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A B S T R A C T

Can we change our perception by controlling our brain activation? Awareness during binocular rivalry is shaped by the alternating perception of different stimuli

presented separately to each monocular view. We tested the possibility of causally influencing the likelihood of a stimulus entering awareness. To do this, participants

were trained with neurofeedback, using realtime functional magnetic resonance imaging (rt-fMRI), to differentially modulate activation in stimulus-selective visual

cortex representing each of the monocular images. Neurofeedback training led to altered bistable perception associated with activity changes in the trained regions.

The degree to which training influenced perception predicted changes in grey and white matter volumes of these regions. Short-term intensive neurofeedback training

therefore sculpted the dynamics of visual awareness, with associated plasticity in the human brain.

1. Introduction

The ability to causally modify how we perceive the world has po-

tential implications in health and disease. Altering perceptual biases,

which may be conscious or unconscious, could modify pathological

perception such as hallucinations, or provide a means of selective

cognitive enhancement (Miranda et al., 2015). Such attempts to delib-

erately manipulate higher-order sensory perception have, until now,

proven to be unsuccessful. For example, attempting to alter perception

using mental imagery, a cognitive process which utilises similar neural

substrates to perception (O'Craven and Kanwisher, 2000), does not in-

crease the vividness of the imagery. Most importantly, mental imagery

training has no effect on perception linked to the imagery strategy used

during training, as demonstrated with binocular rivalry (BR) between

images specifically associated with the mental imagery training (Rade-

maker and Pearson, 2012). BR is a unique perceptual phenomenon that

has been used to provide a window into the unconscious and conscious

processes underlying visual perception. It is produced by simultaneously

presenting conflicting monocular stimuli to each eye. Paradoxically, the

brain cannot form a stable image. Instead, each image randomly

competes for exclusive perceptual dominance. Until now, producing

unconscious shifts in higher-order perception by directly modifying brain

function has proven to be unsuccessful.

Neurofeedback training using realtime functional magnetic reso-

nance imaging (rt-fMRI) is an emerging technique which allows partic-

ipants to control target brain regions by voluntarily modulating online

feedback of activity in those regions (Sitaram et al., 2016). Feedback is

typically provided via a visual interface during concurrent MR scanning.

Online modulation of the Blood Oxygen Level-Dependent (BOLD) signal

using neurofeedback involves abstract cognitive strategies, as well as

mental imagery that maybe explicitly linked to the brain

region-of-interest (ROI). This approach can produce changes in behav-

iour through the functional modulation of trained brain regions,

including low-order visual perception (e.g. grating orientation, colour)

by modulating primary retinotopic cortex (Amano et al., 2016; Shibata

et al., 2011), pain and craving by modulating anterior cingulate cortex

(deCharms et al., 2004; Li et al., 2013), and motor function by modu-

lating supplementary motor area and primary motor cortex (Blefari et al.,

2015; Subramanian et al., 2011). We hypothesised that rt-fMRI neuro-

feedback might prove more powerful than previous approaches, such as
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mental imagery alone, in enabling participants to modify brain activity

associated with higher-order visual perception, and consequently

directly influence how they perceive the world.

To test this hypothesis, we trained human participants using mental

imagery combined with neurofeedback to voluntarily control the differ-

ence in activation between two higher-order visual cortical regions

(Fusiform Face Area, FFA and Parahippocampal Place area, PPA). The

human FFA responds strongly to faces (Kanwisher et al., 1997; McCarthy

et al., 1997), but not to other types of non-face stimuli, while the PPA

responds to houses and places, but not faces (Epstein and Kanwisher,

1998). Further, both of these regions activate during mental imagery of

faces or places respectively, even in the absence of visual stimuli

(O'Craven and Kanwisher, 2000). The differential response properties of

these two regions enabled participants in the study to have a visually

presented neurofeedback training signal that represented the difference

in activation between the two regions i.e. a differential signal.

The use of a differential signal provided an internal control for global

brain activation, and helped focus the training effect on the two selected

brain regions in a manner that might not occur with mental imagery

training only. We tested participants with a BR task, where they were

exposed to rivalrous monocular face and house images, before and after

neurofeedback training. During BR, participants are consciously aware of

only one of the perceptual stimuli at a time, while the other stimulus is

temporarily suppressed. The perceptual fluctuation is spontaneous and

stochastic, with both top-down (i.e. cognitive modulation) and bottom-

up (i.e. salience-based) processes being implicated (Dayan, 1998;

Parker and Alais, 2007; Tong et al., 2006). In this study, the ensuing BR,

where perception alternated spontaneously between each monocular

view, provided a test of whether neurofeedback training had altered the

likelihood of either stimuli entering awareness. We investigated whether

any perceptual changes were associated with differences in brain activity

and structure (see also Supplementary Materials).

To anticipate our findings, following neurofeedback training, there

was a sustained influence on the perceptual dynamics of BR, suggesting

functional plasticity. This effect was additionally observed when partic-

ipants performed concurrent modulation of brain activity during BR.

Further, a multivariate analysis of changes in brain structure produced by

neurofeedback training predicted changes in BR dynamics.

2. Methods

2.1. Main experiment

2.1.1. Participants

Ten neurologically normal adult volunteers (24–35 years of age;

mean age 28 years; 8 females) with normal or corrected-to-normal visual

acuity participated in the experiment. Each participant gave written

informed consent. The study was approved by the local ethics committee

(UCL Ethics Committee code: 09/H0716/14).

2.1.2. Stimuli and materials

All visual stimuli were generated and displayed via scripts inMATLAB

created with the Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/

cogent_2000.php), on a viewing screen with a visual angle of 23� by

17�, (30� 26 LCD projector (LT158; NEC). The mirror-mounted viewing

screen was set on the top of the scanner bore (optical distance 52 cm).

During the neurofeedback sessions, participants saw a fluctuating ther-

mometer bar at the centre of the screen. During the BR sessions only,

participants wore a pair of prism glasses. Additionally, a black cardboard

divider was placed between the forehead and the screen to ensure that

each eye could see one side of the screen only, and provide a stable base

for fixation. Two identical box stimuli were displayed side-by-side on the

monitor, each with a central white fixation cross (0.68 visual angle) and

tile frame surround (11.78 visual angle), upon a uniform grey back-

ground (background luminance ¼ 65 Cd/m2). Optimal perceptual fusion

of the two box stimulus images was confirmed with the participant prior

to commencing each BR session. Face or house stimuli were presented

(20 exemplars each). Responses for durations were obtained via a pair of

custom-built, MR-compatible, response boxes.

2.1.3. FMRI scanning

Scanning was performed on a 3T Allegra head-only scanner (standard

transmit-receive head coil). Functional data was acquired with a single-

shot gradient echo planar imaging sequence (matrix size, 64� 64; field

of view, 192� 192mm; isotropic in-plane resolution, 3� 3mm; 32 slices

with ascending acquisition; slice thickness, 2mm; slice gap, 1 mm; echo

time (TE), 30ms; repetition time (TR), 1920ms; flip angle, 90�; receiver

bandwidth, 3551Hz/pixel). Although the nominal slice thickness was

2mm, the effective slice profile achieved in practice is typically larger

such that the effective slice thickness is closer to 3mm. Allowing a gap

additionally minimised any risk of saturation effects upon excitation of

the subsequent slice (again due to imperfect slice profiles). This is

particularly important in the case of ascending acquisition order, as used

here. Ascending acquisition order was chosen to minimise the impact of

any participant motion, which again could lead to saturation effects if the

motion resulted in any part of the previously excited slice being re-

excited in a time shorter than the TR.

Within each scanning session, double-echo fast, low-angle shot

sequence (FLASH) field maps (TE1, 10ms; TE2, 12.46ms; resolution,

3� 3� 2mm; slice gap, 1mm) were acquired and used to correct geo-

metric distortions.

2.1.4. High resolution structural scans

A whole brain high-resolution T1-weighted structural scan was per-

formed before and after training. This was in addition to structural scans

performed on each neurofeedback training day. The scan was a 3D-modi-

fied, driven equilibrium Fourier transform (MDEFT) scan (1mm isotropic

resolution; matrix size, 256� 240mm; field of view, 256� 240mm; 176

sagittal partitions; TE, 2.4 ms; TR, 7.92ms; inversion time, 910ms; flip

angle, 15�; readout bandwidth, 195Hz/pixel; spin tagging in the neck

with flip angle 160� to avoid flow artifacts for superposition of functional

maps (Deichmann et al., 2004)).

2.1.5. Realtime fMRI set-up for neurofeedback

Turbo Brain Voyager (Goebel et al., 2006) was used, with custom

realtime image export tools programmed in ICE VA25 (Siemens Health-

care) (Weiskopf et al., 2004), and custom MATLAB based scripts. Par-

ticipants were shown visual representations of BOLD signal changes in

brain regions previously identified with a functional localiser scan (i.e.

target ROIs). Realtime data preprocessing encompassed 3D motion

correction, smoothing, and incremental linear detrending of time series.

The ROI time course(s) were extracted from the prescribed ROI masks,

averaged and exported. Signal drift, spikes and high frequency noise

were further removed in realtime from the exported time courses with

custom MATLAB scripts (Koush et al., 2012). The feedback signal (a

‘fluctuating’ thermometer bar) was displayed to the participants with a

delay of 2 s from the acquisition of the image.

2.1.6. Binocular rivalry set-up and behavioural data acquisition

Inside the scanner, participants, wearing custom-made prism glasses,

were shown two stimuli equidistant from a central viewing screen

divider. During the viewing blocks, a face stimulus and a house stimulus

were presented in the left and right hemi-fields respectively. The stimuli

were pseudorandomised with regards to which eye received the face or

house stimuli. Each viewing block (40 s followed by rest 20 s) was per-

formed with a new pair of stimuli from the pool of 20 stimuli. Six blocks

were performed per session, for three sessions.

During the BR sessions, participants pressed one of three buttons to

record their percept of ‘face’, ‘house’ or ‘mixed’. The participants were

instructed to switch as accurately and rapidly as possible between the

three possible button presses linked to the three percepts. This was the

only instruction given during pre-training BR and post-training BR,
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which were identical save for being performed either side of neuro-

feedback training. Additional instructions were given for two further

post-training BR conditions (see below, Day 5: Post-training BR).

Cumulative dominance durations were calculated, which were equal

to the total amount of time each monocular stimulus was perceived, and

averaged across blocks. The three percepts were then pooled as follows:

(1) strategy-related percept e.g. face percept for the neurofeedback

group advised to use face mental imagery (‘Face’ group) or house percept

for the neurofeedback group advised to use house mental imagery

(‘House’ group) (2) strategy-unrelated percept’ e.g. house percept for the

‘Face’ group, face percept for the ‘House’ group); and (3) ‘mixed

percept’.

2..2. Experimental outline

The experiment was divided into multiple days, with each participant

attending five consecutive scanning days (Fig. 1). The participants were

split into two groups, with five participants in the ‘face’ group and five

participants in the ‘house’ training group.

2.2.1. Day 1: pre-training BR and localiser

A Pre-training BR scan was performed as described above for all

participants. They then underwent a functional localiser scan to iden-

tify FFA and PPA regions (12min, 16 blocks of face stimuli, 16 blocks of

house stimuli, and 20 different exemplars per block). Each stimulus was

presented for 600ms (400ms interstimulus interval). A one-back task

was performed (3 targets per block), requiring a button press upon

detection of the same stimulus. Two contrasts were used; Houses vs.

Faces and Faces vs. Houses. Using the Juelich histological atlas to provide

an anatomical landmarks (Eickhoff et al., 2006, 2005), voxel selection for

the ROIs were defined along the ventral and lateral surfaces of the

temporal lobe in proximity to the fusiform gyrus for FFA, and lateral to

the collateral sulcus in the parahippocampal region for PPA respectively.

2.2.2. Day 2–4: neurofeedback sessions

Each neurofeedback training day comprised three scanning sessions,

each six blocks of 60 s with an ‘upregulate’ period (40 s) followed by

‘rest’ (20 s). During an upregulation period, participants viewed a fluc-

tuating red bar and a fixed horizontal black bar. The latter was placed

towards the top of the screen, and the participants were asked to push the

red bar above it. Participants were told that the fluctuating red bar was

linked to their brain activity, and that they should drive the red bar up to

the level of the black bar using a mental imagery strategy. They were

advised to maintain the red bar at that level, for as long as possible,

during the ‘upregulate’ period. Participants were told that there was a

delay related to the training signal (produced by the hemodynamic

response function, HRF) of approximately 6–8 s. During rest, participants

were instructed to perform a mental arithmetic task (serial subtraction of

7 from 100).

2.2.3. Controlling the neurofeedback training signal

Participants were pseudorandomised into two groups – a ‘Face’ group

and a ‘House’ group. Each group was instructed to use mental imagery

strategies. They were given examples of what might work (Fig. 1),

although the participants could use their own interpretation. Specific

examples for the house group were ‘think about your house, or a building

you are familiar with such as a school or church’, or ‘think about walking

down the road looking at buildings’. Specific examples for the face group

were ‘think of faces of people you know’, ‘think of celebrity faces’, or

‘think of memorable faces you have seen recently’. Both groups were

instructed to pay close attention to the fluctuating red bar, and to find the

best way of pushing the bar up for as much and as long as possible. Both

groups were instructed to use whatever strategy worked best, including

their own, and to vary the strategy to ensure continuous control of the

fluctuating red bar.

Each group was unaware of the precise nature of their feedback

signal. During neurofeedback training, the fluctuating red bar was driven

by brain activity in which the signal from PPA was subtracted from FFA

for the ‘Face’ group, and the reverse subtraction (PPA – FFA) for the

‘House’ group. Participants were trained to modulate a differential

training signal. Therefore, the ‘Face group’ learned to voluntarily in-

crease the difference in BOLD between FFA and PPA. In contrast, the

‘House group’ learned to voluntarily increase the difference in BOLD

between PPA and FFA.

For each group there was a strategy-related ROI (e.g. FFA for the Face

group and a strategy-unrelated ROI (e.g. PPA for the Face group, and vice

versa for the House group, Fig. 2A).

Fig. 1. Experiment procedure schematic. Stage 1

Pre-training BR

Stage 2 Neurofeedback training: 10 participants

were separated into two groups, a ‘face’ group

and a ‘house group’, and were trained to increase

a fluctuating thermometer bar (blue bar), up to a

fixed mark (orange bar). After the neurofeedback

training sessions, the participants performed a

transfer session with brain modulation in the

absence of neurofeedback signal. Stage 3 Post-

training BR: Three types of sessions: a) BR; b) BR

with ‘concurrent trained upregulation’; and c) BR

with ‘concurrent non-trained mental imagery’.
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2.2.4. Day 5: transfer session

After the final neurofeedback training session, there were two

transfer sessions, each comprising six blocks. Each block lasted 60 s and

consisted of an ‘upregulate’ period (40 s) followed by ‘rest’ (20 s). During

upregulation, participants were required to drive their brain activity ‘up’,

using the mental imagery strategies successfully used to drive the bar

during neurofeedback training, but now in the absence of a feedback

signal.

2.2.5. Day 5: post-training BR

All participants then performed post-training BR, with the same set-

up described for pre-training BR. Three different BR conditions were

performed (2 sessions each) pseudorandomised and counterbalanced

across all participants: (1) Post-training BR. The instruction was iden-

tical to the pre-training BR; (2) Post-training BR with ‘concurrent

trained upregulation’. Both groups were instructed to use their trained

mental imagery strategies that had worked best during the training ses-

sions while simultaneously performing BR; and (3) Post-training BR

with ‘concurrent non-trained mental imagery’. Participants were

instructed to use mental imagery related to either houses if in the ‘Face

group’, or faces if in the ‘House group’. Mental imagery was to be

performed while concurrently performing BR.

2.3. Brain imaging

Functional data was analysed using SPM12 (http://www.fil.ion.ucl.

ac.uk/spm). To allow for T1 equilibration the first five images of each

session were discarded. Preprocessing involved bias correction, realign-

ment of each EPI to the mean EPI, unwarping, and co-registration of the

functional data to the structural image. Normalisation was not per-

formed, as initial analyses were performed in native space. Data was

smoothed with a 6mm FWHM Gaussian kernel and high-pass filtered

(128s cut-off) to remove low-frequency noise, while at the same time

preserving as many of the spontaneous fMRI fluctuations as possible

(Cordes et al., 2001). Session-specific grand mean scaling was applied

with no global normalisation.

2.3.1. Offline ROI analysis: Fusiform Face Area and Parahippocampal Place

area

2.3.1.1. Neurofeedback. BOLD signals across the 9 training sessions

(acquired on Days 2–4) were modeled using a GLM, with regressors for

each of the 9 sessions. Boxcar functions were created for the six upre-

gulation blocks, convolved with the canonical HRF. Six regressors for

movement and a global constant were included. Beta values from the

GLM were averaged across all the voxels in the ROI masks (FFA and PPA

ROIs based on the functional localiser). Mean percentage signal change

(PSC) was then calculated. For each participant, the differential mean

PSC between the two ROIs (i.e. strategy-related ROI minus strategy-

unrelated ROI) was calculated across sessions. From this, the average

mean PSC across participants over the training was calculated.

2.3.1.2. Transfer sessions. Two transfer sessions were performed, with

participants performing six blocks of upregulation of brain activity as

trained, but now in the absence of a neurofeedback signal. In a similar

manner to the neurofeedback sessions (see above), the differential mean

PSC between the two ROIs (i.e. strategy-related ROI minus strategy-

unrelated ROI) was calculated across sessions, and from this, the

average mean PSC across participants over transfer was calculated.

2.3.1.3. Binocular rivalry. Boxcar functions were created to model the

onset of the BR block, convolved with the canonical HRF, for each BR

condition. A GLM was performed at the single participant level. Beta

values for each of the trained ROIs were averaged for each condition and

adjusted for the global brain signal. Mean percentage signal change (PSC)

was then calculated.

For inferential statistical analyses, SPSS 21 (IBM Corp. Armonk, USA)

was used to perform ANOVAs and follow-up planned paired sample t-

tests, which were two-tailed unless otherwise stated.

2.4. Control experiment- mental imagery

2.4.1. Experimental outline

Ten different participants (age range¼ 22–39 years, mean age 30.

years, 8 females) were recruited for a control BR experiment. They

viewed a Dell LCD monitor (width: 43.5 cm; resolution: 1600 900;

refresh rate: 60 Hz) from a distance of 43 cm (fixed using a chin rest)

through a mirror stereoscope. The stereoscope reflected the left and right

sides of the screen into the participants’ left and right eyes, so that each

eye was presented with only one of the two images (house or face). In

order to ensure robust fusion of binocular images, prior to the start of BR

task, fusion was achieved for each participant by slowly moving two grey

squares from the edge toward the centre of the screen. At the beginning

of this process the participants would see two squares. By the end of this

process the participants would report when they were seeing one square.

All testing took place in a darkened room.

Fig. 2A. Schematic showing group ROIs (FFA and PPA statistical masks) on

inflated canonical brains. Activation was extracted from these regions for pro-

duction of the differential signal for neurofeedback training. The direction of

regulation of these ROIs was specific for each group i.e. House Group, PPA up/

FFA down, Face Group, FFA up/PPA down.

Fig. 2B. Mean BOLD signal changes across groups, in the strategy-related ROI

(red) and the strategy-unrelated ROI (blue), for each of the nine training ses-

sions. The green line shows the difference in mean BOLD activation between the

two brain regions and corresponds to the neurofeedback training signal that

participants visualised in the scanner as a fluctuating bar. Error bars

show �1SEM.
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During the viewing blocks, a face stimulus and a house stimulus were

presented in the left and right hemi-fields respectively. The stimuli were

pseudorandomised with regards to which eye received the face or house

stimuli. Each viewing block (40 s followed by rest 20 s) was performed

with a new pair of stimuli from the pool of twenty stimuli. Six blocks

were performed per session, for three sessions. Participants were

instructed to indicate a perceptual shift only if the whole exemplar was

perceived; any combination or ‘patchwork’ percept regardless of the

predominance of the exemplar category was reported as a ‘mixed’

percept. The participants were instructed to switch as accurately and

rapidly as possible between three possible button presses linked to the

three perceptual states (face percept, house percept, mixed percept). This

resulted in measures of the cumulative duration of the percept

throughout the BR measurement period.

BR was performed in this manner prior to and after 3 days of

consecutive mental imagery training (see below).

2.4.2. Mental imagery training over 3 days

Participants returned to perform mental imagery training. Partici-

pants were pseudorandomised into two equal groups, and were explicitly

advised to use mental imagery strategies that involved faces (‘Face

group’) or house/places (‘House group’). Mental imagery was under-

taken while viewing a LCD monitor screen with a fixed horizontal black

bar. They were told to imagine pushing a bar above the fixed black bar,

while performing their mental imagery strategies. Each mental imagery

training session comprised three sessions, each including six blocks of

60 s with a ‘perform mental imagery’ period (40 s) followed by ‘rest’

(20 s).

2.4.3. Brain structural analysis

The structural analysis was performed using Tensor Based

Morphometry (TBM), an emerging computational analysis technique

(Ceccarelli et al., 2009; Farbota et al., 2012; Li et al., 2009; Wang et al.,

2013; Welch et al., 2013), which is better suited to studies with smaller

participant samples. TBM enables longitudinal quantitative assessment

by identifying regional structural differences from the gradients of the

deformation fields that nonlinearly warp each individual image to the

template.

For each participant, high-resolution T1 structural images were

reoriented placing the anterior commissure at the MNI origin. Longitu-

dinal nonlinear registration (Ashburner and Ridgway, 2012) was per-

formed to align the two time-points (before and after training) to their

within-subject average, characterising the relative volumetric expan-

sion or contraction (as the divergence of a velocity field) of each voxel in

each time-point with respect to the average. The within-subject average

images were then segmented to produce grey and white matter seg-

mentations for each participant (Ashburner and Friston, 2005). These

segmentations were nonlinearly aligned to their group-wise average

using Dartel (Ashburner, 2007), and the final Dartel average template

was affinely registered to MNI space. The resultant between-subject

transformations were then used to spatially normalise the divergence

maps of the velocity fields, which were finally smoothed with a 6mm

FWHM Gaussian kernel.

Divergence measures for each participant were then extracted within

spherical ROIs for FFA and PPA (6mm). The spheres were centered on

coordinates that demonstrated the highest functional activity within the

localiser ROIs across training. A t-test was then performed to establish if a

specific brain region had changed significantly before versus after

training.

2.4.4. Canonical Variate Analysis

We used a Canonical Variate Analysis (CVA) to demonstrate that

measures of change in brain activation and brain structure following

neurofeedback training predicted changes in behavioural measures. Also

known as a multivariate analysis of variance, or ManCova (Friston et al.,

2014, 1995), CVA enables statistical inferences to be made about

associations between the imaging data, and behavioural data that are

distributed over variables. It was chosen for analysis of this dataset

because it can accommodate statistical dependencies between multi-

variate predictor variables (behavioural changes) and multivariate

outcome variables (functional or structural measures). Neither the

behavioural nor imaging data had to be examined in isolation, which had

the advantage that distributed changes could be identified, while mini-

mising the multiple comparisons problem. The behavioural changes for

each participant was the change in dominance duration of each the three

percepts (e.g. strategy-related percept, strategy-unrelated percept, mixed

percept) between the pre-training BR condition and post-training BR

(Fig. S3), and between the pre-training BR condition and post-training BR

with concurrent trained up-regulation (Fig. S3). As the behavioural and

structural measures were taken prior to and immediately after neuro-

feedback training, the functional measures for each participant were the

change in the different signal between the first and the last training run

(e.g. run 1 and run 9). The structural measures for each participant were

the divergence measures for each ROI, FFA and PPA (6mm).

The objective of the CVA was to find the linear combination of

outcome variables that was best predicted by a linear mixture (contrast)

of structural or functional components. The weights of these linear

combinations are called canonical vectors. The canonical variates of the

outcome and predictor variables are the expression of each canonical

vector in each subject. Other quantities generated by the CVA include

Bartlett's approximate chi-squared statistic for Wilks' Lambda and its

associated significance, or p-value, which test for the significance of a

linear mapping or correlation between the canonical variates (in other

words, if one or more pairs of canonical variates show a significant sta-

tistical dependency).

3. Results

We first examined the effect of neurofeedback training on behaviour

using three comparisons. We compared perceptual dynamics, specifically

cumulative dominance durations, performed during BR before and after

training. We then examined the effects of learned upregulation on BR by

comparing pre-training BR versus post-training BR with concurrent

‘learned’ upregulation of brain activity. For the final comparison, we

examined the non-trained mental imagery on BR, by comparing

perceptual dynamics during pre-training BR versus post-training BR with

concurrent non-trained mental imagery. The effects of trained mental

imagery were additionally examined separately – see Mental Imagery

Control Experiment and Fig. S1 (Supplementary Materials).

As the durations of the three percepts were dependent on each other,

a change in one percept occurred linked to changes in one or both of the

other percepts.

3.1. Within condition comparisons

3.1.1. Comparison 1. pre-training BR vs. post-training BR

Comparing behavioural measures of pre-training BR and post-training

BR indicated an effect of training (Fig. 3). Paired t-tests revealed a sig-

nificant reduction in the cumulative dominance durations (i.e. how long

a percept type was perceived) for the strategy-unrelated percept (t

(9)¼ 2.88,p¼ 0.02), and a significant increase in mixed percept dura-

tions (t (9)¼ 2.74,p¼ 0.02), with no significant change in the dominance

duration of the strategy-related percept (t (9)¼ 0.46,p¼ 0.66).

3.1.2. Comparison 2. pre-training BR vs. post-training BR with concurrent

trained upregulation

Paired t-tests revealed a significant reduction in the duration of the

strategy-unrelated percept (t (9)¼ 4.76,p¼ 0.001), and a significant in-

crease in the duration of the mixed percept (t (9)¼ 2.68,p¼ 0.03). There

was no significant change in the dominance duration of the strategy-

related percept (t (9)¼ 0.53,p¼ 0.61) (Fig. 3). The changes in BR dy-

namics were similar to those observed with pre-training BR vs. post-
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training BR (Comparison 1).

3.1.3. Comparison 3. pre-training BR vs. post-training BR with concurrent

non-trained mental imagery

Paired t-tests indicated a significant reduction in the duration of the

strategy-related percept (t (9)¼ 2.41, p¼ 0.04), and a significant in-

crease in the duration of the mixed percept (t (9)¼ 2.68, p¼ 0.03). There

was no significant change in the dominance duration of the strategy-

unrelated percept (t (9)¼ 0.12, p¼ 1.74).

We further examined differences between conditions.

3.2. Between condition comparisons

3.2.1. Post-training BR vs. post-training BR with concurrent trained

upregulation (comparison 1 vs. comparison 2)

There was a significantly greater reduction in the dominance duration

of the strategy-unrelated percept (t (9)¼ 2.40, p¼ 0.04) in Comparison 2

as compared with Comparison 1 (Fig. 3B). There were no other signifi-

cant differences between the two comparisons (strategy-related percept: t

(9)¼ 0.95, p¼ 0.37; mixed percept: t (9)¼ 0.90, p¼ 0.39).

3.2.2. Post-training BR vs. post-training BR with non-trained mental imagery

(comparison 1 vs. comparison 3)

There was a significantly greater reduction in the dominance duration

of the strategy-related percept (t (9)¼ 3.12, p¼ 0.01) (Fig. 3B). There

was also a significantly greater increase in the dominance duration of the

mixed percept (t (9)¼ 2.62, p¼ 0.03). There were no significant changes

in the strategy-unrelated percept (t (9)¼ 0.09, p¼ 0.93).

3.2.3. Post-training BR with concurrent trained upregulation vs. post-training

BR with non-trained mental imagery (comparison 2 vs. comparison 3)

There was a trend towards reduction in the dominance duration of the

strategy-related percept (t (9)¼ 2.23, p¼ 0.05) in Comparison 3 as

compared with Comparison 2 (Fig. 3B). The other two comparisons were

not significant (strategy-related percept: t (9)¼ 0.95, p¼ 0.37; mixed

percept: t (9)¼ 1.1, p¼ 0.30).

3.3. Functional changes during neurofeedback training

To test if neurofeedback training resulted in progressive learning, we

examined whether participants demonstrated increased control of the

differential feedback signal over the three training days (Fig. 2B). A

repeated-measures ANOVA with a factor of training day (3 levels; Days

1–3) demonstrated a significant effect (F (2,16)¼ 3.74, p¼ 0.047). Post-

hoc t-tests demonstrated a significant increase in the differential signal

from Day 2 onwards, suggesting a learning effect (Day 1: t (9)¼ 0.88,

p¼ 0.40; Day 2: t (9)¼ 3.27 p¼ 0.001; Day 3: t (8)¼ 2.75, p¼ 0.02).

3.4. Functional changes during transfer

Following neurofeedback training and prior to BR, voluntary control

of brain activation in the absence of neurofeedback was confirmed in a

‘transfer session’. Differential BOLD activation (strategy-related ROI

minus strategy-unrelated ROI) pooled across the two transfer sessions,

revealed a significant effect (t (9)¼ 2.38, p¼ 0.04).

3.5. Functional changes during binocular rivalry

We examined task-related BOLD signals in the trained ROIs (FFA and

PPA) comparing pre-training BR with post-training BR. We observed

significant reductions in BOLD signals in both the strategy-related ROI (t

(9)¼ 3.43, p¼ 0.007) and strategy-unrelated ROI (t (9)¼ 2.26,

p¼ 0.04), when comparing pre-training BR with post-training BR.

Comparing pre-training BR versus post-training BR with concurrent

trained upregulation, there was a significant reduction in the activation

level of the strategy-unrelated ROI (t (9)¼ 2.48, p¼ 0.03). No significant

change was noted for the strategy-related ROI (t (9)¼ 1.41, p¼ 0.19).

We performed one-tailed t-tests as we had an a priori hypothesis that

following neurofeedback training, participants should be able to increase

the difference in BOLD activation between the two trained ROIs (Fig. 4).

There were no significant changes for pre-training BR versus post-

training BR with concurrent non-trained mental imagery (strategy

related ROI: t (9)¼ 0.82, p¼ 0.44; strategy unrelated ROI: t (9)¼ 0.83,

p¼ 0.43).

Fig. 3A. Cumulative dominance durations across participants for pre-training

BR, and the three post-training BR sessions: Post-training, Post-training BR

with concurrent trained upregulation, and Post-training BR with concurrent

non-trained mental imagery. Error bars show �1SEM. The total duration of each

BR block was 40s.

Fig. 3B. Changes in cumulative dominance durations for binocular rivalry (BR)

sessions, showing comparisons before and after neurofeedback training

collapsed across both groups. Error bars indicate �1SEM

A. Pre/post training BR comparison

B. Pre/post-training BR with concurrent training upregulation

C. Pre/post-training BR with concurrent non-trained mental imagery. *p < 0.05.

Double **p < 0.01. Horizontal brackets indicate significant differences in the

changes of cumulative dominance durations (p < 0.05) ~ over a bracket in-

dicates p ¼ 0.07.
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3.6. mental imagery control experiment

There was no evidence of significant changes in the cumulative

dominance durations of any of the three percepts (strategy-related

percept t (9)¼ 0.74, p¼ 0.48; strategy-unrelated percept, t (9)¼ 1.00,

p¼ 0.34; mixed percept, t (9)¼ 2.00, p¼ 0.07).

3.6.1. Between group comparisons with ‘mental imagery’ control group

We performed an ANOVA with a within-subjects factor of percepts

(strategy-related percept, strategy-unrelated percept, mixed percept)) and a

between-subjects factor of group (Group 1: neurofeedback, Group 2:

mental imagery). There was a main effect of percept (F (2,36)¼ 4.64,

p¼ 0.02). There was no interaction (F (2,36)¼ 2.65, p¼ 0.08) between

these two factors.

We performed a second ANOVA with a within-subjects factor of

percepts (strategy-related percept, strategy-unrelated percept, mixed percept))

and a between-subjects factor of group (Group 1: neurofeedback with

concurrent-upregulation, Group 2: mental imagery). There was a main

effect of percept (F (2,36)¼ 6.68, p¼ 0.003), and an interaction between

percept and group (F (2,36)¼ 5.29, p¼ 0.01). Follow-up two-sample t-

tests looking at changes in durations of the similar percepts showed a

significant difference for the strategy-unrelated percept (t (9)¼ 2.35,

p¼ 0.04), but not for strategy-related percept (t (9)¼ 1.04, p¼ 0.32) or

the mixed percept, (t (9)¼ 2.00, p¼ 0.08).

We performed a further ANOVA with a within-subjects factor of

percepts (strategy-related percept, strategy-unrelated percept, mixed percept))

and a between-subjects factor of group (Group 1: neurofeedback with

concurrent non-trained mental imagery, Group 2: mental imagery).

There was a main effect of percept (F (2,36)¼ 6.70, p¼ 0.003), and an

interaction between percept and group (F (2,36)¼ 3.63, p¼ 0.04).

Follow-up two-sample t-tests looking at changes in durations of the

similar percepts showed a significant difference for the mixed percept (t

(9)¼ 2.79, p¼ 0.02, but not for strategy-related percept (t (9)¼ 1.00,

p¼ 0.86) or the strategy-unrelated percept, (t (9)¼ 0.29, p¼ 1.14).

4. Results - structural

The results of the longitudinal non-rigid registration were used to

determine volume changes in the ROIs by calculating the divergence of

the velocity fields. One-sampled t-tests of these values were used to

calculate if any significant structural changes had taken place as a result

of neurofeedback training. They were not significant for both ROIs i.e.

FFA (t (9)¼ 0.36, p> 0.05), and PPA (t (9)¼ 0.46, p> 0.05).

5. Results – canonical variate analysis

Plots for comparisons of combined measures in: (1) behaviour

(dominance durations for the three perceptual reports) and functional

(BOLD changes across training in FFA, PPA); and (2) behaviour and

structural measures (measure of the volume changes in FFA and PPA

following training) are presented in Fig. S4, together with Bartlett's

approximate chi-squared statistic for Wilks' Lambda and its p-value, for

each comparison.

The participant neurofeedback training measures (i.e. differential

BOLD brain activation) had a trend to being correlated with changes in

BR behavioural dynamics as recorded during BR with concurrent trained

upregulation of brain activation (compared with pre-training BR) (chi-

squared value¼ 12.35, p¼ 0.05). Comparison of changes in the neuro-

feedback training measures with behavioural changes during ‘simple BR’

before and after training was non-significant (chi-square value¼ 11.43,

p¼ 0.07). Significant correlations were noted between structural

changes in both ROIs and the change in BR dynamics produced during

concurrent trained upregulation of brain activation (chi-squared

value¼ 19.64, p¼ 0.03). Comparison of structural measures with

behavioural measures during ‘simple BR’ before and after training was

non-significant (chi-square value¼ 13.77, p¼ 0.09).

Of note, the mapping weights obtained for the behavioural measures

and the training-related BOLD measures were independent of the map-

ping weights obtained for the behavioural measures and the structural

measures. This is because these multivariate mapping values were spe-

cific to the measures used in the comparisons. Finally, the interpretation

of the mapping weights in relation to having a positive or negative value

did not indicate a positive or negative change in the values (e.g. an in-

crease or decrease in structural measures). Rather they represent a pos-

itive (or negative) contribution to the mapping between the multivariate

predictor variable and the outcome variables.

6. Discussion

Participants learned to differentially regulate the amplitude of BOLD

activation in two higher-order visual brain regions, FFA and PPA. This

was achieved in realtime, through volitional control using neurofeedback

training with rt-fMRI. The use of a ‘differential’ training signal was

implemented by showing the participants a ‘thermometer bar’whose size

represented the difference in the mean BOLD signal between the two

selected brain regions. By doing this, one of the brain regions acted as an

internal control for the other, accounting for potential confounds pro-

duced by global changes in brain activation in response to effects such as

arousal. Furthermore, specific behavioural effects linked with the di-

rection of change of the differential training signal were obtained,

providing a comparison of behavioural metrics for the training effect

(Thibault et al., 2018). The effect on visual perception was examined

with an independent BR task that employed stimuli specifically engaging

these stimulus-selective brain regions (face stimuli for FFA, house stimuli

for PPA). During BR, moment-to-moment stochastic alternations between

two competing visual percepts are observed, while concurrent brain ac-

tivity can be recorded and potentially manipulated (Blake et al., 2014;

Blake and Logothetis, 2002).

In this study, a change in BR perceptual dynamics was observed

following neurofeedback training. Perception of the stimulus linked to

neurofeedback training was rendered more stable e.g. strategy-related

percept, with a reduction in the perception of the other stimulus e.g.

strategy-unrelated percept. This behavioural change occurred when

comparing pre-training BR with post-training BR, and additionally when

participants performed post-training BR while concurrently performing

Fig. 4. BOLD activation changes in the trained ROIs, during binocular rivalry

(BR) sessions, before and after neurofeedback training. There was a significant

reduction in activation in both the strategy-related ROI and the strategy-

unrelated ROI following training. When BR was performed with concurrent

trained up-regulation, there was a significant further decrease in BOLD activa-

tion in the strategy-unrelated ROI only. Error bars indicate �1SEM. (*p < 0.05).
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learned ‘upregulation’ of brain activity. We compared pre-training ‘BR’

with three post-training BR conditions: ‘post-training BR’, ‘post-training

BR with concurrent trained upregulation’, and ‘post-training BR with

concurrent non-trained mental imagery’. The first comparison, exam-

ining changes during BR before and after neurofeedback training,

showed altered BR dynamics; specifically a reduction in the cumulative

dominance duration of the strategy-unrelated percept. These findings are

important, as they show that neurofeedback training produced a

behavioural effect that was: (1) counter-intuitive in that percept dura-

tions were not increased in line with the verbally instructed neurofeed-

back training strategy, which was initially expected. Rather, percept

durations not linked to the neurofeedback training strategy (e.g. strategy-

unrelated percept) were reduced; (2) aligned with a longstanding finding

in the field, namely Levelt's second proposition (discussed below); and

(3) indicative of a lack of demand characteristics (see also Mental Im-

agery Control Experiment).

There was a significant reduction in the levels of activation in both

ROIs, comparing pre-training BR versus post-training BR. This linked

neuroimaging finding was unexpected, as the prediction from existing

literature (Tong et al., 1998) is that BOLD activation levels in extrastriate

visual areas will reflect dominance durations. The expected findingmight

have been that activation levels would be lower in the strategy-unrelated

ROI. Our findings instead showed that both regions were affected by

neurofeedback training, as we expected given that participants trained on

a differential signal involving both ROIs. Both ROIs demonstrated a

reduction in activation, whichmay reflect an increase in neural efficiency

as a result of more precise tuning of neural representations (Gimenez

et al., 2014; Haler et al., 1992; Heinzel et al., 2014; Vartanian et al.,

2013). The exact mechanisms underlying this gain are unknown,

particularly in the context of neurofeedback training and thus warrants

further study (Poldrack, 2015).

The purpose of the second comparison (‘pre-training BR’ versus ‘post-

training BR with concurrent upregulation’) was to examine if there was

an effect of concurrent trained modulation of brain activation on BR

dynamics that was additive or different to the effect of neurofeedback

training alone. We observed a change in BR dynamics that was similar

and greater to that observed for pre-training BR vs. post-training BR, in

that there was more of a reduction in the mean dominance duration of the

strategy-unrelated percept. This confirmed that the effect of trained

upregulation was directly aligned with the effect of neurofeedback

training on BR dynamics. There was a decrease in the level of BOLD

activation in the strategy-unrelated ROI only, with no significant change

in the strategy-related ROI. Interestingly, these BOLD activation changes

were the same as those observed during neurofeedback training (a

reduction in activation levels of the strategy-unrelated ROI, Fig. 2B). This

provides further evidence for a similar mechanism underlying the

changes in BR dynamics following training and for those observed with

concurrent trained upregulation. The counter-intuitive effect of training

and up-regulation (during BR) on the brain activations in the two ROIs

(i.e. opposite to an a priori instruction and predicted direction of acti-

vation changes) is intriguing and worthy of further investigation (Abel

et al., 2015; Bueichekú et al., 2016).

The third comparison (‘pre-training BR’ versus ‘post-training BR with

non-trained mental imagery’) served to assess the impact of using a dif-

ferential training signal, which was hypothesised to have an effect on

both ROIs in all participants. It additionally helped reveal the role of non-

trainedmental imagery in the context of prior neurofeedback training. No

significant change in brain activation in either ROI was observed.

However, BR dynamics changed in a similar manner to the other two

post-neurofeedback training BR conditions, with a significant reduction

in the duration of the percept not linked to the training strategy used

during training. This reduction was significant when comparing changes

in perceptual dynamics across conditions. These behavioural findings

would therefore suggest that neurofeedback training, despite the lack of a

statistically significant BOLD effect, produced a more general effect on

the neurobiology of the two trained ROIs. The exact nature of this effect

may be complex, given that behavioural changes observed for this con-

dition were opposite to the direction of neurofeedback training, but

nonetheless sufficient to produce an effect e.g. ‘House’ group participants

specifically underwent neurofeedback training with ‘House-based’

mental imagery strategies, and yet they generated changes in BR dy-

namics simply by using non-trained ‘face’ based mental imagery strate-

gies during the performance of BR. These behavioural findings are

different from Rademaker and Pearson's work, in which using mental

imagery training did not produce training-related changes in BR domi-

nance duration. Five successive days of mental imagery training had no

effect on BR, with no benefit being conferred by expending increased

effort during mental imagery generation (Rademaker and Pearson,

2012). On the other hand, Rademaker and Pearson's findings are in

keeping with our own mental imagery control experiment, indicating the

relevance of neurofeedback training. We conducted a behavioural con-

trol experiment in which a different group of participants performed BR

before and after three consecutive days of mental imagery training,

which was analogous to the neurofeedback training. The training was

again explicitly linked to one of the two stimuli used in BR (face mental

imagery for a ‘Face group’, house mental imagery for a ‘House group’).

However there was no targeted training strategy for the brain, unlike

with the neurofeedback-trained groups. No significant changes in

dominance durations of any of the three percepts were observed.

Taken together, these results indicate that short-term intensive

training over 3 days on a neurofeedback BOLD signal produced by two

brain regions, engages and alters the function and biology of both regions.

This is specifically supported by the shift in perceptual dynamics during

BR following neurofeedback training, and the activation changes

observed in both ROIs (see Results: Comparison 1). It is further supported

more broadly by the behavioural changes observed in all of the post-

neurofeedback training BR conditions, which were not observed in the

mental imagery control experiment. Habes et al. (2016) have previously

confirmed that although differential regulation of category-specific vi-

sual areas can be achieved after a single day of training, a linked change

in BR dynamics was not produced. We therefore suggest that in order for

mental imagery to produce a change in perception, it must be linked with

neurofeedback-led learning, conducted over a period of days. This may

be attributable to the interposition of sleep with sequential daily training.

Sleep has been directly linked with the offline processing necessary for

the consolidation of neuroprosthetic learning (Gulati et al., 2014) and

associated behavioural output (Gulati et al., 2017).

Mental imagery may be utilised for perceptual learning of low-level

visual features, and to activate stimulus-selective cortical representa-

tions (O'Craven and Kanwisher, 2000; Tartaglia et al., 2009). Similarly,

rt-fMRI neurofeedback together with implicit operant reinforcement has

been used to unconsciously train patterns of activation in primary visual

brain regions (Amano et al., 2016; Shibata et al., 2011) to produce

perceptual and associative learning of low-level visual features such as

colour and orientation. However, to-date neither approach has success-

fully yielded changes in higher-order visual perception. In this study, we

show that coupling explicitly instructed mental imagery with rt-fMRI

neurofeedback training of higher-order visual brain regions produces

an unconscious and targeted shift in the perceptual processing of visual

stimuli. This result is novel and significant in providing evidence for

non-invasively manipulating higher-order brain function, potentially at

the level of directly strengthening neural representations to alter

higher-order perception (Fahle, 2002; Watanabe et al., 2002, 2001).

From a mechanistic perspective, an interesting next step might be to test

if unconsciously inducing specific patterns of brain activations related to

category-specific stimuli will produce linked shifts in perception in a

similar manner to that observed in this study (Watanabe et al., 2017).

This would provide more direct evidence of modulating neural
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representations.

The observed behavioural findings may constitute a neural analogue

of Levelt's second proposition (Levelt, 1966), as applied to stimulus

perception. The original proposition (see Supplementary Discussion) was

based on the physical properties of visual stimuli. It was recently modi-

fied to indicate that ‘increasing the difference in stimulus strength between the

two eyes will primarily act to increase the average perceptual dominance

duration of the stronger stimulus’ (Brascamp et al., 2015). Our work may

provide evidence for a neural reformulation of BR. Participants were

trained on a differential signal, rather than specifically training to in-

crease the level of activation in the strategy-related ROI. During training,

they appeared to reduce the level of activation in the strategy-unrelated

ROI across the three days, while maintaining a fixed level of activation in

the strategy-related ROI (Fig. 2B). This difference in activation levels as a

result of training was maintained when the participants undertook the

transfer sessions, an assessment of upregulation in the absence of neu-

rofeedback. The difference in ROI activation levels may have therefore

led to a relative difference in the strengths of the neural representations

linked to the visual stimulus categories. In keeping with this view, we

observed a reduction in the mean dominance duration of the

strategy-unrelated percept. This resulted in greater mean dominance

durations of the strategy-related percept, corresponding to the ROI with

the strengthened neural representation. On the basis of this, we propose a

possible neural analogue of the Levelt's modified second proposition as

follows: ‘increasing the difference in neural representation strengths between

the two brain regions linked to the two monocular visual stimuli will primarily

act to increase the average perceptual dominance of the percept linked to the

stronger neural representation’. The effect of this would be to produce

unconscious perceptual biasing towards the strengthened percept. This

mechanism for perceptual ‘shaping’ (Lange et al., 2018) may have

real-world application in conditions requiring targeted enhancement of

perception such as in threat detection (Miranda et al., 2015), or thera-

peutically to reduce unwanted or aberrant percepts (Tascher-

eau-Dumouchel et al., 2018).

Several mechanisms have been put forward to explain the neural

underpinnings of BR. Of note, known influences on visual perception

such as priming and cueing have not been shown to produce changes in

BR dominance durations (see also Supplementary Discussion). Neuro-

feedback with rt-fMRI provides the most direct means of testing neuronal

function involved in processing visual stimuli. Using a hierarchical model

of BR (Dayan, 1998), it may be proposed that neurofeedback training of

higher order brain regions strengthens neuronal representations linked to

the processing of specific visual stimuli, leading to unconscious percep-

tual biasing. Preferential processing of strategy-related stimuli would

result in decreased dominance durations of the strategy-unrelated stim-

uli, as was observed here. The effect of neurofeedback on BR may be

further considered within a Bayesian framework (Lange et al., 2018).

During BR, the dominant percept at any given time is maintained by the

highest posterior probability, at the top of the cortical hierarchy. Stim-

ulus representations at lower levels generate error signals that are

compared with top-down predictions. The percept is rendered more or

less stable in relation to bottom-up inhibition i.e. the lower the error

signal, the more stable the percept (Alink et al., 2010; Hohwy et al., 2008;

Summerfield and Koechlin, 2008). In keeping with this, BR dynamics

were shifted in the direction of the information represented in the trained

visual brain regions. Therefore, perception of the stimulus linked to

training was rendered more stable, with a simultaneous reduction in the

stability of the perception of the other stimulus, leading to a reduction in

its mean dominance duration.

The changes in high-level visual perception following neurofeedback

training in this study were associated with structural changes in the

trained regions (see Supplementary Materials). We used a multivariate

analysis technique, Canonical Variate Analysis, which can accommodate

multiple measures of behaviour, structure, and function to help deter-

mine the overarching effect of neurofeedback training. The change in BR

dynamics (i.e. cumulative dominance durations) was linked with mea-

sures of structural changes in FFA, and PPA (Fig. S3, Supplementary

Materials). These preliminary findings in ten participants suggest that

neurofeedback training, even over a relatively short period of time (3

days) can alter perception as a result of plasticity in the trained brain

regions (Johansen-Berg et al., 2012; Sagi et al., 2012).

In this study,we provide a direct demonstration of the rapid changes in

perception and neural plasticity that can be produced by neurofeedback

training of higher-order visual areas using rt-fMRI. Imagery-related acti-

vation in higher-order visual cortex, such as the ventral visual areas, are

related to semantic content, and are more flexible and abstract (Orban

et al., 2014) as compared to early visual cortex. Therefore, the use of

higher-order visual areas pairedwith rt-fMRI neurofeedback trainingmay

provide the most potent and generalizable means of enacting a change on

complex perception. Neural representations that give rise to prior expec-

tations can be directly shifted in the direction of neurofeedback training,

even in the presence of pre-existing expectations. This could lead to tar-

geted enhancement of specific responses during discrete tasks as demon-

strated here using BR, or in the reduction of aberrant visual perception,

such as hallucinations, for therapeutic effect (Lange et al., 2018).
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