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Preface

What we call generalizability theory has evolved slowly and circuitously.
The tidy theory of error laid down for psychology at the start of the century
by Spearman and Brown has always seemed just a little too tidy to describe
the perverse behavior of real data. Nearly every specialist in behavioral
measurement has tried to develop a less restrictive model. Each new formula-
tion has had its virtues and its defects, but the combined thrusts of the
proposals have propelled the profession a long way beyond the classical
position.

In recent years a chief problem has been to assemble what is known into
a comprehensible, intuitively appealing structure. Our own efforts date back
more than twenty years, and the more intensive work that produced this
monograph dates back to 1957. Time and again, we prepared what we
thought was a comprehensive system. Each such reorganization, brushing
away scraps, tying in loose ends, and exposing the central structure more
clearly, has shown the structure to be unfinished and suggested ways to
extend the argument. This monograph as well surely has a built-in obsoles-
cence. The multivariate parts of the theory, in particular, began to come into
focus only in 1967. Much further work remains to be done with them, and
as that work is carried forward it is likely to alter the whole structure. It
seems unlikely that further developments will displace our basic scheme,
with which other investigators have also had considerable experience.

Many persons and agencies have assisted us. From 1957 to 1963, the work
was aided by the Bureau of Educational Research of the University of Illinois
and by grant M-1839 from the National Institute of Mental Health. Cronbach
zgd Gleser were the principal investigators. Rajaratnam was full-time

ssociate from 1957 to 1960, shared authorship of the basic technical reports,
and contributed many of the key ideas. Many consultants and correspondents
made valuable suggestions and comments; we are particularly indebted to
Frederic Lord and Hubert Brogden. Assistants with the project for one year
or more were Hiroshi Azuma, Milton Meux, Peter Schonemann, and James
Terwilliger.
In 1960, with two main reports distributed and the third in draft form,
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vi Preface

Rajaratnam took a position at the University of British Columbia and Gleser
took on increased responsibilities at the University of Cincinnati. Cronbach
continued to work on these and other measurement problems at the Institute
for Advanced Study, Princeton. When he returned to Illinois in 1961, the
project staff consisted of Victor McGee, associate, and Hiroshi Ikeda and
T. Douglas McKie, assistants. From 1962 to 1963, Jean Cardinet was
associate and McKie and R. A. Avner were assistants. John E. Hunter
independently carried out pertinent mathematical studies. During this period,
Cronbach, Gleser, and Rajaratnam revised the technical reports for journal
publication. Cronbach served as a member of the committees that produced
the 1966 Test Standards, this provided an opportunity for further discussion
of our concepts with helpful colleagues. Support from the National Institute
of Mental Health was terminated in 1963. Dr. Rajaratnam died in 1964,
while serving on a research staff at the University of Minnesota.

There was no further systematic work on these matters until late 1965.
In the interim, however, Cronbach and Gleser attempted to help several
researchers use the theory in their substantive investigations. The experience
showed that the original papers were not specific enough to guide the
investigator; nearly every study required some adaptation of the basic
methods and interpretations.

Cronbach had taken a position at Stanford University, and in 1965 applied
for funds to permit preparation of a monograph. The Cooperative Research
Branch of the U.S. Office of Education provided support for an assistant,
Nanda, throughout 1966. Some supplementary support came from the
Center for Research and Development in Teaching, a U.S.O.E.-funded
agency at Stanford. Our original intention was simply to expand the published
papers with more explicit advice on procedures and with worked examples.
Such an expansion and clarification was distributed in a preliminary version
in 1967. The 1967 report, with revisions, forms the heart of Chapters 1-7 of
this volume. We are indebted to Haruo Yanai for suggesting the use of Venn
diagrams to improve the exposition.

Meanwhile, Nanda’s studies on interbattery reliability and studies by
Kenneth W. Travers opened the way to a multivariate extension of the system.
That part of this monograph has not appeared previously, save for a paper
on difference scores in which Lita Furby collaborated. Michael Ravitch has
served as assistant in preparing numerical examples and Leigh Burstein
assisted with Chapter 8.

To spend more than ten years in producing a monograph seems on its
face to require some apology. But even in retrospect it is hard to see how the
work could have proceeded much faster. In such an endeavor one cannot
head straight toward the final product. One casts about for useful paths,
puzzles over trails that branch ambiguously, sometimes spends considerable
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time exploring an alternative pathway that, once traced out, can be omitted
from the final map. Sometimes one pursues a line of development for a
time as a major independent problem, only to have it shrink back into a
minor role when the theory consolidates at a higher level of generality.
(Our work on “stratified-parallel” tests is an example.) Perhaps the greatest
amount of time goes into the detection and eradication of errors and blind
spots, some due to the perversity of typewriters and computers, some arising
from our own illogic, and some—the most elusive—being misconceptions
built into habitual, “time-tested”” concepts. Our chief process of work has
been the ceaseless revision of each page of draft manuscript by each of the
coauthors, to ensure the accuracy of everything that is said.

We owe a special debt to the project secretaries, whose duty has been to
put illegible technical manuscript, revised by three writers in at least three
colors, into immaculate form—so that the process of revision could begin
again. The secretaries who served the project for a year or more are Gloria
Block, Martha Francisco, Clara Hahne, Dorothy Humes, Thelma Wasson,
and Jenny Cloudman.

We take this opportunity to thank the agencies, including our Universities,
that have supported the work. We also thank the colleagues whose criticisms,
encouragement, and loan of data have moved us forward, and the successive
members of our research group.

Lee J. Cronbach
Goldine C. Gleser
Harinder Nanda
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Summary
of Notation

The symbols used in this book are identified below. The page reference
indicates initial use. Notation used at only one point will not appear in this

summary.

Lower-Case
Letters

ab,...

a
b

Y

ga h9 i’ja ka /

Used to identify specific conditions of facet j (p. 36).

Used to represent an unknown or arbitrary quantity (p. 93).
Slope of regression of u, on X, (p. 143).

As a prescript, identifies a criterion score (p. 325).

Days, as a facet (p. 195).
As a prescript, identifies a difference score (pp. 263, 330).

A component of the score not identified with persons,
classified conditions, or their interaction (p. 27). The
“within-cell” component of an analysis of variance.

Test forms, as a facet (p. 217).

A facet, or a condition of the facet so labelled (pp. 26fF.,
172, 26541.).

Number of conditions of a facet (e.g., n;) employed in an
experimental design (pp. 9, 34ff.). Also, number of
person n,,, number of variables n,.

Occasions, as a facet (p. 176).
Persons, as a basis for classifying observations (p. 26)

XV



xvi Summary of Notation

vory

Capital Letters

A,B,...

&

EMS
G, H, I, etc.

Raters or recorders, as a facet (p. 191).
A sample correlation coefficient (p. 78).
Residual, as in MS r (p. 83).

Schools, as a facet (p. 217).
Sample covariance (p. 234).
Sample standard deviation (p. 83).

Teachers, as a facet (p. 191).

Trials, as a facet (p. 238).

As a subscript, identifies a test score as distinct from an
item score (rare) (p. 121).

Variable (pp. 265, 272).

Multiplier used in forming weighted composite scores
(p. 265).
As a prescript, identifies a composite score (p. 327).

Used to identify specific conditions of facet i (p. 26).
Used to identify sums of components (pp. 48, 250)

Expected value. Limit approached by an average as the
number of elements averaged increases (p. 26). For
example, 1 n

. 3
EX, = le; > Xy
i i 1

In classical theory, the error of measurement (p. 75).
Expected mean square (p. 43).

A set of conditions used to make an observation; e.g.,
several conditions of facet g make up the set G (p. 28).
Any letter whose lowercase form identifies a facet may
be used in upper-case form also.

N; is the number of conditions of facet i in the universe of
admissible observations. N;, etc. may be defined similarly
(pp. 9, S8ff.).

A group of persons (p. 28).
As a subscript, indicates that a score is a sample mean

(p. 103).
Probability (p. 50).



Greek Letters

o

Summary of Notation xvii
Multiple correlation coefficient (p. 321).

In superscript position, indicates the transpose of a matrix
or vector (p. 319).

As a subscript, identifies a total score as distinct from an
average (p. 82).

Observed score. The score ,X,; is the observed score of
person p under condition i (pp. 26, 265).

Intraclass correlation from a one-facet study where condi-
tion means are not regarded as a source of variance in
scores (p. 82).

Difference between observed score and universe score
(pp. 24, 76).

Difference between observed deviation score and deviation
score in the universe (pp. 24, 93ff).

Difference between universe score and universe score
estimated by means of a regression equation (p. 25).

“Belongs to the set,”” as in i € I (p. 28).

Mean in population or universe (p. 26). In particular, a
component of the observed score. The component y, is
ordinarily the universe score of interest.

Portion of interaction uncorrelated with u, (p. 143).

Population value of a correlation coefficient (p. 75).
The expression &p® is an abbreviated notation for
&p*(X,:, p,) or more generally, the expected value of
the squared correlation of observed score with universe
score (p. 98).

Population value of standard deviation or covariance.
0%(X,,) is the variance of X, over all p and i (p. 27).
o2(pi) is the variance of the pi “component’ over all p
and i (p. 27).

Sum of.

Variance-covariance matrix (pp. 267, 272).



xviii Summary of Notation

Numerals

1,2 Two particular variables, as in X, ,X (p. 265). Especially,
pretest and posttest measures (p. 350).

1,2,... Persons whose scores are discussed (p. 36).

Auxiliary Signs

i i Two distinct conditions of facet i. Used similarly with j
(pp. 94, 231).

) Two distinct persons (p. 94).

v, v Two distinct variables (p. 265).

n,n Number of conditions employed in the G and D studies,
respectively (p. 74).

N’ Number of conditions in the universe of generalization
(p. 58).

i*, p* A particular condition or person (p. 26). A double asterisk
(as in i**) is used where emphasis is on a condition or
person fixed in the D study and the universe of generaliza-
tion (pp. 114ff.).

As prescript, identifies a variable of particular concern
(p. 313). Also in v*.

Caret, Estimator. For example, &(u,) is an estimate of
o(u,). But o(4,) is the standard deviation of an estimate of
u, (P. 47).

0,0 Bullet and open circle.

i-g Condition i for observing variable 1 is drawn simultaneously
with condition g for observing variable 2, causing i and g
to be “linked” (p.268).

iog Drawing of condition g is independent of the drawing of
condition 7; i.e., i and g are independent (p. 270).

*0(.X, »X) Covariance of observed scores ,X and ,X when i g
(p. 271).

°o(,X, ,X)  Covariance of observed scores when i ° g (p. 311).

e

Overline; average of a set, as in € (p. 59) or X (p. 75).
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Summary of Notation xix

Tilde; functions as an ellipsis (p. 41). The score component
for the pi interaction may be written u,,~ instead of
Upi — By — p; + . Similarly with other components.

As a subscript, the bracket indicates that the index it
replaces takes on all values except 1 (p. 54).

The conditional symbol implies that any index to the right
of the symbol is to be treated as fixed for the time being.
Thus, Y (X, | i) has the same significance as > X,,; (pp.

P
82, 83). In an experimental design e.g., (i X p) | J*, all
pi combinations are observed under conditions J* (pp. 59,
114).

The cross, colon, and comma are used in describing
experimental designs, being read respectively as “crossed
with,” “nested within,”” and “joint with”* (pp. 35ff., 286).






CHAPTER 1

The Multifacet
Concept of
Observational
Procedures

The investigator who tests a person twice is likely to obtain scores that differ.
Determination of the magnitude of such inconsistencies in measurement has
been recognized as important since the time of Bessel and Gauss, as the
investigator thereby learns how much confidence he can place in his data.

In psychology and education, a mountainous literature on “reliability”’
of measures has been built upon the foundation of Spearman’s 1904 paper.
In nearly all this literature, the observed score is seen as the sum of a “true
score” and a purely random “error,” the error being looked on as a sample
from a single undifferentiated distribution. The classical procedure for
reliability analysis estimates the standard deviation of this hypothesized
distribution (the standard error of measurement) and the closely related
reliability coefficient. Such a coefficient is interpreted as an estimate of the
squared correlation of observed score with true score, or as the ratio of the
variance of true scores to the variance of observed scores.

A generation ago, R. A. Fisher (1925) revolutionized statistical thinking
with the concept of the factorial experiment in which the conditions of
observation are classified in several respects. Investigators who adopt Fisher’s
line of thought must abandon the concept of undifferentiated error. The
error formerly seen as amorphous is now attributed to multiple sources, and
a suitable experiment can estimate how much variation arises from each
controllable source. With the estimates of the several variance components
in hand, the investigator can understand how unwanted variation arises,
and he can plan an efficient design for collecting further data. This is demon-
strated in the context of industrial statistics by Tippett (1950, pp. 124-133).

The behavioral scientist, like other investigators, can learn far more by
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allocating variation to facets! than by carrying out the conventional reliability
analysis. The principal methods for multifacet analysis of error were pre-
sented rather fully to behavioral scientists and educational researchers in
Lindquist’s text on experimental design (1953). These methods have been
less extensively treated elsewhere. However, they have not been widely
adopted. Indeed, we know of no instance where multifacet techniques were
used to organize statistical evidence in a test manual, and only rarely have
they appeared in publications on ratings and observation procedures. The
tester’s neglect of multifacet analysis probably reflects the fact that the
design of experiments branched off as a specialty in itself, with the conse-
quence that advances in variance analysis were not brought forcefully to
the attention of students of behavioral measurement. The separation was
encouraged by the fact that experimenters characteristically regard subjects
(persons) as a source of “error’ in their analyses, whereas the tester is
interested chiefly in the person tested and only secondarily in the conditions
of observation. Methodological statements directed to experimenters do not
communicate well to students of measurement.

Among the compelling arguments for adopting multifacet analysis of
error as a standard technique are these:

1. Explicit consideration of the several facets of a measuring operation
dispels ambiguities that were present in, and concealed by, the classical
model.

2. The multifacet study can appraise interactions inaccessible to the older
methods, and so can improve one’s understanding of the measure.

3. One multifacet study answers questions that formerly required several
separate sets of data.

4. Multifacet information enables one to design more efficient procedures
for collecting data, either for the measurement of individuals or for the
determination of group means.

Concurrently with the multifacet conception of measuring operations, a
tradition of multivariate analysis has evolved. In factor analysis, multiple
correlation, profile interpretation, and a number of other techniques, con-
clusions are reached through the simultaneous consideration of diverse
measures. Even though specialists in psychometric theory have played a
large part in developing multivariate statistical methods and their appli-
cations, this work has been almost completely isolated from the theory of
true scores and error of measurement. Better information on a true score
can be obtained by combining a direct observation on that variable with

1 Following Guttman, we speak of “facets’’ rather than “factors,” because the latter
term evokes, in the psychologist, associations with factor analysis.
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observations on variables correlated with it than can be obtained from the
direct observation alone.

Just a few scattered papers have suggested a multivariate approach to the
estimation of true scores. When this line is pursued, it becomes evident that
some of the most traditional procedures for test analysis are incorrect or
open to misinterpretation. We shall introduce a systematic model for multi-
variate theory of measurement and show how it joins hands with multifacet
theory to make all measurement theory more logical and more useful.
However, because of the novelty of both approaches, we combine them only
to discuss a few simple cases. A completely integrated presentation would be
too abstract to be assimilated at this time.

While the paper of Gleser, et al. (1965) presents the basic theory and
formulas for multifacet analysis with one variable, that presentation is too
compressed to be an adequate guide to the researcher. Endless variations of
the basic problem are encountered in practice, requiring adaptation of
formulas and interpretations. We have rarely undertaken a multifacet analysis
of a new instrument without encountering surprises and paradoxes that
required decisions for which the literature has provided no explicit guidance.
Therefore, we have compiled in this monograph illustrative studies in
sufficient variety and detail that the rationale, the computational procedures,
and the interpretation can be shown at length. Most of the examples are
taken from studies for which one or another of the authors served as con-
sultant. Matters of technique and formal interpretation that puzzled us are
emphasized here, rather than the substantive questions that gave rise to the
studies.

This monograph goes beyond the 1965 paper in several respects, one of
them being the multivariate extension mentioned previously. We have in-
cluded some relevant theory of inference from the statistical literature, and a
more complete discussion of mixed model analyses. Primary emphasis is now
placed on variance components, where the earlier paper followed psycho-
metric tradition in emphasizing ratios of variances (coefficients). We have
altered details of the presentation, adopting, for instance, a new system of
notation to describe experimental designs.

Despite our intent to display techniques clearly for the reader who wishes
to use them, the book is complexly organized and by no means simple to
follow. If we had been able to stop with a straightforward series of illus-
trations of the well-worked-out part of the theory, the presentation might
have adhered to a genuine textbook style. But it is necessary to bring in
complex arguments, some of which have not yet reached a stable form. It
appears important to draw attention to unfinished business within multifacet
theory—for example, to the effect of sampling errors upon results of the
analysis.
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The questions that appear following the chapters must be seen, not as
routine textbook exercises, but as opportunities for the reader to exercise his
wits on some of the complex judgments that multifacet studies require. To
be sure, a problem may simply provide the opportunity to apply an algorithm
and check one’s understanding of it. But another problem on the same page
may pose a dilemma, and we offer our preferred answer only most tentatively.
Many of the problems will prove useful as a basis for discussion in classes and
seminars. While it is hoped that others will be able to confirm our numerical
results, it is anticipated that they will often prefer alternative interpretations.

Because of the endless variety of the analyses generalizability studies call
for, we do not regard most of what is presented as a set of procedures to be
“mastered”” and reduced to routines. Hence, there has been no systematic
attempt to develop exercises on all topics. While it is hoped that the exercises
will assist the reader to comprehend the theory, this volume is a theoretical
monograph and not a textbook.

At some points it has been necessary to venture into metatheory—that is,
to discuss why the person analyzing a measuring technique ought to ask
certain kinds of questions. Issues forced to our attention by generalizability
theory raise fundamental questions about therationale and even the legitimacy
of traditional approaches to the scoring, reporting, and evaluation of tests.
Some readers will no doubt find multifacet theory cumbersome, and decide
to return to simpler models. Even such a reader will find that multifacet
theory has shed new light on his long familiar procedures, and has cast dark
shadows upon the acceptability of some of them.

It is awkward to develop an argument at several levels of abstraction,
especially when readers can be expected to vary in sophistication and technical
background. The reader must proceed through the book in his own way; it
would be unwise for him to struggle to comprehend each page as it comes.
Perhaps the best strategy is to scan the whole volume to identify the kinds
of material to be found, and then to follow a selected theme through the
book. Occasionally, the reader may wish to skip ahead to locate a numerical
example, or to turn to a further development of a theoretical issue. The
reader is certain to gain far more from his third reading of most sections
than from his first or second. By the time he returns to this or that puzzling
matter for a fourth reading he is likely to discover implications in the topic
that escaped us. In the course of writing and rewriting the book, we have
repeatedly discovered further, sometimes dramatic, significance in topics
that we thought had already been exhausted.

One reason for the continuing power of multifacet theory to provoke
new thoughts is that it permits sensitive use of concepts that had a restricted
or ambiguous meaning in the traditional framework. The hallowed Spear-
man-Brown formula, for instance, estimates the accuracy of the score that
one can obtain by doubling the number of observations. But if a teacher is
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to be observed by n, observers on n; occasions, and it is proposed to “double
the number of observations,” the psychometric properties of the score will
differ according to whether n; or n; is doubled. The properties also depend
on such subtler points of design as whether or not the n; observers are the
same on each occasion. The correlational language could be elaborated to
cope with such complexities, but clarity is served by tracing how a change of
design affects each component of observed-score variance.

Another example of ambiguity and misinterpretation arises in correction
for attenuation. In all too many instances, an investigator has “corrected”
an observed correlation by dividing it by a reliability index of an inap-
propriate type. Occasionally, for example, an investigator who desires to
show that two tests reflect distinct traits correlates the two tests and then
““corrects” the correlation by dividing it by an index of scorer agreement.
A low “corrected” correlation is taken as evidence for his hypothesis. It is
virtually impossible to explain why this is unsound and what the investigator
should have done instead until we possess the conceptual apparatus of
multifacet analysis. When we return to this topic, it will be evident that there
are many different “corrected” coefficients for the same two sets of scores.
Each coefficient allows the investigator to evaluate a different substantive
proposition.

It is a straightforward matter to obtain unbiased estimates of components
of variance and covariance, at least for the more regular experimental
designs (Vaughn & Corballis, 1969). A certain variance component may
contribute to “true,” ‘“‘error,” or “observed score” variance or perhaps to
none of these; the interpretation of the component will depend on how the
measuring procedure is to be applied. The magnitude of errors of measure-
ment depends on the type of decision to be made from the scores and on the
experimental design by which scores are to be collected. A new estimate will
usually be required for another type of decision or for an experiment differ-
ently designed. However, estimates of components remain useful to everyone
testing subjects similar to those of the original study. Each user can derive
from the components the estimates that pertain to his design and intended
decision. It is expected that behavioral scientists will drift away from their
present concern with coefficients, toward the reporting and interpreting of
components of variance and covariance. This will bring their thinking more
nearly in line with the theory of error used in other sciences, where corre-
lation coefficients play little or no part.

A. Historical Notes

The multifacet approach squarely faces the old criticism that reliability
coefficients for a test are diverse and sometimes mutually contradictory.
Under the classical theory, an investigator was expected to obtain two
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independent but interchangeable measurements on each individual, and to
examine their agreement. As was forcefully pointed out by Goodenough
(1936), the investigator who compares two administrations of the same list
of spelling words asks a different question than the investigator who compares
performance on two different lists. Inconsistency of observers, inconsistency
in the subject’s response to different stimulus lists, inconsistency of his
response to the same stimulus on different occasions—all of these may be
sources of error, but any one comparison will detect some inconsistencies
and not others. This line of criticism has led various workers to classify the
types of variance that can contribute to “error.”
Thorndike (1947) classified variance into five categories:

1. Lasting and general. For example, level of ability, and general test-
taking ability.

2. Lasting but specific. For example, knowledge or ignorance regarding a
particular item that appears in one test form.

3. Temporary but general. For example, buoyancy or fatigue reflected in
performance on every test given at a particular time.

4. Temporary and specific. For example, a mental set that affects success
in dealing with a particular set of items.

5. Other, particularly chance success in ““guessing.”

The lasting—general variance is almost always “‘wanted’” information about
individual differences; the “other’” or residual category is almost always
‘“‘error.” Temporary—general characteristics are significant for the investigator
who is studying response to immediate conditions, but they are “error” for
the investigator who wants to know the subject’s typical level of response.
Thus, an evaluator may wish to detect how much an adolescent’s interest in
reading about science here and now is aroused by the particular kind of
stimulation a visiting lecturer provides. This evaluator is interested in the
subject’s temporary state. But a guidance counselor wants to measure the
same adolescent’s everyday, typical interest in science. He regards temporary
departure from the student’s norm as a source of error, since he is interested
in a characteristic that transcends the stimulation of the moment. A split-half
analysis treats the temporary variation as consistent information; the
heightened interest raises scores on both halves of the measure. Therefore,
from the viewpoint of the guidance counselor, the split-half index of agree-
ment is falsely encouraging.

Thorndike’s breakdown is multifacet in conception, recognizing occasions
and stimuli (test forms) as logically distinct facets. However, it does not
suggest how the investigator can estimate the magnitude of each type of
variation separately. Cronbach’s rather similar treatment (1947) went only a
small step further in this direction.
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The views to be developed here were foreshadowed in Guttman’s (1953)
review of Gulliksen’s Theory of Mental Tests (1950). Guttman’s remarks are
worth quoting at length, because they exemplify how the experimental
procedure for investigating generalizability derives from substantive con-
siderations. Because a study of consistency among samples of behavior
challenges or confirms the investigator’s working concept of the variable,
it is a part of instrument validation as well as a study of instrument precision.
From Guttman’s review:

Current sampling theory by itself cannot solve many problems of
prediction and external validity. Conventional sampling problems concern
the selection of people from a large population. Mental test theory faces
also another type of sampling problem—that of selecting items from one
or more indefinitely large universes of content. This is a basic problem of
item analysis. To this reviewer it appears that there can be no solution
without a structural theory [p. 129].

Tests are parallel if they have common means, variances, and inter-
correlation coefficients. It is not so easy to see, however, that the definition
is unique. It seems to this reviewer that one could find the same test to
belong to more than one set of parallel tests and thus in general to have
more than one “reliability coefficient.”

Consider the following example of a series of “parallel” tests. Let test 1
consist of but a single item: “Write down all the words you can think of
that begin with the letter 2.’ For a given population, and a given time limit,
the score for each person is the number of words he writes down beginning
with 1.

There are at least two different directions in which one could go to
construct tests parallel to this one. One direction is to vary the letter
involved. For example, test 2 could be: “Write down all the words you can
think of that begin with p,”” while test 3 could use instead the letter d, say.
By adjusting the time limits, all three tests can be made to have the same
mean. There seems no absolute barrier to their also having common
variances and correlation coefficients. For our particular population, let us
suppose the three tests are actually parallel, and that their common
correlation coefficient is 0.70. Then, according to the book’s theory, test 1
has reliability coefficient 0.70.

Another direction in which we could have gone to construct tests
parallel to test 1 is to vary the places of the letter, and not the letter itself.
Thus, test 2 could be: “Write down all the words you can think of in
which the second letter is ¢,”” and test 3 could ask for ¢ as the third letter.
Again, for our population, there is no physical bar to the tests turning out
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to be parallel. But this time, let us assume that the mutual intercorrelations
turn out to be equal to 0.60. Then test 1 has reliability 0.60.

Therefore, test 1 has reliabilities 0.70 and 0.60 simultaneously, according
to the theory of parallelism [p. 125].

To go beyond the limited information contained in a simple correlation
between two tests, one would collect data with at least four and preferably
eight or more fluency tests. These tests would be designed to vary syste-
matically with respect to the letter prescribed, the position in the word of the
letter prescribed, and the length of word prescribed. Thus, one could com-
pare, for example, a test asking the subject to list four-letter words beginning
in ¢ with a test that asks for four-letter words beginning in d, then with one
asking for four-letter words whose second letter is ¢, and with one asking
for six-letter words beginning in . With more than four tests the tester could
introduce additional variations. For example, he might then discover that
the “second-letter” tests consistently rank people differently from the
“first-letter” tests. If so, they call upon different mental processes.

As it happens, Gulliksen (1936) had published perhaps the first formal
multifacet analysis of test consistency in a paper that was summarized in the
book Guttman criticized. Two forms of an essay test were administered, and
each paper was scored by two graders. The cross-correlations of the four
resulting scores answer three distinct questions about consistency of measure-
ment having to do with different forms, different scorers, or both. Gulliksen’s
procedures could estimate some but not all of the components of variance
that nowadays are determined by analysis of variance.

There has been a steady flow of concepts from Fisherian analysis of
variance into educational and psychological statistics, but the presentations
encountered by most students emphasize the testing of null hypotheses by
means of the Fratio. This reflects the earlier phase of factorial experimentation,
during which the effects an experiment was designed to assess were regarded
as fixed. An agricultural experimenter testing the effects on yield of three
types of fertilizer, for example, is primarily concerned with those specific
fertilizers. He is not studying fertilizers-in-general. The same is true in many
psychological and educational studies of treatment effects. A study in which
results of the PSSC physics course are compared with those of the course
developed by Harvard Project Physics regards those treatments as fixed;
there is no intention to formulate conclusions about any larger set of physics
curricula.

In the late 1940’s, statisticians came to distinguish among *fixed,”
“random,” and “‘mixed” models for the analysis of variance. Attention to
the components of variance followed. The random and mixed models
recognize that sometimes the conditions used in an experiment are of little
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interest in themselves; rather, they represent a class of conditions. For
example, the plot on which a crop is grown is a sample from a population
of plots over which the experimenter intends to generalize. An experimenter
who establishes that soil variation is significant is ordinarily not interested
in the fields that happen to have been employed in the research. Rather, he
wants to know to what extent yields vary from plot to plot, so that he can
take this into account in his recommendations. The random model assumes
that the experimental conditions are randomly selected from the set of
possible conditions. The original (fixed) model assumes that the study has
obtained data under every one of the conditions that is currently of interest.
The mixed model allows some aspects of the experiment to be fixed and
others to be determined by sampling (e.g., the set of fertilizers fixed, soils
random).

In an especially significant theoretical paper on multifacet designs, Corn-
field and Tukey (1956) embodied all three models in a single formulation.
The paper considers the n values of a facet used in an experiment to be
samples from the N values in the universe of conditions for that facet, where
N can take any value from 7 to co. (For example, in the Guttman example
of fluency tests, the initial letters ¢ and d are presumably sampled from a set
where N = 26.) There is a set of general formulas for estimating the expected
magnitude of the effects (i.e., of the components of variance) for any N
between n and co. But the intermediate possibilities are commonly ignored;
analysis proceeds as if, for any facet, N equals either n or co. Where N = n,
the conditions of the facet are fixed.

In the behavioral sciences, conditions of measurement or observation are
commonly thought of as representative of a large set of conditions. In
observational studies of teachers, the persons doing the observing and the
occasions on which observations are made represent many other equally
admissible observers and occasions. Similarly, where two forms of a test are
used in a study, these two item-sets are considered to be samples from a
universe of item-sets “like these.” While universe and population are logically
interchangeable terms, we shall reserve the word population for subjects, and
apply the word universe to conditions under which the subjects might be
observed.

The classical theory of reliability postulates strictly “parallel” measures
such that test forms have equal means and variances and there is no inter-
action of subject with test form. Variance is considered to arise from “true”
subject differences combined with random variation among observations

“error’’). While this model is reasonable for carefully equated parallel forms
of tests, it is less descriptive of other types of measures. For example, raters
are likely to differ in the central tendency of the values they assign (producing
a main effect for raters) in the spread of their ratings, and in the qualities they
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attend to (these latter producing a subject-rater interaction). Behavioral
observations, such as of talkativeness, for instance, can also be expected to
exhibit both situation (main effect) and interaction variances. Tests often
lack second forms, and investigators turn to internal-consistency analyses.
But half-tests are imperfectly parallel, and item scores do not conform at all
to the classical model.

The theory presented here derives from amendments to the classical theory
that, in the 1950’s, proceeded along these lines:

1. It was formally recognized that conditions of observation are not
necessarily parallel. (See Ebel, 1951, who made a place for inequality of
condition means.)

2. Conditions (particularly test items) were thought of as sampled from a
universe randomly or in accord with a stratified design. (See Lord, 1955a,
1955b; Tryon, 1957.)

3. Two or more facets were analyzed simultaneously.

The papers bearing on the third point are closely enough related to this
monograph to be catalogued.

Applications of analysis of variance in psychology and education stem
directly from the work of Fisher and others at the University of London in
the 1930’s. The senior educational psychologist at London at that time,
Cyril Burt, translated Fisher’s materials for the benefit of his students and
applied them to the reliability problem, but his formulations reached print
only in fragmentary form after World War II. Burt’s 1955 paper was a
comprehensive exposition of the application of analysis of variance to
reliability problems, with particular attention to test forms and occasions as
separable sources of variation. A companion paper by Mahmoud (1955)
treated the same data factor-analytically, demonstrating some links between
the two systems of analysis, such as, for example, the correspondence of
person—form interactions to the specific-factor content of a test form.
Burt dealt only with the completely crossed design where each test form is
given to all subjects on two occasions. Other treatments of the reliability of
tests by means of analysis of variance reflect the influence of Palmer Johnson,
an associate of Jerzy Neyman in the mid-1930’s at London. The list of
associates and students of Johnson who have contributed to the literature on
reliability includes R. W. B. Jackson (who worked with Neyman), Hoyt,
Mitzel, and Medley. Reference should also be made to the continually
developing thoughts of another Burt associate, R. B. Cattell. While the
present monograph does not coincide fully with Cattell’s views, his thinking
has been oriented toward similar analyses for a long time (see Cattell
& Warburton, 1967, p. 36 fI.).

Lindquist’s extensive exposition of multifacet theory (1953) focused on
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reliability coefficients and treated components of variance incidentally.
Lindquist only partially developed the methods of using one study to
estimate the precision of measurements that could be collected with various
alternative designs. However, he did make clear that a multifacet analysis
allows for alternative definitions of error. Hence, several distinct coefficients
can be obtained for any one measuring procedure. He demonstrated that
increasing the number of observations has different effects, according to
which facet the added observations sample.

Very likely the first report on reliability of measurement in terms of the
analysis of variance components was Finlayson’s (1951) study of grades
assigned to essays where the student writes on more than one topic and the
paper is graded by several readers. Pilliner, with whom Finlayson worked,
published (1952) a theoretical exposition of the relations between intraclass
correlations and analysis of variance.

In 1965 Pilliner assembled the thinking of many years into a doctoral
dissertation. This coincides with our paper (Gleser, et al., 1965) not only
in time but in much of its thinking. Most of Pilliner’s illustrative applications
concentrate on one-facet studies of agreement among graders, but some
studies treat pupils as nested within schools. The recognition that the school
mean is at times the variable of interest takes the work into ground that has
rarely been touched upon. (See also Pilliner, Sutherland, & Taylor, 1960,
and a paper on two-facet studies by Maxwell & Pilliner, 1968).

Loveland (1952) carried out a doctoral dissertation under the direction of
E. E. Cureton in which he computed components of variance to estimate the
magnitude of variation from five sources: persons, person-occasion inter-
action, person-form interaction, a form-occasion effect, and a residual.
The model appears to differ at least in minor particulars from those used
subsequently, because of a preoccupation with individual differences charac-
teristic of older test theory.

Another application of multifacet analysis to educational measurement
was that of Medley, Mitzel, and Doi (1956). They carried out a three-way
analysis of classroom observations of teachers to demonstrate the effect of
conditions of observation, stressing the distinction between the mixed and
random models for analysis. Medley and Mitzel (1963) presented the argu-
ment more completely, displaying a four-way analysis. This work is to be
examined further in Chapter 7 (p. 189 ff.).

The intraclass correlation, originally developed by Pearson, was made a
part of the theory of variance analysis by Fisher. Many well established
reliability formulas, including those of Kuder and Richardson, are now
recognized to be intraclass correlations, as are all the coefficients of generaliz-
ability that our procedures generate. Many persons discussed the intraclass
formulas during the 1950’s and 1960’s, and connected them with reliability
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theory. Particularly extensive work on the variants of the intraclass formulas
was done by Buros (1963). The authors’ first publication on generalizability
theory (Cronbach, et al., 1963) emphasized the interpretation of intraclass
correlations. However, the correlations considered came from data organized
with respect to only a single facet: multiple ratings of each person on a single
trait, for example, or a persons X items matrix of scores. An unpublished
paper by Stanley (ca. 1955) emphasized the multifacet conception of the
reliability problem, and showed that with a relatively complex design one
can arrive at a number of intraclass correlations, each having its own meaning.
This same conception was emphasized in the paper of Gleser, et al. (1965)
on which the present monograph is based. With regard to univariate studies
our chief additions to Stanley’s formulation are the concept of the universe of
generalization and the distinction between G and D studies; these con-
siderably enrich interpretations.

In his 1954 Psychometric Methods, Guilford applied analysis of variance
to ratings, discussing the effects for subjects, raters, traits, and their inter-
actions. However, he did not extract variance components, nor did he relate
the analysis to the reliability problem as conventionally stated. Stanley (1961)
returned to the problem, and indicated the desirability of estimating and
interpreting the several variance components. However, Stanley formulated
the problem in terms of various types of covariances (e.g., the mean co-
variance between pairs of raters rating the same trait). The covariances can
be estimated directly from the mean squares of the analysis of variance, and
can be interpreted as composites of the variance components. The covariance
formulation, while mathematically equivalent to the analysis of variance
components, is probably less satisfactory. This is because the covariance
formulation is less directly tied to conventional statistical procedures, and
because it omits some information obtainable from the variance components.
Stanley derived a number of recommendations for improving the design of
the rating procedure, similar to those stemming from a generalizability
analysis.

Where the literature reviewed above touches on internal consistency of
tests, it usually regards items as randomly sampled. Tests are often con-
structed according to complex specifications regarding the distribution of
content and perhaps of difficulty. This suggests (see Lord, 1955; and Tryon,
1957) that tests should be regarded as having items sampled within strata,
which calls for a relatively complex analysis. We have explored such pos-
sibilities, particularly in a 1960 technical report, published with some
revisions in 1965 (Rajaratnam, et al., 1965; see also Cronbach, Schénemann,
& McKie, 1965). Independently, Pilliner discussed similar applications of
analysis of variance in his 1965 dissertation.
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Guttman (1958) suggested the possibility of analyzing data from a three-
way matrix of scores factor-analytically, in order to arrive at factors repre-
senting each of the (fixed) main effects and each of the interactions. This is
directly pertinent to his conception of abilities as organized according to
facets, and might be applied to the hypotheses implicit in the Guilford
“structure of intellect.”” Unfortunately, no systematic procedure was offered
and the method was neglected. Only very recently have studies of this
character been carried out (Boruch & Wolins, 1970; and Merrifield, 1970).
This kind of controlled factor analysis can carry much of the information
that appears in the estimates of variance components, and adds information
about the magnitude of the effect associated with each particular condition
of the facet.

The three-mode factor analysis of Tucker (1964, 1966) (see also Snyder,
1968) approaches the problem somewhat differently. The aim is to describe
the complex of variables in terms of a small number of factors. Whereas
Guttman would investigate how much of the score variance is accounted for
by the hypotheses represented in the facet structure, Tucker attends to
common factors that may not have been hypothesized. Generalizability
theory, like Guttman’s analysis, examines the power of the gross facet
structure to account for variance, whereas Tucker’s method tends to suggest
new structures. As LaForge (1965) pointed out, a factor analysis of corre-
lations between conditions will serve purposes a generalizability study
cannot.

Reliability theory and generalizability theory have hitherto looked at
the accuracy of one score at a time. That is, they have been univariate in
conception. Even for examining profiles of scores, the only special procedure
invoked was the calculation of various difference scores, for each of which a
univariate reliability study was made. In 1966 we stumbled into the realization
that all the data in a profile may help one to estimate the universe score on
any one of the variables. Travers, in an unpublished paper, developed for us
the multivariate extension of the mathematics for one-facet generalizability
studies. This has evolved into the theory discussed in Chapters 9 and 10.

There seem to have been almost no predecessors of multivariate error
theory. The one general paper that has come to our attention is the proposal
by Bock (1966) to evaluate the multivariate reliability of a battery by ob-
taining a coefficient for each canonical variate found in scores from parallel
batteries. It can be seen now that work on “‘profile similarity’” of the early
1950’s (Cronbach & Gleser, 1953) needed only an additional twist to unlock
the door to these psychometric riches, but the opportunity was missed.
Nearly all of the current developments are implicit in Lord’s first paper
(1956) on the measurement of change, where multivariate methods much
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like ours are applied. Even though Lord’s work stimulated many papers by
leading psychometricians on the narrow problem of “change,” the broader
usefulness of the model escaped attention.

The possibilities of the multivariate model have recently been given
significant publicity in a presentation by Novick (1971), who discusses it as
part of a general defense of Bayesian methods in test analysis. The more
technical reports that are to come will, we trust, be compatible with and so
augment and clarify our theory.

B. Formulation

The theory to be presented employs several interrelated concepts. While
each of these will be elaborated in turn, a brief initial statement setting out
all the main concepts should give a helpful perspective.

A measuring procedure is used as a basis for decisions or conclusions, and
the accuracy of measurement must in principle be examined separately for
each application of the procedure. At least four kinds of interpretation may
be made:

1. Absolute decision. Where an individual is to be classified in some way,
performance standards may be set which determine how he will be treated.
For example, a test is given an applicant for a driver’s license, with the
predetermined rule that a score of 859 is considered adequate for licensing.
In making the decision, this person is considered by himself; we shall call
this an ““absolute’” decision, in contrast to comparative decisions (item 3
below). Another kind of absolute decision is that made in evaluation, where
the performance of a group must reach a predetermined standard if the
treatment is to be judged satisfactory. For example, an author of a pro-
grammed textbook determines how many errors students make after studying
a lesson, proposing to revise all lessons where the percentage of errors
exceeds some specified figure.

Instead of stating the standard in terms of the test performance itself, the
decision maker may state what criterion performance is desired. Thus it
may be decided that any student whose expected grade average is below C
will not be admitted to a certain curriculum. Since the expected grade
average is inferred from some pretest, any error of measurement on that
test will affect the decision.

2. Comparison between two courses of action for an individual. Here, as
in the first type of decision, each individual is considered separately. This
type of decision is especially common in guidance, where the person chooses
one curriculum rather than another on the basis of a difference between his
scores on the abilities pertinent to each. The decision maker asks whether the
difference between two measures, or the difference between two expected
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outcomes, reaches a predetermined standard. (If there is a quota limiting
the number of persons who can enter any curriculum, comparison of type 3
is also involved.)

3. Comparison between persons. An interpretation is made of a difference
between scores of persons or groups. Examples: a selection test is used to
choose among applicants; a dependent variable is used to compare groups
in an experiment.

4. Conclusion about the relation between pairs of variables. For example,
the relation between ability to solve Hidden Figures problems and ability
to attain concepts is investigated.

The score on which the decision is to be based is only one of many scores
that might serve the same purpose. The decision maker is almost never
interested in the response given to the particular stimulus objects or questions,
to the particular tester, at the particular moment of testing. Some, at least,
of these conditions of measurement could be altered without making the
score any less acceptable to the decision maker. That is to say, there is a
universe of observations, any of which would have yielded a usable basis
for the decision. The ideal datum on which to base the decision would be
something like the person’s mean score over all acceptable observations,
which we shall call his ““universe score.”” The investigator uses the observed
score or some function of it as if it were the universe score. That is, he
generalizes from sample to universe. The question of “‘reliability’ thus resolves
into a question of accuracy of generalization, or generalizability.

The universe of interest to the decision maker is defined when he tells us
what observations would be equally acceptable for his purpose (i.e., would
“give him the same information). He must describe the acceptable set of
observations in terms of the allowable conditions of measurement. This gives
an operational definition of the class of procedures to be considered. The
investigator may, for example, say that he would accept the score on any
form of the Jones mental test, administered at any time during the Spring
of the high-school student’s senior year. In this way he defines the universe
in terms of two facets: test form and occasion. The investigator may fix the
condition of a certain facet; e.g., he may specify that only Form A of the
Jones test is acceptable. He invariably leaves out of the description certain
aspects of the conditions of observation. The investigator in our example
appears to be willing to accept the result from any tester, obtained in any
room, etc. The facets that are mentioned in his specifications will be explicitly
represented in the experimental design when scores for decision making are
collected.

Knowing that observed score and universe score are not identical, the
decision maker will want to take the discrepancy into account. One way to



16 The Multifacet Concept of Observational Procedures

do this is to accompany each report by an expression of uncertainty, in the
way that a physical scientist reports a value as 0.065 + 0.003. Another
possibility is to “correct” the observed score in some manner so that it
better approximates the universe score; this corrected value also will have
an uncertainty.

A confidence interval—a band within which it is reasonable to suppose
that the true measurement falls—is often reported when an absolute decision
is contemplated. Suppose that a standard of 88 has been set, so that persons
known to have universe scores above 88 are to be treated in one way and
those below are to be treated in another way. If it can be said that a certain
person’s universe score very likely falls in the interval 91-97, the decision
about him will be made with great confidence. If the interval for another
person is 85-90, the decision about him cannot be made with any confidence
until further evidence is collected. Another frequent use of such intervals is
to examine whether a difference between two scores can confidently be
regarded as greater than zero. Suppose one wishes to advise a student that
his interest in scientific activities is greater than his interest in mechanical
activities. The two scores are presumed to be expressed on comparable
scales, and bands are established for the two scores. If the upper end of the
mechanical score-band does not reach as high as the lower end of the scientific
score-band, the statement that his scientific interest is greater would very
likely be confirmed by further testing. If the bands overlap, however, one
has to entertain the possibility that the universe-score difference is in the
reverse direction from the observed-score difference. When the person is a
member of some group (e.g., a high-school class) whose score distribution is
known, another option becomes available. One can estimate the person’s
universe score by a regression equation that describes the relation between
universe scores and observed scores in the reference group.

We distinguish decision (D) studies from generalizability (G) studies. A
G study collects data from which estimates can be made of the components
of variance for measurements made by a certain procedure; a D study
collects data for the purpose of making decisions or drawing conclusions.
For example, the published estimates of reliability for a college aptitude test
are based on a G study. College personnel officers employ these estimates to
judge the accuracy of data they collect on their own applicants (D study).
The G data may be analyzed to determine the generalizability of D data that
will be collected under other designs. Sometimes, of course, the same data
serve for both G and D studies.

In a G study, one obtains two or more scores for the person by observing
him under different conditions, and examines the consistency of the scores.
The analysis estimates components of variance, each attributable to one
facet or combination of facets represented in the experimental design. These
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estimates may show, for example, that one set of test stimuli (within the
universe) elicits about the same behavior as the next, but that variation in
behavior from occasion to occasion is substantial. In the light of this, one
proposes a suitable design for collecting D data and estimates how well
one can generalize from the scores that will be obtained.

Where individual differences are the primary concern, the variance of
universe scores for the population being studied, and also the variance of
observed scores likely to be obtained in the D study will be of special interest.
One can estimate the universe-score variance from the components of variance
and can also estimate the “‘expected” observed-score variance (i.e., the
variance likely to be obtained under a certain experimental plan).

The plan for collecting data is often evaluated by estimating the coefficient
of generalizability, the counterpart of the traditional “reliability coefficient.”
This is defined as the ratio of universe-score variance to the expected observed-
score variance. It expresses, on a 0-to-1 scale, how well the observation is
likely to locate individuals, relative to other members of the population.

The size of the coefficient depends on the experimental design used for
the decision study, as well as on the population of persons considered. The
coefficient is employed in interpreting the correlation of this variable with
other variables. It is also calculated as an intermediate step in obtaining the
formula for making a point estimate of the universe score.

G and D studies

Our separation of G and D studies formalizes and extends an idea implied
in the Spearman-Brown ‘“‘prophecy” formula. When one 20-item test has
been correlated with another, the prophecy formula estimates the reliability
of a 40-item test. The study with the 20-item tests was a G study, an investi-
gation of the instrument; the prophecy is made because a 40-item test might
be used in collecting subsequent data for decision making (D study). The
idea is also present in the customary correction of a reliability coefficient to
fit a new range of ability. The scores in the G study have a certain standard
deviation, but one can forecast the reliability in a D study where the sample
has a different standard deviation.

Rajaratnam (1960) introduced the distinction between G and D studies to
clarify analyses of ratings. Often, in a G study, a certain set of raters is
asked to judge all subjects. An intraclass correlation among raters is calcu-
lated that ignores differences in rater means (p. 79 ff.). This coefficient is
pertinent if whatever raters are used in the D study will rate all the subjects.
But if the raters in a subsequent D study differ from subject to subject, one
needs to know the intraclass correlation that treats rater leniency or severity
as a source of error (p. 77). This correlation can be estimated from the
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original G data. In general, the plan and purpose of the D study determine
the questions to be asked of the G data.

The distinction between G and D studies is no more than a recognition
that certain studies are carried out during the development of a measuring
procedure, and then the procedure is put to use in other studies. When an
investigator factor analyzes questionnaire items in order to decide how to
organize them into dimensions and how many items of each kind to use, he
is making a preliminary study analogous to our G study. An even closer
parallel is the research on optimal design of a battery for predictive purposes
(Horst, 1949, among others). The data for the design study are collected by
means of a trial version of the battery. On the basis of intercorrelations,
correlations with criteria, and reliability coefficients in these data, a new
battery is designed that is used to collect D data.

Generalizability studies ought to be regarded as a part of instrument
development, and therefore G studies should take place prior to collection
of the D data. To be sure, one will occasionally use the actual D data for an
analysis of generalizability. But since it is then too late to take advantage
of the information to improve the D data, this is a weak use of the method.

Distinguishing between G and D studies is especially valuable in multifacet
investigations, because separation of facets makes possible a great variety
of experimental designs. Different designs may be and usually should be used
for the G and D studies. Even if the investigator who conducts the original
G study knows that he will adopt that same design in his D study, another
investigator may choose an alternative design for collecting similar obser-
vations. Information from the G study should therefore be reported in such a
form that each new investigator can plan his D study and estimate the error
of generalization arising under that plan.

Universes

A behavioral measurement is a sample from the collection of measurements
that might have been made, and interest attaches to the obtained score only
because it is representative of the whole collection or universe. If the decision
maker could, he would measure the person exhaustively and take the average
over all the measurements.

Educators and psychologists have traditionally referred to the average
reached via exhaustive measurement as ‘“‘the true score’ for the person. We
speak instead of a universe score. This emphasizes that the investigator is
making an inference from a sample of observed data, and also that there is
more than one universe to which he might generalize. Any person fits within
many different populations. John Doe may be considered a sample from
any of several sets: residents of California, electricians, persons with a
$15,000 income, Republicans, etc. Any observation likewise fits within a
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variety of universes. “The universe score is estimated to be 75" is without
meaning until we answer the question, “Which universe?” This ambiguity
is concealed in the statement “The estimated true score is 75,” for no one
thinks to inquire, “Which truth ?"’2

An observation is described in terms of conditions: the task or stimulus
presented, the day and hour, the setting in which the observation is made,
the observer, and possibly additional features of the operations performed.
The general term referring to conditions of a certain kind is facet. Thus,
observations may be classified with respect to the facet of tasks presented,
the facet of days of testing, the facet of observers, etc.

The facets, alone or in combination, define universes. A child is asked to
draw a cowboy on Friday, May 12. This drawing belongs to a universe of
cowboy drawings made on various days, to a universe of drawings on various
themes that might have been made on May 12, to a universe of cowboy
drawings that might have been solicited by various testers, etc. To ask which
universe is relevant is to ask how the investigator proposes to interpret the
measure.

A universe of observations will be characterized with respect to one, two,
or more facets. Almost everywhere we shall assume that joining one condition
of the first facet with a condition of every other facet defines a possible
observation. For example, in a drawing task the facets may be themes for
drawing and testers. Any tester might ask the child to draw a picture on
any of the admissible themes, hence, any pairing of theme and tester defines
an observation that may, in principle, be made. If occasions constitute a
third facet, the argument is extended: any combination of theme, tester, and
occasion defines a possible observation.

The universe to which an observation is generalized depends on the
practical or theoretical concern of the decision maker. Consider a supervisor’s
rating of an employee. This rating differs from what would be recorded on
another occasion, since the supervisor’s mood at the time of rating and his
recent experience with the employee have some transient effect. The investi-
gator concerned with employee effectiveness surely wants to generalize over
the class of ratings the supervisor might have given at other moments. The
investigator will generalize over a time period of perhaps a month if the

2 Another difficulty with the term frue score is that the statistical concept of a limiting
value approached through extensive observation is readily confused with some underlying
in-the-eye-of-God reality. Sutcliffe (1965) referred to the way things “really are’ as a
“Platonic’’ concept of the true score. The Platonic measure of the mean income of Americans,
for example, might be determined by some all-seeing and impartial accountant. It would
be quite unlike the operationally defined mean produced by compiling the incomes reported
to the Internal Revenue Service. Any bias in the class of measuring procedures adds a
corresponding bias to the universe score, which is in that sense “‘untrue.”’
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rating is taken as an end-of-year report of the employee’s qualities. Any of
the moments within that month would presumably have been a suitable time
- for the inquiry. In another study, where the rating is a datum for an intensive
study of week-to-week changes in supervisor attitudes during a human-
relations course, the investigator will generalize over only a single day. If
the rating is a criterion against which he will validate an ability test, he needs
to generalize over supervisors as well as occasions. But if the sole concern is
whether the employee is getting along with this supervisor, the universe of
possible supervisors is irrelevant. Since it is impossible for the developer of a
procedure to anticipate all its uses, his G study can at best report data for
prospective users to assemble in the light of their own decisions and designs.

At times it is necessary for us to distinguish among universes that perform
different functions. The test developer or other investigator who carries out
a G study takes certain facets into consideration and, with respect to each
facet, considers a certain range of conditions. The observations encompassed
by the possible combinations of conditions that the G study represents is
called the universe of admissible observations. We may also speak of the
universe of admissible conditions of a certain facet. A decision maker,
applying essentially the same measuring technique, proposes to generalize
to some universe of conditions all of which he sees as eliciting samples of
the same information. We refer to that as the universe of generalization.
The G study can serve this decision maker only if its universe of admissible
conditions is identical to or includes the proposed universe of generalization.
Different decision makers may propose different universes of generalization.
A G study that defines the universe of admissible observations broadly,
encompassing all the likely universes of generalization, will be useful to
various decision makers.

The universe of admissible observations and the universe of generalization
may be identical; then the decision maker may simply think of “the universe”
in taking the G study into account. Some decision makers, however, will
generalize less broadly, taking as universe of generalization a subset of the
universe on which the G study was based. The decision maker may propose
to generalize over only one facet, for example, where the G study took
several facets into account. In such a case, a careful selection among formulas
is required to make proper use of the G study.

The third possibility is that the decision maker will propose to generalize
beyond the universe of admissible observations. His universe of generalization
includes conditions not present in the universe from which the G study
samples conditions. The G study then does not give him the information he
needs, though it may give him some rough ideas as to the accuracy of his
proposed generalization. We shall rule this case out of consideration.

The universe of generalization is necessarily determined by the decision
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maker. The instrument developer, carrying out a G study to guide users of
his instrument, will, in the design of that study, treat systematically the
facets that are likely to enter into generalizations of various users. Sometimes
he will examine a facet over which a particular user does not care to gener-
alize. The extra information does no harm, so long as the user properly
interprets the report of the G study.

A G study treats a facet in one of three ways:

1. The facet is systematically represented by sampling two or more
conditions of the facet; or

2. A single constant condition of the facet is employed in all G-study
observations; or

3. Conditions of the facet vary in the G study without direct experimental
control.

In a study of ratings, the investigator might treat occasions and supervisors
as facets of the first kind, collecting ratings from two or more supervisors on
two or more occasions. The investigator might regard his pencil-paper rating
form as fixed, that is, as a condition of the second kind. He would collect
all G data with this form; then he gets no information as to what would
happen if the wording of the items, their content, or format were changed.
Such a G study will not serve someone who needs to generalize over contents
or formats. Inevitably, a great number of potential facetsremainuncontrolled,
falling into the third category. For the study of ratings it is inconceivable
that the investigator would control (for example) the number of minutes since
the supervisor has interacted with the worker. Decision makers presumably
intend to generalize over uncontrolled facets; such facets ordinarily contrib-
ute to the undifferentiated residual variance in the G study. The investigator
designs the G study in terms of facets of types 1 and 2 (i.e., those to be
controlled through multiple representation and through single representation,
respectively). He does not attempt the impossible task of listing the many
uncontrolled facets, though he and his readers must be aware of their
existence. A future, more elaborate G study may profitably turn its attention
to one of these presently unanalyzed sources of variance.

With regard to any facet of the first type, admissible conditions must be
defined. For example, what category of supervisors is the sample to represent ?
It is one thing to investigate the agreement among supervisors who have just
been handed the form for the first time, and quite another to investigate the
agreement among supervisors specially trained by the investigator. The
category may sometimes be limited to the conditions actually used in the G
study, but it will ordinarily include a much larger number of conditions.

Ideally, the investigator carrying out a G study would formally define the
universe of admissible conditions corresponding to each facet of the first type,
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would sample in a strictly random or stratified-random fashion, and would
combine at random conditions drawn from the several facets. That is, he
would pair a random rater with a random occasion, etc. Practice never
conforms to this idealized model. Even if the investigator were formally
to specify some collection of raters and sample from it for his G study, one
can be sure that the raters in subsequent D studies will not be a truly random
sample from the same collection. In this as in any use of models, practice
departs from the ideal and results are indicative rather than definitive. The
investigator should describe how conditions were selected for his G study,
considering each facet that is systematically varied. The class of conditions
should be described with sufficient clarity that a reader of his report will
know whether the conditions (e.g., raters) are like those he plans to employ
in the D study. Similarly, any fixed condition in the G study must be clearly
described. If the D study brings in essentially different conditions of any
facet, the G-study results convey no more than a hint about the variation to
be expected from that facet in the D study.

It is not reasonable to regard the time limit set for a test as sampled from
an array of time limits. The definition of the universe has to include the time
limit as a fixed condition, for two reasons. The first is that tests similar in all
respects save working time collect different amounts of information, and
hence do not have the same degree of generalizability. Second, altering the
time limit is likely to alter what the procedure measures, so it is unwise to
consider procedures with different time limits as acceptable for the same
purpose; that is, as members of the same universe.

While we mention occasions as a facet worthy of investigation, sampling-
from-an-aggregation is a dubious model for occasions, because occasions
occur in a time sequence. In the traditional investigation of “retest re-
liability” the psychometric model ignores the time interval between the two
testings. Interpreters, however, regard the correlation obtained as an index
of stability over a specified time interval, rather than as an index of accuracy
of measurement alone. It is reasonable to think of occasions as randomly
sampled from a certain time span, whenever we regard the behavior observed
as being in a “‘steady state”” for the subjects (i.e., as not undergoing systematic
change due to learning, fatigue, etc.).

A model that takes the sequence of conditions into account can surely be
developed. Instead of generating an overall index of agreement between the
observed value and the expected value over all conditions, one would
describe degree of agreement between observations as a function of their
separation in time. Within the present model we have no alternative but to
treat occasions as an unordered facet, and to speak of generalization from
the observed score to the mean of possible scores during a reasonable period
of time—perhaps, during the same month.
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A so-called facet may involve two or more entangled effects. Indeed, the
facet on which observations are classified is usually impure. Ratings are
usually classified with respect to the persons who do the rating; but the
ratings reflect the information available to each rater as well as rater bias,
etc. Because, in principle, data might be classified with respect to both the
situation where behavior is observed and the observer, whenever the situation
is not controlled the two effects are confounded in the “observer’ facet.

Estimating a universe score

The heart of traditional measurement theory is the so-called reliability
coefficient, the ratio of ‘“‘true score’ variance to observed-score variance.
This concept is altered in the theory we are about to present. First, because
with several possible universes of generalization, there are correspondingly
many variance ratios. Second, because each alternative for the D-study design
generates a different variance of observed scores, and this alters the ratio.
(This has been ignored in reliability theory because of a tacit assumption
that the design of the D study will be essentially like that of the G study, or,
indeed, that the D data are themselves the data of the G study.)

Our theory tends to subordinate coefficients in reporting a G study. The
end point of measurement is a decision. The decision about a person is in
principle based on his estimated universe score or his estimated criterion
score. The primary question is: how may his score best be estimated? The
secondary question is: how large is the error arising from incomplete obser-
vation?

Coefficients of generalizability bear directly on the original problem for
which Spearman invented reliability theory. Where a study is intended to
determine the correlation between two variables, it is valuable to find out
how much the observed correlation is reduced (attenuated) by errors of
measurement. Coefficients of generalizability can be employed in estimating
correlations of universe scores, much as in classical theory, but our theory
offers a more direct way of dealing with this question, and poses the question
in a more complex form than has been traditional.

There are several ways of arriving at an individual score for decision
making. The first is simply to use the raw score as an estimate of the person’s
average score over all observations in the universe of generalization. Most
testers do this, though this may not be their conscious intention. Interpreting
the raw score, one reaches a decision about the individual without considering
scores of other persons. Such reasoning is commonplace in physical measure-
ment, where the observed weight of a chemical sample, for example, is
taken as the best estimate of its true weight. The statistician considers the
experiment to be one of a population of possible experiments when reason-
ing about the dependability of the conclusion from it. But information
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about other specimens is not used in estimating the weight of this specimen.

Sometimes an observed score is expressed in terms of percentiles or
standard scores or grade equivalents, and this value is taken as an estimate
of a norm-referenced universe score. Data on other cases define the scale but
are not used to adjust an individual’s score. This is a procedure unique to
behavioral science, and one that has serious faults (see Chapter 5).

When the decision is based on the person’s rank within the sample tested
or on his deviation from the mean, further use is made of reference-group
data. Ranking is at the base of many quota-controlled decisions such as
hiring, though it is rarely discussed explicitly in test theory. Test theory has
traditionally focussed on individual differences, and in our formulation it is
the statements about deviation scores that come closest to matching the
conventional theorems.

The regression equation for estimating the universe score from the in-
dividual’s observed score makes still more substantial use of information
from other cases. While the regression technique is recognized in classical
theory, it has not been very prominent. Perhaps this is because the regressed
scores of individuals are perfectly correlated with observed score, so long as
the same regression equation applies to the whole sample. Regression
estimates do alter comparative decisions when the persons in the sample can
be identified with subpopulations, since regressing each person toward the
mean of his own group does alter ranks. Decisions based on an absolute
standard also are changed when regression estimates replace observed
scores. Multiple-regression methods alter the estimates still further.

We shall confine attention to linear estimating equations. Complex kinds
of estimation such as Lord is currently investigating (see Lord, 1969; Ross
& Lumsden, 1968) may ultimately be of practical value, but they cannot be
accommodated within the present techniques of generalizability analysis.

For each of the kinds of universe-score estimate, there is a corresponding
error. The following distinctions will be necessary:

1. Decision based directly on the observed score: error A. The observed
score is taken as an estimate of a universe score for the person, the universe
score being expressed on the same numerical scale as the observed seores.
(Thus, if the observed score is a standard score on a scale with a mean of
50 and a standard deviation of 10, the universe scores will also be expressed
on that scale. The universe scores will, however, have a standard deviation
smaller than 10.) The symbol A will be used to identify the error in such an
interpretation; that is, A is the discrepancy between observed score and
universe score.

2. Decision based on the observed deviation from the sample mean: error
4. Interpretations that are entirely concerned with individual differences,
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implicitly or explicitly, rest on deviation scores. The observed deviation score
is, in effect, treated as an estimate of the deviation of the person’s universe
score from the group mean. Again, the universe score and the error are
expressed on the scale of the observed score, except that a translation has
made the mean of the score distribution under any condition equal to zero.
The error ¢ is the discrepancy between the observed deviation score and the
universe score expressed in deviation form. (For a formal statement, see
p- 93.)

3. Decision based on a regression estimate: error ¢. A third approach is
to use a linear regression equation that combines information about the
individual with information about the group mean. The equation may take
other variables into account along with the observed score. This kind of
estimation is only a specialized application of the ordinary technique for
forecasting criterion scores. Consequently, the error ¢ is an error of estimate,
in the usual statistical terminology.

In this volume, the scale of observed scores is used for universe scores and
for A, 6, and e. Distinguishing the three kinds of estimation and their
associated errors is an important step beyond classical theory.? Classical
theory, being concerned primarily with individual differences, assuming
uniform means for all conditions, and in most developments assuming that a
single undifferentiated population is under consideration, does not need this
distinction. Observed scores and the corresponding deviation scores differ
only by a constant, and hence are perfectly correlated. Moreover, within an
intact population, the regression estimate of the universe score described in
classical theory is perfectly correlated with the observed score. With our
greater interest in absolute scores, our weaker assumptions, our recognition
of alternative universes of generalization, and our interest in regression
estimates of universe scores that make use of multiple predictors and sub-
group means, we find no such consistency from one method of estimation to
another. In the typical study, the three errors have different variances;
methods for estimating these variances will be discussed in Chapter 3.

Score components and components of variance

The analysis of a G study generates estimated ‘“components of variance.”
These are variances of hypothesized components of an observed score. We

3 Gulliksen (1950, pp- 39-45) and Lord and Novick (1968, p. 66) distinguish several kinds
of error. The “error of measurement’’ arising when the observed score is substituted for
the true score is our A. The “error in estimating true score’’ from a regression equation is
our &, The “error of prediction’’ is the difference between the observed score on one of two
parallel forms and the estimate of that score made from the score obtained on the other
form; this does not enter our discussion. Gulliksen mentions a fourth error that we can
also ignore: the simple difference between observed scores on the two parallel tests.
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start with the model for a one-facet study.* The universe of admissible
observations is classified with respect to a facet /. We will also use 7/ as a
general label for various conditions of that facet (i = 4,B,C, .. .). In the
one-facet model the number of conditions of i in the universe of admissible
observations is ordinarily taken to be indefinitely large, and we assume that
the universe of generalization is identical to the universe of admissible
observations. For every person p a score X ; (= X,4,X,p,...) can in
principle be observed for each condition of facet i. At times attention is
directed to a particular condition or person by a notation such as /* or p*.
(See p. 113ff.)

The investigator wishes to generalize over all conditions of facet i; he
would like to know g, the universe score of p. u, =& X,;. We also

)

define the mean y, for each i and a general mean u over persons and con-
ditions. pu; =& X ;and u = & X,
? D.i

For the observation corresponding to a particular p and i, we have the
identity:

(1.1) X=up (general mean)
Fu,—p (person effect)
+u,—p (condition effect)

+ Xy =y — i+ (residual)

This equation divides the observed score into components representing
hypothesized effects. Mathematically, it is no more than a tautology.

The observed value X, will be larger or smaller than the sum of the first
three components because of uncontrolled variation. Suppose rater i happens
to see the subject at a time when he is performing unusually well; in that
event, the residual will be positive. The residual will also include any syste-
matic effect of p and i in combination (an interaction). Perhaps, for example,
rater i* is more favorable than other raters to introverts, In this case, if
p* is an introvert, X .;, — u will be greater than the sum of the two main
effects: the rater’s constant error over all subjects exhibited in u;, — u, and
the person’s general rating u,. — u. If some raters spread out their ratings

4 All notation is summarized on p. xv following the Table of Contents. The reader’s
attention is directed to a mathematically strict development for the one-facet case offered
by Hunter (1968). The model for this case is also treated by Lord and Novick (1968,
pp. 154-165).
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more than other raters (“use more of the scale”), this also contributes to
the residual term.

In principle, the number of possible observations on p under any single
condition i is indefinitely large; within this set of observations, conditions of
any facet other than / vary in an uncontrolled manner. Hence, we can define a
mean pu,; over these varying conditions of other facets, and can resolve the
residual into (u,; — 4, — u; + u) + e,;. (There will almost never be a
direct correspondence of e with the error A, 4§, or ¢.)

Each score component has a distribution. Considering all the conditions i
in the universe, there is a distribution of u; — u, whose mean is zero. The
variance of these values o%(i) [= &(u; — u)?] is called the “variance com-

i

ponent for i” or the “i component of variance.” Over persons, there is a
variance of u, — u, symbolized by o%(p). Over pi combinations there is a
variance of X ; — u, — u; + p [i.e., of (up; — p, — u; + u) + e,,]. This
is the residual component of variance, o%(pi,e), which combines o%(u,;, —
Ky — i + @) with o?(ey)).

The collection of X, for all persons and conditions has a variance o%(X ;) =
é’ (X,; — m)% The variance here is defined over all admissible observations,

and is analogous to the “total” sum of squares in analysis of variance. This
variance equals the sum of the variance components:

(1.2) o¥(X,;) = o%(p) (person component)
+ o2(i) (condition component)

+ o%(pi,e) (residual component)

There is no variance component for u, because u is constant for the popu-
lation and universe. The covariance terms [e.g., é” (W, — W(u; — pu) =

& (u, — p é" (u; — w)] vanish because expressions such as é” (u, — p) reduce
»

to zero. It w1ll later become clear that o%(X),) is dlﬁ”erent from what is
traditionally called ‘““the observed-score variance.”

The component ¢%(p) resembles the “‘true-score variance” of classical
theory. The component o%(i) is the variance of constant errors associated
with various conditions—for example, the varying difficulty of test forms
or the varying leniency of raters. The residual variation ¢2(pi,e), which equals
o*(uy; — pup, — u; + u) + o%(e), combines the person—condition interaction
with variation from unidentified sources. The two parts could be sepa-
rated only by a two-facet study with more than one observation on each

p,i pair.



28 The Multifacet Concept of Observational Procedures

If conditions are classified with respect to two facets i and j» seven com-
ponents of the score and seven variance components are identified:

1.3) Xpis = X (X i) =
persons  p +p,— + o%(p)
conditions i +u,—pu + 62(i)
conditions  j +u;i—nu + o%(j)
interactions
pi t by sy — it + o*(pi)
P t s — by — st p + *(p))
ij + iy — g — M+ p + o*(¥))
residual  pij.e F Xopis = Mpi = Hp; — Mg + o*(pij.e)

tuyt st ps—p

This model takes the number of conditions of i/ and j in the universe of
admissible conditions to be indefinitely large. Formulas for estimating
components of variance are considered in Chapter 2. The pattern of (1.3)
generalizes to 15 definable components for a three-facet study, to 31 for a
four-facet study, etc.

More often than not, a number of separate observations X, are averaged
(or added) to form a score. A test score, though it is a single observation
representative of a universe of tests, is also a composite of observations on a
set of items. At times / will refer to a test, and at times to a half-test or an
item. Which point of view is taken in any given analysis will be clear from
context. We shall use a capital letter I (as in X,;) where it is necessary to
speak of a set of conditions i. The score X, is the average of some number
of values of X,. The score X,; divides into components just as X, does;
the meanings of u; — u, o(up), etc., will be obvious. So long as the i are

1
randomly assembled into sets of size n;, u; = — > u;, etc. Over sets of
1 N; ger
randomly assembled /, o2(u;) = — o?(u,). Similarly for other components.
n;
Note that i is simply a special case of I in which n; = 1. For a second facet,

J will be used to denote a set of j; for a third facet, we use symbols K and k.
A group of persons is denoted by P; thus, a sample mean of X, is Xp,.

In the G study, a set of observations is made on each person. Several tests
may be given; alternatively, parts of a test, or items, may be treated as
separate observations. The finest subdivision of a facet that yields a separate
score in the G study will be assigned the letter i (or j, etc.). Variance com-
ponents are estimated for elements of that size, e.g., 0%(i), *(pi). These
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components of variance can be divided by the appropriate number of obser-
vations whenever the variances of components of a score X,; are needed.

The one-facet model considers the universe of generalization to be the
set of X, for the person under all admissible conditions. The universe mean
to which the decision maker generalizes is u,. A two-facet model allows the
decision maker a choice between three types of universe of generalization.
There is the grand universe that includes the full range of both 7 and j, and
is the same as the universe of admissible observations. There are two types
of restricted universe, one in which an I is fixed and one in which a J is
fixed. There are corresponding universe scores ,, i,r, and 4, ;. A universe
with I fixed at, say, I* is a subset of the grand universe. In it, j ranges over
all its possible values, each j being paired with each of the conditions i € I*
in turn.

This implies that the label 4, in the one-facet study and the corresponding
concept of true score in classical theory are deceptively simple, since stating
that generalization is over i does not indicate whether other aspects of the
procedure such as j are held constant or are allowed to vary along with i.
No matter how many facets are taken into account in the experimental design
of the G study, there are additional potential facets to be considered in
interpretation (see p. 122).

The conception of alternative universes of generalization is closely related
to the test theory developed by Lord and Novick (1968, Chapter 8) for
“imperfectly parallel” measurements. They consider the possibility that
there are a number of distinguishable tests, and that each test may be ad-
ministered more than once. One might then generalize over performances on
the same form at different times or generalize over both forms and occasions.
The expected value of the person’s observed score over trials on a particular
form is called a “specific true score”” by Lord and Novick (1968, p. 43);
it is comparable to our u,,.. The expected value over forms and occasions,
our u,, they call a “generic true score.”” Lord and Novick do not distinguish
our third possibility: the scores hypothetically obtainable by administering
all the forms at essentially the same time. For this universe, the universe
score is u,;—a true score corresponding to the person’s temporary—general
state rather than to a lasting trait. Our model goes beyond Lord and Novick
also in considering the possibility of additional facets (e.g., testers).

EXERCISES

The exercises offered for Chapter 1 are similar to those of the usual textbook,allowing
the reader to test his understanding of basic concepts. For some of these exercises,
however, more than one answer can be defended. In later chapters the exercises often



30 The Multifacet Concept of Observational Procedures

serve to extend the text, presenting problematic cases for which the body of the
chapter does not provide a model solution. The reader will often be well advised to
think briefly about the challenge an exercise poses and then to turn at once to our
suggested answer, instead of trying to attack the problem independently from the
outset. In an exercise with several parts, he should compare his answer to ours as each
part is completed.

E.1. An “in-basket” test is devised to assess the judgment of an administrator (a
factory manager, a school principal, etc.). In the test, a file of correspondence,
memos, etc. is placed before the man and he is allowed two hours to work through
the pile and indicate appropriate actions. There are various scores—for example, the
number of items on which action is taken, and the number of items delegated to a
subordinate.

Use this problem to illustrate, from the viewpoint of the person developing the
procedure, the following concepts or distinctions:

a. G study vs D study
b. universe; facet; condition of a facet
c. the pi component of the score (for a facet mentioned in b)

E.2. What facets should be investigated systematically in a G study of each of the
following measures?

a. A trait of impulsiveness is postulated. To measure it in nine-year-old children,
items are prepared in which a main drawing is followed by six possible choices.
All but one are exactly like the main drawing, and the subject is to find the variant.
When a subject marks a choice identical to the main drawing, the response is
regarded as an indication of impulsiveness.

b. Itis supposed that children’s interests can be described in terms of emphasis on
*““people” or “things.” As a test procedure, the child is shown a brief movie
covering six incidents in the park. He is then asked two or three questions: “Tell
me what you saw.” ““If we make another movie like this what would you like us to
show?” etc. The response is recorded on tape and later scored for number of
references to people and to things.

c. Speech samples are recorded during therapeutic interviews. The investigator
proposes to have experts rate each sample on *‘affectivity”’—free expression of
feelings. He wants to examine changes from month to month during the course of
therapy.

d. A test of proficiency in proofreading asks the job applicant to circle every error
in spelling, printing, etc. on a page, doing as much as he can in three minutes.

E.3. The following exercise asks for careful application of terminology. For each of
the lettered phrases a to /, apply one or more of the following labels. There is room
for uncertainty in making some of the responses.

A. Would not be termed a facet, or a condition of a facet.
B. Can be termed a facet, or a condition of a facet.
C. Likely to be fixed, in the universe of generalization.
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D. Likely to be seen as representing a facet over which one wishes to generalize.
E. A facet which in the universe of generalization has a different condition(s) for
different persons.

A high-school orchestra is to be formed in a suburban community where a
reasonable pool of young people have had previous instrumental training and can go
directly into ensemble work. To choose among candidates, the music director holds
tryouts. Each pupil comes at a scheduled time, and has half an hour for warm-up
and study. He may bring his own instrument or may borrow a school-owned
instrument. When he enters the tryout room, after his warm-up, he plays two
selections (or excerpts) of his own choice, each five minutes long. He is also to play a
piece for which the sheet music was handed him at the start of the warm-up period,
to test ability to read unfamiliar music.

a. The conductor (teacher) of the orchestra (who rates each candidate).

b. Music teacher Smith, who sits in on many of the tryouts and helps judge
candidates.

¢. The instrument used by the candidate who has chosen to bring his own
instrument. '

d. The instrument used by the candidate who borrows a school instrument.

. The number of years the candidate has been playing the instrument.

. The sex of the candidate.

- The piece of music chosen by the candidate as a tryout piece.

- The piece of music the candidate is asked to play after short study.

. The room in which the tryout is held.

J- The duration of the tryout piece. (Set at five minutes in the procedure described
above.)

k. The composer or period of the music the candidate chooses to play (e.g.,
baroque).

I. The number of candidates applying for the percussion section.

come T0Q O

E.4. Classify the following according to whether the decision is absolute, or requires
comparison of persons. (If you think ‘it depends,” on what does it depend ?)
a. A state licensing examination for lawyers.
b. As part of a medical checkup, vision is tested.
¢. Anexperimenter wants to know whether learning in statistics is improved when
students have access to a computer.
d. An experimenter wants to know how faint a sound signal sonarmen are
likely to detect, late in a two-hour shift.
e. A counselor wants to know whether a student likes outdoor work better than
indoor work.

E.S. List reasons one might have for carrying out a G study separate from a D
study, instead of determining generalizability from the decision data.

E.6. “Three types of facets” in a G study are discussed on page 2. Illustrate the
three types with reference to the following study.
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To test proficiency of pilots in making instrument landings, the pilot is asked to
land the plane with the cockpit hooded. The plane is equipped with recording
instruments from whose records the quality of the performance can be judged. To
get data on generalizability, each pilot is tested on several days.

E.7. Write the full algebraic expression for each of the following components of the
observed score X, in a three-facet study.
a. person  b. pj c. pjk

Answers

A.l. a. In the G study some group of subjects would be tested with two or more
separate in-baskets. Analysis will indicate how many separate baskets, and how
many decisions regarding each basket, are needed to reach adequately precise
scores. This information will be the basis for designing the procedure to be used
on a large scale to investigate characteristics of principals trained in different
ways. The latter inquiry is a D study.

b. There is a universe of possible memos, letters, etc., that could be included in
the in-basket for the person playing the role of principal of Central High School.
There is also a universe of schools, any of which might be considered. One may
wish to generalize over schools, items of material within schools, and occasions of
testing. Each of these three is a facet. Central High is a condition of the school
facet. The letter asking that funds for the Red Cross be solicited is a condition of
the facet items-of-material.

c. Principals who are generally similar but who differ in attitudes toward co-
operation in community affairs will act differently on the Red Cross request; this
is a pi effect.

A.2. a. Drawings, occasions of testing, possibly tester, etc. (Here and elsewhere
where illustrations are called for, other answers might be added, or one might
argue that an answer we suggest is relatively unimportant.)

b. Incidents portrayed, interviewers, scorers, occasions of viewing (trials), and
probably probe questions.

c. Raters, occasions during a limited interval (one week ?), topics of conversation.
(The interviewer is likely to be fixed within the person. It will be noted that topics
cannot ordinarily be assigned and that the topics that enter the conversation are
very likely not a random sample of the person’s concerns.)

d. Pages of text, sampled from diverse kinds of material; occasions or trials.

A3. a. B, C. It seems that one wants to know whether the candidate suits this
teacher’s requirements, since this teacher is a part of the criterion situation.
b. B, D. Smith is only one of many teachers who might equally well help in
choosing candidates.
c. B, C, E. The instrument will presumably also be used by him when the
orchestra is formed, and so is part of the criterion task. If he does better on this
than he would on instruments generally, this is not a source of ‘“‘error” in the
selection process. It is unlikely that he will do worse with a familiar instrument.
(Admittedly, it is unfair to give the pupil who owns and has become familiar with
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a good instrument a better chance for the orchestral experience than others; but
that is how such orchestras are usually managed.)

d. B, D. Presumably this child will borrow or rent an instrument from a universe
of instruments, if he enters the orchestra.

e. A. Subject characteristics are not called ““‘facets” in our theory.

f. A

g. B, D, E. The candidate has his own repertoire on which he has practiced, and
the observers look on what he does as a sample of what he can do with pieces on
which he has had plenty of practice.

h. B, D.

i. B, D. (While the tryout room may be the hall the orchestra will use for re-
hearsal and concert, there is surely no intent to build a one-room orchestra.)

j- Two points of view might be taken.

B, D appears to be the best answer. One certainly is interested in ability to play
pieces of any duration, and one looks on the five-minute excerpt as a sample of
what other excerpts would show. One could define a universe of selections that
vary in length, but restrict the sample to five-minute selections. This is not the
strictly random sampling called for by our model.

On the other hand, one might answer B, C, since the rules of this procedure
define a universe of five-minute elements.

k. B, D. The judge surely wants to evaluate ability to play a fairly wide repertoire,
and if time were not limited would perhaps call for several musical styles.
L A.

A4, a. Absolute, assuming that there is a predetermined passing level.
b. Absolute.
c. Comparative; scores in one group will be compared with those in another.
d. Absolute.
e. Absolute decision based on a difference score. Presumably scores are not
expressed in terms of norms.

A.5. A G study carried out in advance can make the D study more efficient.

A single elaborate G study can give information pertinent to a variety of D studies
for different purposes, calling for different designs.

A G study must employ two or more conditions of each facet; this may be imprac-
tical to do with a large sample of persons, yet the D study may require a large sample.
A publisher has responsibility for providing G-study information to guide persons
who may later carry out D studies. Data for decisions may come in only gradually
over a long period of time.

A.6. The variable, controlled facets may be: Days. Approaches within a day.
Fixed: Plane. Recording instruments. (Likely to be constant because of cost of
duplicating.) Airfield.

Variable, uncontrolled : Winds. Pilot’s physiological state, etc.

AT, a. p, —pu
b py; — sy — 4+ p
C. Bpjk — Mpj — Bpx — Mjx + tp + 4 + e — 4



CHAPTER 2

Experimental
Designs and
Estimates of
Variance
Components

A. Varieties of Experimental Design

With multiple facets, a great variety of experimental designs are possible.
Each design, applied in the G study, calls for formulas to estimate variance
components. These estimation formulas are the main topic of this chapter.
There is also a choice to be made among experimental designs for the D
study, and that choice determines how the information on components is
assembled to evaluate generalizability. This last is the topic of Chapter 3.

Terminology and notation

We refer to “facets” and “conditions’” where the literature on experimental
design speaks of “factors” and “levels.”” If two aspects of a measuring
procedure vary systematically in a study, we speak of a two-facet study,
though persons constitute a third basis for classification of data. Similarly,
we speak of a conventional two-way matrix of several ratings for several
persons as a ‘“‘one-facet” study, raters being a “facet” of the observing
procedure. (While our scheme of counting departs from statistical con-
vention, referring to persons as a facet would lead us into extremely awkward
locutions.)

The number of persons entering into a G study is denoted by n,. We
consider only designs in which each person is observed under the same
number of conditions, and also restrict ourselves to designs in which there
are n; observations per person or, with two or three facets, n;n; or n,n;n,, etc.
Every such G study produces, in effect, a box-like array of observations; the
dimensions of the box are n,, n;, n,, . . ..

34
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The terms crossed and nested are commonly used by statisticians to
describe designs. If the design provides for observing every subject under
every condition i, we say that p is crossed with i. Following Millman and
Glass (1967), we denote this by i x p. Similarly, i X j X p is a crossing
that produces a score for every subject p under every pairing of conditions .
An example is the study in which n, raters observe the same pupils simultane-
ously on n; occasions.

Raters might visit the classroom, not simultaneously, but at different times.
Then occasions are said to be nested within the rater; for each rater i there
is a different set of n; occasions. For j nested within #, we write j: . The crossing
relation is commutative: / X j = j X i. Butj:iis not the same as i:;. Nesting
is not commutative.

These symbols may be combined in various ways. There might be nesting
such that a rater observes all pupils during each of his #; occasions of obser-
vation, with occasions differing from rater to rater. The study is described
as (j:i) x p: pupils crossed with raters i and with occasions j, occasions
nested within raters.

In learning this system, schematic diagrams are helpful. Figure 2.1 shows
layouts for two one-facet designs. Each cell represents a different p,i combi-
nation. In the crossed design, every person is observed under every condition.
In the nested design, there is a different set of conditions for each person.

The reader can sketch for himself the design p: i, which may be encountered
(for instance) if there are several raters, each giving information on one
subgroup of subjects. We shall give no more than incidental attention to
designs in which subjects are nested. In measurement of individuals, and in
generalizability studies, designs rarely have subjects nested. In this mono-
graph persons appear as nested within schools in some illustrative studies
where the measurement problem is to estimate the mean for the school or to
estimate a population mean. However, in this context the “subject” of the
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FIGURE 2.1. Schematic Representation of One-Facet Designs.
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FIGURE 2.2. Schematic Representation of Some Two-Facet Designs.

inquiry is the school or the population, not the person. It may be sometimes
necessary to nest subjects in the G study. Fleiss (1970) points out that
under some circumstances it is impossible to have a subject interviewed
twice, where one wishes to appraise the extent to which the interviewer is a
source of variance. For this purpose Fleiss designs a G study where persons
are nested within interviewers, though this design does not permit one to
disentangle person from person-interviewer effects. Excellent use of a
persons-nested design is seen in an elegant but intricate study by Coffman
and Kurfman (1968). Assigning essays to graders in a counterbalanced
design, they were able to show large effects that implied shifts in the graders’
standards over time.

A few of the possible two-facet designs are illustrated in Figure 2.2. The
crossed i X j X p design (diagram a) has an egg-crate structure. In the
second design (diagram b), (j:i) X p, p is observed under each i and under
each j, but each j is paired with only one i. The third sketch (diagram c)
shows (i:j) X p. The reader can sketch i X (j:p) for himself. The final sketch
(diagram d) is for (j x p):i. For each i, there is a j X p design, but different
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p and j are associated with each i. An example would be a study in which
teachers are rated by a team of judges, but a different set of judges (and
teachers) is used in each school i.

One further symbol will be helpful. Sometimes each rater observes on
one and only one occasion, different for every rater. This is nesting (j:7)
with n; = 1. We employ the special symbol i, j for complete confounding of
this type. We shall speak of the 7, j pattern as having ““/ joint with j.”

Possible two-facet designs

In this section we present a great deal of information on two-facet designs,
recognizing that there is too much detail to be readily comprehended. The
compilation will serve primarily for reference. The patterns exhibited here
have counterparts for designs with three or more facets, which the reader
can trace for himself once he understands the approach.

Figures 2.3 and 2.4 present Venn diagrams of one- and two-facet designs.
These diagrams make it possible to determine which components are con-
founded in nested designs. There is one circle for persons (solid line) and

one for each facet (broken or dotted line). In diagram (a) of Figure 2.3, the
— \\

(b) i:p
FIGURE 2.3. Schematic Representation of Components of Variance for One-
Facet Designs.
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Design S Structure within
number tructure the person Pattern of components
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FIGURE 2.4. Schematic Representation of Components of Variance for Two-
Facet Designs.
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crossed design, there are three areas, corresponding to the components of
variance for p, i, and residual (pi,e) given by the two-way analysis of variance.
In diagram (b), the nested design, the i circle is within the p circle. The pi,e
area is not separated off; the linking of i,pi,e represents the fact that the 7
component is confounded with pi,e. The reader is warned not to think of
circle size as representing the number of observations of each kind. In the
nested design, the number of different i will be greater, not smaller, than the
number of p.

When this scheme is extended to two facets, there are circles for p, 7, and
j and there are seven components of variance to be accounted for, as shown
in Figure 2.4.! (With three or more facets, it is sometimes possible to make
similar diagrams, but many higher order designs cannot be represented in a
plane figure.)

The first line of Figure 2.4 refers to part (a) of Figure 2.2. In thisi X j X p
design, seven components of variance can be separately estimated; we
therefore call it Design VII. The analysis of variance generates mean squares
for “main effects’” p, i, j, plus mean squares for interactions pi, pj, and i,
plus a residual mean square; for each mean square there is a component of
variance. An example would be a study in which a checklist of n; symptoms
of tension is filled out by a set of n; raters, each of whom examines all n,
subjects. Illustrative G studies of this type will be presented in Chapter 6.

We shall need the within-person variance to estimate the magnitude of
errors X,;; — p#,. The within-person design is a slice of the grand design
made up of observations on a single person. As shown in Figure 2.2, the
within-person pattern in Design VII is i x j. These patterns are listed in
Figure 2.4 for all designs.

Further information on Design VII appears in Table 2.1. The design
samples each score component the indicated number of times. To see how
these values are derived, consider a study with two persons (1, 2), two con-
ditions of i (4,B) and three of j (a,b,c). Then we may express each score in
terms of components according to (1.3):

Xiga=p+ (1 — )+ (g — ) + (o — ) + (g — 1 — g + 1)
+ (o — 1 = po + 1) + (Biga — Pa — o + 1) + €140

1 The list of designs displayed in the figure is not exhaustive. One can develop a number
of complicated designs by organizing conditions or persons into blocks. For example, to
measure the teaching ability of teachers 7, one might organize lessons i into two groups
I, and I,, for instance, and assign pupils j to the ¢/ combinations. This is a design
with j: (I x t), but it gives more information than Design IV-A because it has i nested in 1.
Such designs have apparently not been used in generalizability studies, and they appear
in this monograph only in connection with an analysis of Wechsler scores in Chapter 8.
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TABLE 2.1. Number of Observations of Each Score Component in Various G
Studies Having n;n; Observations per Person

Within- Number of observations®
Design of person
G study design  pp~ g~ i~ Ppi~ B~ Py~ g e~
11 ixjxp ixj n, n; n;  nyn; npn;  mng n,n;n;
V-A () xp ji n, n;  mn; o ongn; npnn; o ngng nyn;n;

V-B ix(jip) ixj n n;  npn;  nyn;  nyn; o Npnn; nynn;

IV-A  j:(G xp) J:i n, n;  nynng ngng npnn;  npnng nyn;n;
IV-B (i xj)ip ixXj nm, ngng nyn; ngng nyn;  nonn; nyn;n;

III-A j:i:p Jii n, ngn; nynn; ngn; npnng; npngn; nyn;n;
II-B® (i, j) xp i,j n, mn;  ngn; ngngng npnn; o ngn; nyn;n;

b _— _— s = =
II @p:p i, ] Ry RNy NGNNG NNN; RGN MGG MR

& Components with similar underscores are estimated as part of a single confounded
variance, corresponding to an area in Figure 2.4.

b Number of observations is fixed at n,n; per person for comparability to other designs; that
is, n;n; values of i are paired with an equal number of j.

To save space and focus attention on the crucial symbols, let us write

e~ for uy — u, py 4~ for 4 — py — p4 + p, etc. Then for the design
under discussion we have

Xiga = p + pa~ + pa~ + pa~ + pra~ + e~ + fge~ + €14,
Xigy = p+ i~ + pa~ + iy~ + pa~ + e~ + pa~ + e
(21) XlAc =u + M1~ + 12 i + :uc~ + My a™ + :ulcN + Bqc™ + elAc
Xosa =+ o~ + pa~ + pa~ + pou™~ + o~ + p4a~ + €240

Xope = p + to~ + pp~ + p~ + pop~ + po;~ + pp,~ + eyp,

Evidently, n, = 2 different values of the person component are sampled,
n; = 2 different values of the i component, and n;, = 3 different values of the j
component. There are n,n, = 4 different pi components (14, 24, 1B, 2B);
likewise there are 6 pj and 6 ij components. Finally, each observation generates
a different residual value, and there are n n;n; of these. These frequencies
are entered in Table 2.1.

The next design to be considered, (j:i) x p, is shown as part (b) in Figure
2.2. The example given earlier will be recalled: each of the n, raters observes
all n,, subjects on n; occasions, but the raters do not make their observations
simultaneously; there is a different set of n; occasions for each rater. Because a
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given j is present in connection with only one of the i, one can never observe
the j main effect independent of the ij interaction. The j and the ij score
components are confounded, and appear together in the analysis as a
“within i”” mean square. Likewise, pj is confounded with pij,e. Because of
this confounding only five components of variance, two of them composites,
can be estimated, and hence we call this a Design V. The Venn diagram
in the last column of Figure 2.4 displays this regrouping of components.

For this design, suppose there are persons 1 and 2, and two conditions
of i (4,B). If n; = 3, under our convention there will be six conditions of
j (a, b, c within 4 and d, e, f within B). Each observed score breaks into
components as before.

Xida=p + o~ + pa~ + pa~ + pha~ + o~ + paa~
+ s~ + €4a
22 Xy = p + i~ + pa~ + py~ + pyg~ + ppy~ + -
Xigo =p + pa~ + pg~ + pe~ + pa~ + e~ + -

Xopr = p + po~ + pip~ + py~ + pap~ + pp~ + -

There are 12 such rows. Just n, = 2 components of the type u,~ have
been sampled, and n; = 2 components of the u;~ type. There are 6 different
Jj components (6 = 2 x 3 = n; X n;). The reader can work out the rationale
for the four remaining entries in the V-A row of Table 2.1.

The reader who writes out the full set of equations above will see that
g~ is present only when u,,~ is also present. Likewise for u,~ and
tqy~, etc. This is confounding of j with ij. Variances for components so
tied together cannot be separately estimated. Confounding is indicated in
Table 2.1 by underscores. Thus, in the row for Design V-A, single under-
scores appear in the j and ij columns, repeating in another code the indication
of confounding that appears in the Venn diagram of Figure 2.4.

The design (i:j) x p is formally like (j:i) X p, and the entries for the
former can be obtained by simply transposing i and j wherever they appear
in the V-A row of Table 2.1.

In Design V-B, with i X (j:p), the within-person design is 7 X j. There
is a symmetric design j x (i:p). Designs V-A, V-B, and their two transposes
are basically similar; the analysis of variance is essentially the same for
each of them.

Figure 2.4 or Table 2.1 can be used to trace relations among designs. For
example, IV-B is like V-B except that in IV-B, i is tied to pi. A study of
these relations shows that V-B gives whatever information about com-
ponents IV-B gives. We may say that Designs IV are weaker than the corre-
sponding Designs V because, other things being equal, a study with Design
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V-A or V-B yields more information about components of variance. Design
II1-A is like Design IV-A and IV-B save for additional confounding.

Designs III-B and II have / joint with j, hence these two facets are com-
pletely confounded. An example is the study where every rater sees the
subject on a different occasion, one occasion per rater. For this to occur, n;
must equal n;, so that in effect we are dealing with just one facet of i,j pairs.

Design III-B can be seen as a one-facet design in which p is crossed with
the variable 7,j. The three-way analysis of variance degenerates to a two-way
analysis. Design II is the weakest of all these designs; the analysis degenerates
to a one-way analysis yielding components for p and “within p.”” There is
no point in listing separately the degenerate design i,j,p which results from
setting n; = n; = 1 in Design II.

A stronger design may be preferred for a G study, as it separates the
components more completely. But a weaker design is often appropriate.
For example, an investigator who is fairly sure a priori that the i interaction
is small may be quite content to leave ij confounded with the residual, if
this makes his G study easier to carry out, or less expensive. When the
purpose of a G study is limited, one of the weaker designs often gives all the
information required. For a D study also, the choice of design is dependent
upon too many considerations for any rule of thumb to apply. Problems of
design are illustrated concretely in Chapters 6 and 7.

Apart from its general significance as one of a set of alternative designs,
Design IV-A has special interest because it embodies the Lord-Novick
conception of “specific” reliability, which is a step away from classical theory
in the direction of a multifacet model. They envision tests i crossed with
persons p in a G study and in the universe, and they envision the possibility
of “replications”” of observations under condition i. These replications
appear formally as the nested j in Design IV-A (see p. 29).

B. Analysis of Design VII under the Random Model

The first G study to be considered is that with Design VII, the completely
crossed design that yields n, X n; X n; elemental scores. The first step in
analysis is to perform the usual analysis of variance (McNemar, 1969,
p. 359 ff.). This produces the familiar table of sums of squares, degrees of
freedom, and mean squares. In our presentation the final row of the table
is labelled ““residual” rather than “error” so that “error” can be given other
meanings later. The example in Table 2.2 comes from a study in which the
facets are scorers and items. A sample of 30 patients took an individual test of
10 items; 3 qualified scorers simultaneously observed the performance, each
recording a set of item scores. Thus, the data form a 30 x 10 x 3 array.
After having obtained the mean squares, the next step is to estimate the
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TABLE 2.2. Analysis of Variance for a Study with 30 Patients Crossed
with 10 Test Items Crossed with 3 Scorers®

Source Sum Degrees
of of of Mean
variance squares freedom square
Patients p 5300.24 29 182.7670
Items / 1168.65 9 129.8494
Scorers j 65.35 2 32.6744
pi 2421.11 261 9.2763
pi 214.38 58 3.6963
if 67.65 18 3.7584
Residual 817.26 522 1.5656

@ Analysis of PICA Subtest III. See Chapter 6 for descriptive information.

seven components of variance. The equations used here assume that the
population of persons and the universes of i and j are all infinite.

Any one study, carried out with random samples of p, 7, and j, yields a
mean square for a certain effect. Another study carried out in exactly the
same way generates another such mean square. The average of mean squares
for this particular effect, over all the possible studies applying the same
design to the same universe and population, is the “expected”” mean square
for that effect. As any one study is considered to be a random sample of the
possible studies, an obtained mean square can be taken as an unbiased
estimate of the expected mean square (EMS).

The expected mean squares can be shown (Cornfield & Tukey, 1956) to
be weighted sums of the components of variance defined in Chapter 1
(pp. 27, 28).

EMS p = o*(pij,e) + n,0%(pj) + n;o*(pi) + n;n,a%(p)
EMS i = o*(pij,e) + n,0%(ij) + n;o%(pi) + nn;0%(i)
EMS j = o®(pij,e) + n,0*(pj) + n,6%(if) + n,n,6%(j)
(2.3) EMS pi = o*(pij,e) + n;o*(pi)
EMS pj = o*(pij,e) + n,0%(pj)
EMS ij = o*(pij,e) + n,6%(ij)
EMS res = o?(pij,e)
The structure of these equations is related to the Venn diagrams of Figure
2.4. The p circle for Design VII contains four segments that correspond to

the four terms in the equation for EMS p. Similarly, the pi area defined by
the overlap of p and i circles has two segments which correspond to the two



44 Experimental Designs and Estimates of Variance Components

terms in the equation for EMS pi. The EMS equations can be written from
the Venn diagram, using n, as multiplier if a component does not include
p in its label, n; if i does not enter the label, etc.

To solve for the unknown components, the actual mean squares from the
analysis of variance are written into the equations in place of the EMS
which they estimate. The equations are then solved for the components,
starting from the bottom. With the use of the data in Table 2.2, we first

note that the mean 0 square for residual is 1.57 and take this as :;\-?(pij,e) Then
3.76 = 1.57 + 300'2(1]) hence 0'2(1]) =0. 07 Continuing, we find that
o"“(p]) 0.21, 02(p1) = 2.57, 02(]) = 0.09, 62(1) = 1.32, and az(p) = 5.71.

The “hat” symbol () signifies ‘‘estimate of.”” These estimates are the main

results of the G study. Their interpretation and use will be taken up in
subsequent chapters.

We urge the reader to fix in mind the difference between a variance com-
ponent and an ordinary variance. The observed-score variance is the variance,
over persons, of scores X,;;. In Design VII, X, is the average of nn;
values of X ;. The sample variance of observed scores is

1 oIJ XPIJ)
- P

The variance component for persons is the population variance of universe
scores, i.e.,

Lim

np—>o N, —

Z 4y —

where u,, is the average of all admissible values of X,,; (any i, any j).
This type of variance analysis is related to correlational analysis, but we
postpone discussion of the relationship to Chapter 8.

Extension to simpler and more complex crossed designs

The equations given above for the two-facet study have simpler counterparts
for the one-facet crossed study (design i X p):

EMS p = o?(pi,e) + n,0%(p)
24) EMS i = o%(pi,e) + n,o%(i)
EMS pi,e = o(pi,e)
The symmetry in this set of equations and in set (2.3) suggests how the

equations would look for studies with a greater number of facets. Repre-
sentative formulas for the three-facet crossed design are given in Table 2.3.
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TABLE 2.3. Selected Equations® for Expected Mean Squares in a Crossed Three-
Facet Design (i x j x k x p)

EMS p = o?(pijk,e) + n;0%(pjk) + n;o?(pik) + ma%(pij) + nn,c*(pk)
+ nm0®(pj) + njmo®(pi) + nynnyo®(p)
EMS pi = o%(pijk.e) + n;o%(pik) + mo%(pij) + nmo*(pi)
EMS pij = *(pijk.e) + n,0%(pif)
EMS pijk,e = o*(pijk e)

& Other equations may be written by symmetry.

C. Analysis of Partially Nested Designs

A design that involves nesting or joint sampling confounds two or more of
the components. Therefore, the G data do not allow us to estimate these
components separately. Sometimes practical constraints make such a design
necessary even though the crossed design would be more informative. On
the other hand, a design in which there is some confounding may be entirely
satisfactory or even preferable to a crossed design generating the same
number of observations per person. In particular, where certain components
are to be confounded in the D study, it may be better to use a G study where
there is similar confounding, because more precise estimates of the con-
founded components are obtained than would be obtained from the fully
crossed design.

We identify a compound component of variance by entering in its label
all the arguments used in labelling the underlying components. Thus, a
random-model component of variance in which the pi and pij,e effects are
combined is labelled o%(pi,pij,e). In Design III-B, (i,j) x p, Figure 2.4
indicates that the available components are o%(p), o%(i,j,ij), and o*(pi,pj,pij e).

Determining mean squares

Where the analysis of variance is to be made by computer, the investigator
will often be able to locate a specific program for analyzing whatever design
he has employed, and if a ready-made program is not available he can
always prepare one. It is often more convenient, however, to follow an
all-purpose procedure that generates the mean squares for any design where
there are n;n; (or nn,n,, etc.) observations per person. The scores X ,; can
be treated as if the design were completely crossed by arbitrarily assigning
the nested 7 and/or j to rows and columns. Then one carries out the analysis
of variance by the formulas that give sums of squares for Design VII. Any
of our two-facet designs can be rearranged into a data box of size n, X
n; X n;. For example, the (j:i) x p design (part b of Figure 2.2) can be
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TABLE24. Recombination of Sums of Squares and Degrees of Freedom to Recog-
nize Confounding in an i x (j:p) Design®

Analysis of variance as if

crossed® Analysis as actually nested
Degrees Combined Combined
Source of Sum of of Sources as  sums of  degrees of Mean
variance squares freedom confounded  squares freedom  square
P 154.37 28 P 154.37 28 5.51
within p
] 2612 18} i\ P 643.02 522 1.24
i 61630  so4f /P : :
i 0.01° 1 i 0.01 1 0.01
pi 39.89 28 pi 39.89 28 1.42
within pi

ij 1445 18

e 26140 504} ij, pij.e 275.85 522 0.53

a Analysis of data from the study of Belgard and others discussed in Chapter 7. In this
study n, = 29, n; = 2, and n; = 19.

b Rows are ordered to correspond to the combination of effects in the design.

¢ This value is small because data had been put into standard-score form.

rearranged into a 5 X 4 X 3 box, ignoring the fact that the entries in the
slice representing the “first value”” of j actually come from a different j
for each i. The analysis of variance is performed with degrees of freedom
determined from n,, n;, and n,—the dimensions of the box, not the actual
number of different i or j in the study. The mean squares coming out of this
program are discarded; only the sums of squares and degrees of freedom are
retained. These are recombined to obtain the appropriate mean squares.

First the confounded components are identified, perhaps with the aid
of Table 2.1 or Figure 2.4. The sums of squares and degrees of freedom
from the crossed analysis are pooled to derive mean squares for the con-
founded components, as shown in Table 2.4 for an example of Design V-B:
i X (j:p). Here j is confounded with pj, and ij with pij,e.

Estimating random-model variance components

The random-model equations relating expected mean squares to variance
components are different for each design, but they follow a pattern defined
by the following rules:
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1. For each source of variation shown as a separate area in the Venn
diagram for the design (see Figure 2.4), there is an equation; the left side
of the equation is the corresponding EMS.

2. For a particular expected mean square, one lists every component of
variance whose argument contains the letter or letters that identify that
mean square. Thus the equation for EMS p contains any components in
which p appears. In Design VII, EMS p contains the components for p,
Pis pj> and pij,e. In Design IV-A, EMS p contains three components:
p; pi; and j, pj, ij, pij.e. These are the areas appearing within the p circle
of the Venn diagram for each design. For EMS j, pj of Design IV-B the
equation contains the two components in whose labels j or pj appears
(but not the component for p or pi). The Venn diagram can be used to
identify the terms of any equation.

3. Each component is multiplied by n, if i does not appear within the
argument of the component, by n; if j does not appear, etc. Hence in a
two-facet study ¢*(p) is multiplied by n,n, in any equation where it appears;
likewise, the weight for o%(pi) or o*(p,pi) is always n,.

For Design V-B, i X (j:p), the equations are as given below. This set of
equations is written in the order in which components are estimated, which
is the reverse of the order of (2.3) and (2.4).

EMS ij, pij,e = o®(ij,pij.e)
EMS pi = o*(ij.pij,e) + n;o*(pi)
(2.9 EMS j, pj = o*(jj.pij.e) + n,0%(j,pj)
EMS i = o%(ij,pij,e) + n,o%(pi) + n,n;0%(i)
EMS p = o*(jj.pij.e) + nio*(j.pj) + n,0%(pi) + nyn;0*(p)

These equations allow us to estimate components from the data of Table 2.4
by substituting a mean square for cach expected mean square.

One may also identify simple computing algorithms from the Venn
diagram, as in Figure 2.5. For instance, the i circle (diagram e) can be seen
as the sum of the p,i intersection (4 + C)and D. Hence to obtain D, which
equals n,n,0%(i), one need only subtract EMS pi from EMS i. One word of
caution is required. If an estimate of o2 is negative, the simplified algorithm
cannot be used to estimate succeeding components into whose expected mean

square equation that variance enters (see p. 57). Starting with diagram (b)
of Figure 2.5,

MS ij,pij,e = 0.53 = o*(ij,pij,e)



EMS ij,pij,e = A EMS j,pj =A + B

(b) The p,i,j intersection (c) The j circle

EMS pi = A+ C EMSi=A+C+D

(d) The p,i intersection (e) The i circle

\ EMSp=A+B+C+E

(f) The p circle

FIGURE 2.5. Schematic Analysis of i x (j:p) Design to Show Composition of
Expected Mean Squares.

438
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Then,

124 = 0.53 + n0%j,p); and  oi(j,pj) = 0.36.

142 = 0.53 + n,0%pi); and  o¥(pi) = 0.05.

0.01 = 1.42 + n,n,g'g(i); and ;;(i) is taken to be zero.

5.51 = 1.42 + 0.71 + nnc®(p); and  o%(p) = 0.09.
As a further example, consider equations for Design IV-A, j: (i X p).
EMS within pi = o2(j,pj,ij,pij.e)

EMS pi = o*(j.pj.ij.pij.€) + n,0*(pi)

EMS i = o*(j,pj,ij,pij,e) + n,o*(pi) + n,n;6%3i)

EMS p = o*(j.pj.ij.pij.e) + n0*(pi) + nn;0(p)

(2.6)

The estimation of components from G studies with Designs V-B and III-A,
and also from certain three-facet designs, is discussed in Chapter 7.

D. Sampling Errors of Estimates of Variance Components

The estimates of variance components obtained in one G study are not
numerically identical to those from a second G study employing the identical
design. Sampling of persons and conditions causes the estimate in any
study to depart somewhat from the value for the population and universe.
One would like some idea regarding the extent to which an estimate of a
variance component reached in a G study departs from the true value.
Adequate study of this matter will ultimately provide much-needed guidance
to the person designing G studies. The literature reviewed below leads us to
think that the behavioral scientist is on dangerous ground when he employs
estimates of components and coefficients from a G study with the usual
modest values of n; and n;, unless he can confidently make assumptions of
equivalence, homoscedasticity, and normality. In this monograph we have
done what can be done with available techniques and samples of customary
size, but all these G studies are primitive. Far more effort will need to be
given to the collection of G data in the future, and far more subtlety of
design will be needed if that effort is to be deployed economically.
Mathematical statisticians have studied the estimation of variance com-
ponents in various ways. We cannot review that literature adequately, and
any attempt to recapitulate the mathematical reasoning would have little
meaning for the majority of our readers. More work is needed on the mathe-
matical properties of components constrained by weak assumptions and on
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the numerical properties of estimates. From that work, advice for the
behavioral scientist planning and carrying out G studies should emerge.

Monte Carlo studies

One intellectually simple approach is to generate hypothetical data and to
calculate statistics for one sample after another. The accumulation of sample
values locates the parameter of interest with increasing precision and indicates
how the sample statistics distribute themselves around that value. This
Monte Carlo method has been applied to the statistics of reliability and
generalizability, but only in relatively elementary problems (mostly one-
facet).

For example, a person interested in studying the error of estimating the
universe-score variance, i.e., the distribution from sample to sample of
o%(p), might proceed as follows:

1. Assume that an error-free ability measure T is normally distributed with
arbitrary mean zero and variance one.

2. There are an indefinitely large number of items; every item can be
characterized on this same scale by a scale value 6. Specify the distribution
of 6. Usually, this distribution would be made normal or rectangular, and
two parameters would have to be specified to define the distribution.

3. Assume that every response is scored 1 or 0, and that the probability P
that person p will earn a score of 1 on item i is an ogival function of
T, — 0,. Let P approach 0 as this difference becomes large and negative,
approach 1.00 when the difference is large and positive, and equal 0.50
when the difference is 0. This item-characteristic curve has a single param-
eter ¢, which is inversely related to the steepness of the curve. Assume
this to be uniform for all items.

4. Choose values of the parameter ¢ and of the two parameters of the
distribution of 6. Specify that the G study will have the design i:p. Specify
n, and n;. This completes the definition of the problem.

5. Now draw at random one value from the distribution of T. Draw at
random one value from the distribution of 6. Enter the ogival function
with this T, — 6, and read off P. Then, from an aggregation of zeros and
ones mixed in the ratio (1 — P):P, draw one value. Call this the score X .
6. Retaining the same T, draw another 0, and determine another score.
Repeat until there are n, scores for the first person, each on an independ-
ently sampled item.

7. Select a second T,, and generate n; scores for that person as in steps
5 and 6. Repeat until sets of scores have been generated for n, persons.
One has now simulated the collection of data for a single G study. Calculate

A(p).
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8. Repeat steps 5, 6, and 7. This gives a second estimate of o?(p). Continue
until a sufficient number of estimates have been assembled.

9. Summarize the distribution of ;E(p)’ over studies, in terms of a con-
fidence interval for o%(p), a standard deviation of the estimates, or some
other statistic.

10. One may repeat the process, starting with step 3, to learn the effect
of altering any one parameter or any combination of parameters on the
sampling error.

The process is laborious and expensive even in the simple case detailed
above. The labor rises exponentially when two- and three-facet models are
considered. Some economies are possible. For example, in the course of
carrying out the study with one value of n,, it is easy to treat subsets of the
data to obtain results for smaller values of n,. With some elaboration of

technique one can examine sampling errors of c/r;(p), :r;(i,pi,e) and ;;(X ")
at the same time. The basic plan described above can be amended to ac-
commodate any experimental design, to accommodate continuously scored
observations, etc.

This technique is illustrated in studies of the intraclass correlation co-
N

efficient &p*(X,u,) arising under the i x p design, with randomly sampled
items (Cronbach & Azuma, 1962) and with stratified-sampling plans (Cron-
bach, Schonemann, & McKie, 1965). These studies were illuminating, but
they fall far short of answering our present questions about sampling error
for variance components in multifacet designs.

We strongly recommend further Monte Carlo work. In particular, work
is needed on two-facet designs where scores are continuous (or vary over a
wide range of integers). Comparison needs to be made of various G-study
designs all of which involve the same total number of observations n, X
n; X n.

Procedures based on statistical theory

The majority of papers on sampling error of variance components in the
statistical literature assume score components to be normally distributed.
Furthermore, they either assume a very weak design such as i:j:p or they
make strong equivalence assumptions (e.g., that the population variance of
scores under one condition is the same as the variance under any other
condition).

In every analysis of variance the residual sum of squares leads directly to
the estimate of a variance component. Depending on the design of the
study, this component may be identified as o2(pi,e), 0%(i,pi,e),

62(i,j,pi,pj,1]',Pi]"e),
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or something else. For convenience here, we shall omit the designation and
simply speak of sums of squares (SS), degrees of freedom (d.f.), and o?,
recognizing that the point estimate of o2 is given by sum-of-squares/degrees of
freedom. Then under certain assumptions,

.7 Sum of squares = o%3 ;.

If this formula is applicable, and one wishes a 959 confidence interval for
o2, one need only turn to the y? table for the number of degrees of freedom,
look up xess.a.r. and xge7s.ar. and divide these into the sum of squares.
That is,

2.8) P( SS 2 SS

5 << ) = 0.95
%0.975;d. . Xo.025:a.1.

The assumption is made that the score component is normally distributed
and has the same variance for each person (Scheffé, 1959, pp. 226-229).
In a one-facet i:p study, (2.8) would give limits for o%(i,pi,e). This use is
warranted if the within-person variance over all conditions in the universe is
the same for every person. This, however, is untrue if some persons are more
variable, from task to task or occasion to occasion, than others. If the G
study is i X p, (2.8) might be applied to estimate o®(pi,e). Additional as-
sumptions are now required: that all within-condition distributions have the
same variance, and that the correlation between pairs of conditions is uniform
for all pairs. That is, observations must be equivalent in the sense of classical
test theory. Scheffé (1959, p. 345) discusses the effect of violations of as-
sumptions upon the trustworthiness of the confidence interval, and finds
departures from normality to be a source of serious difficulty. His exploration
of the effects of nonequivalence is less complete.

A somewhat more complicated formula of the same general character is
given by Scheffé (1959, p. 231 ff.), followmg a development by Bulmer (1957)

This applies, not to the case where o = MS, but to the case where o® is
given by (MS; — MS;)/n and MS, satisfies the conditions of (2.7). Thus,
in an i:p design, the Bulmer-Scheffé procedure applies to o%(p), because

0%(p) = (MS p — MS res)/n;. The formula would not apply to the p com-
ponent in an i X j X p design, because in that case o®(p) is not proportional
to a difference between two EMS. The reader should consult Scheffé for
details of the argument and formulas. A representative formula has the form

MS, Ms, ( Fl)
2.9 P Sy M B
29) 8v = "1 s, FMS,\"  F,

The product MS,g; gives the upper limit of the confidence interval for the
variance component. The value F; is from the F-table for co, d.f., degrees of
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freedom, while F, is the value for d.f.,, d.f.;. Again Scheffé warns of serious
consequences of nonnormality.

A mathematical development by Welch (1956), reduced to a textbook form
by Graybill (1961, pp. 368-374), applies to any of the estimated components
in the kinds of balanced design our G studies employ. It assumes a normal
distribution for each score component, but appears not to require homo-
scedasticity and equivalence of conditions.

Any of the components may be estimated by a linear composite of observed
mean squares. To describe the basic procedure we may write general expres-
sions in the Welch-Graybill notation. For the moment, then let i symbolize
any source of variance including persons or residual. Any one study generates
several MS i. The equation for expressing the variance to be estimated in
terms of EMS (i.e., of variances of certain scores or marginals) can be
written:

(2.10) ot =gt + g0} + 0= 3g0f

where all but one g may be zero or negative. For simplicity, write

Xy, Ty ooy Ty oo

for the mean squares, and write ny,n,, ... ,n, ... for the corresponding
degrees of freedom. We now define an integer 7, by

)2
@2.11) g = 2 %)
2. (gixilny)
The calculation on the right is carried out and rounded. If #, is less than 10,

one is advised not to proceed, because the interval formed will be undepend-
able.

1)  C=32+ 1)({2 g.w,-[z (ng)z]- > 37"} - 1)

Here z is the normal deviate corresponding to the desired risk (e.g., 1.96
for a 957 confidence interval). The corresponding percentage points of the
%? distribution with n, degrees of freedom are obtained from a table. Then
the confidence interval for o? takes the form

@.13) P("Z# <P« M_) — 095
Xo.975:m0 — C Xo0.025:n0 —

The foregoing methods of establishing confidence intervals are closely
related to the methods for obtaining unbiased estimates of the variance
components. The statistical literature increasingly discusses maximum
likelihood estimators of components (Hartley & Rao, 1967). The procedures
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developed include a method of establishing a confidence region for the set
of variance components. For the most elementary one-way analysis, Wang
(1967) and Klotz, Milton, and Zacks (1969) demonstrate that the unbiased
estimator has a larger sampling error than a maximum likelihood estimator,
and suggest still other estimation procedures that might improve results.

There is one more line of theoretical work to be mentioned: the use of
polykays. Hooke (1956) and Dayhoff (1966) show how one may estimate the
second and higher moments of the distribution of estimates of variance
components. Thus, in principle one can obtain an interval estimate without
relying on normal assumptions. The procedure is laborious and appears to
require extensive data.

A “‘jackknife’® procedure®

Whereas all the approaches of the preceding section attempt to derive a
formula appropriate to a particular theoretical model, the *jackknife”
method makes only the random-sampling assumption. It offers a general
procedure that will apply to virtually any investigation of sampling error
(Mosteller & Tukey, 1968, p. 133 ff.; Miller, 1968). It requires judgment at
various points, and it may give rather crude information where data are not
well-behaved.

A one-facet, mixed-model study. By way of introduction we discuss the
jackknife analysis of a study in which 5 raters rate 10 persons, and raters are
regarded as fixed. Interest attaches to the variance of scores X, in the
population of persons. This study is of course not a G study, because no
generalization over raters is attempted, but the observed score X, is a
universe score, for the five-rater universe. For the sake of analogy to our

second example, c/r;(p) will be written for the variance of X ; in the sample.
The data are arrayed in a matrix with 10 rows and 5 columns. The procedure
is as follows:

1. Label the usual mixed-model estimate of the person component ;E( P)ia>
to indicate use of all data in the 10 x 5 matrix. The calculation of this
component, and all subsequent calculations, should be carried to more
decimal places than would ordinarily be necessary.

2. Eliminate row 1 (person 1) from the data. Now define the symbol [1]
to mean “not 1” (i.e., use of all data but those from 1). Treating the
9 x 5 matrix we have just formed by the analysis of variance produces an

estimate we may call o%(p),;.
3. Repeat for every row in turn.

2 The advice of J. W. Tukey on this section is gratefully acknowledged.
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4. For each row, compute a “pseudovalue’” by an equation of this form:

(2.14) Yx1 = 10 log :7\2(}’)[:;111 — 9log o*(p)yyy

{Variance components sometimes have negative estimates, but one cannot
take the logarithm of a negative number. Where a negative estimate seems
likely with a given set of data, Tukey suggests that in place of the logarithm

some other function of ¢%(p) be used; one possibility, likely to give

reasonable results, is [o2(p)]'/5}.

5. The pseudovalues y,,, . . . , ¥4 are a new type of estimate that can
usually be treated satisfactorily (as if independently sampled from a
distribution of estimates) by the Student ¢ procedure. Compute an s? for
the 10 pseudovalues as if they were a sample of 10 observations. Use the ¢
distribution as a basis for establishing a confidence interval [expressed in
terms of log ¢%(p)] around the mean pseudovalue. Take antilogs to return
to the scale of o2(p).

This slightly rough-and-ready procedure can be understood best by
thinking of a split-half study. We might have divided the original 10 x 5

matrix into two 5 x 5 segments, computed o%(p) for each segment, and
compared the two values to get a rough indication of the adequacy of the
estimate. A correction would be needed to take into account that the estimate
in hand is based on 10, not 5, persons. The jackknife procedure is a version
of this that tends to minimize bias and to use the full power of the data.
The analysis outlined above could be made with n, as small as 3, though
skimpy data can be expected to yield a disappointingly wide confidence
interval.

A one-facet study with random conditions. Matters become a bit more
complicated when sampling of both persons and raters must be considered.
The procedure now takes this form:

1. Compute ;;(p)[an] by the random-model equations.

2. Eliminate row 1 and column 1 and compute ;;(P)[nm from the resulting
9 X 4 matrix.
3. Repeat for each pair of rows and columns, to get other values of

o? (P )[row] [col]* X X i
4. Repeat eliminating row 1 but not eliminating a column, to obtain

6%(p)ryr—1 [which was labelled 02(p)g,; in the earlier analysis]. Continue,
eliminating all rows in turn. Repeat, eliminating columns and not rows,

to get five values of c/r;(p)[_][wu.
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5. Calculate pseudovalues by letting row and col take on the various
possible values in

(2.15)  Yurowcor = 50 log 02(p)any — 45 10g 0*(P)rowy—
— 40 log 0*(P)(—jcor) + 36 108 0*(P)rowiicon)
6. From the 10 x 5 matrix of pseudovalues, estimate components of

variance in the usual manner (random model) to get 6*(Yrows)> 02(Yco1s)> and

c/r;(yres). Then the required variance for log ;'\Z(p) is estimated as if we had a
simple two-way sample in which both the columns and rows were sampled
randomly and independently by

1 1 1
(2-16) - o'2(:'/1'ows) + ; az(ycols) + — az(yres)

P z nyn;
7. From the square root of this variance, the square root of the number
of y, and the ¢ distribution, establish a confidence interval symmetric
around the mean of all the y. This interval will be in terms of log o%(p).
Take antilogs.

A similar procedure applies to other components, and in principle can be
extended to more complex designs.

The computational labor involved in a jackknife analysis becomes very
great as the total number of observations increases, and it is substantially
greater for a two-facet study than a one-facet study. There are various
possibilities for reducing the labor without serious loss of information. The
most practical device is to form random groups of persons and random groups
of conditions. Thus, if a one-facet study had data for 20 persons and 12
conditions, one might randomly assign persons to 5 groups of 4 persons, and
randomly assign conditions to 4 groups of 3 conditions. One would form an
average score for each block of the data. The resulting 5 X 4 matrix of Xp;
would be treated as the matrix of X, was treated above. Since the variance
component for P is one-fourth as large as the component for p, the com-
ponent for I one-third as large as the component for i, etc., simple rescaling
of the calculated confidence interval gives the desired intervals for o%(p),
o%(i), and o%(pi,e).

An extensive exploration of the application of the jackknife procedure to
generalizability studies appears in a recent doctoral dissertation by Collins
(1970). He concludes that the method can indeed be used with increasingly
complex multifacet designs to establish rough confidence intervals for
variance components. This is true provided that score components are
normally distributed, that the number of conditions of each facet is ap-
preciable, and that the error components are relatively small. He recommends
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against use of the technique for the coefficient of generalizability, and
against its use with nonnormal data. He recognizes that the basic jackknife
procedure can be altered in many ways. Hence, with further research it may
be adapted for data that presently generate an interval in disagreement with
the accurate interval determined by Monte Carlo techniques.

Treatment of negative values

Estimates of variance components and composites of components are the
statistics most often reported in generalizability studies. Variances must be
non-negative, but estimates obtained by the procedures given above are not
infrequently negative because of sampling errors (Leone & Nelson, 1966).
Interpretation of negative estimates is a problem, a problem much like the
interpretation of F ratios that are less than 1.00. A plausible solution is to
substitute zero for the negative estimate, and carry this zero forward as the
estimate of the component when it enters any equation higher in the table
of mean squares. This is the method we shall use. When a zero is substituted
for a negative value, the short-cut equations that call for subtracting the
corresponding mean square from a mean square higher in the table should

not be used. The calculation must use the several o? already computed,
including the zero value, to avoid error.

Scheffé (1959) recommends against substituting zero values for negative
values on grounds that have to do primarily with formal statistical inference.
The sampling distribution of estimates so modified is much more complicated
than that for direct estimates. The simple formulas for the sampling variance
of estimates under the normal assumption are no longer valid, and the
modified estimates are biased.

Nelder (1954) notes that a negative result is a warning that the random-
effects model may be invalid. For example, if there is an opportunity for one
set of observations to influence another, this may violate the model. Hill
(1965, 1970) takes a similar position. Hill (and also Tiao & Tan, 1965)
considers the estimation of variance components from a Bayesian point of
view. Hill concludes that a large negative unbiased estimate of a between-
conditions component indicates that an uninformative experiment has been
conducted in which the likelihood function for that variance component is
extremely flat. The study is not to be taken as strong evidence, then, that
the variance component is near zero. Hill would recommend that the investi-
gator suspend judgment about the component, and consider alternative,
weaker models. This work is extended by Novick, Jackson, and Thayer
(1971), who find the Bayesian approach particularly valuable when measure-
ment errors are large. The designs to which Bayesian methods have been
applied are, to this point, quite restricted. The Bayesian estimates are never
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negative, and it may ultimately be possible to employ them in place of the
more conventional estimates derived from equations such as (2.3).

E. Components of Variance Where the Universe is Finite

To this point we have assumed that the G study samples n; conditions of /
from an indefinitely large number of admissible conditions of that facet.
(Similar statements apply to facets j, k, etc.) It is possible, however, for the
number of conditions of a certain facet to be limited, either in the universe
of admissible observations or in the universe of generalization. To discuss
the possibilities, we follow Cornfield and Tukey by introducing the symbol
N. Let N, be the number of conditions of i in the universe of admissible
observations, with n; < N; < c. All observations in the G study are
admissible; when the conditions of i employed exhaust the admissible
conditions, n; = N,.

Cornfield and Tukey offer equations expressing expected mean squares as a
function of components of variance which take N, etc. into account. Earlier
equations like (2.3) are the forms approached by the Cornfield-Tukey
equations as N;, N;, etc. all become large. The limiting case where some N
are indefinitely large and others are equal to the corresponding n is the set
of equations fitting the so-called mixed model for variance components.

We shall not devote attention to the equations for intermediate cases
where for some facet n < N < oo. The Cornfield-Tukey equations then
multiply certain components by (1 —n/N). If n = N these components
vanish; as N becomes large, the multiplier approaches unity. Ordinarily,
when n < N, N is sufficiently large that a multiplier of 1.00 is accurate
enough.

We must go beyond Cornfield and Tukey to take account of the distinction
between the universe of admissible observations and the universe of generali-
zation. When N; is large, the decision maker may propose not to generalize
over all conditions of i. Let N; represent the number of conditions of i
defining the universe of generalization; n’ < N/ < N;. The constraint
N/ < N, is required for the G study to be applicable, and n; < N is required
to make the D study sensible. To simplify matters we shall not consider
intermediate values of N’ nor the case n; < N/ = N; < 0.

With respect to any facet, these possibilities are to be considered:

1. N— oo, N'— o0; n, n’ are unrestricted.
2. N — oo, n’ = N’ takes on any value from 1 upward.
3. N takes on any value greater than 1, and n’ =n = N'= N.

The same conditions of the facet enter the G and D study. (If n = 1, the G
study has a “hidden facet,” which creates problems of interpretation that
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Chapter 5 will discuss.) Case 1 is what we have discussed in previous sections.
Case 3 is like the conventional mixed model. Case 2 arises only in generaliz-
ability theory. Throughout the following technical section, discussion will
be limited to alternative interpretations regarding the universe of j, keeping
N; large but letting N,; and N; vary. The argument can readily be applied to
alternative interpretations of facet 7, and to studies with more than two facets.

Modified notation for components

The usual treatment of variance components writes ¢%(p) for “the person
component” regardless of the value of N; assumed. This, however, is in
general equal to &(u,; — us)? where J is the set of N, conditions that
defines the universe. The tautology

(2.17) Ppg — g = (y — ) + (Upy — pp — pg + @

makes it evident that the o?(p) of the random model is the limiting case as
N; becomes large, and that for each N;, %(p) takes on a different definition.
This can generate considerable confusion for us and we therefore develop a
special notation for the finite universe where the fixed facet is crossed with
all other facets.

For case 3, there is a fixed set of N; conditions of j that appears in the G
and D study. Here?® we shall call this J*. The universe score over all admissible
observations is the expected value over i and j of X,,;, but since we are
limited to j € J*, the universe score is u, .. In place of (1.3), where N; was
taken to be indefinitely large, we write a new expression for the decomposition
of the score. We make the preliminary tautological statement

(218) Xm’j - zJ' + ( pij — Xm’J')
and then decompose these two parts separately. Note that Z( — Xpige)
equals zero. Decomposing the first term we have
(219)  Xpige = fge + fpge — pge 0%(X ,i5.) = *(p|J*)
T Kige = B + o(i|J*)
+ Xpige = tpge — Hige + Bge + o*(pi,é | J*)

The conditional notation for the variance is a way of emphasizing that the
variance applies to scores obtained under the set of conditions J*. The
variance in the right-hand column is the mean square over all p and/or all i
of the component at left. We write ¢é for e, ;. to distinguish it from e,,;.
Components of the second term in (2.18) contain “within J*” information,

3 A more complicated convention is used in Chapter 4. (See p. 114))
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that is, effects associated with the separate j in the set J*. The breakdown is as
follows:

(220) Xy — Xpige = s — B *(Xpi; — Xpige) = *(j|T*)
+ tps — Moo — i + By + o (pji|J*)
+ Bis = Mige — ths + By + o(ij | )
+ Xpij — Mo — Mg — Hpige + o*(pij,e | 7%)

T lpge + Bige + B — By

The score components of (2.19) and (2.20) combined make up the whole of
X,;; and the variance components make up o%(X ;).

Analysis of crossed designs

The G study with Design VII (i X j X p) is analyzed as before to obtain
mean squares and, if desired, the mixed-model equations for expected mean
squares may be employed. These fall into two groups:

EMS p = n,6%(pi,é |J*) + nn;o®(p | J*)
.21 EMS i = n,02(pi,é | J*) + n,n;o%(i | J*)
EMS pi,e = n;0%(pi,é | J*)
For within-J* components there are the further equations:

EMSj = o*(pij,e | J*) + n,0(ij | J*)

+ n,0%(pj | J*) + nyno?(j|J*) [jeJ*]

2.22) EMS pj = o*(pij.e | 7*) + n,o®(pj | %) [jeJ*
EMS ij = oX(pij,e | J*) + n,0%ij | J*) [je*]

EMS res = o*(pij,e | J*) [jeJ*]

Considering (2.21) and (2.22) together, and comparing them with (2.3), we
see as differences the confounding of € with pi, the absence of o2(pij,e) from
the first three expected mean squares, the absence of o%(pj) from EMS p,
and the absence of ¢2(ij) from EMS i. All these changes are a consequence
of the change in definitions of the components to be estimated.

So long as generalization in the D study is over facet / from scores X, ;+
obtained using the fixed conditions J*, there is no need for the within-J*
components, and hence no need to solve equation (2.22). A two-way analysis
of variance of the X+ yields the necessary mean squares. These, substituted

fortheexpected mean squares in (2.4), give ;;(p | 7%), c/r;(i |7*) and ;;(pi,é | T*).
The expected mean squares of (2.21) are n; times those of (2.4).
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Analysis of nested two-facet designs

If J* defines the universe of j but there are indefinitely many p and i, it is
not possible to have j nested within p or i. The design for the G study may
have p crossed with J*, and conditions of i nested in p, j, or pj. These are
Designs V-B, V-A, and IV-A, respectively.

Considering first the V-B design, j X (i:p), one obtains equations (2.23)
for the expected mean squares from a three-way analysis of variance.

EMS p = n,0%(i,pi,é | J*) + nn;o*(p | J*)
EMS i, pi, & = n,6%(i,pi,é | J¥)
(2.23) EMS j = o*(ij,pij.e | J*) + n,0(pj | J*) + nn,o?(j| J*)
EMS pj = o*(ij,pij.e | J*) + nio*(pj | J*)
EMS res = o*(ij,pij,e | J*)

Here, the expected mean for p and for i/ within p contain no components
involving j, pj, ij, or pij. Components for j, pj, and ij, pij,e are estimated
by the last three equations. However, as we noted for Design VII, it is
unnecessary to estimate these components when J* is to be used throughout.
A one-way analysis of variance of X ;;+ provides MS p and MS i within p.
These have to be multiplied by »; to estimate the EMS p and EMS i within
p of (2.23).

In Designs V-A and IV-A, since pi and pij are confounded, the variance
components are best obtained from an appropriately nested three-way

analysis. In both of these cases c/r;(p | J*) is given by

MSp — MSres
n;n;

(2.24)

Estimates of all other variance components with these designs are numerically
identical to those obtained using the random model.

Relationship between variance components obtained
under fixed and random assumptions

It is always possible to obtain estimates of variance components for a
universe with a fixed facet from estimates computed under the random model.
Consider Design VII for the moment. Because the values of mean squares
calculated from a set of data are the same no matter what is assumed about
the universe, the same set of values would be entered on the left-hand sides
of (2.21) and (2.22) as are entered in (2.3). Equating the right-hand terms
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from the two sets of equations we obtain
o*(pij.e | J*) = o*(pij.e)
a*(ij | J*) = o*(ij)
o*(pj | 7*) = o*(pj)
(2.25) o*(j | J*) = o%(j)

o*(pi,é | J*) = o*(pi) + 1 *(pij,e)
n.

J

:2(1' [J¥) = ;2\(1') + n%A?(ij)

J
P P 1 N .
o*(p | J*) = o*(p) + — o*(pj)
J

Estimates of components of variance defined by the random model can be
combined in this way to determine estimates for components defined in
terms of a fixed facet.

These same equations can be used to arrive at the relationship between
the two sets of components in any permissible confounded design. In Design
V-B, for example, i and pi are confounded. Amalgamating the equations for
i and pi,é above, one obtains:

(2.26) :r;(i,pi,é | J*) = a?(i,pi) +4 aAz(ij,pij,e)
n;

Similarly,

(2.27) (i pij.e |J*) = o (ij.pij.€)

In V-A we have i and ij confounded, and

G(pi,pij.e | I*) = o*(pi,pij,e)
(2.28) N .
oi(i,ij | J*) = 0%(i,if)

To give some sense of the effect of the shift in universe definition, we
reanalyze the data of Table 2.2 under the assumption of fixed scorers,
admitting that this is not a particularly likely interpretation.
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In Table 2.2, MS piis 9.28, n; = 3 Then from (2.21) 02(p1 é|J*) = 3.09.
Contmumg, 02(1 |J*) = 1.34 and 0'2(p |J*) = 5.78. These may be compared

with az(pz) = 2.57, 0'2(1) = 1.32, and 02(p) = 5.71. The estimates with J*
fixed are all larger than the same estimates with N, — co. This is generally
the case, as can be inferred from (2.25).

F. The Universe with a Nested Facet

All the discussion to this point has assumed that the universe of admissible
observations follows the i x j x p pattern, so that for every i and j a score
X,.; 1s defined, and each such score is as likely to be drawn as any other.
We shall continue with that model in almost all the rest of our theoretical
discussion, but it is necessary to mention other possibilities.

A universe may have the pattern (j:i) x p. That is, in the universe each j
goes with one particular i and no other. The commonest example is items
nested within tasks (subtests). If i is the digit-span task, there is a universe
of items j from which one can draw. The supply of admissible items—02356,
61728, 74731, . . .— is not “indefinitely large,” but it is large enough that we
need not qualify our statements so as to keep the size limit in mind. One
would make a digit-span test by drawing n; items; for every such item there
is an admissible observation X,,;. We have written j; to indicate that j is
drawn from the universe of conditions of j that is dictated by the particular i.
An item such as 92356 belongs with the digit-span task and no other; it
could not possibly be used in connection with a figure-analogies or vocabulary
subtest. (To be sure, the series of digits could be used in a paired-associates
task, but we need not blur the issue with far-fetched cases.)

Where the universe has the structure (j:i) x p, an observation X, is
inadmissible: an i item cannot be used with the i’ task. This affects our
interpretation of components. The grand mean y is still an expectation over
all i and j, but it logically has to be seen as & (€X,,;). The person com-

p.i g

ponent is é”é”( »ij; — M); We may continue to speak of u, and ¢%(p). The

subtest component is analogous, and is again u,, with variance ¢2(i). Nothing
like the j component now exists, because one cannot define é" i1~ There is a
component for j within i, defined as é”X — U

Obviously, a universe of the type ( ].z) X p cannot be investigated by a
G study in which i x j or i:j. Despite its novel features, this kind of universe
presents no great difficulties in analysis or interpretation, as examples will
later show (see pp. 203 to 225).

The universe pattern i X (j:p) or any other “nested in p” structure is
harder to discuss and is rarely examined. There are conditions relevant to
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observations on one person and not another. To echo the language of Egon
Brunswik, conditions are ecologically tied to the person. When Roger Barker
observes a boy as he passes through the behavior settings that make up his
environment, it makes little sense to regard the data as a sample of what the
boy would do in all possible environments. Sam comes down to breakfast
with his widowed mother. He is an only child. His actions cannot be general-
ized to a universe that includes “breakfast with father and mother and three
siblings,” which is the situation Herb is exposed to next door. Herb’s situation
is not and could not be a part of the universe of admissible observations for
Sam (unless we wander into science fiction). The universe of admissible
observations for Sam differs from that for Herb.

We shall not elaborate on this kind of universe, which is not encountered
in later examples. It is an appropriate problem for future work within
generalizability theory, since naturalistic observation often does sample from
and generalize to an ecological universe. The models developed in this book
make sense for such problems only if one assumes a strong null hypothesis.
Thus, while Sam and Herb have different acquaintances, one might generalize
peer ratings over a universe of all possible peers. But this assumes that the
acquaintances Sam makes are randomly selected, without reference to
Sam’s personality. The factors that in reality cause Sam to make different
acquaintances than Herb does are entangled with the ratings Sam receives.
Brunswik’s protest against designs and models that deny this entanglement
was well taken, and points to a limitation in generalizability (and reliability)
theory.

EXERCISES

E.l. In the manner of p. 40, write out the components of score Xy 4p.
E.2. Prepare a table like Table 2.1 (p. 40) for one-facet studies.

E.3. Prepare a diagram for a design (i x j):p in the manner of Figure 2.2 (p. 36).
Give a concrete illustration of a possible study of this sort. (Hint: Consider an
oral-examination procedure.)

E.4. Write algebraic expressions for the following parameters of scores X,z in
terms of / and j rather than 7 and J.

a purg — pr —pJ +p
b. a2(plJ)

c. o*(up — u)
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ES. A three-facet study has the design (k:j:i) x p. Locate the 15 definable
components of variance within the 7 areas of the Venn diagram below.

E.6. Consider that 60 persons took a 40-item test where each item was scored 1
or 0. The analysis of item scores yielded the following mean squares: for persons,
0.640; for items, 1.920; for residual, 0.120. Calculate estimates of the variance
components. What do these estimates describe?

E.7. A study in which persons, tasks, and observers were crossed generated the
following analysis of variance:

Degrees

Sum of of Mean

squares freedom square
P 369.593 52 7.108
Tasks i 35.970 4 8.992
Observers j 18.920 1 18.920
pi 412.183 208 1.982
YJi 69.302 52 1.333
ij 11.530 4 2.882
Residual 153.180 208 0.737

a. What are the values of n,, n;, and n;?
b. Estimate the variance components assuming N;, N; very large.

E.8. Prepare a figure similar to Figure 2.5 for the j: (i x p) design whose expected
mean square equations are given on p. 49.

E.9. Write equations for estimating the variance component for persons and the
within-persons component, when a one-way analysis of variance of data has been
made of an i:p design.

E.10. Develop equations to estimate variance components for Design IV-B.

E.11. Treat the information presented in Exercise 7 as if it had come from a study
with design (i:j) x p. Estimate components of variance assuming N;, N; very large.
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TABLE 2.E.1. Ratings of Subjects in an i X j X p Design (after Guilford, 1954,p 282)

Traits by rater

A B C D E
Subject

a b ¢ a b ¢ a b ¢ a b ¢ a b ¢
1 5 6 5 5 5 5 3 4 5 5 6 17 3 3 3
2 9 8 17 7 71 1 5 5 5 8 7 17 5 2 5
3 3 4 3 3 5 5 3 3 5 7 6 5 1 6 5
4 7 5 5 3 6 3 1 4 3 3 5 3 3 5 1
S 9 2 9 7 4 7 7 3 17 8 2 7 s 3 17
6 3 4 3 5 4 3 3 6 3 5 4 5 1 2 3
7 7 3 7 7 3 7 5 5 7 5 5 5 5 4 7

E.12. Guilford reports the data in Table 2.E.1. Seven scientists p in a research
organization were rated on five traits j having to do with creative performance. The
three raters / were senior scientists in the same group.

Carry out a three-way analysis of variance,* estimate the variance components
assuming N large, and discuss what their relative size indicates. (It will be illuminat-
ing to compare your interpretation with Guilford’s presentation based on several
two-way analyses.)

E.13. Estimate the variance components for the Guilford data under the as-
sumption that the set of traits J * is fixed and N; is 5. (Make use of the answers to
Exercise 12.)

E.14. Determine variance components for the data below, from an i x j x p
study.

Sum of Degrees Mean

squares of freedom square
P 795.52 9 87.28
Observers i 200.04 2 100.02
Occasions j 108.60 1 108.60
pi 109.34 18 6.13
yJi 406.98 9 45.22
ij 39.24 2 19.62
Residual 111.96 18 6.22

E.15. For trait 4 in Table 2.E.1, apply the jackknife procedure to establish a
confidence interval for o?(pi,e). (Since the computation required is extensive, it is
suggested that the reader set up each stage of the problem, check against our
formulation, and then use our numerical answer for that stage to formulate the next
stage. Only persons with computer facilities should attempt to carry out the many
calculations.)

If a computer is not available, take the sum of squares from the answer page.
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Answers

Al Xopp=u+ (uy —p) + (g — 1) + (up — 1) + (og — g — py + 1)
+ (o — g — uy + 1) + (uygy — iy — sy + 1)
+(X2Ab—l42A—sz—/‘Ab+/‘2+/‘A+Mb—M)

A2,
Number of observations on
Design P i pi.e Compounds
pXxi n, n; nyn; None

ip n, nyn; nyn; 1. within p

A.3. See Figure 2.E.1. Each person has his own examiners and his own set of
questions.

Persons Conditions  Conditions j
? i a b ¢ d
T
A ]
1 B {
¢ i
|
D ]
2 E '
F
i X j)p

FIGURE 2.E.1. Answer to Question E.2.3.

1 1 1
Ad, a. —Z Xy ——Zpu;——3Zu; +p
n;n; n; n;

b 1 2(pi)
om0 Y

1
c. —o%(u; —u)
n;

]

A.5. See Figure 2.E.2.
Pk, pik, pik, pijk, e

k, jk, ik, ijk

FIGURE 2.E.2. Answer to Question E.2.5.
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A.6. a/z\(p) = 0.013; spread of universe scores. As a(p) is about 0.12, universe
scores range over much of the 0-to-1 scale.

o2(i) = 0.030; spread of item means for the population. As o(i) is about 0.18, the
items range from extremely difficult to extremely easy. (Maximum o, 0.50, occurs if
half the items have x; = 0 and half have x; = 1.00.)

o%(pi,e) = 0.120. This is the combined effect of the person’s specific difficulties

with particular items and of *“‘chance” variation in his performance. In any single
item the effect is fairly large.

[Maximum possible variance from all three components is 0.25. 62(X,;;) is 0.163.]
Al. ny,=53,n;,=5n =2
Effect P i J pi 7 i pie
Estimated o2 045 0.05 0.06 0.62 0.12 0.04 0.74
A.8. See Figure 2.E.3.

AS. Gipie) = MS within persons
o2(p) = [(MS p) — MS within persons]/n,
A.10. EMSp = d%(ij,pij,e) + n;0%(j,pj) + n;o%(i,pi) + nn;0%(p)
EMS i, pi = o%(ij,pij,e) + n;a%(i,pi)
EMSj) Pj = az(ij,P{'].,e) + ”ioz(j’[’j)
EMS ij, pij.e = o*(ij,pij.e)

A1l

Sum of Degrees Mean

squares of freedom square Estimated o2
P 369.593 52 7.108 0.58
J 18.920 1 18.920 0.05
i 69.302 52 1.333 (0)
i,ij 47.500 8 5.937 0.09
pi, pij.e 565.363 416 1.359 1.36

These results are a correct application of the algorithm for the nested design. It will
be noted that these results differ substantially from those in Exercise 7, particularly
in the vanishing of the pj component.

An investigator sometimes analyzes a study according to a design other than that
actually employed in sampling conditions; for example, a design that was actually
crossed may be analyzed as if nested, or vice versa. Any such mismatch between the
design and the analysis runs grave risk of error. In the present instance, the in-
vestigator should be able to verify whether n; or n;n; different tasks were used in the
G-study observations on any person. The former implies i X j and the latter
implies i:j.

A.12. Effect P i i pi pj ij pij,e
Sum of
squares 94914  9.048 46.533 98.686 51.467 12.953 56.644
Estimated ¢20.94  0.07 0.09 0.01 0.35 0.29 2.7
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EMS j.pjij.pije = A EMSpi=A +B

(b) The p,ij intersection (c) The p,i intersection

EMSi-A+B+C EMSp=A+B+D

(d) The 1 circle (e) The p circle
FIGURE 2.E.3. Answer to Question E.2.8.—the j:(i x p) design.
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A.13. Effect plI* i|J* pie|J* pjJ*  ijJ* pijeJ*
Estimated 6> 101 0.13 056  0.35 029 277

A.14. Effect P i j pi )7 ij Ppij.e
Estimated 02  7.01 4.02 1.66 0° 13.00 1.34 6.22

A.15. First carry out the anova for the full 7 x 3 data matrix. Then carry out the
same analysis for each of the 3 possible 7 x 2 matrices, eliminating one column at a
time. Then, carry out the analysis for the 7 possible 6 x 3 matrices, eliminating one
row at a time. Finally, carry out the same analysis for each of the 21 possible 6 x 2
matrices. As the exercise calls for information on the residual component only, we
are able to tabulate the results of all the foregoing analyses in Table 2.E.2. As is
usual in the jackknife formulation, the number in parentheses identifies the row or
column deleted from the data. The symbol [—] indicates that there was no deletion.

The second stage of the analysis is to form a 7 x 3 matrix of pseudovalues. The
formula (2.15) is specialized to:
Yxre =211n ;E(ﬁi.e)[m] - 18 ]n/a\z(pj.e)[row,_] - 14 ln/"\z(pj.e)[,_col]
+121In a(zpi.e)[row,coll
This gives the entry for the residual for row and column. For cell 1,1, one has
211n3.42856 — 18 In 3.68888 — 14 In 4.64284 + 12 In 4.79999

or approximately —0.292. Logarithms to any base may be used; natural logarithms

TABLE 2.E.2. Residual Component of Variance in Successive Analyses of Data for Trait A
of Table 2.E.1 with Rows and|or Columns Eliminated

Column eliminated

Row
eliminated 1 2 3 .
1 5.73333 0.53333 4.79999 3.68888
2 5.73333 0.33333 5.53333a 3.86667
3 5.73333 0.53333 4.79999 3.68888
4 6.08332 0.33333 5.55000 3.98888P
5 2.00000 0.53333 2.13333 1.55555
6 5.73333 0.53333 4.79999 3.68888
7. 5.14999 0.53333 4.88332 3.52222
— 5.16666° 0.47618 4.64284 3.428564

a Value from anova with person 2 and judge 3 disregarded.
b Value from anova with person 4 disregarded.

¢ Value from anova with judge 1 disregarded.

4 Value from conventional anova, no data disregarded.

5 Calculated value is —0.045.
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were available to us through a convenient computer program. The entire array of
pseudovalues appears in Table 2.E.3.

TABLE 2.E.3. Pseudovalues Derived from Tables 2.E.I and 2.E.2

Rater
Subject
1 2 3
1 0.34353 5.22319 —0.29206
2 —0.50375 —1.26418 0.56677
3 0.34353 5.22319 —0.29206
4 —0.35280 —1.82428 0.04276
5 3.24863 20.76558 5.51967
6 0.34353 5.22319 —0.29206
7 —0.11192 6.05536 0.74664

Next, an analysis of variance of the pseudovalues is carried out, with these
results:

Degrees Mean Component
Source of freedom square of variance
Row 6 37.083 8.3
Column 2 57.756 6.5
Residual 12 12.213 12.2

The equation for the sampling error variance of the residual component, or
rather of its logarithm, is similar to (2.16):

1~ 1 - 1
s2 = ;; Gz(yrows) + n_, 0'z(ycols) + ﬁ Uz(yres)

= 7(8.29004) + 3(6.50619) + 31(12.21287) = 3.93458
s =1.98
s/n'/? = 1.98/21/2 = 0.43

Because the mean of the entries in Table 2.E.3 is 2.31949, the confidence interval is
established symmetric about that number. But it will be noted that the distribution
of pseudovalues is highly skewed, and this presages difficulty.

For 20 degrees of freedom, the 95%, confidence interval is +2.09 times the stand-
ard error of the mean. We arrive at the interval

2.319 — 0.899 < In o%(res) < 2.319 + 0.899

1.420 < In o®(res) < 3.219
Hence,
4.1 < o®(pj,e) < 25.0
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This ends the jackknife analysis. It remains to note that the actual value computed
from the original matrix is 3.43, which falls outside the confidence interval! All that
can be said is that things like this happen. In the table of raw data it can be seen that
judge b is quite idiosyncratic, notably in his rating of person 5. This necessarily
implies that values of components obtained from a G study with three judges will be
undependable, and the extremely wide confidence interval calculated is under-
standable. The next sample might consist entirely of judges like 1 and 3, or of
judges like 2; or it might consist of two judges like 2 who produce eccentric values
and large residuals, plus one judge like 1 or 3. While there are possible ways of
exploring further when so anomalous a result is reached by the jackknife procedure,
that is scarcely in point with this example.



CHAPTER 3

Inferences from
D-Study Data
Regarding the
Universe Score p,

The preceding chapter presented procedures for deriving estimates of com-
ponents of variance from a G study. We now examine inferences based on
these estimates.

One or more experimental designs are under consideration for the D
study; we can forecast how well the observed scores obtained under each
design will agree with the universe scores of interest. The D study will
generate an observed score for each person p. This is only one of many
scores that could be obtained by applying the same design repeatedly, each
time sampling afresh from the universe of conditions of observation. These
observed scores depart from the universe score.

It is assumed throughout this chapter that the investigator wishes to
generalize over all facets represented in the G study, and that the number of
admissible conditions for each facet is large. Discussion of restricted universes
of generalization and the associated problem of “hidden’’ facets is reserved
for Chapter 4. Also for the sake of directness, we discuss procedures here
without attention to underlying assumptions. The stringent assumptions
underlying both the confidence interval technique and the regression technique
will be given thorough consideration in Chapter 5. In these applications the
classical theory and the established practices in test-score analysis embody
much the same assumptions as the theory of generalizability does. Fifty
years of experience has shown that much can be accomplished with analytic
procedures that employ strong assumptions. Useful though we expect the
procedures developed in this chapter to be, it is important to plant a doubt.
Chapters 5 and 9 will suggest that some well-known techniques such as the
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confidence interval for a universe score rest on shaky foundations. The
hazard in using these techniques is as great in generalizability theory as in
classical theory.

A. One-Facet D Studies

The nested design

To begin with a comprehensive example, we discuss the one-facet i:p design.
The discussion will be superficial, because to discuss rationale and alternatives
would defeat the purpose of this section as an overview. The argument on
each point will be developed much more fully in later parts of this chapter
and in Chapter 5.

Suppose that a G study has estimated two components of variance: for
persons o2(p) and within persons o¢2(i,pi,e). The D study consists of ng
observations on n, persons, different conditions being drawn for each
person. It is assumed that the same population and universe are represented
as in the G study, but there is no necessity that the number of observations
per person be the same.

In accord with statements on p. 28, we define the observed score X,; as
the mean over the n} observations. (Formulas arising under this definition
would be readily modified if the observed score were defined instead as a
sum over the n} observations.) The expected value of X,; over the universe
of conditions is the score u, to which we would like to generalize.

Table 3.1 presents the concepts that conventional reliability analysis would
apply to these data and, in the second column, the corresponding concepts
from generalizability theory. This design presents the simplest possible case.
Conditions are randomly sampled, separately for each person. It follows
that if the measuring procedure is carried out twice on the same indefinitely
large population of subjects, new conditions being sampled each time: the
two population means will be the same, the covariance of the two observed
scores will equal o2(p), and the observed-score variance for the two measure-
ments will be the same in the limit, as more persons and hence more con-
ditions are considered. Thus, even if conditions i and i’ lack equivalence in
the classical sense, scores arising from the nested design conform to classical
assumptions.

Figure 3.1 is a representation, in terms of variance components, of
quantities to be discussed in the next several paragraphs. While this figure
is very simple, more elaborate diagrams of this kind will be quite helpful
with complicated problems. Venn diagram (a) represents all the information
in the model. The p circle also represents the score variance in an i:p design
with n} = 1. If n{ > 1, I may be substituted for i in all labels. Where u, is
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TABLE 3.1. Comparison of Parameters Considered in Conventional Reliability
Theory and Generalizability Theory (i:p Design)

Term employed in Corresponding concept
reliability theory and symbol in
and usual symbol generalizability theory Remarks
True-score variance, Universe-score variance, Directly estimated by
02(X o) *(uy) o2(p) from the G study.
Observed-score Observed-score variance, To be estimated by
variance, 02(X) 2(X,1) combining components
of variance for p and
i, pi, e.
Error variance, 0%(A) = o%(9) for this design Consists of the i, pi, e
o%(E) component of variance.

Reliability coefficient,”  Coefficient of generalizability, Essentially the same as
p(X,X") = p%(X,Xy) theratio of universe-score and the Horst (1949) ver-
observed-score variances. sion of the intraclass
Denoted by p2. correlation. In the
population, equals
squared correlation of
observed and universe

scores.
Confidence interval Confidence interval for Determined from
for true score universe score a(A) = o(9).
Regression estimate Regression estimate of Essentially no change.
of true score, equal to  universe score. Like that
X.. + p(X,X)(X,; — X..) at left using
P(Xpr1,p)
as coefficient
Error of estimate, Error of estimate, Essentially no
squared squared, o%(¢) change.

& In conventional theory, X and X" are “parallel” observations.

the universe score, diagram a may be divided, as shown in diagram b, into
true and error components.
The universe-score variance, as Table 3.1 indicates, is directly estimated

by the o*(p) obtained in the G study. The observed score can be regarded as a
sum of score components. In the abbreviated code introduced on p. 40, the
observed score X, equals u, + (uy~ + pi,;~ + e,;). Because of random
sampling, the expression in parentheses is independent of the universe score,

hence the observed-score variance equals o2(p) + o2(I,pl,e).
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(a) Total variance of Xp; over all admissible
observations on all persons

E—— 1, ps, e
Universe-score Within-person
variance 02 (p) variance 02(A) = 02(§)

(b) Components of observed score variance
FIGURE 3.1. Separation of Kinds of Variance in an i:p Design.

The error A,; was defined as X,; — u,, and hence equals u;~ +
U1~ + €,7. The quantity, 02(A) for the observed scores in the D study is
estimated by o2(I,pl,e). The error ¢ can be defined as (X,; — Xpy) — (u, —
). (We shall use a slightly different definition on p. 93.) The expression
can be rewritten as X,; — u, — (Xp; — p). In the i:p design each person is
observed under different conditions and as n; or n, increases, the term in
parentheses approaches zero. Hence d,; approaches A,;, and in the popu-
lation 02(A) = 0%(d) = o*(I,pl,e).

Under the i:p design the traditional statement adds that the observed-
score variance is the sum of universe-score variance and error variance,
whether the error is A or ¢. This variance includes a variance component for
condition means that in strictly classical theory is assumed to be zero. Horst
(1949) and Ebel (1951), discussing the reliability of ratings, noted that the
conditions means are often unequal in practice, and modified the concept of
error variance to take this into account, much as we have. Differences in
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condition means contribute to the differences among observations on the
same person made under various conditions. They also contribute to the
differences among persons observed under an i:p design, because one
person will draw easier items or more lenient raters than another.

In any application of the i:p design to a large group, the mean value of
observed scores will approach the mean of universe scores. As more persons
are tested, more conditions enter the mean, and the expected values of the
several components of the error score approach zero. This is true even when
the conditions are not equivalent. Also, the population variance of observed
scores is the same in every application of the design. It is conventional to
define the interval estimate of u,. as X,.; + 6(A) or X,.; &+ 1.966(4),
associated, respectively, with supposed confidence limits of 67 and 957
(see pp. 130-134).

Lengthening the series of observations by increasing n; reduces o%(A).
If we write 0%(A,,) for the variance with a single condition per person.
0?(A,;) = o%(A,;)/n; as is usual for the variance of means of randomly
sampled observations.

Because a different set of conditions is drawn randomly in each application
of the measuring procedure to person p, neither the i nor the pi component
covaries with u,. Consequently, observed scores have the same population
correlation with universe scores in every application of the design, and the
population correlations between sets of observed scores are uniform. This,
taken with the equivalence of population means and observed variances,
implies that in this design, the classical equivalence assumptions apply fully
to the X ;.

The ratio of universe-score variance to observed-score variance equals

p2(X,1,4,)- This coefficient of generalizability is estimated by dividing ;2\( P)
by the estimate of observed-score variance. It is readily shown that the
statement made above about the effect of n; on ¢(A) leads to the Spearman—
Brown formula, which describes the effect on the coefficient of an increase
in n;. (We shall write the coefficient simply as p? in the remainder of this
section.)

The coefficient is an intraclass correlation among observed scores. It
differs from the coefficient proposed by Horst for the reliability of ratings only
in that Horst followed pre-Fisherian formulas, where we follow Fisher in
employing degrees of freedom in our estimation procedure. As Ebel pointed
out, the Horst coefficient applies to ratings when there are different raters for
each subject (i.e., i:p) and not when the same raters rate all subjects (i.e.,
i X p). These points were clarified in the unpublished work of Buros (1963).
Among other contributions, Buros offered a general intraclass correlation
formula that takes into account the possibility of varying n; and so embodies
the Spearman-Brown adjustment. From the one-way analysis of variance one
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could get

MS p — MS within persons
(3.1 Tintraclass = L , P
(n; — ny)

MSp+—=——-MSwp
n

’
i

This coefficient equals the ratio of estimated universe-score variance to
estimated observed-score variance, if the D study has an i:p design. Here, it
makes no difference whether we regard the coefficient as a squared correlation
between the observed score and the universe score, or as a correlation of
two sets of observed scores. The distinction does become pertinent in designs
where distributions of observed scores do not satisfy equivalence assumptions.

The regression formula for estimating the universe score, assuming p?
and yx known, is

. o(4p)
3.2 = —=
(3-2) fy = p + o(X,)
When the sample for a D study represents the same population as the sample
for the G study, the quantities p? and u can be estimated from the G study.
Later in this chapter we shall discuss estimation for subpopulations whose
parameters are presumed to differ from those of the population represented
in the G study.

The variance of errors of estimate is customarily defined by
(3-3) o*(e) = 0*(fi, — puy) = *(p)(1 — p?)

Strictly speaking, the third member of the equation equals the second only
when population parameters, rather than their estimates, are used in (3.2).

The reader familiar with the Ebel paper will recognize that generalizability
theory does not depart from his analysis of this simple design in any im-
portant way, though we offer a slightly more general rationale.

It has been assumed that the G study has an i:p design. If the G study
were of the type i X p, one could still estimate the quantities discussed.
The observed-score variance, for example, is obtained by noting that
o®(I,pl.e) is 1/n; times the sum of the / and pi,e components of variance.
It is possible, then, to use a single G study to obtain information on both
the nested and crossed one-facet D studies (Cf. Ebel, 1951, and Rajaratnam,
1960). Multifacet G studies may also estimate the needed components, but
to fit facets of the larger study into the one-facet design requires a good
deal of judgment. As will become clearer in Chapter 4, a j component may,
in the D study, be confounded with p or with i; or it may enter the residual.
And, if the universe of generalization is defined narrowly as u,,., the j com-
ponent of variance becomes irrelevant.

p(Xpr— ) =p"Xpp + (1 — po)p

The crossed design

Traditional test theory has generally dealt with the crossed i X p design,
because it is usual to apply the same test form to all subjects. A consideration
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of the i X p D study draws attention to some major differences between
generalizability theory and classical theory.

For the D study, one selects n; conditions at random; these are applied
to all subjects. The G study has presumably supplied estimates of the com-

ponents of variance for p,i, and pi,e. Again, ¢%(p) is the desired estimate of
universe-score variance. Table 3.2 summarizes the contrasting concepts from
reliability theory and generalizability theory. Note the changes from Table
3.1

If one does not assume equivalence of conditions, then the observed-score
variance for the particular conditions employed in the D study can be known
only after the D study is carried out. Each set of conditions has its own
variance, hence the observed-score variance will differ from one application
of the design to another. When evaluating a proposed measuring procedure
before carrying out the D study, the only alternative is to estimate the
expected value of the observed-score variance. That is, one estimates the
mean value of the variances that would be found in the course of an in-
definitely large number of applications of the design. (A condition used in
the D study occasionally is one of those used in the G study, but it is almost
never practical to evaluate the generalizability of scores from a specific
condition or set of conditions; see p. 101.)

The observed-score variance is, by definition, the variance of the deviation
score X,; — u;. From the model, this equals u,~ + u,;~ + e,;. The
component u;~ does not enter the deviation score, hence, the observed-
score variance has an expected value equal to ¢2(p) + o%(pl,e). In this
design 0,; = (X,; — pp) — (up, — u), and o%(0) has the expected value
o*(pl,e). The expected observed-score variance equals the universe-score
variance plus this expected error variance (Figure 3.2). In Figure 3.2, diagram
(a), the left circle represents the observed-score variance in an i X p design
with n; = 1; if n; > 1, I may be substituted for i in all labels. Where u,, is
the universe score, diagram (a) may be divided as in diagram (b). The
observed-score variance may also be divided as shown in diagram (c¢) of
Figure 3.2.

The “error of measurement” X,; — u, or A,; is the sum of the I and
pl,e components, as in the nested design. There are several variances of A,;
that might be considered:

EAL, (over sets of conditions that might be sampled,
I for p fixed)

EENE, (average, over the population, of the above; variance
»1 of A for the population and universe)

2
é”(AM - é’A,,) (over persons, for a particular set of conditions)
» 4



TABLE 3.2. Comparison of Parameters Considered in Conventional Reliability
Theory and Generalizability Theory (i X p Design)

Term employed in

reliability theory and

usual symbol

Corresponding concept
and symbol in
generalizability theory

Remarks

True-score variance,
oA(X,,)

Observed-score
variance, 02(X)

Error variance,
o%(E)

Reliability coefficient,
(X, X") = p?(X,X,,)

Confidence interval for
true score

Regression estimate of
true score, equal to

Universe-score variance,

o2(uy)

Expected observed-score

variance, €0%(X,)
I

62(A) equals the expected
variance within the person

€a%(8) < 0*(Q)
I

Coefficient of generaliz-

ability, the ratio of
universe-score and ex-
pected observed-score

variances. Denoted by &p2.

Confidence interval for

universe score

Regression estimate of uni-
verse score, which ideally

X.. + p(X,X")(X,; — X..) would be estimated by
# + p*(Xpp,6)(Xpr — 1p)  used in the D study

Error of estimate,
squared

a*(e)

Directly estimated by

o%(p) from G study.

To be estimated by

combining p and
pi, e components of
variance.

Combines the i and pi, e

components of
variance

Difference between

universe-score and
expected observed-
score variances.
(Consists of the pi, e
component of
variance only.)

An intraclass correla-

tion. Interpretable as
approximately
€ p?(Xp7,u,) if con-

ditions not equivalent.

Determined from o(A)

in generalizability
theory. Classical theory
assumes effect of i com-
ponent absent.

Since the regression

coefficient for the
particular set of i

cannot be estimated,
& p? must be used.

Error of estimate, squared, Estimated by a formula

like the classical one,
but this is an under-
estimate in generaliz-
ability theory.
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(a) Total variance of X,,; over all admissible
observations on all persons

Universe-score Within-person
variance 0 2(p) variance ¢ 2(4A)

(b) Division of total variance

Universe-score Error variance for
variance ¢ 2(p) deviation scores ¢2(6)

(c) Division of observed-score variance
FIGURE 3.2. Separation of Kinds of Variance in an i x p Design.
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Throughout our work we shall be interested in the second of these and will
denote it simply by 0*(A,;), or, where no confusion will arise, by 02(A).
Occasionally we shall refer to the first of the three variances and will label
it 02(A,; | p) (read “for a fixed p’). The third of the definitions, even though
analogous to the definition of observed-score variance, can be ignored since
it proves to be identical to 02(d,;) for condition /.

With a crossed D study, ¢%(4) is the sum of ¢%(I) and o%(pl,e), and so is
identical to 02(A) in a nested D study with the same n;. (See Figure 3.2(b)).
How much a person’s observed score is likely to differ from his universe
score in no way depends on whether the same conditions are used to observe
other persons. Under the i x p design, ¢%(A) ordinarily exceeds &a%(d),
although the two were equal in the nested design.

Classical theory, assuming uniform condition means (u; = w), ignores
the distinction between A and 6. Lord (1962) pointed out that condition
means are unlikely to be equal when tests are not carefully equated. Lord
showed that the variance of the within-person error A, over nonequivalent
tests, differs from the error variance calculated by classical formulas [which
is like our &0%(d)]. A confidence interval of the conventional sort has to be
defined in terms of ¢(A), not ¢(d); only if all tests (or other procedures)
yield strictly equal means is it appropriate to use o(9).!

To estimate ¢%(A) and/or &6%(d) one divides o2(pi,e) and 62(i) by n;. This
again leads ultimately to the same results as the Spearman—Brown formula.
Whereas the Spearman-Brown formula can be brought to bear only
in a limited way on designs with more than one facet, the principle of
dividing components of variance by the number of conditions generalizes
fully.

The coefficient of generalizability has been defined (p. 17) as the ratio
of universe-score variance to expected observed-score variance; this is
approximately the expected value of the squared correlation of observed
score and universe score. The coefficient is denoted by &p? for convenience.
To estimate it, one employs the variance estimates already calculated. This
coefficient is an intraclass correlation among observed scores, of the type
that discards the condition component of variance from the error term and,
hence, from the observed-score variance.

When n; = n, the variance ratio is identical to the coefficient from the
Hoyt analysis-of-variance procedure, Kuder-Richardson Formula 20,
Cronbach’s «, and several other well known formulas. The most common
procedure has been to compute the variance of scores under each condition—
i.e., the several s2(X,, | i)—and of total scores on the test, s2(X,y). Then

1 We shall write 6(6) in place of [£52(8)]1/2, even though the latter is technically correct.
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the universe-score variance for test scores is estimated by [n/(n — 1)][s*(X,p) —
Z s2( Xy, | i)].2 This can be divided by s%(X,;) to estimate the coefficient

& p?; the same estimate can be reached from the variance components.

For n} # n;, our approach yields a coefficient identical to that given by
the Spearman-Brown correction of a coefficient from one of the procedures
mentioned previously. Ebel recommended application of this type of intra-
class formula to G data where the same raters rate all subjects. Buros (1963)
offered a version of the formula that takes into account directly the possibility
that n; differs from #;:

MSp— MSr

MS p + (9'—") MS 7
n;

(34) Fintraleass =

The more nearly uniform the observed-score variances and the P (Xprsthp)
under separate applications of the design, the more closely does the intraclass
correlation coincide with p2(X,;,u,) for any one application. Monte Carlo
studies (Cronbach & Azuma, 1962; Cronbach, Schonemann, & McKie,
1965; Cronbach, Ikeda, & Avner, 1966) show that the discrepancies between
the population intraclass correlation and the alternative coefficients listed
above are extremely small whenever the number of conditions of a facet is
reasonably large in the D study, or the variance within conditions differs
little from condition to condition.

The formula for making point estimates of universe scores, expressed in
terms of population means, is

P
(3.5 b= (EpH Xy — pp) + 1

In Chapter 5 we shall discuss whether the sample mean from the D study or that
from the G study, or a combination, should be used in evaluating the means.
Where conditions are equivalent in the classical sense (equal means, equal
variances, and equal intercorrelations) and n, is indefinitely large, the
equation is identical to the regression equation of classical theory. An
expected correlation is used in the estimation equation instead of the genuine
regression coefficient for the particular condition in the D study. Therefore,
if conditions are not equivalent, the estimate is not the best one conceivable.
An equation for estimating the variance of errors of estimate is

S

(3.6) o¥(e) = oX(p)(1 — Ep?)

2 The vertical line is a conditional notation like that used with fixed J* in Chapter 2.
Here, it implies that while p varies, i is held constant.
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This is strictly appropriate only where the genuine regression equation
applying to the conditions in the D study is used. If conditions are not
equivalent, the estimates from (3.5) will have an error greater than (3.6)

N PO

indicates. Formula (3.6) should be distinguished from [€6%(X,)](1 — &p?),
which estimates &'02(d) when applied to this design.

Our numerical results for the i X p design depart from those obtained
under the classical formulas in only one major respect. That is the use of
6(A) in defining the confidence interval rather than §(8). When tests are
strictly equivalent, and the sample of persons for the G study is large, our
theory reduces to the classical theory and our formulas give precisely the
same results as traditional ones. [Where #, is small, there will be some
difference between the intraclass correlation and the average of correlations
r(X,X’), even though conditions are equivalent in the population.] Our
theory has more radical implications in multifacet studies.

B. The Error A

This section presents in detail the technique for estimating o(A), which is
used in establishing confidence intervals.

The decision maker who forms a confidence interval for the person’s
universe score is presumably interested in its absolute value u, and he takes
the observed score as a direct estimate of it. We shall discuss interpretation
based on the raw score. Though a similar logic may be applied to standard
scores, 1Qs, etc., this introduces some risk of misinterpretation (see p- 134).

The term A, is written for the discrepancy X,;; — u,. The within-person
standard deviation, to which the confidence interval is proportional, is
0(A,77)- We can represent the universe score, and consequently A, in terms
of the score components introduced earlier. Whatever the components of A
may be, the variances of these components make up o2(A). An estimate of
the average value of 6%(A,;; | p) over all persons in the population can be
obtained from the G-study estimates of component variances. The square
root is taken as an estimate 6(A). This estimate, subtracted from and added
to the observed X,.;;, defines an interval that, according to the model, is
likely to contain u,.. We first review statements made above regarding A
in one-facet D studies. This allows us to display a scheme of analysis that
will be useful with more complex designs.

One-facet studies considered in detail

In arriving at a confidence interval for u,., there is no need to consider
whether other persons are observed, or under what conditions they are
observed. The within-person design is simply i:p*. Crossing of p with i does
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not affect o(A), the “within-person” standard deviation. The term ¢(A) is
defined over all sets I that could be drawn from the universe.

In Table 3.3 there are five columns where scores and variances are resolved
into components of the one-facet model. It is to be understood that a score
or variance indicated at the head of the column is the sum of the components
appearing below it. Only the “frequency” column is of a different type.

TABLE 3.3. Components of Scores in a D Study with the Design i:p or i X p
(Generalization to u,)

Variance  Frequency

Xor Uy Aur component  within p a2(A)
7 ©
Uy~ Hp~ 02(P)
B~ Br~ 0%(i) n; o*(I)
Ppp~s € Bpp~s € a%(pi,e) n; o%(pl,e)

The first column of Table 3.3 contains the basic breakdown of X,,; into
score components, and the second column contains u, in terms of the
components. Since A,; = X,; — u,, one subtracts, component by com-
ponent, to identify the components of A,;. For each component of X,;
(except the constant ) there is a variance component that should have been
estimated by the G study. The D-study design yields #; observations on the
ui~ and p,,~ e score components. Then, because ¢*(I) is the variance of
the mean of n; values of u,~, 6*(I) = ¢%(i)/n;. This gives the required entry
for the final column. In general, any entry for the 6?(A) column is obtained by
dividing the elemental component of variance by the frequency with which
the corresponding score component is observed in the D study. Figures 3.1
and 3.2 both indicate that the total variance of all X, for many persons and
conditions decomposes into a person component and a sum of within-person
components. The person component is the variance of universe scores, and
the within-person variance is the variance of the A,,.

Indrawinga conclusionabout person p*, one would like to know (A, | p%),
the standard deviation of scores for p* alone. This need not be the same as
o(A | p) for other persons, because o*(pi,e | p) may vary from person to
person. [0%(i) is the same for all persons.] In theory, it would be wise to
make a direct estimate of o(A) for p* by observing p* under a great number
of conditions, using those data alone for a G study. Unfortunately, it is
almost never practical to do this for a person about whom a decision is
being made, because #; is almost always small. Rarely, it is practicable to
work out a value of 6(A) for persons having observed scores in a limited
range. The usual practice is to estimate the expected value of 6*(A,; | p) for
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the population of persons represented in the G study, a population from
which p* is presumed to come.

To estimate &6%(A,;), the entries in the last column of Table 3.3 are
simply summed. The square root of that sum is the estimate of a(A). The G
study may have used a i x p design, in which case the required o2(i) and
o®(pi,e) have been directly estimated. If the G study used an i:p design,
only the confounded ¢(i,pi,e) was estimated. But this is simply the variance
of pi~ + u,~ + e, and is equal to o2(i) + o2(pi,e). Since the divisor for
both components is n;, 6%(A,;) can be estimated by the procedure shown in
connection with Table 3.3.

The confidence interval is formed by combining a multiple of §(A) with
the observed score. The usual practice of testers is to employ 1 as the multi-
plier. Assuming a normal distribution, they conclude that X,; — (A) <
Mo < Xpr + 6(A) with a probability of 0.67. That is, it is presumed that
when this technique is applied consistently, one-third of such statements
locating u,, for individuals will be incorrect. This is a high rate of error,
but the developer of psychological and educational tests finds the interval
embarrassingly wide if he moves to a more conservative risk level. It is
awkward enough to admit that a test of the usual length locates the “true”
IQ somewhere in a range from 105 to 115, for instance. To form a confidence
interval by raising the multiplier to 1.96 (the value most often used in
statistical inference) would generate the embarrassing admission that the
IQis located only within the broad range 100-120. However, the probabilities
associated with universe-score confidence intervals are misleading in several
ways, as Chapters 4 and S will show.

Two-facet D studies

We move on to the two-facet D study that employs an i x j design within
the person. This design may be any of the three where i X j appears in the
“within-person’” column of Figure 2.4 and Table 2.1. There are n; conditions
of i and nj of j.

To evaluate c;z\(A), Table 3.4 (similar to Table 3.3) is compiled with seven
components of variance. (See also Figure 3.3.) If a component such as
o®(pi) has been estimated in the G study, the corresponding o2(pI) is estimated

by dividing ;;(pi) by the entry in the frequency column. Entries for the
frequency column can be obtained from Table 2.1, considering a crossed
within-person design, setting n,, = 1, and, of course, adding primes to show
that a D study is under consideration.

The G study introduced in Table 2.2 provides the basis for a numerical
example. The analysis in Table 3.5 assumes that the D study will use 10
items and 1 scorer. (Three scorers were used in the G study). We find that
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TABLE 3.4. Components of Scores in a D Study Where i is Crossed with j within
the Person (Generalization to uyp)

Variance  Frequency

Xo1g Ep Apry component  within p o2(A)
Iz Iz
by~ by~ o*(p)
Hr~ By~ a*(i) n; o*(I)
Hy~ By~ o*(j) n; o*(J)
Hor~ Bpr~ a*(pi) n; o*(pI)
By~ Bpg~ a*(pj) n; o*(pJ)
Hpg~ Hrg~ o2(ij) n;n;. o2(1J)
Hory~s€ Horg~s€  (pij,e) nn; o¥plJ, e)

6(A) is 0.93. Compared to the range of 16 points allowed by the grading
scale, this implies fairly good agreement. It may or may not be adequate for
the intended use of the scale, and if it is inadequate, one would increase 7;
or n; or improve the scoring rules.

An investigator might have investigated this design by a G study with a
single scorer, having i as the only variable facet. The two-facet information
shows the pjcomponent to be a rather large element in 62(A); this information
could not have been obtained from the one-facet G study.

Only a G study with Design VII estimates the variances of all components
of X,,; separately. If a study has used some other design and estimated

TABLE 3.5. Estimation of ¢*(A) for a D Study with the Design i X j X p
(n; = 10, nj = 1; Generalization to py)

Estimate

Source of variance Frequency

of variance component® within p a%(A)
p 5.71
i 1.32 n; =10 0.13
Jj 0.09 n; =1 0.09
pi 2.57 n; =10 0.26
pi 0.21 n; =1 0.21
ij 0.07 ninj = 10 0.01
pij, e 1.57 nn, = 10 0.16

0.86 = d3(A)

a Calculated on page 44.
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certain variance components only in combination, one may still apply the
results to the Design VII D study. Because, for example, the frequency within
the person for i and pi is the same in the D study, the combined contributions
of these effects to ¢2(A) can be estimated from any design having i and pi
confounded. Similarly, a design with j and pj confounded estimates the
combination of those effects. Therefore, a G study with Design IV-B,
(i X j):p, or Design V-B, j x (i:p) or i X (j:p), provides the estimates
needed. (The reader may find it profitable to determine why j X (i:p) is
usable but j: (i x p) is not.) If n; or nj equals 1, estimates from still other
designs may be used; for example, if n; = 1, it is possible to use a G study
with design j: (i x p), where j,pj,ij, and pij,e are confounded.

If the D study has j nested within i, one alters the j and pj entries of the
frequency column in accord with Table 3.6 (which is based on Table 2.1).
The j and pj components are sampled n; times as often as in the crossed D
study. Consequently, ¢%(A) is smaller. That is, X, is generally closer to u,
when a j:i within-person design is used for the D study than when a crossed
design that collects the same number of observations per person is used.

As might be suspected, weakening the design to (i,j):p further reduces
6%(A). Consider a study in which one j is sampled along with each i. To
obtain the same number of observations per person as before, more con-
ditions of i must be selected. Doing this keeps the components for J,pJ,1J,
and plJ,e the same as before, and reduces the components for I and pl.
Consequently, where X,,;; is to be taken as an estimate of the value of u,,
there is an advantage in carrying out the D study by the very weak design
that pairs each 7/ with just one j.

Measuring procedures most often employ a crossed design. For example,
the typical investigator administers the same set of items on two occasions,

TABLE 3.6. Number of Observations of Each Component of Apry as a Function
of the within-Person Design of the D Study

Number of observations per person

Score

component ixj Jii Lj®
e n, n nn;

’ '’ r_r
Ui~ n; n; nn;
Hpi~ n; n; nn;

! 't !
Bpj =~ n; ning nny
g~ n;n; nn nn

rr r r !
Upis~, € nin; nn; nin;

& These entries employ the convention stated in footnote b in Table 2.1. The product nn;
equals the number of observations per person.



90 Inferences from D-Study Data Regarding the Universe Score ®,

crossing items with occasions. In another study, he collects three protocols
of a teacher’s classroom remarks, and has each protocol scored by the same
four scorers. But he would get a smaller o(A) if he were to break the test
into many small parts, each to be given on a different day, or, in the second
study, if he collected 12 protocols and had each scored by a different person.
Practical considerations limit the use of such designs. It is inconvenient to
test on many days; a fragment of a test may be too short to allow for proper
warmup; setting up recording equipment in the teacher’s classroom a dozen
times may be impractical. Our analysis shows a benefit to be gained, however,
by weakening the design when one can. These remarks apply, of course,
only to the error A; weakening the design increases other kinds of error.

If a certain component of ¢%(A) is large and an absolute interpretation of
X177 is intended, it would be wise to sample that effect quite thoroughly in a
D study. If an effect is small, on the other hand, an effort to control it in the
experimental design, or to sample it extensively probably is not warranted;
this type of reasoning will be discussed in Chapter 7.

C. Observed-Score Variance and the Error §

Observed-score variance as a function of the D-study design

Whenever decisions are to be determined by the comparative standing of
individuals, one is interested in locating the individual within his group as
accurately as possible. The absolute universe score is then unimportant.
Research concerning correlations among variables similarly emphasizes
comparative rather than absolute standings. To evaluate interpretations of
these sorts, one compares the universe-score variance with the expected
observed-score variance; the higher the ratio, the more the observed ranks
correspond to the ranks of the universe scores. The developments in this
section are also pertinent in making point estimates of universe scores.

Estimation of the observed-score variance receives no particular attention
in classical theory, because the variance of the scores in the reliability study
is directly calculated. For us, however, the G study is a basis for thinking
about data that may be collected in future D studies. The observed-score
variance that will arise in any one study cannot be directly calculated, but,
knowing the proposed design, it is possible to estimate the variance. How-
ever, one can do no better than estimate the average of variances for all D
studies with such a design in this population and universe. The average is
referred to as the expected observed-score variance.

The observed-score variance is defined as the mean square of the deviation
score—the person’s score minus the mean over persons. The mean is for
scores collected according to the design proposed for the D study. As long
as the sample variance is an unbiased estimator of the population variance,
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it makes no difference whether the deviation score is taken from the sample
mean or the population mean. Notational problems become quite awkward
when we attempt to distinguish the means and variances formed under
various designs. Therefore, we shall minimize notational refinements,
generally writing 0%(X) for the population variance arising under a single
application of whatever design is under discussion, and &'¢*(X) for the
expected value over all applications of the design.

Table 3.7 employs a scheme similar to Tables 3.3 and 3.4. This scheme
breaks the observed score and the mean for Design VII into components.
The score breakdown agrees with Table 3.4. In Design VII all subjects are
observed under the same I. Consequently, the same pu; component enters
every score and also the mean, u;;. Similarly u; enters the mean. Score
components that differ from one person to another become zero in the
population mean, as indicated by the blank spaces in the column for com-
ponents of ;. These are the components that remain in the deviation score
formed by subtracting u;; from X, ;. Estimates of the variance components
are taken from the G study. The variance for each component of the deviation
score is divided by the frequency (within the person) with which that com-
ponent was observed in arriving at X,;;; this estimates the contribution of
the component to the expected variance of observed scores.

TABLE 3.7. Components of Expected Observed-Score Variance in a D Study
with the Designi X j X p

Frequency
Population within
mean Deviation Variance deviation
Xp1g U1y score component score Sot(X)
J 2
My~ Hp~ 02([’) 1 02([7)
My~ My~ a2(i)
Mg~ ry~ Gz(j)
Hpr~ Hpr~ o*(pi) n; a*(pl)
Hpg~ Rpg~ ‘72(,0]) n;‘ 02(PJ)
Hig~ Hpg~ - )
Hpry~se Mprg~> € o*(pij,e) nn; a*(plJ.e)

In Figure 3.3, diagram (b) indicates the composition of the observed-score
variance. Score components that fall outside the p circle in diagram (a) are
the same for all persons under this crossed design. Therefore, they do not
contribute to observed-score variance and are omitted from diagram (b).

A similar analysis may be made for any other D-study design. Which
components drop out of the deviation score depends on how conditions are
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TABLE 3.8. Number of Observations on Each Component of the Deviation Score
as a Function of the Design of the D Study*

Design of D study

Score VII V-A V-B IV-A IV.-B  III-A II-B®  IIP
component i X j X p (j:i) X p i X (jip) j:(i X p) (i X j):p Jip L)) xp Ghj)p
By~ 1 1 1 1 1 1 1 1
i~ mooon nin,
By~ n; nin; n; nin; nin;

’ ’ ’ ’ ’ ’ ) !
My~ n; n; n; n; n; n; n;n; n;ny
Py~ " LU mp oo omm my
P~ LU A nin;
Boi™ € my  mmpommomppommsommpomnp

@ The contribution of each component of variance to £6%(X)is inversely proportional to the
number shown.

> Number of observations fixed at n,n] pairs per person for comparability to other designs.
Normally n; = n;.

crossed with persons. In Designs IV-B, III-A, and II, the population mean
of observed scores is u. Therefore, seven score components from X, ; carry
over to the deviation score and contribute to the variance. Table 3.8 sum-
marizes the way the components of variance enter the observed variance,
and presents arrays comparable to the “Frequency’” column in Table 3.7.
Reciprocals of the frequencies serve as weights for the variance components.
If there is no entry beside a component, the component does not contribute
to observed variance for the design in question.

The reader is reminded once again of our convention of using average
scores rather than totals. For ratings and observations, it is common to state
the composite score in the form of an average. All the formulas we have
given apply directly to averages over conditions. Test scores, however, are
usually totals of item scores. For the sum-of-observations type of composite,
the expected observed-score variance given by the procedure just outlined
must be multiplied by the square of the number of scores entering the sum
in the D study. Occasionally, the observed score may be formed by averaging
over one facet and summing over another. Then the observed-score variance
obtained by the method outlined must be multiplied by the square of the
number of summands, whether these are themselves elementary scores or
averages.

The G study generates one particular observed variance. That variance is a
single sample from the distribution of variances the design would generate.
The &¢%(X) derived from the G study is unlikely to coincide with the actual
observed-score variance in a study made later.
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The error &

It is convenient to define the error 8, as the difference between X,7; — pry
and u, — u here. A slightly different value would be obtained if the deviation
from the sample mean Xp;; were considered as on p. 76, but this dis-
crepancy is of no consequence. The mean u;; of course is determined by the
design for the D study and the sample of conditions selected.

In classical theory, “observed-score variance equals true-score variance
plus error variance.” In our terminology, the expected observed-score
variance in the population equals the universe-score variance plus &0%(9).
This follows from the fact that the observed-score variance is the mean
square of the deviation scores; each deviation score may be divided into
two components: one the universe score, expressed as a deviation
from the population mean, and the other d,;. The composition of &o?(0)
and its magnitude depend on the experimental design.

In Table 3.8, components of the deviation score for various designs were
identified. All the components except u,~ are components of é. Therefore,
£0%(0) = E0*(X) — o*(u,). Now it is possible to complete the interpretation
of the preceding figures. In Figures 3.1, 3.2, and 3.3, the expected observed-
score variance is decomposed into the universe-score variance and &¢%(9).
The reader can contrast the components of &02(0) with the components of
a?(A).

It is possible to convert the observed deviation score for p into an interval
estimate of u, — u, by writing (X,;; — Xp1s) £ a6(9). For tests that have
been rendered equivalent, either by careful construction or by means of a
conversion scale, 8 = A, and the standard deviation of either may be referred
to as the standard error of measurement. Where conditions are not equivalent,
the standard error computed by the classical formula resembles o(6) rather
than o(A). The interval estimate of the deviation score based on é appears to
have little practical significance. However, o(9) is pertinent to the problem
taken up in the next section.

Confidence interval for a difference between persons

Comparative decisions, such as the selection of the best 3 out of 10 applicants
for employment, are based on individual differences. The decision that
applicant 3 is truly better than applicant 4 can be made confidently if their
observed difference is substantially larger than its standard error.

In this type of comparison we have scores X,,; and Xp.;.s, where p and p’
differ, but i and i’, or j and j may be the same. For simplicity, it is assumed
that n} = nj = 1. Presumably, one wishes to generalize to the universe-score
difference p, — u,.

Table 3.9 shows how the error of generalization for the difference can be
evaluated. If conditions i and j are nested within persons, there is a different
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i and j for each person. Therefore, all score components except u,~ contrib-
ute to the error. The expected variance of u,~ — u,~ equals 20%(i); a
similar expected variance is found for each other component.

The next column examines the possibility that i is crossed with persons and
j is not. In such a D study the component for i cancels out of the difference
score. In the third design, where both i and j are crossed with p, the final
column indicates that the j and ij components also disappear from the
difference score and from the variance.

It is readily seen that the error variance for the difference in each case
equals 260%(d,,,) where that variance is properly calculated for the design
under discussion. This same general statement holds for designs with larger
n; and n}. Therefore, 6(8) gives an indication of the adequacy of the measuring
procedure for making comparative decisions. Table 3.9 is developed in terms
of components of the error (i.e., of the discrepancy between the observed-
score difference and the universe-score difference). Only trivial changes in
notation would result if deviation scores were used in the development.

If many judgments are to be made regarding the comparative superiority
of individuals, a confidence interval could profitably be formed for each
person’s score, extending, for instance, §(d) units on either side of the observed
score. Then, if the interval for one person is entirely above the interval for
another person, the difference in their observed scores is at least 1.41 times
the standard error of the difference score. Judgments that the universe
score of the higher scoring person is superior to that of the lower scoring
person will be correct with probability >0.84. Criticisms to be made later of
such probability statements do not apply here. If the two persons are members
of the same group, and therefore the only information on which one can
distinguish them is the observed score, the statistical inference is sound.

It is now evident that a design that minimizes &§'¢%(d) improves the accu-
racy of conclusions about individual differences in p,. Allcomponents of X,z
except that for p can contribute to the error of generalization. Conse-
quently, when individual differences are the concern, a D-study design that
eliminates other components from the observed score, or samples them
frequently to reduce their contribution to variance, is preferred. The familiar
crossed Design VII is good for this purpose, because it brings several potential
sources of unwanted variance under experimental control. But III-B—
(i,j) X p—proves to be better. Design I1I-B eliminates the same components
as Design VII, and it samples each of the remaining components a greater
number of times.

Suppose that each preschool child is to be observed by several child-
development students, to provide a score representing differences in aggressive
behavior. Generalization over observers and occasions is intended, and it
has been decided that a total of 25 observer-hours may be used. Then Design
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VII would probably call for sending five girls to visit the school together
five times. Design III-B would call for sending 25 girls, each at a different
time. In either design all pupils are observed by the observer on each visit.
According to Table 3.8, Design III-B would reduce the pi and pj components
of variance markedly. These components are regarded as “errors of obser-
vation” by the investigator who is interested in aggressiveness without
regard to occasion or observer. Because he wants to minimize the effect of
occasion and observer, he prefers Design III-B to VII. Further examples of
this line of reasoning will appear in Chapters 6 and 7. (The practical tester
has to be concerned with nonmathematical matters also, such as whether 25
adequately qualified observers can be recruited.)

Confidence interval for a group mean

The reader should be familiar with the textbook technique for determining
the standard error of a mean. The standard deviation of observed scores is
divided by the square root of the number of observations. The resulting
standard error can be used to establish a confidence interval for the popu-
lation mean. It is this technique that the tester has adapted to establish a
confidence interval for a universe score.

In experimental research, in educational evaluation, etc., a tester may be
primarily interested in the group mean. The textbook teaches him to derive
the confidence interval from the standard deviation of observed scores and
n,. This may work well enough for many studies, but it tends systematically
to underestimate the confidence interval for the mean the tester should be
most interested in. The conventional approach, applied to a score X,;; and
its mean Xp;;, establishes a confidence interval for u;;, not for u. The
sampling of persons, but not the sampling of conditions, is taken into
account.

If the tester wishes to generalize from the sample mean Xp;; to u, the
mean expected over the population of persons and conditions, the error is:

€X)) Apry = Xprg — p = pp~ + pir~ + py~ + ppr~ + pp;~
+ prg~ + pprg~ + eprs

The experimental design determines how many i and j enter the means.
With the use of the information in Table 2.1, for a D study of Design VII,

1 1 1
(B8)  Apg==2pu~+ = 2~ + = S~
n, n; n;

1 1 1
+ = ,ZZ/‘pzN'l' f ,ZZ/“MN"' , ,ZZ:“%’JN
nyn; nyn; nn;
1
+ 22 Z(/‘pu"" + e,:5)

Ml
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Hence, the variance over samples of persons and conditions:

(3.9) *(Apry) = ni o(p) + ni o) + ni ()

y 3 I

+ '% o*(ij) + l, E0*(8y15)
nin; n,
The components ¢%( p) and €0%(0) together constitute the expected observed-
score variance; the second, third, and fourth terms of (3.9) are omitted from
the error variance for the group mean as it is usually calculated in statistics
texts.?

With other two-facet designs, similar equations apply. Components enter
£2(8) with different weights in each design, and the multipliers for the i
and j components of variance change. If i is nested within p, o®(i) disappears
from the equation [but is counted in &'¢%(9)]. Similarly for j nested, or i
and j nested. This nesting reduces the discrepancy between the conventional
standard error of the mean and ours. Where the foregoing argument applies,
the investigator wishes to generalize beyond the particular conditions I, J,
etc. represented in the experiment or test to a larger universe. Increasing n,
has only limited ability to increase the power of his experiment; even with
the sample of persons indefinitely large, the population-universe mean is not
precisely estimated.

D. The Coefficient of Generalizability and the Error €

Where the universe score is u,, o2(p) alone is the universe-score variance. If
multiplication of observed-score variance (e.g., by n;%) is required to estimate
variance for a total score rather than an average, the estimate for universe-

score variance must be similarly multiplied.
The intraclass correlation

The coefficient of generalizability for a certain universe and D-study design
is the ratio of the universe-score variance to the expected observed-score
variance for that design—an intraclass correlation. It is completely com-
parable to the traditional reliability coefficient except that full attention has
to be given to the universe definition and to the design of the D study. Since

3 Our statements here have much in common with those of Mosteller and Tukey (1968,
p. 122 ff.). The flavor of their discussion is given by section headings, to wit: “Hunting out

the real uncertainty,”” and “How a/\/ n can mislead.”
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the D-study design need not be the same as that in the G study, one can
arrive at a number of different coefficients from a single G study.

The coefficient for a certain D-study design could be obtained directly by
applying the design repeatedly to the same large group of persons, a different
set of conditions being drawn for each application. Each sample of conditions
would produce an array of scores, which could be converted into deviations
from the group mean. An intraclass correlation could then be computed for
the matrix of deviation scores arising from the several applications of the
design. Taking deviations eliminates any effect that is crossed with persons.
The coefficient to be estimated is a value for the population and universe;
it equals the limit of the intraclass correlation, as the number of persons and
the number of applications of the design increase without limit.

One might think of intercorrelating all pairs of columns in the hypothetical
matrix of scores from many D studies. The average correlation would be akin
to the conventional correlation between two independent measurements for
the same persons. The intraclass correlation is quite similar to this in con-
ception, but has the advantage that a single calculation takes into account
all pairs of conditions at once. Scores are not standardized within columns
as they are in calculating the conventional interclass correlation. Any
differences in population variances among the several sets of observed scores
will therefore lower the intraclass coefficient to some extent.

Because the relation of observed score to universe score is more funda-
mental than the relation between independent observed scores, we think in
terms of the squared correlation of observed score with universe score. This
varies from one application of the design to the next when conditions are
not equivalent; the intraclass correlation approximates its expected value.
We therefore identify the coefficient as & p*(X,;;,u,) and use the abbreviated
symbol &p® The expectation is defined over experiments applying the
specified design to the population. A fuller notation would indicate the facets
and their crossing and nesting in the D-study design, and would give the
values of n; and n;. The reader is reminded once again that for any measuring
procedure there are many coefficients—one for each design that may be
proposed.

The estimate of &p? is made as in the one-facet study, by dividing the
estimate of universe-score variance by the estimate of expected observed-
score variance. This is a consistent estimate (Lord & Novick, 1968, p. 202)
but not a truly unbiased one. Although a ratio of unbiased estimates of two
parameters is not a strictly unbiased estimate of the ratio of the parameters,
this is unlikely to introduce appreciable error. With the use of the com-
ponents estimated on p. 44 from the data of Table 2.2, and assuming a

crossed D study with n; = 10 and n; = 1, Table 3.10 yields these estimates:
Py Y N
&02(X), 6.34; *(u,), 5.71; and &p?, 0.90.
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TABLE 3.10. Estimation of & o), and £0%(9) for a D Study with the Design
i X j x p(n;=10,n; = 1; Generalization to p, — p)

Estimate
Source of Frequency
of variance within the
variance component?® deviation score &a2(X) ¥ (uy)
P 5.71 1 5.71 5.71
i 1.32
j 0.09
pi 2.57 n; =10 0.26
pJ 0.21 n; =1 0.21
if 0.07
pij, e 1.57 n, ni 10 0.16
6.34 5.71
ﬁ 571 = 0.903
P =634
a2(e) = 5.71(1 — 0.903) = 0.55; 6(¢) = 0.74
PN

£0%(8) = 6.34 — 5.71 = 0.63; 6(8) = 0.631/2 = 0,79
02(A) = 0.86; 6(A) = 0.93 (from Table 3.5)

a Calculated on page 44.

Extension to subpopulations. Very often D data are collected on a sub-
population rather than on the full range of the population represented in
the G study. Ideally, there would be a new G study for the subpopulation,
but this is not always practicable. Estimates from the original G study can
be modified to fit the subpopulation, as in classical theory. Classical theory
assumes that the “error variance’’ has the same magnitude in the subgroup
as in the original population. Having obtained the observed-score variance
directly from the subgroup data, the classical approach subtracts the error
variance to estimate the true-score variance for the subgroup. The procedure
is applied not only to samples that are subgroups of the original population,
but also to groups that have a wider range of ability.

A similar correction for “restriction of range’’ can be made in generahz-
ability theory. It is necessary to assume that all components of 0*(A), or at
least all components of &'02(d) in the D-study subpopulation, equal those in
the G-study population. As in classical theory, cases entering the subgroup
must be selected without regard to scores on the particular conditions
selected for the D study.

It is presumed that the distribution of u, in the subpopulation differs from
that in the population. It is necessary to obtain observed scores for the
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D-study subpopulation and to calculate the observed-score variance directly.
One then subtracts from the observed-score variance the G-study estimate of
any component such as ¢*(pl) or ¢*(I) that contributes to it, to obtain the

new EE(‘u,,). This, divided by the observed-score variance for the D-study

sample, gives a value of gf? for the subpopulation.

The assumption made is one of long standing, and is often plausible.
However, if the subpopulation falls near the upper extreme of the scale,
ceiling effects may reduce other components of variance as well as o%(p).
At the lower extreme, there may be a floor effect; but, under circumstances
where guessing is possible, the residual component may be increased in a
low scoring subpopulation.

Testers will undoubtedly continue to use the correction for restricted
range as a rule of thumb, because tests are applied in subpopulations where
no generalizability study has been made. Empirical studies comparing
indirect adjustments of o2(p) and &p? with those directly determined from
distinctive subgroups within the G-study sample should be made for some
typical measures and populations. This will increase our knowledge regarding
the extent to which the indirect procedure is misleading. Such studies em-
ploying the more complex designs and weaker assumptions of generalizability
theory would supplement earlier work under the classical model (Gulliksen,
1950, pp. 197-198).

Effects of nonequivalence of conditions. Our model acknowledges the
possibility that different conditions will produce scores with nonuniform
statistical characteristics. The classical assumptions that tests have equal
means, variances, and intercorrelations have been avoided. This limits one’s
inferences—for example, from a G study with the i X p design, we estimate
the expected value over I of 6%(X,; | I). When we do not assume equivalence
we can regard this as no better than a rough estimate of the observed-score
variance arising under the conditions of i that may be drawn for any one
study. Nonequivalence similarly restricts inferences about correlations.

For D-study designs that do not cross p with any other facet, scores
obtained under the random-sampling model completely satisfy the classical
equivalence assumptions. This is true even if there is marked non-equivalence
of scores from condition to condition. The scores obtained under every
application of the design have the same limiting distribution as n), increases.
The interclass correlation between scores from any two applications ap-
proaches a limiting value equal to the intraclass correlation & p2.

Where there is crossing of p with facet i (or j, etc.) observed-score variances
may differ from one application of the design to the next, and intercorre-
lations between pairs of independently obtained observed scores may differ.
The intraclass correlation (our coefficient of generalizability) truly equals
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the mean of p(X,X’) or the mean of p*(X,u,) only if all observed-score
variances are equal. One must be hesitant, then, in taking the coefficient of
generalizability as representing the parameter p?(X,u,) for any particular D
study with conditions crossed. The hazard is much reduced when many
conditions of i and j are sampled for the D study, because this tends to
produce equivalence of I and J from different applications of the design.

It would be highly desirable to have numerical experiments with higher-
order designs, similar to those that have been made for the one-facet crossed
design (see p. 83). These would provide needed information concerning the
correspondence of the intraclass correlation to interclass correlations and
to the squared correlations of observed score with universe score. Empirical
studies with various kinds of data would also be illuminating. One can be
sure that no serious discrepancies will arise where the number of conditions
of each facet in the D study is large or where the conditions are closely
comparable. Ordinarily, except where the facet considered is test items or
peer raters, however, an investigator uses only a small number of conditions
in his D study.

Difficulties of evaluating specific conditions. The model that we employ
recognizes that the conditions employed in the D study have their own
specific components u; — u, u,;~, etc. Therefore, where the design has /
crossed with p, one might think of evaluating o*(A,; | I), ¢*(X,;), and
p*(X,1,1,). Of these, the D data directly estimate only o%(X,,;).

In theory one might carry out a G study with i X p that includes the
particular conditions /* as part of a larger collection of conditions of i.
One could then infer from this the parameters that indicate how well X 7+
or X+, etc. can be generalized to u,. Equations can be developed for this
purpose. For example: Write I' for a set of n, conditions in the G study that
has no / in common with I*. Then in a j: (I X p) study that collects data on
both I* and I’, the covariance of X, ;+; with X;.; estimates (X +,u,); the
estimate improves as n; (i € I') increases.

The difficulty with such a proposal is that the size of the set I’ must be
very large to achieve a stable estimate of the specific covariance. It is not
worthwhile to attempt this unless the covariance varies from one I to another.
Yet the more the parameter varies, the larger the sample of conditions
required to make I’ representative enough of the universe to obtain stable
estimates. A small amount of numerical experimentation leaves us pessimistic
about the practical utility of investigations of parameters for specific con-
ditions from conventional crossed designs.

Possibilities that we have not investigated are opened up by the theoretical
work of Lord and Novick (1968) who stay within the one-facet model for
“nominally” parallel tests. Formally, this is equivalent to our assumption
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that conditions i are randomly sampled from a large set. Lord and Novick
arrive at conclusions generally similar to ours, but they recommend (p. 210)
estimating what they call the ““generic reliability coefficient”—our p2(X;,4,)-
They suggest that this can be estimated not only by the design discussed
above, which is ordinarily of no practical value, but also by an item-sampling
design. Essentially, their plan is to divide a large sample of persons at random
into three or more subgroups and to observe each subgroup under i* and
one other condition i (different for each subgroup). Another tentative
proposal is made by Overall (1968). These possibilities have not yet been
studied in any detail, and nothing is known about the difficulties that may
arise when they are extended to the multifacet universe.

The Lord-Novick argument, which is a modern version of methods ex-
plored by Burt (1936, pp. 270-297), becomes particularly appealing when the
set of tests is believed to have just one common factor. In this case, inter-
correlations among three tests (derived from one large sample or three
separate large subsamples) provide a sufficient basis for accurate determi-
nation of the correlations of scores for each of the three with the universe
score. This model can accept multifacet data, and can recognize the systematic
difference in error variance that might be associated with different facets.

The point estimate of the universe score

A linear function of the observed score gives a better estimate of the universe
score than the observed score itself. The function is a weighted average of the
person’s observed score and the observed mean in some group to which he
belongs, as was seen in (3.2) and (3.5). The person’s raw score in the D study
is weighted by the coefficient of generalizability, and the group mean is
weighted by one minus the coefficient. The group mean and the coefficient
should be estimated for the same population, universe, and D-study design.

Where there are two or more subpopulations, each has its own equation;

the values of g and g} would ideally be determined from separate G studies
within the subpopulations. Lacking separate G studies, one is forced to use
the correction for range suggested earlier.

In this section we shall employ an estimation equation derived from

g;} This is not, in general, a genuine “regression” equation because where
nonequivalent conditions are crossed with persons in the D study, the slope
and the constant term of the regression equation depend on the particular
conditions selected. We proceed for the present without further discussion of
the anomalies that may result with nonequivalent conditions, and return to
the subject in Chapter 5.

Test theorists have long recognized that when a fifth grader and a fourth
grader earn the same score on an achievement test, it is likely that the fifth
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grader is superior (i.e., has the greater universe score). “Regression toward
the mean” is inevitable. The observed score is an indicator of ability, but so
is the mere fact of membership in a group with a high (or low) mean, since
that fact is a consequence of realities of age and past performance.

One of the most complete discussions of point estimates is that of Truman
Kelley (1947, p. 409ff.). In quoting his remarks, we substitute our own
notation and equation numbers, and alter some punctuation. He starts with
an equation comparable to (3.5), but not recognizing our distinction between
G and D data. We write it in terms of our coefficient:

) A~ N
(3.52) fi, = (€p) X, + (1 — Ep)Xpy

This [he says] is an interesting equation in that it expresses the estimate of
true ability as a weighted sum of two separate estimates—one based upon
the individual’s observed score X,; and the other based upon the mean
of the group to which he belongs X ;. If the test is highly reliable, much
weight is given to the test score and little to the group mean, and vice
versa. Suppose fourth-grade pupil p and fifth-grade pupil p’ each score 45
on a test having a reliability of 0.80 in each grade, and that the means and
standard deviations for the grades are: Xp;4) = 40; sx() = 10; Xpp5 =
50; and sy = 10. For pupil p we estimate his true ability thus: i, =
0.80(45) + 0.20(40) = 44. For pupil p': 4, = 0.80(45) 4+ 0.20(50) = 46.
This difference in outcome is certainly sound. We know two things about
pupil p. The first fact (X,; = 45) suggests a true ability of 45, and the
second fact (member of group whose mean = 40) suggests a true ability
of 40. The best composite of his ability is 44, as given by [3.5a]. Suppose
for the single hour when tested pupil p had sat with the fifth grade, would
we now use the fifth-grade mean and estimate his true ability as 46?
Certainly not, for pupil p is still a fourth-grader. This group membership
is not a whim, but a thing as definitely attached to pupil p as is his score 45.

If the mean and reliability for the group to which the tested person
naturally belongs are known, it is always preferable to use the regressed
score as the estimate of true ability. Since this best practice is infrequent
practice, . . . [most writers use 6(d) as a standard error].

[Further results throw] interesting light upon the classification of
individuals by fallible measures. Suppose upon a scholastic test we have
fourth, fifth, and sixth grade means of 40, 50, and 60, and that o(u,) for
the fifth grade is 10. Assume a normal distribution of ability and a rule
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which demotes* fifth-graders scoring below 40 and promotes fifth-graders
scoring above 60. If the reliability of the test is 1.00, we obtain the correct
result of 167, below 40 and 169, above 60, and thus, we reclassify 32%
of the pupils. If the test has a reliability of 0.50, we find that ¢(X) = 14.14.
Employing raw scores, reference to a normal probability table informs us
that we would now reclassify 489, which is an excessive number. If,
however, we use regressed scores 4,,, we have a distribution whose standard
deviation is 7.07 and reclassify 169, which is a conservative number. It
can also be shown, using volumes of a normal bivariate surface, that of
the 48 9, reclassified upon the basis of raw scores, 26/48 did not in truth
fall beyond the limits set, and that of the 169 reclassified upon the basis
of regressed scores, 6/16 did not in truth fall beyond these limits. In short,
the use of a fallible measure at its face value in connection with promotions,
classifications, etc., will lead to or create many misplacements,® while the
use of this same fallible measure properly regressed will create few mis-
placements. If we will but regress scores and compute standard errors of
estimated true scores, we need not hesitate to use an instrument of low
reliability.

Substituting a linear function of the observed score for the observed score
itself would not alter a decision that simply considers ranks of persons within
an undifferentiated group, but if there are subgroups (by sex, education, or
other demographic variables) the use of separate regression estimates for
each subgroup alters ranks. Application of the appropriate linear function
to each individual also alters ranks if some persons have been observed more
thoroughly than others. Regression of scores alters decisions that rest on
comparisons of individual scores to an absolute standard, or decisions that
consider the shape of a score profile.

Estimates of universe scores are rarely made by test interpreters. While
there are arguments against regressing scores, the objections are surely no
more damaging than the arguments against more commonplace procedures
of test interpretation. One is left with the impression that estimation pro-
cedures were neglected in the past merely because theorists did not com-
municate their value to practitioners. The topic is allotted about two pages
in texts on test theory, and is left out of the discussion of reliability in texts on
psychological statistics or applied testing. Very likely one deterrent to the

4 This reference suggests a more rigid practice in classifying pupils than is to be found
in schools currently, but reassignments within today’s nongraded schools or in individually
prescribed instruction follow a similar logic.

% Kelley does not give due recognition to the fact that the number of errors of omission
(failures to promote or demote pupils whose true scores are outside the 40-60 range)
increase when regressed scores are used. This *» a fault of inaccurate measurement, however,
rather than of the regression technique itseif.
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use of estimates is the amount of arithmetical labor it adds to test scoring;
the availability of computers should lessen resistance.

It is known that the error ¢ is smaller on the average than the error A or 6.
So far as we know, no one has made the more startling point that regressed
scores are likely to be more reliable (!) than observed scores. This is the case
whenever the linear estimates of universe scores take into account the
different means of identifiable subgroups. Then the correlation of u, with
4, for all cases together exceeds that for u, with X,;. (This will not be
strictly true if conditions are not equivalent. The following discussion
assumes equivalence.)

To develop this point, consider two or more fixed subpopulations, each
with a mean universe score denoted by up. For simplicity, assume that all
subgroups have the same very large number of cases and the same within-
group variance. Call the grand mean X ;. The observed score, expressed as a
deviation from the grand mean, is X,,; — X ;; it resolves into two orthogonal
components: (X,; — Xp;) + (Xp; — X ;). The first is the within-group (w.g.)
deviation score and the second is the between-groups effect. Considering all
cases together, the latter is a variable and not a constant. When one deter-
mines multiple-regression weights for predicting u,, from the two orthogonal
variables, each weight is equal to the relevant covariance divided by the
variance of the predictor:

az(yr,w.g.) 02(,“P)

(3.10)  Est. (4, — ) A(X.w.g) (Xpr — Xpp + (X 1) Xpr — X.p)

In a large sample the second regression weight approaches 1, X ; approaches
u, and Xp; approaches up. The regression estimate of the universe score,
then, is an optimally weighted combination of X,; with a good estimate of
the score up. The correlation of the estimate with u, (all cases considered)
is a multiple correlation, and must be at least slightly greater than the corre-
sponding zero-order correlation of X,; with u,,.

The increase in the squared correlation has the following form:

[66°(9)) X o’(up)
o*(u,, all cases) x o*(X, all cases) x o*(X,w.g.)

(3.11)

Other things being equal, the greater the separation of group means, the
higher the multiple correlation.

Recognize, however, that when o%(u,) and o%(up) are fixed, the advantage
of the multiple-regression procedure increases with &¢%(5). When one has
an accurate observation procedure, the observed score is an excellent pre-
dictor of the universe score and introducing a second variable can add
nothing. For further discussion, see p. 151f.
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Regressing toward subgroup means is sometimes open to criticism on
grounds of social policy. To point to the most obvious example, black and
white applicant populations commonly have different means on aptitude or
proficiency tests. Regression equations developed from G studies on the
racial groups separately are likely to give a white a higher estimated universe
score than a black who has the same observed score. While the alteration
will, on the average, produce slightly more accurate predictions of relative
standing on the criteria, it seems most unlikely that one could convince the
black applicant or the FEPC (Fair Employment Practice Commission)
examiner that the regression estimate is legitimate and unbiased. For further
remarks on this point, see p. 383ff.; see also Novick (1971).

Charges of social injustice are not so likely when tests are used for guidance.
It can readily be seen that failure to regress gives the above-average member
of a group that has a low average a falsely favorable picture of himself,
underestimates the difficulties he will encounter, and so misleads him. The
fact remains, however, that when scores are regressed, fewer members of
the low-scoring group are given encouragement to set high goals. It is a
serious question whether statistically realistic forecasts are to be preferred
over optimistic ones, when there is a need to redress social imbalance.

The error of estimate

Let us return to the one-facet D study with design I:p. The sample mean
estimates u, the constant term of the regression equation (see p. 141f.).
With this nested design, p*(X,,u,) is the same for every application of the
design to the same population (or subpopulation) and universe, because
each application draws a large random collection of i. The regression
equation when the parameters are known is:

(32) /zp =p+ p2(XpI - /") = PszI + (l - Pz):u

The estimate /i, departs from the actual u, by some amount ¢, (i.e., this
error equals 4, — u,). Assume that excellent estimates of p? and u are
available. Then:

(3.12) &1 = P (Xyr — 1) + (1 — PDG — 1)

Now X,; — u, = Ay = puy~ + p,~ + e,;, and (i — u,) is the person
component. It follows that in the population:

B13)  o%e) = (D) + (ed(ple) + (1 — pHa*(p)

Recognizing that
PO

P = F(p)[*(p) + ) + *(pLe)]
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or
' AP ),
Wwe can write:
~ /\2 AN AN -~ AN AN
(3.14) 7 = Z2 [33x0] + ) — 255 )
) 2(X)
an
(3.3) () = F()(1 — pd)

This is the familiar variance for errors of estimate in linear regression.

Both 4 and ;; come from finite samples, so the regression equation is not
exactly known. This enlarges the error of estimate above the value given by
(3.3). We encounter an unsolved statistical problem here. There is statistical
theory for taking sampling of persons into account in a regression estimate
of one observable variable from another. However, this is inadequate for the
regression equation (3.5) even under classical assumptions, because the
correlation of true score with the predictor (observed score) cannot be
directly calculated. It is very possible that statistical theory can be extended
to this case, and to a regression equation based on the intraclass correlation.
Conceivably it could be extended further to take sampling of conditions into
account. Lacking such theory, studies with the jackknife procedure should
be made to learn how much the magnitude of errors is underestimated by
(3.3) in typical studies.

For the crossed / X p design, one cannot evaluate the regression equation
for the specific condition; the substitutions made will be discussed later
(see p. 142). One may calculate:

(3.15) ) > Ap)(1 — &Y

but the equality does not hold even approximately unless p(X,x) and o(X)
are equal for all 1.
Formulas (3.5) and (3.15) generalize to any number of facets. The observed

AN
score in (3.5) becomes X, ..., and &p? is calculated as required by the D-
study design. It may be worth noting that, for any design,

P P

(3.16) @ = @ =1—&p°
Ea’(X) o (p)

(See also numerical example in Table 3.10.)



108 Inferences from D-Study Data Regarding the Universe Score .,

E. Reporting and Interpreting the G Study

It may be well to summarize here the various suggestions that have been made
regarding the reporting of a G study. Experience will be needed to
discover the most useful ways of organizing a report, and it is likely that a
sound report will mean little to a reader who does not understand generaliz-
ability theory. However, in our opinion, a presentation covering the following
information should be far more satisfactory than the sketchy reports of G
studies usually offered.

1. Description of data collection, including design, number of conditions
of each facet, nature of the conditions sampled (e.g., qualifications and
special training of scorers), conditions held constant in all observations,
and conditions confounded with a facet deliberately sampled.

2. Number and character of subjects, including pertinent facts about age,
sex, educational background, and selective factors.

3. Estimates of all components of variance the G study allows one to
evaluate, with a clear indication of the size of unit represented (e.g.,
whether i stands for a single item or for a 50-item test).

The essential requirement, in the spirit of the Test Standards, is to describe
the data in such a way that the reader can decide whether the findings apply
to the D data he proposes to gather.

Beyond this, the investigator can repackage the data in various ways to
show what precision is expected from alternative experimental designs or in
generalizing to various universes. There are usually many possibilities,
however, and the initial investigator can reasonably be asked to present

statistics for only a few likely possibilities. Appropriate summary statistics
P

include &p2, 6(A), 6(5), and 6(¢). Whichever of these appear relevant should
be given for the likely D-study designs. The person reporting the G study
may appropriately go on to advise his reader regarding the designs most
likely to improve the precision of information for various purposes, at least
cost (see also p. 175).

The three chapters now completed have presented the essential machinery
of generalizability analysis and the interpretation of the results. For many
readers, an appropriate next step is to skip ahead to Chapters 6 and 7, which
deal with numerical examples. Most of the procedures demonstrated there
have already been explained in full, and the remainder have been touched
upon. Chapter 4 presents some of the more complex reasoning required to
take into account fixed facets in the universe of generalization and hidden
facets in the G study. This is a logical extension of Chapter 3. Chapter 5 is
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a further comment on theoretical matters opened up in the present chapter.
Specifically, it examines the assumptions and validity of the usual applications
of standard errors of measurement and estimating equations.

For another category of reader, it may be appropriate to leap ahead to
Chapter 9, which extends Chapters 1-3 into the multivariate theory for
dealing with test batteries. This material is considerably more difficult than
what precedes it, and for most readers it can best be examined after the
examples of univariate analysis are understood.

EXERCISES

E.l. Thefollowing passage is from a manual for an aptitude test (slightly modified).

Alternate-forms reliability was determined by giving Form A and Form B in
counterbalanced order, within a two-week period, to the same 484 pupils. In
Grade 2 the raw-score mean and standard deviation were 98.3 and 23.0 for Form A,
98.4 and 22.8 for Form B. The correlation was 0.89. Data from the two testing
sequences were averaged in determining the correlation.

Reorganize the results to estimate the following if possible: Ec%(X), 0%(up), o%(i)
for forms, o%(pi,e), o*(d), £0%(8), &p?, d?(e), and the regression equation for
estimating 4,. Consider Table 3.1 or 3.2 as a partial guide. Assume that the forms
are carefully equated.

E.2. Suppose the pupil is a member of a second-grade class whose mean and s.d.
on the form used are 99.0 and 21.0. Considering the information in Exercise 1 and
the answers to it, develop an equation for estimating the pupil’s universe score.

E.3. A G study provides these estimates of components of variance:

p i j pip i opye

521 8 4 1 10

A D study will have the design i x (j:p); n; = 4,n; = 1, n, = 10.If generalization
is to u,, calculate estimates of 0%(A), €62(8), £6%(X), and & p.

E.4. The mother of a preschool child is observed while she and her child follow
certain task instructions. One task / asks the mother to tell the child about wild
animals pictured on a card, another asks mother and child to converse over toy
telephones, etc. Observers j rated tape recordings of the conversations, using
several 1-to-9 scales.

In the course of preliminary studies, Leler (1970) investigated generalizability by
having 2 observers judge 23 mother—child pairs p on 6 tasks. The design was
i X j x p. Table 3.E.1 gives data for two of the rating scales.
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TABLE 3.E.1. Information from Generalizability Study of Mother-Child Interactions
(after Leler, 1970)

Component of variance

Scale p i J pi )} i Pie

A. Mother’s affectionateness 0.44 0.21 —0.01 0.17 0.08 0.11 0.58
M. Child’s dependency 0.00 0.08 0.04 1.10 0.27 0.04 191

a. Leler intended in her main study to examine the relations of the child’s language
development (as observed independent of these interaction data) to the variables
describing mother—child interaction. In the light of this purpose, which of the
following should the generalizability study be most concerned with: ¢%(4), £062(9), -
orép?? N
b. Calculate £6%(6) and & p? from the data in Table 3.E.1 assuming ani x j x p D
study, n{ = 6, nj = 2.

P
c. What will be the effect on & p? for scale A of changing n; to 4? to 10?

P

d. What will be the effect on & p? for scale A of changing nj to 12 to 4?

e. Leler discarded scale M in the final study. What explanations can you suggest for
its small person component ?

E.5. InlIsrael, ability of pupils at the end of secondary-school Hebrew Composition
is measured by an essay test that is typically graded by two persons. A generaliz-
ability study considered scores assigned by 2 representative examiners to each of
373 papers written by graduates of 11 schools. The analysis done by Pilliner
(1965, p. 289) generated estimates of components of variance for schools, examiners,
schools x examiners, candidates within schools, and candidates x examiners
(within schools).

a. What is the meaning of the component for schools x examiners?

b. Of the candidates-within-schools component ?

c. Suppose that all candidates are in competition with each other for a limited
number of places in higher education. Suppose further that in the D study many
different examiners will take part in the grading, two for each essay. Which score
components contribute to error of measurement in this case?

d. Suppose one wants to judge, from the data described in ¢, which schools
produce on the average the best graduates. (Ignore the fact that some draw superior
entrants.) Which score components contribute to error of measurement in this case?
e. Pilliner gives these values for the components, in the order stated above: 3.4, 0,
1.3, 13.5, 21.1. What can be learned from an inspection of these, without further
calculation?

f. In the G study, the same topics were assigned to all candidates. Does one intend
to generalize over topics ? How does this modify the interpretation of the G study?

.
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Answers
A.1. As these forms were equated, it seems most reasonable to regard o2(i) as zero
and to consider the intraclass correlation equal to the interclass correlation.

N

€a(X) = 3[(23.02 + (22.8)2] = 3(529 + 520) = 524.5
W(u,) = 524.5 x 0.89 = 466.8

P ~
80%(8,;) = o¥(pi,e) = 51.7
~ P
a*(A) = £0%(6) = 51.7
N

€3 (X, 1) = 0.89
a3(e) = 467(1 — 0.89) = 51.4

Confidence interval (67%) X, — 7.6 < pp, < X, + 7.6
Regression estimate i, = 98.35 + 0.89(X,; — 98.35) = 10.8 + 0.89.X);

A.2. Observed-score variance = 441. Assuming that ;E(pi,e) remains at 57.7,
N

a(p) = 383, and &% = 0.87.

fip = 99.0 + 0.87(X,; — 99.0) = 12.9 + 0.87X,,;

A3,
Component
Component of Frequency
of observed population Component within
score mean? of variance persons a2(A) &4%(0)
4 5 1
i Yes 2 4 0.5
pi 8 4 2.0 20
N 5 1 5.0 5.0
if, pij, e 11 4 2.75 275
a%(A) = 10.25 9.75 =
Y
&5%(5)

~~
14.75 = €03%(X)
N

5/14.75 = 0.34 = &p?
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A4. a. €p% and perhaps to a lesser degree £0%(8). The main investigation proposes

to compare individual differences in development with the interaction score.
-~

b. Scale A: 33(8) = 0.12; &2 = 0.79.
P

Scale M: 0%(3) = 0.48; &7 = 0.00.
c. Becomes 0.75; 0.83.
d. Becomes 0.68; 0.85.

e. Perhaps dependency is highly determined by the situation, so that variance in
“‘general dependency” is negligible. It seems unlikely that it is truly zero, as this
would imply negative correlations between dependency for many pairs of situations.
In Leler’s small sample of persons and conditions, the low value of the component
of variance could be a vagary of the sample in hand. Perhaps with more cases one
would find that the component is comparable to that for other scores. A more
extensive study might also find that, while the hypothesis of a trait of general
dependency is not powerful, tasks fall into two or three reasonably homogeneous
classes, and that dependency does generalize over the class.

A.5. a. School-examiner interaction implies that some characteristic associated
with the school (type of pupil? type of instruction?) attracts higher marks from
some examiners than from others.

b. The candidate component is a variance over persons, assuming each to have been
scored by very many examiners. Examiner variance is ruled out, and so are school
differences.

c. Examiners, schools x examiners, candidates (within schools) x examiners. See
also Answer f below.

d. Examiners, schools x examiners, candidates within schools, candidates x
examiners (within schools). Candidate variance within the school is not error if
there is no generalization beyond this year’s graduates, all of whom are tested.

¢. Examiners seem to be using much the same scale, but disagree markedly in
grading the same paper. There is, as expected, large variation among candidates.
The variation over schools is remarkably large, considering that the component for
the school is an average over the population of its students.

f. Surely the decision maker is interested in performance over topics in general
(and also over occasions). Interest is not confined to the topics assigned. But
Pilliner’s design leaves topics (papers) as a “‘hidden” fixed facet (see p. 122ff.). The
component for candidates determined here includes the candidate~topic interaction.
This interaction is actually a source of error in generalizing,



CHAPTER 4

Universes
with
Fixed
Facets

In Chapters 2 and 3 attention was directed toward the so-called random
model, in which the universe is assumed to include an indefinitely large
number of conditions of 7, of j, and of any other facet. The universe score to
which the investigator wishes to generalize was consistently taken to be u,,
the expected value of p’s score over all possible conditions. As was mentioned
in Chapter 1, the investigator may select a more restricted universe of
generalization. He may, for example, propose to infer u,;. from X;7;.,
generalizing over only the facet i. The interpretations suggested ..1 Chapter 3
have to be modified when the investigator proposes to generalize over some
but not all facets.

Almost the opposite problem arises when the investigator intends to
generalize over a facet, but fails to represent it adequately in the G study.
He might, for example, wish to generalize over both i and j, but collect all
G data under a particular condition of j. With j held constant in the G study,
he learns nothing about the error of generalization that arises from sampling
of conditions of j. Investigators sometimes fix a facet without realizing it,
and if so they reach incorrect conclusions. This chapter will discuss how
such a “hidden” or implicit facet confuses the interpretation of a G study.

A. Generalization Where the Universe Has a Fixed Facet

It is the substantive interest of the investigator that determines how broadly
he wishes to generalize. In a study where observers  have rated the creativity
shown by pupils on several tasks j, for example, there are three pertinent
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universes. An investigator will generalize to u,, if he looks upon creativity as a
global variable, transcending particular tasks or raters. The investigator who
wants to investigate task-specific creativity will generalize to u,;, the pupil’s
universe score on one of the tasks; that is to say, the investigator generalizes
over observers, for each task in turn. Still another possibility is generalization
over tasks, to a score u,;. A social psychologist might be interested in what
persons a particular observer rates as most creative rather than in treating the
observer as a source of random error. There can be no rule about what facets
to generalize over. Different degrees and directions of generalization serve
different practical and scientific ends.

Until this point, we have used a single asterisk to identify a particular
condition or set of conditions. It will now be necessary to consider two
distinct sets of conditions in some of our discussions, and hence to make a
notational distinction between J* and J**. In this chapter we shall invariably
use J** to refer to the set of n; conditions used in the D study where these
define the universe of generalization. That is, where the generalization is to
Upgse, from observed score X,; ;... Now a different set of conditions used in
the G study should obviously be denoted J* for the sake of making the
required distinction. But when J** itself constituted the set of conditions for
the G study (n; equalling n}), there is no particular reason to make the
distinction. This chapter will employ the symbol J** when the set in the G
study is the same as in the D study and universe.

Assume an intent to generalize over facet i and not j, to the universe score
Uspges. Assume that the universe of conditions of i is indefinitely large. There
are two basic cases:

1. J** used in G study. That is, the conditions of j used in the G study will
also be used as the conditions for the D study. J** is crossed with persons
in both studies. A particularly common example is the study of a test
score that is a composite of certain fixed subtests. While conditions of this
facet are fixed, conditions of some other facets (items within subtests,
occasions) are random; this then can be described by a “mixed model.”
Lord and Novick (1968, Chapter 8) present the theory for this case at some
length, under assumptions more restrictive than ours.!

2. J** not used in G study. Conditions j for the G study were sampled
from an indefinitely large universe of conditions of j. (The set sampled

! Since the “fixed”” J** can be thought of as a sample from a much larger set of Jj» the
G data could also be interpreted under the random model. The intention to generalize to
Kpy** is a decision by one particular user of the procedure, and does not preclude broader
generalization to u,, by someone else. We shall argue later, for example, that even though
essentially the same subtests appear in all forms of the Wechsler test, the interpreter may
reasonably regard them as samples from the domains of Verbal and Performance tasks.
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could be called J*.) The n; conditions to be used in the D study may be
regarded as a random sample from this same universe, but they have not
yet been selected and there is a negligible probability that they will be the
ones that appeared in the G study. It is intended to make inferences about
Bopges from Xpps...

From a theoretical standpoint (though not necessarily an operational one)
the two cases are distinct. In the former, the two sets of conditions of j are
identical, and identical to the universe of conditions of that facet; in the
latter, the sets are independently sampled from the universe of conditions.
There are a number of intermediate possibilities, and some of these can be
discussed briefly after the two basic cases are considered.

The error A

The discrepancy Ayzye = Xp17ee — fpyee Will be considered first. This will
be interpreted in terms of the components of X,,; |J introduced in (2.19)
and (2.20).

D-study designs having i X j. We shall consider various D studies in which
the i are crossed with the j that compose J**. Then we can average over j to
obtain X,;.. for each p,i pair. When this is done, however, each of the
“within J’ components defined in (2.20) becomes zero, and the corre-
sponding components of variance vanish.

Consider Design VII; Table 4.1 resolves the observed score X, .. and the
universe sCore y, ;.. into the components defined in (2.19). This table is much
like Table 3.3 fora p X i design with generalization to u,. In fact, the present
D study can be regarded as having a one-facet (i x p) | J** design, with
every X, observed under the same fixed conditions J**.

Where the D data use the same set of conditions J** as the G data, there
are several ways to estimate the needed variance components: first, a two-
way random-model analysis of the X, ;.. from the G study, assuming an
indefinitely large number of possible i; second, a three-way analysis of X,;;,
using mixed-model equations for expected mean squares; third, a recombi-
nation of components estimated by the random-model equations applied to a
three-way analysis. All three give the same variance estimates for the com-
ponents listed in Table 4.1 and lead to the same ¢*(A).

If J** differs from J* there is no way to obtain information directly
relevant to X, .. from the G study. However, by assuming that both J**
and J* are randomly sampled sets from an indefinitely large universe (case 2),
we can estimate the expected variance of observed and universe scores for
any set of n; conditions. Random-model estimates of variance components
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TABLE 4.1. Components of Scores in a D Study Where i is Crossed with j within
the Person (Generalization to pi,yes)

X,,IJ.: MpJex Agl]t. Uz(A)
Hyee Byas
UpJee — Uyse Upgss — U s«
1
BIgese — Ugse UIgee — U Jee ’7, 62(i|J**)
1
HpIges = HpJes Hoplges~ 1
—ULgee + HByes = (pi e |T**)
EpIgese ep1gee g

are obtained from the G study. In terms of these estimates,

@n oW = [0 + 1 ) + i) + 2 i)

n; n; n
If n; = n;, the numerical value from (4.1) is the same as would be obtained
under the assumptions of Case 1, even though J** and J* are different sets
of conditions.

A modification of the Venn diagrams previously used may help to give an
intuitive picture of the components entering various scores and variances.
Consider diagram (a) in Figure 4.1, which refers to the completely crossed
design. In earlier presentations the dotted circle representing effects associated
with J was shown complete. In Figure 4.1, it is shown incomplete because
observed scores do not vary with respect to J. The dotted line passing through
the region labelled p | J** reminds us that that effect includes information on
P; as well as u,; similarly in the other regions of the diagram. The diagram,
with the lower part of the j circle eliminated, includes all components of the
observations X, ;.. from which generalization to u, .. is attempted.

If we now ignore the shaded area, which represents the universe score, all
the remainder of the diagram represents components of A,;;... For this
design, ¢%(A) is made up of the i|J** and pi,é|J** components. (See
Figure 4.2 below.) Noting that each of these components is sampled #;
times in the D study,

(4.2) o*(A) = ni [0° | J**) + o*(piié | J**)]

This differs from ¢*(A) for generalization to u, because o%(pj) has moved
over to the universe-score variance.
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(@ VIl (X p)|J** (b) V-A (i:j) X p,je J** or
(aTrxplJj

7
ipielJ*"

pIJ**{ "’Pi’éljui

(c) V-B (i:p) X J** (d) IV-Ai:p X j), jeJ*™
or (I:p)|J**

FIGURE 4.1. Separation of Kinds of Variance in Designs where a Fixed J** is
Crossed with Persons.

Another design that has i crossed with j is V-B, (i:p) X J**. As shown in
diagram (c) of Figure 4.1, the j component does not contribute to variance,
hence is disregarded. The remaining diagram is precisely that for a one-facet
i:p study, save for a notation recognizing explicitly the use of several fixed
j. For each p the D study makes n’ observations (confounded) of

(i,pi,é | J**).

Accordingly, a G study of Design VII using conditions J** gives the estimates
required by (4.2). A mixed-model analysis of a Design V-B G study gives
o”(i,pi,é|J**) = o2(A). For Case 2, (4.1) is again the suitable general
equation.
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D-study designs having i:j. Again, suppose that p is crossed with J** in
the D study, but i is nested. Then we are concerned with Design V-A or IV-A.
(Design III-B is simply a version of IV-A.) For scores X,,.., the design is
in effect (I X p) | J** and the Venn diagram is almost like that for Design
VII. The most general formula, comparable to (4.1), uses values of com-
ponents estimated by random-model equations:

= 10 + ) + 70 + Fpije)]

(4.3) () =

02(A) is like that for generalization to u,, except that the pj and j components
are removed.

Design IV-A reduces to (I:p) lJ** and the Venn diagram is almost like
that for V-B. Formula (4.3) applies to this design also.

Observed-score variance, the error 8, and the coefficient of generalizability

The Venn diagrams, interpreted with the aid of Table 3.8, provide a basis
for direct identification of the components of the observed score, the devi-
ation score, and the corresponding variances under any one of the designs.
Any component lying outside the circle drawn with a solid line (i.e., any
component that does not contain p in its identification) is the same for all
persons and is eliminated from the deviation score. Any component within
the solid circle is a component of the observed deviation score, and of the
observed-score variance.

The components of the deviation score, located within the p circle, divide
into two groups: those contributing to the universe score, which correspond
to the shaded area, and the remainder, which make up the error é. The
decomposition for Design VII is shown in Figure 4.2. Comparing it to
Figure 3.3 (p. 88) we see that the only change is the transfer of pj infor-
mation to the universe-score component of variance. A similar division could
be made for each of the other figures.

Because the number of observations on each component in the D study is
the same, whether generalization is to u,, or u,;, the number of components
indicated in Table 3.8 serves as divisor for each component of variance. The
expected observed-score variance is the same as that determined in Chapter 3,

and the universe-score variance is o2(pJ**), which is estimated by o*(p) +
[;;(pj)/n}]. The new value of 5/;2(6) is the same as that determined in Chapter

3 save for the transfer of Z'E( pj)/n; to the universe-score variance.

Since the observed-score variance has not been altered, and the universe-
score variance contains an additional component, the coefficient of generaliz-
ability is larger when g, .. is the universe score instead of x,. Counting
individual differences specific to conditions j as wanted information produces
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the increase. With a new value for the coefficient, there will be a new regres-
sion equation and a new value for o2(e).

Intermediate and complex cases

Several problems that have been ignored to this point will now be discussed
briefly. We have assumed that the J in the D and G studies are identical,
or are randomly sampled from a large number of possible conditions. There
is an intermediate case where J* of the G study defines the universe of
admissible observations (n; = N,), and a subset of these J constitute the J**
of the D study. For this case, the components of variance are obtained from a
mixed-model analysis of the G data. To use the random-model equations
would be incorrect. The expected observed-score variance contains the
component:

(1 _ "_2) a*(pj | J*)

’
n; n;

(a variance assuming sampling from a finite universe without replacement).
Generalization to either p, ;. Or 44, ;.. could be intended. The universe-score
variance would correspondingly be either o%(p | J*) or

’ . *
Uz(PIJ*) + (1 _ﬂ)“z(PJ,IJ )
n; n;
The argument is similar when a random set of ,; conditions is sampled for
the G study from the N, conditions, and a set of size n} is sampled for the D
study. These sets may or may not be identical. The components of variance
are correctly estimated by the Cornfield-Tukey equations for sampling from
a finite universe (see p. 60f.), but the distinction is unimportant for N; > n;
and n;.

Mention was made earlier of stratified tests as an example of generalization
where there is a fixed facet. Possible test content is divided into strata (e.g.,
“verbal’”” and “quantitative’ items), and the test constructor is instructed to
draw a certain number of items n;, from stratum j, a subuniverse. Thus, in
the universe of items, i is nested within j, and the j are fixed. This model is a
much better description of actual test construction than the random-sampling
model is. Each test is still seen as a random sample from the universe of tests
formed by the given sampling rules, applied to the given universe of items.
Rabinowitz and Eikeland (1964), Rajaratnam, Cronbach, and Gleser (1965),
and Cronbach, Schénemann, and McKie (1965) have developed intraclass-
correlation formulas for “stratified-parallel” tests that consider items and
persons as sources of random variance.
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The formulas as developed originally took various forms, but essentially
an analysis of variance was made for the stratum j to get MS res (j) =

Ean

o*(pi,e| j). Assume that the D study will have n; = n,, and that all persons
will take the same items. Then if the stratum score is a fotal score n; X,p,
and the test score X, is ,Zn,. X1, for the universe of tests,

(44) o) = E*(X,p) — S0 (pise | )
> n,o%(pie| )
4.5) EP Kyppty) =1 = g ——
o~ > n;MS res ()
4.6) Ep* (X ppopy) =1 — -’m

It was suggested that £o2(X, ) be estimated directly by the sample variance
s2(X,p) if the n, are fixed. Equation (4.6) is a variant of the long-established
Jackson-Ferguson ‘battery-reliability”” formula (1941); using an alpha
coefficient (3.4) for the stratum or subtest in their formula produces the same
result as (4.6). Where n;[n; is the same for all j, the value of &p?
changes in accord with the Spearman-Brown formula.

Use can also be made of the mixed-model formulas similar to those
treated earlier. However, these formulas have embodied assumptions of
uniform n; over strata (e.g., see p. 221ff.) The stratified test is actually a
battery of subtests, and to deal comprehensively with such data requires a
much more complicated model. In Chapters 9-10 we shall set forth a multi-
variate model that applies to the stratified test. It allows for the possibility
that one will alter the universe of tests by assigning different lengths or
weights to the strata. A single G study may then be applied to many quali-
tatively different stratified tests.

Throughout this chapter we have assumed that the universe of generali-
zation contains one score X,,; for each pij combination, restricted only by
the requirement that j belongs to J* or J**. However, one might have the
fixed facet nested within person p in the universe. That is to say, for each
person there is a fixed set of conditions J,, and generalization of p’s score
over other conditions of j is not intended; the conditions that enter J,, differ
from person to person. When p’s spouse fills out a questionnaire, one
intends to generalize over the universe of items. Because there is a different
spouse for each p, spouse j is nested within p or, one might say, p and j are
confounded in the universe. One can think of cases where a whole set of J is
confounded with p; for example, for a college teacher, the courses he teaches
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may be considered a fixed set of conditions. Generalization over one facet
when another facet is fixed within the person was treated briefly by Gleser,
et al. (1965). We shall not go into this subject here, as no examples of this
design occur in the following chapters.

B. Implicit Facets in G Studies

The three-way analysis of scores X, ;. is, as we have said, precisely like the
two-way analysis of scores X,,;. This brings to attention a basic difficulty in
interpreting all generalizability (reliability) studies. Unless all facets that
might conceivably affect scores are explicitly identified in describing the
experimental design, one may easily make too sweeping an interpretation.

Very often, what looks like a one-facet random-model G study actually
has unmentioned facets represented in the design in some manner. When
several observations are made under various conditions of a facet i, some
single condition of an additional facet may have been designed into the
observing process. For example, when two or more test forms are applied,
it is common for them to be administered by the same tester. Testers form a
facet; these G data, then, are collected by the design i X j x p, n; = 1.
The situation is essentially the same when several conditions of j are averaged
to generate each score, so long as the same set of conditions is used in
observing every person. The casual identification of scores with test forms,
for example, tends to overlook such facets as tester and occasion.

It is natural to speak of generalizing to a universe score u,,. This is often a
considerable oversimplification, even though most of the literature on
reliability in education and psychology speaks of a single “true score”
whose properties are those of u,. In the most conventional of reliability
studies, there are likely to be facets that partly define the universe and yet
are not mentioned in describing it.

In any study where data are laid out in an m-way array (persons, plus
m — 1 facets), there are further facets along which observations might have
been classified. Consider any one such unmentioned facet, k. There are three
possibilities:

1. k confounded with p, or i, or some other facet. Each condition of k
is associated with a certain person or a certain condition of a specified
and systematically varied facet, for instance 7, so that when a certain i is
sampled a particular k is always selected also. It is possible to have k
confounded with both p and i, etc.

2. A uniform condition & (or a uniform set K) is used in every G-study
observation.

3. k varies randomly and independently from observation to observation.
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Case 3 gives no trouble, because all effects associated with k contribute to
the residual component of variance. Any error in generalizing over facet k
is properly taken into account.

In Case 1, if the sampling makes k joint with 7, the interpretation must
bring a k into every statement that contains the symbol i. Thus, for example,
fiy; is really @ u,;. A variance component such as o*(pi) is really a com-
ponent for o*(pi,pk,pik). Without an experiment that samples k separate
from i there is no way of estimating the pure component for pi. With such
systematic confounding, it is best to express conclusions in terms of the 7,k
compound. If such raters as the school counselor and the Latin teacher
differ because they see pupils in systematically different situations, one can
accept the pertinent variance component as reflecting rater differences
combined with situation differences, rather than as an error “attributable
to raters.”” Confounding of k with i, j, or both does not preclude the usual
interpretations when the universe score is u,. The contribution of variation
from k to the various errors is fully recognized, though it is entangled with
another facet. Variances for D studies can be estimated only if the same
confounding of k with i, etc. is retained in the design.

When k is tied to p, there is a greater problem. What the analysis reports
as a component for p is actually a component combining the p, k, and pk
effects. Likewise, the supposed pi component is augmented by the ik and
pik components. In effect, such a study treats pk, not p, as the subject of
inquiry. This is all to the good if p and k are tied together in daily life in the
same way they are tied in the investigation—if condition k is, as it were,
an invariant aspect of p’s environment. If p and k are tied only in the in-
vestigation, the study is hard to interpret. An example of the p and k “tied
together in daily life” is a study of teachers, in which all observations on a
particular teacher are made in the particular classroom where the teacher
normally works. Perhaps the teacher would teach differently if he moved to a
different physical environment, but the stability of teacher assignments
makes it reasonable for scores to reflect the teacher-plus-classroom com-
bination where this is looked on as an independent variable. (Data with this
confounding would not be entirely satisfactory as a criterion in a teacher-
selection study, however, as one never hopes to predict how well the teacher
will do in a particular physical setting he is later assigned to.)

Case 2, where the same conditions of k enter all observations, has perhaps
caused the greatest misunderstanding of reliability coefficients. A G study
with a single k necessarily estimates components of scores *“within k.”” This
is also true where several k are present in every score but are not treated as a
facet in the analysis. To speak of a retest study over two days and a study
applying parallel forms on the same day as both estimating “the”’ standard
error of measurement is clearly misleading. The retest study investigates
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within-person variation among a universe of observations in which the test
form is fixed and occasions vary. The form-to-form study provides infor-
mation about a universe in which forms vary and the occasion is essentially
fixed. Other temporarily fixed conditions such as examiner and scorer also
restrict the universe of generalization. In an observational study of pupils,
perhaps the subjects’ teachers are a fixed, unrecognized, but influential
source of variation.

Whenever a condition of a facet is uniform throughout the G study (or
is crossed with persons and other conditions but not analyzed as a source of
variance) there is no way to estimate what effect the sampling of that facet
has on the error of generalization. Therefore, it is most important in re-
porting a G study to recognize conditions that have been held constant and
to qualify any statement about generalizability accordingly.

Results are ordinarily described as simply as possible; therefore it is
natural, in a one-facet study, to designate variance components “for persons,”
and “for test forms.” However, one must be careful to recognize shifts in the
meaning of common labels and symbols. If a one-facet G study is made that

N
holds constant some condition k* (Case 2), the estimate designated as ¢2(i)

is actually ;;(i | k*), for example. The component includes the usual o2(i)
and also the variance component for u,.. If i and k vary jointly (Case 1),

0?(i) includes variance from o%(i), 02(k), and ¢2(ik) components. In a Case 3
study the ik interaction forms part of the residual, along with every other
component involving k.

EXERCISES

E.1. Data for rating Mother’s affectionateness (Scale A) while mother and child
engage in certain tasks were presented in Chapter 3, Exercise 4. Consider here the
possibility that the universe of generalization is limited to six tasks, these being the
same as the tasks actually used in the D study, but that the investigator intends to
generalize over an indefinitely large number of raters, so that the universe score is
Hopre.

a. What is the variance of universe scores ?

b. What is £02(5) when the same two persons rate all responses collected in the D

study ? o~

¢. For the same design, what is &p?? Why does this differ from the value obtained

in Chapter 3, Exercise 4b.

E.2. An instrument for measuring ego defenses (Gleser & Ihilevich, 1969)
describes 10 conflict situations to the subject. After he reads the description, the
subject is asked what he would do in such a situation—rather, to select one of five
courses of action as most likely and one as least likely. Of the five choices, one
represents the defense of projection. He receives a score of 2, 1, or 0, depending on
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TABLE 4.E.1. Analysis of Variance for a Measure of Ego Defenses®

Degrees Mean

Source of variance of freedom square
Person p 10 2.6400
Story s 9 2.5076
Level¢ 3 7.3939
Occasion within person o, po 11 0.3091
ps 90 0.5920
pe 30 0.4773
s¢ 27 1.4503
s0, pso 99 0.2409
¢o, pto 33 0.1545
pst 270 0.3300
Residual 297 0.1905

a Score components are on the scale of Xpszo.

whether he picks that choice as most likely, or leaves it unmarked, or picks it as
least likely. (Scores for other defenses are also obtained, but we ignore them.) The
question about actual behavior represents one of four “‘levels” of response; there are
questions regarding three other levels: fantasy, thought, and affect. The entire
instrument for measuring tendency to use projection then consists of 10 stories,
crossed with 4 levels; the test score is the sum over these 40 responses.

In one study, the test was administered on two occasions approximately a month
apart, to eleven persons. Treating the study as having the design £ X s x (o:p) and
analyzing the entire matrix of responses yielded the mean squares in Table 4.E.1.

a. Estimate variance components under the assumption that levels are fixed.
Treat occasions and stories as random.

b. Estimate 6%(u,rs), 62(A,5L+0), and €6%(X,,s1.+0) for D data using the total for
ten stories, four levels and one occasion. The D-study design is £ X s X (0:p).

-~
c. Interpret o2(p¢| L*).
E.3. The levels of content in the above test can be considered to be a stratification
of the response domain into these four levels. Summing over stories for any level
then yields a subtest score. Conceivably an investigator might want to use only one

subtest score for a particular decision.
a. Estimate the expected subtest observed-score variance.

PN
b. Compute £0%(8), assuming that the investigator intends to generalize from the
subtest score, over the universe of stories and occasions, keeping level fixed.

Answers

Al a o¥(uy.) = 0.44 + 14(0.17) = 0.47
b. £62(3) = 0.04 + 0.048 = 0.088

c. é’/p\z = 0.84. This is larger than the value (0.79) computed in Chapter 3,
Exercise 4b. Although both coefficients apply to the same D data (i.e., two raters
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and six tasks), generalization here is over a limited universe and is therefore more
accurate
A.2. a. All components in Table 4.E.2 except so, pso, é are the same as obtained
under the random model.

TABLE 4.E.2. Interpretation of Analysis for Measure of Ego Defenses®

Estimate of Expected variance
Source of variance of observed total
variance component scoreP® o%(A)
p|lL* 0.0248 39.68
s|L* 0.0218 — 349
ps|L* 0.0439 7.02 7.02
o,po | L* 0.0017 2.72 2.72
s0,pso,é | L* 1/4 (0.2409) = 0.0602 9.63 9.63
| L* 0.0257
pelL* 0.0074
s¢|L* 0.0509
pst|L* 0.0698
to,pto|L* ()
s¢o,psto,e|L* 0.1905
59.05 22.86

& Components are on the scale of Xpsto.
b As the total score is a sum of 40 responses, each component is multiplied by 1600.

b. 02(ipre) = 39.68. £2(X) = 59.05. 02(5) = 22.86.

-~

c. o®(p¢| L*) indicates the extent to which persons vary in their response,
depending on the level of response about which inquiry is made. Thus, it has the
same meaning as in the completely random model save that ¢ is constrained to be a
member of the set L*. The estimate is calculated on the assumption that levels are
sampled with replacement.

Most often, however, when there is sampling from a finite set, sampling without
replacement is assumed. Under this assumption the variance attributable to person-
level interaction is decreased by 1/N, from the value obtained under the random
model.

A.3. a. The components entering observed-score variance (for sums over 10
stories) are

P | L* 100(0.0248) = 2.480
ps| L* 100(1{ ¢)(0.0439) = 0.439
o,po| L* 0.170
so,pso, é| L* 0.602
pt|L* (100)(1 — 14)(0.0074) = 0.555
ps¢ | L* 100(%0)(1 — 14)(0.0698) = 0.523
fo,pto | L* ©)

sto,psto.e | L* 1.429

b. 6/;3(6) = 0.439 + 0.170 + 0.602 + 0.523 + 1.429 = 3.163



CHAPTER 5

Assumptions
Underlying
Estimates of
the Universe
Score

To this point, we have devoted minimal attention to mathematical as-
sumptions. Our primary aim has been to show how a multifacet approach,
together with the overt distinction between G and D studies deals with the
traditional questions of reliability. The only assumption invoked throughout
the argument has been the random sampling of conditions and persons. This
assumption, in some ways a strong one, is nonetheless weaker than the
classical model, which ignores sampling of persons and assumes conditions
to be strictly equivalent.

We have treated two kinds of estimate of the universe score: the confidence
interval symmetric around the observed score, and the regression estimate.
Testers almost invariably use the observed score as if it were an estimate of
the universe score (true score). Midway in the history of classical theory, the
concept of a confidence interval was added; plotting test scores so as to
display a “confidence band” is now a common technique. The regression
estimate, though long recognized in test theory, has had little place in
testing practice. While developing generalizability theory, we have become
very much conscious of the intricate rationales underlying the two approaches.
In this chapter we shall trace the logic behind each of them. The criticisms
we make apply, for the most part, to interpretations under classical theory
as well as to generalizability theory.

The regression and confidence interval estimates are radically different
techniques. Once information on the error of measurement is available, it is
possible to set up a confidence interval for the universe score when a single
person is measured by himself. There is no need to bring in a reference group.

127
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The regression estimate, however, can be made only by bringing estimated
parameters for a reference group into the picture. Where the confidence
interval relates solely to the distribution of observed scores “within p*,” the
regression estimate relates to the joint distribution of observed and universe
scores in the population. This distinction has rarely been pointed out in
writings on test theory because the traditional stress on individual differences
brings a reference group into many discussions of confidence intervals.
Such mixing of concepts is a source of great confusion to beginning students
of test theory.

Perhaps matters will be clarified by placing the interpretations in a Bayesian
framework. Classical statistics was developed by Fisher, Neyman, and
others who advanced beyond the base laid down by Karl Pearson. The
classical approach requires the user of statistics to phrase his question
formally: “Is it likely that this evidence would be obtained when such-and-
such hypothesis is true?”’ If the answer is “no,” the hypothesis is rejected.
Fisherian logic does not allow one to consider “the probability that the
hypothesis is true.”” Bayesian logic, which has many advocates today, does
make statements about the tenability of the various alternative hypotheses.
To do so, it takes advantage of whatever estimate of these probabilities one
can make prior to the experiment. In a study where a mean or other measure
is wanted, the investigator is asked to state the “prior’ probability that the
true measure will fall in each interval of the scale. He may arrive at those
probabilities by direct tabulation of past experience with similar events or
may simply state “beliefs’’ derived quite indirectly from experience (Mosteller
& Tukey, 1968, pp. 160-183). The prior probabilities are weighted into the
final solution along with observed values.

The tester seeks to settle upon one hypothesis or a range of reasonable
hypotheses about the subject’s universe score. The regression estimate of the
universe score can easily be seen as a weighted combination of prior infor-
mation with direct observations. As soon as the tester knows any basic fact
about the subject, he knows something about what hypotheses are reasonable.

Knowing that the person is a college student, for example, one can say
a priori that an IQ in the range of 110-130 points is fairly likely to be his
universe score. One would be astonished to find that his universe score is 75.
While a universe score of 160 is not out of the question, we would lay odds
against such a rare value. These prior probabilities are derived from
experience with college students previously tested. Much more definite
probabilities are available when we can identify the subject as a senior in
College C and the score distribution of that senior class is known. The distri-
bution may be still more sharply defined if, for instance, he is an honor
student, and we can obtain the score distribution for that group.
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The scores in such a distribution do not give literally “prior” information,
if all the persons’ scores become available at once. From a Bayesian stand-
point, however, they are priors because looking at the distribution permits the
tester to make some judgment about the subject before he turns to the
observations made directly on him. Test interpreters of course do make
judgments from priors very often; this is most clearly seen in the statement
that a certain test score is suspect “because it occurs so rarely among such
persons as this one.” The regression estimate is one technique—less subtle
than most of those used in Bayesian statistics—of using prior information
along with test evidence to reach a more accurate conclusion about the
universe score.

Though the confidence interval arose in the classical framework, it can be
given a Bayesian interpretation. The tester marks off a multiple of 6(A) on
each side of the observed score and takes the resulting interval as his con-
clusion about the universe score; thus, no weight at all is given to prior
information. The Bayesian theorist considers this reasonable only when the
distribution of priors is nearly flat: “gentle,” to use the Mosteller-Tukey
term. Sometimes the tester has little or no prior basis for judging what
universe score to expect, except as the scoring rules set a ceiling and a floor.
If that is the case, the tester cannot “weigh in’ the prior information.

It is precisely this situation in physical science that makes it appropriate to
report an observation as, for example, 13.005 & 0.002 grams. The scientist
has some prior knowledge; merely from looking at the specimen he can be
sure that its weight is closer to 10 grams than to 500 grams. However, he has
little basis on which to say that, in the range 12.50-13.50, one value is ap-
preciably more likely than another. His region of uncertainty is wide relative
to the errors of measurement, and his prior probabilities within that region
are equal (or nearly so). Taking priors into account in the Bayesian fashion
would make no difference; to the right of the decimal place, the balance
reading is all the evidence there is.

The psychological tester has taken over the “plus-or-minus” technique
from physical measurement, without realizing that his situation is funda-
mentally different. He almost always knows something about the score
distribution to be expected for a population from which his subject comes,
and his error of measurement is fairly large. When a tester anticipates that
his subject’s IQ (universe score) is in the range of 120-130 points but can
make no finer prior judgment, the range over which his priors are equal is
about 2¢(A). In contrast, the physical scientist’s range of flat priors was 500
times the standard error.

The preceding paragraph implies that the regression technique is advan-
tageous, but there is perhaps a case to be made for the confidence-interval
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method. If it requires fewer (or more acceptable) assumptions than the
regression estimate, it will be preferred in many applications. Therefore, a
detailed look at assumptions is required.

A. The Logic of Confidence Intervals

The complications of generalizability theory will be sidestepped in this
section. Emphasis on a familiar model will make the crucial points a good
deal more evident. Assume strictly parallel measures X,,;, X,,, etc. Assume a
population mean of 0 and a variance (over persons) of 1.00. Suppose that
the coefficient of generalizability is 0.75, hence the standard error of measure-
ment is 0.25'/2 or 0.50. A confidence interval is stated in the form X, —
0.50 < 4, < X,,; + 0.50. The standard error will be referred to as ¢(A), not
0(9), though under the assumption of equal means o(A) does equal o(d).
This section does not discuss confidence intervals based on o(e).

The rationale in general statistics

Establishing a confidence interval for a universe score rests on the statistical
rationale for an interval estimate of a population mean. Because that rationale
is presented in many statistics texts (Hays, 1964, p. 287 ff.; McNemar, 1969,
pp- 99-105), we need only summarize it here. It is usually assumed that an
indefinitely large number of samples of size n could be drawn from the
population and that the sample means so collected would form a normal
distribution. The standard deviation of sample means ¢(X) is equal to the
standard deviation of the individual scores in the population, divided by n1/2.

The assumption of normality implies that the distance of a sample mean
from the population mean will rarely be two or three times as large as ¢(X).
In 339, of the samples, the sample mean is outside the range defined by
marking off 6(X) on each side of the population mean. If we have an estimate
4(X), the observed mean +6(X) is an interval estimate of the population
mean. Because in 679 of all such analyses the interval will contain the
population mean, it is called a “67%; confidence’ interval. Other multiples
of &(X) correspond to other confidence levels. If the interval X 4 1.960(X) is
used, the normal distribution assumption implies that the corresponding
confidence level is 959%;.

The argument is modified if the ¢ distribution is used to recognize the fact
that o(X) is estimated rather than known. In the usual statistical analysis
there is a single sample of size n from which o(X) is estimated. If n is as large
as 5, the interval X £ 6(X) encloses very nearly 67% of all sample means,
and to derive the precise confidence level from the 7 distribution instead of
the normal would have only a trivial effect on the interpretation. When the
sample is smaller than 5, the interval given by 41.965(X) includes appreciably
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less than 95 of the sample means, according to the ¢ distribution (Mosteller
& Tukey, 1968, pp. 84-85).

To adapt the statistical rationale to measurement problems, the test
theorist notes that the act of measurement produces samples from a distri-
bution of admissible scores for the person, a distribution that has the universe
score as its mean. The observed score is a sample mean, whether it is based
on a single event and the sample size is 1, or is a composite of a whole series
of observations, for instance, of n, item scores. (The observed score may be a
total over n observations instead of a mean; if so, this would require small
changes in wording of many statements below.)

The distribution of scores from an indefinitely large number of obser-
vations on the same person is a within-person distribution of scores. This
distribution, like that for single observations, has the universe score as its
mean. An inference about the within-person distribution has nothing to do
with differences between persons or with the universe-score variance. The
standard deviation of possible sample means (observed scores) for a single
person is analogous to the standard error of sample means drawn from a
single population.

There would be no essential difficulty in applying the usual rationale if a
sizeable number of observations on p* were available from which to estimate
0(Xpep) = [?”(X,,., — up)?2. It would have to be assumed that each

observation is randomly sampled from the within-p* distribution, and that
the distribulion of X,.; is normal. These assumptions do not seem unreason-
able for test scores each of which is based on a large number of items.
However, one may have only a single X, for the person observed in the D
study, and if n} is moderate in size, one must employ the ¢ distribution. This
would produce a wider interval than the tester ordinarily establishes.

The tester’s assumption of uniform within-person distributions

The familiar way around the difficulty of obtaining 0*(A,;) separately for
each person is to add an assumption. Assuming parallel tests, 0%(A,;) for all
p and I together is the same as the variance 02(A,; | 1) for any one test.
Now the assumption is added that o*(A,;) = o2(A,r | p) for any p in the
population. This, or some slightly weaker statement about approximate
equality, is the basis on which confidence intervals are justified in most
extant test theory.

The assumption of a uniform o(A | p) for all p may or may not be justified
by the facts. If the assumption were valid, the standard deviation across
persons would be the same at each level of u,. Scatter diagrams for test
against retest frequently show that this assumption is untenable. Most
commonly, it appears that the within-person standard deviation is large for
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persons who find the test difficult, and small for persons with fairly high
universe scores. But just the reverse is reported at times; the Stanford-Binet
evidently has a much smaller ¢(A) for a child whose score is below average
than for a high scorer.

Suppose intervals are established on the basis of 6(A) estimated for the
population, but the o(A | p) actually vary from person to person. Then, by
the ordinary statistical reasoning, the confidence level must be larger than
0.67 for persons whose a(A | p) is relatively small, and vice versa. Concretely,
suppose that ¢(A) is 10, and the interval is made 20 points wide (410
points). Then for the subset of persons whose (A | p) is 15, the interval
spans only +0.67¢ and the confidence level is 0.50. For the subset whose
o(A | p) is 5, the interval spans +2¢ and the confidence level is 0.95.

The foregoing discussion suggests that the tester has had little basis for
stating what confidence level can be associated with the interval estimate
for a person.

Problems of interpretation

Does the interval for p* contain p.,.? Lord and Novick have shown (1968,
pp. 511-512) that confidence intervals are likely to be misleading in the
interpretation of scores even when the assumptions the tester usually makes
are fully satisfied. For the moment, assume that there is a population of
persons to which person p* belongs, that universe scores in that population
are normally distributed, and that the within-person distribution of observed
scores is normal and has the same standard deviation for every person.
Assume also, for simplicity, that the parameters o%(u,), u, and o%(A) are
known. Then the joint distribution of observed and universe scores will be
bivariate normal. If confidence intervals of the form X,.; & o(A) are now
set up, the intervals will contain u, for two-thirds of the persons, which is
the risk chosen in setting up an interval of this width. What is often over-
looked is that the risk that u,. will fall outside the interval is greater than
one-third for individuals whose observed scores are far from the mean.
This is offset in the overall odds by the fact that for persons with observed
scores near the mean the universe score falls within the interval with prob-
ability greater than two-thirds.

To be specific, consider further the test with o(X) = 1, u =0, p?=0.75,
hence ¢(A) = 0.50. Suppose p* has an observed score of +4; an extreme
value deliberately chosen. The interpreter following customary methods is
likely to say to p*: “The chances are two out of three that your score is in
the range 3.5-4.5.” Are these the right odds?

The odds stated by the interpreter apply to the whole population of
persons. But we already know that p* belongs to the subclass of persons whose
observed score is 4, and the odds in that subclass are not two out of three.



The Logic of Confidence Intervals 133

Consider the slice of the bivariate distribution where X = 4. This is a distri-
bution of universe scores; it is normal, with mean 3 and standard deviation
0.43, in accordance with equations (3.2) and (3.3). We do not know which
score in the distribution belongs to p*. But each score belongs to a person
for whom the same interval estimate of the universe score would be given;
for what fraction of these persons does the universe score actually fall in
the range 3.5-4.5? Practically none have universe scores above 4.5, as that
is more than 3 standard deviations above the mean of the distribution; but
3.5, the lower edge of the interval, is 1.15 standard deviations above the
mean and therefore about 879 (!) of the persons who are told that their
universe scores fall between 3.5 and 4.5 actually have universe scores below
3.5.

The reader, knowing that scores as high as +4 standard deviations are
unlikely, may not be impressed by this example. While we chose an extreme
value to produce a dramatic result, there will be similar but lesser contra-
dictions of expectation when the observed score is much less extreme.
Moreover, if one’s measure has a low coefficient of generalizability, dramatic
contradictions will be obtained for scores that occur more frequently.
Suppose that the coefficient is 0.40. Then 819 of persons with an observed
score of +2 will have universe scores below the lower edge of the confidence
interval. The interval will contain u, for 639 of the persons having an
observed score of 1, and this might seem at last to be a case where a 679,
interval is working out about as it should. Surely, however, the subject who
is told that the chances are two in three that his true score is in the range
0.23-1.77 is left with the impression that his chance is one in six of falling
above the range and one in six of falling below. Actually, the cases with u,
outside this interval are almost all on the low side of it.

In the examples so far, the universe scores have tended to fall outside the
interval. Just the opposite occurs also, as is necessary to return the overall
error rate to the theoretical value. On a test with a coefficient of 0.40, a
person with an observed score of 0 is said to have u, between —0.77 and
+0.77. This will be true for 88 % of such persons, not 67 7.

In statistics, an interval ranging over +1 standard deviation is said to
“include the mean with probability 0.67.”” That is, when such intervals are
established for a large number of means, the mean will lie within the interval
for about 67 of the intervals so formed. There is no basis for asserting that
the probability is 0.67 for any one designated distribution. The tester is in a
position, granted the several assumptions, to say that for two-thirds of the
persons for whom confidence intervals are formed, the interval will contain
4,. This is not logically the same as saying that for persons like p*, or for
p* himself, the odds are two out of three. Lord and Novick discuss the
point at some length (1968, p. 512), stressing that “no confidence statement
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can be made about a particular, nonrandomly chosen examinee in whom we
happen to be interested. Nor can any confidence statement be made about
those examinees who have some specified observed score.”

The paradoxes considered are not very paradoxical. Where a population
can be differentiated into subpopulations whose members are distinguishable
on any nonchance basis, one expects probabilities for the subclasses to be
different. The demonstration of the shift in odds as a function of X rests
basically on regression toward the mean, a phenomenon with which all users
of correlation are familiar. So long as the mean of u, is less than X,
for persons with X, > u, and greater than X, for persons with X, < u,
there will be effects such as we have illustrated. The departures from the
population odds will be modified by various changes in the assumptions
(e.g., by nonuniform error distributions), but departures there will be—
unless the u,-on-X regression coincides with that for X on u,,.

Obviously, if p? is near 1.00, the two regressions will nearly coincide and
subclass probabilities will not shift appreciably from one level of X to
another until the most distant tails of the X distribution are considered. A
second possibility is that the universe-score distribution is rectangular.!
Where that is the case, and errors are normally distributed around u,, the
regression line is a much-flattened ogive, running close to the X-on-u,
regression line until it hooks away as the end of the u,, range is approached.
The ends of the u, range are asymptotes. Only for persons with X near or
beyond the extremes of the u,, range does regression toward the mean distort
probabilities. These persons will be a small fraction of the group if o2(A) is
small relative to 0%(u,). In general, the interval estimate of a universe score
can defensibly be interpreted in terms of the specified risk level if prior
probabilities are fairly flat, and not otherwise.

What scale does the estimate refer to? Several commercial tests arrange
for the tester to display a pupil’s score as a “band” rather than a point.
There may be a table in the test manual that converts a raw score of 66 into
a band of 63-69, for example, to take into account the error of measurement.
The band for the test score is plotted onto a record sheet that usually em-
bodies a percentile (or standard-score) conversion. Alongside the scale-point
for 63 one may read that the percentile equivalent is 82; beside 69, that the
percentile equivalent is 91. So the pupil is told that his universe score probably
lies between percentiles 82 and 91. Percentiles of what?

The scaling procedure is such that the percentiles refer to an observed-score
distribution. The pupil, then, is told that his universe score is unlikely to

1 We have also given thought to severely skewed and bimodal distributions. In such cases
one is likely to have regression toward the mean in some arrays and regression away in
others. The odds will again vary from subgroup to subgroup.
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fall below the 82nd percentile for observed scores. This is scarcely a useful
statement. Universe scores have a smaller standard deviation than observed
scores. While 63 may fall at the 82nd percentile for observed scores, it falls
higher (88th percentile, perhaps?) among universe scores. It is not meaning-
ful to place the universe score against the observed-score distribution.

It seems neither feasible nor desirable to convert the confidence interval
into a norm-referenced statement. One cannot ordinarily get good data on
the distribution of universe scores. To apply universe-score percentiles to the
confidence interval, moreover, is to bastardize the argument. Once one
admits the presence of a reference group for whom the prior distribution is
known and non-flat, there is no justification for reporting a result consistent
with flat priors.

Comparing the score to an absolute standard. The difficulties examined
above are less troublesome in certain kinds of decisions where an absolute
standard is invoked. One can, for instance, defend the common practice of
using bands to make an inference that the difference between two universe
scores departs from zero. That procedure will be treated in Chapter 10, since
it is a multivariate problem. As will be seen, the common procedure (in
effect) sets up an interval estimate for the observed difference score symmetric
about the hypothesized (null) universe-score difference. This is relatively free
from the faults of stating that u, for an ordinary difference falls within an
interval. Nevertheless, in Chapter 10 we shall argue against displaying the
bands on a profile sheet.

Intervals may be used in judging a single score against an absolute standard.
It may be agreed, for example, that algebra students who cannot solve 757,
of the equations in a specified universe should receive further training on
such problems before moving to advanced topics. The decision could be
based on whether X,; > 75 (assuming that scores are expressed as per-
centages), but this ignores errors of observation. A safer procedure is to set
up a band symmetric around the standard, for instance, from 75 — 1.960(A)
to 75 + 1.96¢(A). Then one would hold back students whose scores fall
below the band and assign advanced work to students whose scores fall
above the band; that is, whose universe scores are very probably in the
lower or upper region, respectively. It would be sensible to test further those
whose scores fall within the band. After each stage of testing, the band
narrows, because larger n; implies a smaller error. Elementary cases of this
kind of sequential testing were discussed by Cronbach and Gleser (1965, pp.
69-85, 91-96), and a recent practical application of such techniques by
Ferguson (1970) makes their utility in instructional tests quite evident. We
may also refer to the work by Mathur & Kumar (1969), who derive from the
classical model a sequential procedure relating the confidence interval to
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the amount of additional testing the investigator is willing to undertake.
They indicate the extent to which the procedure reduces erroneous decisions,
assuming that average testing cost (on a per-subject basis) is fixed.

To revert to our example: Where the correct value of 6(A | p) is used and
the within-person distribution is normal, 959 of the persons whose (un-
known) universe scores precisely equal the standard will be held for further
testing. The probability is 0.025 that such a person will be held back, and
0.025 that he will be sent to advanced work without further testing. The
probability is less than 0.025 that a person for whom u, > 75 will be held
back, or that one for whom u, < 75 will erroneously be sent to advanced
work. The procedure does not guarantee that 9744 persons out of 100 sent
into advanced work will be up to the standard. If there are very many weak
students, and very few above the standard, then the number misclassified into
the advanced group may be large; indeed, it may be larger than the number
who are properly assigned there.

Bayesian methods are able to take base rates into account. One can also
take into account the relative seriousness of the two types of misclassification.
Such considerations would lead to a decision rule that does not use cutting
scores symmetric about the standard.

Considerations added by generalizability theory

In developing the theory of Chapters 1-3 the equivalence assumptions of
classical theory were avoided. The model and the equations that lead to
estimates of variance components depend solely on the assumption that
conditions are randomly and independently sampled from the universe. The
first consequence of this weakening of the model is that in many D studies
components for i, pi, and the like enter the error A; this makes necessary
our distinction between A and 6.

The likelihood of unequal condition means was obvious in early studies of
the reliability of ratings, as early as the 1920’s. Much more recently, Lord
(1955a, 1962) noted that when tests are formed by random sampling of
dichotomous items, the variation in item difficulty introduces a component
into the error of measurement that classical theory ignores. Generalizability
theory provides a systematic way of identifying and estimating such com-
ponents of error. It goes further, and considers components arising from the
sampling of more than one facet. This complicates reasoning about con-
fidence intervals.

Either classical theory or generalizability theory allows for the possibility
that a G study will be carried out on the particular person p* about whom
conclusions will be drawn. An adequate multifacet study of this kind is
harder to carry out than a study that observes p* under conditions of a single
facet. Therefore, it is likely that the 02(A) derived from a sizeable sample of
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persons will be taken as o2(A | p*) for any p*. Employing a single value of
o2(A) for all persons is perhaps more risky under a multifacet model than
under the classical model, because some of the added components probably
vary from person to person.

Fixing accurate confidence levels for an interval based on 6(4) is difficult.
It is convenient to assume that the A,;; are normally distributed, but thisis a
stronger assumption than it was in the classical case. While the pi, pj, and
pij,e components may reasonably be thought of as normally distributed,
assuming normality for i and j components is more questionable. Further-
more, values of n; and n; in G studies are often small, which means that the i
and j components are not well estimated. If normality of score components
is assumed, the ¢ distribution provides a precise small-sample theory for
arriving at confidence levels.

Forming an interval estimate of the mean u for a population on the basis
of sample data is a legitimate application of confidence-interval theory. The
textbook approach forms such an interval directly from Xpz. and s(X,z.),
for some sample from the population.? Only sampling of persons is
considered. This is sound enough as a way of establishing a confidence
interval for the condition mean u;., but it does not allow for sampling of
conditions. A procedure that recognizes all sources of variance in Xpj is
required when both p and i are sampled. This procedure (p. 96) is open to
few of the objections that apply to the interpretation of confidence intervals
for single persons. The priors are likely to be flat. The assumptions that
conditions for G and D studies are randomly drawn from the same universe,
and persons for the studies drawn from the same population may or may
not be acceptable. The most severe difficulty is that confidence levels are not
soundly determined from the normal distribution when the number of
degrees of freedom for any sizeable component of variance is small in the
G study. In the face of this difficulty a jackknife procedure is probably
advisable.

B. The Logic of Regression Estimates and Similar Equations

At various points in Chapter 3 equations were presented for making a point
estimate of a person’s universe score. Variants of these equations are listed
in Table 5.1. These will now be helpful in elaborating on points barely
touched upon in Chapter 3. Each one of the equations shown has a simpler
counterpart that estimates the deviation score w, — p rather than the
absolute value u,; to obtain the right-hand side of the counterpart equation,
simply ignore the first term of the equation in the table. For example, in the

2In this chapter we use a single asterisk, dropping the double-asterisk convention of
Chapter 4.
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TABLE 5.1. Alternative Equations for Estimating a Person’s Universe Score

Formula® RemarksP

Equation for a nested one-facet D study:

(5.1) ﬂ‘, = XPI + [Pz(XﬁIa”p)](Xp] - XPI) Cf. Table 3.1 and
3.2)

Cf. Table 5.2: 1,
2a, 3a, 4a
Equations for D studies with I* x p:

(5.2) g, = Xpr + [P2(Xp1e,8))(Xp1e — Xp1+) Cf. Table 3.2 and
Table 5.2: 2b,
2c

. o(pup) Cf. Table 5.2: 4b,

(5.3) 4y = Xpr + Est o (Xor0) P(Xpre,ip) 4c

X (Xp1e — Xp1e)
) (uy) Cf. Table 5.2: 3b,

(5.4) by = Xpr + —= (Xp1+ — Xp1+) 3c

0'2(Xplt)
N
(5.5)  dp = Xpr + [€p*(Xp1.0t5 | D)(Xp1e — Xp14) Cf. (3.5a). This
;2\ () “‘estimation
= Xpr + % (Xp1e — Xpr4) equation” ap-
Eo%(X,]) plies to all
i crossed designs
of Table 5.2.

® XpI+ is the D-study mean. The value of X7 may be determined from the G study or the D
study or both together (see text).

b The cross-references to Table 5.2 indicate the conditions that call for application of each
equation.

series of equations in Table 5.1 (5.1-5.5), (5.2) changes to Est(u, — u) =

;E(X »1+ — Xpr.). A number of cross-references are made between Tables 5.1
and 5.2; these are used to trace the assumptions and operations behind each
formula. As we proceed, we shall clarify how various quantities entering the
equations are to be estimated.

Equations such as these take into account the fact that the subject belongs
to a population (or subpopulation?), a fact the procedures discussed in

8 Throughout the next several pages we shall assume that equations for the population
sampled in the G study are under discussion. We return later to equations for distinguish-
able subgroups.
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Section 5.A ignore. In classical theory, it is assumed that tests are fully
equivalent and that the parameters of the joint distribution of one observed
score with another are known; from these, the population value of the
regression coefficient pyy. is obtained. Under these assumptions, the
regression of true score on observed score is the same for every test. A

reliability study is used to obtain values of p? and Xp; for entry in (5.1).
In classical theory, no distinction is made between G and D studies, and
there is no need to ask whether the two values of Xp; should be taken from
the reliability study, or whether one or both should be taken from the D
study. Generalizability theory greatly complicates the estimation problem
when it recognizes that conditions may not be equivalent and considers any
set of conditions to be a sample from a universe.

There are no particular difficulties in making a regression estimate when
the D study uses a nested design. As there will be a new condition for each
person, there is no thought of adjusting his score for the “constant errors”
associated with that particular condition; these are manifestly impossible
to separate from the person’s own characteristics. In the joint distribution of
universe scores with observed scores from a nested design with n; uniform
over persons, the regression of u, on X,; has the slope o2(p)/o®(X,;). This
is a function of all p and i, and can be written as p2(X,,u,). Equation (5.1)
applies. While (5.1) is written in terms of the nested one-facet study, the
equation would apply equally well if subscripts for j and other facets were
added. The weaker assumptions of generalizability theory, then, create no
problems in making regression estimates for a nested D study that are not
inherent in the classical model also. Generalizability theory does offer
greater flexibility in determining regression equations for a variety of nested
D-study designs from a single G study.

Difficulties introduced by weak assumptions

Table 5.2 lists a variety of ways in which the classical assumptions may be
weakened, and summarizes points to be developed in the following section.
As assumptions become progressively weaker, it becomes more and more
difficult to obtain a satisfactory regression formula.

Let us start with the most troublesome case, presented in line 4¢ of the
table. There is a crossed I* x p D study, and conditions I* are not repre-
sented in the G study. The regression equation, (5.3), calls for parameters of
the joint distribution of u, and X,;., but very little is known about that
specific distribution. As indicated in Chapter 3, the most practical solution

IS
is to substitute &'p* as the slope, shifting to (5.5). This use of the average
slope makes (5.5) an estimation equation, not a genuine regression equation.
It is only an approximation to the desired regression equation unless a strong
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equivalence assumption is made. Line 4c of Table 5.2 is read as follows:
The regression equation, (5.3), calls for two terms that are difficult or
impossible to estimate. The three terms of the estimation equation, (5.5),
can all be estimated. An examination of line 1 also will help us to explain the
format of the table. This line refers to the strict classical case. For (5.1), the
genuine regression equation, all needed parameters can be estimated when
the assumptions hold. There is no need to discuss a substitute “estimation”’
equation. The same is true of nested D studies (lines 2a, 3a, 4a), no matter
what the assumptions about equivalence of conditions.

The constant term. Each equation adds a fraction of the person’s deviation
score to the estimated universe-score mean, to get the estimate of his universe
score. The constant term of the equation is written in two parts. One constant
is the first member of the equation (our best estimate of the universe-score
mean u). The other, used in forming the deviation score, is a product of the
regression slope and the mean in the D study.

If conditions have the same mean (Case 1), (5.1) applies; the mean in the
G study or the mean in the D study may be taken as an estimate of either or
both constants. When one is satisfied that the persons in both studies are
random samples from the same population, the mean based on the greater
number of observations might reasonably be employed. A combination of
the two means makes fuller use of the data. Each mean has its own standard
error and is to be weighted in inverse proportion to that error.

In general, for G studies, the variance of sample means over successive
applications of the design:

1

GO PHpr— @)= o) + 1) +

P i Pt

o*(pi,e)

Assuming equivalent conditions, o?(i) becomes zero. There is an analogous
equation in n;, and n; for the D study. Write wg, and w(p, for the two
standard errors, and write Xpy and Xpyp) for the two sample means.
Then the best weighting is

.7) i = —2@%D) [XPI(G)+ XPI(D):'
W@ T ol o@ (p)

Even though we rely on the random-sampling assumption in all our
theoretical development, perhaps the investigator will wish to lessen his
dependence on it. If the D-study mean departs from the G-study mean by a
modest amount [relative to é(p)], employing the D-study mean alone in
forming deviation scores guards against a possible systematic difference
between the G and D samples. It is hard to advise whether to take as the
first X p; of the equation the D-study value or the weighted value from (5.7).
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The decision rests in part on the size of each study, and in part on the in-
vestigator’s commitment to the various assumptions. If the means of the
G and D studies differ substantially, a reexamination of assumptions is
critically needed.

For a nested design the argument is similar. The weighting formula has
the form of (5.7), but the standard error of the mean in a nested design is:

1 1

59) ol = () + —= 20) + —= o¥(pie)

P nﬂ 1 j 2he )
In a D study, one has the same equation with »; and n,,.

With crossed designs and nonequivalence, the mean from the D study is
used in forming deviation scores. The weighted average from (5.7) is pre-
sumably the best estimate of the universe-score mean. However, when the
G study and D study use the same conditions, one obtains no information
on u;, — u. In effect this is taken to be zero.

The slope. Estimating the slope of the regression equation is a straight-
forward matter if one can assume strict equivalence, or uniform X-on-u,
regression slopes along with uniform error distributions for various con-
ditions. It is also a simple matter if the D study is nested. The ratio of esti-
mated universe-score variance to estimated observed-score variance serves
quite adequately as a slope for (5.1) or (5.2).

However, when weaker assumptions are made, and the D study employs a
particular set of conditions I'*, serious problems arise. The ordinary G study
is unable to give a usefully precise estimate of the specific p*(X,;.,u,). The
conditions I'* would have to be used in the G study along with a considerable
number of other conditions. We noted earlier the suggestion of Lord and
Novick that one may be able to estimate the specific coefficient by an item-
sampling design which distributes conditions other than I* over subgroups
of subjects. This possibility deserves development, though it obviously
cannot be applied routinely to deal with all the different sets I that might
be used in D studies.

In (5.4), dividing the estimated universe-score variance by the actual
observed-score variance for condition I* is suggested. This does indeed give
the regression slope if the X-on-u, slope (designated b, in the development
below) is the same for all conditions. Then nonequivalence of u,-on-X slopes
arises solely from differences in the variances o®(u,;~ e | i). We are skeptical
that this intermediate equivalence assumption can be justified, and hence
point to (5.4) for its interest rather than its practical value.

If the investigator who avoids an equivalence assumption must fall back
on the estimation equation when he has a crossed design, what are likely to
be the consequences of this substitution? More bluntly, how bad are his
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estimates of u, ? To examine this, we modify the basic model of (1.1) in which
score X,; was divided into components p,~, u;,~, and p,,~,e. Write b,
for the X-on-u, regression slope,* and define »,,; by the following equation:

(5.9 Ui~ = (b; — Dppy~ + vy,

This divides the interaction into two portions, one that is correlated with
U, and one that is independent. The equation could be rearranged: »,;, =
Uy — by, — p; + byu. Using these symbols, the model (1.1) becomes

(5.10) Xpi=p + bi(u, — ) + (p; — /“) + vy + ey

This is not a change in the model. According to Chapter 1 the expected value
of u,,~ is zero, and hence, the expected value of the covariance over persons
o(pp~ ty~), considering all i, equals zero. This does not imply that each
separate covariance is zero.

Unless one is dealing with tests carefully constructed to be parallel, it is
entirely likely that the interaction for some conditions will covary positively
with the universe score, hence b, > 1, and that others will have a negative
covariance and b; < 1. It is well known that some judges, for example,
extend their ratings over the full range of a scale, while others tend to crowd
their ratings into a narrow range. That is to say, some judges are emphatic
and some are conservative in reporting information. The result is an inter-
action component u,,~ that is correlated with u,; indeed, u,, — v,,; is
perfectly correlated with u,. Classical theory assumes b, to be 1 for all i.
We weaken this to £b, = 1 (which must be the case if £X,, is to equal y,).

3

Using an estimation equation rather than a regression equation is made
more hazardous by an increase in 0%(b;), and less hazardous by an increase in
n;. [Because b;. = (1/n;) > b,, the variance of b; equals (1/n;)o%(b;).] How

iel*
much does the result from (5.5) depart from the result (5.3) would give if it
could be used ? To explore this numerically, we set up a hypothetical problem:

For person p*, u,. = 1. Conditions in the universe fall into three equally
frequent classes, defined by allowing b, to equal 1.2, 1.0, or 0.8. All con-
ditions have the same error variance o%(v,e). All conditions have the same
mean, equal to zero. 0%(u,) = 1.

The variation assumed for the b, is appreciable, since the largest value is 1.5
times the smallest.

Figure 5.1 presents detailed results for each of nine different combinations
of the three b, with three values of o%(v,e). We shall explain later how the

4 A coefficient B, similar to b, appears in the Lord-Novick formulation for nominally
parallel tests (1968, p. 209).
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calculations were made. Only the higher values of &p? are represented in the
figure. The left portions of the curves are readily constructed, because in any
panel both of them extend steeply downward to the point (—1,0). The
reader may find much of interest in the details of the relationships, but the
main interpretation has to focus on how each approach works out on
the average.

The departures of the estimate from the universe score, without regard to
sign, were averaged over all nine cases. The average discrepancies for both
the estimation equation and the regression equation have a trend about like
this:

&p? 0 <++ 0.60 070 0.80 0.90 0.95
Mean absolute 1.00 --- 046 040 032 023 0.16
error

This may be compared with the discrepancy between the observed score and
the universe score, for which the trend is:

&p? 0 -+« 0.60 0.70 0.80 0.90 0.95
Mean absolute oo -+« 059 047 036 025 0.19
error

The estimate from (5.5) has, at all levels of &p?, a greater mean departure
from the universe score than the regression estimate; but the difference is
negligible unless &p? is large:

&p? 0-0.85 0.90 0.95 1.00

Difference in mean < 0.01 0.02 0.06 0.14
absolute error

The correspondence of the two estimates would have been less close if we
had employed a wider spread of b,. Also, use of a different u,. would change
the results somewhat. Nonetheless, we conclude that the use of (5.5) in place
of (5.3) will generally give satisfactory results.

Let us now present enough detail to enable the reader to derive these
results, and also to work out results for other hypothetical problems. For
any condition,

(5.11) o*(X) = bio*(u,) + o*(v,e)
Because o%(u,) = 1 and o?%(v,e) is uniform,
(5.12) &% (X) = &b + o*(v,e)

&b} = (1/3)(1.44 + 1.00 + 0.64) = 1.03. For purposes of this illustration
take o%(v,e) to be 0.09. For this universe, with n; = 1 we obtain &¢%(X) =
1.12. For & p? we evaluate the usual formula: o%(u,)/&0?(X)is 1/1.12 = 0.89,
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If the condition drawn has b, = 1.2, (5.11) indicates that ¢%(X) = 1.44 +
0.09 = 1.53. The regression slope b;/0?(X) is 1.2/1.53 = 0.78. This is to be
compared with the 0.89 of the estimation equation. Likewise, if b, = 0.8,
0*(X) = 0.73 and the regression slope is 1.09. The actual &p? for a given
0®(v,e) is found by calculating b}/6%(X) to get p?, and averaging over the
three values of b,. For ¢%(v,e) = 0.09 we get p* = 0.94, 0.92, and 0.87.
which averages 0.91.

Consider Case 4 of the figure, where b, = 1.2 and the regression slope is
0.78. We have u,. = 1. When ¢%(v,e) = 0.09, X,., = 1.2 + a(v,e) = 1.50.
When we multiply this by the regression slope we obtain 1.18, which is 0.18
greater than u,.. Multiplying by the estimation slope gives 1.34, and a
discrepancy of 0.34. A point at (0.91, 0.18) helps locate the solid line of the
figure; a point at (0.91, 0.34) lies on the broken line. Other values of ¢%(v,e)
are used to get additional points.

Estimating universe scores resembles the forecasting of criteria. But if a
faulty prediction equation is put into use, it is automatically called into
question at a later time when actual outcomes do not accord reasonably
well with the predictions. There will never be observations of the universe
score, and if the estimation equation is faulty, that fact may not be discovered.
It is possible, for example, that the equation is highly accurate when initially
established. However, changes over time in the population mean, universe-
score variance, or correlation among conditions may make it inapplicable.
The possibility of change should be recognized in any attempt to use results
from a G study in subsequent years, but the estimation equation may be
more sensitive to such changes than are other applications.

Interpreting the estimate

The estimate may be interpreted on the basis of norms, or may be used to
forecast criterion performance, or may be used to describe how well a
universe of content has been mastered. We shall discuss the difficulties and
puzzlements involved in such interpretations. It is to be emphasized that the
problems are present whether one assumes the strong classical model or our
weaker one. To simplify the discussion we shall write this section in terms of
strictly equivalent conditions.
Norm-referenced interpretation. The score 4, locates the person on the
scale common to both observed scores and universe scores. But the norms
for observed scores do not apply. The percentile rank of fi,. in the distri-
bution of estimated universe scores 4, is the same as the percentile rank of
the observed score X,. in the X distribution. Surely, a norm-referenced
interpretation should be based on the location of the estimate within the
distribution of actual universe scores u,—not the distribution of /i, or of X,,.
The distribution of u, is unknown. The most plausible approximation
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ordinarily available is a normal distribution with mean 4 and variance o*(p).
(Information about higher moments of the universe-score distribution, and
therefore a check on its normality, may in principle be obtainable when the
G data are very extensive. See Lord & Novick, 1968, pp. 232-233, 245-248;
Lord, 1969).

If deviation scores u, — u are estimated, one can if he desires introduce a
standard-score scale for universe scores. Suppose this to have mean 50 and
standard deviation 10. Then one could express o(p) in raw-score units and
assign the value 60 to an estimated universe score that falls o(p) units above
the mean, and so on. A simple table could be prepared for any reference
population in which a G study has been conducted. If one has reasonable
confidence in the estimate of u, then the table could convert an absolute
estimate /i, to a standard-score scale for which o(u,) = 10.

The tester has long been trained to read a standard score of 60 as implying
a percentile rank of 83, and to make similar interpretations for other scores.
If actual universe scores were known, that interpretation would apply to
normally distributed universe scores. When universe scores have a standard
deviation of 10, the estimated scores have a standard deviation of 10(&p?)'/2.
This implies that the tester will have fewer extremely high and extremely low
standard scores to interpret than he has when working with ordinary standard-
score transformations of observed scores. That is good, because with a
fallible test one has no warrant for making extreme statements. It is strange to
think that one might test a representative group of job applicants and
conclude that no one ranks above the 90th percentile. It is less strange when
the statement is recast as follows: “Given the fallibility of the test, our best
judgment locates this person (the highest scorer) as falling somewhere around
the 90th percentile of the universe-score distribution.”

Pursuing this line of reasoning leads to fresh questions about matters long
taken for granted. Should the deviation IQ be defined, as in the past, so that
observed IQs have a standard deviation of 16? This amounts to defining a
unit of measurement in terms of a fallible operation. An accurate mental
test and an inaccurate one, both scaled to yield IQs with a standard deviation
of 16, will have different standard deviations for u,. If two forms of any
test so scaled were averaged, the standard deviation of observed IQs for this
more accurate procedure would be less than 16. Paradoxes like this make it
obvious that a unit one intends to use in describing individuals and in
stating functional relations should be defined in terms of universe scores and
not in terms of a fallible operation. This argues strongly for changing norming
practice, see also p. 257.

While any one measure belongs to various universes of generalization, it
would seem to be feasible to select the universe that most interpreters are
likely to have in mind and to select the reference population most of them
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are interested in, and to calculate o(u,) for that universe and population.
This would then be used in place of o(X) to define the unit for the standard-
score scale. If that is done, percentiles should similarly be inferred for the
universe-score distribution, though this requires an assumption of normality
unless very extensive G-study data are available.

Criterion-referenced interpretation. The usual form of criterion-referenced
interpretation draws on past experience to report what criterion performance
is typical of persons having a given observed score. This may take the form,
for example, of a regression equation for predicting grades from an aptitude
measure, or of an expectancy table that gives the grade distribution corre-
sponding to each score level. Provided that all persons are members of the
same population, and that a test of the same length will be used both in the
follow-up study from which data on expectancies come and also in measur-
ing individuals in the D study, there is no value in making any adjustment
for error of measurement. One might estimate universe scores for persons
in the follow-up study, and express criterion expectations as a function of
estimated universe scores. But this tabulation, entered with the estimated
universe score for a person p*, will report precisely the same expectation
for him as the observed-score table did. The same would be true of an
expectancy table relating actual universe scores to criterion scores.

The situation is different when some persons are measured more thoroughly
than others. Suppose that a population of college freshmen has a mean of
600, that a certain person has the observed score 800, and that the regression
line indicates an expected grade average of 3.50 for him. Consider now
another person who is tested twice, earning scores of 750 and 850. Perhaps
the regression line indicates expected outcomes of 3.20 and 3.80 for these
scores individually, or 3.50 for the average. This interpretation is unsound,
as a person who earns a high score twice probably has higher aptitude than
a person who earns that score once. If universe scores were estimated, the
single test score of 800 would be regressed to, say, 770 and the score based
on two testings to 784. It appears, then, that when some persons will be
measured more thoroughly than others it is appropriate to alter the expec-
tancy table or criterion-on-test regression function to take this into account.

It is possible to get the criterion-on-universe-score regression function.
The empirical follow-up data give the covariance of criterion score with
observed score, which estimates the expected covariance of criterion score
with universe score. Dividing this by the universe-score variance calculated
from a G study gives the slope relating criterion score to universe score.
Such a correction requires that the follow-up study and the G study employ
the same sample, or, if separate samples are used, that they be reasonably
large and unquestionably from the same population.
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If the follow-up data show a curvilinear regression of criterion on observed
score, one can easily take this into account when the observed score is
interpreted directly. We have no way to translate the curvilinear function into
the comparable function relating criterion score to universe score (though
perhaps methods for this purpose could be developed). Similarly, while one
might reconstruct an expectancy table relating criterion to universe score by
making strong assumptions of bivariate normality, one has no way to
convert the typical heteroscedastic expectancy table into the comparable
table for universe score.

In establishing a regression function relating criterion score to universe
score, estimating universe scores for the individual, and interpreting them
with the aid of the function, one must invoke a large number of assumptions.
The hazards of the procedure are therefore considerable. Practically, it may
be sufficient to warn test interpreters that any expectancy table or criterion-
on-observed-score regression is accurate only for test data in which n; is
the same as in the original follow-up study. For a limited number of in-
dividuals a different n; will have been used; a sophisticated interpreter will
be able to take this into account without actually going through the rather
treacherous two-stage regression. Fortunately, the predictor variables that
enter into criterion-referenced interpretations are usually highly reliable.
Therefore, an effort to take error of measurement into account formally
would produce little difference in the final interpretation.

Content-referenced interpretation. Interpretations that consider the observed
score as representative of the universe of content from which a test is sampled
are becoming increasingly prominent. This is seen in many forms of in-
struction where the lessons a student is given next week will be determined
by his score on this week’s test. Where the computer is used to regulate
instruction, the tests employed may be designed on a sequential basis that
administers far more items to some students than others. The decision rule
may be, for example, that students who can solve 759 of a domain of
quadratic equations are ready to proceed to a new topic. If the test is a true
sample from that domain, the estimated universe score, expressed in terms
of percentage correct, is a better basis for the decision than the observed
score.

The estimation equations offered by generalizability theory can be used to
estimate the universe score. In the instructional situation, however, one may
feel that such a complication is unnecessary because wrong decisions resulting
from the direct interpretation of the observed score may not be costly. If
estimation equations are to be used, it may be well to consider a multivariate
estimation procedure of the sort introduced in Chapter 10.

Where measuring procedures are sequential, it is necessary to recognize
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that generalizability is greater for those pupils who are measured most
thoroughly. If the sequential procedure simply draws additional items at

random in measuring certain persons, then our equations apply; one forms
PO

the &p? of (5.5) for various values of n; and applies to each person the
equation that corresponds to the n; used in observing him. The typical
sequential procedure in educational measurement, however, selects easier or
harder items for the second, third, etc. stages of testing, depending on the
person’s success at previous stages. To interpret the resulting scores calls
for a Bayesian analysis; this kind of analysis is still in the process of develop-
ment. (See Novick, Jackson, & Thayer, 1971.)

Interpretation of o(s)

The error of estimate ¢ indicates in a gross sort of way the adequacy with
which the observed score forecasts the universe score. Even when the popu-
lation parameters b; and ¢2(6) are the same for all conditions, however, the
inferences made from the G study are only approximate. The regression
coefficient is estimated from a finite body of data, and therefore is affected
to some extent by sampling error. Therefore, regression equations derived
from successive, independent G studies would vary in both slope and inter-
cept, marking out a pattern of criss-crossing lines with a more-or-less hyper-
bolic envelope. When conditions are not equivalent, the estimation equations
(5.5) will show a similar pattern, but the variation from one sample to
another will be greater, unless #; is large.

For persons whose observed scores are near the population mean, the
prediction of the universe score is relatively accurate. However for persons
far from the mean, the variability of possible estimation or regression
functions is substantial, and o(g) (which ignores sampling of persons and
conditions in the G study) gives much too conservative an account of the
error of estimate. It follows that a simple confidence interval of the form
fip — 0(e) < puy < i, + 0(e) is not useful.

Our reservations about the direct interpretability of o(e) do not apply in
the D study where conditions are nested within persons. Under those circum-
stances the relevant parameters are likely to have been well estimated and
the slopes are uniform over D studies. A confidence interval symmetric
around 4, [using the value of o(¢) appropriate for a nested study] may then
be interpreted with some confidence, except where ceiling and floor effects
call the assumption of linearity into question.

Estimation on the basis of subpopulation means

Kelley’s original introduction (1923) of the regression estimate of true
scores placed considerable emphasis on the fact that the estimate takes into



The Logic of Regression Estimates and Similar Equations 151

account the mean of whichever group the person belongs to. Therefore, it
draws different conclusions about, for example, a fourth grader and a fifth
grader having the same observed score. We have pointed out that the regres-
sion equation can be interpreted as a multiple-regression equation that
assigns appropriate weights to the individual information and the group
information, greater weight being placed on the former as the coefficient of
generalizability becomes greater.

Whether subpopulation parameters should be employed in place of
population parameters in the equations of Table 5.1 involves three distinct
questions. One is the political question referred to on p. 106: Will persons
tested and institutional decision makers regard a procedure as fair if it
leads to different decisions for persons who earn the same test score? We
postpone discussion of this to Chapter 11. Another is a straightforward
numerical question: Does the use of subgroup information alter scores by an
appreciable amount? The third question is complex: To what extent can one

have confidence in the assumptions underlying the use of subgroup regresssion
equations?

Practical significance. The use of subgroup information produces a j, for
which the correlation & p?(fi,,u,) ought to be larger than the correlation
& p*(Xpi,1t5), Which equals the correlation &p?(g,.u,) for the 4, obtained
from the population estimation equations. Equation (3.11) showed that this
increase depends on the separation of the subgroup means and on the value
of &0?(9). It is useful now to consider some specific numerical values.

Suppose that 0?(u,, within groups) is 200 and ¢*(up, between groups) is
50. This is a moderately large separation of groups; the two means differ by
about one within-group standard deviation. Then for various values of
&c*(0) we have:

Increment as

Increment resulting proportion of
P

-~ -~ from use of subgroup
6a%(8)  ER(Xpoup)  6pApm,)  information 1 — &p(Xpky)
0 250/250 = 1.000 1.000 0.000 —
20 250/270 = 0.925 0.926 0.001 0.01
50  250/300 = 0.833 0.839 0.006 0.04
100 250/350 = 0.714 0.734 0.020 0.07
© 0.000 0.200 0.200% 0.20

We used (3.11) to calculate the increments, and added these to the second
column to get & p(fi,,u,). The last column indicates the fraction by which
one would have to increase n; to get the same increment in & p?(X,;,u,).

5 This value equals 6%(up)/oc%(u,, all cases).
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None of these increments makes for appreciable improvement in the useful-
ness of the score. That is, with a group separation of o(u,) or less, one
gains nothing from the controversial procedure of regressing toward the
subgroup mean.

One further set of examples will be useful. Keep the within-group variance
at 200 and raise the between-group variance to 200. Then the difference in
means is twice the within-group standard deviation—a large value indeed.
These results follow:

~ ~ Increment as

&a%(9) € p?(Xpsstip) € p?(fip, 1) Increment proportion
0 400/400 = 1.000 1.000 0.000 —
20 400/420 = 0.952 0.954 0.002 0.04
50 400/450 = 0.889 0.900 0.011 0.10
100 400/500 = 0.800 0.833 0.033 0.17
200 400/600 = 0.667 0.750 0.083 0.25
0 0.000 0.500 0.500 0.50

Even with this quite large separation of groups, the gains in accuracy are
modest unless the original coefficient of generalizability is low.

In general, it does not appear that regressing toward subgroup means will
improve estimates of individual universe scores by a great deal. However,
the above calculations consider the average improvement over all cases. It
should be remembered that regressing toward the group mean will make an
appreciable difference in the ranking or the absolute value of 4, for those
persons belonging to the lower-scoring subpopulation who have exceptionally
large observed scores, and also for low-scoring persons within the higher-
ranking population.

Regression toward subgroup means has been suggested by Lord (1960)
and by Porter (1967) as a means of improving the interpretation of experi-
ments where persons are not assigned to treatments at random. It is suggested
that using /i, (from 3.10) as a covariate will do more to counteract the bias
introdueed into the experiment by nonrandom assignment than will use of
X,; as a covariate. While this is not invariably the case, the procedure does
seem to be advantageous. The numerical analysis above does not imply that
regressing toward the subgroup mean has little effects in this application. The
slope of the regression of dependent variable on covariate universe score is

greater than that for the regression on covariate observed score, the two
~~

slopes having the ratio 1/&p2. This will not produce a large numerical shift
in the adjusted between-groups difference in outcome. But if the covariate is
only moderately reliable, the change will be enough in many experiments to
change a significant F-ratio to a nonsignificant one or vice versa.
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Use of subpopulation equations introduces no special problem in norm-
referenced interpretation or content-referenced interpretation beyond those
discussed earlier. In criterion-referenced interpretation, it is necessary to
recognize the possibility that there is a different criterion-on-universe-score
regression equation for each subpopulation. This, of course, will not be
known unless a follow-up study is carried out in a sample from each sub-
population.

Dependability of interpretation. Our earlier discussion of the pitfalls in
interpreting estimation equations was restricted to the population estimation
equation. Certain additional hazards are introduced by the use of equations
for subpopulations. Although the following statements are brief, they raise
questions of considerable importance.

On page 141 we discussed the difficulty of estimating the constant term of
equations in Table 5.1. Estimating the universe score mean (or that of uy+ —
u) for a subpopulation is even more difficult, unless one has carried out a G
study within the subpopulation. This has no serious consequences when one
is primarily interested in comparing two subpopulations, as in the Lord-
Porter technique. In that application, any fault in the estimate of u;+ — p
affects both groups in the same way.

In determining the slope for the regression equation (5.1) the classical
theory has to make a correction for “restriction of range” (see page 99)
which assumes that the error variance is the same in all subpopulations.
With non-equivalent conditions, we can make a similar correction only by
making the much stronger assumption that all components of variance
except that for persons are the same in the two subpopulations.

The Bayesian approach to estimation of universe scores

It was mentioned in Chapter 2 that Bayesian statistical methods are beginning
to be applied to the analyses this monograph calls for. It will be useful here
to introduce some notes on the Bayesian replacement of the regression
equation offered by Novick and his colleagues. To do this, we quote from a
summary statement recently prepared by Novick and Jackson (1970, pp.
473-475). We have modified the notation to conform to that used elsewhere
in this book. A number of comments made following the quotation will
assist the reader to understand the key differences between this approach
and ours.

Unfortunately, there is a difficulty in attempting to apply the Kelley
formulation [see p. 103] in most practical applications because the popu-
lation mean is typically not known before measurements are taken and
hence the regression formula cannot be used in its given form. In effect,
what is needed is a regression estimate based not on the person’s observed
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score and a known mean observed score, but rather one based on the
person’s observed score and the average observed score of a random
sample of people from the population. Results of this type are available
in the framework of Bayesian methods with normality assumptions. The
first of these was given by Lindley (see the discussion in Stein, 1962);
later a fuller development was given by Box and Tiao (1968) and by
Lindley (see Novick, 1969). These estimates are of the form, wX,; +
(1 — w)Xpy, i.e., a weighted average depending on weights w, the person’s
observed score X,; and the mean observed score Xp; in the sample. In
this formulation the quantity w is an estimate of the reliability of the
observed score. It tends to unity as the number of observations on the
person increases without limit and to zero as the number of observations
on the person tends to zero. For intermediate cases its value depends on
the relative number of observations on the particular person, the number
of observations on all persons and also on the number of persons on whom
observations are available.

Forour purposes it will be useful to consider Bayesian estimates obtained
by Lindley since this method easily generalizes to the case of unequal
replications. Under moderate conditions and using the specific prxor
distribution suggested by Novick (1969) to characterize a situation in
which we have no prior information, Lindley shows that the mode of the
conditional distribution (the posterior Bayes distribution) of the true
scores u,. after obtaining all observed scores can be calculated as the
solution of the n, equations

— X (np _ 1)(”11 - /‘P) =
Z Sp + Z (XpI :up)z Z (:up - luP)2

where X, is the ith observation on the pth person, n, is the number of
persons, n; is the number of replications on each person, s,, > (Xpi —
X, n;, X1 = Z Xyi/n; and up = Z Up/n, and where it is assumed that

(5.13) nyn

l,are notall equal These are the si mplest of the Lindley equations. Because
the quantity u,. is a part of the mean value up, these equations cannot be
solved directly. An approximate solution to these equations for large 7,
and n; having the general form described above is

7 >
514) =)y o o®n
A, + FE)n, o*(u,) + oX(E)/n,

*=1,2,...,n
where 6's are the usual ANOVA estimates and X p; = ( > X, ,) [ny.
V4

P
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For small samples, equations (5.13) and (5.14) do not give the same results.
Further details of a method for obtaining the exact solutions to the Lindley
equations by iteration, the modest conditions under which they are valid
and reasons for preferring the Lindley method are given by Novick,
Jackson and Thayer (1971). A generalization of these equations to include
the case of unequal replication numbers and including technical im-
provement to guarantee convergence was provided by Lindley (1969).

The true score estimates given in (5.13) were obtained from a Bayesian
structural model which assumes that the observed scores for each individual
are normally distributed with mean equal to that person’s true score and
with homogeneous error variance o%(E) and that the true scores are
normally distributed with mean p and variance o(u,). It was further
assumed that there was no information available [prior to the G study]
about the true or error score variances or the mean true score. Formally
this was accomplished by using the indifference prior distributions for
u, 0%(uy) and ¢®(E) suggested by Novick (1969) as developed from the
work of Novick and Hall (1965). These indifference priors consist of
independent uniform distribution on , log ¢(E) and log o(u,). However,
if some prior information is available either about the distribution of true
or error scores, this information can be incorporated into the prior distri-
bution using the procedure suggested by Novick (1969) as developed from
the work of Novick and Grizzle (1965). Often it is useful and sometimes
it may be essential to do this. However, it seems to be true that when the
number of persons being tested is large, prior information can be /argely
disregarded (Novick, Jackson, & Thayer, 1971).

The choice of the prior distribution for this analysis reflects prior
information and beliefs (or lack of them) concerning the mean true score
in the population, the spread of true score values and the average variability
within persons. These, in total, imply a prior distribution on the individual
true scores u,. After obtaining observations on persons we have a new
Bayes distribution for the 4, and we also have a new Bayes distribution for
the mean true score, the variance of the true scores, and the variance of the
error scores, and all of this information is available to guide any decision
that must be made at any stage of testing. Lindley’s methods and the very
similar ones of Box and Tiao provide improved techniques for estimating
true and error score variances and reliability. The details are given in a
paper by Novick, Jackson, & Thayer (1971).

The point to be emphasized here is that at any point in the data gathering
the Bayes distribution for any particular u, reflects more than just the
observations on person p. Rather it reflects the combined information
relevant to all of the u,. Thus after one obtains information on some
fp, he is no longer completely uninformed about a new u,.; rather the
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prior distribution for this new u,. would effectively be the estimated
distribution of u, values in the population of people. As has been seen, the
effect of this is to regress estimates of true score towards a common mean.
This regression provides the Bayesian solution to a number of statistical
problems. Thus for this rather complex Bayesian structural model the
actual use of a vague prior for data analysis seems appropriate when the
number of persons is large, but for less complex models objections can be
raised (e.g., Novick & Grizzle, 1965). This is so because the buildup of
information is much more rapid with the structural model than with
simpler models.

This statement embodies an essentially classical assumption, strengthened
by the assumptions of normal distributions. The remarks would apply to a
one-facet nested design or to a crossed design with complete equivalence.
While the distinction between the G and D studies is not mentioned, such a
concept is actually embodied in the Bayesian approach. Where we have
discussed the Bayesian point of view earlier in this chapter, we pointed out
that one could regard the distribution of scores for other persons as “prior
information.” In this statement by Novick, the information on other persons
is taken as essentially simultaneous with the observations on p*. All refer-
ences to prior information in the passage quoted have to do with information
collected in the past. The statement is worded to suggest that the investigator
starts his G study with a blank slate, and that p* is included as one case
within the G study. If one were to make our separation between G study and
D study, he could treat the G-study information as prior to that in the D
study whether the D study is based on one person or more. In that event,
the prior distribution should not be disregarded. The variance estimates in
(5-14) are of the kind we use in this monograph, following the methods of
Chapter 2. Elsewhere in the paper, Novick and Jackson emphasize that
Bayesian analysis of variance may give more satisfactory estimates when the
data contradict the strong assumptions embodied in the solution above. It
remains for future work to determine how much practical difference the
application of Bayesian methods for this basic case will make, and to deter-
mine whether the methods can practically be extended to some of the complex
designs with which this monograph deals.

Summary

This chapter has traced the intricate arguments required in making inferences
about the universe score. We have seen impressive evidence that interpre-
tation even under the simple model of classical theory brings in assumptions
or logical leaps that are difficult to justify. Generalizability theory, by
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bringing many of these logical difficulties to the surface, performs a con-
siderable service. On the whole, however, the more elaborate model of
generalizability theory complicates the problem of making inferences.

The practice of forming confidence intervals symmetric around the
observed score is open to severe criticism, even when the G data are extensive
and the interval is properly based on the error A rather than §. The determi-
nation of #(A) does provide a superficial but useful statement regarding the
extent to which observed scores are likely to depart from universe scores.
Going on to form an interval estimate for the individual is a dubious practice
because any confidence level attached to the estimate is likely to be misleading.

The confidence-interval technique can be justified as a way of studying a
few particular questions. It is an appropriate method of summarizing
information on a group mean. The confidence level that the multifacet model
calls for will be known only roughly, however, unless one can assume
normality of score-component distributions. Second, 6(A) can be used to
advantage when one attempts to test a hypothesis about the universe score
instead of attempting to estimate it. This is exemplified in the inspection of
score differences to learn which ones depart reliably from zero, and in the
use of sequential methods for selection or classification.

The linear equation for estimating the universe score with the aid of
A~

&p? is a regression estimate only under strong assumptions, essentially like
those of the classical theory. Although marked nonequivalence makes such
estimation equations misleading, we are inclined to recommend cautious use
of such estimates of the universe score. For most subjects the estimate will
be closer to the truth than the observed score. The benefit from regressing
scores toward subpopulation means, however, rarely will be great enough
to justify the extensive assumptions required.

EXERCISES

E.l. In 1960, Mahalanobis suggested that nationwide examinations to select
among college applicants in India be formed by sampling from a universe of multi-
ple-choice items stratified on content and difficulty. He would select a set of
items independently (with replacement) for each applicant. This would exclude
any possibility of copying another student’s responses. The same large pool of
questions could be used for several years, permitting maintenance of uniform
standards.

a. Is it reasonable to suppose that all students would receive examinations of
comparable difficulty ? .

b. Das (1967) develops the proposal, showing how ¢2(A) would be computed and
used to form an interval for the applicant’s universe score, symmetric around his
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observed test score, ‘“The student’s true intelligence or scholastic attainment is
expected to lie, with 95% or 999 confidence, within these limits.”” This chapter
has criticized the formation of confidence intervals of this kind. If the test is used
to select the best 100 applicants out of 1000, is the interval helpful in decision
making?

¢. Das recommends that each student be given three stratified-parallel tests.
(Each of these might be formed by drawing just one item from each content-
difficulty stratum.) From these scores, Das would estimate o(A | p) for each
student separately. Assuming that this general type of information is wanted,
what are the arguments for and against calculating 6(A | p) rather than 6(A)?

E.2. The National Longitudinal Study of Mathematical Abilities applied many
short tests to large groups of students who had studied from one or another text-
book. Each test was reported on a standard-score scale, where the mean for the
entire group of students (all textbooks together) was set at 50 and the standard
deviation of observed scores was set at 10. A typical comparison chart shows the
means for several textbook groups on each of the measures. For example, on the
test Rational Numbers the range of these means is 46-56; and on Multiplication of
Fractions, the range is 32-67. One is tempted to conclude that textbook differences
produce large differences in learning on fractions, and rather small differences on
items dealing with rational numbers.

Do the standard-score scales permit this kind of interpretation ? Is information on
generalizability of the scales in any way pertinent? (Assume that each mean is
based on a large sample and that the textbook groups were comparable in back-
ground.)

E.3. John Doe (p. 18) is a resident of California, an electrician, a person with a
$15,000 income, and a Republican. In a study of political radicalism, he (along with
several hundred other adults) is given an attitude scale. If one wished to adopt the
suggestion that universe scores be estimated by subpopulation regression equations,
what subpopulation should be considered in the case of Doe?

E4. In certain types of individually paced instruction, a student is advanced to a
new unit of study only after he demonstrates a specified level of mastery on the
preceding unit. The standard may be, for example, “‘can perform two-digit multi-
plications with 959 accuracy.” Logically, this standard would seem to refer to the
person’s universe score, and hence, one faces the problem of designing a test with
adequate precision.

Sequential testing is suggested by Cronbach and Gleser (1965, pp. 91-96) for
decisions of this kind. The proposal, in its simplest form, is as follows: Set up a band
of width 2a6(A) symmetric around the standard. If the observed score, expressed in
per cent, lies above the band, advance the student. If it lies below the band, return
him to further instruction on the multiplication unit, and let him ‘“‘come up for
promotion” after another week of training. If the score is within the band, ad-
minister a second random-parallel test. After this second test, average the two
observed scores. Calculate 6(A) for the double-length test, and set up around the
standard a band proportional to this 6(A). This band is narrower than the one for
the single test. Apply the same decision rule to the averaged score. Some fraction of
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the students will be sent on to a third test, and the same process is applied to those
scores. Ultimately all students will have been classified as above or below the stand-
ard, and assigned to the advanced or basic instruction. Is this procedure (recom-
mended some years ago) sound, in view of the present Chapter 5?

Answers

A.1. a. This can be assured if the items have been pretested for difficulty and the
difficulty scale is finely stratified, or if a substantial number of items is drawn from
each stratum. It would be possible to determine, from ¢%() within a stratum and the
number of strata, the number of items required to reduce the systematic error
#y — p to any desired level.

b. The transformation of the observed score into the interval estimate has no
direct bearing on the selection decisions. These decisions are based on the rank order
of subjects; one would select the same 100 subjects whether he examined the
observed score, or the lower ends of the confidence intervals, or the scores regressed
toward the mean of all applicants. Reporting the interval estimate to the selectors
might warn them of the uncertainty associated with judgments of the last candidates
to make up the quota, and so motivate them to seek additional information on those
cases. Therefore, the interval might be helpful even though the preselected con-
fidence level does not apply. (Though one may attempt to set 99% confidence
intervals, he cannot say that for individuals at a particular observed-score level the
probability is 99 out of 100 that their universe scores lie within the interval.)

c. In theory, ¢(A) will vary from person to person. The person with the universe
score of 1009, will have o(A) = 0 and, in general, the more extreme universe score
will be associated with a smaller o(A).

To make a G study with three tests for every subject in the D sample will be
difficult when each test must be long, on account of the total number of content x
difficulty strata. Moreover, with only three or four tests per person, one is not likely
to obtain an accurate estimate of the idiosyncratic value of each person’s o(A | p).

It appears far more practical to conduct a single G study on one sample of
students, and to carry that information forward to future cases. The nature of the
test construction makes that extrapolation to a new sample quite legitimate. It
would be well, however, to calculate (A) separately for subsamples in different
ranges of observed score, to check on the possibility that the value changes ap-

preciably. If it does, one would apply to person p the 6(A) corresponding to his
observed score.

A.2. In the first place, the scales do not have a meaningful common metric. There
is no reason to think that a difference of one standard deviation on the test of
fractions is “‘equal to” one standard deviation on the Rational Numbers test. (The
standard deviation of IQ is 16 points. The standard deviation of height of adult men
is about 3 inches. Is 3 inches equal to 16 1Q points ? Is such a question meaningful ?)

Even so, one might be interested in examining the overlap of distributions for
different textbooks on the same scale. The apparent finding that the means are
crowded together on the Rational Numbers test is an artifact of the standardization.
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Suppose there are just two textbooks, for which the universe-score means are 20 and
30 (respectively) on both variable 1 and variable 2. Suppose that the universe-score
standard deviation for each variable is 10. Now suppose that the test of variable 1 is
highly fallible, so that the observed-score distribution has a standard deviation of
100, most of which arises from error. The standardizing operation transforms the
raw-score scale by dividing scores by 100; the difference between the textbook means
on v, will shrink from 10 points to 0.1 point. Suppose that v, is perfectly reliable;
then the observed-score standard deviation will be 10, and the standardization will
not alter the difference between means on v,. In general (other things being equal), a
less reliable scale will tend to report smaller differences in standardized observed
score between individuals or groups. It appears that the only way to make the
intended examination of overlap is to estimate the mean up and o(u,) separately
within each textbook group. The raw score is appropriate for use in that calculation.

A.3. There will not be a sufficient sample of California Republican electricians
with a $15,000 income to serve as reference group, even though logically it is the
correct one. There is a reasonable chance that the national sample will include a few
dozen persons with an income near $15,000, or a few dozen in the skilled crafts.
And it will have a hundred or more Republicans. Perhaps a group of 50 Republicans
with income $8000 to $20,000 can be found; that would be a fairly suitable reference
group for Doe.

It should be possible to form a regression equation that would assign appropriate

weights to the means of several reference groups [e.g., 0.7X,; + 0.2 (mean for
Republicans) —0.4 (mean for skilled craftsmen) +0.1 (mean for $15,000 income)].
The theory for such estimates has not been explored, however.
A.d. Yes; the sequential procedure employs sound statistical inference. It asks
whether the evidence (observed score) wauld be likely to arise, given the hypothesis
that the person’s universe score is at or below the standard. The probability can be
denoted by P(El H). When one advances the person, the evidence E has allowed him
to reject the hypothesis H.

Constructing a symmetric band around the standard is not open to the objections
made to a confidence interval symmetric about the observed score. However, the
number of erroneous decisions matches the risk the investigator intends only if,
among persons whose universe scores equal the standard, the observed scores are
normally distributed with a standard deviation equal to 6(A).

The procedure is weaker than a Bayesian procedure because it makes no use of
information on the scores of other subjects. A Bayesian procedure asks about the
distribution of universe scores among persons who have the same observed score (or
series of observed scores). To paraphrase the question asked in the first paragraph
above: Is the hypothesis that the universe score equals a certain value likely to be
true, given the evidence of the observed score? (L.e., what is P(H | E?) Because
Bayesian analysis takes additional information into account, Bayesian analysis of
sequential data can classify subjects just as accurately as the non-Bayesian pro-
cedure can, giving fewer tests, on the average. That is to say, Bayesian analysis will
assign more persons after the first stage of testing than will the basic sequential
procedure, and at each later stage will have fewer persons awaiting further testing.



CHAPTER 6

Hllustrative
Analyses of
Crossed
Designs'

A. A Test for Aphasic Patients
Description of instrument and basic data

The Porch Index of Communicative Ability (PICA; Porch, 1966, 1970) is
an individual test designed for use by speech pathologists. It is intended for
initial diagnosis of patients with aphasic symptoms and for measuring the
change or lack of change during treatment. There are three sections, calling
respectively for oral, gestural, and graphic responses; these sections are to
be regarded as fixed modes of response.

Each section of PICA is divided into subtests (Figure 6.1). and the mean
score over 18 subtests is taken as an “overall”” score. There are four oral,
eight gestural, and six graphic subtests, hence the weighting of sections in the
overall score is not uniform. Each subtest consists of 10 items. In any item
an object (e.g., a comb) is presented and the subject is directed to respond
in some manner. Directions for a few illustrative subtests are approximately
as follows:

a. 1. Oral. Tell me what you do with this object.

b. II. Gestural. [Points at object] Pick it up and show me how you

can use it.

c. III. Gestural. [Hands object to patient] Show me how you can use it.

1 Partially nested designs appear at two points in this chapter (pp. 173 and 174).
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Figure 6.1. Structure of the Porch test (PICA)

Section Subtest® Object Subtest score
1 2 ---10
Oral® I Tells what to do with
object X° x X x4 Score on
IV Tells name of object X X X X Oral
IX Sentence completion X X b X -
section
XII E says name; S repeats X X X X J
Gestural II Shows how to use object x x X X
IIT Shows how to use object x  x X X
V Reads name and matches
to object X X b X
VI Points out object whose
use E states X X 00X X Score on
VII Matches printed name to Gestural
object without reading X X c-e0X b section
VIIL Matches printed picture
to object X X x X
X Points to object E names x X X X
XI Matches duplicate object
with object X X X X
Graphic A. Writes use of object X X X X\
B. Writes name of object X X X X
C. E says name, S writes x X X X Score on
D. E spells name, S writes X X X X Graphic
E. Copies name from model section
script X X ceeo0X X
F. Copies drawing of object x x -+ x x /

x  Overall scoref

& Order of administration is I to XII, then A to F.
b Called Verbal by Porch.

¢ Each score is a numeral on a 1-16 scale.

d Average over 10 objects.

¢ Each section score is an average over subtests.

f Overall score is an average over subtests,
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d. IX. Oral. Finish the sentence [read by the examiner]: “You lock a
door witha ---.”
e. A. Graphic. Write down what you use that for.

The same 10 objects (or their names or pictures) are used in every subtest;
hence modes of response are crossed with stimuli. The objects are to be
regarded as sampled from a universe of objects.

Every response is scored on a 16-point scale. A score of 6, for example,
goes to a response that is “intelligible but incorrect,” and 11 to a response
that is “accurate but delayed and incomplete.” Testers score responses as
they are given. The subtest score is the average of item scores, that is, of
performance on the 10 objects under the subtest directions. The subtests are
administered in a fixed order, progressing from those that offer a minimum
of cues to those that provide lavish cuing. Some subtests are essentially
repetitions of earlier subtests with added prompting. Each subject is put
through the entire sequence of tests, though the early tests are quite difficult
for the severely impaired person, and the later tests are quite easy for the
person whose speech involvement is slight. It is probably most reasonable to
regard the subtests as fixed, because the range of possible communicative
tasks is limited. Nevertheless, for the sake of illustrating techniques, in some
analyses we shall regard subtest tasks as randomly sampled from a universe
of tasks.

Porch collected data for his studies from a series of clinical testings in a
large hospital. Certain atypical cases were eliminated, but the remainder
may be regarded as run-of-the-clinic sample. Two subsamples are used here.
The first was a series of 30 cases tested by one clinician while two additional
clinicians observed through a mirror and independently scored the perform-
ance (sample 1). The other subsample (sample 2) consisted of 40 cases tested
twice. Some of these retests were requested for clinical purposes, but others
were obtained specially to get data on stability. The interval between tests
was less than two weeks. Tests were generally but not invariably given by the
same tester.

Porch studied the accuracy of generalization over scorers, over objects,
and over occasions. The facets were treated in separate one-facet studies in
the original report (Porch, 1966). We have been able to reanalyze the data
by the more illuminating multifacet method and also to examine some
questions that fell outside Porch’s area of interest. Porch’s one-facet analyses
are reviewed for the sake of comparison.

Analysis 1: Patients X scorers

A one-facet analysis of sample 1 extracted mean squares for scorers j,
patients p, and residual for each subtest in turn, for each section, and for
the overall score.
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This G study employed a j X p design. The mean squares given in Table
6.1 were calculated by us from data supplied by Porch. Because it is necessary
to subtract one mean square from another, we find it advisable to carry
calculations for mean squares to an unusually large number of decimal
places, rounding off when estimates for components of variance are reached.
The variance components indicate the magnitude of person effects, scorer
effects, and a residual. Because objects are held constant in the scores X,
analyzed in this study, the estimates are for components within the set of
objects. For this reason, components have been labeled p | I, j |I, and
pj.€ | I. Occasions vary from person to person; therefore, the person com-
ponent is confounded with any occasion effect or person X occasion effect.

For Subtest I, é(p | I) is almost 4, which implies that, on this difficult
subtest, universe scores range over the whole 16-point response scale. The
scorer effect is negligible, and the residual rather small. The value of 6(A)
being only 0.4, one can be satisfied with the accuracy of scoring; 677 of the
observed scores fall within 0.4 of the corresponding universe score. To
determine the possible value of adding scorers, one divides 0*(A) by various

n;. With three scorers, for example, 6%(A) = 0.06 and 6(A) = 0.25.

The error components for Subtests II and III are somewhat greater. For
Subtest III, ¢(A) is 0.7, which suggests that the scoring rules for that subtest
could profitably be revised. Porch carried out a further analysis on each
item separately, as a way of learning more about the locus of scoring errors.
The person components of variance for Subtests IT and III are much smaller
than for Subtest I, indicating that patients are more nearly uniform in
ability to perform these easier tasks.

Section scores are based on a large number of responses and the error
components are correspondingly smaller. Scoring of graphic responses is
evidently harder for judges to agree upon than oral ones in the present stage
of development of the method. Oral scores have a much greater p | I com-
ponent of variance than graphic scores.

This is a clinical instrument, and interpretations are almost invariably to
be made about one person at a time. The profile is treated as a description
of the person on an absolute scale; because the raw-score profile is to be
interpreted, o(A) is a suitable index of the seriousness of scorer error.

The variance over persons and the coefficient of generalizability are of
minor interest. Because the constant errors of scorers are negligible, the
observed-score variance is nearly the same when scorers change from person
to person as when the scorer is held fixed. Individual differences in PICA
scores are excellently generalizable over scorers, where these scorers are
trained by Porch’s methods. The very high coefficients result from the wide
range of pathology in a clinic sample, as well as from the excellent scoring
rules.
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While PICA is a wide-range instrument, its chief purpose is to make
precise differentiations that will aid the therapist in planning a treatment for
the current patient, somewhat different from that for the next patient who
has the same gross pathology. Therefore, the degree to which PICA differ-
entiates within the total population of patients is of little relevance save as
an upper limit to its ability to make useful clinical differentiations. The
coefficient estimated here is &p?(X,;;,u,;), either with the same scorer for

)

all persons or with varying scorers. The fact that the j component is small
warrants mixing together, in any study of a group, records obtained from
different scorers.

Analysis 2: Patients X objects

The second one-facet analysis of sample 1 treated objects as randomly
sampled. The average score X,,; assigned by the three scorers to each
response was analyzed; here, the set J is implicitly fixed. The occasion is
again confounded with the person. The results are tabulated in Table 6.2.
The mean squares are very much larger than those in Table 6.1 simply
because the data come from a 30 x 10 score matrix whereas those used
in Table 6.2 come from a 30 X 3 matrix.

While the component for persons is rather close in size to that in Table
6.1, we must stress that the two tables define these components differently.
In two-facet notation, the so-called person component of Table 6.1 is
o*(p,pI) and that of Table 6.2 is o2(p,pJ).

The object component is rather large for Subtests IT and IIL. This argues
for presenting the same test objects to all subjects when person-to-person
comparisons will be made or when norms will be used in interpreting.
Interestingly, the object component is negligible for Subtest I; this may
suggest something about the manner in which severe aphasic impairment
affects the retrieval mechanism for speech responses. To pursue this lead,
one would try to explain why difficulty varies markedly from object to object
in II and III and not in I.

The error of generalization from one object to the universe of objects is
ordinarily larger than the error of generalization from any one scorer to
the universe of scorers. This is a reflection both of the unpredictability of an
aphasic’s response at any moment and of his specific difficulty with particular
objects. The efficiency of the patient varies from moment to moment and
this produces object-to-object variability, but it does not cause scorings of
the same response to differ. Since there are 10 objects, the i |J and pi,é | J
components of error shown in the table are reduced by a factor of 10 in the
subtest score. The quantity ¢(A) is around 0.5 to 0.7, which implies that the
observed score is not often more than one unit distant from the score that
would be obtained by testing with an extensive set of objects.
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As Porch proposes to use an i X p design in practice, we calculate an
observed-score variance and a coefficient only for that design. The data
would also permit calculations for the i:p design and for values of n; other
than 10. While these relatively conventional one-facet studies give an adequate
answer to the chief questions about errors arising from sampling of scorers
and test objects, a multifacet analysis teases out interactions, separates
the p component from pI and pJ, and is more compact than two separate
analyses.

It is possible to analyze one subtest at a time or several subtests together.
Since our purpose is to illustrate procedure, two additional analyses are
carried out:

Analysis within a subtest. Subtest III is chosen because its large scorer
effect is of interest; scorers and objects are facets, crossed in the G data
with each other and with patients.

Analysis within a section. The Graphic section is chosen. Subtests k,
objects i, and scorers j are facets, crossed with each other and with patients.
(Most instruments have items nested within subtests, but the common
objects of PICA create a crossed design.) A composite estimate of the
various components over all subtests is needed. An analysis is carried out
in which subtests are considered to be fixed and another in which
subtests are considered to be samples of an indefinitely large number of
response modes.

It may be worth mentioning that the analysis demonstrated within a
section (Analysis 4) could also be carried out for the entire test, simply by
ignoring the division of the test into sections. This procedure is not as

satisfactory as the multivariate procedures to be developed in Chapters 9
and 10.

Analysis 3: Patients x scorers X objects

A multifacet analysis was made of the scores generated by 30 patients, 3
scorers, and 10 objects under the directions for Subtest III. The mean squares
for this study were presented in Table 2.2. The mean squares for p, i, and j
in the two-facet analysis agree with those from Tables 6.1 and 6.2, after
allowance is made for the fact that the one-facet mean squares are scaled
down by factors of 10 and 3, respectively. For the two-facet study components
of variance are given in Table 3.5.

The components have been redefined in going to the multifacet analysis.
Consider the “component for persons.”” In Table 6.1 p was confounded with
PI; in Table 6.2 with pJ. In the two-facet study the p component is separated
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out. The person component of variance in each table is a universe-score
variance, but the universe changes as follows:

Table 6.1: Universe of scorers, 10 objects fixed.
Table 6.2: Universe of objects, 3 scorers fixed.
Table 2.2: Universe of objects and scorers.

The pi interaction thus contributes to the universe-score variance in Table
6.1, but not in Table 6.2 nor in the two-facet study. This interaction emerges
explicitly in the multifacet analysis, and the “person’ component of variance
is correspondingly reduced. The scorer component is numerically much the
same in Table 6.1 and the two-facet study, though in the former it includes
the object-scorer interaction. A comparable statement can be made about
the component for objects. The two-facet study, like the one-facet study,
has hidden facets, notably occasions and testers.

In the two-facet study, the large effects are those for patients, for objects,
for patients x objects, and for residual. Scorers evidently are not a source
of appreciable variance. The person-object effect implies that some items
(an item being defined by the object together with the subtest directions)
are much more troublesome for a given patient than their general difficulty
and his general impairment would suggest. To be sure that there is a genuine
person—object effect, however, it would be necessary to present the same
object more than once. In retrospect, we see that Porch would have learned
somewhat more about components of variance, with an equal expenditure
of effort, if he had presented half of his objects twice, with a rest period
between trials. Occasion effects could then be appraised. (It is unusual to
have a residual smaller than an interaction, but it is understandable in this
study. The residual represents discrepancies between scorer ratings of the
same performance, after correcting for scorer main effects and simple
interactions. Where the subject performs inconsistently, the scorers agree
in their reports of that inconsistency; hence, the variation is assigned to the
patient-object interaction.)

The large components of variance in X,,; are reduced by using 10 objects.
With 10 objects and a single scorer, the estimated ¢%(A) (using values from

p- 87 and dividing by the proper n’) is the sum of ;;(1), 0.13; o?(.l), 0.09;

Apl), 0.26; A(p]), 0.21; GX(1J), 001; and c*(pll,e), 0.16. Hence, o*(A)
equals 0.86 and 6(A) is 0.93 points on the 16-point scale. This statement
assumes that the observed score will be taken as an estimate of u,. If it
were taken as an estimate of u,;, the pI contribution of 0.26 and the
contribution of 0.13 would not enter the error variance. In that case, 6(A)

would drop to 0.69, which is in agreement with the c/r;(A) 0f 0.47 in Table 6.1.
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By what reasoning can one judge whether u, or u,; is the more appropriate
universe score?® If the tester is attempting to describe the person’s ability
to perform the gestural task of Subtest III, no matter what the stimulus
object is, u, is clearly the target score. But if there is to be only one form
of the Porch test, meaning may come to surround a “Porch score” of,
perhaps, 11 that to some extent reflects the stimulus characteristics of these
specific objects. If the Porch score is considered as describing response to
these particular objects, u,; is the universe score, and the correspondingly
smaller o(A) is pertinent.

The expected observed-score variance depends on the design of the D
study. Not all designs make practical sense; it seems most unlikely that one
would nest scorers within objects, for example. The designs I X J x p,
I x (J:p),and (I X J):p might plausibly be used. Table 6.3 presents estimates
of observed-score variance and the coefficient for Subtest III, assuming that
1 scorer and a 10-item test produce each patient’s score.

TABLEG6.3. Expected Observed-Score Variances and Coefficients of Generalizability
for Subtest I1I for Various Experimental Designs

Coefficient,
Components Expected if universe
entering observed-score score® is
Design of observed-score variance
D study variance (ni =10, n; = 1) Uy Bl
Objects x scorers  p, pi, pj, pij, e 6.34 0.90 0.94
X patients
Objects x (scorers: all but / 6.44 0.89 0.93
patients)
(Objects x scorers) all 6.57 0.87 —b
:patients

& Variance of u,, estimated as 5.71. Variance of u,, estimated as 5.97.

b It is highly unlikely that one would generalize to u,, 1,» Where objects defining the universe
differ from person to person. In such a case, the universe-score variance includes P pl,
and I components.

The first point to note in Table 6.3 is that the coefficient for the I x j x p
design with generalization to u, is 0.90. This value is smaller by a practically
significant amount than the values of 0.94 and 0.95 from Tables 6.1 and 6.2.
Taking two sources of error into account simultaneously has given a less

21t should be noted that there is a hidden fixed facet, k*, since one is not generalizing
beyond Subtest III here. Therefore, to be strict in designations, these universe scores
should be identified as ppre and pprge.
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flattering picture of the test than the conventional one-facet study did. In
effect, the two-facet study estimates the correlation expected if responses to
one set of objects judged by one scorer are compared with responses to
another set of objects judged by another scorer. This is surely of greater
interest than either of the one-facet coefficients.

If one is interested in measuring individual differences within a run-of-the-
clinic sample, it makes little difference whether the i x j X p design or the
i X (j:p) design is used. The third design, with objects different for each
patient, seems at first glance not be to much worse than the first two. The
drop in the coefficient from 0.90 to 0.87 implies, however, that the third
design with 10 objects is no more effective in estimating u, than the first
design would be with only 7 objects.

The Spearman-Brown formula was capable of evaluating the effect of
altering n; in Analysis 2 or n; in Analysis 1. It cannot be used, however,
when the design has more than one random facet, because different divisors
apply to the several components of variance. “Doubling the length of the
test” (i.e., doubling n;) reduces the components for I, pI, IJ, and pIJ,e—but
not those for J and pJ. If the test is extended to infinite length, the coefficient
of generalizability with u, as the universe score does not go to 1.00 as the
Spearman-Brown rule implies. With increasing n;, it is only the coefficient
for generalization to u,; that has 1.00 as its limit.

Analysis 4: Patients X scorers X objects X subtests

A four-way variance analysis of scores on the Graphic section, in which
10 objects are crossed with 6 subtests (modes of response), generates the
mean squares given in Table 6.4. The components of variance have been
estimated under assumptions of subtests random and subtests fixed. There
is little numerical difference between the components for this test under the
two models.

The two components for p deserve special consideration. In generalizing
over subtests the universe score is u,. With generalization to a fixed set of
subtests the universe score is 4,k . The person component of variance with
fixed subtests is o®(p | K*); because it includes the pK interaction of the
random model, this variance is larger than ¢2(p). In this example the pK
interaction is the average of interaction components for six subtests, hence
its variance (0.29) is one-sixth of the variance for the pk component (1.71).

The estimation formulas for the mixed model differ from the random-
model formulas, for each component identified with an a in the last column
of Table 6.4. Where the random model has:

MS pij — MS pijk, e
Ny

6.1) o (pij) =
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TABLE 6.4. Estimates of Variance Components for Graphic Section

Estimate of variance
component if subtests are

Source of Degrees Mean Randomly selected

variance  of freedom square from large collection Fixed
Patients p 29 1030.71678 5.30 5.59*
Objects / 9 95.95480 0.13 0.15%
Scorers j 2 55.97745 0.02 0.02*
Subtests k 5 2458.43769 2.65 2.65
pi 261 15.26016 0.41 0.74*
P 58 11.38810 0.15 0.16*
pk 145 59.17398 1.71 1.71
if 18 3.12108 0.00 0.012
ik 45 18.24349 0.12 0.12
Jk 10 5.05145 0.01 0.01
Py 522 1.88159 0.15 0.31*
pik 1305 7.00967 2.01 2.01
pik 290 1.71136 0.07 0.07
ijk 90 1.38559 0.01 0.01
Residual 2610 0.99167 0.99 0.99

& These are to be interpreted as components with K* fixed [i.., as o(p | K*), ... 6%(pij € |
K*)]. The remaining components in this column are “within K*.”

the mixed model has
(6.2) o*(pij,é | K*) = MS pij

ny
In estimating the component for pi | K*, MS pij is subtracted from MS pi;
similarly with pj and ij. The mixed model analysis assumes that the six
subtests comprise the universe of subtests. Therefore it provides direct
estimates of the variance of u,x+, %+, €tc. Table 6.5 shows how to com-
pute 6%(A) assuming fixed subtests. With subtests fixed, generalization is to
122348

While we have treated various PICA scores in accord with the univariate
theory developed in preceding chapters, the instrument is multivariate, and
methods to be developed in Chapters 9 and 10 could appropriately be
applied. These probably would not improve generalization over objects and
scorers appreciably, because the coefficients of generalizability obtained by
univariate analysis are high. In view of the considerably larger error variance
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TABLE 6.5. Composition of Error Variance for Graphic Section if the within-
Person Design isi X j x k (n; =10, nj = 1, n;, = 6; Generalization to p,K+)

Estimate of
variance  Frequency

X1+ Boke Aprrke component® withinp %)
Hie 194
Poge~ Boxe~
Hrge~ 1254 <Jand 0.15 10 0.02¢
Ryge™~ 1234 :<Jand 0.02 1 0.02¢
HprK*s ™ 1258 <1nd 0.74 10 0.07
122°% § ‘<20t MpgKre™~ 0.16 1 0.16
1587 430 Rragrs~ 0.01 10 0.00¢
HprgK*~> e BorgK*™> e 0.31 10 0.03
0.30 = ¢3(4)
-~
0.26 = £0%(5)

a Components written by analogy to (2.19).
b Values calculated in Table 6.4.
¢ Components not entering a2(9).

associated with occasions (to be discussed shortly), multivariate estimation
of the subtest universe score might well offset some of the error arising from
sampling of occasions. The retest data available to us are not sufficient to
warrant that kind of analysis for PICA.

In generalization to u, (over subtests), the K and pK components would
make large contributions to ¢(A). If generalization over subtests were in-
tended, it would be desirable to use a much greater number of subtests,
possibly with fewer items per subtest. For example, consider three possible
values of n; and the possibility of using different objects for each subtest
(i:k) while holding the total sample of behavior to nin, = 60. Table 6.6

gives values of ;;(A) for the Graphic section of PICA under the random
model, for various designs. Generalization to u, is clearly improved when the
number of subtests is increased. Nothing important appears to be gained by
varying objects from subtest to subtest, even though this would increase the
sampling of pi and other components. To increase the number of subtests
while holding the overall testing effort constant would make the several
subtest scores less useful, because the error in generalizing to the several
increases as n; drops.

Table 6.6 has substantive implications. The large subtest component is
expected, because some responses are especially hard for the aphasic patient
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to make. It would be unwise to generalize from the absolute level of scores
on one mode of response to the absolute level on other modes. The large
patient-subtest interaction confirms that the subtests call upon somewhat
different functions, hence differences within the profile are likely to have
meaning. The pik interaction is made large by momentary fluctuations of
responsiveness which are probably greater for aphasics than for normal
subjects.

Reporting the study

Having approached the Porch data dealing with object and scorer variation
in various ways, we may reflect on what would be recommended to the
developer of such a test who wants to make as straightforward a study as
possible and to report it simply. The developer should design a G study to
systematically represent as many important facets as he can. He may then
consider the effects on generalizability of many possible D-study designs. If
he is prepared to recommend one single design to all users of the procedure,
he can make a fairly straightforward report. It also makes the report simpler
if only one universe of generalization is likely to be of interest to users.

A report along the following lines would appear to be suitable for the
study we have been considering:

1. Assume an intention to generalize over objects and scorers, for the

score on each subtest separately, the score for each section, and for the

overall score. Regard subtests as fixed. Report the experimental design for

the G study and, describe in general terms, the scorers used. Assume that

the D study has design i X j X p, and specify n; and n;.

2. Perform a three-way analysis of variance of X,;; within each subtest.

Report mean squares. Use the random model to estimate components of

variance, and o(A), £0%(X), and &p? for each subtest.

3. Perform a three-way analysis of variance of scores X,;;x. for each

section and report mean squares. Calculate estimates for components of

the type o®(p | K*), etc. and report them. For each section score report

N ~~

é(p), €6*(X), and &p?.

4. Combine within-section data (by methods for composite scores to be

presented in Chapter 10) to get estimates of the variance components for

the overall score and of its o(A), £6*(X), and &p?.
This gives more detail then any one user needs, but it answers a variety of
questions and provides information from which the user who has an unusual
question can calculate an answer for himself. The report might be extended to
give similar estimates for a design with scorers nested within subjects,
because some clinical practice and research will mix records obtained by
different scorers. Or, if the data support the statement that generalizability
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with nested scorers is nearly as good as for crossed scorers, the report might
say simply that.

Obviously, reports of this sort will require a more sophisticated audience
than test manuals now assume. Nevertheless, if generalizability is a compli-
cated matter, research reports must somehow make full findings available
and hope that readers can be educated to use them. A report that tells a
simple but incorrect story is not to be recommended.

Analysis 5: Variance associated with occasions

Porch analyzed the data of sample 2 to determine the consistency between
tests given on two occasions within a two-week period. Several patients
had been tested many times during their treatment; if there are three or more
scores for a person, we use only the earliest pair of tests. Since all these
patients were tested by Porch, tester and scorer are hidden facets in the design.

There are two ways to regard this study. From one point of view occasions
are crossed with patients; from another, occasions are nested. If we consider
occasions as differing because they occur on different calendar dates (ac-
companied by different weather, different degrees of attentiveness of the
tester, etc.), occasions are nested; only sporadically are two subjects tested
on the same date. If, on the other hand, we entertain the possibility of an
order effect, because of the fact that the patient makes some recovery during
the two-week interval, or profits from practice on the test, there is good
reason to distinguish between the first and second test and to treat occasions
as crossed. Every subject does have a score that identifiably belongs in the
first or second column. The random-sampling model of generalizability
theory applies satisfactorily only if we assume the subjects to be in a steady
state or at worst assume that any practice effect is a constant that can be
corrected for. The random model cannot give serious attention to an order
effect; it might be appropriate to regard “first”” and “second” occasion as
fixed. We shall analyze the Porch retest data for Subtest III within the
random model, with two interpretations of the design.

Organizing the data accordingto ani X o X p design permits a three-way
analysis of variance, with results given in Table 6.7. The large effects are
those attributable to patients, objects, patient-object interaction, and
residual. The sample includes a wide variety of clinicaltypes, and consequently
the variance component for patients is large relative to the score range of 16
points. The substantial pi effect implies that a person who scores higher on
some objects and lower on others tends to show the same pattern the next
week, a fact that may have diagnostic significance. Moreover, this implies
that a person’s standing on one object, even if determined by repeated measure-
ment, has limited value as an indication of his standing, averaged over
occasions, on the universe of objects. The substantial object i component
reflects the difficulty of handling some objects correctly in this subtest.
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TABLE 6.7. Estimates of Variance Components for Subtest III Over Occasions

Degrees

Source of Sum of of Mean Estimate of

variance squares freedom square variance component
Patients p 3890.3744 39 99.75319 4.65
Objects { 733.8747 9 81.54163 0.95
Occasion o 14.5800 1 14.57997 0.03
pi 1891.6162 351 5.38922 1.17
po 170.9198 39 4.38256 0.13
io 16.3702 9 1.81891 —=
Residual 1073.1228 351 3.05733 3.06

& Negative value, treated as zero.

The pio,e component of variance is quite large. This reflects a trial-to-trial
inconsistency of performance (which contributed to the sizeable pi component
of our earlier analysis—see p. 167—within subtests on a single occasion).
The small io mean square generates a negative estimate of the io component
of variance. To treat this component as zero seems entirely reasonable,
because there is no reason to think that certain objects will be systematically
easier to respond to on the first occasion than on the second, and others
harder. The occasion effect is quite small, implying that these patients did
not make appreciable progress during the period between tests and that there
was little practice effect. The po component is also rather small, implying
that day-to-day fluctuations in responsiveness are not a particularly significant
source of error of measurement.

Patients are not tested on the same two occasions, therefore the G study
may be considered to have the design i X (o:p). Then, as can be inferred
from information on Design V-B in Figure 2.4 and Table 2.1, the io com-
ponent is confounded with pio,e and the o component is confounded with
po. Combining sums of squares and degrees of freedom as suggested in
Chapter 2 gives these values for the confounded components:

Sum of squares Degrees of freedom  Mean square
0,po 185.4998 40 4.637
io,pio,e  1089.4930 360 3.026
The variance components are estimated to be as follows:

p 4.64
i 0.95
pi 118
o,po 0.16

io,pio,e 3.03
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TABLE 6.8. Estimation of o*(A) and &o*(X) for Subtest 111 for a D Study with the
Design i x (o:p) (n; = 10, n, = 1; Generalization to p,)

Estimate of

variance Frequency
Xoro Apro component within p a2(A) &a2(X)
P 4.64 4.64
I py~ 0.95 n; =10 0.10
pl Hpr~ 1.18 n; =10 0.12 0.12
0, po Mo, po™~ 0.16 n, = 0.16 0.16
Io,plo,e  pro 10,6~ 3.03 noni = 10 0.30 0.30

0.68 522

While the components for p and pi (and in the third decimal place i) have
been altered, with these data the change in analysis makes no difference in
the interpretation.

We shall consider a nested D study, since it conforms more satisfactorily
to our model, and there is little evidence of systematic o effects over a limited
time span. The resulting estimates are listed in Table 6.8. Using these values

PO

we obtain &p* = 4.64/5.22 = 0.89.

We now have the following distinct kinds of coefficient (among others)
for Subtest III: over objects (Table 6.2), 0.95; over objects and scorers
(Table 6.3), 0.90; over objects and occasions (Table 6.8), 0.89. Insofar as
we can judge from these data, which arise from two distinct samples, scorer
disagreement is as much a source of inexactness as is variability of response
and scoring from one occasion to another. One might well ask for a further
study that allows for a combined estimate for all three sorts of variability,
and, indeed, that goes on to investigate effects associated with the person
who administers the test.

B. A Two-Facet Anxiety Inventory
Description of instrument and basic data

The S—R Inventory of Anxiousness (Endler, et al., 1962) is similar to PICA
in that items are defined according to a two-facet design. Every item asks
the subject to indicate on a 1-5 scale how strongly he experiences a certain
response (e.g., “‘gets an uneasy feeling”’) when confronted with a certain
situation (e.g., “starting off onalong automobile trip”’). There is, presumably,
a universe of situations and a universe of modes of response, and an item
can be formed for any situation-response pair. Data are collected by Design
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VII, with n; = 11 situations crossed with n; = 14 modes of response; the
subject responds to 154 items. [Additional forms of the test have been
prepared, and there is an inventory of hostility of the same type. (Endler
& Hunt, 1968)].

The 1962 report on the test included an analysis of variance. At that time,
mean squares were erroncously used as a basis for inferring the magnitude
of the several effects. That is to say, mean squares were interpreted as we have
interpreted variance components. In 1966, Endler estimated components of
variance from these same data, incidentally describing how components
change when one assumes a mixed model rather than the random model. A
substantive interpretation of the variance components was presented by
Endler and Hunt (1966). These interpretations of course differ from those
originally derived from the mean squares, because the mean squares reflect
the arbitrarily chosen values of n,, n;, and n;.

Three samples are treated in the 1966 paper; we confine attention to a
sample of 169 Pennsylvania State University freshmen. This analysis is
reprinted because it is a clear and useful illustration, and because we can
add to the interpretation by considering designs other than the one employed
in the G study.

Summary of the Endler—Hunt results

Table 6.9 presents the chief results for students tested at Pennsylvania State
University. The analysis assumes an indefinitely large number of admissible
modes of response. It is reasonable enough to think of the universe of
anxiety-inducing situations as very large, but perhaps the number of kinds of
response indicative of anxiety is rather limited. If the universe were restricted
to a finite but large number of conditions, however, the estimates would
not change greatly.

TABLE 6.9. Estimates of Variance Components for the S-R Inventory of
Anxiousness (after Endler & Hunt, 1966)

Source of Degrees Mean Estimate of

variance of fredom  square  variance component Percentage
Subjects p 168 21.26 0.10 5.6
Situations i 10 244.37 0.09 5.0
Modes of response j 13 836.51 0.44 24.6
pi 1680 3.16 0.18 10.1
pi 2184 2.86 0.20 11.2
ij 130 20.62 0.12 6.7
Residual 21,840 0.66 0.66 36.8

100.0
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TABLE 6.10. Estimates® of Variance Components in Seven Male Samples Taking
S-R Inventory of Anxiousness Form 0

Source of variance Range Median®
p 0.08-0.13 0.1
i 0.06-0.09 0.07
Jj 0.34-0.44 0.41
pi 0.16-0.21 0.19
i 0.13-0.23 0.20
ij 0.07-0.14 0.10
Pij, e 0.61-0.75 0.66

Number of cases 30-206 93

a From Table C of supplementary materials for Endler and Hunt, 1969.
b Corresponding medians for females from the same schools: 0.11, 0.15, 0.48, 0.23, 0.25,
0.12, and 0.68; the median N is 55.

In interpreting the components, it must be borne in mind that what has
been analyzed is the variance of item scores (i.e., of single pij combinations).
The components are not on the scale of the test scores.

Data were collected with the same form on seven samples of males. The
information in Table 6.10 gives some indication of the sampling error of
components. There are differences from sample to sample, but they are
remarkably small, considering that samples of 30, 41, and 53 cases
are included. Even for the two largest samples (n, = 206 and 125), there are

disagreements. That the two values of ¢*(p) should be 0.13 and 0.08 very

likely is explained by differences in selection of cases. That ¢*(ij) should be
0.12 in one of the large samples and 0.07 in the other is difficult to under-
stand. Nevertheless, the full set of results suggest that estimates of compo-
nents are reasonably stable, where n; and n; are as large as they are in these
G studies.

The Endler-Hunt (1966) interpretation of Table 6.9 made the following
substantive points:

There is no single major source of behavioral variance, at least so far
as the trait of anxiousness is concerned. Human behavior is complex. In
order to describe it, one must take into account not only the main sources
of variance (subjects, situations, and modes of response) but also the
various simple interactions (Subjects with Situations, Subjects with
Modes of Response) and, where feasible, the triple interaction (Subjects
with Situations with Modes of Response). Behavior is a function of all
these factors in combination.
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The fact that very substantial portions of the total variance [of single
observations X,,;, over p, i, and j] come from the interactions of subjects
with situations, of subjects with modes of response, and of situations with
modes of response, and from the triple interaction, has importance for
personality description and for the design of inventories to predict either
behavior orfeelings. First, itimplies thataccuracy of personality description
in general calls for statements about the modes of response that individuals
manifest in various kinds of situations as well as statements about their
general proneness to make certain responses rather than others, and about
their proneness to be responsive rather than unresponsive.

Second, the fact that substantial portions of variance come from the
interactions suggests that the validity of predictions of personal behavior
should be substantially improved by asking the individuals concerned to
report the trait-indicating responses of interest in the specific situations,
or at least in the specific kinds of situations, concerned.

Endler and Hunt cite studies indicating that subscores for particular situations
have substantial correlations with behavior in those situations. Evidently,
group factors or factors specific to the situation (pi components) are worth
interpreting even though a general factor (p component) is present.

Endler and Hunt did not use the components as a basis for discussing the
generalizability of scores. They had reported conventional one-facet reli-
ability studies in the original monograph, calculating for each i in turn a
coefficient « that indicates how well one can generalize from X,,;; to u,,.
They also gave a coefficient for each j. Let us now see what a multifacet
interpretation can offer.

Interpretation in the light of generalizability theory

Generalization to u,. Assume for the present an intention to generalize
to u,, that is, to interpret the overall score as a measure of general anxious-
ness. Then all components of variance save that for p contribute to ¢%(A).
How great is the error of measurement? In Table 6.11, look first at the
columns to the right, where it is found that for the 11 X 14-item instrument
&(A) = 0.26. This error is to be judged relative to the scale range of 4.0.

PO
The expected value &'¢%(d) is estimated by adding just the components

[other than ¢%(p)] that contribute to observed-score variance in the crossed
design. We note that 6(d) is 0.17; since é(p) = 0.10'/2 = 0.32, the test does
not discriminate well between persons. This is confirmed by the estimate of
0.77 for &p?, a low value for a questionnaire with 154 responses. However,
itis to be realized that the scale was constructed by 11 + 14 acts of sampling,
not 154.
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TABLE 6.11. Estimation of o(4), o(3), and & p* for D Studies with the S-R
Inventory of Anxiousness (Generalization to p,)

Estimate of Contribution to 02(A)
Frequency variance
Source of within component® ) =

1 7 11 14 22 154
154 22 14 11 7 1

variance P n;=1,n;=1) nj

i n; 0.09P 0.09 0.01 0.1 0.01 0.00 0.00
j n; 0.44 0.00 0.02 0.03 0.04 0.06 044
pi n 0.18 0.18 0.03 0.02 0.1 0.01 0.00
i n 0.20 0.00 0.01 001 0.02 0.03 0.20
ij ning 0.12b 0.00 0.00 000 0.00 0.0 0.00
Pij. e ning 0.66 0.00 0.00 0.00 0.00 0.0 0.00
Est 02(A) 1.69 0.27 0.07 0.07 0.08 0.10 0.64
Est £0%(5) 1.04 0.18 0.04 0.03 003 0.04 020
Est o(A) 0.52 026 026 0.28 032 0.80
Est 0(d) 042 020 0.17 0.17 020 0.45
Est £02(X) 028 0.4 013 0.13 0.14 0.30
Est £p? 036 0.71 077 0.77 0.71 0.33

& Values calculated in Table 6.9.
b Components not entering £6%(8) and £02(X).

The reader will recall that the Spearman-Brown concept of reliability as a
simple function of “length of test” is not applicable to a multifacet instru-
ment. While an investigator improves generalizability by increasing n; and

I

nj, there is no simple formula relating &p? or 02(A) to the total number of
observations. Accuracy of generalization is a function of the sample size for
each facet.

Consider the efficiency of various designs for an S-R inventory, all eliciting
154 responses per subject, but with #; ranging from 1 to 154 and n) from 154
to 1. Table 6.11 estimates a(A), ¢(d), and &p? for several values of n} and n;.
Each change in the n;, nj balance alters these indices even though the “length”
of the instrument remains constant. For this example, the optimum &p? and
0?(0) are obtained for n; and nj nearly equal. In another instrument one
might have another result; the optimum balance depends on the relative
size of the interaction components. The minimum of ¢2(A) is achieved with
n; around 8 and n; around 19. There are different ““best designs™ for different
purposes.

Generalization to p,;. The investigator concerned with situation-specific
anxiety will generalize over modes of response, taking u,, as his universe
score. Then the pi component is added to the p component in the universe-
score variance; this variance is estimated to be 0.28. This value refers to the
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average variance over all situations, and, therefore, is an unbiased estimate

P

of universe-score variance in any one situation. This leads to &p* of 0.82
for nj = 14 and n; = 1, where generalization is over modes of response only.

A more informative analysis would be to treat scores on each situation
separately. This, of course, is what Endler et al. did in calculating o for
each situation. Their «’s range from 0.55 to 0.90 (average 0.76). Each of these
is a coefficient of generalizability indicating how accurately one can generalize
from an observed score with 14 modes of response and a fixed situation, to the
universe score for that situation, over all modes of response.

Because i is fixed, the i and pi components no longer enter o?(A). Using

the analysis for all situations together, :r\z(A) for a one-item test equals
1.42 (= 1.69 — 0.09 — 0.18) and &(A) = 1.19. 20\2(6) = 0.86. All com-
ponents contributing to c/r;(A) and g;(é) are proportional to n; fo/r\ the
one-situation test. To appraise the effect of any nj, one merely divides 6*()
or ?0\2(6) by nj. To estimate £¢%(X) for any n;, we add c/r;(,u,,-) = 0.28 to
PO PO

&02(8); then 0.28/&¢%(X) estimates &p?. As there is just one variable facet,
the result is consistent with the Spearman-Brown formula. We arrive at
these values:

n; 1 5 10 20 30
Est £0%(5) 0.86 0.17 0.09 0.04 0.03
Est €6%(X) 1.14 0.45 0.37 0.32 0.31
Est € p? 0.25 0.62 0.76 0.87 0.90

Design recommendations. Now the tester can begin to think about the
desired design of his instrument. Suppose he intends to generalize to u,,
will use the crossed Design VII, and has a fixed total number of items
(= n{n}) in mind. If he wants to keep ¢(A) at a minimum, this is achieved by
taking a value of n; smaller than nj (Table 6.11). If he wants to maximize
& p* and to minimize error in the point estimate of u,, he will make n; nearly
equal to nj. This is not the whole answer, however. Perhaps he should nest
j within i so that he would sample the large j component (and pj) n;n; times.
If he retained n; at 11 and chose 14 different nj for each i, (A) would drop

PO
to 0.18 and 6(9) to 0.14, and &p? would rise to 0.83.

It becomes obvious that, if estimating u, is our only concern, the best
design is ITI-B: 154 ij pairs in the test with no i or j repeated. For that design,
PO\

&p? is 0.94! This mathematically ingenious solution, unfortunately, is almost
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certainly impractical, because it would take considerable psychological
ingenuity to prepare a list of 154 relevant modes of response.

What if the score for each specific situation is of interest? This introduces
the bandwidth-fidelity dilemma: as more i are covered in an instrument of
fixed overall length, the information on each one becomes less dependable
(Cronbach & Gleser, 1965, p. 97 ff.). Consequently, there is some limit on
the number of facts one should try to collect. If we inquire about 154 situ-

ations with one mode of response for each, and generalize to each of the
FERS
Hoi, 6(0) = 0.8612 = 0.93; with more responses &0%(d) is inversely pro-

portional to n;. It is hard to say just what precision the tester should want
in a score, but if he decided that ¢(8) should not exceed 0.19, for example
(so that &p? in generalizing to u,, is 0.88), n; would have to be 23, and this
would set the limit at 7 situations. (The number of modes of response would
have to vary from situation to situation, to bring each specific coefficient to
0.88.) It must be remembered that the optimum design for estimating several
My is not optimum if one is interested also in simultaneously estimating
various u,; for specific modes of response.

The decision about bandwidth can be improved by going on to a factor
analysis of some type. The presence of a variance component for pi does
not tell us whether that interaction arises from just one factor that divides
the items into two clusters, or from 11 situation-specific factors or something
between. For the S-R inventory a conventional factor analysis (Endler,
et al., 1962) and a three-mode (multifacet) factor analysis (Tucker, 1964)
have been reported. Many of the methods developed in Chapters 9 and 10
could profitably be applied to this instrument.

The investigator planning a D study will not find it hard to draw a con-
clusion about the proper design, but the conclusion will depend on his
purpose. Once he conceptualizes:

1. The relative importance of u,, p,;, and u,;, or up, up;, and up; as
targets of generalization

2. Whether he wants to interpret the observed score, or observed in-
dividual differences, or the point estimate of the universe score

3. A preliminary estimate of the total number of observations per person
he can afford

the investigator can quickly arrive at an appropriate design.
EXERCISES
E.1. In Table 6.1 and 6.2, residual components of variance for PICA subtests are

estimated. What kinds of variation in performance contribute to the residual
component in each analysis ?
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E.2. Porch analyzed X,,;; at the item level i, obtaining the mean squares listed
below, among others. n, = 30 and n; = 3. Determine components of variance as in
Table 6.11. Interpret the findings.

Subtest I11 P J Residual
Item
1 toothbrush 23.539 17.544 1.740
2 cigarette 16.757 14.011 2.563
3 pen 25.278 6.633 2.622

E.3. Calculate 0%(A) for generalization over objects, scorers, and subtests, using
the components estimated for PICA in Table 6.4. Assume n; = 10, n; = 1, n, = 6.

E.4. Calculate o*(p|K*) and the coefficient of generalizability for 6 fixed
subtests, 10 random objects, and 1 random scorer. Use the data from Tables 6.4
and 6.5.

ES. Silverstein and Fisher (1968) administered the S-R Inventory of Anxiousness
twice to the same subjects with a one-month interval between tests. The design was
treated as having occasions nested within pif, though it could have been treated as
o xiXxjxporasiXjx(o:p) Discuss the pros and cons of this choice,
knowing that the subjects were prisoners assigned to a *“‘guidance center,” and that
the first test was part of a general battery of measures given to the prisoner in-
dividually about a month after arrival.

E.6. The analysis of the Silverstein-Fisher data gave these mean squares:

P i J pi p/ §  pij withinpi

39.92 144.24 98531 3.84 5.62 10.21 0.73 0.56

n, = 100, n; = 11, n; = 14. Estimate the components and indicate what is learned
from this study that adds to, or contradicts, the Endler-Hunt results.

E.7. Leler (see Chapter 3, Exercise 4) collected data on preschool children inter-
acting with their mothers as they performed various tasks. Assuming generalization
IS

over observers and tasks, 6(6) and &p? were calculated for the design with tasks
(n; = 6) and raters (n; = 2) crossed with mother—child pairs. In the light of Table
6.E.1, what recommendations seem sensible for improving subsequent data
collection? Consider the costliness of increasing the demands upon subject time that
would be involved if more tasks were added. Because all scales are rated from the
same tape, there is little saving in cost by allowing smaller #; for some scales. The
alternatives open include dropping a scale, increasing the number of conditions of
i or j, shifting to some kind of partially nested design, and perhaps others. You
may be able to suggest specific information an investigator could seek in the data
that would help in deciding on the revisions.
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TABLEG.E.1. Information from G Study of Mother—Child Interactions (after Leler, 1970)

Component of variance

PR
Scale Mean 46(8) &p* p i J pip ij  pije

D. Mother’s use of

criticism 29 056 000 00 oO01 13 05 03 0.1 1.1
1. Mother’s use of

reasoning with

child 30 071 045 04 07 12 06 06 01 1.1
K. Mother’s discour-

agement of child’s

verbalizations 24 068 011 01 11 02 03 10 04 1.6

L. Child’s independ-

ence 47 063 057 05 01 00 07 03 01 13

Approximate median

for 14 scales 055 050 04 06 01 05 02 01 11
Answers

A.1. The residual in Table 6.1 includes any scorer-patient interaction, and un-
systematic variation in the scoring operation that might arise from the scorer’s
inattention or shifting standards.

In Table 6.2, patient—-item variation enters the residual. This includes any effect of
momentary inattention or blocking by the patient, as well as any systematic difficulty
the patient has with a certain word.

A.2. Universe scores appear to vary over the entire 16-point scale. Scorer stand-
ards differ very little. The residual component shows a moderate amount of
scorer inconsistency that is probably irreducible since the scorer has to judge a single
brief response.

a(p|i) (| 1) o*pj.é | i)
Toothbrush 7.3 0.5 1.7
Cigarette 4.7 0.4 2.6
Pen 7.6 0.1 2.6

A3 }{0(0.13) + (0.02) + 26(2.65) + 1{(0.41) + (0.15) + 1¢(1.71)
+ 140(0.00) + 260(0.12) + 14(0.01) + 14¢(0.15) + 14¢(2.01)
+ 14(0.07) + 160(0.01) + 14¢(0.99) = 1.031

A4, oHp| K% =559
N
€0%(8) = 0.07 + 0.16 + 0.03 = 0.26
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A.5. Treating occasion as nested within pij implies that each ‘‘question” (stimulus
paired with mode of response) is answered by the person on a different occasion.
Operationally, the questions are reached at different instants in time, so that if
occasion variation is interpreted as moment-to-moment variation, the analysis is
pertinent. But this analysis lumps into one residual term the occasion, occasion x
stimulus, occasion x stimulus x mode of response, and other components that
might be separated in a different analysis.

A crossed analysis emphasizes the two distinct occasions a month apart (i.e.,
occasion is interpreted as primarily reflecting effects associated with first-test-vs-
second-test differences). Momentary variation will remain in the residual term, but
there will be separate estimates of components such as pio (the tendency of the
person to respond differently to a stimulus on the first and second occasions). One
can imagine that faking on certain questions might be different if the person believes
at the time of the first testing that his responses will affect his treatment in prison.

Treating occasions as nested within persons implies that the occasion of the first
test is different for each person. That is, occasion is identified with the calendar date
on which the person is tested, rather than with “first” or ‘“‘second” test. This
analysis will leave confounded certain components that the crossed analysis
separated (e.g., o and po).

This decision about analysis cannot be made on purely statistical grounds; it is
essentially a matter of selecting the definition of ‘“‘occasion” that the investigator
considers most meaningful. If one needed unambiguous information about effects
related to time, a more elaborate experiment would be designed involving some
same-day retests and some crossing of days with persons, to evaluate the strength of
effects associated with calendar date, order of testing, and momentary variation.

A.6. There is close agreement between the results tabulated below and those of
Endler and Hunt (p. 179) for the p, j, and pj components. The other four compo-
nents estimated by Endler and Hunt are larger thantheir counterpartsin thisanalysis;
variance has been reassigned to the within-pij component. The variance shifted from
the Endler-Hunt i component to “‘within pij>’ must be io variance. Likewise, there
is evidence that the pio and ijo components are not negligible. (In the Endler-Hunt
analysis the hidden facet of occasion left these confounded with pi and i re-
spectively.) There is evidently some shift from occasion to occasion in the stimuli the
person identifies as arousing anxiety, but little shift in his report on modes of
response.
within
p i j opip § opjpy

0.10 0.05 044 0.12 022 0.05 0.08 0.56
A.7. There is no certain answer to this question. The decisions actually made by
Leler were reasonable; perhaps other suggestions could profitably be made.

To begin, Leler discarded none of these scales. While many coefficients were low,
none was too low to permit her to investigate whether the variables correlated
significantly with language, in a D study using about 60 cases,

It was not feasible to add tasks or raters under the cost limitations of her study. An
extra rater would have reduced the generally large pj and pij components of variance.
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Because the i and j components are occasionally large, a nested design is not
recommended.

With regard to Scale D, the key problem is absence of person variance rather than
extremely large error. The exceptional component for raters j led to further inquiry,
which disclosed that one rater was taking only the mother’s words into account while
the other was also considering tone of voice. Directions for raters were modified to
increase emphasis on tone of voice. If the trait is better defined, generalizable data
may be expected.

With regard to Scale I, the j and pj components are larger than for other scales.
Conferences with raters showed a difference in their definitions for “‘reasoning”; the
directions were revised. A task-by-task study showed deviant scores on the sixth
task, where the mother was required to fill out a form while the child had op-
portunities to distract her. The mother had little occasion to reason with the child
while preoccupied; this task was dropped from the scoring of Scale I (and also from
Scale D).

On Scale K, the mean for the sixth task was high. In retrospect, it was realized
that discouraging the child’s verbal interruptions was appropriate here, and there-
fore had a different psychological significance than elsewhere. The sixth task was
ignored in subsequent use of this scale. This constitutes redefinition of the universe.
No way of reducing pj effects was discovered.

On Scale L, the only improvement was to revise wording of some scale items. After
these revisions, on a larger sample of subjects, the coefficients became: for D, 0.61
(vs 0.00 originally!); for I, 0.66 (vs 0.45); for K, 0.64 (vs 0.11); for L, 0.68 (vs 0.57).



CHAPTER 7

lllustrative
Analyses of
Partially

Nested
Designs

A. Observations of Classrooms

We have referred earlier to the pioneering expositions of the multifacet
approach by Medley and Mitzel (1963; with Doi, 1956). Their theoretical
statement gives an excellent introduction to the basic crossed design. We
propose to work with the numerical example of their 1963 paper.

Design and basic data

Medley and Mitzel were concerned with characteristics of classrooms. The
“class” is the subject under study: data are collected to learn about the tone
of the classroom rather than the traits of particular pupils. To evaluate the
technique, 2 recorders simultaneously observed each of 24 teachers, each
on 5 occasions. This is Design V-B [r X (0:t)], occasions nested within
teachers and crossed with recorders.

A statement in which the authors emphasize the significance of a multifacet
analysis is worth quoting (notation has been adapted to conform to that in
this work), to reinforce points made in our own theoretical chapters (Medley
& Mitzel, 1963, p. 310):

Most observational studies in the past have studied reliability either in
terms of per cent of observer agreement or in terms of an interclass corre-
lation (usually the product-moment, but occasionally the rank-order,
coefficient) between two sets of observations.

A per cent of observer agreement tells almost nothing about the ac-
curacy of the scores to be used, mainly because the per cent of agreement
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between observers is relevant to only a part—and, the evidence indicates,
a small part at that—of the reliability problem. The experience with
observational studies summarized in this chapter clearly bears out a fact
pointed out by Barr in 1929: that errors arising from variation in behavior
from one situation or occasion to another far outweigh errors arising
from failure of two observers to agree exactly in their records of the same
behavior. It is not impossible to find observers agreeing 99 per cent in
recording behaviors on a scale whose reliability . . . over occasions does
not differ significantly from zero.

Reliability can be low even though observer agreement is high for a
number of reasons. For example, observers might be able to agree perfectly
on the number of seats in a room, yet if the number of seats in all rooms is
equal, or nearly so, the reliability of seat counts as a measure of differences
between classes will be zero. Near-perfect agreement could also be reached
about the number of boys in a room wearing red neckties; but if every
boy changed the color of his tie every day, the reliability of these counts
would be zero. So long as an interclass (product-moment) correlation is
based on scores obtained on two different occasions by two different
observers, it does estimate p x-. But it is not likely to be a very accurate
estimate because the number of classrooms 7, is usually small in obser-
vational studies, and the size of n, determines the precision of a product-
moment correlation coefficient (its standard error varies inversely as the
square root of n,). In even a rather ambitious study, using 100 classrooms,
the 90 per cent confidence interval of p x. estimated in this way would be
about 0.33 points wide! If the number of situations or occasions per teacher
(n,) is increased to more than two, several correlations can be calculated,
one between each pair of situations; but since they are not independent,
it is difficult to combine all of the correlations into a single best estimate.

A single intraclass correlation can be calculated from an analysis of
variance of a set of data collected according to the plan suggested above.
Such a single coefficient combines all of the information in the n,z, inde-
pendent measurements of each of the n, classes. The estimate of px x. so
obtained is unbiased and also more precise than any combination of
interclass correlations . . . . Moreover, the different reliability coefficients
appropriate to the various uses to which the scores might be put can all
be estimated from the one analysis of variance.

Review of original analysis

The design of greatest all-around importance in generalizability studies is the
completely crossed Design VII, and for their pedagogical aims Medley and
Mitzel develop the example as if such a design had been used, teachers ¢
being crossed with observers r and occasions o. They speak of “situations”
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TABLE 7.1. Estimates of Variance Components from a G Study with the Design
r x o x t (after Medley & Mitzel)

Estimate of variance component

Degrees when N, is considered to be

Source of Sum of of Mean

variance  squares freedom  square Very large 5
Teacher ¢ 203 23 8.83 0.53 0.81
Recorder r 13 1 13.00 0.10 0.10
Occasions o 19 4 4.75 0.03 0.03
tr 17 23 0.74 0.01 0.15°
to 321 92 3.49 1.41 1.41
ro 1 4 0.25 — —
Residual 62 92 0.67 0.67 0.67

a Negative value, treated as zero. Because of this procedural decision, the numerical values
for r and o components disagree with the values given by Medley and Mitzel.

b The formula used by Medley and Mitzel to estimate the 7r component obtains a different
result because they, in effect, assume the tro interaction to be negligible.

where we speak of “occasions,” and analyze the data as if each teacher had
been observed “in the same situations.”” This might be a reasonable interpre-
tation, if each teacher taught certain standard lessons and the recorders
observed each teacher with each lesson. Although this is not the study
actually made, we review the crossed analysis both as an additional demon-
stration of the method and to show what difference a change to the strictly
correct analysis makes.

Table 7.1 (see Medley & Mitzel, 1963, pp. 314-316) tabulates (in our
notation) the main results from the crossed three-way analysis of variance
components. Medley and Mitzel made two analyses for illustrative purposes;
one that assumes an indefinitely large number of occasions, and one that
regards the universe as limited to five fixed occasions (situations). The latter
model would be especially reasonable if there were one observation on each
of the five school subjects in the school program, though one would then
like to have two observations per school subject (crossed with teachers and
recorders) in order to disentangle occasion effects.

The notable difference in the teacher component between the analyses with
N, large and N, small is readily understood. If situations are fixed, generaliz-
ation is over recorders and the universe score is u;0. (0* referring to the set
of situations). Therefore, the fo component contributes to o®( | 0%*). The to
component is 1.41 when N, is assumed large. For five situations from this
large universe, the O component is one-fifth of 1.41, or 0.28; 0.81 = 0.53 +

0.28. Similarly, o®(tr | O*) is increased by one-fifth of the tro,e component.
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For the D study, Medley and Mitzel note, the universe-score variance for
generalization to u, will be 0.53(n,n;)2. (They treat the observed score as a
sum rather than as an average as we do.) Assuming a crossed design for the
D study, the corresponding expected observed-score variance will be
n,n,(0.53n,n, + 0.01n; + 1.41n; + 0.67). “Inspection of this formula shows
clearly that increasing the number of visits n, will [decrease observed
variance relative to universe-score variance and, hence, will] increase
reliability much more rapidly than increasing the number of recorders n,. . . .

FS

When n, = 1 and n, = 5, for example, &p? = 0.55; whenn. = 5and n, = 1,
P

€p* = 0.26 [notation altered].” Clearly, the first requirement for improving
generalizability is to sample the large to component repeatedly.
Medley and Mitzel (1963, pp. 315-316; notation altered) expand:

The largest components of variation in these observational records are
three: o%(t), o%(t0), o®(tro,e). Variation from situation to situation within
the same class o%(t0) appears greater than variation in average behavior
from one class to another ¢%(¢). In order to measure differences between
classes reliably, therefore, it is necessary to observe each class in a number
of situations, so that the fluctuations measured by 0%(f0) can cancel one
another out.

The large contribution of unexplained sources of variance indicated by
the magnitude of o%(tro,e) shows that there are sizable influences affecting
behavior records that were not isolated in this experiment.

There is no variation at all which can be attributed to interaction
between recorder and situation ¢%(ro), indicating that the observers are
not biased in favor of any one situation over any other. The fact that
o®(tr) is estimated to be only .01 reflects the fact that “observer errors™ are
very slight.

The fact that the estimates of a*(tr), 0%(0), and o%(r) are all relatively
small, but not zero, makes one wonder whether or not they could be
neglected, i.e., whether true values could be assumed to be zero . . . .

It would be quite satisfactory in using this scale to employ only one
recorder per visit; if more than one competent observer were available, it
would be advisable to send them to visit the classes one at a time, so that
the number of different situations recorded would be as large as possible.

Prior to the last paragraph quoted, the authors recommend use of the F
test to decide the significance of each component, with the idea of replacing
any nonsignificant component with zero. This we do not recommend. A
facet is represented in the G-study design only if it is thought to be a source
of variation, whether large or small. If the model is soundly chosen, the
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analysis gives an unbiased estimate of the components involving that facet.
When the occasion component of 0.05 is “nonsignificant,” 0.05 is nonetheless
likely to be a better estimate than 0.00. Indeed, because the “significance”
of a component is a function of the number of times that component was
sampled in the design, as well as its magnitude, there is a risk of discarding a
meaningfully large component when only a few degrees of freedom went
into its estimate.

Analysis as a partially nested design

To arrive at the proper mean squares, it is recognized that the Medley-
Mitzel design is of type V-B, r x (o:f). Figure 2.5 illustrates the design
(though it uses the symbols p, i, and j in place of the present ¢, r, and o).
Within ¢, the components for o and fo are confounded. Consequently, one
pools the component sums of squares and degrees of freedom, arriving at
these within-z results: sum of squares = 340, degrees of freedom = 96,
mean square = 3.54. For ro, tro, e a similar procedure yields sum of
squares = 63, degrees of freedom = 96, mean square = 0.66.

The mean squares from Table 7.1, along with those calculated above for
within ¢ and within tr, are taken as estimates of the expected mean square.
The five components estimated from (2.3) are as follows:

;';(within tr) = ;;(ro,tro,e) = 0.66

2(1r) =0.02
a(r) =0.10
S(within 1) = o%(0,t0) = 1.44
(1) =0.52

The estimate for the teacher component is almost the same as the estimate
of Table 7.1 with N, large. The recorder component is not changed. The
new within-teacher component replaces the fo component. This estimate,
like the original one, implies the necessity of observing the teacher on many
occasions, but now a systematic teacher-occasion interaction is not implied.
The design used for the G study could give no information on the compara-
tive size of 0 and to effects.

For n, = 1, n, = 5, &p? is estimated at 0.56. While shifting to the correct
scheme for analysis of these data makes no great difference in conclusions,
the reader should not conclude that that will usually be the case. The esti-
mation formulas for a design not actually used can give misleading estimates.
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B. Classroom Observations as Dependent Variable in an Experiment
Description of study

Dwight Goodwin (1966) carried out a study (also distributed as a contract
report under the authorship of Krumboltz & Goodwin, 1966) of a special
teacher-training technique that was intended to promote, as an end result,
better conduct and attentiveness among the pupils directed by those teachers.
Unlike the study of Medley and Mitzel, which was concerned with scores for
single classrooms, this is an experiment where conclusions rest on com-
parisons of sets of pupils whose teachers have been treated differently. The
effectiveness of the training procedure had to be judged at two levels: by
determining whether the teachers adopted the prescribed practices, and by
determining whether the pupils acted in the desired way. Both questions were
investigated by sending trained observers into the classroom according to a
time-sampling schedule.

Generalizability studies were made during Goodwin’s preliminary testing
of the procedure, and again during “baserate’ studies that investigated the
frequency of significant kinds of behavior prior to training. Similar analyses
might also have been made of post-training data, but the G studies were
carried out primarily to aid in the planning of final data collection.

Goodwin’s observer watched a particular pupil during a 5-second period
and recorded a numeral to represent teacher and pupil behavior. There were
five spaces within which the numeral could be written, representing five
explicitly defined “degrees of task orientation of the pupil.” The numeral
(1-9) described the extent to which the teacher encouraged what the child
did; for example, 1 indicated individual reward for the child being observed,
and 8 indicated punishment or scolding of a group of which the child is part.
The data in effect constitute a pair of scores, one for the pupil’s action and
one for the teacher’s response.

The 5-second intervals of observation were made consecutively, during a
1I-minute period. During the next minute, the observer made 12 observations
of a second child. He continued to alternate between the two children for
10 minutes, after which he rested. During a single class hour there would be
three 10-minute intervals of active observation, 5 of the 10 minutes being
devoted to each child. All data were collected in second- or third-grade
classrooms. We shall discuss two analyses of partially nested designs em-
ploying Goodwin’s data.

Baserate study of pupil scores: intervals within days within pupils

In the baserate study, with one observer per pupil, the primary question of
generalizability was the adequacy of the time sampling. The pilot study
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(discussion following) had by this time given satisfactory evidence of observer
accuracy, and only one observer was used to collect baserate data on any
child. However, not all children were observed by the same persons, there-
fore any variance arising from observer differences is confounded with
pupil components. Components of variance associated with the observer are
thought to be negligible, however.

The baserate study provided both G and D data. The design of the study
is intervals i within days d within pupils p (i.e., Design III-A, i:d:p). Atten-
tion in this analysis is entirely on the pupil’s score for each 5-second obser-
vation. A group of 60 scores (1,2, . . . , 5) were recorded for a child during a
10-minute interval. (In this analysis the companion score for the teacher is
ignored.) There were three intervals of observation on one day and three
intervals on another (n, = 28,n, = 2, n; = 3). Days weretreated as randomly
and independently sampled within pupils, even though several pupils were
observed on the same day.

A score was available for each S-second interval, but there seemed to be
no major purpose in the present study in determining components for
units of behavior smaller than the 10-minute interval. The 60 observations
for any 10-minute period were therefore entered in the computer simply as
replicates. Analysis within the 10-minute period might be useful if one
were considering the possibility of taking fewer samples of behavior within
the 10-minute period.

As usual in a nested design, the estimates for seven sums of squares and
mean squares are obtained and grouped to arrive at the correct mean squares
(Table 7.2). The additional step of dividing mean squares by 60 is required
to correct for the fact that 60 observations enter the analysis for each interval.

The component of variance for pupils is quite small because the sample
was selected to represent inattentive pupils, and therefore has a restricted
range on task orientation. In a correlational study, pupil variance is usually
“wanted’’ variance, but not in the pretest for an experiment. The small pupil
component here is encouraging, as variation among pupils contributes to the
standard error of the means on which the conclusions of the experiment
ultimately rest.

The component for intervals is considerably larger than that for days.
This implies that variation in attention is associated with shifts in the class-
room activity or fatigue more than with the pupil’s mood on a particular
day or the general level of excitement in the class on a particular day.

The Venn diagrams shown in Figure 7.1 may be used for practice in
deriving the estimation equations; results can be checked by entering the
mean squares from Table 7.2 in the equations and comparing the estimates
of variance components with those of the table.

These baserate data were used to draw conclusions about the initial



TABLE 7.2. Estimates of Variance Components from a G Study with the Design

ixd:p
Analysis of variance
as if crossed Analysis as nested
Estimate
Degrees Degrees Mean of
Source of Sum of of Sum of of Mean  square variance

variance squares freedom squares freedom square rescaled® component

P 1149 27 1149 27 4255 0.71 0.04
within p
4 & ! 762 28 2720 0.45 0.08
pd 691 21 ) ) )
within pd
i 48 2
di 1.69 2
pi 824 54 1400 112 12.50 0.21 0.21
pdi,e 526 54

a Dividing by 60 reduces data to the basic 1-5 scale.

(a)

(b) the i circle (c) The d circle (d) The p circle
FIGURE 7.1. Schematic Analysis of the i:d:p Design.
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similarity of experimental and control children and as a base for estimating
changes during treatment. The error in the individual score is the discrepancy
A,p; between observed score (two days combined, six intervals combined)

and universe score. Therefore 02(A) = o*(d,pd)[2 + o*(within pd)/6 = 0.075
and 6(A) = 0.28. Judged against the possible range of 4.00, this was
considered to indicate adequate precision. The technique is inadequate
for determining individual differences within the inattentive group, but that
is irrelevant to the study.

For the main study, interest centered on a comparison of the means for
groups of children. The means of greatest importance to Goodwin were to
be calculated for groups of seven pupils (there being just seven trained and
seven control teachers, each with one “target” pupil). Sampling errors
arising from intervals and days are independent for the seven children. The
problem of generalizability for Goodwin was to compare Xppz, the average
for the group of seven, with u, the mean for the population and universe.

As conclusions were not to be drawn about individual pupils, Goodwin’s
tentative plan for the posttest study called for n, =7, n; = 2, and n;=3
in an i:d:p design. Then, for the discrepancy of the observed mean from p,!

(B = 305(p) + t*(d,pd) + 0% (within pd)
= 0.006 + 0.006 + 0.005 = 0.017

The standard error of the mean is therefore 0.13, and that for a difference
between groups is 21/2(0.13) or 0.18. While this does not seem to be large,
relative to the range, Goodwin decided to obtain somewhat greater precision

by observing on a third day. This reduced 0%(A) to 0.013 and é(4A) to 0.11.
Adding more pupils, which would have increased the teacher’s effort, was
judged to be impractical. In the main comparisons on the posttest data, the
variation within groups from the pupil component was reduced by means of
analysis of covariance, using the baserate observation as covariate.

Another feature of Goodwin’s investigation called for comparing matched
pairs of pupils, one pair in each experimental class. Within a pair, one child
had been randomly selected as a “target’” child, and the teacher had been
told that the child would be observed in order to judge the teacher’s success.
On the posttest the second child was observed without the teacher’s awareness,
to guard against the possibility that the teacher was using the techniques only
on the target child, to impress the observer. The observer was instructed to
observe the target child and the non-target child during alternate minutes of an

1 There is no reason to think that o%(p) in the experimental group at the posttest will
equal the value found in the pretest. But the pretest value must be used at the time of
planning, unless the design can be changed after some posttest data are collected.
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interval. This eliminates, from the observed difference between these children,
components associated with d and i (but not the pd and pi interactions), and
makes the comparison more precise. We have no measure of the pd and pi
components of variance by themselves, because no generalizability analysis
was made from posttest data.

(The reader may be tempted to make inferences from the original sums of
squares that were compounded to form the within-p and within-pd estimates.
He might, for example, conclude that SS i of 48 with 2 degrees of freedom
suggests a large i component. No such inference is warranted. The sum of
squares for /is simply a calculation based on averages, each a combination of
many different / arbitrarily assembled in the same column of a matrix. A
similar remark is to be made about any other entry in the “analysis as if
crossed.”)

An analysis was made for pretest teacher scores. The estimated variance
components for tp and days within zp were less than 0.01, indicating marked
similarity among teachers prior to the treatment. The within-zpd component
was estimated at 0.13, leading to the conclusion that the technique was
sensitive enough to detect effects of the training.

This study is not really adequate, however, because it deals only with the
numerals on the 9-point scale. The psychological significance of that score
depends on what the pupil is doing. That is, a response of 1 (rewards) is
desirable teacher behavior when the pupil is attentive but not when the
pupil is creating a disturbance. In the main study, teacher and pupil data were
considered in combination and rescored—in effect on a 3-point scale, by
counting certain score-pairs as desirable, certain others as undesirable, and
assigning zeros to the remainder. For this ad hoc method of recombining
data, an equally ad hoc method of appraising generalizability could be
developed.

Pilot study of pupil scores: intervals within days, days within pupils, these
crossed with observers

Prior to the baserate study, Goodwin made various pilot studies. One of
these illuminated the plan for later observing. The design was (i:d: p) X r.
For each pupil, two days were sampled, not the same for every pupil. For
each pupil-day combination, two intervals (observation periods) were
scheduled. Within each interval, the observer recorded 48 ratings (not 60
as in the study treated above). There were two observers who worked simul-
taneously; observers, then, are crossed with p, d, and i (Figure 7.2).

A group of 12 children were studied from 6 classrooms; 6 had been
nominated as habitually inattentive and 6 as habitually attentive. Neither
of these breakdowns enters the pilot-study analysis.
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FIGURE 7.2. Schematic Representation of the (i:d:p) x r Design.

A 4-way analysis generates 15 sums of squares that recombine as shown
in Table 7.3. For two effects, the estimates are negative. The apparently
small recorder main effect confirms that the raters were well instructed in
their task. This is further supported by the very small components for pr,
within pr, and within prd.

It is more surprising to find a small estimate for the within-p component,
which implies that pupil behavior does not vary much from day to day. This
is in contrast with the large within-pd component, implying large variation
between periods observed on the same day. According to these data, it is
inappropriate to say of a pupil, “He’s having an off-day today.”” Attentiveness
shifts a good deal from period to period within the day.

It may be worthwhile to examine the estimation equations for this complex
design. Figure 7.3 makes the equations easier to grasp intuitively. As usual,
the finest division of scores in the design gives a residual mean square that
estimates the residual variance component.

(7.1) EMS i within prd = o*(i within prd) = 4
o®(within prd) = 0.008
This is a bundle of effects—ri, pri, rdi, prdi, e—representing rater disagree-
ment in viewing the same series of incidents within an interval.
Diagram (b) of Figure 7.3 shows the d,r intersection, representing EMS
d within pr, as containing the kernel identified as 4 in diagram (a), plus the

shaded area that represents the component ¢(d within pr). Adding the
needed multiplier, the diagram suggests the equation:

(1.2) EMS d within pr = 4 4+ B
= A + n,0*(rd,prd)
(rd,prd) = 0.001



TABLE7.3. Estimates of Variance Components from a G Study with the Design

@i:d:p) xr
Analysis of variance
as if crossed Analysis as nested
Estimate
Source Degrees Degrees Mean of
of Sum of of  Sum of of Mean  square variance

variance squares freedom squares freedom square rescaled® component

p 33792 11 33792 11 3072 0640  0.001
(A+B
+C+D
+E+F
within p
d 092 1} 258.54 12 21.54 0.449 0
pd 257.62 11 8 A+ B
+ D + E)
within pd
i 1.29 1
ﬁ:. 47?’82 1; 72044 24 3002 0.625 0.309
pdi 24012 11 (A +D)
r 0.11 1 0.11 1 011  0.003 0
pr 726 11 726 11 0.66 0014  0.001
(A+B+0)
within pr
d 0.21 1
'd s o1 11} 612 12 051 0011  0.001
pr : (A +B)
within prd
ri 0.33 1
f:,; g'ig 1: 9.61 24 040  0.008 0.008

prdie 475 11 (4)

® Dividing by 48 reduces data to the basic 1-5 scale. Capital letters refer to Figure 7.3.



(b) The d,r intersection

(e) The d circle (f) the p circle
FIGURE 7.3. Schematic Analysis of the (i:d:p) x r Design.
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There is little or no tendency for raters to vary their standards from day to day.
A similar argument, applied to diagram (c), gives:

(7.3) EMS pr = A 4+ B + nin,0(pr)
a%(pr) = 0.001

The negligible pupil-observer interaction is all to the good; it denies that
raters show favoritism.

The i-within-pd mean square includes all the information within the i
circle, as shown in diagram (d):

(7.4) EMS i within pd = A4 + n,0®(i,pi,di,pdi)
o*(i,pi,di,pdi) = 0.309

This is the large component reflecting hour-to-hour pupil variability. There
is a temptation to look back at the analysis as if crossed and to emphasize
the magnitude of the pi mean square. But the design thoroughly confounds
i and pi. If the hour-to-hour shift in behavior were entirely due to an interval
main effect (i.e., to a tendency of the whole group to be disorderly during
some periods) one would observe this in large pi and pdi mean squares, as
long as a different pupil is seen in each period. The low i mean square is a
misleading value; it is a composite based on many intervals whose main
effects tend to cancel out.
The equation corresponding to diagram (e) is:

(7.5) EMS d within p = 4 + B + D + nn,0%(d,pd)

A + B =0.011 and D was just estimated as 0.617. This would imply that
n.n;0*(d,pd) equals 0.449 — 0.628. Because this is negative, we estimate
o%(d,pd) to be zero. For the p component (diagram f):

(7.6) EMSp=A4+ B+ C+ D + E + nngn,o*(p)
= EMS within p + n,n,6%(pr) + nn;n,0%(p)

The calculation must use a value of zero for E. Then o?(p) = 0.001. [The
computation of the r component is left as an exercise (Exercise 3, this chapter).]

The implications for design of Goodwin’s D study lay in the large com-
ponent for intervals within pd and the small components for r and its inter-
actions. The decision was made to raise the number of scores within the
interval to 60 and the number of intervals within the day to 3. Also, it was
decided that one observer for any session was sufficient, and that no pains
need be taken to cross observers with children or teachers. One might have
decided to observe at six intervals on the same day rather than at three on
each of two days, in view of the small component for days within pr. How-
ever, this offered no practical advantage. This set of recommendations is an
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especially clear example of the usefulness of a multifacet G study. The
baserate study demonstrated that they lead to satisfactory data.

C. Pupil Achievement as a Measure of Teacher Effectiveness

Belgard, Rosenshine, and Gage (1972) collected data on the effectiveness of
teachers in presenting informational lessons by the following set of operations:

1. A textual lesson on Yugoslavia, and 10 pertinent test items, were
prepared.

2. The teacher was given the text and five of the test items to define
what he was to teach.

3. He presented the lesson to his own regular class as a lecture (under
certain constraints).

4. The 10-item test was given to the pupils. The average score earned by
his pupils was taken as the teacher’s unadjusted score.

This procedure was repeated for a lesson on Thailand. For purposes of this
discussion we shall ignore the difference between the five exposed items and
the five secure items. We shall also ignore an adjustment of scores made to
allow for variation in pupil ability.

Design and basic data

The G study collected data on 43 classes, each of which received both
lessons. The teachers ¢ are the objects of investigation; the facets are pupils
p, lessons j, and items i. The design is lessons crossed with teachers and
pupils, pupils nested within teachers, items nested within lessons and crossed
with teachers and pupils [(i:j) X (p:1)].

Here we encounter a facet nested in the universe. The structure of the
universe is (i:j) x t X p. While in principle, any teacher might be assigned
any pupil and any lesson, the items accompany one and only one lesson.
The model underlying the observed score takes the following form:

(17 Xpu=#+ (@ —w)+ @ —pw+ @ —p
+(/‘tv_/‘t_/‘p'*'/‘)"‘(l‘u"/‘t“l‘i"‘l‘)
+ (Ups — o — 5+ 1) + (5 — 1) + (Besi — the
— By + 1)
+ (Upji — Pp; — M3 + U5) F (Bip; — Bap — Bes — My;
+ et g+ — W)
+ (Wipsi = Bagi = Bopji — Map; T Mes + Mp; + By — “5)
+ €45

The usual u;, fy, fpi> and u,,; are undefined. Because one can average over
i only within lessons j, any i effect is part of such a score component as ji,
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tji, etc. (For convenience we shall refer to the item-within-lesson effect as a
Jji interaction. The other “interactions’” also are unconventional in form.)

Summary of results

The original investigators analyzed the data by several conventional tech-
niques before multifacet analysis was considered. The analyses slice through
the data in many ways; there are confusing shifts in the definition of the
universe score and in the composition of the “error’’ variance that are
unavoidable in one-facet studies. We therefore start with a summary table.
For purposes of this table all results are stated in terms of a score based
on just 1 lesson, where the 10 items are summed to provide a pupil score and
the teacher’s score is an average over pupils. The number of pupils varies
from 10 to 31, with a mean of 21. Throughout these studies, interest centers
on differences among teachers. Because all teachers teach the same lessons,
components j and ji can be ignored. In effect, we discuss the teacher’sdeviation
from the mean of the group of teachers who taught the same lesson and
gave the same test.

In the first and second one-facet procedures, two scores were obtained
for each teacher, and two observed-score variances and the inter-correlation
were calculated. The estimate of the universe-score variance is the product
of the observed-score variance and the correlation; the remainder of the
observed-score variance constitutes the “error.”

Lesson j is a hidden facet in analysis 1, treated as fixed in the universe.
In analysis 2, lessons vary; pupils are in effect fixed, though the fixed set of
pupils P, varies with the teacher. Items are fixed within lessons but there is
nevertheless generalization over items, as the number of items in the universe
of generalization (all lessons) is large. In analysis 3, pupils are treated as the
source of error; lesson and items within the lesson are fixed. The one-facet
procedures generate separate estimates of variances for each lesson. The
multifacet study reports one estimate, applying to the expected variance of
teacher’s mean scores (any lesson, any set of pupils).

The most obvious fact in Table 7.4 is the variation in rationale and results
from one procedure to the next. One-facet analyses produce coefficients
ranging from 0.63 to 0.76. The multifacet study, which attends to all types of
error simultaneously, reports a coefficient of only 0.49 (cf. p. 181). The
universe-score variance changes similarly. When the universe score is defined
as the teacher score averaged over all lessons and all pupils, its variance is
estimated as 0.38. In analyses 1-3, where averaging is over only pupils or
lessons or item-sets, the estimate is larger. Each such average leaves a facet
fixed, and interaction components and the main effect for the fixed facet are
then counted in the universe score. If the investigator wants to generalize
over lessons and items within lessons and pupils, so that only the component
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for ¢ enters the universe score, the only usable one-facet correlational pro-
cedure is to correlate a score on one lesson for one group of pupils with the
score on another lesson in a second group of pupils. This confounds lessons

and pupils as sources of variance, but both appear within the error and
reduce the correlation.

Analysis 1: Split-half study of generalizability over items

Analysis 1 is a conventional split-half study. This type of analysis investigates
generalizability over items, assuming pupils and the lesson fixed.

For each five-item half-test, a class mean was calculated for each teacher.
The split-half correlation, after correction by the Spearman—Brown formula,
was 0.71 for the lesson on Yugoslavia and 0.76 for Thailand. Such a co-
efficient indicates the extent to which administering differentitem sets altersthe
comparative standings of the teachers. Any moment-to-moment inconsistency
of performance (e.g., pupil’s careless reading of any item) also reduces the
coefficient. Stable pupil effects are confounded with teacher effects, and
contribute to the estimated universe-score variance.

At the risk of notational indigestion, we shall try to identify components
precisely by letting P, represent the particular set of pupils associated with
teacher ¢ (i.e., the pupil sample for the teacher), and letting I, represent the
item-set employed for lesson j. The universe score implied by this split-half
analysis is specific to the teacher, the set of pupils for this teacher, and the
given lesson; it is an average over the universe of items for that lesson. It
could be denoted ,p ;.. There is no asterisk on P because in this analysis a
different set of pupils defines the universe of generalization for each ¢. The
very fact that our symbol must be so complicated highlights the inadequacy
of the classical theory, which looks on the corrected split-half correlation
as the squared correlation of observed score with “the’”” true score of the
teacher, which is denoted by some simple expression such as y,.

It is instructive to ask what the split-half study indicates about variance
components. In the basic model for decomposing X,,,; (7.10) there are three
main effects, four first-order interactions, three second-order interactions,
and one final ¢pji,e component. The correlation is determined from deviation
scores. The j and ji components drop out of consideration, because they
appear in the mean Xpp;; and therefore do not enter the deviation score.
The “error”” variance determined by the split-half analysis embraces all the

remaining components that involve i. The analysis allocates the components
as follows:

To universe score To error
Main effects t, P,
First-order interactions tP,, tj*, P, j*
Second-order interactions LP,j* tj*L;y, P, j* I,

Residual tP,j*I;y, e
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The universe-score variance (six components combined) is estimated by
multiplying the observed-score variance (0.815 for Yugoslavia) by the
coefficient (0.71). Therefore, the estimated universe-score variance is 0.579.
The remainder is the “error” variance (0.236). An alternative estimate is
made from the Thailand data (see Table 7.4).

Analysis 2: Correlation of one lesson with another

Analysis 2 obtained an interclass correlation of 0.63 between the Thailand
and Yugoslavia scores. This analysis compares two scores for a teacher-class
combination; it gives information on how closely the score of the class on
one lesson is likely to agree with the universe score that could be determined
from very many lessons. In generalizing over lessons, one inevitably generalizes
over items also. The use of deviation scores in computing the correlation
eliminates the j and ji components from consideration.

The universe score implied by this analysis is u,p,, Which embraces com-
ponents for ¢, P,, and tP,. The universe-score variance is smaller than that
from the split-half study, as it embraces fewer components. For Yugoslavia,
the estimated universe-score variance in the split-half study is 0.579 and in
this analysis is 0.514. The difference of 0.065 is a rough indication of the
combined magnitude of the three j* interactions that contributed to the
universe-score variance in analysis 1.

Analysis 2 provides only one coefficient (see Table 7.4), not a separate
coefficient for each lesson. The coefficient is lower than in analysis 1 because
generalization is to a broader (and more significant) universe. The split-half
study, treating the lesson as fixed, did not examine how well the observed
score represents the teacher’s general power to teach all lessons of this type.
But analysis 2, like analysis 1, ignores pupil characteristics as a source of
error in evaluating the teacher.

Analysis 3: One-way anova over pupils

Analysis 3 produced an intraclass correlation for teacher scores with pupils
as the variable facet. The coefficient is like the one Horst (1949) recom-
mended for “reliability over raters,” except that here the correlation was
computed from unbiased variance estimates. Since the analysis was made
on each lesson separately, the universe score has the form ;e .

A one-way analysis of variance (pupils within teachers, Design II) was
carried out for the lesson. This is not entirely a routine matter, because the
number of pupils per class varies. Two alternatives are available for coping
with this (apart from the device of discarding cases to make the number of
pupils the same for every teacher). The procedure suggested by Horst is to
estimate the within-teacher variance for each teacher separately, and average
over teachers. The alternative is to estimate the within-teacher variance
from the mean square within teachers (i.e., data for all teachers pooled).
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The former procedure weights teachers or classes equally, the latter weights
individual pupils equally. If it may be assumed that variance within the
teacher is uniform in the population, or that these variances—while not
uniform—are uncorrelated with class size, then the calculation from the
pooled mean square is to be preferred. (However, the two results are unlikely
to differ appreciably.)

The one-facet analysis of variance gives a mean square for teachers, but
because class sizes vary, a special treatment is needed to estimate the universe-
score variance. Let us define symbols as follows:

n, number of teachers in study

n,|t number of pupils in class of teacher ¢

n number of pupils in study (= Sony,| t)
t

o*(a) sum of within-teacher components of variance, weighted as in G study
o(b) universe-score variance

n*—=3(ny] 1)
t
n(n,—1)
The expected mean square takes the form (Graybill, 1961, p. 353):

(7.8) ko =

1.9 EMS p = o%(a) + ky0%(d)

The results are given in Table 7.4 and need not be repeated here.

The within-teacher mean square is an unbiased estimate of the variance
arising from differences among pupils and from inconsistency in the pupil’s
performance (e.g., inattention). The estimate of this variance embraces
components p, pj*, pj*IJ., tp, tpj*, and tpj*I};, e.

The fact that the estimate of this error variance is considerably lower than
the error variance in analysis 2 is suggestive. Because shifting the components
involving #* from error to universe score has reduced the error variance by
about one-third, teacher-lesson or teacher-lesson-item interaction must be
substantial. Comparisons from one single-facet study to another can shed
light on the magnitude of variance components. It is difficult to disentangle
the effects, however, and a multifacet study is more directly informative.

The intraclass correlation estimated from the variances counts the pupil
main effect as error. In analyses 1 and 2, where generalization was over items
and lessons, respectively, the main effects for items and lessons were dis-
regarded. In analysis 3, where generalization is over pupils, the pupil main
effect contributes to the observed-score variance and the error variance. The
intraclass correlation recognizes that each teacher is measured by different
pupils; pupil main effects add to observed differences among teachers.
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Analysis 4: The multifacet study

A G study along the lines suggested in this monograph proceeded from the
scores of individual pupils on individual items. To avoid complications in
data processing, the scores were reduced to a “box’’ design by discarding all
classes with fewer than 19 pupils, and discarding at random within the
remaining classes to reduce the number to 19. This means that the data are
not identical to those used in the one-facet studies (analyses 1-3).

In Chapter 2, a two-facet analysis from this study was displayed in Table
2.4, which was not interpreted. To avoid substantive considerations irrelevant
at that point, the design was described as i X (j:p). In our present notation,
the design for that three-way analysis is j X (p:¢). Items were ignored, and
analysis proceeded from the test score for each lesson. Moreover, the test
scores used had been standardized within lessons. We shall not discuss the
three-way analysis; the results are not inconsistent with the four-way analysis.

Estimation and interpretation of components. The four-way design is
diagrammed in Figure 7.4. The analysis of variance was performed as if the
data had been collected under a crossed design, and sums of squares and
degrees of freedom were then combined to reflect the nesting of pupils within
teachers and of items within lessons (Table 7.5). We have given the equations
for expected mean squares to enable the reader to trace the complex calcu-
lations, and, in Figure 7.5, the diagrams corresponding to the equations.

Table 7.5 separates many of the components that previously were con-
founded. The components are stated on the scale of the scores that entered
the analysis (i.e., for a single pupil on a single item). Elsewhere, results have
been reported for a sum of 10 items; to shift to that scale, components of
variance will be multiplied by 100 in Table 7.6.

The size of the components indicates something about the structure of
behavior and about the sources of error to be brought under control. As

P, 19

FIGURE 7.4. Schematic Representation of the
@i:j) x (p:0) Design.
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FIGURE 7.5. Schematic Analysis of the (i:j) % (p:t) Design.
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usual,? the largest component is the residual. This is not surprising; whether a
pupil will get a particular item correct is difficult to predict from his ability,
the item difficulty, and other basic effects. Vagaries of attention, lapses of
memory, and chance in guessing all contribute to this residual. As such a
component is sure to be sampled many times in any design, its magnitude is
not of great concern.

Next largest is the within-lesson component. This component has to do
with item difficulty, and can be reduced by using a large number of items.
Since the component does not affect differences among teachers (where items
are crossed with teachers), it is of no concern in the Belgard study. The same
may be said about the component for lessons; as long as lessons are crossed
with teachers, they do not affect teacher differences. The tiny size of this
component implies that the investigators developed lessons and tests of
similar difficulty. This tends to warrant using one lesson as pretest and one as
posttest in some experiment. A counterbalance of order would not be critical.
The ¢j component, also small, indicates the extent to which teacher scores
depend on the lesson they are teaching. Since the #j variance is small relative
to the ¢ component, ability to present lessons of this type appears to be
general over topics. This finding is welcome, because a large component
would force the investigator to explain how “ability to teach about Yugo-
slavia” differs from “ability to teach about Thailand,” etc.

The third largest component is that within 7, which arises from pupil
variability. Since in operational use of the procedure, different teachers will
teach different pupils, this source of error is one to be held under control.
This can be accomplished by random assignment, by using many pupils per
teacher, and/or by partialling out pupil differences with some covariate such
as an ability test.

The value of 0.0108 for i within # suggests the presence of a teacher—item
interaction. This need not cause concern; it is obvious that teachers will
emphasize different subtopics, and each will present some more clearly than
others. Employing many items will reduce the effect of this unwanted com-
ponent in the teacher’s score. .

Finally, the p-within-fj component suggests a pupil-lesson interaction of
modest size. Most likely, this represents variation in attentiveness from day
to day. Its effect on the teacher’s score will be reduced by using more pupils
or more lessons.

Generalizability in the D study. To appraise any one design, it is necessary
to divide the components by the number of observations made on each.

2 Usual, that is, except where one facet is observers. In such studies, momentary variations
in subject behavior appear in some component higher in the table, because the several
observers concur in reporting that fluctuation.
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TABLE 7.6. Composition of Variance in a D Study with Design (i:j) x (p:t)

One-lesson study® Two-lesson study

Estimate of

Source of variance Assumed Contribution Assumed Contribution
variance component® Frequency frequency to &62(6)° frequency to £0%(9)°

t 0.38 1

4 0.09 nj 1 0.090 2 0.045
p withinz 148 ny 19 0.078 19 0.078
pwithingj 047  nynj 19 0.025 38 0.012
i withinzj  1.08 nin; 10 0.108 20 0.054
i within ptj 17.78 npnin; 190 0.094 380 0.047
N~ —_— =
£6%(5) 0.395 0.237
PO

&o%(X) 0.775 0.617

a Estimated from Table 7.5, rescaled to test-score scale.

b Result used in Table 7.4.

¢ Expected observed-score variance equals £0%(9) plus universe-score variance given by ¢
component.

This is done in Table 7.6. We have already mentioned the rescaling employed
to make these numbers comparable to those from the one-facet analyses.
Because only comparisons between teachers are intended, the components
for j and i within j are not carried forward. In this crossed design, components
lying outside the ¢ circle of Figure 7.4 are the ones missing from the observed-
score variance.

Table 7.6 assumes that the D study will employ a design just like that of
the G study, except for possible variation in the number of pupils, items, or
lessons. The assumption is that the number of pupils will be the same for
all teachers. If this assumption is grossly violated in the D study, one can
compute the error variance for each possible #;, | ¢ and use the distribution
of n, to compute a weighted average error variance.

For comparability to the one-facet studies, Table 7.6 gives results for a
one-lesson D study. We observed that in analysis 1, the error variance is the
sum of ¢ and p interactions with items (within a lesson). Table 7.6 shows this
sum to be 0.108 + 0.094 = 0.202; this compares well with the values of
0.236 and 0.163 calculated for the lessons separately in Table 7.4.

The two-lesson error variance of 0.237 (Table 7.6) implies a standard error
4(0) of 0.49 on the 10-point scale. From this, the investigator decides whether
the two-lesson design is adequate to measure differences in teacher effective-
ness. Since the standard error of a difference between teachers will be
21/2(0.49), the measurement is moderately satisfactory. An observed difference
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between two teachers of one point on the ten-point scale will be inconsistent
with the direction of the universe-score difference in about one case out of six.

The universe-score variance implies a standard deviation for universe
scores of 0.62; evidently, teacher scores are confined to a range of about
three scale points. For the two-lesson study, the ratio of universe-score
variance to observed-score variance is 0.38/(0.38 + 0.24) = 0.62. This
coefficient of generalizability is large enough to justify using the procedure
in studies that correlate teacher differences with other variables. However,
the procedure is probably not adequate where a measure of the comparative
standing of the individual teacher is desired.

Alternative D-study designs. A multifacet study does not end with the
report of a coefficient. An important use of the results is to evaluate possible
designs for a D study. One may consider not only changes in n,, n}, etc., but
also a relaxation or tightening of crossing and nesting. Some of this can be
done by inspection. For instance, it would be inexpensive to increase the
number of test items. Would this have a worthwhile effect ? In Table 7.6, n;
affects two fairly large components. It looks as if doubling 7 would reduce
the error variance for the two-lesson study by about 0.05—a worthwhile
gain. (But not as large as routine application of the Spearman—Brown formula
would have suggested. That formula assumes that doubling test length cuts
the entire error variance in half.) Extending test length would have diminish-
ing returns; even an indefinitely long test would not reduce the error variance
below 0.135, at which point the coefficient of generalizability would be
0.38/0.515, or 0.74.

Another alternative would be to have each teacher teach a lesson to two
classes. This would not require extra preparation, and might be more
practicable than increasing nj, the number of lessons. We can only assume
that teaching a second class is the same as teaching a class twice as large, as
we have no data to assess the teacher—presentation interaction (with lesson
fixed). We do know that the teacher—lesson effect in Table 7.6 is small;
because the lessons were given on different occasions, this encourages us to
think that occasion-to-occasion variation in a teacher’s effectiveness is small.
Consider the effect of doubling n,; this chops three components in half,
reducing the error variance from 0.24 to about 0.17 and raising the coefficient
to 0.69. The hypothetical limit, from an infinite number of presentations, is
0.10 for the error variance and 0.79 for the variance ratio. Generalizability
improves indefinitely as one increases both the number of lessons and the
number of pupils, but this enters the realm of fantasy.

More interesting is the question of the “exchange rate” between lessons
and pupils. One may specify a certain number of lessons, three for instance,
and ask what total number of pupils per teacher-lesson, if any, will bring
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the coefficient to, arbitrarily, 0.75. While this problem takes a different form
in every study, and therefore no algorithm can be offered, a detailed example
may assist the reader to formulate such problems.

Let r equal the desired coefficient, and write y for the corresponding error
variance, equal to [(1 — r)/r]o®(¢). Label the five components of the error
a, b, c,d, and e, in order.

r_ r_r !

(7.10) y=24L2, c 4, e
n; n, nn;  mn;  nynn,

Assume for the sake of argument that n; is fixed and »; is temporarily fixed.
Solving for n,,
(7.11) n, = n,-nfb + nic+ e

nn;y — na —d
For our example, n; = 10. The desired r is 0.75. Suppose a trial 7} is set at 3.
Since o2(t) is 0.38, y = 0.127.

, _ 30(148) + 10(047) + 17.80 _ ..
7 30(0.127) — 10(0.09) — 1.08

If n; were 10, to construct a dramatic contrast, the required n, is 16. The
investigator could get roughly the same precision by using 3 lessons with
classes of size 37 or 10 lessons with classes of size 16.

By simply setting the denominator of (7.11) equal to zero and entering n;,
one can determine the lowest value of »; that allows the coefficient to reach the
desired r. Within the given y, the minimum »j equals 1.6, which means that
there is no increase in the number of pupils alone capable of raising the
coefficient to 0.75 when n; = 1 and n; = 10.

To illustrate one further improvement in design, consider joint sampling
of pupils and lessons. Let the teacher teach two classes, one lesson to each
class. This, without increasing the total number of manhours of work,
doubles the number of observations on p within ¢ (because in this design
there are n,n; such observations). The error is reduced by 0.04.

D. Item-Sampling Studies of Test and Item Means

A striking innovation in recent educational testing has been the “item
sampling” design (Lord & Novick, 1968, Chapter 11; Sirotnik, 1970).
Different test items, selected at random, are given to different pupils or
groups of pupils. The design was originally suggested by Turnbull and by
Ebel to meet a practical problem in the collection of test norms. A testing
program often requires new forms of its test each year, and these forms
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have to be more or less parallel. In testing for college admission, for example,
the new test must be kept secure until the date of use, yet statistical infor-
mation on items is needed to assemble the new form. Suppose that the pool
of tryout items is divided into small subsets, and that these subsets are
introduced into the regular forms of the test of the current year. Each pupil
would receive only one of the subsets in his test booklet. By this device every
item is applied to a representative fraction of the national sample. The
resulting data about the experimental items permit selection of items that
will give next year’s test the desired statistical properties. Since no one has
seen much of the new test, it is adequately secure.

Item sampling is sensible in evaluation studies, experiments, and surveys
where interest attaches to performance on a domain rather than on a fixed
set of items. Because many more items can be administered than in the items x
pupils design, the behavioral domain of interest is more adequately sampled
and the universe-and-population mean and variance are better estimated.
Another advantage appears in questionnaire surveys conducted by mail,
where a short list of questions will bring more returns than a long one.

Generalizability theory provides a useful approach to the evaluation of
item-sampling designs, because the components of variance indicate just how
much is to be gained or lost by changes in the proportion of pupils who
receive each item and by other variations in design. To illustrate our analytic
methods, we employ data collected in the National Longitudinal Study of
Mathematical Abilities (NLSMA), made available through the courtesy of
E. G. Begle, project director, and Leonard Cahen and Walter Zwirner.3
The general concern of NLSMA has been to compare groups who studied
certain texts with respect to various mathematical accomplishments. The
inquiry estimates the mean score of a population of pupils on a universe of
items. The comparative study calls for an estimate for each textbook group
as a separate population. We shall discuss only a single such group.

Bock and Wiley (1967) investigate how many schools and how many
pupils within a school should be used to estimate a mean efficiently; but they
use a fixed test form and so deal with just a part of our problem. Lord and
Novick restrict themselves to one-facet G studies and use specialized mathe-
matics applicable only to items with 1-0 scoring. For such items, they offer
procedures for estimating moments of the universe-score distribution in the
population. They assume random distribution of items over subjects, and
they introduce corrections for sampling from a finite universe. We ignore these
corrections but we treat pupils as sampled within schools and so take school
differences into account.

3 For another report on NLSMA item sampling that investigates other aspects of the
procedure, see Cahen, Romberg, and Zwirner (1970).
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FIGURE 7.6. Schematic Representation of
the p:(s x f) Design.

A study with Design IV-A

Data are available for ninth graders who took a certain test in the item-
sampling manner. The test had been divided into ten 5-item “forms” by
random allocation of items. Within a class, the pupils to receive each form
were determined at random. Data were available from many classes, large
and small. Because class size varied, sometimes as few as four pupils in a
school received a certain group of items. Wherever more than four pupils
in a school had taken any form, we reduced the number to four by random
selection.

The design of the study is type IV-A, p:(s X f); every form is given in
every school, and pupils are nested within sf cells (n, = 29, n, = 10, n, = 4;
Figure 7.6). It is assumed that schools are a random sample from those using
the text, that the forms are random samples from a pool of admissible items,
and that pupils are random within schools. Table 7.7 gives the analysis of
variance components. The score on a five-item set is totalled, allowing a 0-5
range of scores; components are expressed on that scale.

Since items are randomly assigned to forms, it would be possible to analyze
scores at the item level. For any one form, the design is i X (p:s) so
that components of variance for pi, spi and p, ps can be isolated. These
components, which are now confounded in p:sf, would be important in

TABLE 7.7. Estimates of Variance Components from a G Study with the Design
pi(s x f).

Degrees
Source of Sum of of Mean Estimate of
variance squares freedom square variance component
Schools s 225.61721 28 8.05776 0.165
Forms f 264.21030 9 29.35670 0.241
sf 363.58319 252 1.44279 0.018

p:sf - 1194.00000 870 1.37241 1.372
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determining the generalizability of scores for individual pupils, but that is
not the concern of this G study.

A study of this character calls for a radical change in our mode of inter-
pretation, for we are not interested in the universe score for the pupil, nor
in the universe score for the school. The D study is intended to estimate the
mean over the population of schools and the universe of items.

We ignore school size. As we state the problem, each school is assigned
equal weight in the mean. In effect, we estimate the error variance in a mean
based on schools of the same size, assuming score components independent
of school size. The argument becomes much more complicated if we deny
that assumption or allow schools to enter the universe mean with weights
proportional to enrollments.

The problem, then, is to evaluate the likely magnitude of the error A
under any proposed D-study design, where Xgp,p is the observed sample
mean, p is the mean over the population and universe, and Agp,p is the
difference. An argument could be made for examining an error Agp,r —
(u..p — M), because the form component is irrelevant to the comparison of
textbooks if the same forms are applied to all textbook groups. But inter-
actions between test items and textbooks are quite likely. In our analysis, the
textbook is a hidden fixed facet and the F component includes any effects
arising from item—text interaction. If ¢63(A) is used to judge a design where
textbooks are compared on the same forms, all variation in item difficulty,
in effect, is being treated as if it were a consequence of the textbook inter-
action. Calculations on the opposite assumption that the interaction is zero
appear in the exercises.

Table 7.8 permits us to examine the errors of estimate, first under the
assumption that the D study has the same design as the G study (except that
n, = 30). For illustrative purposes we consider two further alternative
designs: giving the same 10 items to all subjects, and decreasing the number
of schools while taking more pupils per school. There are many alternatives,
but these will give a sufficient sense of the way variance components may be
used. In each of the designs of Table 7.8, 1200 pupils each take 5 items.

While the error variance for the first design is quite small numerically, a
mean error square of 0.0311/2 = 0.18 would rarely be acceptable in estimating
a population mean on a 0-5 scale, for a survey of this kind. The other three
designs do not give appreciably better results. As the table shows, using 10
schools gives a much poorer result than using 30; but a 60-school sample is
not much better. If we are to evaluate the result on the basis of a(4), it is
clearly necessary to reduce ¢*(F) by using more forms. If forty 5-item forms
were used in a 30-school Design IV-A study, one form per pupil per school,
&(A) would drop from 0.18 to 0.11. (Another line of extension is to consider
making the test forms longer or shorter. But one cannot estimate o(A) for
the longer or shorter form unless Design V is used in the G study, for reasons
that will become apparent.)
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Reasoning such as this, applied to a pilot study, can be of considerable
value in designing an efficient experiment or a study to estimate a population
mean. Applied to a D study, it indicates the precision of the estimate obtained.
The error of generalization over forms is considered in addition to the error
from sampling of persons that usually enters the standard error of a mean.

A study with Design V

It is not essential, and perhaps not desirable, to use an item-sampling design
in the G study when one is evaluating item-sampling plans. Design V,
i X (p:s), can estimate the components of interest. As an example, we
employ data for a 15-item test administered to fifth grades in 19 schools.
In any school where more than 18 pupils completed the test, we have reduced
the number to 18 by random sampling. Item scores are analyzed, and the
score scale has a 0-1 range. We need not give details of the estimation of
components of variance; the results are as follows:

Schools 0.004
Items 0.019
Schools x items 0.002
Within schools:
P, sp 0.023
pi, spi, e 0.117

The item-sampling D study with Design IV-A will confound the two
within-school components shown above. Because components are assumed
to be independent, the variance of a compound is simply the sum of the
variances of the parts going into it. If each “form” in the item-sampling
design consists of a single item, we estimate the within-sf component of the
item-sampling design as 0.140 (= 0.023 + 0.117). If a form is to be made up
of five items, the pi, spi, e component is sampled five times in the pupil’s
score and the p, sp component only once. Using the average score over the
five items, to keep the scale of components the same, the estimate of the
within-sf component is 0.023 + 0.023 or 0.046. The f and sf components
would be reduced, respectively, to 0.004 and 0.0004 when five items are
averaged. The effect of a change in »; could not be determined in the Design
IV-A G study above, where the pi and p effects were confounded. The reader
can trace out how well alternative designs estimate a population mean, in
the manner of the foregoing section.

In a D study that is chiefly concerned with understanding educational
results, one might estimate an item mean u for a fixed item. The observed
mean is Xgp;, and Agp; is the weighted sum of u,~, p,~, u,~, and
Hspi~, € components. (The i component is not a source of error when the
item is fixed.) One divides the four corresponding components of variance
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by the number of observations to be made within the item for that com-
ponent. Suppose that 500 pupils, 50 in each of 10 schools, will be given the
item. Then, from the estimates of variance components given above, we have:

Component Frequency  Contribution to ¢%(4)
s 10 0.0004
si 10 0.0002
P, sp 500 0.0001
pi, spi, e 500 0.0002

Hence, ;;(A) = 0.0009. The value of (A), 0.03, is probably adequately low
for evaluative conclusions.

E. A Stratified Achievement Test

We have spoken of the possibility of regarding an achievement test as a
sample from a stratified universe in which items are classified a priori ac-
cording to content or task. “Stratified-parallel” tests formed by sampling
within strata agree more closely than the analysis based on random sampling
indicates.

Description of data

The NLSMA study provides illustrative data from a test having three sections,
each containing six items. The test was given to 18 pupils in each of 24
schools. One would generalize over the universe of tests formed by repeatedly
sampling 18 items, 6 from each stratum. We investigate generalizability of
both the pupil score and the school mean. The design of the G study is
(items:strata) X (pupils:schools)—(i:j) X (p:s), similar to that in analysis 4
of the Belgard study (see Table 7.5) except that J* is fixed. For each j € J*,
i is nested within j in the universe. The components involving i are defined
differently from those in (2.19) and (2.20). The i component, for example,
has to be u;; — u; (j € J*). This makes the distinction, for example, between
0*(i | J*) and ¢2(ij | J*) unnecessary. It is probably wise to think of pupils as
nested within schools, in generalizing over pupils; this does not require the
modification of any procedures, however, if the number of pupils per school
can be taken to be very large.

Estimates of components and their interpretation

The four-way analysis of variance produces the mean squares in Table 7.9.
We present the full set of “mixed-model” equations for expected mean
squares, which may be compared with the random-model equations given in
Table 7.5. The components would also be correctly estimated by applying
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the equations of Table 7.5 except that the results would have to be further
treated by evaluating the right side of:

s ]I = 0X9) + 7 [6*6) + FHpispi)
)
and

S*(psp | I*) = *(p.sp) + ni *(pJ,spj)-
7

In interpreting components it should be remembered that with 0-1 scoring,
no variance can exceed 0.25. The residual component, then, is large; it
includes all miscellaneous effects from distraction and guessing, as well as
from a pupil’s ignorance regarding a particular item. The second largest
effect is items within strata, a reflection of variation in item difficulty. The
pupil (within school) and school effects are equivalent to standard deviations
of about 0.1, on a l-unit scale. It is remarkable that school means should
contribute as much to variation in X,,; as the pupil-within-school com-
ponent does. Evidently, schools vary enormously in effectiveness, or in the
quality of pupils they take in, or both.

The strata differ only slightly in average difficulty, according to the j
component of 0.0028. The extremely small sj component implies that the
order of difficulty of the strata is the same from school to school. The com-
ponent for p within sj is only 0.0036, implying that factors specific to the
strata are weak.* The component for p within s indicates that the strata are
moderately intercorrelated. The factor common to all strata (which generates
the p component) accounts for four times as much of the within-stratum
variance of pupil scores on single items as does the stratum-specific pj factor
(0.0121/0.0036). Over all pupils taken together, the general factor is an even
more potent source of variance. The questions likely to be of greatest interest
are these:

1. How great is X,,;; — py,;? This compares the pupil to his own
universe score, recognizing that his assignment to a school is fixed. And
how great is (Xyp57 — psps) — (Ussr — t55)? This is pertinent where
comparative standings of pupils within the school are of interest. (The
number of pupils in the school will be treated as very large.)

2. How great is X,p j; — p,y = A,p ;? This is the relevant question
about the absolute school mean.

4 The suggestion of Rabinowitz and Eikeland that the null hypothesis be accepted if
MS(p:sj)/MS(pi:sj) does not yield a significant F is not followed. If items are classifiable
on some logical ground, the hypothesis 62(p:sj) = 0 is not very reasonable.
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TABLE 7.10 Estimated Error of Generalization from a Stratified Test

Estimate Frequency Contribution to Frequency Contribution to

Source of of variance within variance of within variance of
variance component P Xspar — Bsps s Xspgr = Hsy
Schools s 0.0114 1 1
p within s 0.0122 1 18 0.001
Strata j 0.0028 3 3
i within j 0.0386 18 0.002& 18 0.002
sj 0.0000 3 3
within sj:

pj> spj 0.0036 3 54 0.000

si, sij 0.0055 18 0.000* 18 0.000
. residual  0.1786 18 0.010 324 0.001
a2(A) 0.012 0.004

& Does not contribute to &o? ().

The analysis for pupils in Table 7.10 indicates o(A,, ;) to be in the neigh-
borhood of 0.1. The 18-item test does not locate the individual very exactly
within the 1-point range. The variance of universe scores u,,; for pupils in
the same school is estimated as 0.0122. The variance of Ay ; = (X5 —
Usps) is 0.012. To estimate observed-score variance the i and si components
are ignored (0.012 + 0.012 = 0.024). The within-school coefficient of
generalizability is 0.51.

Assuming the 18 pupils to be a random sample of the within-school
population, o(A,p, ;) for the school mean is estimated to be 0.06; this
precision is not very adequate. If we convert the 0-1 scale into percentages
(0-100), the standard error of the school mean is about 6 percentage points.

EXERCISES

E.l. In the Medley-Mitzel study, what modification of the experimental plan
would change the design to o: (¢t x r)?

Suppose the G study had been carried out in that way and had yielded the “as it
crossed” sum of squares and degrees of freedom shown in Table 7.1. Recombine
these to get the mean squares and estimated variance components forthe o: (¢t x r)
design.

E.2. Write formulas for estimating variance components in the study diagrammed
in Figure 7.1 and show how to calculate the estimates given in Table 7.2 (p. 196)
from the rescaled mean squares.
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E.3. Show how ;2(r) is computed in Table 7.3 (p. 200). Prepare a diagram similar
to those in Figure 7.3.

E.4. The older literature on the reliability of measures often stated rules of thumb
regarding the level a coefficient should reach if a measure is to be used for individual
measurement or group measurement. Thus, it has been suggested that the coefficient
derived from parallel forms given on different occasions should reach 0.50 if a group
is being appraised (rather than individuals). Does generalizability theory confirm
the reasonableness of this rule, where the investigator’s intent is to measure the
attitude of one ethnic group toward another ?

E.S. Pilliner (1965, p. 91) reports a study of a test with three kinds of arithmetic
items. The analysis of variance yielded the following tabulation:

Sum of Degrees Mean

Source squares of freedom square

Children (28) 100.1471 27 3.7092
Strata (3) 4.2137 2 2.1066
Items:strata (25 per stratum) 97.5585 72 1.3550
cs 12.5374 54 0.2322
¢ X i:strata 305.6811 1944 0.1572

a. Estimate & p? for the family of stratified—parallel tests. (Treat strata as fixed,
items as random.)

N

b. Calculate &p? for a 75-item test, generalizing over strata and items.

c. Collapse the analysis so as to ignore the stratification, into that for a persons x
items design. Estimate &p? for the family of random-parallel tests this test
represents.

d. Compare the above results, explaining similarities or differences.

E.6. Use the data for Exercise 5 to compute (A) for a school mean. Assume that
there are 100 children per school in the relevant grade, that all of these are tested,
that all interaction components involving school are zero, and, further:
a. that the test has 25 items in each of the three fixed strata, crossed with children.
b. that an item-sampling design is used, with 5 items from each of the three fixed
strata (15 items in all) given to each subset of 20 children.

E.7. For each design in Table 7.8, calculate the error variance in the population
mean that would be important for textbook comparisons. Assume that forms are
applied in a similar manner to all textbooks, and that there is no item-textbook
interaction.

E.8. Using the findings of the G study of Design V (p. 218), calculate 0%(A) per
form for each of these designs, on a 0-1 scale.

a. Design of 30 schools, 1 form of 10 items, 40 pupils per school per form.

b. Design of 30 schools, 10 forms of 10 items, 4 pupils per school per form.

c. Design of 30 schools, 20 forms of 5 items, 2 pupils per school per form.
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Answers

A.l. If every rater visited every teacher, but no two raters visited a teacher on the
same occasion, the design would be o: (¢ x r). Technically, one might defend adding
the specification that only one teacher is observed on any given date. However,
occasion variance seems far more likely to arise from events within the single
classroom than from the date itself.

Sum of Degrees Mean Component
squares of freedom square of variance
t 203 23 8.83 0.67
13 1 13.00 0.09
tr 17 23 0.74 )
residual 403 192 2.10 2.10

A2. o%i,pidi,pdi,e) = EMS residual; hence ;E(i, ...) = MS residual; here, 0.21.
n;0%(d,pd) + o2(i, . . .) = EMS within p;

hence,
o(d,pd) = '% (MS within p — MS residual)
Here
oA(d,pd) = 0.08
Similarly,

~ 1
o?(p) = — (EMS p — EMS within p)
n;ng
Here, o%(p) = 0.045.

A3,
The diagram indicates that EMSr = 4 + B + C + G.
And from Figure 7.3, EMSpr =4 + B + C.
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Numerically, MS pr is greater than MS r. Therefore, the estimate of G is negative
and we take zero as ;E(r).

A.4. Theresult in such a study will be expressed as a sample mean (or median, etc.)
for the responses of ethnic group 4 when asked about ethnic group B. The question
about precision of measurement has to do with the accuracy of this sample mean on
the form used (assuming a crossed design) as an estimate of the population mean
over a universe of forms. Consequently, one is concerned, not with the coefficient
of generalizability, but with o(Xp; — «). This depends not only on the instrument,
but on the proposed sample size.

It does not report, as the coefficient does, the magnitude of the error relative to
individual differences within the population. That does not bear on this investi-
gator’s inquiry. If one population of respondents has a completely uniform
attitude [o(u,) = 0], one could still measure that attitude very accurately, even
though &p? = 0.

It should be noted that o(A) may well vary from one population of respondents to
another, and that the standard deviation of responses among subjects of group 4
referring to ethnic group B may differ from their responses regarding group C.

A.5. The questions have to do with individual differences in a crossed D study.
The components of variance required are:

c cs ci:s

0.0463 0.0030 0.1572

This result is carried to more decimal places than is justified, for the sake of the
following discussion: .
a. Treating strata as fixed,

F o 0.0463 + 14(0.0030)
0.0463 + 14(0.0030) + 145(0.1572)
00473 _ oo
0.0494

b. Treating the kinds of items in this test as randomly sampled from a universe of
kinds of items (i.e., treating strata as random),

S = 20483 639
P = 00493 "

c. Carrying out the calculation without regard to stratification, one forms
MS ci + 318.24/1998 = 0.1593 = o*(ci). And %(c) now equals 0.0473. Then,

- 0.0473 0.0473

& = = =0.
P T 0.0473 + 145(0.159)  0.0494 0.957
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d. For the domain of arithmetic tested, the kinds of items are not distinct; the
small ¢s component of variance implies that items within a stratum are little
more homogeneous than items from different strata.

The coefficient in b is lower than that in a because the proposed generaliza-
tion is to a broader universe. The coefficient in ¢ might be considered to be an
estimate of the accuracy of generalization from the test to the universe score based
on all items within the collection defined by fixed strata. This is another estimate of
the value given in @, and the two agree closely. But the value in ¢ mistakenly
includes the contribution of the cs component in the error, and is smaller than it
should be. If the cs component were large, or the number of items within strata
small, the disparity could be important.

The result in ¢ might also be considered an estimate of accuracy of generaliza-
tion over all items of all kinds (i.e., to the same universe score as in b). In this
interpretation, the result in ¢ is an overestimate because it ignores the fact that
items were cluster-sampled, and consequently, reports that the universe is more
homogeneous than it actually is.

A.6. In this problem children are treated as fixed (i.e., the sample exhausts the
population within the school) and strata are fixed. The components involving items
are the sources of variance that contribute to o(A). For items within strata, the
component is estimated to be 0.0142, and for ci within strata it is 0.1572.

a. There are 75 items, and the ci interaction is sampled 7500 times.

(Apy) = Y45 (0.0142) + L4500 (0.1572) = 0.0002
6(8) = 0.014

b. With the less complete test, the sample still exhausts the universe of the com-
ponents for c, s, and cs. There are still 75 separate items, but only 1500 samples of
the ci interaction.

(Apy) = V45 (0.0142) + Y500 (0.1572) = 0.0003
6(A) = 0.017

These two designs gave nearly the same value of 6(A), but would not agree as well
with smaller samples or a larger ci interaction.

A.7. Ineach case, remove the contribution of the f component from ;E(A) as given
in Table 7.8. The results are, in order, 0.007, 0.018, 0.004, 0.007. Where the em-
phasis is on comparison, the single-form design (no item sampling) serves better
than it did for absolute measurement. The first or third design would be preferred,
however, if textbook—form interactions were at all likely.
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A.8. Estimate

of Partially Nested Designs

Estimate of
variance

Source Component Design a® Design bP Design c°
Schools 0.004 30 0.00013 30 0.00013 30  0.00013
Items 0.019 10 0.00190 100  0.00019 100  0.00019
si 0.002 300 0.00001 3000 0.00000 3000  0.00000
within s

Pssp 0.023 1200  0.00002 1200 0.00002 1200  0.00002

pi, spi, e 0.117 12,000 0.00001 12,000 0.00001 6000  0.00002

2 30 schools, 1 form of 10 items, 40 pupils per school per form.
b 30 schools, 10 forms of 10 items, 4 pupils per school per form.
¢ 30 schools, 20 forms of 5 items, 2 pupils per school per form.



CHAPTER &

Multifacet
Correlational
Analysis

A. Comparison of Correlational Analysis with Variance Analysis

Early discussions of multiple sources of error in test data (Gulliksen, 1936;
Thorndike, 1947; Cronbach, 1947) were cast in correlational terms. It is
useful to relate correlational analysis to score components and their variances.
This will help the reader to grasp generalizability theory and will aid in
judging what previously published correlational analyses of significant tests
have said about the generalizability of their scores.

The number of published studies applying correlational analysis to data
organized with respect to two or more facets is very limited. An occasional
study can be found where two forms or half-tests on two occasions were
giveninai X j X p design. This design generates four scores to be correlated,
representing the paired conditions ij, i’j, ij’, and i’j’. There are six pairs of
scores, which yield six possible interclass correlations. Classical theory treats
these correlations as if equal in the population. It is more likely, however,
that scores having one condition in common (e.g., ij and i’j) will correlate
to a greater degree than will scores obtained under totally unlike conditions
(e.g., ij with i’j"). The multifacet model permits interpretation of the
differences among correlations such as these.

Comparability of results when conditions are equivalent

While the classical model represented in such works as Gulliksen’s Theory
of Mental Tests does not separate facets, its assumptions can be put into
multifacet language. The sample of persons for the G study is treated as
indefinitely large. With two facets, scores within conditions are assumed to

231
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have uniform means u,;, the variance over p of observed scores X,,; is
assumed to be the same for every ij combination, and the covariance over p
for two sets of observed scores is assumed to be uniform for all possible
combinations of conditions

[i.e., 0(XpissXpir)) = 0(Xpigs Xpirs) = 0(XpijsXpiry) =+ + 1.

The assumptions imply that the following score components equal zero:
=5 J5~= 5 i~ o~ Hpi~, Ppii~. The corresponding components of
variance vanish, leaving only ¢%(p) and o%(e). Under these assumptions, the
covariance between scores observed under two conditions equals ¢%(p), and
the within-condition observed-score variance equals o2(p) + o?(e). The ratio
of these is the intraclass correlation between measures. The correlational
analysis and the analysis of variance of G data yield identical results when
the strong classical assumptions hold.

It makes very little difference whether data to be analyzed are arrayed
with respect to two facets, or are arrayed in a one-facet layout—if the strict
equivalence assumptions hold. A two-way analysis of variance components
will yield a near-zero value for the variance components for conditions;
in a three-way analysis the i, j, pi, pj, and i{j components will be near
zero. Both analyses produce intraclass correlations. Alternatively, the
investigator may compute interclass correlations for pairs of conditions and
average them. All procedures will lead to the same result, save for fluctuations
arising from sampling error.

If conditions are not fully equivalent, standardizing scores does not
necessarily make them so. Standard scores have equal means and variances,
but covariances need not be uniform.

Much of what follows deals with covariances. All statements made about
covariances apply to correlations also, because a correlation is a covariance
of standard scores. In this chapter all attention is on covariances over
persons. (Covariances over conditions will appear in Chapter 9.)

Variance components entering into covariances when conditions are not
equivalent

When conditions in the universe of admissible observations are organized
with respect to two facets, three types of correlation or covariance are
found. The distinction between types was made in Gulliksen’s 1936 study
where two _essays per person were each graded twice. First, there is a co-
variance for unlike conditions (e.g., between scores on two essays) each
judged by a different grader. Second, there is an i-common covariance
(essay common, grader different). Third, there is the analogous j-common
covariance. Two covariances of each kind can be formed where n; = n; = 2,
as is the case in the Gulliksen study. With n, = 2 and n; = 3, there are 15
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FIGURE 8.1. Three Types of Covariance in a Study with Design VII.

covariances, with 6, 6, and 3 of the respective types, as shown in Figure 8.1.
It is reasonable to expect that the average values of covariances of different
types will differ. Although Figure 8.1 deals with just six observations per
person, one can imagine extending the table to represent all conditions in the
universe.

Readers may recognize the resemblance of Figure 8.1 to the multitrait—
multimethod matrix of correlations (Campbell & Fiske, 1959; see also
Norman, 1967). However, the interpretation of a multitrait study where there
is no intention to generalize over traits is somewhat different. Attention may
also be drawn to the Stanley-Wiley paper (1962) on covariances in multifacet
designs.

Consider the average of each type of covariance over all pairs of conditions
in the universe. The expected value of i-common covariances, for example, is
f:{, 0(XpissX pig)-

The following equation regarding the expected variance of X,; — uy
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for Design VII is taken from Table 3.7 (for additional discussion, see Ap-
pendix).

8.1 f’j (X5 | ) = o*(p) + o*(pi) + o*(p)) + o*(Pijie)

These additional equations hold for the three types of covariances:

& & o(X,i5,X,ip) = *(p) + o*(pi) (i-common)
iieg
(8.2) & 6 o(X,X,05) = 6*(p) + o*(pj) (j-common)
i#d'
E & o(X,,X,05) = 0*(p) : (no common
1AL G4 condition)

The expansion into components given in (8.2) applies also to the expected
covariance of average scores. Accordingly, for i-common covariances, the
upper line of (8.2) applies to the expectation of o(X,,;,X,;,), provided that
sets J and J' are drawn at random. Where many 7 are involved, as in

0(Xp15:Xp157)s

o%(pi) in (8.2) must be divided by #n,. In the j-common covariance, o*(pj)
must be divided by n,.

Assuming random sampling, any s(X,,,,X,;;) from a G study is an un-
biased estimate of the expected i-common covariance; etc. Equations (8.1)
and (8.2) are entered with means of observed covariances of each type from
the G study; components of variance are then estimated by solving the equa-
tions. If covariances between scores on whole tests are calculated (e.g., if i rep-
resents test forms and j represents graders), the equations yield components
for whole test scores. Similar analyses can also be carried out for items
and part-tests.

Covariances obtained from partially nested designs can also be used to
estimate variance components. Some components will be confounded, just
as in the analysis of variance for the same design.

B. Theory for a Test Organized into Subtests

The Wechsler Verbal Scale will be taken as an example for multifacet corre-
lational analysis. Its organization into subtests introduces especially inter-
esting questions. We shall assume that in all D studies the same test form is
to be given to all subjects. We also assume that no two persons will be tested
on the same day, in order to avoid complications in the discussion.

Four facets are to be distinguished: subtests j, item-sets # within subtests,
days d, and trials ¢. The smallest item-set considered will be the half-subtest,
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ptaj

FIGURE 8.2. Components in Scores on Item-Sets of the Wechsler Verbal Scale.

for two reasons: the number of half-subtests is two in any subtest, conse-
quently, n; = 2 in every study (though the number of items varies); second,
we have split-half data for subsequent illustrations of G studies, not item
data. For any subtest such as Vocabulary, we assume that the universe
contains an indefinitely large number of items that could be assembled into
forms or half-length forms.

Any trial on any day with any item-set from any subtest falls within the
universe of admissible observations. The universe of conditions has the
structure (t:d) X (i:j), and there are observations on all conditions for all
persons. Trials are nested within days in the universe and item-sets within
subtests, as indicated in Figure 8.2. The nesting shown is present in the
universe of admissible observations. Instead of writing such a pair of com-
ponents as ¢ and td separately, with 7:d we use the label ¢, for the trial-
within-day effect (see pp. 63ff.). This, and a similar simplification for
i-within-j, leaves us with 18 components of the observed score. Several of
these components will be ignored in correlational analysis of G data from a
crossed design.

Universes of generalization

What universe of generalization interests the Wechsler interpreter? More
broadly, what are the conceivable universes of generalization ? The interpreter
will surely generalize over item-sets and over the moments when any item-set
might be presented within a day. The interpreter usually generalizes over
days also, because Wechsler scores are taken to describe the person at a given
stage of development. After about age 8, a person’s score has a “useful life”’
of a year or more under most circumstances.

Whether the Wechsler interpreter normally generalizes over subtests
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(from the specific Verbal tests to the Verbal domain) is arguable. The tasks
may be regarded as a sample from a broad domain of eligible tasks, or as the
entire set of relevant tasks. The former appears to be more usual. Just as the
vocabulary items are recognized as no more than a sample of suitable words,
Wechsler’s formulation-of-definitions task is just one selection from a
domain of usable verbal tasks. Other tasks include opposites, synonyms,
verbal analogies, and picture vocabulary. The view that tasks are sampled is
not at all strange to users of the Stanford-Binet. Form L and Form M are
composed of largely different tasks representing a broad domain. Task-to-
task variation was counted as a source of error in the basic Terman-Merrill
reliability study where L and M were given on different days and the scores
were correlated. Willingness to generalize over tasks was even more evident
when Merrill later reduced the Stanford-Binet to the single form L-M and
suggested that, if an L-M IQ needs to be checked, the Wechsler Scale for
children serves to estimate the same thing. Interpreters of Wechsler Verbal
(Ve) and Performance (Pe) IQs seem to regard them as representative of the
respective domains of intellectual tasks.
There are six conceivable universes of generalization for a test score:

1. Generalization is over trials, that is, over administrations within a day.
The person is tested repeatedly on a particular day, but the day typically
differs from person to person. All observations in Universe 1 employ the
same fixed set of items. This universe is included here only to square off a
formal structure.

2. Generalization is over trials and item-sets. Each administration presents
the same set of subtest tasks, with a new set of items, however. There is no
attempt to generalize beyond the day on which the person is tested.

3. Generalization is over tasks, as well as over trials and item-sets. Again,
the day is treated as fixed for the person. Each admissible test employs a
new set of subtest tasks. That is, each testing uses a fresh set of subtests
drawn from the general domain, not alternate forms of the original
subtests. Subtest-specific effects thus become a source of error. A new
subtest automatically brings in new items.

4. Generalization is over days, and consequently over trials as well.
Observations are made on days within a certain time period, with subtest
tasks and items fixed.

5. Generalization is over days (and trials) and over item-sets. Observations
are made on days within a certain period, with subtests fixed but with
items changing from day to day.

6. Generalization is over days (and trials) and tasks, and hence over
items also. Observations are made on days within a certain period with
subtests (and items) changing from day to day.
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Score components u;~ and u,~ will be disregarded. One or both of
these does cater the observed score and, for certain universes, enters the
universe score, but they are of negligible importance because standardization
greatly reduces them. Moreover, subtests are always crossed with persons;
consequently variance components for j and i; cannot enter the score variance.
For purposes of the formal analysis the d and #; components will be retained,
because these are confounded with the person and enter the observed-score
variance if not the universe-score variance.

Table 8.1 arranges the remaining components to show which ones contrib-
ute to the universe score for each of the six universes. All other components
contribute to the observed score, but not to the universe score. In Universe 6,
all components except that for persons contribute to the discrepancy between
observed score and universe score, hence count as error. In Universe 5,
subtests are fixed, so that the person x subtest component is part of the
universe score, not of the error. And so on. Theerror is greatestin generalizing
to the broad Universe 6, and least in generalizing to Universe 1. The set is
partially ordered: (6) > (3) > (2) > (1) and (6) > (5) > (4) > (1).

The person—subtest interaction u,;~ reflects the extent to which certain
subtests are consistently easier or harder for one person than for others.
The person-item interaction u,; ~ arises from a person’s greater mastery
of some items than of other items of the same character. We would expect
reasonably large pi; interactions within Vocabulary, but interactions should
be comparatively small within Digits Forward, as those items have few
distinctive features.

The person-day component u,,~ departs from zero if the individual does
better on some days than on others. Practice effects or other trends common
to all persons are not included in this interaction. The component u,;;~
comes from day-to-day variation in ability to perform particular tasks. For
example, some subtests may be sensitive to anxiety on the day of testing,
while other subtests are insensitive.

Six alternative experimental plans and their analyses

Table 8.2 catalogues G studies in which two scores for the person are obtained
and correlated. The immediate retest (type 1) is rarely used because of
memory effects; it is included in the table for symmetry.

All studies of type 1v are formally the same regardless of the interval
between testings. The longer the interval, however, the larger the components
for day and its interactions are likely to be. For example, the pd component
of variance is likely to increase with greater lapse of time, and the p com-
ponent to be reduced. The greater time interval often reflects choice of a
broader universe of generalization. (The same is to be said, of course, about
studies of type v, or vi.)
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Plan 11 and plan v call for administering two forms of the conventional
sort, where the same subtests appear in each form, but the items are changed.
This is to be contrasted with Plans 11 and vi, which call for a second form
employing subtests different from those of the first.

It would be possible to employ split-half designs in place of 1, u1, v, and
vL. If the half-tests were separated in the test administration, they would
conform precisely to the description in the table (e.g., two forms given on
the same day), except that the forms are shorter than the usual test. The fact
that half-subtest scores are usually obtained by a split-half scoring after the
entire subtest has been administered as a unit means that the assumption of
independence is violated. The two halves of the subtest are likely to be more
highly correlated than they would be with independent administrations.
There are two ways to split a test such as the Wechsler Verbal Scale. One
can separate odd and even items, as is conventional. Making two short forms
of each subtest is comparable to plans 11 and v. One can also divide the
subtests into two groups; half-tests with different subtests resemble plans m
and V1. In the argument that follows we shall continue to speak in terms of
whole test forms, but in the numerical example we shall employ split-half data.

There is a one-to-one correspondence of experiments with universes. In a
study of type 1v, just the components of the universe-score variance for
Universe 4 raise the correlation between tests. Correspondingly, for type v
and Universe 5, type vi and Universe 6, etc. However, one can process data
more complexly. As will be seen in the next sections, one experimental plan
can give data on generalizability to several universes. Rather than examine
this further theory, the reader may prefer to move at once to illustrative
Wechsler data (p. 246).

Multifacet analysis of variance. In any one of the studies described in
Table 8.2, the half-subtest scores could be processed by the analysis of
variance components as in Chapter 2. (Analysis of whole subtest scores gives
less complete information.) Alternatively, one could calculate a complete
matrix of intercorrelations for all pairs of half-subtest scores. There are close
correspondences between the two types of analysis. The following section
describes the possible results from an analysis of variance under each of the
six designs. It will then be shown how the findings from correlational analysis
correspond to those results.

It is assumed that halves within a subtest are experimentally independent,
and that having previously responded to an item or subtest task does not
systematically affect a person’s second performance on it. These are as-
sumptions traditional in reliability studies. Figure 8.3 indicates what com-
ponents of variance can be estimated from half-subtest scores in a retest
study.
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Eight components of variance

(a) Retest on same day. (I)

di, ti, pdi, pti, e

Eight components of variance

(b) Retest on two days. (IV)

FIGURE 8.3. Components of Variance Obtainable from Analysis of Variance of
Half-Subtest Scores in Retest Studies.

The first possibility to be considered is the same-day retest (plan 1 of
Table 8.2). The upper half of Figure 8.3 represents this design. Person and
day are confounded since persons are tested on different days. We treat trials
as nested within p,d, though we could have classified first and second
observations as distinct and so have treated ¢ as crossed, as we did with
PICA data (p. 176). It should be noted that where i appears in this and the
following chart, this is an abbreviated notation for #; (i-within-j; see p. 235).

NELREVAE
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Correspondingly, any ¢ stands for z-within-d. It would be possible to describe
the design for the same-day retest as (i;:j) x (¢:[p,d]). The notational
conventions are not very satisfactory, however, when we deal with such a
complex design. This coded statement, for example, leaves somewhat
ambiguous whether i is crossed with ¢. (It is, in a retest.) We shall abandon
the code for crossed and nested designs entirely in the remainder of this
section, though the diagrams represent crossing and nesting faithfully.

The diagram for plan 1 indicates that analysis of variance estimates eight
components, most of these being compounds. Only the components that
fall within the p circle affect a correlation, as the use of deviation scores
eliminates other sources of variance from consideration. The six components
identified within the p circle for plan 1 can also be inferred from variances
and covariances of half-subtest scores in a same-day retest study.

Plan 1v is the same in all respects except that the retest takes place on a
second day, and diagram (b) is correspondingly similar to (a). Trial ¢ is
now joint with day, and both are nested within the person. Again, eight
components of variance can be estimated, but the confounding is different.

The study may employ parallel forms with the same subtests and new
items. Figure 8.4 includes representations for plans 11 and v (diagrams a and
¢, respectively); the two differ only in that d is confounded with p in one
diagram, with ¢ in the other. The diagrams have a feature not previously
encountered: an arc cutting off the lower portion, and an incomplete circle
representing the residual term. For the reader who is interested in these
matters we digress to spell out our basis for using these odd conventions.

It is envisioned that a different test form f will be given on each trial.
Because every subtest appears in both forms, we have j crossed with f, and
i; nested within jf. The large arc is a portion of the “f circle,” in a sketch
representing j X f X p. By our usual convention, the outer part of that
circle would represent an “/f component.”” But the f score component proves
to be nothing more than the average of the u; — u; this average is zero, and
is not reflected in the diagram. Where the f and j circles intersect we might
display a jf component. However, this “interaction” arises only from differ-
ences in the items chosen for the two forms, and therefore is indistinguishable
from the I; component. We arbitrarily chose to erase a part of the i circle
rather than to erase part of the j circle. A similar incomplete circle for forms
appears in the diagrams for plans 11 and vi; the outer part of it is absorbed
into the j component. In all these diagrams, form is confounded with trial.

The reader will see that the upper and lower diagrams in Figure 8.4 differ
only with respect to the way in which d is confounded. The chief difference
from left to right is that on the left there is a distinction between pj-dj-pdj
and #-ptj because these can be separated, whereas on the right they are
confounded. The progression from eight to seven to six components, as we
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Seven components of variance Six components of variance
(a) Parallel tests with same (b) Parallel tests with new
tasks on same day. (I) tasks on same day. (III)
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Seven components of variance Six components of variance
(c) Parallel tests with same (d) Parallel tests with new
tasks on two days. (V) tasks on two days.-(VI)

FIGURE 8.4. Components of Variance Obtainable from Analysis of Variance of
Half-Subtest Scores in Studies with Parallel Forms.

move from plan 1 to plan 11, or from Iv to vi, is noteworthy. What would
appear at first glance to be the more complex and more informative design
estimates fewer components then the simple retest design. There are two
countervailing considerations that may tend to make 11 or vI preferable to
I or 1v. First, the assumption of independence is less plausible in a retest
design. Second, the parallel-form designs sample some components more
thoroughly than a retest G study of the same overall size, and so will give
better estimates of some of the variance components that appear in both
studies. Accordingly, if i/ is a half-subtest, and n; = 5, plan I involves 10
distinct 7;, while 11 and 111 involve 20.
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Interpretation of the test-score correlation. The traditional investigator has
computed just one correlation in any correlational study, employing the
total test score from each testing. He presents this result as a “reliability
coefficient.” The diagrams just examined clarify what causes the six co-
efficients for any given instrument to differ.

Any correlation is a ratio of a covariance to the product of two standard
deviations. When the two scores correlated are observations from the same
universe, the numerator can be regarded as an estimate of the expected
covariance between pairs of scores obtained under the design used. The
denominator can be regarded as an estimate of the expected observed-score
variance. The expected observed-score variance under any design is made up
of the components of variance falling within the p circle of the corresponding
diagram. The expected covariance and, therefore, the correlation is raised
by the person component and also by whatever components within the p
circle arise from conditions that are the same for both measurements.

To be specific, consider plan 1, the same day, test-retest design. All com-
ponents within the p circle in the upper part of Figure 8.3 enter the expected
observed-score variance. Among those components, the ones lying outside
the ¢ circle (i.e., p,d,pd; pj.dj,pdj; pi;, dij, . . . ,pdi;) raise the retest correlation.
Hence the retest correlation reports on the magnitude of this conglomerate of
components, relative to the entire set of components involving or confounded
with p. A component enters the conglomerate with a certain weight; for
instance, pj is sampled n; times in each score, so enters with weight 1/n;.
The diagram is consistent with Table 8.2; the covariance does not include
the components for trials, the person-trial interaction, etc. All these fall
within both the p and ¢ circles.

To make a similar interpretation of the other five types of covariance and
correlation, working from the other diagrams, is left as an exercise.

Interpretation of subtest and half-subtest covariances. Far more information
about components is obtained if one examines covariances for half-subtests.
These can be organized so as to supply the same information about com-
ponents involving p as the analysis of variance offers.

Consider the same-day retest study. As diagrammed in (a) of Figure 8.3, the
p circle that contains the components of the observed-score variance has six
segments. This divided p circle is reproduced in diagram (a) of Figure 8.5.
Common groups of elements within areas are keyed to the legend by arabic
numbers. Each of the diagrams is identical; shading indicates which com-
ponents of variance contribute to the quantity named in the label for the
diagram. Diagram (b) represents the covariance for trials of the same
subtest (i-f-common), averaged over subtests. This is seen to be the weighted
sum of components of variance for p, d, pd; pj, dj, pdj; and pi,, dij, pdi,.
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(a) Subtest of like subtests (c) Covariance of
variance trials on two unlike subtests
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subtest on two trials  subtest on two trials
(j common)
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FIGURE 8.5. Components Entering Average Variance and Average Covariances
Obtainable from Subtest Scores and Half-Subtest Scores in a Same-Day Retest

Study (Type
1 = pj, dj, pdj
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3 = pi,, di;, pdi;
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Similarly, one can diagram covariances for unlike subtests on different trials
(diagram c) and unlike subtests on the same trial (diagram d). Once numerical
values for the three kinds of subtest covariance and the variance are calcu-
lated, one can form four simultaneous equations. These cannot be fully
solved, of course, because there are six unknowns.

A full solution is achieved by considering the covariance for halves of the
same subtest, within and across trials. For any subtest there are two values
of t-j-common covariances: within trial from halves of the subtest (diagram
e). There are two values of i-j-common covariances: between trials, from
applications of the same half-subtest (diagram bl). Finally, there are two
values of j-common covariances: between trials, from unlike halves of the
subtest (diagram b2). Multiplying each of these mean half-subtest co-
variances by four yields estimates of mean subtest covariances of the three
types. Averaging the estimates of i-j~common and j-common half-subtest
covariances gives the ij-common, between-trial covariance (diagram b) for
the subtest.

When one equation is written to correspond to each circle of Figure 8.5,
except the redundant diagram (b), there are six equations referring to
observable quantities (five average covariances and one average variance).
Therefore, the components can all be estimated. A complete analysis of
the covariances for the retest study using split-half techniques gives the
same information about the components of variance that contribute to
individual differences as does the analysis of variance sketched in Figure
8.3. The analysis of variance is much more straightforward.

A similar procedure can be followed with every other experimental plan.
The diagrams in Figures 8.3 or 8.4 can be used as a basis for a mapping of
components of variance into covariances in the manner of Figure 8.5, and
these give rise to the equations from which components of variance are
estimated.

C. Numerical Example: Interpretation of WPPSI Correlations

Previous correlational studies of tests have compared scores arising under
two conditions of a facet, or two observations that differ with respect to two
facets. Such information must be patched together to arrive at a multifacet
interpretation. Though such reasoning is tortuous, it will be required to
take full advantage of past studies.

Two correlational studies are reported in the manual for WPPSI, the
Wechsler test for preschool ages (Wechsler, 1967). A split-half study was
conducted at each of several ages; we shall give attention only to that for
children of age 5}%. In the second study, the test was given twice. From the
correlations we shall infer variance components and examine the generaliz-
ability of the Verbal score to various universes. (Similar analyses could of
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course be made for the Performance section of the test.) The Verbal data
are based on six subtests, though five would normally be used in D studies.

Data

Sample 1: A group of 200 children, age 5¥%, who constituted the standardizing
sample for the test at that age. Each subtest was split in half. We start from
the published correlations for the halves within each subtest, corrected by
the Spearman-Brown formula, the correlations between subtests, and the
standard deviations for subtests. The correlations will be converted to
covariances in the course of the analysis, and the standard deviations will
be converted to variances.

Sample 2: A group of 50 children, tested at about age 5%% and again some
weeks later. We start from the covariances between scores for the same
subtests on the two occasions, the covariances between unlike subtests within
and across occasions, and the variances for subtests on each occasion. While
the manual gives correlations and standard deviations, we have used co-
variances supplied by Dr. Jerome Doppelt of The Psychological Corporation;
the data for unlike subtests have not been published before.

It would be more satisfactory to deal with a single sample, but the original
record sheets for sample 2 are not available and we cannot analyze that
study within subtests. In fitting the two sets of findings together, we encounter
the troublesome fact that sample 2 has a limited range. The standard deviation
of IQs was 13.9 on the first test and 14.7 on the retest, instead of 15. In
sample 1, the standardizing sample, the standard deviation is 15 and the
subtest scaled scores have standard deviations in the range 2.9-3.1. (The
departure from the ideal 3.0 very likely comes from smoothing the conversion
table across ages.) We take as a working assumption that all components of
variance except o2(p) are the same in the populations the two samples
represent, and designate the components for persons in the two populations
as o?(p:1) and ¢%(p:2). The former population is the one of general interest.
We have subtest variances from Study 1 and from Study 2. The covariances
available are:

Like subtests on two trials Study 2
Unlike subtests on two trials Study 2
Unlike subtests on same trial Study 1 and Study 2

Unlike halves of same subtest on same trial Study 1

To determine what components of variance are to be estimated from these,
Venn diagrams might be construcred in the manner of Figure 8.5. But we
shall further simplify by treating all the following components of variance
as negligible in size: d, ¢, ti, di, tj, and dj. It seems most unlikely that there
are important systematic effects associated with day or trial. For example,



Study 1 (split-half)

V:1
(a) Subtest
variance

Study 2 (delayed retest)

(d) Subt\gszt variance

\

AN
A
(b) Covariance (c) Covariance
of like] subtests of unlike subtests
(d,tj common) (d,t common)

(e) Covariance of (f) Covariance of
Iik.e subtests on unlike subtests
different days on same day
(i,j common) (d,;t common)

(g) Covariance of
unlike subtests,
different days

FIGURE 8.6. Composition of Variances and Covariance in WPPSI Data.
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Digit Span would not be particularly easy for all subjects on March 22. We
continue to recognize all interactions involving persons. Figure 8.6 represents
these data under the simplifying assumption; where ¢ and i appear, read ¢,
and i,.

Study 1 is a split-half study with n; = 2, n, = 6, n, = 200. Person, day,
and trial are confounded; only a single day and trial are involved in the
study and, therefore, there is considerable confounding of components.
Figure 8.6a indicates what information enters the subtest variance in this study.
Three components can be extracted from this variance (compare with Figure
8.5 or with the p circle of Figure 8.3a, ignoring the ¢ circle):

o*(p.pd,pts)
o™pj,pdj.ptaj)
o*(piy,pdis,ptyis.e)
In Study 2 (retest), n; = 6, n; = 2, n, = 50. Here, the variance contains four

separable components, as seen in Figure 8.6d (compare with the p circle of
Figure 8.3b, ignoring the i circle):

a*(p)

o*(pd.,pt,)

o*(jpis)

o*(pdj.pt, j,pdi;,ptsisse)
These two breakdowns are less elaborate than those of previous figures,
because in Study 1 there is only one trial, and in Study 2, half-subtest scores
are not available.

Because our theory calls for decomposition of covariances, we transform
the correlations reported for Study 1 to that form (Table 8.3). The first entries
in Table 8.3 are the subtest reliability coefficients (split-half, corrected) and
the subtest variances. Under the assumption that half-subtests have equal
variances, the full-length coefficient multiplied by the subtest variance equals
four times the half-subtest variance. The product formed here equals four
times the covariance between halves of the same subtest. Under our assump-
tions, this is an unbiased estimate of the expected value of the covariance
between forms of the same subtest administered at the same sitting.

The right-hand portion of Table 8.3 contains the subtest covariances. It

is convenient to label each of the averages in Tables 8.3 and 8.4. In Table
8.3 the means are labelled v:1, A, and B.

v:1 is the mean of subtest variances.
A is the mean of covariances for like subtests (same task, same trial,
same day, different items) estimated from half-subtest correlations.
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TABLE 8.3. Data from WPPSI Split-Half Study*

Corrected split-half Covariance matrix
correlation, variance,

Subtest and product of these Inf Voc Ari Sim Com Sen
Information 0.81 9.0 7.3 5.85 6.00 530 558 5.22
Vocabulary 0.85 9.0 7.6 4.87 465 549 4.05
Arithmetic 0.86 84 7.2 459 522 435
Similarities 0.82 9.6 7.9 4.56 4.37
Comprehension  0.84 9.0 7.6 5.22
Sentences 0.87 9.0 7.8

Total 540 454 75.32
Mean v=9.00a =757 B = 5.02

& Covariances calculated from data given in test manual, p. 29. Correlations and variances
taken from test manual, p. 22.

B is the mean of covariances for unlike subtests on the same day and
trial.

The data matrix for Study 2, given in Table 8.4, contains variances of
subtests, i-j-common covariances (same subtests, different days), d-r-common

covariances (unlike subtests, same day), and covariances for unlike subtests
on different days. Averaging, we have:

v:2. Mean of subtest variances.

C. Mean of six i-j-common covariances.

D. Mean of 30 d-t-common covariances.

E. Mean of 30 unlike-subtest, different-day covariances.

Estimation of components

We are now in a position to estimate the several components of variance of
subtest scores that can be determined from correlations. Each diagram in
Figure 8.6 can be read as an equation of the sort introduced in (8.1) or (8.2).
From the split-half data we read

B = 5.02 = o(p:1,pd,pt,)
A =157 =B + 0X(pj,pdj,ptaj)
2.5 = 0*(pj,pdj ptsj)
Vil = 9.00 = A + 0*(pi,.pdi; ptyis.e)
1.43 = oX(piy,pdiy ptiy.€)
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These components are on the scale of the total score for the whole subtest,
not of the half-subtest. From the retest study:

E =419 = o(p:2)
D = 4.46 = E + o*(pd,pt,)
0.27 = o*(pd,pt,)
c =577 =B + (pj.pi))
1.58 = 0%(pj,piy)
vi2 =812 = D + o¥(pj,pi))

+ 0*(pdj.pt,j,pdi;,ptai;€)
8.12 = 4.46 + 1.58

+ o*(pdj.ptyj.pdis,ptais.e)
2.08 = o*(pdj, . . . ,€)

To this point, we have simply interpreted two separate G studies, estimating
aggregations of components. Further inferences can be drawn from the two
sets of data together, under the working assumption that components other
than ¢%(p) are of similar magnitude for both groups of children. The con-
founded components overlap, as can be seen in Figure 8.5, and limited
inferences are possible.

For sample 1, the component that confounds p with pd and pz, is 5.02.
For sample 2 we have the separate values 4.19 and 0.27, implying a value
of 4.46 for the compound. These two findings are consistent enough, because
we know that the variation in sample 2 is less than in the standardizing
sample.

Consider the remaining components. These have a different total in each
study: in the first study, 2.55 4 1.43 = 3.98, and in the second, 1.58 +
2.08 = 3.66. These are not distressingly far apart, and perhaps the difference
reflects sampling error. This suggestion is checked by noting that this set of
components corresponds to the area v:2 less the area D in Figure 8.6. In
the retest study, each day provides data for an estimate of the quantities
v:2 and D. On Day 1, v:2 — D = 8.13 — 4.63 = 3.50; on Day 2, the
comparable figure is 8.10 — 4.28 = 3.82. This strongly supports the notion
that sampling variation is sufficient to account for the value of 3.98 in the
first study.

It is of interest to try to isolate smaller bundles of components, and, in
order to reach a more definite statement, we arbitrarily multiply the estimates
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entering v:2 — D in the second study by 1.1 (= ca. 3.98/3. 66) The adjustment
produces this information:

Total from Study 2 adjusted by
a factor of 1.1

)i Pi; 1.7=(c—Eg) x 11
pdj.ptaj | pdipptige | 23 =[vi2—D —(C—E)]
x 1.1
Total from 2.6 1.4 40=(v:2—-p) x 1.1
Study 1 A—B vil —A =V:l—B

From this, one can set upper and lower bounds for the components:

03< ¥ (p) <17

0.9 < o®(pdjpt;j) < 2.3
0.0 < o%(pi)) <14

0.0 < o®(pdi;,ptyije) < 1.4

These bounds are too loose to be of great interest. The pj components
(specific factors in the subtests) are evidently much less influential in the
subtest scores than is the general factor that runs through all verbal subtests.
The general factor is reflected in the p component of variance, which is only
a little less than 5.0 in sample 1. The pdj, pt;j component may be as large
as pj. This would imply a tendency for the shape of the profile of scores on
the subtest tasks to change substantially from day to day even if the subtests
were quite long. To pursue such matters properly requires a study in which
all the components are estimated from the same, preferably large, sample.
One might well divide the sample to have several substudies with different
intervals between tests.

Inferences about D data

The discussion that follows is no more than illustrative; any serious evalu-
ation of WPPSI should be based on far more substantial data. Furthermore,
some of the arguments to be developed in Chapters 9 and 10 should enter
any attempt to draw conclusions about the generalizability of the profile of
subtest scores or the Verbal composite.

The Verbal score. Consider the Verbal score to be the average of the
scaled subtest scores obtained when the test is administered in the usual
manner. This will later be rescaled to the standard deviation of 15 usually
associated with IQ. The design of the D study is presumed to be (i:j) X
(p,d.t), as in ordinary administration of the test. To be as definite as we
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might if the G data had all come from one sample, we arbitrarily assign the
value 1.0 to o*(pdi;,pt,ise). This is at the high end of the range 0.0-1.4,
chosen because experience shows that there are substantial momentary
fluctuations in performance. Assigning this value enables us to calculate the
other previously indeterminate components, and the resulting values serve
well enough in the ensuing illustration of technique:

person (Study-1 population) 4.7
person X subtest 1.3
person X (item-set:subtest) 0.4
person X day, person X (trial:day) 0.3
person x day x subtest, person X (trial:day) x subtest 1.3
person X day X (item set:subtest), etc. 1.0

Considering n; = 5,! the components entering the variance of the Verbal
score are as follows:

P P Pi; pd,pty  pdj,ptyj  pdi, ...

4.7 0.3 0.1 0.3 0.3 0.2

The expected observed-score variance is 4.7 + 0.3 (one-fifth of 1.3) + 0.1 4+
0.3 + 0.3 + 0.2 = 5.9 for the Verbal score. (If a total score instead of an
average had been used, this variance would be 25 times as large, i.e., 148.
This is consistent with the value of 149 directly calculated from scaled scores
for the standardization sample.)

The variance of universe scores depends on the universe. Making use of
Table 8.1 we can construct Table 8.5. The table gives the universe-score
variance for each universe, and the coefficient of generalizability (ratio of
universe-score variance to observed-score variance). When the observed-score
variance is rescaled to 225, that is, to the IQ scale, we have the universe-score
and error-score () variances given in the last two lines of the table. In the
table, pd is called for and not pd, pt,, because only the former enters the
universe score. Inequalities have to be used for components involving d,
since our estimates above include trial effects. Probably the trial effect is
small relative to the day effect, save in the last component.

If investigators do indeed wish to generalize to Universe 6, the coefficient
of generalizability is 0.80. The published coefficients calculated directly from
retest scores (0.86) and split-half scores (0.94) give much too favorable an
impression of the generalizability of Wechsler Verbal 1Qs. Coefficients of
generalizability to Universe 6 are not inescapably low, because tests can be

1 There is no need to consider nj, as components are already scaled to recognize that two
half-subtests are added together.
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designed with such generalization in view. Terman and Merrill calculated a
coefficient of 0.91 from Stanford-Binet scores obtained under a design of
type vI1, taking Universe 6 as the universe of generalization. There are several
possible reasons for their larger coefficient. The universe from which they
sampled covered a small time period; they used 7-year-old, not S-year-old,
subjects; and their n; was large because of the Stanford-Binet format.

The considerable drop from the Universe-5 coefficient to the Universe-6
coefficient is the key point to be understood. Both are what can be called
coefficients “of stability and equivalence.” If performance is unstable
between testings, or if too few items are used to give an adequate sample of
abilities, either coefficient will be lowered. But in generalizing to Universe 5,
one looks on the test as a sample of performances within a fixed universe of
tasks defined by the subtests. In Universe 6, the subtests are seen as repre-
sentative of a larger class of possible subtests. Apparently, WPPSI gives
fairly good data about a pupil’s ability on this particular set of verbal tasks,
but on another set of verbal tasks of the same general nature ranks would
change appreciably. The Stanford-Binet has a considerably greater diversity
of tasks, and is better adapted for estimating the Universe-6 score. The price
of this is that no subtest scores can be interpreted. Single tasks are not
represented by enough items in the Stanford-Binet to justify a breakdown of
the IQ.

Inspection of the magnitudes of the components leads to suggestions for
improving the generalizability of the Verbal score. The components involving
item-sets are comparatively small, and one could add subtests (keeping n;n;
fixed) without changing the net contributions of these components. Shorten-
ing subtests would improve generalization over Universe 6 for the Verbal
score; but it would reduce generalizability to the subtest universe score. The
components involving pd interactions account for much of the error variance
in generalizing to Universes 4, 5, and 6. To reduce this error, one could
administer half the test on one day and half on another. Assuming that the
“day”” portion is much larger than the “trial” portion in the fourth and fifth
components, splitting administration of the test over two days would cut the
pd contribution by 0.01 or 0.02, and would raise the Universe-5 coefficient
from 0.86 to about 0.89.

The inequalities are troublesome. The only way to separate “day’’ from
“trial”” components is to administer the same items twice on one day. The
immediate retest design is ordinarily considered questionable because
memory effects raise the test-retest correlation. With our analysis that
considers internal consistency simultaneously with retest information, any
such spurious evidence of consistency would raise the ‘“day”” components
at the expense of the “trial” components, but it would not alter the co-
efficients for generalization to Universes 4, 5, and 6.
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The ideal design for a G study is difficult to specify because investigators
will set different priorities. A design that disentangles components more
completely is likely to sacrifice precision of some estimates. To give some
sense of the range of possibilities, consider the following design that (like a
conventional parallel-form study) obtains 12 subtest scores:

Day 1: Subtests 1, 2, 3,4, 5, 6; 1 and 2 repeated
Day 2: Subtests 3, 4, 7, 8.

This generates covariances for scores reflecting no common facets, or having
d, or j, or d and ¢, or d and j in common. Something is now learned about
the distinctive contributions of d and . A split-half scoring adds further
information.

If the investigator is interested only in Universes 4, 5, and 6, an elaborate
breakdown such as we have made is not essential. From the matrix of
covariances between and within testings, the first three components in Table
8.3 can be estimated. The observed-score variance can be obtained directly
from the data. This information is all that is needed to arrive at the coeffi-
cients for generalization to Universes 4, 5, and 6. However, much infor-
mation useful in altering the design of the D study is not obtained by this
analysis.

A question regarding standard-score scales is raised by Table 8.3. It is
hard to justify a conversion to IQ that holds the variance of observed scores
constant. The universe-score variance is a function of the universe of general-
ization and the D study. Any modification of the D-study design, such as
splitting the test administration between two days, will alter the observed-
score variance. In fields other than psychology and education, units of
measure are defined in terms of the ideal. It seems likely that, where standard
scores are wanted, tests should be rescaled to set the standard deviation of
universe scores equal to some preferred constant such as 10 (considering the
proper universe of generalization). However, this would be troublesome for a
test that is interpreted with reference to more than one universe because each
universe would require a different numerical scale.

Subtest scores. It remains to apply the information collected in the G
study to the evaluation of subtest scores. It would be possible to investigate
each subtest separately, carrying out a G study on the halves of that particular
subtest on two trials. Components estimated for all subtests taken together
give a gross impression but do not indicate which subtests have the highest
degree of generalizability.

The expected value of observed-score variance on an unspecified subtest is
estimated from the components of variance, with n; = 1 and, in this case,
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no adjustment for n; because components are already scaled to refer to
whole subtests. The estimated observed-score variance is 4.7 + 1.3 + 0.4 +
0.3 + 1.3 + 1.0, or 9.0. The components of the subtest universe score and
its variance depend upon one’s intent. One is unlikely to generalize from
just one subtest to a universe of subtests, and therefore Universes 6 and 3
are ignored. Information is too limited to make a report for Universe 1. For
practical purposes Universe 5 appears to be the most likely universe of
generalization. The universe-score variance is 4.7 + 1.3 = 6.0 and the
coefficient equals 6.0/9.0 = 0.67. For Universe 4, the values are 6.4 and 0.71 ;
for Universe 2, 7.6 and 0.84.

Differences between subtests. Profile interpretation assumes that observed
difference scores correspond reasonably well to difference scores in the
universe. The universe presumably is one in which the pair of subtests is
fixed, the items are variable, and the days of testing are variable. The theory
for this kind of analysis will be delayed until Chapters 9 and 10, as two
distinct variables are under consideration. Nevertheless, it may be useful to
make a sketchy analysis here, with machinery already at hand.

Consider subtests a and b, with the difference based on scores from the
same trial (as is typically the case). The universe score is u,, — Hyp. The
components that enter the universe-score variance for the subtest are those
for person and person x subtest. However, because the person component
enters scores for both subtests, it does not enter the universe-score variance
for the difference. As both subtests contribute interactions, that variance is
26%(pj). The person x day component is ignored because this enters both
scores and cancels out of the observed difference. The remaining components
enter the observed-score variance with weight 2, because each subtest samples
items and moments independently. Consequently, these estimates are
obtained:

1. Expected observed-score variance for a difference between subtests
given on same day 2(1.3) + 2(0.4 + 1.3 4 1.0) = 8.0.

2. Universe-5 score variance for a difference between subtests 2(1.3) = 2.6.
3. Coefficient of generalizability for difference score 0.32.

4. The value 6(9) for subtest difference score 5.41/2 = 2.3.

This 6() is appreciably larger than the standard error of about 1.8 used by
the test developers in telling the reader of the manual what differences are
likely to be significant. Variation from day to day has been considered to
be a source of error, where the test developers base their figure on the split-
half coefficient that treats day as fixed.
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EXERCISES

E.1. Complete this table:
Study (as in Table 8.2) I 1 x v v vI
Diagram (as in Figures 8.3, 8.4) 8.3a
Components adding to correlation p, d, pd;

Pl 4> s

Pi:i’ dif >

pdi;

E.2. State a general rule, in terms of 7, and n;, regarding the number of /-common,
Jj-common, and other covariances (over all persons) in a study with Design VIL

E.3. A universe of admissible observations is defined by a listing of numerous
topics for essays and numerous graders. This universe is the same for all persons. In
principle, a person may write on a topic more than once and a grader may score a
particular essay more than once.

Complete the table (in the general style of Table 8.1) identifying four universes of
generalization, and the score components that might contribute to the universe
score. For the sake of simplifying the response, do not list any component such as
grader that does not involve the person.

Universe of generalization

1 2 3 4
Topic Fixed Fixed  Variable Variable
Grader Fixed Variable Fixed Variable

person

person x topic

person x grader

person X topic x grader

trial: person X topic

[trial: (person x topic)] x grader

trial x rescoring: (person X
topic x grader)

E.4. The average observed-score variance for an essay (one topic, scored once, all
persons scored by the same grader) is 100. The correlation between essays for two
particular topics scored by the same grader is 0.70. What does this tell about
components of variance in the universe of admissible observations described in
Exercise 3?
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E.5. Two simple random-parallel achievement tests were administered twice
(Westbrook & Jones, 1968). The correlations are as follows:

Al Bl A2 B2

Al 0.63 0.82 0.71
B1 0.55 0.71
A2 0.62
B2

What inferences can be made about variance components, taking 1.00 as the
observed-score variance for each test (i = A or B) on each occasion (j=1or2)?
The sample used in determining the correlations was modest in size.

E.6. Suppose that the number of Wechsler subtests were doubled, and the length of
each subtest cut in half. Using the components of variance from which Table 8.5
was derived, what effect would this change have on the error variance and the
coefficient of generalizability for each of the six universes?

E.7. Explain the difference between the coefficients for generalization to Universes
2 and 3 in Table 8.5.

E.8. Suppose that a clinician attempts to generalize from a single Wechsler subtest
score to Universe 6—the person’s expected score over all admissible verbal subtests.
What is the coefficient of generalizability ?

E.9. From the average covariances between subtests given in Chapter 9,
Exercise 7 (p. 304), which components of variance for Verbal and Performance
subtests can be estimated?

Answers

A.l.

Study 11 1 v A% VI

Diagram 8.4a 8.4b 8.3b 84c  84d
Components adding

to correlation  p, d, pd; pj, dj, pdj p,d,pd;te, pts p,pj.pis  p.pj P

A.2. There are n,(n;)(n; — 1)/2 different values of i-common covariances, and
ngni(n; — 1)/2 different values of j-common covariances. There are (n;)(n; — 1) x
(n;)(n; — 1)/2 different values of covariances with both i and j different. There are no
i-j-common covariances.
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A3.
Universe
1 2 3 4
person U U U
person X topic U

person x grader
person x topic x grader

caccca

All other cells shown in statement of exercise are empty.

A.4. The sum of the following components is approximately 70: person, person X
grader.

The sum of the following components is approximately 30: person x topic,
person x topic x grader, trial: (person X topic), trial x grader, and the residual
(trial x rescoring, etc.).

AS.
Components adding to correlation
Average of i-common correlations 0.765 P> pi
Average of j-common correlations 0.625 PP
Average covariance, i, j different  0.630 P

A.6. Components were originally det<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>