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ABSTRACT
Earlier work on the size—density hypothesis led to a theory of time-

minimization Erom which the size—density relation could be derived. Subse-
quently, time-minimization theory was employed to derive expected relations
between population and area for cities and urbanized areas, expectations which
were empirically confirmed. The present paper derives three well-known and
empirically supported relationships from the time-minimization assumption:
the gravity model of interaction, the intra-urban density function, and the
rank—size rule for cities.

The size—density hypothesis was developed empirically from a study of

the development of county boundaries in the United States from 1790

through 1970. Stated simply, the finding was that county size was in-

versely related to regional density throughout the period, with the relation

weakening somewhat after the introduction of the automobile (Stephan:a).

Subsequent studies, plus a few earlier ones (Callan and Stephan; Haggett;

Myers and Stephan; Skinner; Stephan, b; Stephan and Tedrow, a; Stephan

and Wright; Webb) have provided support for the hypothesis, both inter-

nationally and cross-culturally. In the most extensive of these studies

(Stephan,b), involving the 1764 political divisions of 98 modern nations,

the overall regression slope between logarithms of size and density was

found to be negative two-thirds. This general relationship was later theo-

retically derived (Stephan,c) from the assumption that "social structures

evolve in such a way as to minimize the societal time expended in their

operation." Minimizing the sum of two opposing time-costs (travel-time

and maintenance-time) led to the expectation (previously confirmed, of

course) that

A=KD -213
	

(1)
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Time-Minimization 1 813

where A is area, D is density, and K is a constant estimated from the data.

A subsequent study (Massey and Stephan) showed that the size—density

exponent for counties in Great Britain—which had proved a somewhat

deviant case in the earlier international study, with a value of only –0.09-

approached the theoretically expected value as one proceeded backwards

through time to the census of 1801; the expected value was also very nearly

approached by the reorganization of English local government which took

place just a few years ago. Thus, time-minimization seemed sufficient to

account for the size—density relation, as a general rule and in the case of a

major apparent exception to that rule.

The same assumption proved fruitful in another sphere of inquiry,

namely, the relation between urban population and land area (Stephan

and Tedrow,b). We originally set out to account for Stewart and Warntz's

empirical finding of a positive 0.75 slope between logarithms of population

and area for cities in the United States in 1940 and in Great Britain in 1951

(Best et al. reported findings on cities in Great Britain from which one can

compute a slope of 0.80). Using three time-cost terms (involving travel,

competition for land, and competition for retail markets) we were able to

derive two formulas under the assumption of time-minimization:

A, = KPB•" (2)

for central cities, and

A u
 = KPP.89 (3)

for urbanized areas. Again, K was a constant estimated from the data. The

previously published findings did not differ significantly from the expec-
tation in equation (2). Each formula was supported by data from the 1950,

1960, and 1970 U.S. Censuses (the only ones in which the distinction of the

two types of urban entities has been made), and the two types proved to be
statistically distinguishable by this criterion.

The purpose of the present paper is to test still further the general

applicability of the time-minimization assumption. My purpose is not to

derive new hypotheses, nor even to test old ones, but rather to show that

three fairly well-known and empirically supported findings can be derived

from the assumption stated earlier, that social structures evolve in such a

way as to minimize the societal time expended in their operation. The

three relations to be derived are known as the gravity model, the urban

density gradient, and the rank—size distribution. Owing to space limita-

tions, these empirical relationships will be only very briefly described,

relying primarily on reference to review literature rather than detailed

citations of original sources. After this brief introduction, the relationships

will each be derived from the assumption of time-minimization.
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814 1 Social Forces 1 vol. 57:3, march 1979

Empirical Formulas

The gravity model (or interactance hypothesis) says that interaction between

two places will be a direct function of the product of their populations and

an inverse function of the distance between them. The traditional formula-

tion is

Ii3 = kP;P;ID;; (4)

where Iij is the amount of interaction (e.g., migration, travel, communica-

tion, freight traffic) between places i and j, P { and Pf are the respective

populations, and Dij is the distance. K is a constant of proportionality,

estimated empirically from regression analyses of other factors. The earliest

explicit statement of the model was by Carey. It was given formal structure,

extensive empirical support and popularization by Stewart and Zipf, each

following direct analogies from the gravity formula in physics. Carrothers

lists 83 bibliographic references to works which either suggest modifica-

tions of the basic formula (e.g., weighting factors or exponents for any of

the terms) or provide empirical tests of its utility. More recent reviews

(e.g., Olsson) indicate how enormous the body of empirical work on the

gravity model has become.

The urban density gradient was given formal expression by Clark,

although the discussion of population decline around cities dates back at

least to the work of von Thünen in 1826 (see Edmonston; Haggett). The

expression was derived empirically; it is usually stated in the form

D ,x = D oe' (5)

where D, is the residential density at the distance X, D, is the "central

density" (simply the density intercept, usually estimated through mea-

surements of densities for outlying areas), e is the base of the natural

logarithms, and b is the rate of change in density per unit distance. On the

basis of a study of 36 cases, Clark argued that the negative exponential

density function appeared to hold "for all times and places studies, from

1801 to the present day, and from Los Angeles to Budapest" (475). Subse-

quent empirical work, summarized by Berry et al., has shown very wide-

spread support for Clark's hypothesis, historically and cross-culturally.

They conclude with a reprise of Clark's assessment: "Regardless of time or

place, the expression ... provides a statistically significant fit to the distri-

bution of population densities within cities" (403).

The rank—size rule states that, when cities are rank-ordered according

to size, from the largest to the smallest, the product rank-times-size ap-

proximates a constant equal to the size of the largest city:
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Time-Minimization / 815

Rs,.=K =s 1
	

(6)

where R is rank, s, is the size of the rth-ranked city, and K is a constant

equal to s 1 , the size of the largest city. The relation was first noted by

Auerbach for the 94 largest cities in the German Census of 1910. Lotka

reformulated the rule, with an exponent for R which need not be unity as

in Auerbach's formulation. Zipf popularized the rank–size rule, providing

numerous empirical studies and stimulating a good many more. The rule

has been found to hold for cities in the United States, Canada, most Euro-

pean nations, Japan, Malaya, India, and even to cities of the world taken as

a whole (Gossman). An extensive reivew of attempts to derive the rule

theoretically is given by Richardson.

Derivations

GRAVITY MODEL

We begin with an individual located at place i who for whatever reason is

unable to obtain what he needs at that location and is hence compelled to

consider traveling to, or to and from some other place j. We assume that

the probability of going from place i to place j will be inversely propor-

tional, first, to the time it takes to get from i to j (and back if need be),

which we will symbolize TiJ, and second, to the time it takes to locate what

he needs at j when he arrives, which we will symbolize as T; . We can

express this assumption as

pij = c l (TT)	 (7)

where pij is the probability of going from i to j, and c is the constant of

proportionality.

We can specify the equation somewhat by noting that T ij is simply

the distance Dij divided by the average velocity of the means of transporta-

tion, v. Further, we know empirically (e.g., Berry) that the larger a place is

the more likely one is to find the quantity and variety of goods and services

one might need (except, of course, for the need to escape from large popu-

lations—see Catton, for just such a study, travel to national parks). With T;

inversely proportional to P; , we can rewrite the above expression as

Pij = vcP; l (sD ;)	 (8)

where s is the constant of proportionality between T; and P.

If we now let the single constant k stand for the constants vc Is, and

if we multiply the probability of going from i to j by the "population at
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816 / Social Forces I vol. 57:3, march 1979

risk," Pi, we obtain an expression for 1, the amount of interaction,

I1j = pijpt = kPiPj lD;;	(9)

the traditional statement of the interactance hypothesis or gravity model.

The simple model can, of course, be made much more complex as

noted above (see Carrothers). The present derivation, in fact, suggests one

additional modification: specification of the constant k in terms of v, c and

s. As transportation improves so that v increases, as c (presumptively the

relative attractiveness of j over i, independent of size) increases, and as s

(perhaps the congestion or competition generated by P ;) decreases, interac-

tion increases. The main point of the present exercise, however, is simply

to demonstrate that the gravity model, in its elementary form, can be

derived from the time-minimization assumption.

URBAN DENSITY GRADIENT

Assumel that the unit-cost of land occupancy declines exponentially with

distance from the center of the city:

U- = Uoe -
ax	 (10)

where U,x is the cost per unit of land at the distance X, U„ is the unit-cost at

the center of the city, and a is the rate of change in unit-cost per unit of

distance from the center.

Total land-occupancy cost at the distance X will be the unit-cost

times the area occupied at X, i.e., the product A^.U, (where A x is area

occupied at X). This cost is usually expressed in monetary units; but, since

money is received in units of money per unit of time (e.g., dollars per hour

of labor time, investment time, rental time, etc.), we can express the time-

cost of land occupancy as hA,xU, (where h is the inverse of income-per-

unit-time, e.g., hours per dollar) to obtain

T„ = hA x Uoe-
b'	 (11)

where b is the parameter a adjusted to reflect declines in hourly (as op-

posed to monetary) costs per unit distance from the center and Tr is the

time-cost of residing at the distance X.

The travel-time expended by the population residing at the distance

X, in moving to and from the center, will be the distance, times the popula-

tion P, divided by v, the average velocity of the means of transportation

employed. This aggregate travel-time can be expressed as

Tt^. = XP.,Iv	 (12)
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Time-Minimization 1 817

which, combined with expression (11) gives

T = T„ + Tri = hAUoe-b' + XP^ l v	 (13)

as the expression for total time-expenditure required at the distance X.

Differentiating this expression with respect to X yields

dT,IdX = P^.lv — hA,x Uobe- bX	 (14)

and this, set equal to zero and solved for Dx = (PIA,) gives us

D, = vhbUoe- bX	 (15)

as the relation between density and distance when total time is minimized

(the formal condition for a minimum, that the second derivative be greater

than zero, is satisfied since h, A , Uo and b itself are non-negative). Finally,

if we let the constant Do stand for the product of the constants v, h, b and

Ua, we have the formula

D, = D oe- b	 (16)

i.e., the traditional formula for the urban density function.

There are several points to note in connection with this derivation.

First the central density Da has been given an explicit definition as the

product of the factors v, h, b and Llo . Taken separately, an increase in any of

these factors should lead to an increase in D o . But the factors can seldom be
taken separately. Thus, increases in average velocity have tended to be

associated with decreases in the magnitude of b. Further, decreases in h

(i.e., an increase in hourly income) should be related to increases in Uo

(since more money would be available with which to bid for land) and v

(since more money would, presumably, lead to more efficient means of

transportation). The relation is complex and its analysis lies beyond the

scope of this paper (but see Edmonston for a detailed discussion). The

definition of Do given here is an improvement over that usually given (the

simple inward extrapolation of outlying densities) in that it specifies these

factors and does not pretend to represent a "central density." (We know, in

fact, that the central residential density tends to be much lower than D o as

usually constructed from regression analyses; see Haggett; Newling.)

Second, the density gradient, b, has been given some definition,

beyond the simply empirical role it plays as an estimate of the density

gradient. Presumptively, in our derivation, it mirrors (through the time-

money equivalency in h) the decline in unit-costs of land given by parame-

ter a. Technically, the symbols Uo and a describe land costs for all possible

uses: commercial, industrial and residential. Either because potential resi-
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818 / Social Forces 1 vol. 57:3, march 1979

dential users lack the means to compete in the central land market, or

because they are prevented from doing so through zoning, it frequently
happens that costs for residential land decline near the center of the city (i.e.,
there is less of a residential land market there; see Berry et al.). In this case

the function describing land costs for residential use would not be negative

exponential as in equation (11). It would rise from a central low, then peak,

then decline (as with lognormal, chi-square, or certain Weibull functions

for example). Whatever the function, it could still be brought through

the same type of derivation as the negative exponential has been here,

with high densities paying the cost of expensive land as a result of time

minimization.

RANK-SIZE RULE

Whatever its specific content, human interaction takes time. As the size, s,

of an interacting group increases, the number of possible interactions

between each member and all others increases by a factor of s(s —1) or, as s

becomes large, by a factor of s-squared. Given that each individual has

only a finite amount of time available for interaction, we expect that as

groups increase in size the potential for total interaction becomes more and

more impossible to realize. We accommodate through role-specific inter-

actions, regulations and authority relations, market interactions, and a

host of similar institutional structures. But all of these structures them-

selves involve time-expenditure for their operation, so the factor s 2 can still

be said to be a measure of time-expenditure for the group. If we had only

to minimize such time-expenditure, the solution would be a set of N uni-
formly small cities, with N times s representing the total population.

Stil!, there are advantages in having at least some large cities in a

society. Large cities can provide a focal point for the assembly of raw

materials from elsewhere, easy access to large labor markets for manufac-

turing and large retail markets for the distribution of specialized goods and

services, and economies of agglomeration resulting from the clustering of

many related activities in one place. In effect these advantages represent

time-savings associated with increased size. If we had only this factor to

consider, time-minimization could be achieved by having but one city

which contained the entire population. We thus have two contradictory

solutions to the problem of time-minimization: numerous equally small

cities or one enormous city.

A compromise might be suggested, namely, a fairly small number of

fairly large cities, all of some average or optimum size. But this solution

denies society both the time-savings of very large cities and the time-

savings of numerous small cities. A solution which comes as close as pos-

sible to providing both kinds of time-savings is one in which there is

considerable variation in city size, but in which the likelihood of finding
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Time-Minimization 1 819

cities of a specific size is inversely proportional to their interaction-time-

cost. If we let p(s) be the probability of finding a city of size s, we are saying

that p(s) is to be inversely proportional to s 2 (measure of interaction-time-

cost). With c as the constant of proportionality, we have

p(s) = c/s 2	(17)

We assume a distribution of city sizes, from s 1 , the largest, down to sn, the

smallest, with s, (r = 1,2 .....n) being the rth-ranked city in this distribu-

tion. The cumulative probability distribution can be obtained from the

above expression through integration, with theoretical limits of sn to infinity;

thus

P(s) = f c/s 2ds
S n

= c /S n (18)

which, over its total range, must equal 1.0, yielding c = s.. Substituting

this value, we can determine the probability of finding a city equal to or

less than size Sr as follows

P(s	Sr) = f S 's n ls 2ds
Sn

= 1 — S n /S r (19)

The probability of finding a city greater than or equal to Sr is simply one

minus this expression, or S n /s,.. This probability, times the number of cities
N, gives the rank R so that

R = NP(s - s,) = NS n /S r	(20)

or, multiplying through by Sr and letting K stand for the product of the

given constants N and s t,, we have

Rs,. =Ns,, =K =s 1	(21)

the traditional forms of the rank-size rule.

This expression can be further complicated if we assume that the

two economies which we tried to compromise are, for whatever techno-

logical reasons, not equally important. If we let d stand for the importance

of time-savings due to decreasing interaction (reduction of s 2 ) and if we let i

stand for the importance of time-savings realized through increasing inter-

action (the economies of agglomeration and so on mentioned above), we
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820 1 Social Forces 1 vol. 57:3, march 1979

could begin our derivation, not with s individuals interacting with s other
individuals (s 2 ), but iather with s individuals interacting with sd 1 ' indi-

viduals. Then, minimizing the interaction term as before, we

would obtain a final result of the form

Rz 1 ds, = K	 (22)

where the exponent i Id could vary from zero to infinity. In the former case,
if d were the only factor of importance, we would obtain the solution with

N equally small cities; in the latter, if i were the only factor of importance,

we would obtain the solution with one enormous city. These results, and

those with intermediate values of i l d, all result from the assumption of
time-minimization. We thus complete the set of derivations to be attempted

here.

Conclusions

My point in attempting these derivations has not been simply to derive

the previously known formulas. A large and varied set of such deriva-

tions already exists, and there would be little point in adding yet another.

Rather, my purpose has been to show that five independent empirical
generalizations:

1. size—density hypothesis

2. urban area-population relationships

3. gravity model of interaction

4. urban density function

5. rank—size distribution of cities

can all be derived from the same theoretical assumption, namely, that social

structures evolve in such a way as to minimize the societal time expended

in their operation.

A previous effort to derive a number of disparate findings from a

common theoretical assumption deserves comment here. George Zipf ar-

gued that a number of patterns in human behavior could be derived from

what he called the principle of least effort. The conception has proved useful

because effort can stand for many mixed forms of cost (distance, time,

money, energy). As Abler et al. put it, "The most direct path in a distance

sense between a chair behind a desk and the hallway might be a straight

line through the desk and the wall, yet the least effort (least time and cost)

path goes around the desk and through the door" (253). Since we usually

cannot maximize or minimize several variables simultaneously (the problem

of the greatest happiness of the greatest number has no unique solution),

we aggregate all our cost variables into something called effort and reason
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Time-Minimization 1 821

that that is what we minimize. The problem with Zipf's formulation, I

believe, is that the concept of effort is too vague to serve as a basis for

deductive theory. A solution, the one we have employed here and earlier,

is to pick one cost-factor and attempt to express the others in its dimension.

One can usually specify equivalencies between cost-factors like space,

time, money, manpower or horsepower, at least in a general way. The

question then is, Why pick time as the fundamental dimension?

If the time available to human beings were infinite, all other cost

factors would be irrelevant. If time were infinite, any distance could be

traversed however slowly, any amount of money could be accumulated

sooner or later, monumental tasks could be accomplished using very rudi-

mentary technology. It is the fact that time is limited which gives the other

cost factors, and various means of reducing them, their significance. In

this sense the time dimension is fundamental. The time dimension is also

clearly panhistoric and cross-cultural; any society, viewed in this way, is a

finite budget of man-hours expended in characteristic subsistence and

non-subsistence activities under given environmental and technological

conditions. Thurstone, 1 believe, once said something to the effect that

whatever exists exists in some quantity; in a parallel sense, whatever

human beings do they do through some expenditure of time. And if time is

the ultimately limited resource, then it seems sensible to consider the time

dimension as fundamental to our theorizing.

I believe many of the empirically supported findings of sociology, at

levels of analysis other than the social-demographic (e.g., from the litera-

ture of formal organization research) could be theoretically derived from a

sumptions of time minimization. Even findings at the social psychological

level of interpersonal behavior might be amenable to such analysis (e.g.,

the proximity-similarity-attraction findings over the last few decades: it

takes less time to meet people nearby, then, after longer periods of search

and discovery, it takes less time to interact among those who are similar

than among those who are not).

In the end, as Comte argued in establishing the field, the purpose of

theorizing is to reduce as many empirical findings as possible to as few

theoretical assumptions as possible. I believe the assumption of time-

minimization deserves serious consideration from theoretical sociologists,

at least to the degree that movement-, punishment-, and cost minimization

have received attention from theoretical geographers, psychologists, and

economists.

Note

1. The assumption develops from the following rationale. Presumably, bid-rents for land-
the amount of money a set of potential users are willing to pay for such use—declines linearly
as a function of distance from the central place, as a direct consequence of the time-cost of
travel to the central place. But the importance of such time-costs varies from one type of user
to another. A central location is more important to a commercial than a residential user of
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822 1 Social Forces 1 vol. 57:3, march 1979

land, so the potential commercial user will outbid the potential residential user—i.e., the line
relating distance to bid-rent will be higher at the center and have a steeper decline for the
commercial user than for the residential user. A family of such lines is said to have as its
envelope that curve to which each of the lines is tangent. (See Botyanskii for a treatment of
envelopes which does not require work in differential equations.) Though the family of lines
suggested here should in general have a downward sloping envelope with a finite y-intercept
and an asymptotic approach to the x-axis, it is not necessary that the curve be negative
exponential; but such a curve does at least satisfy the conditions just mentioned, and it
probably describes empirical conditions as well as any others (see Abler et al. 357-65, for
illustrations and for the relation between such a curve and concentric zone theory).
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