically, we need the LAR (least angle regres-
sion) method for constructing the lasso path of solutions, as the regularization
parameter λ is varied. I won’t give the details of this construction here, but we
just need to know that there are a special set of decreasing knots λ1 > · · · > λk

at which the active set of solutions (the non-zero parameter estimates) change.
When λ > λ1, the solutions are all zero. At the point λ = λ1, the variable
most correlated with y enters the model. At each successive value λj , a vari-
able enters or leaves the model, until we reach λk where we obtain the full
least squares solution (or one such solution, if p > N).

We consider a test statistic analogous to Rj for the lasso. Let y be the
vector of outcome values and X be the design matrix. Assume for simplicity
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that the error variance σ2 is known. Suppose that we have run LAR for j − 1
steps, yielding the active set of predictors A at λ = λj . Now we take one

more step, entering a new predictor k(j), and producing estimates β̂(λj) at
λj+1. We wish to test if the k(j)th component βk(j) is zero. We refit the lasso,
keeping λ = λj+1 but using just the variables in A. This yields estimates

β̂A(λj+1). Our proposed covariance test statistic is defined by

Tj =
1

σ2
{〈y,Xβ̂(λj+1)〉 − 〈y,XAβ̂A(λj+1)〉}. (42.1)

Roughly speaking, this statistic measures how much of the covariance between
the outcome and the fitted model can be attributed to the k(j)th predictor,
which has just entered the model.

Now something remarkable happens. Under the null hypothesis that all
signal variables are in the model: as p → ∞, Tj converges to an exponential
random variable with unit mean, E(1). The right panel of Figure 42.3 shows
the same example, using the covariance statistic. This test works for testing
the first variable to enter (as in the example), or for testing noise variables
after all of the signal variables have entered. And it works under quite general
conditions on the design matrix. This result properly accounts for the adap-
tive selection: the shrinkage in the !1 fitting counteracts the inflation due to
selection, in just the right way to make the degrees of freedom (mean) of the
null distribution exactly equal to 1 asymptotically. This idea can be applied
to a wide variety of models, and yields honest p-values that should be useful
to statistical practitioners.

In a sense, the covariance test and its exponential distribution general-
ize the RSS test and its chi-squared distribution, to the adaptive regression
setting.

This work is very new, and is summarized in Lockhart et al. (2014). The
proofs of the results are difficult, and use extreme-value theory and Gaus-
sian processes. They suggest that the LAR knots λk may be fundamental in
understanding the effects of adaptivity in regression. On the practical side, re-
gression software can now output honest p-values as predictors enter a model,
that properly account for the adaptive nature of the process. And all of this
may be a result of the convexity of the !1-penalized objective.

42.5 Conclusion

In this chapter I hope that I have conveyed my excitement for some recent
developments in statistics, both in its theory and practice. I predict that con-
vexity and sparsity will play an increasing important role in the development
of statistical methodology.
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Features of Big Data and sparsest solution
in high confidence set

Jianqing Fan

Department of Operations Research and Financial Engineering
Princeton University, Princeton, NJ

This chapter summarizes some of the unique features of Big Data analysis.
These features are shared neither by low-dimensional data nor by small sam-
ples. Big Data pose new computational challenges and hold great promises for
understanding population heterogeneity as in personalized medicine or ser-
vices. High dimensionality introduces spurious correlations, incidental endo-
geneity, noise accumulation, and measurement error. These unique features are
very distinguished and statistical procedures should be designed with these
issues in mind. To illustrate, a method called a sparsest solution in high-
confidence set is introduced which is generally applicable to high-dimensional
statistical inference. This method, whose properties are briefly examined, is
natural as the information about parameters contained in the data is summa-
rized by high-confident sets and the sparsest solution is a way to deal with
the noise accumulation issue.

43.1 Introduction

The first decade of this century has seen the explosion of data collection in
this age of information and technology. The technological revolution has made
information acquisition easy and cheap through automated data collection
processes. Massive data and high dimensionality characterize many contem-
porary statistical problems from biomedical sciences to engineering and social
sciences. For example, in disease classification using microarray or proteomics
data, tens of thousands of expressions of molecules or proteins are potential
predictors; in genome-wide association studies, hundreds of thousands of SNPs
are potential covariates; in machine learning, tens of thousands of features
are extracted from documents, images and other objects; in spatial-temporal

507



508 Features of Big Data

problems encountered in economics and earth sciences, time series from hun-
dreds or thousands of regions are collected. When interactions are considered,
the dimensionality grows even more quickly. Other examples of massive data
include high-resolution images, high-frequency financial data, fMRI data, e-
commerce data, marketing data, warehouse data, functional and longitudinal
data, among others. For an overview, see Hastie et al. (2009) and Bühlmann
and van de Geer (2011).

Salient features of Big Data include both large samples and high dimen-
sionality. Furthermore, Big Data are often collected over different platforms or
locations. This generates issues with heterogeneity, measurement errors, and
experimental variations. The impacts of dimensionality include computational
cost, algorithmic stability, spurious correlations, incidental endogeneity, noise
accumulations, among others. The aim of this chapter is to introduce and ex-
plain some of these concepts and to offer a sparsest solution in high-confident
set as a viable solution to high-dimensional statistical inference.

In response to these challenges, many new statistical tools have been devel-
oped. These include boosting algorithms (Freund and Schapire, 1997; Bickel
et al., 2006), regularization methods (Tibshirani, 1996; Chen et al., 1998; Fan
and Li, 2001; Candès and Tao, 2007; Fan and Lv, 2011; Negahban et al., 2012),
and screening methods (Fan and Lv, 2008; Hall et al., 2009; Li et al., 2012).
According to Bickel (2008), the main goals of high-dimensional inference are
to construct as effective a method as possible to predict future observations, to
gain insight into the relationship between features and response for scientific
purposes, and hopefully, to improve prediction.

As we enter into the Big Data era, an additional goal, thanks to large
sample size, is to understand heterogeneity. Big Data allow one to apprehend
the statistical properties of small heterogeneous groups, termed “outliers”
when sample size is moderate. It also allows us to extract important but weak
signals in the presence of large individual variations.

43.2 Heterogeneity

Big Data enhance our ability to find commonalities in a population, even in the
presence of large individual variations. An example of this is whether drinking
a cup of wine reduces health risks of certain diseases. Population structures
can be buried in the presence of large statistical noise in the data. Neverthe-
less, large sample sizes enable statisticians to mine such hidden structures.
What also makes Big Data exciting is that it holds great promises for un-
derstanding population heterogeneity and making important discoveries, say
about molecular mechanisms involved in diseases that are rare or affecting
small populations. An example of this kind is to answer the question why
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chemotherapy is helpful for certain populations, while harmful or ineffective
for some other populations.

Big Data are often aggregated from different sites and different platforms.
Experimental variations need to be accounted for before their full analysis. Big
Data can be thought of as a mixture of data arising from many heterogeneous
populations. Let k be the number of heterogeneous groups, X be a collection
of high-dimensional covariates, and y be a response. It is reasonable to regard
Big Data as random realizations from a mixture of densities, viz.

p1f1(y;θ1(x)) + · · ·+ pkfk(y;θk(x)),

in which fj(y;θj(x)) is the conditional density of Y given X = x in population
j ∈ {1, . . . , k}, and the function θj(x) characterizes the dependence of the
distribution on the covariates. Gaussian mixture models are a typical example;
see, e.g., Khalili and Chen (2007) or Städler et al. (2010).

When the sample size is moderate, data from small groups with small pj
rarely occur. Should such data be sampled, they are usually regarded as sta-
tistical outliers or buried in the larger groups. There are insufficient amounts
of data to infer about θj(x). Thanks to Big Data, when n is so large that npj
is also large, there are sufficient amounts of data to infer about commonality
θj(x) in this rare subpopulation. In this fashion, Big Data enable us to dis-
cover molecular mechanisms or genetic associations in small subpopulations,
opening the door to personalized treatments. This holds true also in consumer
services where different subgroups demand different specialized services.

The above discussion further suggests that Big Data are paramountly im-
portant in understanding population heterogeneity, a goal that would be illu-
sory when the sample size is only moderately large. Big Data provide a way
in which heterogeneous subpopulations can be distinguished and personalized
treatments can be derived. It is also an important tool for the discovery of
weak population structures hidden in large individual variations.

43.3 Computation

Large-scale computation plays a vital role in the analysis of Big Data. High-
dimensional optimization is not only expensive but also unstable in computa-
tion, in addition to slowness in convergence. Algorithms that involve iterative
inversions of large matrices are infeasible due to instability and computational
costs. Scalable and stable implementations of high-dimensional statistical pro-
cedures must be sought. This relies heavily on statistical intuition, large-scale
screening and small-scale optimization. An example is given in Fan et al.
(2009).

Large numbers of observations, which can be in the order of tens of thou-
sands or even millions as in genomics, neuro-informatics, marketing, and online
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learning studies, also give rise to intensive computation. When the sample size
is large, the computation of summary statistics such as correlations among all
variables is expensive. Yet statistical methods often involve repeated evalua-
tions of such functions. Parallel computing and other updating techniques are
required. Therefore, scalability of techniques to both dimensionality and the
number of cases should be borne in mind when developing statistical proce-
dures.

43.4 Spurious correlation

Spurious correlation is a feature of high dimensionality. It refers to variables
that are not correlated theoretically but whose sample correlation is high. To
illustrate the concept, consider a random sample of size n = 50 of p inde-
pendent standard N (0, 1) random variables. Thus the population correlation
between any two random variables is zero and their corresponding sample
correlation should be small. This is indeed the case when the dimension is
small in comparison with the sample size. When p is large, however, spurious
correlations start to appear. To illustrate this point, let us compute

r̂ = max
j≥2

ĉorr(Z1, Zj)

where ĉorr(Z1, Zj) is the sample correlation between variables Z1 and Zj .
Similarly, we can compute

R̂ = max
|S|=5

ĉorr(Z1,ZS), (43.1)

which is the maximum multiple correlation between Z1 and ZS with 1 /∈ S,
namely, the correlation between Z1 and its best linear predictor using ZS . In
the implementation, we use the forward selection algorithm as an approxima-
tion to compute R̂, which is no larger than R̂ but avoids computing all

(p
5

)

multiple R2 in (43.1). This experiment is repeated 200 times.
The empirical distributions of r̂ and R̂ are shown in Figure 43.1. The

spurious correlation r̂ is centered around .45 for p = 1000 and .55 for p =
10,000. The corresponding values are .85 and .91 when the multiple correlation
R̂ is used. Theoretical results on the order of the spurious correlation r̂ are
given in Cai and Jiang (2012) and Fan et al. (2012), but the order of R̂ remains
unknown.

The impact of spurious correlation includes false scientific discoveries and
false statistical inferences. In terms of scientific discoveries, Z1 and ZŜ are
practically indistinguishable when n = 50, given that their correlation is
around .9 for a set Ŝ with |Ŝ| = 5. If Z1 represents the expression of a gene
that is responsible for a disease, we can discover five genes Ŝ that have a sim-
ilar predictive power even though they are unrelated to the disease. Similarly,
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FIGURE 43.1
Illustration of spurious correlation. Left panel: a typical realization of Z1 with
its most spuriously correlated variable (p = 1000); middle and right panels:
distributions of r̂ and R̂ for p = 1000 and p = 10,000. The sample size is
n = 50.

if the genes in Ŝ are truly responsible for a disease, we may end up wrongly
pronouncing Z1 as the gene that is responsible for the disease.

We now examine the impact of spurious correlation on statistical inference.
Consider a linear model

Y = X$β + ε, σ2 = var(ε).

The residual variance based on a selected set Ŝ of variables is

σ̂2 =
1

n− |Ŝ|
Y$(In −PŜ)Y, PŜ = XŜ(X

$
ŜXŜ)

−1X$
Ŝ .

When the variables are not data selected and the model is unbiased, the
degree of freedom adjustment makes the residual variance unbiased. However,
the situation is completely different when the variables are data selected. For
example, when β = 0, one has Y = ε and all selected variables are spurious.
If the number of selected variables |Ŝ| is much smaller than n, then

σ̂2 =
1

n− |Ŝ|
(1− γ2

n)‖ε‖2 ≈ (1− γ2
n)σ

2,

where γ2
n = ε$PŜε/‖ε‖2. Therefore, σ2 is underestimated by a factor of γ2

n.
Suppose that we select only one spurious variable. This variable must

then be mostly correlated with Y or, equivalently, ε. Because the spurious
correlation is high, the bias is large. The two left panels of Figure 43.2 depict
the distributions of γn along with the associated estimates of σ̂2 for different
choices of p. Clearly, the bias increases with the dimension, p.

When multiple spurious variables are selected, the biases of residual vari-
ance estimation become more pronounced, since the spurious correlation gets
larger as demonstrated in Figure 43.1. To illustrate this, consider the linear
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FIGURE 43.2
Distributions of spurious correlations. Left panel: Distributions of γn for the
null model when |Ŝ| = 1 and their associated estimates of σ2 = 1 for various
choices of p. Right panel: Distributions of γn for the model Y = 2X1+.3X2+ε
and their associated estimates of σ2 = 1 for various choices of |Ŝ| but fixed
p = 1000. The sample size n = 50. Adapted from Fan et al. (2012).

model Y = 2X1 + .3X2 + ε and use the stepwise selection method to recruit
variables. Again, the spurious variables are selected mainly due to their spu-
rious correlation with ε, the unobserved but realized vector of random noises.
As shown in the two right panels of Figure 43.2, the spurious correlation is
very large and σ̂2 gets notably more biased when |Ŝ| gets larger.

Underestimation of residual variance leads the statistical inference astray.
Variables are declared statistically significant that are not in reality, and this
leads to faulty scientific conclusions.

43.5 Incidental endogeneity

High dimensionality also gives rise to incidental endogeneity. Scientists collect
covariates that are potentially related to the response. As there are many
covariates, some of those variables can be incidentally correlated with the
residual noise. This can cause model selection inconsistency and incorrect
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selection of genes or SNPs for understanding molecular mechanism or genetic
associations.

Let us illustrate this problem using the simple linear model. The idealized
model for variable selection is that there is a small subset S0 of variables that
explains a large portion of the variation in the response Y , viz.

Y = X$β0 + ε, E(εX) = 0, (43.2)

in which the true parameter vector β0 has support S0. The goal of variable
selection is to find the set S0 and estimate the regression coefficients β0.

To be more concrete, let us assume that the data generating process is
Y = X1 +X2 + ε, so that S0 = {1, 2}. As we do not know which variables are
related to Y in the joint model, we collect as many covariates as possible that
we deem to be potentially related to Y , in the hope of including all members
in S0. Some of those Xj are incidentally correlated with Y − X1 − X2 or ε.
This makes model (43.2) invalid. The rise of incidental endogeneity is due to
high dimensionality, making the specifications E(εX) = 0 invalid for some
collected covariates, unintentionally. The more covariates are collected, the
more unlikely this assumption is.

Does incidental endogeneity arise in practice? Can the exogeneity assump-
tion E(εX) = 0 be validated? After data collection, variable selection tech-
niques such as the lasso (Tibshirani, 1996; Chen et al., 1998) and folded
concave penalized least squares (Fan and Li, 2001; Zou and Li, 2008) are
frequently used before drawing conclusions. The model is rarely validated. In-
deed, the residuals were computed based only on a small set of the selected
variables. Unlike with ordinary least squares, the exogeneity assumption in
(43.2) cannot be validated empirically because most variables are not used to
compute the residuals. We now illustrate this fact with an example.

Consider the gene expressions of 90 western Europeans from the interna-
tional “HapMap” project (Thorisson et al., 2005); these data are available
on ftp://ftp.sanger.ac.uk/pub/genevar/. The normalized gene expres-
sion data were generated with an Illumina Sentrix Human-6 Expression Bead
Chip (Stranger et al., 2007). We took the gene expressions of CHRNA6, cholin-
ergic receptor, nicotinic, alpha 6, as the response variable, and the remain-
ing expression profiles of 47,292 as covariates. The left panel of Figure 43.3
presents the correlation between the response variable and its associated co-
variates.

Lasso is then employed to find the genes that are associated with the
response. It selects 23 genes. The residuals ε̂ are computed, which are based
on those genes. The right panel of Figure 43.3 displays the distribution of the
sample correlations between the covariates and the residuals. Clearly, many of
them are far from zero, which is an indication that the exogeneity assumption
in (43.2) cannot be validated. That is, incidental endogeneity is likely present.
What is the consequence of this endogeneity? Fan and Liao (2014) show that
this causes model selection inconsistency.
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FIGURE 43.3
Distributions of sample correlations. Left panel: Distributions of the sample
correlation ĉorr(Xj , Y ) (j = 1, . . ., 47,292). Right panel: Distribution of the
sample correlation ĉorr(Xj , ε̂), in which ε̂ represents the residuals after the
lasso fit.

How do we deal with endogeneity? Ideally, we hope to be able to select
consistently S0 under only the assumption that

Y = X$
S0
βS0,0 + ε, E(εXS0) = 0,

but this assumption is too weak to recover the set S0. A stronger assumption
is

Y = X$
S0
βS0,0 + ε, E(ε|XS0) = 0. (43.3)

Fan and Liao (2014) use over identification conditions such as

E(εXS0) = 0 and E(εX2
S0
) = 0 (43.4)

to distinguish endogenous and exogenous variables, which are weaker than the
condition in (43.3). They introduce the Focused Generalized Method of Mo-
ments (FGMM) which uses the over identification conditions to select consis-
tently the set of variables S0. The readers can refer to their paper for technical
details. The left panel of Figure 43.4 shows the distribution of the correlations
between the covariates and the residuals after the FGMM fit. Many of the
correlations are still non-zero, but this is fine, as we assume only (43.4) and
merely need to validate this assumption empirically. For this data set, FGMM
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FIGURE 43.4
Left panel: Distribution of the sample correlation ĉorr(Xj , ε̂), in which ε̂ rep-
resents the residuals after the FGMM fit. Right panel: Distribution of the
sample correlation ĉorr(Xj , ε̂) for only selected 5 genes by FGMM.

selects five genes. Therefore, we need only validate 10 empirical correlations
specified by conditions (43.4). The empirical correlations between the resid-
uals after the FGMM fit and the five selected covariates are zero, and their
correlations with squared covariates are small. The results are displayed in
the right panel of Figure 43.4. Therefore, our model assumptions and model
diagnostics are consistent.

43.6 Noise accumulation

When a method depends on the estimation of many parameters, the estimation
errors can accumulate. For high-dimensional statistics, noise accumulation
is more severe and can even dominate the underlying signals. Consider, for
example, a linear classification which assigns the class label 1(x$β > 0) for
each new data point x. This rule can have high discrimination power when
β is known. However, when an estimator β̂ is used instead, the classification
rule can be as bad as a random guess due to the accumulation of errors in
estimating the high-dimensional vector β̂.
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As an illustration, we simulate n data points respectively from the pop-
ulation N (µ0, Ip) and N (µ1, Ip), in which p = 4500, µ0 = 0, and µ1 is a
realization of a mixture of point mass 0 with probability .98 and the standard
double exponential distribution with probability .02. Therefore, most compo-
nents have no discriminative power, yet some components are very powerful in
classification. Indeed, among 2% or 90 realizations from the double exponen-
tial distributions, several components are very large, and many components
are small.

The distance-based classifier, which classifies x to class 1 when

‖x− µ1‖2 ≤ ‖x− µ0‖2 or β$(x− µ) ≥ 0,

where β = µ1 − µ0 and µ = (µ0 + µ1)/2. Letting Φ denote the cumulative
distribution function of a standard Normal random variable, we find that the
misclassification rate is Φ(−‖µ1−µ0‖/2), which is effectively zero because by
the Law of Large Numbers,

‖µ1 − µ0‖ ≈
√
4500× .02× 1 ≈ 9.48.

However, when β is estimated by the sample mean, the resulting classification
rule behaves like a random guess due to the accumulation of noise.

To help the intuition, we drew n = 100 data points from each class and
selected the best m features from the p-dimensional space, according to the
absolute values of the components of µ1; this is an infeasible procedure, but
can be well estimated whenm is small (Fan and Fan, 2008). We then projected
the m-dimensional data on their first two principal components. Figure 43.5
presents their projections for various values of m. Clearly, when m = 2, these
two projections have high discriminative power. They still do when m = 100,
as there are noise accumulations and also signal accumulations too. There
are about 90 non-vanishing signals, though some are very small; the expected
values of those are approximately 9.48 as noted above. When m = 500 or
4500, these two projections have no discriminative power at all due to noise
accumulation. See also Hall et al. (2005) for a geometric representation of high
dimension and low sample size data for further intuition.

43.7 Sparsest solution in high confidence set

To attenuate the noise accumulation issue, we frequently impose the sparsity
on the underlying parameter β0. At the same time, the information on β0

contained in the data is through statistical modeling. The latter is summarized
by confidence sets of β0 in Rp. Combining these two pieces of information, a
general solution to high-dimensional statistics is naturally the sparsest solution
in high-confidence set.
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FIGURE 43.5
Scatter plot of projections of observed data (n = 100 from each class) onto the
first two principal components of the m-dimensional selected feature space.

43.7.1 A general setup

We now elaborate the idea. Assume that the Big Data are collected in the form
(X1, Y1), . . . , (Xn, Yn), which can be regarded as a random sample from the
population (X, Y ). We wish to find an estimate of the sparse vector β0 ∈ Rp

such that it minimizes L(β) = E{L(X$β, Y )}, in which the loss function
is assumed convex in the first argument so that L(β) is convex. The setup
encompasses the generalized linear models (McCullagh and Nelder, 1989)
with L(θ, y) = b(θ) − θy under the canonical link where b(θ) is a model-
dependent convex function, robust regression with L(θ, y) = |y− θ|, the hinge
loss L(θ, y) = (1 − θy)+ in the support vector machine (Vapnik, 1999) and
exponential loss L(θ, y) = exp(−θy) in AdaBoost (Freund and Schapire, 1997;
Breiman, 1998) in classification in which y takes values ±1, among others. Let

Ln(β) =
1

n

n∑

i=1

L(X$
i β, Yi)

be the empirical loss and L′
n(β) be its gradient. Given that L′(β0) = 0, a

natural confidence set is of form

Cn = {β ∈ Rp : ‖L′
n(β)‖∞ ≤ γn}
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for some given γn that is related to the confidence level. Here L′
n(β) = 0 can

be regarded as the estimation equations. Sometimes, it is handy to construct
the confidence sets directly from the estimation equations.

In principle, any norm can be used in constructing confidence set. However,
we take the L∞-norm as it is the conjugate norm to the L1-norm in Hölder’s
inequality. It also makes the set Cn convex, because |L′

n(β)| is nondecreasing
in each argument. The tuning parameter γn is chosen so that the set Cn has
confidence level 1− δn, viz.

Pr(β0 ∈ Cn) = Pr{‖L′
n(β0)‖∞ ≤ γn} ≥ 1− δn. (43.5)

The confidence region Cn is called a high confidence set because δn → 0 and
can even be zero. Note that the confidence set is the interface between the data
and parameters; it should be applicable to all statistical problems, including
those with measurement errors.

The set Cn is the summary of the data information about β0. If in addition
we assume that β0 is sparse, then a natural solution is the intersection of these
two pieces of information, namely, finding the sparsest solution in the high-
confidence region, viz.

min
β∈Cn

‖β‖1 = min
‖L′

n(β)‖∞≤γn

‖β‖1. (43.6)

This is a convex optimization problem. Here, the sparsity is measured by the
L1-norm, but it can also be measured by other norms such as the weighted
L1-norm (Zou and Li, 2008). The idea is related to that in Negahban et al.
(2012), where a nice framework for analysis of high-dimensional M -estimators
with decomposable regularizers is established for restricted convex losses.

43.7.2 Examples

The Danzig selector (Candès and Tao, 2007) is a specific case of problem (43.6)
in which the loss is quadratic L(x, y) = (x − y)2 and δn = 0. This provides
an alternative view to the Danzig selector. If L(x, y) = ρ(|x− y|) for a convex
function ρ, then the confidence set implied by the data is

Cn = {β ∈ Rp : ‖ρ′(|Y −Xβ|)X$ svn(Y −Xβ)‖∞ ≤ γn}

and the sparsest solution in the high confidence set is now given by

min ‖β‖1, subject to ‖ρ′(|Y −Xβ|)X$ svn(Y −Xβ)‖∞ ≤ γn.

In particular, when ρ(θ) = θ and ρ(θ) = θ2/2, they correspond to the L1-loss
and L2-loss (the Danzig selector).

Similarly, in construction of sparse precision Θ = Σ−1 for the Gaussian
graphic model, if L(Θ,Sn) = ‖ΘSn− Ip‖2F where Sn is the sample covariance
matrix and ‖ ·‖F is the Frobenius norm, then the high confidence set provided
by the data is

Cn = {Θ : ‖Sn · (ΘSn − Ip)‖∞ ≤ γn},
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where · denotes the componentwise product (a factor 2 of off-diagonal ele-
ments is ignored). If we construct the high-confidence set based directly on
the estimation equations L′

n(Θ) = ΘSn− Ip, then the sparse high-confidence
set becomes

min
‖ΘSn−Ip‖∞≤γn

‖vec(Θ)‖1.

If the matrix L1-norm is used in (43.6) to measure the sparsity, then the
resulting estimator is the CLIME estimator of Cai et al. (2011), viz.

min
‖ΘSn−Ip‖∞≤γn

‖Θ‖1.

If we use the Gaussian log-likelihood, viz.

Ln(Θ) = − ln(|Θ|) + tr(ΘSn),

then L′
n(Θ) = −Θ−1 + Sn and Cn = {‖Θ−1 − Sn‖∞ ≤ γn}. The sparsest

solution is then given by

min
‖Θ−1−Sn‖∞≤γn

‖Θ‖1.

If the relative norm ‖A‖∞ = ‖Θ1/2AΘ1/2‖∞ is used, the solution can be
more symmetrically written as

min
‖Θ1/2SnΘ1/2−Ip‖∞≤γn

‖Θ‖1.

In the construction of the sparse linear discriminant analysis from two
Normal distributions N (µ0,Σ) and N (µ1,Σ), the Fisher classifier is linear
and of the form 1{β$(X − µ) > 0}, where µ = (µ0 + µ1)/2, δ = µ1 − µ0,
and β = Σ−1δ. The parameters µ and δ can easily be estimated from the
sample. The question is how to estimate β, which is assumed to be sparse. One
direct way to construct confidence interval is to base directly the estimation
equations L′

n(β) = Snβ − δ̂, where Sn is the pooled sample covariance and δ̂
is the difference of the two sample means. The high-confidence set is then

Cn = {β : ‖Snβ − δ̂‖∞ ≤ γn}. (43.7)

Again, this is a set implied by data with high confidence. The sparsest solution
is the linear programming discriminant rule by Cai et al. (2011).

The above method of constructing confidence is neither unique nor the
smallest. Observe that (through personal communication with Dr Emre Barut)

‖Snβ − δ̂‖∞ = ‖(Sn −Σ)β + δ − δ̂‖∞ ≤ ‖(Sn −Σ)‖∞‖β‖1 + ‖δ − δ̂‖∞.

Therefore, a high confidence set can be taken as

Cn = {‖Snβ − δ̂‖∞ ≤ γn,1‖β‖1 + γn,2}, (43.8)

where γn,1 and γn,2 are the high confident upper bound of ‖(Sn −Σ)‖∞ and

‖δ− δ̂‖∞. The set (43.8) is smaller than the set (43.7), since a further bound
‖β‖1 in (43.8) by a constant γn,3 yields (43.7).
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43.7.3 Properties

Let β̂ be a solution to (43.6) and ∆̂ = β̂− β0. As in the Danzig selection, the
feasibility of β0 implied by (43.5) entails that

‖β0‖1 ≥ ‖β̂‖1 = ‖β0 + ∆̂‖1. (43.9)

Letting S0 = supp(β0), we have

‖β0 + ∆̂‖1 = ‖(β0 + ∆̂)S0‖1 + ‖∆̂Sc
0
‖1 ≥ ‖β0‖1 − ‖∆̂S0‖1 + ‖∆̂Sc

0
‖1.

This together with (43.9) yields

‖∆̂S0‖1 ≥ ‖∆̂Sc
0
‖1, (43.10)

i.e., ∆̂ is sparse or “restricted.” In particular, with s = |S0|,

‖∆̂‖2 ≥ ‖∆̂S0‖2 ≥ ‖∆̂S0‖1/
√
s ≥ ‖∆̂‖1/(2

√
s), (43.11)

where the last inequality uses (43.10). At the same time, since β̂ and β0 are
in the feasible set (43.5), we have

‖L′
n(β̂)− L′

n(β0)‖∞ ≤ 2γn

with probability at least 1− δn. By Hölder’s inequality, we conclude that

|[L′
n(β̂)− L′

n(β0)]
$∆̂| ≤ 2γn‖∆̂‖1 ≤ 4

√
sγn‖∆̂‖2 (43.12)

with probability at least 1− δn, where the last inequality utilizes (43.11). By
using the Taylor’s expansion, we can prove the existence of a point β∗ on
the line segment between β0 and β̂ such that L′

n(β̂) − L′
n(β0) = L′′

n(β
∗)∆̂.

Therefore,
|∆̂$L′′

n(β
∗)∆̂| ≤ 4

√
sγn‖∆̂‖2.

Since Cn is a convex set, β∗ ∈ Cn. If we generalize the restricted eigenvalue
condition to the generalized restricted eigenvalue condition, viz.

inf
‖∆S0‖1≥‖∆Sc

0
‖1

inf
β∈Cn

|∆$L′′
n(β)∆|/‖∆‖22 ≥ a, (43.13)

then we have
‖∆̂‖2 ≤ 4a−1√sγn. (43.14)

The inequality (43.14) is a statement on the L2-convergence of β̂, with prob-
ability at least 1− δn. Note that each component of

L′
n(β̂)− L′

n(β0) = L′
n(β0 + ∆̂)− L′

n(β0)

in (43.12) has the same sign as the corresponding component of ∆̂. Condition
(43.13) can also be replaced by the requirement

inf
‖∆S0‖1≥‖∆Sc

0
‖1

|[L′
n(β0 +∆)− L′

n(β0)]
$∆| ≥ a‖∆‖2.

This facilitates the case where L′′
n does not exist and is a specific case of

Negahban et al. (2012).
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43.8 Conclusion

Big Data arise from many frontiers of scientific research and technological de-
velopments. They hold great promise for the discovery of heterogeneity and
the search for personalized treatments. They also allow us to find weak pat-
terns in presence of large individual variations.

Salient features of Big Data include experimental variations, computa-
tional cost, noise accumulation, spurious correlations, incidental endogeneity,
and measurement errors. These issues should be seriously considered in Big
Data analysis and in the development of statistical procedures.

As an example, we offered here the sparsest solution in high-confidence sets
as a generic solution to high-dimensional statistical inference and we derived a
useful mean-square error bound. This method combines naturally two pieces
of useful information: the data and the sparsity assumption.
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Rise of the machines
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On the 50th anniversary of the COPSS, I reflect on the rise of the field of
machine learning and what it means for statistics. Machine learning offers
a plethora of new research areas, new applications areas and new colleagues
to work with. Our students now compete with those in machine learning for
jobs. I am optimistic that visionary statistics departments will embrace this
emerging field; those that ignore or eschew machine learning do so at their
own risk and may find themselves in the rubble of an outdated, antiquated
field.

44.1 Introduction

Statistics is the science of learning from data. Machine learning (ML) is the
science of learning from data. These fields are identical in intent although they
differ in their history, conventions, emphasis and culture.

There is no denying the success and importance of the field of statistics
for science and, more generally, for society. I’m proud to be a part of the field.
The focus of this essay is on one challenge (and opportunity) to our field: the
rise of machine learning.

During my twenty-five year career I have seen machine learning evolve
from being a collection of rather primitive (yet clever) set of methods to do
classification, to a sophisticated science that is rich in theory and applications.

A quick glance at The Journal of Machine Learning Research (jmlr.
csail.mit.edu) and NIPS (books.nips.cc) reveals papers on a variety of
topics that will be familiar to statisticians such as conditional likelihood, se-
quential design, reproducing kernel Hilbert spaces, clustering, bioinformat-
ics, minimax theory, sparse regression, estimating large covariance matrices,
model selection, density estimation, graphical models, wavelets, nonparamet-
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ric regression. These could just as well be papers in our flagship statistics
journals.

This sampling of topics should make it clear that researchers in machine
learning — who were at one time somewhat unaware of mainstream statistical
methods and theory — are now not only aware of, but actively engaged in,
cutting edge research on these topics.

On the other hand, there are statistical topics that are active areas of
research in machine learning but are virtually ignored in statistics. To avoid
becoming irrelevant, we statisticians need to (i) stay current on research areas
in ML and (ii) change our outdated model for disseminating knowledge and
(iii) revamp our graduate programs.

44.2 The conference culture

ML moves at a much faster pace than statistics. At first, ML researchers devel-
oped expert systems that eschewed probability. But very quickly they adopted
advanced statistical concepts like empirical process theory and concentration
of measure. This transition happened in a matter of a few years. Part of the
reason for this fast pace is the conference culture. The main venue for research
in ML is refereed conference proceedings rather than journals.

Graduate students produce a stream of research papers and graduate with
hefty CV’s. One of the reasons for the blistering pace is, again, the conference
culture.

The process of writing a typical statistics paper goes like this: you have
an idea for a method, you stew over it, you develop it, you prove some results
about it, and eventually you write it up and submit it. Then the refereeing
process starts. One paper can take years.

In ML, the intellectual currency is conference publications. There are
a number of deadlines for the main conferences (NIPS, AISTATS, ICML,
COLT). The threat of a deadline forces one to quit ruminating and start writ-
ing. Most importantly, all faculty members and students are facing the same
deadline so there is a synergy in the field that has mutual benefits. No one
minds if you cancel a class right before the NIPS deadline. And then, after the
deadline, everyone is facing another deadline: refereeing each other’s papers
and doing so in a timely manner. If you have an idea and don’t submit a paper
on it, then you may be out of luck because someone may scoop you.

This pressure is good; it keeps the field moving at a fast pace. If you think
this leads to poorly written papers or poorly thought out ideas, I suggest you
look at nips.cc and read some of the papers. There are some substantial, deep
papers. There are also a few bad papers. Just like in our journals. The papers
are refereed and the acceptance rate is comparable to our main journals. And
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if an idea requires more detailed follow-up, then one can always write a longer
journal version of the paper.

Absent this stream of constant deadlines, a field moves slowly. This is
a problem for statistics not only for its own sake but also because it now
competes with ML.

Of course, there are disadvantages to the conference culture. Work is done
in a rush, and ideas are often not fleshed out in detail. But I think that the
advantages outweigh the disadvantages.

44.3 Neglected research areas

There are many statistical topics that are dominated by ML and mostly ig-
nored by statistics. This is a shame because statistics has much to offer in
all these areas. Examples include semi-supervised inference, computational
topology, online learning, sequential game theory, hashing, active learning,
deep learning, differential privacy, random projections and reproducing kernel
Hilbert spaces. Ironically, some of these — like sequential game theory and
reproducing kernel Hilbert spaces — started in statistics.

44.4 Case studies

I’m lucky. I am at an institution which has a Machine Learning Department
(within the School of Computer Science) and, more importantly, the ML de-
partment welcomes involvement by statisticians. So I’ve been fortunate to
work with colleagues in ML, attend their seminars, work with ML students
and teach courses in the ML department.

There are a number of topics I’ve worked on at least partly due to my
association with ML. These include, statistical topology, graphical models,
semi-supervised inference, conformal prediction, and differential privacy.

Since this paper is supposed to be a personal reflection, let me now briefly
discuss two of these ML problems that I have had the good fortune to work
on. The point of these examples is to show how statistical thinking can be
useful for machine learning.

44.4.1 Case study I: Semi-supervised inference

Suppose we observe data (X1, Y1), . . . , (Xn, Yn) and we want to predict Y
from X. If Y is discrete, this is a classification problem. If Y is real-
valued, this is a regression problem. Further, suppose we observe more data
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FIGURE 44.1
Labeled data.

Xn+1, . . . , XN without the corresponding Y values. We thus have labeled data
L = {(X1, Y1), . . . , (Xn, Yn)} and unlabeled data U = {Xn+1, . . . , XN}. How
do we use the unlabeled data in addition to the labeled data to improve pre-
diction? This is the problem of semi-supervised inference.

Consider Figure 44.1. The covariate is x = (x1, x2) ∈ R2. The outcome in
this case is binary as indicated by the circles and squares. Finding the decision
boundary using only the labeled data is difficult. Figure 44.2 shows the labeled
data together with some unlabeled data. We clearly see two clusters. If we
make the additional assumption that Pr(Y = 1|X = x) is smooth relative to
the clusters, then we can use the unlabeled data to nail down the decision
boundary accurately.

There are copious papers with heuristic methods for taking advantage
of unlabeled data. To see how useful these methods might be, consider the
following example. We download one-million webpages with images of cats
and dogs. We randomly select 100 pages and classify them by hand. Semi-
supervised methods allow us to use the other 999,900 webpages to construct
a good classifier.

But does semi-supervised inference work? Or, to put it another way, under
what conditions does it work? In Azizyan et al. (2012), we showed the following
(which I state informally here).

Suppose that Xi ∈ Rd. Let Sn denote the set of supervised estimators;
these estimators use only the labeled data. Let SSN denote the set of semi-
supervised estimators; these estimators use the labeled data and unlabeled
data. Let m be the number of unlabeled data points and suppose that m ≥
n2/(2+ξ) for some 0 < ξ < d − 3. Let f(x) = E(Y |X = x). There is a large,
nonparametric class of distributions Pn such that the following is true:
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FIGURE 44.2
Labeled and unlabeled data.

1. There is a semi-supervised estimator f̂ such that

sup
P∈Pn

RP (f̂) ≤
(
C

n

) 2
2+ξ

, (44.1)

where RP (f̂) = E{f̂(X) − f(X)}2 is the risk of the estimator f̂ under
distribution P .

2. For supervised estimators Sn, we have

inf
f̂∈Sn

sup
P∈Pn

RP (f̂) ≥
(
C

n

) 2
d−1

. (44.2)

3. Combining these two results, we conclude that

inf f̂∈SSN
supP∈Pn

RP (f̂)

inf f̂∈Sn
supP∈Pn

RP (f̂)
≤

(
C

n

) 2(d−3−ξ)
(2+ξ)(d−1)

−→ 0 (44.3)

and hence, semi-supervised estimation dominates supervised estimation.

The class Pn consists of distributions such that the marginal forX is highly
concentrated near some lower dimensional set and such that the regression
function is smooth on this set. We have not proved that the class must be
of this form for semi-supervised inference to improve on supervised inference
but we suspect that is indeed the case. Our framework includes a parameter α
that characterizes the strength of the semi-supervised assumption. We showed
that, in fact, one can use the data to adapt to the correct value of α.
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44.4.2 Case study II: Statistical topology

Computational topologists and researchers in Machine Learning have devel-
oped methods for analyzing the shape of functions and data. Here I’ll briefly
review some of our work on estimating manifolds (Genovese et al., 2012b,a,c).

Suppose that M is a manifold of dimension d embedded in RD. Let
X1, . . . , Xn be a sample from a distribution in P supported on M . We observe

Yi = Xi + εi, i ∈ {1, . . . , n} (44.4)

where ε1, . . . , εn ∼ Φ are noise variables.
Machine learning researchers have derived many methods for estimating

the manifold M . But this leaves open an important statistical question: how
well do these estimators work? One approach to answering this question is to
find the minimax risk under some loss function. Let M̂ be an estimator of M .
A natural loss function for this problem is Hausdorff loss:

H(M, M̂) = inf
{
ε : M ⊂ M̂ ⊕ ε and M̂ ⊂M ⊕ ε

}
. (44.5)

Let P be a set of distributions. The parameter of interest is M =
support(P ) which we assume is a d-dimensional manifold. The minimax risk
is

Rn = inf
M̂

sup
P∈P

EP [H(M̂,M)]. (44.6)

Of course, the risk depends on what conditions we assume on M and on the
noise Φ.

Our main findings are as follows. When there is no noise — so the data
fall on the manifold — we get Rn 9 n−2/d. When the noise is perpendicular
to M , the risk is Rn 9 n−2/(2+d). When the noise is Gaussian the rate is
Rn 9 1/ log n. The latter is not surprising when one considers the similar
problem of estimating a function when there are errors in variables.

The implications for machine learning are that, the best their algorithms
can do is highly dependent on the particulars of the type of noise.

How do we actually estimate these manifolds in practice? In Genovese et al.
(2012c) we take the following point of view: If the noise is not too large, then
the manifold should be close to a d-dimensional hyper-ridge in the density
p(y) for Y . Ridge finding is an extension of mode finding, which is a common
task in computer vision.

Let p be a density on RD. Suppose that p has k modes m1, . . . ,mk. An
integral curve, or path of steepest ascent, is a path π : R→ RD such that

π′(t) =
d

dt
π(t) = ∇p{π(t)}. (44.7)

Under weak conditions, the paths π partition the space and are disjoint except
at the modes (Irwin, 1980; Chacón, 2012).
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FIGURE 44.3
The mean shift algorithm. The data points move along trajectories during
iterations until they reach the two modes marked by the two large asterisks.

The mean shift algorithm (Fukunaga and Hostetler, 1974; Comaniciu and
Meer, 2002) is a method for finding the modes of a density by following the
steepest ascent paths. The algorithm starts with a mesh of points and then
moves the points along gradient ascent trajectories towards local maxima. A
simple example is shown in Figure 44.3.

Given a function p : RD → R, let g(x) = ∇p(x) denote the gradient at x
and let H(x) denote the Hessian matrix. Let

λ1(x) ≥ · · · ≥ λD(x) (44.8)

denote the eigenvalues of H(x) and let Λ(x) be the diagonal matrix whose
diagonal elements are the eigenvalues. Write the spectral decomposition of
H(x) as H(x) = U(x)Λ(x)U(x)$. Fix 0 ≤ d < D and let V (x) be the last
D− d columns of U(x) (i.e., the columns corresponding to the D− d smallest
eigenvalues). If we write U(x) = [V.(x) : V (x)] then we can write H(x) =
[V.(x) : V (x)]Λ(x)[V.(x) : V (x)]$. Let L(x) = V (x)V (x)$ be the projector on
the linear space defined by the columns of V (x). Define the projected gradient

G(x) = L(x)g(x). (44.9)

If the vector field G(x) is Lipschitz then by Theorem 3.39 of Irwin (1980),
G defines a global flow as follows. The flow is a family of functions φ(x, t)
such that φ(x, 0) = x and φ′(x, 0) = G(x) and φ(s,φ(t, x)) = φ(s+ t, x). The
flow lines, or integral curves, partition the space and at each x where G(x)
is non-null, there is a unique integral curve passing through x. The intuition
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is that the flow passing through x is a gradient ascent path moving towards
higher values of p. Unlike the paths defined by the gradient g which move
towards modes, the paths defined by G move towards ridges.

The paths can be parameterized in many ways. One commonly used pa-
rameterization is to use t ∈ [−∞,∞] where large values of t correspond to
higher values of p. In this case t =∞ will correspond to a point on the ridge.
In this parameterization we can express each integral curve in the flow as fol-
lows. A map π : R → RD is an integral curve with respect to the flow of G
if

π′(t) = G{π(t)} = L{π(t)}g{π(t)}. (44.10)

Definition. The ridge R consists of the destinations of the integral curves:
y ∈ R if limt→∞ π(t) = y for some π satisfying (44.10).

As mentioned above, the integral curves partition the space and for each
x /∈ R, there is a unique path πx passing through x. The ridge points are zeros
of the projected gradient: y ∈ R implies that G(y) = (0, . . . , 0)$. Ozertem
and Erdogmus (2011) derived an extension of the mean-shift algorithm, called
the subspace constrained mean shift algorithm that finds ridges which can be
applied to the kernel density estimator. Our results can be summarized as
follows:

1. Stability. We showed that if two functions are sufficiently close together
then their ridges are also close together (in Hausdorff distance).

2. We constructed an estimator R̂ such that

H(R, R̂) = OP

((
log n

n

) 2
D+8

)
(44.11)

where H is the Hausdorff distance. Further, we showed that R̂ is topo-
logically similar to R. We also construct an estimator R̂h for h > 0 that
satisfies

H(Rh, R̂h) = OP

((
log n

n

) 1
2

)
, (44.12)

where Rh is a smoothed version of R.

3. Suppose the data are obtained by sampling points on a manifold and
adding noise with small variance σ2. We showed that the resulting density
p has a ridge Rσ such that

H(M,Rσ) = O
(
σ2 log3(1/σ)

)
(44.13)

and Rσ is topologically similar to M . Hence when the noise σ is small, the
ridge is close to M . It then follows that

H(M, R̂) = OP

((
log n

n

) 2
D+8

)
+O

(
σ2 log3(1/σ)

)
. (44.14)
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FIGURE 44.4
Simulated cosmic web data.

An example can be found in Figures 44.4 and 44.5. I believe that statistics
has much to offer to this area especially in terms of making the assumptions
precise and clarifying how accurate the inferences can be.

44.5 Computational thinking

There is another interesting difference that is worth pondering. Consider the
problem of estimating a mixture of Gaussians. In statistics we think of this
as a solved problem. You use, for example, maximum likelihood which is im-
plemented by the EM algorithm. But the EM algorithm does not solve the
problem. There is no guarantee that the EM algorithm will actually find the
MLE; it’s a shot in the dark. The same comment applies to MCMC methods.

In ML, when you say you’ve solved the problem, you mean that there
is a polynomial time algorithm with provable guarantees. There is, in fact,
a rich literature in ML on estimating mixtures that do provide polynomial
time algorithms. Furthermore, they come with theorems telling you how many
observations you need if you want the estimator to be a certain distance from
the truth, with probability at least 1−δ. This is typical for what is expected of
an estimator in ML. You need to provide a provable polynomial time algorithm
and a finite sample (non-asymptotic) guarantee on the estimator.

ML puts heavier emphasis on computational thinking. Consider, for ex-
ample, the difference between P and NP-hard problems. This is at the heart
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FIGURE 44.5
Ridge finder applied to simulated cosmic web data.

of theoretical computer science and ML. Running an MCMC on an NP-hard
problem might be meaningless. Instead, it may be better to approximate the
NP-hard problem with a simpler problem. How often do we teach this to our
students?

44.6 The evolving meaning of data

For most of us in statistics, data means numbers. But data now includes
images, documents, videos, web pages, twitter feeds and so on. Traditional
data — numbers from experiments and observational studies — are still of
vital importance but they represent a tiny fraction of the data out there. If
we take the union of all the data in the world, what fraction is being analyzed
by statisticians? I think it is a small number.

This comes back to education. If our students can’t analyze giant datasets
like millions of twitter feeds or millions of web pages, then other people will
analyze those data. We will end up with a small cut of the pie.
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44.7 Education and hiring

The goal of a graduate student in statistics is to find an advisor and write a
thesis. They graduate with a single data point; their thesis work.

The goal of a graduate student in ML is to find a dozen different research
problems to work on and publish many papers. They graduate with a rich
data set; many papers on many topics with many different people.

Having been on hiring committees for both statistics and ML, I can say
that the difference is striking. It is easier to choose candidates to interview in
ML. You have a lot of data on each candidate and you know what you are
getting. In statistics, it is a struggle. You have little more than a few papers
that bear their advisor’s footprint.

The ML conference culture encourages publishing many papers on many
topics which is better for both the students and their potential employers. And
now, statistics students are competing with ML students, putting statistics
students at a significant disadvantage.

There are a number of topics that are routinely covered in ML that we
rarely teach in statistics. Examples are: Vapnik–Chervonenkis theory, concen-
tration of measure, random matrices, convex optimization, graphical models,
reproducing kernel Hilbert spaces, support vector machines, and sequential
game theory. It is time to get rid of antiques like UMVUE, complete statistics
and so on, and teach modern ideas.

44.8 If you can’t beat them, join them

I don’t want to leave the reader with the impression that we are in some sort
of competition with ML. Instead, we should feel blessed that a second group
of statisticians has appeared. Working with ML and adopting some of their
ideas enriches both fields.

ML has much to offer statistics. And statisticians have a lot to offer ML.
For example, we put much emphasis on quantifying uncertainty (standard
errors, confidence intervals, posterior distributions), an emphasis that is per-
haps lacking in ML. And sometimes, statistical thinking casts new light on
existing ML methods. A good example is the statistical view of boosting given
in Friedman et al. (2000). I hope we will see collaboration and cooperation
between the two fields thrive in the years to come.
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A trio of inference problems that could win
you a Nobel Prize in statistics (if you help
fund it)

Xiao-Li Meng

Department of Statistics
Harvard University, Cambridge, MA

Statistical inference is a field full of problems whose solutions require the same
intellectual force needed to win a Nobel Prize in other scientific fields. Multi-
resolution inference is the oldest of the trio. But emerging applications such as
individualized medicine have challenged us to the limit: infer estimands with
resolution levels that far exceed those of any feasible estimator. Multi-phase
inference is another reality because (big) data are almost never collected,
processed, and analyzed in a single phase. The newest of the trio is multi-
source inference, which aims to extract information in data coming from very
different sources, some of which were never intended for inference purposes. All
of these challenges call for an expanded paradigm with greater emphases on
qualitative consistency and relative optimality than do our current inference
paradigms.

45.1 Nobel Prize? Why not COPSS?

The title of my chapter is designed to grab attention. But why Nobel Prize
(NP)? Wouldn’t it be more fitting, for a volume celebrating the 50th anniver-
sary of COPSS, to entitle it “A Trio of Inference Problems That Could Win
You a COPSS Award (and you don’t even have to fund it)?” Indeed, some
media and individuals have even claimed that the COPSS Presidents’ Award
is the NP in Statistics, just as they consider the Fields Medal to be the NP
in Mathematics.

No matter how our egos might wish such a claim to be true, let us face the
reality. There is no NP in statistics, and worse, the general public does not
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seem to appreciate statistics as a “rocket science” field. Or as a recent blog
(August 14, 2013) in Simply Statistics put it: “Statistics/statisticians need
better marketing” because (among other reasons)

“Our top awards don’t get the press they do in other fields. The No-
bel Prize announcements are an international event. There is always
speculation/intense interest in who will win. There is similar interest
around the Fields Medal in mathematics. But the top award in statis-
tics, the COPSS award, doesn’t get nearly the attention it should. Part
of the reason is lack of funding (the Fields is $15K, the COPSS is $1K).
But part of the reason is that we, as statisticians, don’t announce it,
share it, speculate about it, tell our friends about it, etc. The prestige
of these awards can have a big impact on the visibility of a field.”

The fact that there is more public interest in the Fields than in COPSS
should make most statisticians pause. No right mind would downplay the
centrality of mathematics in scientific and societal advancement throughout
human history. Statistics seems to be starting to enjoy a similar reputation
as being at the core of such endeavors as we move deeper into the digital age.
However, the attention around top mathematical awards such as the Fields
Medal has hardly been about their direct or even indirect impact on everyday
life, in sharp contrast to our emphasis on the practicality of our profession.
Rather, these awards arouse media and public interest by featuring how inge-
nious the awardees are and how difficult the problems they solved, much like
how conquering Everest bestows admiration not because the admirers care or
even know much about Everest itself but because it represents the ultimate
physical feat. In this sense, the biggest winner of the Fields Medal is math-
ematics itself: enticing the brightest talent to seek the ultimate intellectual
challenges.

And that is the point I want to reflect upon. Have we statisticians ade-
quately conveyed to the media and general public the depth and complexity
of our beloved subject, in addition to its utility? Have we tried to demonstrate
that the field of statistics has problems (e.g., modeling ignorance) that are as
intellectually challenging as the Goldbach conjecture or Riemann Hypothesis,
and arguably even more so because our problems cannot be formulated by
mathematics alone? In our effort to make statistics as simple as possible for
general users, have we also emphasized adequately that reading a couple of
stat books or taking a couple of stat courses does not qualify one to teach
statistics?

In recent years I have written about making statistics as easy to learn
as possible. But my emphasis (Meng, 2009b) has been that we must make a
tremendous collective effort to change the perception that “Statistics is easy
to teach, but hard (and boring) to learn” to a reality of “Statistics is hard
to teach, but easy (and fun) to learn.” Statistics is hard to teach because it
is intellectually a very demanding subject, and to teach it well requires both
depth in theory and breadth in application. It is easy and fun to learn because
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it is directly rooted in everyday life (when it is conveyed as such) and it builds
upon many common logics, not because it lacks challenging problems or deep
theory.

Therefore, the invocation of NP in the title is meant to remind ourselves
that we can also attract the best minds to statistics by demonstrating how
intellectually demanding it is. As a local example, my colleague Joe Blitzstein
turned our Stat110 from an enrollment of about 80 to over 480 by making it
both more real-life rooted and more intellectually demanding. The course has
become a Harvard sensation, to the point that when our students’ newspaper
advises freshmen “how to make 20% effort and receive 80% grade,” it explicitly
states that Stat110 is an exception and should be taken regardless of the effort
required. And of course the NPs in the natural and social sciences are aimed
at work with enormous depth, profound impact, and ideally both. The trio
of inference problems described below share these features — their solutions
require developing some of the deepest theory in inference, and their impacts
are immeasurable because of their ubiquity in quantitative scientific inquiries.

The target readership of this chapter can best be described by a Chinese
proverb: “Newborn calves are unafraid of tigers,” meaning those young talents
who are particularly curious and courageous in their intellectual pursuits.
I surely hope that future COPSS (if not NP) winners are among them.

45.2 Multi-resolution inference

To borrow an engineering term, a central task of statistical inference is to
separate signal from noise in the data. But what is signal and what is noise?
Traditionally, we teach this separation by writing down a regression model,
typically linear,

Y =
p∑

i=0

βiXi + ε,

with the regression function
∑p

i=0 βiXi as signal, and ε as noise. Soon we teach
that the real meaning of ε is anything that is not captured by our designated
“signal,” and hence the “noise” ε could still contain, in real terms, signals of
interest or that should be of interest.

This seemingly obvious point reminds us that the concepts of signal and
noise are relative — noise for one study can be signal for another, and vice
versa. This relativity is particularly clear for those who are familiar with multi-
resolution methods in engineering and applied mathematics, such as wavelets
(see Daubechies, 1992; Meyer, 1993), where we use wavelet coefficients below
or at a primary resolution for estimating signals. The higher frequency ones are
treated as noise and used for variance estimation; see Donoho and Johnstone
(1994), Donoho et al. (1995) and Nason (2002). Therefore what counts for
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signal or noise depends entirely on our choice of the primary resolution. The
multi-resolution framework described below is indeed inspired by my learning
of wavelets and related multi-resolution methods (Bouman et al., 2005, 2007;
Lee and Meng, 2005; Hirakawa and Meng, 2006), and motivated by the need
to deal with Big Data, where the complexity of emerging questions has forced
us to go diving for perceived signals in what would have been discarded as
noise merely a decade ago.

But how much of the signal that our inference machine recovers will be
robust to the assumptions we make (e.g., via likelihood, prior, estimating equa-
tions, etc.) and how much will wash out as noise with the ebb and flow of our
assumptions? Such a question arose when I was asked to help analyze a large
national survey on health, where the investigator was interested in studying
men over 55 years old who had immigrated to the US from a particular coun-
try, among other such “subpopulation analyses.” You may wonder what is so
special about wanting such an analysis. Well, nothing really, except that there
was not a single man in the dataset who fit the description! I was therefore
brought in to deal with the problem because the investigator had learned that
I could perform the magic of multiple imputation. (Imagine how much data
collection resource could have been saved if I could multiply impute myself!)

Surely I could (and did) build some hierarchical model to “borrow infor-
mation,” as is typical for small area estimations; see Gelman et al. (2003) and
Rao (2005). In the dataset, there were men over 55, men who immigrated
from that country, and even men over 55 who immigrated from a neighboring
country. That is, although we had no direct data from the subpopulation of
interest, we had plenty of indirect data from related populations, however de-
fined. But how confident should I be that whatever my hierarchical machine
produces is reproducible by someone who actually has direct data from the
target subpopulation?

Of course you may ask why did the investigator want to study a subpop-
ulation with no direct data whatsoever? The answer turned out to be rather
simple and logical. Just like we statisticians want to work on topics that are
new and/or challenging, (social) scientists want to do the same. They are
much less interested in repeating well-established results for large populations
than in making headway on subpopulations that are difficult to study. And
what could be more difficult than studying a subpopulation with no data? In-
deed, political scientists and others routinely face the problem of empty cells
in contingency tables; see Gelman and Little (1997) and Lax and Phillips
(2009).

If you think this sounds rhetorical or even cynical, consider the rapidly
increasing interest in individualized medicine. If I am sick and given a choice of
treatments, the central question to me is which treatment has the best chance
to cure me, not some randomly selected ‘representative’ person. There is no
logical difference between this desire and the aforementioned investigator’s
desire to study a subpopulation with no observations. The clinical trials testing
these treatments surely did not include a subject replicating my description
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exactly, but this does not stop me from desiring individualized treatments.
The grand challenge therefore is how to infer an estimand with granularity or
resolution that (far) exceeds what can be estimated directly from the data, i.e.,
we run out of enough sample replications (way) before reaching the desired
resolution level.

45.2.1 Resolution via filtration and decomposition

To quantify the role of resolution for inference, consider an outcome vari-
able Y living on the same probability space as an information filtration
{Fr, r = 0, . . . , R}. For example, Fr = σ(X0, . . . , Xr), the σ-field gener-
ated by covariates {X0, . . . , Xr}, which perhaps is the most common prac-
tical situation. The discussion below is general, as long as Fr−1 ⊂ Fr, where
r ∈ {1, . . . , R} can be viewed as an index of resolution. Intuitively, we can
view Fr as a set of specifications that restrict our target population — the
increased specification/information as captured by Fr allows us to zoom into
more specific subpopulations; here we assume F0 is the trivial zero-information
filter, i.e., X0 represents the constant intercept term, and FR is the maximal
filter, e.g., with infinite resolution to identify a unique individual, and R can
be infinite. Let

µr = E(Y |Fr) and σ2
r = var(Y |Fr)

be the conditional mean (i.e., regression) and conditional variance (or covari-
ance) of Y given Fr, respectively. When Fr is generated by {X0, . . . , Xr}, we
have the familiar µr = E(Y |X0, . . . , Xr) and σ2

r = var(Y |X0, . . . , Xr).
Applying the familiar EVE law

var(Y |Fr) = E{var(Y |Fs)|Fr}+ var{E(Y |Fs)|Fr},

where s > r, we obtain the conditional ANOVA decomposition

σ2
r = E(σ2

s |Fr) + E{(µs − µr)
2|Fr}. (45.1)

This key identity reveals that the (conditional) variance at resolution r is the
sum of an estimated variance and an estimated (squared) bias. In particular,
we use the information in Fr (and our model assumptions) to estimate the
variance at the higher resolution s and to estimate the squared bias incurred
from using µr to proxy for µs. This perspective stresses that σ2

r is itself also
an estimator, in fact our best guess at the reproducibility of our indirect data
inference at resolution r by someone with direct data at resolution s.

This dual role of being simultaneously an estimand (of a lower resolution
estimator) and an estimator (of a higher resolution estimand) is the essence of
the multi-resolution formulation, unifying the concepts of variance and bias,
and of model estimation and model selection. Specifically, when we set up a
model with the signal part at a particular resolution r (e.g., r = p for the linear
model), we consider µr to be an acceptable estimate for any µs with s > r.
That is, even though the difference between µs and µr reflects systematic
variation, we purposely re-classify it as a component of random variation.
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In the strictest sense, bias results whenever real information remains in the
residual variation (e.g., the ε term in the linear model). However, statisticians
have chosen to further categorize bias in this strict sense depending on whether
it occurs above or below/at the resolution level r. When the information in
the residual variation resides in resolutions higher than r then we use the
term “variance” for the price of failing to include that information. When
the residual information resides in resolutions lower than or at r, then we
keep the designation “bias.” This categorization, just as the mathematician’s
O notation, serves many useful purposes, but we should not forget that it is
ultimately artificial.

This point is most clear when we apply (45.1) in a telescopic fashion (by
first making s = r + 1 and then summing over r) and when R =∞:

σ2
r = E(σ2

∞|Fr) +
∞∑

i=r

E{(µi+1 − µi)
2|Fr}. (45.2)

The use of R = ∞ is a mathematical idealization of the situations where
our specifications can go on indefinitely, such as with individualized medicine,
where we have height, weight, age, gender, race, education, habit, all sorts of
medical test results, family history, genetic compositions, environmental fac-
tors, etc. That is, we switch from the hopeless n = 1 (i.e., a single individual)
case to the hopeful R = ∞ scenario. The σ2

∞ term captures the variation of
the population at infinite resolution. Whether σ2

∞ should be set to zero or not
reflects whether we believe the world is fundamentally stochastic or appears
to be stochastic because of our human limitation in learning every mechanism
responsible for variations, as captured by F∞. In that sense σ2

∞ can be viewed
as the intrinsic variance with respect to a given filtration. Everything else in
the variance at resolution r are merely biases (e.g., from using µi to estimate
µi+1) accumulated at higher resolutions.

45.2.2 Resolution model estimation and selection

When σ2
∞ = 0, the infinite-resolution setup essentially is the same as a po-

tential outcome model (Rubin, 2005), because the resulting population is of
size one and hence comparisons on treatment effects must be counterfactual.
This is exactly the right causal question for individualized treatments: what
would be my (health, test) outcome if I receive one treatment versus another?
In order to estimate such an effect, however, we must lower the resolution
to a finite and often small degree, making it possible to estimate average
treatment effects, by averaging over a population that permits some degrees
of replication. We then hope that the attributes (i.e., predictors) left in the
“noise” will not contain enough real signals to alter our quantitative results,
as compared to if we had enough data to model those attributes as signals, to
a degree that would change our qualitative conclusions, such as choosing one
treatment versus another.
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That is, when we do not have enough (direct) data to estimate µR, we first
choose a Fr̃, and then estimate µR by µ̂r̃. The “double decoration” notation
µ̂r̃ highlights two kinds of error:

µ̂r̃ − µR = (µ̂r̃ − µr̃) + (µr̃ − µR). (45.3)

The first parenthesized term in (45.3) represents the usual model estimation
error (for the given r̃), and hence the usual “hat” notation. The second is
the bias induced by the resolution discrepancy between our actual estimand
and intended estimand, which represents the often forgotten model selection
error. As such, we use the more ambiguous “tilde” notation r̃, because its
construction cannot be based on data alone, and it is not an estimator of R
(e.g., we hope r̃ * R).

Determining r̃, as a model selection problem, then inherits the usual bias-
variance trade-off issue. Therefore, any attempt to find an “automated” way
to determine r̃ would be as disappointing as those aimed at automated pro-
cedures for optimal bias-variance trade-off (see Meng, 2009a; Blitzstein and
Meng, 2010). Consequently, we must make assumptions in order to proceed.
Here the hope is that the resolution formulation can provide alternative or
even better ways to pose assumptions suitable for quantifying the trade-off in
practice and for combating other thorny issues, such as nuisance parameters.
In particular, if we consider the filtration {Fr, r = 0, 1, . . .} as a cumulative
“information basis,” then the choice of r̃ essentially is in the same spirit as
finding a sparse representation in wavelets, for which there is a large literature;
see, e.g., Donoho and Elad (2003), Poggio and Girosi (1998), and Yang et al.
(2009). Here, though, it is more appropriate to label µr̃ as a parsimonious
representation of µR.

As usual, we can impose assumptions via prior specifications (or penalty
for penalized likelihood). For example, we can impose a prior on the model
complexity R̃δ, the smallest (fixed) r such that E{(µr − µR)2} ≤ δ, where δ
represents the acceptable trade-off between granularity and model complexity
(e.g., involving more X’s) and the associated data and computational cost.
Clearly R̃δ always exists but it may be the case that R̃δ = R, which means
that no lower-resolution approximation is acceptable for the given δ.

Directly posing a prior for R̃δ is similar to using L0-regularization (Lin
et al., 2010). Its usefulness depends on whether we can expect all Xr’s to be
more or less exchangeable in terms of their predictive power. Otherwise, the
resolution framework reminds us to consider putting a prior on the ordering of
theXi’s (in terms of predictive power). Conditional on the ordering, we impose
priors on the predictive power of incremental complexity, ∆r = µr+1 − µr.
These priors should reflect our expectation for ∆2

r to decay with r, such as
imposing E(∆2

r) > E(∆2
r+1). If monotonicity seems too strong an assumption,

we could first break the Xi’s into groups, assume exchangeability within each
group, and then order the groups according to predictive power. That is to say,
finding a complete ordering of theXi’s may require prior knowledge that is too
refined. We weaken this knowledge requirement by seeking only an ordering
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over equivalence classes of the Xi’s where each equivalence class represents a
set of variables which we are not able to a priori distinguish with respect to
predictive power. The telescoping additivity in (45.2) implies that imposing a
prior on the magnitude of ∆r will induce a control over the “total resolution
bias” (TRB)

E(µR̃δ
− µR)

2 =
R∑

r=R̃δ

E(µr − µr+1)
2,

which holds because∆r and∆s are orthogonal (i.e., uncorrelated) when s '= r.
A good illustration of this rationale is provided when Fr is generated by a

series of binary variables {X0, . . . , Xr} with r ∈ {0, . . . , R}. In such cases, our
multi-resolution setup is equivalent to assuming a weighted binary tree model
with total depth R; see Knuth (1997) and Garey (1974). Here each node is
represented by a realization of 7Xr = (X0, . . . , Xr), 7xr = (x0, . . . , xr), at which
the weights of its two (forward) branches are given by w2xr (x) = E(Y | 7Xr =
7xr, Xr+1 = x) respectively with x = 0, 1. It is then easy to show that

E(∆2
r) ≤

1

4
E{w 2Xr

(1)− w 2Xr
(0)}2 ≡ 1

4
E{D2( 7Xr)},

where D2( 7Xr) is a measure of the predictive power of Xr+1 that is not already
contained in 7Xr. For the previous linear regression, D2( 7Xr) = β2

r+1. Thus

putting a prior on D2( 7Xr) can be viewed as a generalization of putting a prior
on the regression coefficient, as routinely done in Bayesian variable selection;
see Mitchell and Beauchamp (1988) and George and McCulloch (1997).

It is worthwhile to emphasize that Bayesian methods, or at least the idea
of introducing assumptions on ∆r’s, seems inevitable. This is because “pure”
data-driven type of methods, such as cross-validation (Arlot and Celisse,
2010), are unlikely to be fruitful here — the basic motivation of a multi-
resolution framework is the lack of sufficient replications at high resolutions
(unless we impose non-testable exchangeability assumptions to justify syn-
thetic replications, but then we are just being Bayesian). It is equally impor-
tant to point out that the currently dominant practice of pretending µR̃ = µR

makes the strongest Bayesian assumption of all: the TRB, and hence any
∆r (r ≥ R̃), is exactly zero. In this sense, using a non-trivial prior for ∆r

makes less extreme assumptions than currently done in practice.
In a nutshell, a central aim of putting a prior on ∆r to regulate the pre-

dictive power of the covariates is to identify practical ways of ordering a set of
covariates to form the filtration {Fr, r ≥ 0} to achieve rapid decay of E(∆2

r)
as r increases, essentially the same goal as for stepwise regression or principal
component analysis. By exploring the multi-resolution formulation we hope to
identify viable alternatives to common approaches such as LASSO. In general,
for the multi-resolution framework to be fruitful beyond the conceptual level,
many fundamental and methodological questions must be answered. The three
questions below are merely antipasti to whet your appetite (for NP, or not):
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(a) For what classes of models on {Y,Xj , j = 0, . . . , R} and priors on ordering
and predictive power, can we determine practically an order {X(j), j ≥ 0}
such that the resulting Fr = σ(X(j), j = 0, . . . , r) will ensure a parsimo-
nious representation of µR with quantifiably high probability?

(b) What should be our guiding principles for making a trade-off between
sample size n and recorded/measured data resolution R, when we have
the choice between having more data of lower quality (large n, small R)
or less data of higher quality (small n, large R)?

(c) How do we determine the appropriate resolution level for hypothesis test-
ing, considering that hypotheses testing involving higher resolution esti-
mands typically lead to larger multiplicity? How much multiplicity can we
reasonably expect our data to accommodate, and how do we quantify it?

45.3 Multi-phase inference

Most of us learned about statistical modelling in the following way. We have a
data set that can be described by a random variable Y , which can be modelled
by a probability function or density Pr(Y |θ). Here θ is a model parameter,
which can be of infinite dimension when we adopt a non-parametric or semi-
parametric philosophy. Many of us were also taught to resist the temptation
of using a model just because it is convenient, mentally, mathematically, or
computationally. Instead, we were taught to learn as much as possible about
the data generating process, and think critically about what makes sense
substantively, scientifically, and statistically. We were then told to check and
re-check the goodness-of-fit, or rather the lack of fit, of the model to our data,
and to revise our model whenever our resources (time, energy, and funding)
permit.

These pieces of advice are all very sound. Indeed, a hallmark of statistics
as a scientific discipline is its emphasis on critical and principled thinking
about the entire process from data collection to analysis to interpretation to
communication of results. However, when we take our proud way of thinking
(or our reputation) most seriously, we will find that we have not practiced
what we have preached in a rather fundamental way.

I wish this were merely an attention-grabbing statement like the title of
my chapter. But the reality is that when we put down a single model Pr(Y |θ),
however sophisticated or “assumption-free,” we have already simplified too
much. The reason is simple. In real life, especially in this age of Big Data, the
data arriving at an analyst’s desk or disk are almost never the original raw
data, however defined. These data have been pre-processed, often in multiple
phases, because someone felt that they were too dirty to be useful, or too
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large to pass on, or too confidential to let the user see everything, or all of
the above! Examples range from microarrays to astrophysics; see Blocker and
Meng (2013).

“So what?” Some may argue that all this can be captured by our model
Pr(Y |θ), at least in theory, if we have made enough effort to learn about the
entire process. Putting aside the impossibility of learning about everything
in practice (Blocker and Meng, 2013), we will see that the single-model for-
mulation is simply not rich enough to capture reality, even if we assume that
every pre-processor and analyst have done everything correctly. The trouble
here is that pre-processors and analysts have different goals, have access to
different data resources, and make different assumptions. They typically do
not and cannot communicate with each other, resulting in separate (model)
assumptions that no single probabilistic model can coherently encapsulate.
We need a multiplicity of models to capture a multiplicity of incompatible
assumptions.

45.3.1 Multiple imputation and uncongeniality

I learned about these complications during my study of the multiple impu-
tation (MI) method (Rubin, 1987), where the pre-processor is the imputer.
The imputer’s goal was to preserve as much as possible in the imputed data
the joint distributional properties of the original complete data (assuming, of
course, the original complete-data samples were scientifically designed so that
their properties are worthy of preservation). For that purpose, the imputer
should and will use anything that can help, including confidential informa-
tion, as well as powerful predictive models that may not capture the correct
causal relations.

In addition, because the imputed data typically will be used for many
purposes, most of which cannot be anticipated at the time of imputation, the
imputation model needs to include as many predictors as possible, and be as
saturated as the data and resources permit; see Meng (1994) and Rubin (1996).
In contrast, an analysis model, or rather an approach (e.g., given by software),
often focuses on specific questions and may involve only a (small) subset of
the variables used by the imputer. Consequently, the imputer’s model and the
user’s procedure may be uncongenial to each other, meaning that no model
can be compatible with both the imputer’s model and the user’s procedure.
The technical definitions of congeniality are given in Meng (1994) and Xie
and Meng (2013), which involve embedding an analyst’s procedure (often of
frequentist nature) into an imputation model (typically with Bayesian flavor).
For the purposes of the following discussion, two models are “congenial” if
their implied imputation and analysis procedures are the same. That is, they
are operationally, though perhaps not theoretically, equivalent.

Ironically, the original motivation of MI (Rubin, 1987) was a separation
of labor, asking those who have more knowledge and resources (e.g., the US
Census Bureau) to fix/impute the missing observations, with the hope that
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subsequent analysts can then apply their favorite complete-data analysis pro-
cedures to reach valid inferences. This same separation creates the issue of
uncongeniality. The consequences of uncongeniality can be severe, from both
theoretical and practical points of view. Perhaps the most striking example
is that the very appealing variance combining rule for MI inference derived
under congeniality (and another application of the aforementioned EVE law),
namely,

varTotal = varBetween−imputation + varWithin−imputation (45.4)

can lead to seriously invalid results in the presence of uncongeniality, as re-
ported initially by Fay (1992) and Kott (1995).

Specifically, the so-called Rubin’s variance combining rule is based on
(45.4), where

varBetween−imputation and varWithin−imputation

are estimated by (1 +m−1)Bm and Ūm, respectively (Rubin, 1987). Here the
(1 + m−1) factor accounts for the Monte Carlo error due to finite m, Bm is

the sampling variance of θ̂(!) ≡ θ̂A(Y
(!)
com) and Ūm is the sample average of

U(Y (!)
com), ! = 1, . . . ,m, where θ̂A(Ycom) is the analyst’s complete-data estima-

tor for θ, U(Ycom) is its associated variance (estimator), and Y (!)
mis are i.i.d.

draws from an imputation model PI(Ymis|Yobs). Here, for notational conve-
nience, we assume the complete data Ycom can be decomposed into the missing
data Ymis and observed data Yobs. The left-hand side of (45.4) then is meant
to be an estimator, denoted by Tm, of the variance of the MI estimator of θ,
i.e., θ̄m, the average of {θ̂(!), ! = 1, . . . ,m}.

To understand the behavior of θ̄m and Tm, let us consider a relatively
simple case where the missing data are missing at random (Rubin, 1976), and
the imputer does not have any additional data. Yet the imputer has adopted
a Bayesian model uncongenial to the analyst’s complete-data likelihood func-
tion, PA(Ycom|θ), even though both contain the true data-generating model
as a special case. For example, the analyst may have correctly assumed that
two subpopulations share the same mean, an assumption that is not in the
imputation model; see Meng (1994) and Xie and Meng (2013). Furthermore,
we assume the analyst’s complete-data procedure is the fully efficient MLE
θ̂A(Ycom), and UA(Ycom), say, is the usual inverse of Fisher information.

Clearly we need to take into account both the sampling variability and
imputation uncertainty, and for consistency we need to take both imputation
size m → ∞ and data size n → ∞. That is, we need to consider replications
generated by the hybrid model (note PI(Ymis|Yobs) is free of θ):

PH(Ymis, Yobs|θ) = PI(Ymis|Yobs)PA(Yobs|θ), (45.5)

where PA(Yobs|θ) is derived from the analyst’s complete-data model
PA(Ycom|θ).
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To illustrate the complication caused by uncongeniality, let us assume m =
∞ to eliminate the distraction of Monte Carlo error due to finite m. Writing

θ̄∞ − θ = {θ̄∞ − θ̂A(Ycom)}+ {θ̂A(Ycom)− θ},

we have

varH(θ̄∞) = varH{θ̄∞ − θ̂A(Ycom)}+ varH{θ̂A(Ycom)}
+2 covH{θ̄∞ − θ̂A(Ycom), θ̂A(Ycom)}, (45.6)

where all the expectations are with respect to the hybrid model defined in
(45.5). Since we assume both the imputer’s model and the analyst’s model
are valid, it is not too hard to see intuitively — and to prove under regularity
conditions, as in Xie and Meng (2013) — that the first term and second
term on the right-hand side of (45.6) are still estimated consistently by Bm

and Ūm, respectively. However, the trouble is that the cross term as given in
(45.6) is left out by (45.4), so unless this term is asymptotically negligible,
Rubin’s variance estimator of varH(θ̄∞) via (45.4) cannot be consistent, an
observation first made by Kott (1995).

Under congeniality, this term is indeed negligible. This is because, under
our current setting, θ̄∞ is asymptotically (as n→∞) the same as the analyst’s
MLE based on the observed data Yobs; we denote it, with an abuse of notation,
by θ̂A(Yobs). But θ̂A(Yobs) − θ̂A(Ycom) and θ̂A(Ycom) must be asymptotically
orthogonal (i.e., uncorrelated) under PA, which in turn is asymptotically the
same as PH due to congeniality (under the usual regularity conditions that
guarantee the equivalence of frequentist and Bayesian asymptotics). Otherwise
there must exist a linear combination of θ̂A(Yobs)− θ̂A(Ycom) and θ̂A(Ycom) —
and hence of θ̂A(Yobs) and θ̂A(Ycom) — that is asymptotically more efficient
than θ̂A(Ycom), contradicting the fact that θ̂A(Ycom) is the full MLE under
PA(Ycom|θ).

When uncongeniality arises, it becomes entirely possible that there exists a
linear combination of θ̄∞− θ̂A(Ycom) and θ̂A(Ycom) that is more efficient than
θA(Ycom) at least under the actual data generating model. This is because
θ̄∞ may inherit, through the imputed data, additional (valid) information
that is not available to the analyst, and hence is not captured by PA(Ycom|θ).
Consequently, the cross-term in (45.6) is not asymptotically negligible, making
(45.4) an inconsistent variance estimator; see Fay (1992), Meng (1994), and
Kott (1995).

The above discussion also hints at an issue that makes the multi-phase in-
ference formulation both fruitful and intricate, because it indicates that consis-
tency can be preserved when the imputer’s model does not bring in additional
(correct) information. This is a much weaker requirement than congeniality,
because it is satisfied, for example, when the analyst’s model is nested within
(i.e., less saturated than) the imputer’s model. Indeed, in Xie and Meng (2013)
we established precisely this fact, under regularity conditions. However, when
we assume that the imputer model is nested within the analyst’s model, we
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can prove only that (45.4) has a positive bias. But even this weaker result
requires an additional assumption — for multivariate θ — that the loss of
information is the same for all components of θ. This additional requirement
for multivariate θ was both unexpected and troublesome, because in practice
there is little reason to expect that the loss of information will be the same
for different parameters.

All these complications vividly demonstrate both the need for and chal-
lenges of the multi-phase inference framework. By multi-phase, our motivation
is not merely that there are multiple parties involved, but more critically that
the phases are sequential in nature. Each phase takes the output of its im-
mediate previous phase as the input, but with little knowledge of how other
phases operate. This lack of mutual knowledge reality leads to uncongenial-
ity, which makes any single-model framework inadequate for reasons stated
before.

45.3.2 Data pre-processing, curation and provenance

Taking this multi-phase perspective but going beyond the MI setting, we
(Blocker and Meng, 2013) recently explored the steps needed for building
a theoretical foundation for pre-processing in general, with motivating ap-
plications from microarrays and astrophysics. We started with a simple but
realistic two-phase setup, where for the pre-processor phase, the input is Y
and the output is T (Y ), which becomes the input of the analysis phase. The
pre-process is done under an “observation model” PY (Y |X, ξ), where X repre-
sents the ideal data we do not have (e.g., true expression level for each gene),
because we observe only a noisy version of it, Y (e.g., observed probe-level
intensities), and where ξ is the model parameter characterizing how Y is re-
lated to X, including how noises were introduced into the observation process
(e.g., background contamination). The downstream analyst has a “scientific
model” PX(X|θ), where θ is the scientific estimand of interest (e.g., capturing
the organism’s patterns of gene expression). To the analyst, both X and Y
are missing, because only T (Y ) is made available to the analyst. For exam-
ple, T (Y ) could be background corrected, normalized, or aggregated Y . The
analyst’s task is then to infer θ based on T (Y ) only.

Given such a setup, an obvious question is what T (Y ) should the pre-
processor produce/keep in order to ensure that the analyst’s inference of θ
will be as sharp as possible? If we ignore practical constraints, the answer
seems to be rather trivial: choose T (Y ) to be a (minimal) sufficient statistic
for

PY (y|θ, ξ) =
∫

PY (y|x; ξ)PX(x|θ)µ(dx). (45.7)

But this does not address the real problem at all. There are thorny issues
of dealing with the nuisance (to the analyst) parameter ξ, as well as the
issue of computational feasibility and cost. But most critically, because of the
separation of the phases, the scientific model PX(X|θ) and hence the marginal
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model PY (Y |θ, ξ) of (45.7) is typically unknown to the pre-processor. At the
very best, the pre-processor may have a working model P̃X(X|η), where η
may not live even on the same space as θ. Consequently, the pre-processor
may produce T (Y ) as a (minimal) sufficient statistic with respect to

P̃Y (y|η, ξ) =
∫

PY (y|x; ξ)P̃X(x|η)µ(dx). (45.8)

A natural question then is what are sufficient and necessary conditions on
the pre-processor’s working model such that a T (Y ) (minimally) sufficient for
(45.8) will also be (minimally) sufficient for (45.7). Or to use computer science
jargon, when is T (Y ) a lossless compression (in terms of statistical efficiency)?

Evidently, we do not need the multi-phase framework to obtain trivial and
useless answers such as setting T (Y ) = Y (which will be sufficient for any
model of Y only) or requiring the working model to be the same as the scien-
tific model (which tells us nothing new). The multi-phase framework allows us
to formulate and obtain theoretically insightful and practically relevant results
that are unavailable in the single-phase framework. For example, in Blocker
and Meng (2013), we obtained a non-trivial sufficient condition as well as a
necessary condition (but they are not the same) for preserving sufficiency un-
der a more general setting involving multiple (parallel) pre-processors during
the pre-process phase. The sufficient condition is in the same spirit as the
condition for consistency of Rubin’s variance rule under uncongeniality. That
is, in essence, sufficiency under (45.8) implies sufficiency under (45.7) when
the working model is more saturated than the scientific model. This is rather
intuitive from a multi-phase perspective, because the fewer assumptions we
make in earlier phases, the more flexibility the later phases inherit, and con-
sequently, the better the chances these procedures preserve information or
desirable properties.

There is, however, no free lunch. The more saturated our model is, the less
compression it achieves by statistical sufficiency. Therefore, in order to make
our results as practically relevant as possible, we must find ways to incorporate
computational efficiency into our formulation. However, establishing a general
theory for balancing statistical and computational efficiency is an extremely
challenging problem. The central difficulty is well known: statistical efficiency
is an inherent property of a procedure, but the computational efficiency can
vary tremendously across computational architectures and over time.

For necessary conditions, the challenge is of a different kind. Preserving suf-
ficiency is a much weaker requirement than preserving a model, even for min-
imal sufficiency. For example, N (µ, 1) and Poisson(λ) do not share even the
same state space. However, the sample mean is a minimal sufficient statistic
for both models. Therefore, a pre-processing model could be seriously flawed
yet still lead to the best possible pre-processing (this could be viewed as a case
of action consistency; see Section 45.5). This type of possibility makes building
a multi-phase inference theory both intellectually demanding and intriguing.
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In general, “What to keep?” or “Who will share what, with whom, when,
and why?” are key questions for the communities in information and computer
sciences, particularly in the areas of data curation and data provenance; see
Borgman (2010) and Edwards et al. (2011). Data/digital curation, as defined
by the US National Academies, is “the active management and enhancement of
digital information assets for current and future use,” and data provence is “a
record that describes the people, institutions, entities, and activities involved
in producing, influencing, or delivering a piece of data or a thing” (Moreau
et al., 2013). Whereas these fields are clearly critical for preserving data qual-
ity and understanding the data collection process for statistical modelling,
currently there is little dialogue between these communities and statisticians
despite shared interests. For statisticians to make meaningful contributions,
we must go beyond the single-phase/single-model paradigm because the fun-
damental problems these fields address involve, by default, multiple parties,
who do not necessarily (or may not even be allowed to) share information,
and yet they are expected to deliver scientifically useful data and digital in-
formation.

I believe the multi-phase inference framework will provide at least a rel-
evant formulation to enter the conversation with researchers in these areas.
Of course, there is a tremendous amount of foundation building to be done,
even just to sort out which results in the single-phase framework are directly
transferable and which are not. The three questions below again are just an
appetizer:

(a) What are practically relevant theoretical criteria for judging the quality
of pre-processing, without knowing how many types of analyses ultimately
will be performed on the pre-processed data?

(b) What are key considerations and methods for formulating generally un-
congeniality for multi-phase inference, for quantifying the degrees of un-
congeniality, and for setting up a threshold for a tolerable degree?

(c) How do we quantify trade-offs between efficiencies that are designed for
measuring different aspects of the multi-phase process, such as computa-
tional efficiency for pre-processing and statistical efficiency for analysis?

45.4 Multi-source inference

As students of statistics, we are all taught that a scientific way of collect-
ing data from a population is to take a probabilistic sample. However, this
was not the case a century ago. It took about half a century since its for-
mal introduction in 1895 by Anders Nicolai Kiær (1838–1919), the founder
of Statistics Norway, before probabilistic sampling became widely understood
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and accepted (see Bethlehem, 2009). Most of us now can explain the idea
intuitively by analogizing it with common practices such as that only a tiny
amount of blood is needed for any medical test (a fact for which we are all
grateful). But it was difficult then for many — and even now for some — to
believe that much can be learned about a population by studying only, say,
a 5% random sample. Even harder was the idea that a 5% random sample
is better than a 5% “quota sample,” i.e., a sample purposefully chosen to
mimic the population. (Very recently a politician dismissed an election pool
as “non-scientific” because “it is random.”)

Over the century, statisticians, social scientists, and others have am-
ply demonstrated theoretically and empirically that (say) a 5% probabilis-
tic/random sample is better than any 5% non-random samples in many mea-
surable ways, e.g., bias, MSE, confidence coverage, predictive power, etc. How-
ever, we have not studied questions such as “Is an 80% non-random sample
‘better’ than a 5% random sample in measurable terms? 90%? 95%? 99%?”

This question was raised during a fascinating presentation by Dr. Jeremy
Wu, then (in 2009) the Director of LED (Local Employment Dynamic), a pi-
oneering program at the US Census Bureau. LED employed synthetic data to
create an OnTheMap application that permits users to zoom into any local
region in the US for various employee-employer paired information without
violating the confidentiality of individuals or business entities. The synthetic
data created for LED used more than 20 data sources in the LEHD (Lon-
gitudinal Employer-Household Dynamics) system. These sources vary from
survey data such as a monthly survey of 60,000 households, which represent
only .05% of US households, to administrative records such as unemployment
insurance wage records, which cover more than 90% of the US workforce, to
census data such as the quarterly census of earnings and wages, which includes
about 98% of US jobs (Wu, 2012 and personal communication from Wu).

The administrative records such as those in LEHD are not collected for
the purpose of statistical inference, but rather because of legal requirements,
business practice, political considerations, etc. They tend to cover a large per-
centage of the population, and therefore they must contain useful information
for inference. At the same time, they suffer from the worst kind of selection
biases because they rely on self-reporting, convenient recording, and all sorts
of other “sins of data collection” that we tell everyone to avoid.

But statisticians cannot avoid dealing with such complex combined data
sets, because they are playing an increasingly vital role for official statistical
systems and beyond. For example, the shared vision from a 2012 summit
meeting, between the government statistical agencies from Australia, Canada,
New Zealand, the United Kingdom, and the US, includes

“Blending together multiple available data sources (administrative and
other records) with traditional surveys and censuses (using paper,
internet, telephone, face-to-face interviewing) to create high quality,
timely statistics that tell a coherent story of economic, social and en-
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vironmental progress must become a major focus of central government
statistical agencies.” (Groves, February 2, 2012)

Multi-source inference therefore refers to situations where we need to draw
inference by using data coming from different sources and some (but not all)
of which were not collected for inference purposes. It is thus broader and more
challenging than multi-frame inference, where multiple data sets are collected
for inference purposes but with different survey frames; see Lohr and Rao
(2006). Most of us would agree that the very foundation of statistical infer-
ence is built upon having a representative sample; even in notoriously difficult
observational studies, we still try hard to create pseudo “representative” sam-
ples to reduce the impact of confounding variables. But the availability of a
very large subpopulation, however biased, poses new opportunities as well as
challenges.

45.4.1 Large absolute size or large relative size?

Let us consider a case where we have an administrative record covering fa
percent of the population, and a simple random sample (SRS) from the same
population which only covers fs percent, where fs * fa. Ideally, we want to
combine the maximal amount of information from both of them to reach our
inferential conclusions. But combining them effectively will depend critically
on the relative information content in them, both in terms of how to weight
them (directly or implied) and how to balance the gain in information with the
increased analysis cost. Indeed, if the larger administrative dataset is found
to be too biased relative to the cost of processing it, we may decide to ignore
it. Wu’s question therefore is a good starting point because it directly asks
how the relative information changes as their relative sizes change: how large
should fa/fs be before an estimator from the administrative record dominates
the corresponding one from the SRS, say in terms of MSE?

As an initial investigation, let us denote our finite population by
{x1, . . . , xN}. For the administrative record, we let Ri = 1 whenever xi is
recorded and zero otherwise; and for SRS, we let Ii = 1 if xi is sampled, and
zero otherwise, where i ∈ {1, . . . , N}. Here we assume na =

∑N
i=1 Ri 3 ns =∑N

i=1 Ii, and both are considered fixed in the calculations below. Our key
interest here is to compare the MSEs of two estimators of the finite-sample
population mean X̄N , namely,

x̄a =
1

na

N∑

i=1

xiRi and x̄s =
1

ns

N∑

i=1

xiIi.

Recall for finite-population calculations, all xi’s are fixed, and all the random-
ness comes from the response/recording indicator Ri for x̄a and the sampling
indicator Ii for x̄s. Although the administrative record has no probabilistic
mechanism imposed by the data collector, it is a common strategy to model
the responding (or recording or reporting) behavior via a probabilistic model.
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Here let us assume that a probit regression model is adequate to capture
the responding behavior, which depends on only the individual’s x value.
That is, we can express Ri = 1(Zi ≤ α + βxi), where the Zi’s form an i.i.d
sample from N (0, 1). We could imagine Zi being, e.g., the ith individual’s
latent “refusal tendency,” and when it is lower than a threshold that is linear
in xi, the individual responds. The intercept α allows us to model the overall
percentage of respondents, with larger α implying more respondents. The slope
β models the strength of the self-selecting mechanism. In other words, as long
as β '= 0, we have a non-ignorable missing-data mechanism (Rubin, 1976).

Given that x̄s is unbiased, its MSE is the same as its variance (Cochran,
2007), viz.

var(x̄s) =
1− fs
ns

S2
N (x), where S2

N (x) =
1

N − 1

N∑

i=1

(xi − x̄N )2. (45.9)

The MSE of x̄a is more complicated, mostly because Ri depends on xi. But
under our assumption that N is very large and fa = na/N stays (far) away
from zero, the MSE is completely dominated by the squared bias term of x̄a,
which itself is well approximated by, again because N (and hence na) is very
large,

Bias2(x̄a) =

{∑N
i=1(xi − x̄N )p(xi)∑N

i=1 p(xi)

}2

, (45.10)

where p(xi) = E(Ri|xi) = Φ(α+ βxi), and Φ is the CDF for N (0, 1).
To get a sense of how this bias depends on fa, let us assume that the finite

population {x1, . . . , xN} itself can be viewed as an SRS of size N from a super
population X ∼ N (µ,σ2). By the Law of Large Numbers, the bias term in
(45.10) is essentially the same as (again because N is very large)

cov{X, p(X)}
E{p(X)} =

σE{ZΦ(α̃+ β̃Z)}
E{Φ(α̃+ β̃Z)}

=
σβ̃√
1 + β̃2

φ



 α̃√
1 + β̃2





Φ



 α̃√
1 + β̃2





, (45.11)

where α̃ = α + βµ, β̃ = σβ, Z ∼ N (0, 1), and φ is its density function.
Integration by parts and properties of Normals are used for arriving at (45.11).

An insight is provided by (45.11) when we note Φ{α̃/(1 + β̃2)1/2} is well
estimated by fa because N is large, and hence α̃/(1+ β̃2)1/2 ≈ Φ−1(fa) = zfa ,
where zq is the qth quantile of N (0, 1). Consequently, we have from (45.11),

MSE(x̄a)

σ2
≈ Bias2(x̄a)

σ2
=

β̃2

1 + β̃2

φ2(zfa)

f2
a

=
β̃2

1 + β̃2

e−z2
fa

2πf2
a

, (45.12)
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which will be compared to (45.9) after replacing S2
N (X) by σ2. That is,

MSE(x̄s)

σ2
=

1

ns
− 1

N
≈ 1

ns
, (45.13)

where 1/N is ignored for the same reason that var(x̄a) = O(N−1) is ignored.
It is worthy to point out that the seemingly mismatched units in comparing

(45.12), which uses relative size fa, with (45.13), which uses the absolute size
ns, reflects the different natures of non-sampling and sampling errors. The
former can be made arbitrarily small only when the relative size fa is made
arbitrarily large, that is fa → 1; just making the absolute size na large will
not do the trick. In contrast, as is well known, we can make (45.13) arbitrarily
small by making the absolute size ns arbitrarily large even if fs → 0 when
N → ∞. Indeed, for most public-use data sets, fs is practically zero. For
example, with respect to the US population, an fs = .01% would still render
ns more than 30,000, large enough for controlling sampling errors for many
practical purposes. Indeed, (45.13) will be no greater than .000033. In contrast,
if we were to use an administrative record of the same size, i.e., if fa = .01%,
then (45.12) will be greater than 3.13, almost 100,000 times (45.13), if β̃ = .5.

However, if fa = 95%, zfa = 1.645, (45.12) will be .00236, for the same β̃ =
.5. This implies that as long as ns does not exceed about 420, the estimator
from the biased sample will have a smaller MSE (assuming, of course, N 3
420). The threshold value for ns will drop to about 105 if we increase β̃ to 2,
but will increase substantially to about 8,570 if we drop β̃ to .1. We must be
mindful, however, that these comparisons assume the SRS and more generally
the survey data have been collected perfectly, which will not be the case in
reality because of both non-responses and response biases; see Liu et al. (2013).
Hence in reality it would take a smaller fa to dominate the probabilistic sample
with fs sampling fraction, precisely because the latter has been contaminated
by non-probabilistic selection errors as well. Nevertheless, a key message here
is that, as far as statistical inference goes, what makes a “Big Data” set big
is typically not its absolute size, but its relative size to its population.

45.4.2 Data defect index

The sensitivity of our comparisons above to β̃ is expected because it governs
the self-reporting mechanism. In general, whereas closed-form expressions such
as (45.12) are hard to come by, the general expression in (45.10) leads to

Bias2(x̄a)

S2
N (x)

= ρ2N (x, p)

{
SN (p)

p̄N

}2 (N − 1

N

)2

< ρ2N (x, p)
1− p̄N
p̄N

, (45.14)

where p̄N is the mean of pi, ρN (x, p) is the correlation between xi and pi, and
the term inside the first set of brackets is the coefficient of variation of pi, all
of which are with respect to the finite population, i.e., the uniform distribu-
tion over the index space {1, . . . , N}. This explains the notation ρN (x, p), in
contrast to ρ(X, p(X)), which is with respect to X from the super population.
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The (middle) re-expression of the bias given in (45.14) in terms of the
correlation between sampling variable x and sampling/response probability p
is a standard strategy in the survey literature; see Hartley and Ross (1954)
and Meng (1993). Although mathematically trivial, it provides a greater sta-
tistical insight, i.e., the sample mean from an arbitrary sample is an unbiased
estimator for the target population mean if and only if the sampling variable
x and the data collection mechanism p(x) are uncorrelated. In this sense we
can view ρN (x, p) as a “defect index” for estimation (using sample mean) due
to the defect in data collection/recording. This result says that we can reduce
estimation bias of the sample mean for non-equal probability samples or even
non-probability samples as long as we can reduce the magnitude of the corre-
lation between x and p(x). This possibility provides an entryway into dealing
with a large but biased sample, and exploiting it may require less knowledge
about p(x) than required for other bias reduction techniques such as (inverse
probability) weighting, as in the Horvitz-Thompson estimator.

The (right-most) inequality in (45.14) is due to the fact that for any ran-
dom variable satisfying U ∈ [0, 1], var(U) ≤ E(U){1 − E(U)}. This bound
allows us to control the bias using only the proportion p̄N , which is well es-
timated by the observed sample fraction fa. It says that we can also control
the bias by letting fa approach one. In the traditional probabilistic sampling
context, this observation would only induce a “duhhh” response, but in the
context of multi-source inference it is actually a key reason why an adminis-
trative record can be very useful despite being a non-probabilistic sample.

Cautions are much needed however, because (45.14) also indicates that
it is not easy at all to use a large fa to control the bias (and hence MSE).
By comparing (45.13) and the bound in (45.14) we will need (as a sufficient
condition)

fa >
nsρ2N (x, p)

1 + nsρ2N (x, p)

in order to guarantee MSE(x̄a) < MSE(x̄s). For example, even if ns = 100, we
would need over 96% of the population if ρN = .5. This reconfirms the power
of probabilistic sampling and reminds us of the danger in blindly trusting that
“Big Data” must give us better answers. On the other hand, if ρN = .1, then
we will need only 50% of the population to beat a SRS with ns = 100. If
ns = 100 seems too small in practice, the same ρN = .1 also implies that a
96% subpopulation will beat a SRS as large as ns = ρ−2

N {fa/(1−fa)} = 2400,
which is no longer a practically irrelevant sample size.

Of course all these calculations depend critically on knowing the value of
ρN , which cannot be estimated from the biased sample itself. However, recall
for multi-source inference we will also have at least a (small) probabilistic
sample. The availability of both small random sample(s) and large non-random
sample(s) opens up many possibilities. The following (non-random) sample of
questions touch on this and other issues for multi-source inference:
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(a) Given partial knowledge of the recording/response mechanism for a (large)
biased sample, what is the optimal way to create an intentionally biased
sub-sampling scheme to counter-balance the original bias so the resulting
sub-sample is guaranteed to be less biased than the original biased sample
in terms of the sample mean, or other estimators, or predictive power?

(b) What should be the key considerations when combining small random
samples with large non-random samples, and what are the sensible “corner-
cutting” guidelines when facing resource constraints? How can the com-
bined data help to estimate ρN (x, p)? In what ways can such estimators
aid multi-source inference?

(c) What are theoretically sound and practically useful defect indices for pre-
diction, hypothesis testing, model checking, clustering, classification, etc.,
as counterparts to the defect index for estimation, ρN (x, p)? What are
their roles in determining information bounds for multi-source inference?
What are the relevant information measures for multi-source inference?

45.5 The ultimate prize or price

Although we have discussed the trio of inference problems separately, many
real-life problems involve all of them. For example, the aforementioned On-
TheMap application has many resolution levels (because of arbitrary zoom-in),
many sources of data (more than 20 sources), and many phases of pre-process
(even God would have trouble keeping track of all the processing that these
twenty some survey, census, and administrative data sets have endured!), in-
cluding the entire process of producing the synthetic data themselves. Person-
alized medicine is another class of problems where one typically encounters all
three types of complications. Besides the obvious resolution issue, typically the
data need to go through pre-processing in order to protect the confidentiality
of individual patients (beyond just removing the patient’s name). Yet individ-
ual level information is most useful. To increase the information content, we
often supplement clinical trial data with observational data, for example, on
side effects when the medications were used for another disease.

To bring the message home, it is a useful exercise to imagine ourselves
in a situation where our statistical analysis would actually be used to decide
the best treatment for a serious disease for a loved one or even for ourselves.
Such a “personalized situation” emphasizes that it is my interest/life at stake,
which should encourage us to think more critically and creatively, not just to
publish another paper or receive another prize. Rather, it is about getting to
the bottom of what we do as statisticians — to transform whatever empirical
observations we have into the best possible quantitative evidence for scientific
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understanding and decision making, and more generally, to advance science,
society, and civilization. That is our ultimate prize.

However, when we inappropriately formulate our inference problems for
mental, mathematical, or computational convenience, the chances are that
someone or, in the worst case, our entire society will pay the ultimate price.
We statisticians are quick to seize upon the 2008 world-wide financial crisis as
an ultimate example in demonstrating how a lack of understanding and proper
accounting for uncertainties and correlations leads to catastrophe. Whereas
this is an extreme case, it is unfortunately not an unnecessary worry that if
we continue to teach our students to think only in a single-resolution, single-
phase, single-source framework, then there is only a single outcome: they will
not be at the forefront of quantitative inference. When the world is full of
problems with complexities far exceeding what can be captured by our the-
oretical framework, our reputation for critical thinking about the entirety of
the inference process, from data collection to scientific decision, cannot stand.

The “personalized situation” also highlights another aspect that our cur-
rent teaching does not emphasize enough. If you really had to face the un-
fortunate I-need-treatment-now scenario, I am sure your mind would not be
(merely) on whether the methods you used are unbiased or consistent. Rather,
the type of questions you may/should be concerned with are (1) “Would
I reach a different conclusion if I use another analysis method?” or (2) “Have
I really done the best given my data and resource constraints?” or (3) “Would
my conclusion change if I were given all the original data?”

Questions (1) and (2) remind us to put more emphasis on relative opti-
mality. Whereas it is impossible to understand all biases or inconsistencies in
messy and complex data, knowledge which is needed to decide on the optimal
method, we still can and should compare methods relative to each other, as
well as relative to the resources available (e.g., time, energy, funding). Equally
important, all three questions highlight the need to study much more qual-
itative consistency or action consistency than quantitative consistency (e.g.,
the numerical value of our estimator reaching the exact truth in the limit).
Our methods, data sets, and numerical results can all be rather different (e.g.,
a p-value of .2 versus .8), yet their resulting decisions and actions can still
be identical because typically there are only two (yes and no) or at most a
handful of choices.

It is this “low resolution” of our action space in real life which provides
flexibility for us to accept quantitative inconsistency caused by defects such as
resolution discrepancy, uncongeniality or selection bias, yet still reach scientifi-
cally useful inference. It permits us to move beyond single-phase, single-source,
or single resolution frameworks, but still be able to obtain theoretically ele-
gant and practically relevant results in the same spirit as those NP-worthy
findings in many other fields. I therefore very much hope you will join me for
this intellectually exciting and practically rewarding research journey, unless,
of course, you are completely devoted to fundraising to establish an NP in
statistics.
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Inspiration, aspiration, ambition

C.F. Jeff Wu
School of Industrial and Systems Engineering
Georgia Institute of Technology, Atlanta, GA

46.1 Searching the source of motivation

One can describe the motivation or drive for accomplishments or scholarship
at three levels: inspiration, aspiration, and ambition. They represent different
(but not necessarily exclusive) mindsets or modi operandi. Let me start with
the Merriam–Webster Dictionary definitions of the three words.

(a) Inspiration is “the action or power of moving the intellect or emotions.”
In its religious origin, inspiration can be described as “a divine influence or
action... to qualify him/her to receive and communicate sacred revelation.”
It works at the spiritual level even in describing work or career.

(b) Aspiration is “a strong desire to achieve something high or great.” It has
a more concrete aim than inspiration but still retains an idealistic element.

(c) Ambition is “the desire to achieve a particular end” or “an ardent desire
for rank, fame, or power.” It has a utilitarian connotation and is the most
practical of the three. Ambition can be good when it drives us to excel,
but it can also have a negative effect. Aspiration, being between the two,
is more difficult to delineate.

Before I go on, I would like to bring your attention to a convocation speech
(Wu, 2008) entitled “Idealism or pragmatism” that I gave in 2008 at the
University of Waterloo. This speech is reproduced in the Appendix. Why or
how is this related to the main theme of this chapter? Idealism and pragmatism
are two ideologies we often use to describe how we approach life or work.
They represent different mindsets but are not mutually exclusive. Inspiration
is clearly idealistic, ambition has a pragmatic purpose, and aspiration can be
found in both. The speech can be taken as a companion piece to this chapter.

565



566 Inspiration, aspiration, ambition

46.2 Examples of inspiration, aspiration, and ambition

To see how inspiration, aspiration, and ambition work, I will use examples
in the statistical world for illustration. Jerzy Neyman is an embodiment of
all three. Invention of the Neyman–Pearson theory and confidence intervals is
clearly inspirational. Neyman’s success in defending the theory from criticism
by contemporaries like Sir Ronald A. Fisher was clearly an act of aspiration.
His establishment of the Berkeley Statistics Department as a leading institu-
tion of learning in statistics required ambition in addition to aspiration.

The personality of the individual often determines at what level(s) he/she
operates. Charles Stein is a notable example of inspiration as evidenced by his
pioneering work in Stein estimation, Stein–Chen theory, etc. But he did not
possess the necessary attribute to push for his theory. It is the sheer originality
and potential impact of his theoretical work that helped his contributions
make their way to wide acceptance and much acclaim.

Another example of inspiration, which is more technical in nature, is the
Cooley–Tukey algorithm for the Fast Fourier Transform (FFT); see Cooley
and Tukey (1965). The FFT has seen many applications in engineering, sci-
ence, and mathematics. Less known to the statistical world is that the core
technical idea in Tukey’s development of the algorithm came from a totally
unrelated field. It employed Yates’ algorithm (Yates, 1937) for computing fac-
torial effects in two-level factorial designs.

In Yates’ time, computing was very slow and therefore he saw the need
to find a fast algorithm (in fact, optimal for the given problem) to ease the
burden on mechanical calculators. About thirty years later, Tukey still felt
the need to develop a fast algorithm in order to compute the discrete Fourier
transform over many frequency values. Even though the stated problems are
totally different, their needs for faster algorithm (relative to the technology in
their respective times) were similar. By some coincidence, Yates’ early work
lent a good hand to the later development of the FFT.

As students of the history of science, we can learn from this example. If
work has structural elegance and depth, it may find good and unexpected
applications years later. One cannot and should not expect an instant grati-
fication from the work. Alas, this may come too late for the ambitious.

Examples of ambition without inspiration abound in the history of science.
Even some of the masters in statistics could not stay above it. Here are two
examples. In testing statistical independence in r × c contingency table, Karl
Pearson used rc − 1 as the degrees of freedom. Fisher showed in 1922 that,
when the marginal proportions are estimated, the correct degrees of freedom
should be (r − 1)(c − 1). Pearson did not react kindly. He said in the same
year “Such a view is entirely erroneous. [· · · ] I trust my critic will pardon me
for comparing him with Don Quixote tilting at the windmill” (Pearson, 1922,
p. 191). Fisher’s retort came much later. In a 1950 volume of his collected
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works, he wrote of Pearson: “If peevish intolerance of free opinion in others is
a sign of senility, it is one which he had developed at an early age” (Fisher,
1950). Even the greatest ever statistician could not be more magnanimous.

46.3 Looking to the future

In 2010, I gave a speech (Wu, 2010) whose main motivation was the discom-
forting trend I have witnessed in the last 15–20 years in the US and elsewhere.
Compared to back when I started my career, there has been an increasing em-
phasis on the number of papers, journal rankings, citations, and funding. Back
then, a new PhD could secure a tenure-track post in a top department with
no paper published or accepted as long as the letters were good and the work
in the thesis was considered to have good quality. Not anymore. We now see
most leading candidates in the applicant pool to have several papers in top
journals (and who ranks these journals?) Is this due to inflation or is the new
generation really smarter or work harder than mine? Admittedly most of the
top departments still judge the candidates by the merits of the work. But the
new and unhealthy emphasis has affected the community by and large.

There are some obvious culprits, mostly due to the environment we are in.
The funding agencies give preference to large team projects, which require a
large number of papers, patents, etc. The widespread use of internet such as
Scientific Citation Index (SCI) and Google Scholar has led to instant compar-
isons and rankings of researchers. Unfortunately this obsession with numerics
has led to several widely used rankings of universities in the world. In many
countries (US being one lucky exception), university administrators pressure
researchers to go for more citations in order to boost their ranking.

In the statistical world, some countries list the “Big Four” (i.e., The An-
nals of Statistics, Biometrika, the Journal of the American Statistical Associ-
ation and the Journal of the Royal Statistical Society, Series B) as the most
desirable journals for promotion and awards. The detrimental impact on the
development of long lasting work is obvious but young researchers can’t afford
to work or think long term. Immediate survival is their primary concern.

What can be done to mitigate this negative effect? I am not optimistic
about the environment that spawned this trend. The widespread use of the
internet can only exacerbate the trend. I hope that the scientific establishment
and policy makers of countries that aspire to join the league of scientific powers
will soon realize that sheer numbers of papers or citations alone do not lead
to major advances and discoveries. They should modify their reward systems
accordingly.

The leading academic departments, being good practitioners, bear a great
responsibility in convincing the community not to use superficial numeric mea-
sures. At the individual level, good education at an early stage can help. Pro-
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fessors should serve as role models and advise students to go for quality over
quantity. This theme should be featured visibly in conferences or sessions for
new researchers. My final advice for the aspiring young researchers is to al-
ways look inward to your inspiration, aspiration, and ambition to plan and
assess your work and career.

Appendix: Idealism or pragmatism (Wu, 2008)

Let me join my colleague Professor Rao in thanking the University, the Chan-
cellor, and the President for bestowing such an honor upon us and in con-
gratulating this year’s graduating class for their hard work and achievements.
Since I am younger, Jon said that I should stand here longer [laugh].

I would like to share some thoughts on our responsibilities to the society
and to ourselves. When I was a bit younger than you are now, I faced two dis-
tinct choices: medicine and pure mathematics. This was Taiwan in the 1960s,
and most of my relatives urged my parents to nudge me toward medicine, not
because they thought I would make a good doctor, but because it would pro-
vide a secure career and high income. Thanks to my parents, though, I was
able to follow my passion and pursue mathematics. At that time I did not
consider the financial consequences because I enjoyed doing math. I am not
here to suggest that you follow this romanticism in your career planning —
in fact many of you have probably lined up some good jobs already [laugh].
Rather, I want to discuss the role of idealism and pragmatism in our lives.

At the many turning points of our lives, we are often faced with choosing
one or the other. Most will heed the call of pragmatism and shun idealism.
For example, some of us may find that we disagree with a policy or decision at
work. Yet it will be our job to follow or implement this policy. A pragmatist
would not go out of his way to show disapproval, even if this policy goes
against his conscience. On the other hand, an idealist in this situation is likely
to show her disapproval, even if it puts her livelihood at risk.

One of the most shining examples of idealism, of course, is Nelson Mandela,
who fought for freedom in South Africa. Apartheid was designed to intimidate
minorities into submission. Even something as simple as membership in a legal
political organization could lead to consequences such as loss of income and
personal freedom. Knowing these risks fully well, Mandela and countless others
embarked on that freedom struggle, which lasted for decades.

While I do not expect or suggest that many can follow the most ide-
alistic route, pragmatism and idealism are not incompatible. For example,
researchers can channel their efforts to finding new green energy solutions.
Even humble statisticians like us can help these environmental researchers
design more efficient experiments. Successful business people, which many of
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you will become, can pay more attention to corporate social responsibility,
and not focus exclusively on the bottom line.

Perhaps it is naive, but I truly believe that most often we can strike a
balance between what is good for others and what is good for us. If we can
keep this spirit and practice it, the world will be a much better and more
beautiful place!

Thank you for your attention and congratulations to you once again.
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Personal reflections on the COPSS
Presidents’ Award

Raymond J. Carroll

Department of Statistics
Texas A&M University, College Station, TX

47.1 The facts of the award

I received the COPSS Presidents’ Award in 1988, one year after Jeff Wu and
one year before Peter Hall. I was the eighth recipient.

I had just moved to Texas A&M in fall 1987, and did not know that Cliff
Spiegelman, also still at Texas A&M, had nominated me. I remember very
clearly being told about this honor. I was working at home, and out of the
blue I received a phone call from the head of the Presidents’ Award Committee,
about a month before the Joint Statistical Meetings in New Orleans, and he
asked, roughly, “are you going to the JSM in New Orleans?” I actually had
not planned on it, and he told me I probably should since I had won the
Presidents’ Award. I remember being very happy, and I know I took the rest
of the day off and just floated around.

I am not by nature a very reflective person, preferring instead to look
ahead and get on with the next project. However, the invitation to write for
the COPSS 50th Anniversary Book Project motivated me to reflect a bit on
what I had done prior to 1988, and if there were any morals to the story that
I could share.

47.2 Persistence

Persistence I have. My first six submitted papers were rejected, and some in
a not very nice way. Having rejected two of my papers, the then-Editor of
The Annals of Statistics wrote to tell me that he thought I had no possibility
of a successful career in academics, and that I would be better off going into
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industry; at the time, this was a grand insult from an academic. The only
effect that had on me was that I worked harder, and I swore that one day that
##&# Editor would invite me to give a talk at his university, which finally
happened in 1990. By then, I had calmed down.

Over the years, editors have become less judgmental, but it is easy to forget
how devastating it can be for a new PhD to have his/her thesis paper rejected.
I have seen very talented students who left academia after their thesis paper
had its initial rejection. As the Editor of the “Theory and Methods” Section
of the Journal of the American Statistical Association (JASA) and then later
Biometrics, I was always on the lookout for new PhD’s, and would work to
get their papers published, even in very abbreviated form.

Unfortunately nowadays, it is routine in some sub-areas of statistics to
see applicants for an initial appointment at the Assistant Professor level with
approximately six papers in top journals, without a postdoc. I remain skeptical
that this is really their work. In any case, this makes it harder to be generous,
and it has led to a bit of a coarsening effect in the review of the first paper of
many new PhD’s.

47.3 Luck: Have a wonderful Associate Editor

We all know that many Associate Editors are merely mailboxes, but by no
means all. My experience is that the quality of Associate Editors is a stationary
process. I wrote a paper in 1976 or so for The Annals of Statistics which had
a rather naive proof about expansions of what were then called M -estimators
(I guess they still are). The Associate Editor, who knew I was a new Assistant
Professor and who I later found out was Willem van Zwet, to whom I remain
grateful, wrote a review that said, in effect, “Nice result, it is correct, but too
long, here is a two-page proof.” The paper appeared (Carroll, 1978), and for
years I wondered who my benefactor was. I was at a conference at Purdue
about 15 years later, and Bill came up to me and said, and this is a quote
“I wrote a better paper than you did.” He was right: the published paper is
five pages long!

47.4 Find brilliant colleagues

I was and am extremely lucky in my choice of colleagues, and there is both
plan and serendipity in this. A partial list of collaborators includes Presidents’
Award winners Ross Prentice, Jeff Wu, Peter Hall, Kathryn Roeder, Jianqing
Fan, Xihong Lin, and Nilanjan Chatterjee. Anyone who writes papers with
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them is, by definition, brilliant! However, from 1974 to 1984, the number
of statistical coauthors of what I consider good papers totaled exactly one,
namely David Ruppert (now at Cornell). Even by 1988, after sabbaticals and
the Presidents’ Award, for what I considered really good papers, the total
number of statistical coauthors who were not my students was only eight. To
appreciate how the world has changed, or how I have changed, from 2012 until
now my serious statistics papers not with students or postdocs have had 26
statistical coauthors! It is an amazing thing to reflect upon the massive change
in the way statistical methodology has evolved.

I received my PhD in 1974, and by 1978 I was tenured. I had written a
number of sole-authored papers in major journals, but I was not very satisfied
with them, because I seemed, to my mind, to be lurching from one technical
paper to the next without much of a plan. It just was not much fun, and
I started toying with the idea of going to medical school, which seemed a lot
more interesting, as well as more remunerative.

My statistical world changed in the fall of 1977, when David Ruppert
became my colleague. It was a funny time that fall because both of our wives
were away working on postdocs/dissertations, and our offices were next to
one another in a corner. We became friends, but in those days people did not
naturally work together. That fall I had a visitor and was trying to understand
a topic that at the time was fashionable in robust statistics: what happens to
the least squares estimator obtained after deleting a percentage of the data
with the largest absolute residuals from an initial least squares fit? This was
perceived wisdom as a great new statistical technique. David heard us talking
about the problem, came in to participate, and then my visitor had to leave.
So, David and I sat there staring at the blackboard, and within two hours
we had solved the problem, other than the technical details (there went two
months). It was fun, and I realized that I did not much like working alone, but
wanted to share the thrill of discovery, and pick other people’s brains. The
best part was that David and I had the same mentality about methodology,
but his technical skill set was almost orthogonal to mine.

The paper (Carroll and Ruppert, 1980) also included some theory about
quantile regression. The net effect was that we showed that trimming some
large residuals after an initial fit is a terrible idea, and the method quickly
died the death that it deserved. A fun paper along these same lines is He and
Portnoy (1992). The paper also had my first actual data set, the salinity data
in the Pamlico Sound. We published the data in a table, and it has made its
way into numerous textbooks, but without a citation! In the nine years we
were colleagues, we wrote 29 papers, including two papers on transformation
of data (Carroll and Ruppert, 1981, 1984). Overall, David and I are at 45 joint
papers and three books. It is trite to give advice like “Get lucky and find a
brilliant colleague at the rarified level of David Ruppert,” but that’s what
I did. Lucky I am!
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47.5 Serendipity with data

Just before David and I became colleagues, I had my first encounter with
data. This will seem funny to new researchers, but this was in the era of no
personal computers and IBM punch cards.

It was late 1976, I was the only Assistant Professor in the department, and
I was sitting in my office happily minding my own business, when two very
senior and forbidding faculty members came to my office and said “Carroll,
come here, we want you to meet someone” (yes, in the 1970s, people really
talked like that, especially at my institution). In the conference room was a
very distinguished marine biologist, Dirk Frankenberg (now deceased), who
had come over for a consult with senior people, and my colleagues said, in
effect, “Talk to this guy” and left. He was too polite to say “Why do I want
to talk to a 26-year old who knows nothing?” but I could tell that was what
he was thinking.

Basically, Dirk had been asked by the North Carolina Department of Fish-
eries (NCDF) to build a model to predict the shrimp harvest in the Pamlico
Sound for 1977 or 1978, I forget which. The data, much of it on envelopes from
fishermen, consisted of approximately n = 12 years of monthly harvests, with
roughly four time periods per year, and p = 3 covariates: water temperature
in the crucial estuary, water salinity in that estuary, and the river discharge
into the estuary, plus their lagged versions. I unfortunately (fortunately?) had
never taken a linear model course, and so was too naive to say the obvious:
”You cannot do that, n is too small!” So I did.

In current lingo, it is a “small p, small n,” the very antithesis of what is
meant to be modern. I suspect 25% of the statistical community today would
scoff at thinking about this problem because it was not “small n, large p,” but
it actually was a problem that needed solving, as opposed to lots of what is
going on. I noticed a massive discharge that would now be called a high lever-
age point, and I simply censored it at a reasonable value. I built a model, and
it predicted that 1978 (if memory serves) would be the worst year on record,
ever (Hunt et al., 1980), and they should head to the hills. Dirk said “Are you
sure?” and me in my näıveté said “yes,” and like a gambler, it hit: it was the
terrible year. The NCDF then called it the NCDF model! At least in our report
we said that the model should be updated yearly (my attempt at full employ-
ment and continuation of the research grant), but they then fired us. The
model did great for two more years (blind luck), then completely missed the
fourth year, wherein they changed the title of the model to reflect where I was
employed at the time. You can find Hunt et al. (1980) at http://www.stat.
tamu.edu/~carroll/2012.papers.directory/Shrimp_Report_1980.pdf.

This is a dull story, except for me, but it also had a moral: the data were
clearly heteroscedastic. This led me to my fascination with heteroscedasticity,
which later led to my saying that “variances are not nuisance parameters”
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(Carroll, 2003). In the transformation world, it led David and me to a paper
(Carroll and Ruppert, 1984), and also led to 1/2 of our first book: Transfor-
mation and Weighting in Regression. Dirk later set us up on another project,
managing the Atlantic menhaden fishery, with a brilliant young colleague of his
named Rick Deriso, now Chief Scientist, Tuna-Billfish Program, at the Inter-
American Tropical Tuna Commission (IATTC) (Reish et al., 1985; Ruppert
et al., 1984, 1985).

47.6 Get fascinated: Heteroscedasticity

From the experience with what I call the salinity data, I became fascinated
with the concept of heteroscedasticity. I went on a sabbatical to Heidelberg in
1980, and bereft of being able to work directly with David, started thinking
hard about modeling variances. I asked what I thought was an obvious ques-
tion: can one do weighted least squares efficiently without positing a para-
metric model for the variances? David and I had already figured out that
the common practice of positing a model for the variances as a function of
the mean and then doing normal-theory maximum likelihood was non-model-
robust if the variance function was misspecified (Carroll and Ruppert, 1982).
I sat in my nice office in Heidelberg day after day, cogitating on the problem.
For a month I did nothing else (the bliss of no email), and wrote a paper
(Carroll, 1982) that has many references. In modern terms it is not much
of a technical “tour de force,” and modern semiparametric statisticians have
recognized that this is a case where adaptation is obvious, but at the time it
was very new and surprising, and indeed a very, very senior referee did not
think it was true, but he could not find the flaw. The Editor of The Annals of
Statistics, to whom I am forever grateful for sticking up for me, insisted that
I write out a very detailed proof, which turned out to be over 100 pages by
hand, and be prepared to make it available, make a copy and send it along.
I still have it! The paper is mostly cited by econometricians, but it was fun.

Later, with my then student Marie Davidian, currently the ASA Presi-
dent, we worked out the theory and practice of parametric variance function
estimation (Davidian and Carroll, 1987).

47.7 Find smart subject-matter collaborators

In many fields of experimental science, it is thought that the only way to ad-
vance is via solving a so-called “major” problem. In statistics though, “major”
problems are not defined a priori. If they exist, then many very smart people
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are working on them, which seems a counter-productive strategy to me. I once
spent a fruitless year trying to define something “major,” and all I ended up
with was feeling stupid and playing golf and going fishing.

I now just float: folks come to me to talk about their problems, and I try
to solve theirs and see if there is a statistics paper in it.

What I do like though is personal paradigm shifts when researchers wander
into my office with a “simple” problem. This happened to me on a sabbati-
cal in 1981–82 at the National Heart, Lung and Blood Institute in Bethesda,
Maryland. I was a visitor and all the regular statisticians had gone off for a
retreat, and one day in walks Rob Abbott, one of the world’s great cardiovas-
cular epidemiologists (with a PhD in statistics, so he speaks our language).
He asked “are you a statistician,” I admitted it (I never do at a party), and he
wanted to talk with someone about a review he had gotten on a paper about
coronary heart disease (CHD) and systolic blood pressure (SPB). If you go to
a doctor’s office and keep track of your measured SBP, you will be appalled
about the variability of it. My SBP has ranged from 150 to 90 in the past three
years, as an example. A referee had asked “what is the effect of measurement
error in SBP on your estimate of relative risk of CHD?” In the language of
current National Football League beer commercials, I said “I love you guy.”

I will quote Larry Shepp, who “discovered” a formula that had been discov-
ered many times before, and who said “yes, but when I discovered it, it stayed
discovered!” You can find this on the greatest source of statistics information,
Wikipedia.

I was convinced at the time (I have since found out this is not exactly true)
that there was no literature on nonlinear models with measurement error. So,
I dived in and have worked on this now for many years. The resulting paper
(Carroll et al., 1984), a very simple paper, has a fair number of citations, and
many papers after this one have more. How many times in one’s life does a
stranger wander in and say “I have a problem,” and you jump at it?

Actually, to me, this happens a lot, although not nearly with the same con-
sequences. In the late 1990s, I was at a reception for a toxicological research
center at Texas A&M, and feeling mighty out of place, since all the lab scien-
tists knew one another and were doing what they do. I saw a now long-term
colleague in Nutrition, Nancy Turner, seeming similarly out of place. I wan-
dered over, asked her what she did, and she introduced me to the world of
molecular biology in nutrition. She drew a simple little graph of what statisti-
cians now call “hierarchical functional data,” and we have now written many
papers together (six in statistics journals), including a series of papers on
functional data analysis (Morris et al., 2001; Morris and Carroll, 2006).
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47.8 After the Presidents’ Award

Since the COPSS Award, my main interests have migrated to problems in epi-
demiology and statistical methods to solve those problems. The methods in-
clude deconvolution, semiparametric regression, measurement error, and func-
tional data analysis, which have touched on problems in nutritional epidemi-
ology, genetic epidemiology, and radiation epidemiology. I have even become
a committed Bayesian in a fair amount of my applied work (Carroll, 2013).

I have found problems in nutritional epidemiology particularly fascinat-
ing, because we “know” from animal studies that nutrition is important in
cancer, but finding these links in human longitudinal studies has proven to
be surprisingly difficult. I remember an exquisite experiment done by Joanne
Lupton (now a member of the US Institute of Medicine) and Nancy Turner
where they fed animals a diet rich in corn oil (the American potato chip diet)
versus a diet rich in fish oil, exposed them to a carcinogen, and within 12
hours after exposure all the biomarkers (damage, repair, apoptosis, etc.) lit
up as different between the two diets, with corn oil always on the losing end.
When the microarray became the gold standard, in retrospect a sad and very
funny statement, they found that without doing anything to the animals, 10%
of the genes were different at a false discovery rate of 5%. Diet matters!

There are non-statisticians such as Ed Dougherty who think the field of
statistics lost its way when the microarray came in and thinking about hy-
potheses/epistemology went out (Dougherty, 2008; Dougherty and Bittner,
2011): “Does anyone really believe that data mining could produce the gen-
eral theory of relativity?” I recently had a discussion with a very distinguished
computer scientist who said, in effect, that it is great that there are many
computer scientists who understand (Bayesian) statistics, but would it not be
great if they understood what they are doing scientifically? It will be very
interesting to see how this plays out. Statistical reasoning, as opposed to com-
putation, while not the total domain of statisticians, seems to me to remain
crucial. To quote from Dougherty and Bittner (2011),

“The lure of contemporary high-throughput technologies is that they
can measure tens, or even hundreds, of thousands of variables simulta-
neously, thereby spurring the hope that complex patterns of interaction
can be sifted from the data; however, two limiting problems immedi-
ately arise. First, the vast number of variables implies the existence
of an exponentially greater number of possible patterns in the data,
the majority of which likely have nothing to do with the problem at
hand and a host of which arise spuriously on account of variation in
the measurements, where even slight variation can be disastrous owing
to the number of variables being considered. A second problem is that
the mind cannot conceptualize the vast number of variables. Sound
experimental design constrains the number of variables to facilitate
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finding meaningful relations among them. Recall Einstein’s comment
that, for science ‘truly creative principle resides in mathematics.’ The
creativity of which Einstein speaks resides in the human mind. There
appears to be an underlying assumption to data mining that the mind
is inadequate when it comes to perceiving salient relations among phe-
nomena and that machine-based pattern searching will do a better job.
This is not a debate between which can grope faster, the mind or the
machine, for surely the latter can grope much faster. The debate is
between the efficacy of mind in its creative synthesizing capacity and
pattern searching, whether by the mind or the machine.”

What success I have had comes from continuing to try to find research
problems by working on applications and finding important/interesting ap-
plied problems that cannot be solved with existing methodology. I am spend-
ing much of my time these days working on developing methods for dietary
patterns research, since nutritional epidemiologists have found that dietary
patterns are important predictors of cancer. I use every tool I have, and en-
gage many statistical colleagues to help solve the problems.
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Publishing without perishing and other
career advice

Marie Davidian
Department of Statistics
North Carolina State University, Raleigh, NC

In my 25-plus years as an academic statistician, I have had the good fortune
of serving in a variety of roles, including as statistical consultant and collab-
orator, Editor, Chair of grant review panels, and organizer of and participant
in workshops for junior researchers. Drawing on this experience, I share my
thoughts and advice on two key career development issues: Balancing research
with demands on one’s time and on the importance of cultivating and devel-
oping one’s communication skills.

48.1 Introduction

A career in statistical research is both exciting and challenging. Contribut-
ing to the advance of knowledge in our field is extremely rewarding. How-
ever, many junior researchers report having difficulty balancing this objective
with their many other responsibilities, including collaborative work on funded
projects in other disciplines, teaching, and service. And rightly so — our field
is unique in the sense that many of us are expected to engage in method-
ological research in our own discipline and to contribute to research in other
disciplines through participation in substantive projects. The latter, along
with instructional and service responsibilities, can be difficult to navigate for
young researchers in the first few years of their careers.

Also unique to our field is the need for outstanding ability to communicate
effectively not only with each other but across diverse disciplinary boundaries.
To meet this dual challenge, we must be excellent writers and speakers. Pub-
lishing our own work, writing successful grant applications in support of our
research, and assisting our collaborators with communicating the results of
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their research and applying for funding is a critical skill that we statisticians
must develop.

This volume commemorating the 50th anniversary of the Committee of
Presidents of Statistical Societies (COPSS) presents an excellent opportunity
for me to share my experience, for the most part learned the hard way, on
balancing the competing demands we face and on being an effective commu-
nicator. As you’ll see in the next two sections, it took me some time in my
own career to develop these skills. Despite my slow start, I have subsequently
been very fortunate to have served as a journal editor, a chair of NIH grant re-
view panels, and as a consulting and collaborating statistician, through which
I have learned a great deal about both of these topics.

With many colleagues over the past decade, including authors of some
other chapters of this book, I have served as a senior participant in what
is now called the ENAR Workshop for Junior Biostatisticians in Health Re-
search, which has been supported by grants from the National Institutes of
Health. (Xihong Lin and I wrote the first grant application, and the grant
has subsequently been renewed under the expert direction of Amy Herring.)
Although targeted to biostatisticians, this workshop covers skills that are es-
sential to all young researchers. Much of what I have to say here has been
shaped by not only my own career but by the insights of my fellow senior
participants.

48.2 Achieving balance, and how you never know

Embarking on a career as a statistical researcher can be daunting, probably
considerably more so today than it was for me back in 1987. I had just received
my PhD in statistics from the University of North Carolina at Chapel Hill and
had accepted a position in the Department of Statistics at North Carolina
State University, barely 25 miles away. I was excited to have the opportunity
to become a faculty member and to teach, consult with other scientists on
campus, and carry out statistical methods research.

And, at the same time, I was, frankly, terrified. Sure, I’d done well in grad-
uate school and had managed to garner job offers in several top departments.
But could I really do this? In particular, could I really do research?

I was extremely fortunate to have had a thesis advisor, Ray Carroll, who
was what we would call today an outstanding mentor. Ray had not only
introduced me to what at the time was a cutting-edge methodological area
through my dissertation research, he had also been a great role model. I’ll tell
you more about Ray in the next section. He seemed confident in my prospects
for success in academia and urged me to forge ahead, that I would do just fine.

But I couldn’t help being plagued by self-doubt. While I was in graduate
school, Ray was always there. He proposed the area in which I did my disserta-
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tion research. He was available to help when I got stuck and to discuss the next
step. And now I was supposed to do this all on my own? Moreover, I didn’t
know the first thing about collaborating with scientists in other disciplines.

The first year wasn’t easy as I made the transition from student in a very
theoretical department to faculty member in a much more applied one, in a
position in which I was expected to serve as a consultant to faculty in other
departments across campus. It was a bit like a “trial by fire” as I struggled to
learn what is truly the art of being a good applied statistician and collaborator,
a skill light-years removed from my training in Chapel Hill. Simultaneously, as
the papers from my dissertation were accepted, the realization that I needed
to move forward with research loomed. Sure, I had some extensions of my
dissertation work I was pursuing, but after that, what would I do? I couldn’t
keep doing variance function estimation forever. The amount of time I spent
on my mostly routine but extensive statistical consulting and teaching the
two-semester sequence for PhD students in agriculture and life sciences left
me little time to ponder new research problems. To top it off, I was asked to
serve on the university’s Undergraduate Courses and Curriculum Committee,
and, not knowing any better, I agreed. I now know that a faculty member as
junior as I was should not be asked to serve on a committee that meets every
few weeks for several hours and focuses solely on administrative activities
completely tangential to research or collaboration.

I will admit to spending many evenings sitting on the balcony of my
Raleigh apartment looking out at the parking lot and wondering how I would
ever compile a record worthy of promotion and tenure a scant six years later.

But the most amazing thing happened. A student in the Department of
Crop Science who was taking my statistics course approached me after class
and asked if she could make an appointment to discuss her dissertation re-
search, which involved development of a new, experimental strain of soybean.
She had conducted a field experiment over the last three growing seasons in
which she had collected longitudinal data on measures of plant growth of both
the experimental and a commercial strain and was unsure of how to conduct
an analysis that would address the question of whether the two competing
soybean varieties had different specific features of their growth patterns. The
growth trajectories showed an “S-shaped” pattern that clearly couldn’t be
described by regression models she knew, and it did not seem to her that
analysis of variance methods would address the questions. Could I help? (Of
course, at that point I could have no input on the design, which is sadly still
often the case to this day, but luckily the experiment had been well-designed
and conducted.)

At about this same time, I regularly had been bemoaning my feelings of
inadequacy and being overwhelmed to my good friend David Giltinan, who
had graduated from Chapel Hill three years ahead of me and taken a job in
nonclinical research at the pharmaceutical company Merck. David recognized
that some of my dissertation research was relevant to problems he was seeing
and introduced me to the subject-matter areas and his collaborators. He had
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begun working with pharmacokineticists and insisted that I needed to learn
about this field and that I could have a lot to contribute. I grudgingly agreed
to look at some of the papers he sent to me.

So what does this have to do with soybeans? Everything. As it turned
out, despite the disparate application areas, the statistical problem in both
the soybean experiment and pharmacokinetics was basically the same. Lon-
gitudinal trajectories that exhibited patterns that could be well-described in
models nonlinear in parameters arising from solutions to differential equations
but where obviously the parameters took on different values across plants or
subjects. Questions about the typical behavior of specific features of the tra-
jectories and how variable this is across plants of subjects and changes system-
atically with the characteristics of the plants or subjects (like strain, weight,
or kidney function). And so on.

These two chance events, a consulting client needing help analyzing data
from a soybean experiment and a friend insisting I learn about an application
area I previously did not even know existed, led me to a fascinating and
rewarding area of methodological research. The entire area of nonlinear mixed
effects modeling and analysis, the groundwork for which had been laid mostly
by pharmacokineticists in their literature, was just being noticed by a few
statisticians. Fortuitously, David and I were among that small group. The
need for refinement, new methodology, and translation to other subject matter
areas (like crop science) was great. I went from fretting over what to work on
next to frustration over not having enough time to pursue simultaneously all
the interesting challenges to which I thought I could make a contribution.

My determination led me to figure out how to make the time. I’d found
a niche where I knew I could do useful research, which would have never
happened had I not been engaged in subject-matter challenges through my
consulting and friendship with David. I was no longer sitting on the balcony;
instead, I spent some of those evenings working. I realized that I did not
have to accommodate every consulting client’s preferred meeting time, and
I adopted a firm policy of blocking off one day per week during which I would
not book consulting appointments or anything else, no matter what. And when
my term on the university committee concluded, I declined when approached
about a similar assignment.

To make a long story short, I am proud that David and I were among
the many statisticians who developed methods that brought nonlinear mixed
effects models into what is now routine use. Our most exciting achievement
was when John Kimmel, who was then a Statistics Editor with Chapman &
Hall, approached us about writing a book on the topic. Write a book? That
had not dawned on either of us (back then, writing a book on one’s research
was much less common than it is today). For me, was this a good idea, given
I would be coming up for tenure in a year? Writing a book is a significant, time-
consuming undertaking; would this be a sensible thing to do right now? As
scared as I was about tenure, the opportunity to work with David on putting
together a comprehensive account of this area, all in one place, and make
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it accessible to practitioners and researchers who could benefit, was just too
compelling. As it turned out, I ended up leaving North Carolina for Harvard
(for personal reasons) shortly after we agreed to do the book, but I made it a
priority and continued my policy of blocking off a day to work on it, despite
being a clinical trials statistician with 13 protocols — I did waffle a few times,
but for the most part I simply made it clear I was not available for conference
calls or meetings on that day. Remarkably, we stuck to our vow of completing
the book in a year (and I did get tenure and eventually moved back to North
Carolina State). Our book (Davidian and Giltinan, 1995), although it is now
somewhat outdated by all the advances in this area that have followed it, is
one of my most satisfying professional accomplishments to this day.

As I said at the outset, starting out in a career in statistical research can
be overwhelming. Balancing so many competing demands — collaborative
projects, consulting, teaching, methodological research, committee responsi-
bilities — is formidable, particularly for new researchers transitioning from
graduate school. It may seem that you will never have enough time for method-
ological research, and you may even find identifying worthy research problems
to be challenging, like I did. My story is not unique, and it taught me many
lessons, on which I, along with my fellow senior participants in the ENAR
junior researchers workshop, have dispensed advice over the years. Here are
just a few of the key points we always make.

Number 1: Set aside time for your own interests, no matter what. It can
be an entire day or an afternoon, whatever your position will permit. Put it
in your calendar, and block it off. And do not waver. If a collaborator wants
to schedule a meeting during that time, politely say that you are already
committed. Your research is as important as your other responsibilities, and
thus merits dedicated time, just as do meetings, teaching, and committee
activities.

Along those same lines, learn that it is okay to say “no” when the al-
ternative is being over-committed. Do not agree to take on new projects or
responsibilities unless you are given time and support commensurate with the
level of activity. If you are in a setting in which statisticians are asked to be
part of a project for a percentage of their time, insist on that percentage be-
ing adequate — no project will ever involve just five percent of your effort. If
you are being asked to serve on too many departmental or university commit-
tees, have an honest talk with your Department Chair to establish a realistic
expectation, and then do not exceed it.

Finally, never pre-judge. When I set up the appointment with the crop
scientist, I assumed it would be just another routine consulting encounter,
for which I’d propose and carry out standard analyses and which would just
add to the pile of work I already had. When David insisted I learn about
pharmacokinetics, I was skeptical. As statisticians engaged in collaboration,
we will always do many routine things, and we eventually develop radar for
identifying the projects that will likely be routine. But you never know when
that next project is going to reveal a new opportunity. And, as it did for
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me, alter the course of one’s career. Be judicious to the extent that you can,
but, unless you have very good reason, never write off anything. And never
say never. If you’d told me back in 1987 that I would have published a best-
selling book a mere eight years later, I would have asked you what you had
been smoking!

48.3 Write it, and write it again

I’d always liked writing — in fact, when I was in high school, I toyed with the
idea of being an English major. But my love of math trumped that idea, and
I went on to major first in mechanical engineering at the University of Virginia,
and then, realizing I was pretty bored, switched to applied mathematics. It
was in the last semester of my senior year that, by chance, I took a statistics
course from a relatively new Assistant Professor named David Harrington.
I was hooked, and Dave was such a spectacular instructor that I ended up
hanging around for an additional year and getting a Master’s degree. Because
I was in an Applied Mathematics Department in an Engineering School back
in 1980, and because there was no Statistics Department at UVa back then,
I ended up taking several courses from Dave (one of the only statisticians
on the entire campus), including a few as reading courses. You may know
of Dave — he eventually left Virginia for the Dana Farber Cancer Center
and the Department of Biostatistics at Harvard School of Public Health —
and among his many other accomplishments, he wrote a best-selling book on
survival analysis (Fleming and Harrington, 1991) with his good friend from
graduate school, Tom Fleming.

I mention Dave because he was the first to ever talk to me explicitly about
the importance of a statistician being a good writer. I had to write a Master’s
thesis as part of my degree program, and of course Dave was my advisor. It
was mainly a large simulation study, which I programmed and carried out (and
which was fun) — the challenge was to write up the background and rationale,
the design of the simulations, and the results and their interpretation in a
clear and logical fashion. I will always remember Dave’s advice as I set out
to do this for the first time: “Write it, and write it again.” Meaning that one
can always improve on what one has written to make it more accessible and
understandable to the reader. And that one should always strive to do this.
It’s advice I give to junior researchers and my graduate students to this day.

I learned a lot from Dave about clear and accessible writing through that
Master’s thesis. And fortunately for me, my PhD advisor, Ray Carroll, picked
up where Dave left off. He insisted that I develop the skill of writing up results
as I obtained them in a formal and organized way, so that by the time I had
to begin preparing my dissertation, I had a large stack of self-contained docu-
ments, neatly summarizing each challenge, derivation, and result. Ray always
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emphasized the importance of clarity and simplicity in writing and speaking
(which he demonstrated by editing everything I wrote for my dissertation and
the papers arising from it). His motto for writing a good journal article was
“Tell ’em what you’ll tell ’em, tell ’em, and tell ’em what you told ’em.” As
you’ll see shortly, I’ve adopted that one as a guiding principle as well.

I learned a lot from both Dave and Ray that laid the groundwork for
my own strong interest in effective scientific writing. I am certain that, had
I not had the benefit of their guidance, I would not have developed my own
skills to the point that I eventually had the opportunity to serve as a Journal
Editor. In my three years as Coordinating Editor of Biometrics in 2000–02
and my current role (since 2006) as Executive Editor, I have read and reviewed
probably well over 1000 papers and have seen the entire spectrum, from those
that were a joy to read to those that left me infuriated. And ditto for my time
spent on NIH study sections (grant review panels). During my many years
on what is currently the NIH Biostatistical Methods and Research Design
study section, including three years as its Chair, I read grant applications
that were so clear and compelling that I almost wanted to write my own
personal check to fund them, but others that left me questioning the audacity
of the investigators for expecting the taxpayers to support a project that they
could not even convincingly and clearly describe.

What is it that makes one article or grant application so effective and
another one so dreadful? Of course, the methodological developments being
presented must have a sound basis. But even if they are downright brilliant
and path-breaking, if they are not communicated in a way that the intended
audience can unambiguously understand, they are not going to be appreciated.
Given what one has to say is worthy, then, it is the quality of the writing that
plays the primary role in whether or not a paper gets published or a grant
gets funded. I’ll concentrate on writing here, but most of what I say can be
adapted equally well to oral presentation.

So how does one become a good writer? Admittedly, some people are just
naturally gifted communicators, but most of us must practice and perfect our
writing skills. And they can be perfected! Here is a synopsis of the points I and
my colleagues stress to junior researchers when discussing effective writing of
journal articles and grant applications.

First and foremost, before you even begin, identify and understand your
target audience. If you are writing a journal article, you have two types of tar-
get readers. The Editor, Associate Editor, and referees at the journal, some of
whom will be experts in the area and all of whom must be convinced of your
work’s relevance and novelty; and, ultimately, readers of the journal, who may
span the range from experts like you to others with a general background who
are hoping to learn something new. If you are writing a grant application, it
is likely that many on the review panel will have only passing familiarity with
your area while a few will be experts. Your presentation must be accessible
to all of them, providing the novices with the background they need to un-
derstand your work while communicating the key advances to experts who
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already have that background. And you need to do this while respecting a
nonnegotiable restriction on the length of your article or research proposal.
That’s a pretty tall order.

To address it, take some time and think carefully about the main message
you want to convey and what you can reasonably hope to communicate ef-
fectively in the space allotted. You must acknowledge that you cannot pack
in everything that you’d like or give the full background. So step into the
shoes of your different readers. What background is essential for a novice to
appreciate the premise of your work? Some of this you may be able to review
briefly and explicitly, but most likely you will need to refer these readers to
references where that background is presented. In that case, what references
would be most appropriate? What results would an expert be willing to ac-
cept without seeing all the technical details (that might be more than a novice
would need to see anyway)? What aspects of your work would be the most
exciting to expert readers and should be highlighted, and which could be just
mentioned in passing? Careful assessment of this will help you to establish
what you must include to reach everyone and what you can omit or downplay
but still communicate the main message. For journal articles, the option of
supplementary material allows you the luxury of presenting much more, but
always keep in mind that not all readers will consult it, so the main article
must always contain the most critical material.

Once you have an idea of your audience and what they should take away,
the key is to tell the story. For a journal article, a good principle to follow is
the one Ray espouses; for a grant application, the format is more regimented,
but the same ideas apply. First, “tell ’em what you’ll tell ’em!” The intro-
ductory section to an article or proposal is often the hardest to write but the
most important. This is where you motivate and excite all readers and give
them a reason to want to keep reading! The opening sentence should focus
immediately on the context of the work; for example, the renowned paper on
generalized estimating equations by Liang and Zeger (1986) starts with “Lon-
gitudinal data sets are comprised...,” which leaves no doubt in a reader’s mind
about the scope of the work. After setting the stage like this, build up the
background. Why is the problem important? What are the major challenges?
What is known? What are the limitations of current methods? What gaps in
understanding need to be filled? For novice readers, note critical concepts and
results that must be understood to appreciate your work, and provide key
references where these readers may obtain this understanding. It is often very
helpful to cite a substantive application that exemplifies the challenge (some
journals even require this); this may well be an example that you will return
to later to illustrate your approach.

The next step is to “tell ’em.” You’ve made the case for why your audience
should be interested in your story, now, tell it! Here, organization and logical
flow are critical. Organize your presentation into sections, each having a clear
focus and purpose that naturally leads to what follows. Completeness is crit-
ical; at any point along the way, the reader should have all the information
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s/he needs to have followed up to that point. Motivate and describe the steps
leading to your main results, and relegate any derivations or side issues that
could distract from the main flow of ideas to supplementary material for a
journal article (or don’t include them at all in a grant application). Relate
complex concepts to concrete examples or simple special cases to assist novice
readers grasp the main ideas. This is especially effective in grant applications,
where reviewers are likely not to be experts.

The following principles seem obvious, but you would be surprised how
often authors violate them! Do not refer to ideas or concepts until after you
have introduced them. State your assumptions up front and before or when
you need them for the first time. Do not use acronyms, terms, symbols, or
notation until after they have been defined; for that matter, be sure to define
every acronym, term, and symbol you use. And only define notation you really
need. The less clutter and information a reader has to remember, the better.

Be as clear, concise, and helpful as you can. With limited space, every
sentence and equation counts and must be understandable and unambiguous.
Avoid “flowery” words if simpler ones are available, and if you catch yourself
writing long sentences, strive to break them into several. Paraphrase and in-
terpret mathematical results in plain English to give a sense of what results
mean and imply. Use a formal, scientific style of writing (different from that
used in this chapter). In particular, do not use contractions such as “it’s” and
“don’t,” and use only complete sentences; although these constructions may
be used in a “popular” piece of writing like this one, they are not appropriate
in scientific writing. Grammar and punctuation should be formal and correct
(ask a colleague for help if English is not your native language), and be sure to
spell check. Consult the articles in your target journal for examples of stylistic
and grammatical conventions.

When reporting empirical studies, be sure that everything a reader would
need to reproduce a simulation scenario him- or herself is presented. Do
not display mind-numbing tables of numbers with little explanation; instead,
choose to present limited results that illustrate the most important points
and provide detailed interpretation, emphasizing how the results support the
premise of your story. In fact, consider if it is feasible to present some results
graphically, which can often be more efficient and effective than a tabular
format.

In summary, do not leave your reader guessing! One useful practice to
adopt is to step into your audience’s shoes often. Read what you have written,
and ask yourself: “Would I be able to understand what comes next given what
I have presented so far?” Be honest, and you’ll identify ways you could do a
better job at conveying your message.

You may not have this luxury in a grant application, but in a journal arti-
cle, you do. Once you’ve told the story, “tell ’em what you told ’em.” Usually,
this would be done in a final Discussion or Conclusions section. Restate what
you set out to accomplish and review what was done to address it. Highlight
the key findings, and discuss their significance and impact. It is just as im-
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portant to note the limitations of what you have done and to identify what
remains to be done. This summary does not have to be very long, but it should
leave the reader with a clear understanding of why s/he bothered to read your
work.

How does one go about getting started? The prospect of sitting down to
write a journal article or research proposal can be daunting. Keep in mind that
authors who simply sit down and start writing are rare. Most good writers,
either literally, or figuratively in their minds, formulate an outline establishing
the basic organization. Some will do this by beginning a LATEX document with
tentative section headings that correspond to the main ideas and results, and
then filling in details. Also know that most good writers do not do this in order.
They may write up the results first and leave the introduction until later, after
they have a sense of what follows that material. If you find yourself grasping
for the right word and/or agonizing over a detail, do not allow yourself to get
stuck; make a note to come back to it later. As your work takes shape, you’ll
realize that you may want to move some material to another place, and the
words and details you struggled with begin to gel.

Finally, I’ll return to Dave’s motto: “Write it, and write it again.” No
writer, no matter how talented or skilled, produces a perfect first draft. Once
you have your first draft, review it carefully and critically, and be ruthless!
Evaluate every sentence, and make sure that it is really necessary and, if it
is, that it says exactly what you mean. Be on the lookout for repetition and
redundancy — have you repeated something that you said earlier that doesn’t
bear repeating? This is a waste of precious space that could be put to better
use. Be your own worst critic! Ask yourself: Have I cited the relevant litera-
ture and background sufficiently? Are there gaps in my logic or storytelling
that would impede understanding? Are there parts that could be confusing or
unclear? Is the overall message obvious, and have I made a convincing case?
The bottom line is that you can always improve on what you have written.
At some point, of course, you must let go and declare what you have to be
the finished product, but a few rounds of putting your work aside and reading
it again in a day or two can be very effective toward refining it to the point
where any further improvements would be minimal.

48.4 Parting thoughts

A career in statistical research can be incredibly rewarding. The challenges
are many, but the skills required can be mastered. I’ve touched on just two
key elements — balancing competing responsibilities and effective writing —
that have played a major role in my own career. I hope that my experience is
helpful to the next generation of statistical scientists, to whom I leave one final
piece of advice. Have fun! In spite of the challenges and occasional frustrations,
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enjoy what you do, and, if you don’t, look for a change. We in our field are
lucky that, at least currently, our skills are in high demand. Regardless of
what type of position you find is right for you, becoming skilled at finding
balance and being a good communicator will always serve you well.
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Converting rejections into positive stimuli

Donald B. Rubin
Department of Statistics
Harvard University, Cambridge, MA

“It’s not that I’m so smart, it’s just that I stay with problems longer.”
– Albert Einstein

At first glance this Einstein quotation may seem to have little to do with
my title, but those readers who know something of Einstein’s early life will
recall that these years were not full of recognized scientific successes, but he
kept working on his problems. And that is certainly related to why I chose
the quote, but there is more to it. I have been fortunate to have had many
journal publications, but less than one percent were accepted at first submis-
sion — far more were immediately rejected, followed closely by those that
were rejected accompanied with the suggestion that it would not be wise to
resubmit. However, I cannot think of an instance where this nasty treatment
of my magnificent (self-assessed) work (sometimes joint) did not lead to a
markedly improved publication, somewhere. In fact, I think that the drafts
that have been repeatedly rejected by many different journals possibly repre-
sent my best contributions! Certainly the repeated rejections, combined with
my trying to address various comments, led to better exposition and some-
times better problem formulation as well.

So here, in an attempt to inspire younger researchers to stay the course,
I’ll relay some of my stories on the topic, of course using some of my own
publications as examples. I’ll give only a short summary of each example,
hopefully just enough for the reader to get the basic idea of the work (or
possibly even read it, or as my wonderful PhD advisor, Bill Cochran, used to
say, “I’d prefer if you read it and understood it, but if not, please read it; failing
that, just cite it!”). For potential interest, I’ll insert the approximate number
of Google Scholar cites as of August 1, 2013. These counts may be of interest
because the relationship between the number of citations and my memory of
the paper’s ease of acceptance appears to me to be zero (excluding the EM
outlier). So young writers, if you think you have a good idea that reviewers do
not appreciate, you’re not alone, and quite possibly on to a very good idea,

593
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especially if the reviewers come across as real experts in their reports, but
appear to have off-target comments.

49.1 My first attempt

“A non iterative algorithm for least squares estimation of miss-
ing values in any analysis of variance design.” Journal of the Royal
Statistical Society, Series C, vol. 21 (1972), pp. 136–141. [Number of
citations: 58]

This was my first sole-authored submission, and of course, I thought it was
very clever, combining simple matrix manipulations with simple computations
to generalize an old “Rothamsted” (to use Cochran’s word) method to fill in
missing data in an experimental design with their least squares estimates —
a standard objective in those days (see the target article or Little and Rubin
(2002, Chapter 2), for the reason for this objective). When I submitted this,
I was still a PhD student, and when I received the report and saw “tentative
reject,” I was not a happy camper. Cochran calmed me down, and gave me
some advice that he learned as a wee Scottish lad on the links: Keep your
eye on the ball! Meaning, the objective when writing is to communicate with
your readers, and the reviewers are making useful suggestions for improved
communication. He went on to say:

“The Editor is not your enemy — at this point in time, he has no
idea who you even are! The Editor sent your draft to people who are
more experienced than you, and they are reading it without pay to
help you and the journal.”

I was calm and the paper was accepted, a revision or two later. I was only
fully calm, however, until the next “tentative reject” letter a few months later.

49.2 I’m learning

“Matching to remove bias in observational studies.” Biometrics, vol. 29
(1973), pp. 159–183. Printer’s correction note in vol. 30 (1974), p. 728.
[Number of citations: 392]

“The use of matched sampling and regression adjustment to remove
bias in observational studies.” Biometrics, vol. 29 (1973), pp. 184–203.
[Number of citations: 321]
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This pair of submissions was based on my PhD thesis written under Bill’s
direction — back-to-back submissions, meaning both were submitted at the
same time, with the somewhat “aggressive” suggestion to publish them back-
to-back if they were acceptable. Both were on matched sampling, which at the
time was really an unstudied topic in formal statistics. The only publication
that was close was the wonderful classic Cochran (1968). Once again, a tenta-
tive rejection, but this time with all sorts of misunderstandings, criticisms and
suggestions, that would take voluminous amounts of time to implement, and
because at the time I was faculty in the department, I was a busy boy! I again
told Bill how furious I was about these reviews, and Bill once again calmed
me down and told me to remember what he had said earlier, and moreover,
I should realize that these reviewers had spent even more time trying to help
me, and that’s why their comments were so long. Of course, Bill was correct,
and both papers were greatly improved by my addressing the comments —
not necessarily accepting the suggestions but addressing them. This lesson is
important — if a reviewer complains about something and makes a suggestion
as to how things should be changed, you as the author, needn’t accept the
reviewer’s suggestion, but you should fix that thing to avoid the criticism.
I was beginning to learn how to communicate, which is the entire point of
writing journal articles or books.

49.3 My first JASA submission

“Characterizing the estimation of parameters in incomplete data
problems.” Journal of the American Statistical Association, vol. 69
(1974), pp. 467–474. [Number of citations: 177]

This article concerns factoring likelihoods with missing data, which pre-
sented generalizations and extensions of prior work done by Anderson (1957)
and Lord (1955) concerning the estimation of parameters with special patterns
of missing data. Here, the editorial situation was interesting because, when
I submitted the draft in 1970, the JASA Theory and Methods Editor was Brad
Efron, whom I had met a couple of years earlier when he visited Harvard, and
the Associate Editor was Paul Holland, my good friend and colleague at Har-
vard. So, I thought, finally, I will get a fast and snappy acceptance, maybe
even right away!

No way! Paul must have (I thought) selected the most confused mathe-
matical statisticians in the world — these reviewers didn’t grasp any of the
insights in my wonderous submission! And they complained about all sorts of
irrelevant things. There is no doubt that if it hadn’t been for Paul and Brad, it
would have taken years more to get it into JASA, or would have followed the
path of Rubin (1976) described below, or far worse. They were both helpful
in explaining that the reviewers were not idiots, and actually they had some
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decent suggestions, properly interpreted — moreover, they actually liked the
paper — which was very difficult to discern from the reports written for my
eyes. Another set of lessons were apparent. First, read between the lines of
a report: Editors do not want to over commit for fear the author won’t pay
attention to the suggestions. Second, reinterpret editorial and reviewer’s sug-
gestions in ways that you believe improve the submission. Third, thank them
in your reply for suggestions that improved the paper — they did spend time
writing reports, so acknowledge it. Fourth, it does help to have friends in
positions of power!

49.4 Get it published!

“Estimating causal effects of treatments in randomized and nonran-
domized studies.” Journal of Educational Psychology, vol. 66 (1974),
pp. 688–701. [Number of citations: 3084]

This paper is the one that started my publishing trail to use the potential
outcomes notation to define formally causal effects in all situations, not just in
randomized experiments as in Neyman (1923). Actually Neyman said he never
made that generalization because he never thought of it, and anyway, doing
so would be too speculative; see Rubin (2010) for the story on this. Everyone
dealing with non-randomized studies for causal effects was using the observed
value notation with one outcome (the observed value of the outcome) and one
indicator variable for treatments until this paper. So in fact, Rubin (1974a)
was the initiating reason for the phrase “Rubin Causal Model” — RCM, coined
in Holland (1986).

I wrote this in some form when I was still at Harvard, more as notes for
an introductory statistics course for psychologists. Someone suggested that
I spruce it up a bit and submit it for publication. I did, but then couldn’t
get it published anywhere! Every place that I submitted the piece, rejected
it. Sometimes the reason was that “every baby statistics student knows this”
(I agreed that they should, but then show me where it is written!); some-
times the reason was “it’s completely wrong”! And, in fact, I just received
(July 2013) an email stating that “the Rubin definition of ‘causality’ is not
appealing to many eminent statisticians.” Sometimes the comments were even
insulting, especially so because I was submitting statistical work from my po-
sition at Educational Testing Service (ETS) rather than a respected university
statistics department. I asked around ETS and someone suggested the place,
the Journal of Educational Statistics, where it ended up — I think that the
acceptance was because of some high level intervention from someone who
did like the paper but, more importantly, wanted to get me off his back —
I honestly do not remember whom to thank.
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There are several lessons here. First, it demonstrates that if a publication is
good and good people find out about it (again, it helps to know good people),
it will get read and cited. So if you are having this kind of problem with
something that you are convinced is decent, get it published somewhere, and
start citing it yourself in your own publications that are less contentious, and
nag your friends to do so! Second, if you are repeatedly told by some reviewers
that everyone knows what you are saying, but without specific references,
and other reviewers are saying what you are writing is completely wrong
but without decent reasons, you are probably on to something. This view is
reinforced by the next example. And it reiterates the point that it does help
to connect with influential and wise people.

49.5 Find reviewers who understand

“Inference and missing data.” Biometrika, vol. 63 (1976), pp. 581–
592 (with discussion and reply). [Number of citations: 4185]

This article is extremely well known because it established the basic termi-
nology for missing data situations, which is now so standard that this paper
often isn’t cited for originating the ideas, although often the definitions are
summarized somewhat incorrectly. As Molenberghs (2007) wrote: “... it is fair
to say that the advent of missing data methodology as a genuine field within
statistics, with its proper terminology, taxonomy, notation and body of re-
sults, was initiated by Rubin’s (1976) landmark paper.” But was this a bear
to get published! It was rejected, I think twice, from both sides of JASA; also
from JRSS B and I believe JRSS A. I then decided to make it more “mathy,”
and I put in all this measure theory “window dressing” (a.s., a.e., both with
respect to different measures because I was doing Bayesian, repeated sam-
pling and likelihood inference). Then it got rejected twice from The Annals
of Statistics, where I thought I had a chance because I knew the Editor —
knowing important people doesn’t always help. But when I told him my woes
after the second and final rejection from The Annals, and I asked his advice
on where I should send it next, he suggested “Yiddish Weekly” — what a
great guy!

But I did not give up even though all the comments I received were very
negative; but to me, these comments were also very confused and very wrong.
So I tried Biometrika — home run! David Cox liked it very much, and he gave
it to his PhD student, Rod Little, to read and to contribute a formal comment.
All those prior rejections created, not only a wonderful publication, but lead
to two wonderful friendships. The only real comment David had as the Editor
was to eliminate all that measure theory noise, not because it was wrong
but rather because it just added clutter to important ideas. Two important
messages: First, persevere if you think that you have something important to
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say, especially if the current reviewers seem not up to speed. Second, try to
find a sympathetic audience, and do not give up.

49.6 Sometimes it’s easy, even with errors

“Maximum likelihood from incomplete data via the EM algorithm.”
Journal of the Royal Statistical Society, Series B, vol. 39 (1977), pp. 1–
38 (joint work with A.P. Dempster and N. Laird, published with dis-
cussion and reply). [Number of citations: 34,453]

Those early years at ETS were tough with respect to getting articles ac-
cepted, and I think it is tougher submitting from less academically prestigious
places. But publishing things became a bit easier as I matured. For example,
the EM paper was accepted right away, with even invited discussion. It was
to be a read paper in London in 1976, the trip where I met Rod Little and
David Cox in person — the latter mentioned that he really wasn’t fond of the
title of the already accepted Rubin (1976) because something that’s missing
can’t be “given” — the Latin meaning of data. And this rapid acceptance for
the EM paper was despite having one of its proofs wrong — misapplication of
the triangle inequality! Wu (1983) corrected this error, which was not critical
to the fundamental ideas in the paper about the generality of the missing
data perspective. In statistics, ideas trump mathematics — see Little’s (2013)
Fisher lecture for more support for this position. In this case, a rapid accep-
tance allowed an error to be published and corrected by someone else. If this
can be avoided it should be, even if it means withdrawing an accepted paper;
three examples of this follow.

49.7 It sometimes pays to withdraw the paper!

It sometimes pays to withdraw a paper. It can be good, it can be important,
and even crucial at times, as the following examples show.

49.7.1 It’s good to withdraw to complete an idea

“Parameter expansion to accelerate EM: The PX-EM algorithm.”
Biometrika, vol. 85 (1998), pp. 755–770 (joint work with C.H. Liu and
Y.N. Wu). [Number of citations: 243]

This submission was done jointly with two exceptionally talented former
PhD students of mine, Chuanhai Liu and Ying Nian Wu. It was a technically
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very sound article, which introduced the PX-EM algorithm, an extension of
EM. If correctly implemented, it always converged in fewer steps than EM
— nice. But after the submission was accepted by an old friend, Mike Titter-
ington at Biometrika, there was an intuitive connection that I knew had to
be there, but that we had not included formally; this was the connection be-
tween PX-EM and ANCOVA, which generally creates more efficient estimated
treatment effects by estimating a parameter whose value is known to be zero
(e.g., the difference in the expected means of covariates in the treatment and
control groups in a completely randomized experiment is zero, but ANCOVA
estimates it by the difference in sample means). That’s what PX-EM does —
it introduces a parameter whose value is known, but estimates that known
value at each iteration, and uses the difference between the estimate and the
known value to obtain a larger increase in the actual likelihood. But we hadn’t
done the formal math; so we withdrew the accepted paper to work on that.

Both Chuanhai and Yingnian were fine with that decision. My memory
is that we basically destroyed part of a Christmas holiday getting the idea
down correctly. We were now ready to resubmit, and it was not surprising
that it was re-accepted overnight, I think. Another lesson: Try to make each
publication as clean as possible — you and your coauthors will have to live
with the published result forever, or until someone cleans it up!

49.7.2 It’s important to withdraw to avoid having a marginal
application

“Principal stratification for causal inference with extended par-
tial compliance: Application to Efron–Feldman data.” Journal of the
American Statistical Association, vol. 103 (2008), pp. 101–111 (joint
work with H. Jin). [Number of citations: 65]

This paper re-analyzed a data set from an article (Efron and Feldman,
1991) on noncompliance, but I think that Hui Jin and I approached it more
appropriately using principal stratification (Frangakis and Rubin, 2002). I had
a decade to ponder the issues, the benefit of two great economics coauthors
in the interim (Angrist et al., 1996), a wonderful PhD student (Constantine
Frangakis) to help formulate a general framework, and a great PhD student
to work on the example. The submission was accepted fairly quickly, but as
it was about to go to the Copy Editors, I was having my doubts about the
last section, which I really liked in principle, but the actual application didn’t
make complete scientific sense, based on my experience consulting on various
pharmaceutical projects. So I wanted to withdraw and to ask my coauthor,
who had done all the extensive computing very skillfully, to do all sorts of
new computing. Her initial reaction was something like: Had I lost my mind?
Withdraw a paper already accepted in JASA?! But wasn’t the objective of
writing and rewriting to get the paper accepted? But after listening to the
reasons, she went along with my temporary insanity, and she executed the
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final analyses that made scientific sense with great skill and care. Of course the
paper was re-accepted. And it won the Mitchell prize at the Joint Statistical
Meetings in 2009 for the best Bayesian paper.

The message here is partly a repeat of the above one regarding publishing
the best version that you can, but it is more relevant to junior authors anxious
for publications. I surely know how difficult it can be, certainly in the early
years, to build a CV and get promoted; but that’s short term. Eventually real
quality will triumph, and don’t publish anything that you think may haunt
you in the future, even if it’s accepted in a top journal. As Pixar’s Jay Shuster
put it: “Pain is temporary, ‘suck’ is forever.” By the way, Hui Jin now has an
excellent position at the International Monetary Fund.

49.7.3 It’s really important to withdraw to fix it up

“Multiple imputation by ordered monotone blocks with application
to the Anthrax Vaccine Research Program,” Journal of Computational
and Graphical Statistics; 2013; in press (joint work with F. Li, M.
Baccini, F. Mealli, E.R. Zell, and C.E. Frangakis)

This publication hasn’t yet appeared, at least at the time of my writing
this, but it emphasizes the same point, with a slightly different twist because
of the multiplicity of coauthors of varying seniority. This paper grew out of
a massive joint effort by many people, each doing different things on a major
project. I played the role of the MI-guru and organizer, and the others were
absorbed with various computing, writing, and data analytic roles. Writing a
document with five major actors was complicated and relatively disorganized
— the latter issue, my fault. But then all of a sudden, the paper was written,
submitted, and remarkably the first revision was accepted! I now had to read
the entire thing, which had been “written” by a committee of six, only two
of which were native English speakers! Although some of the writing was
good, there were parts that were confusing and other parts that appeared
to be contradictory. Moreover, on closer examination, there were parts where
it appeared that mistakes had been made, mistakes that would take vast
amounts of time to correct fully, but that only affected a small and orthogonal
part of the paper. These problems were really only evident to someone who had
an overview of the entire project (e.g., me), not reviewers of the submission.

I emailed my coauthors (some of whom were across the Atlantic) that
I wanted to withdraw and rewrite. Initially, there seemed to be some shock
(but wasn’t the purpose of writing to get things published?), but they agreed
— the more senior authors essentially immediately, and more junior ones after
a bit of contemplation. The Editor who was handling this paper (Richard
Levine) made the whole process as painless as possible. The revision took
months to complete; and it was re-accepted over a weekend. And I’m proud
of the result. Same message, in some sense, but wise Editors want to publish
good things just as much as authors want to publish in top flight journals.
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49.8 Conclusion

I have been incredibly fortunate to have access to sage advice from wonderful
mentors, obviously including advice about how to react to rejected submis-
sions. It may not always be true, and I do know of some gross examples, but
in the vast majority of cases, Editors and reviewers are giving up their time to
try to help authors, and, I believe, are often especially generous and helpful to
younger or inexperienced authors. Do not read into rejection letters personal
attacks, which are extremely rare. The reviewers may not be right, but only
in rare situations, which I believe occur with submissions from more senior
authors, who are “doing battle” with the current Editors, is there any personal
animus. As Cochran pointed out to me about 1970, they probably don’t even
know anything about you, especially if you’re young. So my advice is: Quality
trumps quantity, and stick with good ideas even when you have to do battle
with the Editors and reviewers — they are not perfect judges but they are,
almost uniformly, on your side.

Whatever wisdom is offered by this “fireside chat” on dealing with rejec-
tions of journal submissions, owes a huge debt to the advice of my mentors
and very respected folks along my path. So with the permission of the Editors
of this volume, I will follow with a description of my incredible good fortune
to meet such folks. As one of the wisest folks in our field (his name is hid-
den among the authors of the additional references) once said to me: If you
ask successful people for their advice on how to be successful, their answers
are, “Be more like me.” I agree, but with the addition: “And meet wonderful
people.” This statement creates a natural transition to the second part of my
contribution to this 50th anniversary volume, on the importance of listening to
wise mentors and sage colleagues. I actually wrote the second part before the
first part, but on rereading it, I feared that it suffered from two problems; one,
it sounded too self-congratulatory and almost elitist. The Editors disagreed
and thought it actually could be a helpful chapter for some younger readers,
perhaps because it does illustrate how good fortune plays such an important
role, and I certainly have had that with respect to the wonderful influences
I’ve had in my life. The advice: Take advantage of such good fortune!
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The importance of mentors

Donald B. Rubin
Department of Statistics
Harvard University, Cambridge, MA

On this 50th anniversary of the COPSS, I feel incredibly fortunate to have
stumbled into the career path that I followed, which appears, even in hind-
sight, like an overgrown trail in the woods that somehow led to a spectacular
location. In some sense, there is an odd coincidence in that it is also roughly
the 50th anniversary of my recognizing the field of statistics as a valuable one.
When thinking about what I could say here that might interest or help others,
and is not available in other places, I eventually decided to write about my
path and the importance, to me at least, of having wonderful “mentors” with
different backgrounds, which allowed me to appreciate many different modes
of productive thinking. Probably the characteristic of the field of statistics
that makes it so appealing to me is the wonderful breadth of intellectual top-
ics that it touches. Many of my statistical mentors had a deep appreciation
for this, and for that I will always be grateful, but also I have always felt very
fortunate to have had admirable mentors from other disciplines as well.

50.1 My early years

I grew up in Evanston, Illinois, home of Northwestern University. As a kid,
I was heavily influenced intellectually by a collection of people from various
directions. My father was one of four brothers, all of whom were lawyers, and
we used to have stimulating arguments about all sorts of topics; arguing was
not a hostile activity but rather an intellectually engaging one. Probably the
most argumentative was Uncle Sy, from DC, who had framed personal letters
of thanks for service from, eventually, all the presidents starting with Harry
Truman going through Gerald Ford, as well as some contenders, such as Adlai
Stevenson, and various Supreme Court Justices, and even Eleanor Roosevelt
with whom I shook hands back then. It was a daunting experience, not only
because of her reputation, but also because, according to my memory, she was
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twice as tall as I was! The relevance of this to the field of statistics is that it
created in me a deep respect for the principles of our legal system, to which
I find statistics deeply relevant, for example, concerning issues as diverse as the
death penalty, affirmative action, tobacco litigation, ground water pollution,
wire fraud, etc.

But the uncle who was most influential on my eventual interest in statistics
was my mother’s brother, a dentist (then a bachelor), who loved to gamble
small amounts, either in the bleachers at Wrigley Field, betting on the outcome
of the next pitch while we watched the Cubs lose, or at Arlington Race track,
where I was taught as a wee lad how to read the Racing Form and estimate
the “true” odds from the various displayed betting pools while losing two
dollar bets. Wednesday and Saturday afternoons, during the warm months
then, were times to learn statistics — even if at various bookie joints that
were sometimes raided. As I recall, I was a decent student of his, but still lost
small amounts — this taught me to never gamble with machines. Later, as
a PhD student at Harvard, I learned never to “gamble” with “Pros.” From
those days I am reminded of the W.C. Fields line who, when playing poker
for money on a public train car, was chastised by an older woman: “Young
man, don’t you know that gambling is a sin?” He replied, “The way I play
it, it’s not gambling.” The Harvard Pro’s were not gambling when playing
against me.

There were two other important influences on my statistical interests from
the late 1950s and early 1960s. First there was an old friend of my father’s
from their government days together, a Professor Emeritus of Economics at
the University of California Berkeley, George Mehren, with whom I had many
entertaining and educational (to me) arguments, which generated a respect
for economics, which continues to grow to this day. And second, my wonderful
teacher of physics at Evanston Township High School — Robert Anspaugh —
who tried to teach me to think like a scientist, and how to use mathematics
in pursuit of science. So by the time I left high school for college, I appreci-
ated some probabilistic thinking from gambling, some scientific thinking from
physics, and I had deep respect for disciplines other than formal mathemat-
ics. These, in hindsight, are exposures that were crucial to the kind of formal
statistics to which I gravitated as I matured.

50.2 The years at Princeton University

When I entered Princeton in 1961, like many kids at the time, I had a pile of
advanced placements, which lined me up for a BA in three years, but unknown
to me before I entered, I was also lined up for a crazy plan to get a PhD in
physics in five years, in a program being proposed by John Wheeler, a well-
known professor of Physics there (and Richard Feynman’s PhD advisor years
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earlier). Wheeler was a fabulous teacher, truly inspirational. Within the first
week, he presented various “paradoxes” generated by special relativity, intro-
duced the basics of quantum mechanics, gave homework problems designed to
stimulate intuitive but precise thinking (e.g., estimate — by careful reasoning
— how far a wild goose can fly), pointed out errors in our current text (e.g.,
coherent light cannot be created — it can — lasers were invented about a year
after this edition was published), and many other features of scientific think-
ing that are critically important but often nearly absent from some people’s
statistical thinking, either because they do not have the requisite mathemati-
cal background (and sometimes appear to think that algorithmic thinking is a
substitute) or because they are still enamored with thoughtless mathematical
manipulations, or perhaps some other reason.

In any case, my physics lessons from Anspaugh and Wheeler were crucial to
my thinking, especially the naturalness of two closely related messages: Time
marches on, and despite more recent “back to the future” movies, we cannot
go back in time, which leads directly to the second message — in any scientific
problem, there will always exist missing data, the “observer effect” (intuitively
related to the Heisenberg uncertainty principle, but different). That is, you
cannot precisely measure both position and momentum at the same point in
time, say t, because the physical act of measuring one of them at t affects the
other’s value after t; this is just like the fact that you cannot go back in time
to give the other treatment in a causal inference problem, and the choice of
notation and problem formulation should reflect these facts. All of statistics
should be formulated as missing data problems (my view since about 1970,
although not everyone’s).

But like many kids of that age, I was torn by competing demands about
how to grow up, as well as larger social issues of that time, such as our in-
volvement in Vietnam. And Wheeler took a leave of absence, I think to visit
Texas Austin in my second year, so I switched fields. My exact reasoning from
that time is a bit fuzzy, and although I continued to take some more advanced
physics courses, I switched from Physics to Psychology towards the end of my
second year, where my mathematical and scientific background seemed both
rare and appreciated, whereas in math and physics, at least in my cohort,
both skill sets were good, especially so in physics, but not rare. This decision
was an immature one (not sure what a mature one would have been), but a
fine decision because it introduced me to some new ways of thinking as well
as to new fabulous academic mentors.

First, there was a wonderful Psychologist, Silvan Tomkins, author of the
three volume “Affect, Imagery, Consciousness,” who introduced me to Sig-
mund Freud’s work, and other philosopher/psychologists on whose work his
own book built. I was amazed that interpreting dreams of strangers actually
worked much of the time; if I asked the right questions about their dreams,
I could quite often tell things about strangers such as recondite fears or aspira-
tions! There may really exist a “collective unconscious” to use Jung’s phrase.
In any case, I developed a new respect for psychology, including for their neat
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experiments to assess creativity and such “soft” concepts — there was real
scientific understanding among many psychologists, and so much yet to learn
about the mind! So armed with that view that there is much to do in that
direction, in my final year, I actually applied to PhD programs in psychology,
and was accepted at Stanford, the University of Michigan, and Harvard.

Stanford was the strongest technically, with a very quiet but wonderful
professor who subsequently moved to Harvard, Bill Estes. Michigan had a very
strong mathematical psychology program, and when I visited there in spring
of 1965, I was hosted primarily by a very promising graduating PhD student,
Amos Tversky, who subsequently wrote extremely influential and Nobel Prize
(in economics) winning work with Danny Kahneman. Amos’ work, even in
1965, was obviously great stuff, but I decided on Harvard, for the wrong
reason (girlfriend on the East coast), but meeting Bill and Amos, and hearing
the directions of their work, confirmed the idea that being in psychology was
going to work out well — until I got to Harvard.

50.3 Harvard University — the early years

My start at Harvard in the Department of Social Relations, which was the
home of psychology back then, was disappointing, to say the least. First,
all sorts of verbal agreements, established on my visit only months before
with a senior faculty member, were totally forgotten! I was told that my un-
dergraduate education was scientifically deficient because it lacked “methods
and statistics” courses, and I would have to take them at Harvard or with-
draw. Because of all the math and physics that I’d had at Princeton, I was
insulted! And because I had independent funding from an NSF graduate fel-
lowship, I found, what was essentially, a Computer Science (CS) program,
which seemed happy to have me, probably because I knew Fortran, and had
used it extensively at Princeton; but I also found some real math courses and
ones in CS on “mathy” topics, such as computational complexity, more inter-
esting than the CS ones, although it was clear that computers, as they were
evolving, were going to change the way much of science was done.

But what to do with my academic career? The military draft was still in
place, and neither Vietnam nor Canada seemed appealing. And I had picked
up a Master’s degree from CS in the spring of 1966.

A summer job in Princeton in 1966 lead to an interesting suggestion. I was
doing some programming for John Tukey and some consulting for a Prince-
ton Sociology Professor, Robert Althauser, basically writing programs to do
matched sampling; Althauser seemed impressed by my ability to program and
to do mathematics, and we discussed my future plans — he mentioned Fred
Mosteller and the decade old Statistics Department at Harvard; he suggested
that I look into it. I did, and by fall of 1968, I was trying my third PhD
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program at Harvard, still using the NSF funding that was again renewed. A
great and final field change!

But my years in CS were good ones too. And the background in CS was
extremely useful in Statistics — for doing my own work and for helping other
PhD students. But an aside about a lesson I learned then: When changing
jobs, never admit you know anything about computing or you will never have
any time to yourself! After a couple of years of denying any knowledge about
computers, no one will ask, and furthermore, by then, you will be totally
ignorant about anything new and practical in the world of computing, in any
case — at least I was.

50.4 My years in statistics as a PhD student

These were great years, with superb mentoring by senior folks: Fred Mosteller,
who taught me about the value of careful, precise writing and about respon-
sibilities to the profession; Art Dempster, who continued the lessons about
scientific thinking I learned earlier, by focusing his statistics on principles
rather than ad hoc procedures; and of course, Bill Cochran, a wonderfully
wise and kind person with a fabulous dry sense of humor, who really taught
me what the field of statistics, at least to him, concerned. Also important
was meeting life-long friends, such as Paul Holland, as a junior faculty mem-
ber. Also, there were other faculty with whom I became life-long friends, in
particular, Bob Rosenthal, a professor in psychology — we met in a Cochran
seminar on experimental design. Bob has great statistical insights, especially
in design, but did not have the mathematical background to do any “heavy-
lifting” in this direction, but this connection helped to preserve the long-term
interests in psychology. Bob was a mentor in many ways, but one of the most
important was how to be a good professor for your students — they deserve
access to your time and mind and its accumulated wisdom.

Another psychology faculty member, whom I met in the summer of 1965
and greatly influenced me, was Julian Jaynes from Princeton, who became rel-
atively famous for his book “The Origin of Consciousness in the Breakdown
of the Bicameral Mind” — a spectacularly interesting person, with whom
I became very close during my post-graduate years when I was at ETS (the
Educational Testing Services) in Princeton. A bit more, shortly, on his influ-
ence on my thinking about the importance of bridging ideas across disciples.

After finishing my graduate work in 1970, I stayed around Harvard Statis-
tics for one more year as a faculty member co-teaching with Bob Rosenthal
the “Statistics for Psychologists” course that, ironically, the Social Relations
Department wanted me to take five years earlier, thereby driving me out of
their program! I decided after that year that being a junior faculty member,
even in a great department, was not for me. So I ended up accepting a fine
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position at ETS in Princeton, New Jersey, where I also taught part-time at
Princeton’s young Statistics Department, which renewed my friendship with
Tukey; between the two positions, my annual salary was more than twice what
I could be offered at Harvard to stay there as junior faculty.

50.5 The decade at ETS

The time at ETS really encouraged many of my earlier applied and theoretical
connections — it was like an academic position with teaching responsibilities
replaced by consulting on ETS’s social science problems, including psycho-
logical and educational testing ones; and I had the academic connection at
Princeton, where for several years I taught one course a year. My ETS boss, Al
Beaton, had a Harvard Doctorate in Education, and had worked with Demp-
ster on computational issues, such as the “sweep operator.” Al was a very nice
guy with deep understanding of practical computing issues. These were great
times for me, with tremendous freedom to pursue what I regarded as important
work. Also in those early years I had the freedom to remain in close contact
with Cochran, Dempster, Holland, and Rosenthal, which was very important
to me and fully encouraged by Beaton. I also had a Guggenheim fellowship in
1978, during which I spent a semester teaching causal inference back at Har-
vard. A few years before I had visited the University of California Berkeley for
a semester, where I was given an office next to Jerzy Neyman, who was then
retired but very active — a great European gentleman, who clearly knew the
difference between mathematical statistics for publishing and real statistics
for science — there is no doubt that I learned from him, not a mentor as such,
but as a patient and kind scholar interested in helping younger people, even
one from ETS.

Here’s where Julian Jaynes re-enters the picture in a major way. We be-
came very close friends, having dinner and drinks together several times a week
at a basement restaurant/bar in Princeton called the Annex. We would have
long discussions about psychology and scientific evidence, e.g., what makes
for consciousness. His knowledge of history and of psychology was volumi-
nous, and he, in combination with Rosenthal and the issues at ETS, certainly
cemented my fascination with social science generally. A different style mentor,
with a truly eye-opening view of the world.
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50.6 Interim time in DC at EPA, at the University of
Wisconsin, and the University of Chicago

Sometime around 1978 I was asked to be the Coordinating and Applications
Editor of JASA. Stephen Stigler was then Theory and Methods Editor. I had
previously served as an Associate Editor for Morrie DeGroot, and was becom-
ing relatively more well known, for things like the EM algorithm and different
contributions that appeared in various statistical and social science journals,
so more options were arising. I spent two weeks in December 1978 at the
Environmental Protection Agency in the Senior Executive Service (very long
story), but like most things that happened to me, it was very fortunate. I was
in charge of a couple of statistical projects with connections to future men-
tors, one with a connection to Herman Chernoff (then at MIT), and one with
a connection to George Box; George and I really hit it off, primarily because
of his insistence on statistics having connections to real problems, but also
because of his wonderful sense of humor, which was witty and ribald, and his
love of good spirits.

Previously I had met David Cox, via my 1976 Biometrika paper “Inference
and missing data” discussed by Cox’s then PhD student and subsequently my
great coauthor, Rod Little. I found that the British style of statistics fit fab-
ulously with my own interests, and the senior British trio, Box, Cochran and
Cox, were models for the kind of statistician I wanted to be. I also participated
with Box in several Gordon Conferences on Statistics and Chemistry in the
late 1970s and early 1980s, where George could unleash his “casual” side. Of
some importance to my applied side, at one of these I met, and became good
friends with, Lewis Sheiner, UCSF Pharmacology Professor. Lewis was a very
wise doctor with remarkably good statistical understanding, who did a lot
of consulting for FDA and for pharmaceutical companies, which opened up
another connection to an applied discipline for me, in which I am still active,
with folks at FDA and individuals in the pharmaceutical world.

In any case, the EPA position led to an invitation to visit Box at the Math
Research Center at the University of Wisconsin, which I gladly accepted.
Another great year with long-term friends and good memories. But via Steve
Stigler and other University of Chicago connections, a full professor position
was offered, jointly in Statistics and in the Department of Education. I was
there for only two years, but another wonderful place to be with more superb
mentors; David Wallace and Paul Meier, in particular, were especially helpful
to me in my first full-time full professor position. I also had a connection to
the National Opinion Research Corporation, which was important. It not only
was the home of the first grant to support multiple imputation, but because
they did real survey work, they were actually interested in my weird ideas
about surveys! And because they also did work in economics, this initiated a
bridge to that wonderful field that is still growing for me. Great times.
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50.7 The three decades at Harvard

I’m just completing my 30th year at the Harvard Department of Statistics, and
these years have been fabulous ones, too. The first of those years renewed and
reinforced my collaborations with Bob Rosenthal, through our co-teaching a
“statistics for psychologists” course and our Thursday “brown-bag consulting”
lunch. Other psychologists there have been influential as well, such as Jerry
Kagan, a wonderfully thoughtful guy with a fabulous sense of humor, who was
a great mentor regarding personality theory, as was Phil Holzman with his
focus on schizophrenia. We would all meet at Bill and Kay Estes’s spectacular
Christmas parties at their “William James” house, with notable guests such as
Julia Child, who lived down the block and reminded me of Eleanor Roosevelt.
These personal connections to deep-thinking psychologists clearly affect the
way I approach problems.

These early years as Professor at Harvard also saw a real attempt to create
something of a bridge to economics in Cambridge, initially through some 1990s
efforts with Bob Solow and then Josh Angrist, both at MIT, and of course my
close colleague Guido Imbens now at Stanford, and then again with Guido
more recently in the context of our causal book and our co-taught course.
Also, economist Eric Maskin, who recently returned to Harvard after a stint
in Princeton, convinced me to teach a “baby causal” course in the “core” for
undergraduates who had no background in anything technical — it was good
for me and my teaching fellows, and hopefully some of those who took the
course. Another economist who influenced me was the Dean who “hired me”
— Henry Rosovsky — one of the wisest and most down-to-earth men I have
ever met; we shared many common interests, such as classic cars and good
lunches. A wonderful mentor about academic life! Every academic should read
his book: “The University: An Owner’s Manual.”

And of course there were the senior folks in Statistics: Art Dempster with
his principled approach to statistics, was always a pleasure to observe; Fred
Mosteller and his push for collaborations and clear writing; and Herman Cher-
noff (whom I hired; he used to refer to me as his “boss” — hmm, despite my
being over 20 years his junior). Herman attended and still, at 90 years, attends
most of our seminars and offers penetrating comments — a fabulous colleague
with a fabulous mind and subtle and clever sense of humor. And old friend
Carl Morris — always a great colleague.

50.8 Conclusions

I have intentionally focused on mentors of mine who were (or are) older,
despite the undeniable fact that I have learned tremendous amounts from
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my colleagues and students. I also apologize for any mentors whom I have
accidentally omitted — I’m sure that there are some. But to all, thanks so
much for the guidance and advice that have led me to being a statistician
with a variety of interests. My career would have told a very different story if
I had not had all the wonderful guidance that I have received. I would have
probably ended up in some swamp off that tangled path in the woods. I think
that my realizing that fact has greatly contributed to my own desire to help
guide my own students and younger colleagues. I hope that I continue to be
blessed with mentors, students and colleagues like the ones I’ve had in the
past, until we all celebrate the 100th anniversary of the COPSS!
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Never ask for or give advice, make
mistakes, accept mediocrity, enthuse

Terry Speed

Division of Bioinformatics
Walter and Eliza Hall Institute of Medical Research
and
Department of Statistics
University of California, Berkeley, CA

Yes, that’s my advice to statisticians. Especially you, dear reader under 40, for
you are one of the people most likely to ask an older statistician for advice.
But also you, dear reader over 40, for you are one of the people to whom
younger statisticians are most likely to turn for advice.

Why 40? In the 1960s, which I lived through, the mantra was Never trust
anyone over 30. Times change, and now 40 is (approximately) the cut-off for
the COPSS Presidents’ Award, so I think it’s a reasonable dividing line for
separating advisors and advisees. Of course people can and do give and take
advice at any age, but I think we regard advice from peers very differently
from advice from... advisors. That’s what I’m advising against. Please don’t
get me wrong: I’m not being ageist here, at least not consciously. I’m being a
splitter.

Where am I going with all this? There is a sentence that used to be heard
a lot on TV shows, both seriously and in jest: “Don’t try this at home.” It
was usually said after showing a stupid or dangerous act, and was a way of
disclaiming liability, as they knew it wouldn’t work well for most viewers.
I often feel that people who give advice should act similarly, ending their
advice with “Don’t take my advice!”

51.1 Never ask for or give advice

What’s wrong with advice? For a start, people giving advice lie. That they
do so with the best intentions doesn’t alter this fact. This point has been
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summarized nicely by Radhika Nagpal (2013). I say trust the people who tell
you “I have no idea what I’d do in a comparable situation. Perhaps toss a
coin.” Of course people don’t say that, they tell you what they’d like to do or
wish they had done in some comparable situation. You can hope for better.

What do statisticians do when we have to choose between treatments A
and B, where there is genuine uncertainty within the expert community about
the preferred treatment? Do we look for a statistician over 40 and ask them
which treatment we should choose? We don’t, we recommend running a ran-
domized experiment, ideally a double-blind one, and we hope to achieve a high
adherence to the assigned treatment from our subjects. So, if you really don’t
know what to do, forget advice, just toss a coin, and do exactly what it tells
you. But you are an experiment with n = 1, you protest. Precisely. What do
you prefer with n = 1: an observational study or a randomized trial? (It’s a
pity the experiment can’t be singly, much less doubly blinded.)

You may wonder whether a randomized trial is justified in your circum-
stances. That’s a very important point. Is it true that there is genuine un-
certainty within the expert community (i.e., you) about the preferred course
of action? If not, then choosing at random between your two options is not
only unethical, it’s stupid. And who decides whether or not there is genuine
uncertainty in your mind: you or the people to whom you might turn for ad-
vice? This brings me to the most valuable role potential advisors can play
for potential advisees, the one I offer when people ask me for advice. I reply
“I don’t give advice, but I’m very happy to listen and talk. Let’s begin.” This
role cannot be replaced by words in a book like this, or on a website.

51.2 Make mistakes

What if it turns out that you made a wrong decision? I’ll pass over the im-
portant question of how you learned that it was the wrong decision, of how
you tell that the other decision would have been better. That would take me
into the world of counterfactuals and causal inference, and I’ve reserved my
next lifetime for a close study of that topic. But let’s suppose you really did
make a mistake: is that so bad?

There is a modest literature on the virtues of making mistakes, and I like
to refer people to it as often as possible. Why? Because I find that too many
people in our business — especially young people — seem to be unduly risk
averse. It’s fine not wanting to lose your money in a casino (though winning
has a certain appeal), but always choosing the safe course throughout a career
seems sad to me. I think there’s a lot to be gained from a modest amount
of risk-taking, especially when that means doing something you would like
to do, and not what your advisor or department chair or favorite COPSS
award winner thinks you should do. However, to call it literature might be
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overly generous. Perhaps a better description is body of platitudes, slogans and
epigrams by pundits and leaders from business, sport, and the arts. One thing
is certain: professors do not figure prominently in this “literature.” Nothing
ventured, nothing gained, catches the recurrent theme. The playwright George
Bernard Shaw wrote: A life spent making mistakes is not only more honorable,
but more useful than a life spent doing nothing, and many others have echoed
his words. Another Irish playwright, Oscar Wilde was more forthright: Most
people die of a sort of creeping common sense, and discover when it is too late
that the only things one never regrets are one’s mistakes.

Then there is the view of mistakes as essential for learning. That is nowhere
better illustrated than in the process of learning to be a surgeon. Everyone
should read the chapter in the book by Atul Gawande (Gawande, 2002) enti-
tled When Doctors Make Mistakes. Again, my “mistake literature” is clear on
this. Oscar Wilde once more: Experience is the name everyone gives to their
mistakes. As statisticians, we rarely get to bury our mistakes, so let’s all make
a few more!

51.3 Accept mediocrity

What’s so good about mediocrity? Well, it applies to most of us. Remember
the bell curve? Where is it highest? Also, when we condition upon some-
thing, we regress towards “mediocrity,” the term chosen by Galton (Galton,
1886). Let’s learn to love it. When I was younger I read biographies (Gauss,
Abel, Kovaleskaya, von Neumann, Turing, Ramanujan, ...) and autobiogra-
phies (Wiener, Hardy, Russell, ...) of famous mathematicians. I found them
all inspiring, interesting and informative, but light-years from me, for they
were all great mathematicians, whereas I was very mediocre one.

At the time I thought I might one day write Memoirs of a Mediocre Math-
ematician, to encourage others like myself, people near the mode of the curve.
However, I didn’t stay a mathematician long enough for this project to get
off the ground. Mediocre indeed. Later I considered writing of Stories from
a Second-Rate Statistician, but rejected that as too immodest. Perhaps Tales
from a Third-Rate Theorist, or Confessions of a C-Grade Calculator, or Diary
of a D-Grade Data Analyst, or News from an N th-rate Number Cruncher?

You can see my goal: to have biographical material which can both inspire,
interest and inform, but at the same time, encourage, not discourage young
statisticians. To tell my readers: I do not live on another planet, I’m like you,
both feet firmly planted on Planet Earth. Maybe my goal is mistaken (see
above), but I do remember enjoying reading The Diary of a Nobody many
years ago. You see, I do not believe we can all be whatever we want to be,
that all that matters is that we want to be something or be someone, and
that if we want it enough, we can achieve it. Without wishing to discourage
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younger readers who have yet to notice, our ability to make ourselves faster,
higher and stronger, not to mention smarter and deeper, is rather limited. Yes,
it would be great to win a Gold Medal at the Olympics, or a Nobel Prize or a
Fields Medal, or even to win the COPSS Presidents’ Award, but my view is
that for all but a vanishingly small number of us, such goals are unachievable,
no matter how much time and effort we put in. This is not to say that the
people who do achieve these goals can do so without expending considerable
time and effort, for there is plenty of literature (no quotes now) suggesting
that they must. My point is that time and effort are usually not sufficient to
bring about dramatic changes in us, that we are what we are.

Also when I was young, I read a statement along the following lines:
Worldly acclaim is the hallmark of mediocrity. I don’t remember where I saw
it, and can’t find it now, but I liked it, and it has stuck in my head. I used
to think of it every time I saw someone else get a prize or receive some other
kind of acclaim. I would think “Don’t feel too bad, Terry. Galois, Van Gogh,
Mozart, Harrison, Mendel and many others all had to wait until after they
died to be acclaimed geniuses; your time will come.” Of course I always knew
that I wasn’t in the same class as these geniuses, and, as if to prove that,
I came in due course to win some awards. But it still sticks in my mind: that
true recognition is what comes after we die, and we shouldn’t be too concerned
with what comes in our lifetime. I think we’d all be better off accepting what
we are, and trying to be a better one of those, than trying to achieve the
unachievable. If that means accepting mediocrity, so be it, but then let’s aim
to be the best – fill in your name – on the planet. Let’s be ourselves first
and foremost. I think being happy with what we are, while working to make
realistic improvements, is a great start to achieving more than we might ini-
tially think we can achieve. Unfortunately I can’t leave this theme without
pointing out that our profession is multidimensional, not one-dimensional, so
it is likely that the concept of “best” doesn’t even make sense here. We don’t
have competitions and rankings like chess or tennis players; we try to bring
all our skill and experience to bear on any given statistical problem, in the
hope that we can find a good answer. But we never have to say we’re certain.
On the other hand, there may well be a dimension along which you can be
the best.

51.4 Enthuse

Why enthuse? Enjoyment of our job is one of the things that distinguish peo-
ple like us — teachers, researchers, scholars — from the majority of our fellow
human beings. We can find our work engaging, challenging, stimulating, re-
warding, and fulfilling. It can provide opportunities for expressing our creative
sides, for harnessing our competitive urges, for exhibiting our altruistic spirits,
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and for finding enjoyment in working with others and in solitary pursuits. If
we accept all this, then surely we have very good reason to be enthusiastic
about what we do. Why not show it?

Not so long ago, I would feel slightly deflated when people complimented
me on my enthusiasm for what I do. I would think “Why are they telling me
they like my enthusiasm? Why aren’t they telling me how much they admire
that incredibly original, deep and useful research I was expounding? Is my
work no good, is all they see a crazy person waving his arms around wildly?”
I’ve since got over worrying about that, and these days feel very happy if
I am able to convey my enthusiasm to others, especially if I can make them
smile or laugh at the same time. It’s not hard to get a laugh with a weak
joke, but I prefer to do it using a mix of slightly comic enthusiasm, and irony.
My experience now is that a strong show of enthusiasm sets the stage for
laughter, which I think is great. Perhaps I’m drifting from a would-be scholar
to a would-be entertainer, but we all have it so good, I think we can afford
to share our joy with others. Nowadays I’d rather be remembered as a person
who made others laugh in his lectures, than one who impressed everyone with
his scholarship.

My summary paraphrases the song popularized by Frank Sinatra (Sinatra,
1969). Read and enjoy all the contributions in this book, but “Do it your way.”
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Thirteen rules

Bradley Efron

Department of Statistics
Stanford University, Stanford, CA

52.1 Introduction

When I was five or six my father paraded me around the neighborhood as
a mental marvel able to multiply three-digit numbers. I think he enjoyed it
more than I did (my savant powers are seriously limited) but it did give my
little boat a first push into the big river of statistics.

So, after all these years, am I grateful for the push? Oh yes (thanks Dad!).
Statistics is a uniquely fascinating intellectual discipline, poised uneasily as
it is at the triple point of mathematics, philosophy, and science. The field
has been growing slowly but steadily in influence for a hundred years, with
an increased upward slope during the past few decades. “Buy stat futures”
would be my advice to ambitious deans and provosts.

At this point I was supposed to come across with some serious advice about
the statistical life and how to live it. But a look at some of the other volume
entries made it clear that the advice quota was being well met. (I particularly
enjoyed Hall, Rubin, and Reid’s pieces.) Instead, let me offer some hard-earned
rules garnered from listening to thousands of scholarly presentations.

52.2 Thirteen rules for giving a really bad talk

1. Don’t plan too carefully, “improv” is the name of the game with technical
talks.

2. Begin by thanking an enormous number of people, including blurry little
pictures if possible. It comes across as humility.
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3. Waste a lot of time at first on some small point, like the correct spelling
of “Chebychev.” Who ever heard of running out of time? (See Rule 13.)

4. An elaborate outline of the talk to come, phrased in terms the audience
hasn’t heard yet, really sets the stage, and saves saying “I’m going to
present the beginning, the middle, and the end.”

5. Don’t give away your simple motivating example early on. That’s like
stepping on your own punchline.

6. A good way to start is with the most general, abstract statement possible.

7. The best notation is the most complete notation — don’t skimp on those
subscripts!

8. Blank space on the screen is wasted space. There should be an icon for
everything — if you say the word “apple,” an apple should tumble in from
the right, etc. And don’t forget to read every word on the screen out loud.

9. Humans are incredibly good at reading tables, so the more rows and
columns the better. Statements like “you probably can’t make out these
numbers but they are pretty much what I said” are audience confidence
builders.

10. Don’t speak too clearly. It isn’t necessary for those in the front row.

11. Go back and forth rapidly between your slides. That’s what God made
computers for.

12. Try to get across everything you’ve learned in the past year in the few
minutes allotted. These are college grads, right?

13. Oh my, you are running out of time. Don’t skip anything, show every slide
even if it’s just for a millisecond. Saying “This is really interesting stuff,
I wish I had time for it” will make people grateful for getting “Chebychev”
right.




