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Preface 

What we call generalizability theory has evolved slowly and circuitously. 
The tidy theory of error laid down for psychology at the start of the century 
by Spearman and Brown has always seemed just a little too tidy to describe 
the perverse behavior of real data. Nearly every specialist in behavioral 
measurement has tried to develop a less restrictive model. Each new formula- 
tion has had its virtues and its defects, but the combined thrusts of the 
proposals have propelled the profession a long way beyond the classical 
position. 

In recent years a chief problem has been to assemble what is known into 
a comprehensible, intuitively appealing structure. Our own efforts date back 
more than twenty years, and the more intensive work that produced this 
monograph dates back to 1957. Time and again, we prepared what we 
thought was a comprehensive system. Each such reorganization, brushing 
away scraps, tying in loose ends, and exposing the central structure more 

clearly, has shown the structure to be unfinished and suggested ways to 
extend the argument. This monograph as well surely has a built-in obsoles- 
cence. The multivariate parts of the theory, in particular, began to come into 
focus only in 1967. Much further work remains to be done with them, and 
as that work is carried forward it is likely to alter the whole structure. It 
seems unlikely that further developments will displace our basic scheme, 
with which other investigators have also had considerable experience. 

Many persons and agencies have assisted us. From 1957 to 1963, the work 
was aided by the Bureau of Educational Research of the University of Illinois 
and by grant M-1839 from the National Institute of Mental Health. Cronbach 

ne Gleser were the principal investigators. Rajaratnam was full-time 
sociate from 1957 to 1960, shared authorship of the basic technical reports, 

and contributed many of the key ideas. Many consultants and correspondents 
made valuable suggestions and comments; we are particularly indebted to 
Frederic Lord and Hubert Brogden. Assistants with the project for one year 
or more were Hiroshi Azuma, Milton Meux, Peter Sch6nemann, and James 
Terwilliger. 

In 1960, with two main reports distributed and the third in draft form, 
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Rajaratnam took a position at the University of British Columbia and Gleser 
took on increased responsibilities at the University of Cincinnati. Cronbach 
continued to work on these and other measurement problems at the Institute 
for Advanced Study, Princeton. When he returned to Illinois in 1961, the 
project staff consisted of Victor McGee, associate, and Hiroshi Ikeda and 
T. Douglas McKie, assistants. From 1962 to 1963, Jean Cardinet was 

associate and McKie and R. A. Avner were assistants. John E. Hunter 
independently carried out pertinent mathematical studies. During this period, 
Cronbach, Gleser, and Rajaratnam revised the technical reports for journal 
publication. Cronbach served as a member of the committees that produced 
the 1966 Test Standards; this provided an opportunity for further discussion 
of our concepts with helpful colleagues. Support from the National Institute 
of Mental Health was terminated in 1963. Dr. Rajaratnam died in 1964, 
while serving on a research staff at the University of Minnesota. 

There was no further systematic work on these matters until late 1965. 
In the interim, however, Cronbach and Gleser attempted to help several 

researchers use the theory in their substantive investigations. The experience 
showed that the original papers were not specific enough to guide the 
investigator; nearly every study required some adaptation of the basic 
methods and interpretations. 

Cronbach had taken a position at Stanford University, and in 1965 applied 
for funds to permit preparation of a monograph. The Cooperative Research 
Branch of the U.S. Office of Education provided support for an assistant, 
Nanda, throughout 1966. Some supplementary support came from the 
Center for Research and Development in Teaching, a U.S.O.E.-funded 
agency at Stanford. Our original intention was simply to expand the published 
papers with more explicit advice on procedures and with worked examples. 
Such an expansion and clarification was distributed in a preliminary version 
in 1967. The 1967 report, with revisions, forms the heart of Chapters 1-7 of 
this volume. We are indebted to Haruo Yanai for suggesting the use of Venn 
diagrams to improve the exposition. 

Meanwhile, Nanda’s studies on interbattery reliability and studies by 
Kenneth W. Travers opened the way to a multivariate extension of the system. 
That part of this monograph has not appeared previously, save for a paper 
on difference scores in which Lita Furby collaborated. Michael Ravitch has 
served as assistant in preparing numerical examples and Leigh Burstein 
assisted with Chapter 8. 

To spend more than ten years in producing a monograph seems on its 
face to require some apology. But even in retrospect it is hard to see how the 
work could have proceeded much faster. In such an endeavor one cannot 
head straight toward the final product. One casts about for useful paths, 
puzzles over trails that branch ambiguously, sometimes spends considerable
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time exploring an alternative pathway that, once traced out, can be omitted 
from the final map. Sometimes one pursues a line of development for a 
time as a major independent problem, only to have it shrink back into a 
minor role when the theory consolidates at a higher level of generality. 
(Our work on “stratified-parallel’’ tests is an example.) Perhaps the greatest 
amount of time goes into the detection and eradication of errors and blind 
spots, some due to the perversity of typewriters and computers, some arising 
from our own illogic, and some—the most elusive—being misconceptions 
built into habitual, “time-tested”? concepts. Our chief process of work has 
been the ceaseless revision of each page of draft manuscript by each of the 
coauthors, to ensure the accuracy of everything that is said. 

We owe a special debt to the project secretaries, whose duty has been to 
put illegible technical manuscript, revised by three writers in at least three 
colors, into immaculate form—so that the process of revision could begin 
again. The secretaries who served the project for a year or more are Gloria 
Block, Martha Francisco, Clara Hahne, Dorothy Humes, Thelma Wasson, 

and Jenny Cloudman. 
We take this opportunity to thank the agencies, including our Universities, 

that have supported the work. We also thank the colleagues whose criticisms, 
encouragement, and loan of data have moved us forward, and the successive 
members of our research group. 

Lee J. Cronbach 
Goldine C. Gleser 
Harinder Nanda
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Summary 

of Notation 

The symbols used in this book are identified below. The page reference 
indicates initial use. Notation used at only one point will not appear in this 
summary. 

Lower-Case 

Letters 

a,b,... 

a 

b 

a 

f 

gh, i,j,k, 

Used to identify specific conditions of facet 7 (p. 36). 

Used to represent an unknown or arbitrary quantity (p. 93). 

Slope of regression of uw, on X,; (p. 143). 

As a prescript, identifies a criterion score (p. 325). 

Days, as a facet (p. 195). 

As a prescript, identifies a difference score (pp. 263, 330). 

A component of the score not identified with persons, 
classified conditions, or their interaction (p. 27). The 

“‘within-cell’? component of an analysis of variance. 

Test forms, as a facet (p. 217). 

A facet, or a condition of the facet so labelled (pp. 26ff., 

172, 265ff.). 

Number of conditions of a facet (e.g., n,) employed in an 
experimental design (pp. 9, 34ff.). Also, number of 
person n,, number of variables n,. 

Occasions, as a facet (p. 176). 

Persons, as a basis for classifying observations (p. 26) 

XV
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v ory 

Capital Letters 

A, B,... 

6 

E 

EMS 

G, H, I, etc. 

Raters or recorders, as a facet (p. 191). 

A sample correlation coefficient (p. 78). 
Residual, as in MS r (p. 83). 

Schools, as a facet (p. 217). 

Sample covariance (p. 234). 

Sample standard deviation (p. 83). 

Teachers, as a facet (p. 191). 

Trials, as a facet (p. 238). 

As a subscript, identifies a test score as distinct from an 
item score (rare) (p. 121). 

Variable (pp. 265, 272). 

Multiplier used in forming weighted composite scores 
(p. 265). 

As a prescript, identifies a composite score (p. 327). 

Used to identify specific conditions of facet i (p. 26). 
Used to identify sums of components (pp. 48, 250) 

Expected value. Limit approached by an average as the 
number of elements averaged increases (p. 26). For 

example, 1% 

6X; = Lim — > X pie 

z il 

In classical theory, the error of measurement (p. 75). 

Expected mean square (p. 43). 

A set of conditions used to make an observation; e.g., 

several conditions of facet g make up the set G (p. 28). 
Any letter whose lowercase form identifies a facet may 
be used in upper-case form also. 

N, is the number of conditions of facet i in the universe of 

admissible observations. N,, etc. may be defined similarly 
(pp. 9, 58ff.). 

A group of persons (p. 28). 
As a subscript, indicates that a score is a sample mean 

(p. 103). 

Probability (p. 50).



Greek Letters 

a 

Summary of Notation xvii 

Multiple correlation coefficient (p. 321). 

In superscript position, indicates the transpose of a matrix 
or vector (p. 319). 

As a subscript, identifies a total score as distinct from an 

average (p. 82). 

Observed score. The score ,X,, is the observed score of 

person p under condition i (pp. 26, 265). 

Intraclass correlation from a one-facet study where condi- 
tion means are not regarded as a source of variance in 
scores (p. 82). 

Difference between observed score and universe score 

(pp. 24, 76). 

Difference between observed deviation score and deviation 

score in the universe (pp. 24, 93ff). 

Difference between universe score and universe score 

estimated by means of a regression equation (p. 25). 

“Belongs to the set,’ as ini eI (p. 28). 

Mean in population or universe (p. 26). In particular, a 
component of the observed score. The component y, is 
ordinarily the universe score of interest. 

Portion of interaction uncorrelated with uw, (p. 143). 

Population value of a correlation coefficient (p. 75). 
The expression @p* is an abbreviated notation for 
& p?(X,;, #,) OF more generally, the expected value of 
the squared correlation of observed score with universe 
score (p. 98). 

Population value of standard deviation or covariance. 
o*(X,,) is the variance of X,, over all p and i (p. 27). 
o*(pi) is the variance of the pi “component’’ over all p 
and i (p. 27). 

Sum of. 

Variance—covariance matrix (pp. 267, 272).
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Numerals 

1,2 

1,2,... 

Two particular variables, as in ,X, .X (p. 265). Especially, 
pretest and posttest measures (p. 350). 

Persons whose scores are discussed (p. 36). 

Auxiliary Signs 

@,0 

leg 

log 

*a(,X, yX) 

°a(yX, yX) 

é 

Two distinct conditions of facet i. Used similarly with j 
(pp. 94, 231). 

Two distinct persons (p. 94). 

Two distinct variables (p. 265). 

Number of conditions employed in the G and D studies, 
respectively (p. 74). 

Number of conditions in the universe of generalization 
(p. 58). 

A particular condition or person (p. 26). A double asterisk 
(as in i**) is used where emphasis is on a condition or 
person fixed in the D study and the universe of generaliza- 
tion (pp. 114ff.). 

As prescript, identifies a variable of particular concern 
(p. 313). Also in v*. 

Caret, Estimator. For example, 6(u,) is an estimate of 

o(u,). But o(4,) is the standard deviation of an estimate of 
[ty (P. 47). 

Bullet and open circle. 

Condition i for observing variable 1 is drawn simultaneously 
with condition g for observing variable 2, causing i and g 
to be “‘linked”’ (p.268). 

Drawing of condition g is independent of the drawing of 
condition i; i.e., 7 and g are independent (p. 270). 

Covariance of observed scores ,X and ,X when ie g 
(p. 271). 

Covariance of observed scores when i ° g (p. 311). 

Overline; average of a set, as in é (p. 59) or X (p. 75).



[1] 

(|) 

Summary of Notation xix 

Tilde; functions as an ellipsis (p. 41). The score component 
for the pi interaction may be written u,,~ instead of 
Uni — bp — 4 + pe. Similarly with other components. 

As a subscript, the bracket indicates that the index it 
replaces takes on all values except 1 (p. 54). 

The conditional symbol implies that any index to the right 
of the symbol is to be treated as fixed for the time being. 
Thus, > (X,, | i) has the same significance as > X,; (pp. 

Dp 

82, 83). In an experimental design e.g., (i x p) | J*, all 
pi combinations are observed under conditions J* (pp. 59, 
114). 

The cross, colon, and comma are used in describing 
experimental designs, being read respectively as “crossed 
with,”’ “nested within,” and “joint with” (pp. 35ff., 286).





CHAPTER I 

The Multifacet 

Concept of 

Observational 

Procedures 

The investigator who tests a person twice is likely to obtain scores that differ. 
Determination of the magnitude of such inconsistencies in measurement has 
been recognized as important since the time of Bessel and Gauss, as the 
investigator thereby learns how much confidence he can place in his data. 

In psychology and education, a mountainous literature on “reliability” 
of measures has been built upon the foundation of Spearman’s 1904 paper. 
In nearly all this literature, the observed score is seen as the sum of a “‘true 
score’ and a purely random “‘error,”’ the error being looked on as a sample 
from a single undifferentiated distribution. The classical procedure for 
reliability analysis estimates the standard deviation of this hypothesized 
distribution (the standard error of measurement) and the closely related 
reliability coefficient. Such a coefficient is interpreted as an estimate of the 
squared correlation of observed score with true score, or as the ratio of the 
variance of true scores to the variance of observed scores. 

A generation ago, R. A. Fisher (1925) revolutionized statistical thinking 
with the concept of the factorial experiment in which the conditions of 
observation are classified in several respects. Investigators who adopt Fisher’s 
line of thought must abandon the concept of undifferentiated error. The 
error formerly seen as amorphous is now attributed to multiple sources, and 
a suitable experiment can estimate how much variation arises from each 
controllable source. With the estimates of the several variance components 
in hand, the investigator can understand how unwanted variation arises, 

and he can plan an efficient design for collecting further data. This is demon- 
strated in the context of industrial statistics by Tippett (1950, pp. 124-133). 

The behavioral scientist, like other investigators, can learn far more by
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allocating variation to facets? than by carrying out the conventional reliability 
analysis. The principal methods for multifacet analysis of error were pre- 
sented rather fully to behavioral scientists and educational researchers in 
Lindquist’s text on experimental design (1953). These methods have been 
less extensively treated elsewhere. However, they have not been widely 
adopted. Indeed, we know of no instance where multifacet techniques were 
used to organize statistical evidence in a test manual, and only rarely have 
they appeared in publications on ratings and observation procedures. The 
tester’s neglect of multifacet analysis probably reflects the fact that the 
design of experiments branched off as a specialty in itself, with the conse- 
quence that advances in variance analysis were not brought forcefully to 
the attention of students of behavioral measurement. The separation was 
encouraged by the fact that experimenters characteristically regard subjects 
(persons) as a source of “error” in their analyses, whereas the tester is 
interested chiefly in the person tested and only secondarily in the conditions 
of observation. Methodological statements directed to experimenters do not 
communicate well to students of measurement. 
Among the compelling arguments for adopting multifacet analysis of 

error as a standard technique are these: 

1. Explicit consideration of the several facets of a measuring operation 
dispels ambiguities that were present in, and concealed by, the classical 
model. 
2. The multifacet study can appraise interactions inaccessible to the older 
methods, and so can improve one’s understanding of the measure. 
3. One multifacet study answers questions that formerly required several 
separate sets of data. 
4. Multifacet information enables one to design more efficient procedures 
for collecting data, either for the measurement of individuals or for the 
determination of group means. 

Concurrently with the multifacet conception of measuring operations, a 
tradition of multivariate analysis has evolved. In factor analysis, multiple 
correlation, profile interpretation, and a number of other techniques, con- 
clusions are reached through the simultaneous consideration of diverse 
measures. Even though specialists in psychometric theory have played a 
large part in developing multivariate statistical methods and their appli- 
cations, this work has been almost completely isolated from the theory of 
true scores and error of measurement. Better information on a true score 
can be obtained by combining a direct observation on that variable with 

1 Following Guttman, we speak of “‘facets’’ rather than “‘factors,’’ because the latter 
term evokes, in the psychologist, associations with factor analysis.
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observations on variables correlated with it than can be obtained from the 
direct observation alone. 

Just a few scattered papers have suggested a multivariate approach to the 

estimation of true scores. When this line is pursued, it becomes evident that 
some of the most traditional procedures for test analysis are incorrect or 
open to misinterpretation. We shall introduce a systematic model for multi- 
variate theory of measurement and show how it joins hands with multifacet 
theory to make all measurement theory more logical and more useful. 
However, because of the novelty of both approaches, we combine them only 
to discuss a few simple cases. A completely integrated presentation would be 
too abstract to be assimilated at this time. 

While the paper of Gleser, et al. (1965) presents the basic theory and 
formulas for multifacet analysis with one variable, that presentation is too 
compressed to be an adequate guide to the researcher. Endless variations of 
the basic problem are encountered in practice, requiring adaptation of 
formulas and interpretations. We have rarely undertaken a multifacet analysis 
of a new instrument without encountering surprises and paradoxes that 
required decisions for which the literature has provided no explicit guidance. 
Therefore, we have compiled in this monograph illustrative studies in 
sufficient variety and detail that the rationale, the computational procedures, 
and the interpretation can be shown at length. Most of the examples are 
taken from studies for which one or another of the authors served as con- 
sultant. Matters of technique and formal interpretation that puzzled us are 
emphasized here, rather than the substantive questions that gave rise to the 
studies. 

This monograph goes beyond the 1965 paper in several respects, one of 
them being the multivariate extension mentioned previously. We have in- 
cluded some relevant theory of inference from the statistical literature, and a 
more complete discussion of mixed model analyses. Primary emphasis is now 
placed on variance components, where the earlier paper followed psycho- 
metric tradition in emphasizing ratios of variances (coefficients). We have 
altered details of the presentation, adopting, for instance, a new system of 
notation to describe experimental designs. 

Despite our intent to display techniques clearly for the reader who wishes 
to use them, the book is complexly organized and by no means simple to 
follow. If we had been able to stop with a straightforward series of illus- 
trations of the well-worked-out part of the theory, the presentation might 
have adhered to a genuine textbook style. But it is necessary to bring in 
complex arguments, some of which have not yet reached a stable form. It 

appears important to draw attention to unfinished business within multifacet 
theory—for example, to the effect of sampling errors upon results of the 
analysis.
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The questions that appear following the chapters must be seen, not as 
routine textbook exercises, but as opportunities for the reader to exercise his 
wits on some of the complex judgments that multifacet studies require. To 
be sure, a problem may simply provide the opportunity to apply an algorithm 
and check one’s understanding of it. But another problem on the same page 
may pose a dilemma, and we offer our preferred answer only most tentatively. 
Many of the problems will prove useful as a basis for discussion in classes and 
seminars. While it is hoped that others will be able to confirm our numerical 
results, it is anticipated that they will often prefer alternative interpretations. 

Because of the endless variety of the analyses generalizability studies call 
for, we do not regard most of what is presented as a set of procedures to be 
“‘mastered”’ and reduced to routines. Hence, there has been no systematic 
attempt to develop exercises on all topics. While it is hoped that the exercises 
will assist the reader to comprehend the theory, this volume is a theoretical 
monograph and not a textbook. 

At some points it has been necessary to venture into metatheory—that is, 
to discuss why the person analyzing a measuring technique ought to ask 
certain kinds of questions. Issues forced to our attention by generalizability 
theory raise fundamental questions about the rationale and even the legitimacy 
of traditional approaches to the scoring, reporting, and evaluation of tests. 
Some readers will no doubt find multifacet theory cumbersome, and decide 
to return to simpler models. Even such a reader will find that multifacet 
theory has shed new light on his long familiar procedures, and has cast dark 
shadows upon the acceptability of some of them. 

It is awkward to develop an argument at several levels of abstraction, 
especially when readers can be expected to vary in sophistication and technical 
background. The reader must proceed through the book in his own way; it 
would be unwise for him to struggle to comprehend each page as it comes. 
Perhaps the best strategy is to scan the whole volume to identify the kinds 
of material to be found, and then to follow a selected theme through the 

book. Occasionally, the reader may wish to skip ahead to locate a numerical 
example, or to turn to a further development of a theoretical issue. The 
reader is certain to gain far more from his third reading of most sections 
than from his first or second. By the time he returns to this or that puzzling 
matter for a fourth reading he is likely to discover implications in the topic 
that escaped us. In the course of writing and rewriting the book, we have 
repeatedly discovered further, sometimes dramatic, significance in topics 
that we thought had already been exhausted. 

One reason for the continuing power of multifacet theory to provoke 
new thoughts is that it permits sensitive use of concepts that had a restricted 
or ambiguous meaning in the traditional framework. The hallowed Spear- 
man-—Brown formula, for instance, estimates the accuracy of the score that 

one can obtain by doubling the number of observations. But if a teacher is
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to be observed by n, observers on n,; occasions, and it is proposed to “double 
the number of observations,” the psychometric properties of the score will 
differ according to whether n,; or n,; is doubled. The properties also depend 
on such subtler points of design as whether or not the n, observers are the 
same on each occasion. The correlational language could be elaborated to 
cope with such complexities, but clarity is served by tracing how a change of 
design affects each component of observed-score variance. 

Another example of ambiguity and misinterpretation arises in correction 
for attenuation. In all too many instances, an investigator has “‘corrected”’ 
an observed correlation by dividing it by a reliability index of an inap- 
propriate type. Occasionally, for example, an investigator who desires to 
show that two tests reflect distinct traits correlates the two tests and then 
‘corrects’ the correlation by dividing it by an index of scorer agreement. 
A low “‘corrected”’ correlation is taken as evidence for his hypothesis. It is 
virtually impossible to explain why this is unsound and what the investigator 
should have done instead until we possess the conceptual apparatus of 
multifacet analysis. When we return to this topic, it will be evident that there 
are many different “‘corrected”’ coefficients for the same two sets of scores. 
Each coefficient allows the investigator to evaluate a different substantive 
proposition. 

It is a straightforward matter to obtain unbiased estimates of components 
of variance and covariance, at least for the more regular experimental 
designs (Vaughn & Corballis, 1969). A certain variance component may 
contribute to “true,’’ “error,” or “observed score’’ variance or perhaps to 

none of these; the interpretation of the component will depend on how the 
measuring procedure is to be applied. The magnitude of errors of measure- 
ment depends on the type of decision to be made from the scores and on the 
experimental design by which scores are to be collected. A new estimate will 
usually be required for another type of decision or for an experiment differ- 
ently designed. However, estimates of components remain useful to everyone 
testing subjects similar to those of the original study. Each user can derive 
from the components the estimates that pertain to Ais design and intended 
decision. It is expected that behavioral scientists will drift away from their 
present concern with coefficients, toward the reporting and interpreting of 
components of variance and covariance. This will bring their thinking more 
nearly in line with the theory of error used in other sciences, where corre- 
lation coefficients play little or no part. 

A. Historical Notes 

The multifacet approach squarely faces the old criticism that reliability 
coefficients for a test are diverse and sometimes mutually contradictory. 
Under the classical theory, an investigator was expected to obtain two
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independent but interchangeable measurements on each individual, and to 
examine their agreement. As was forcefully pointed out by Goodenough 
(1936), the investigator who compares two administrations of the same list 
of spelling words asks a different question than the investigator who compares 
performance on two different lists. Inconsistency of observers, inconsistency 
in the subject’s response to different stimulus lists, inconsistency of his 
response to the same stimulus on different occasions—all of these may be 
sources of error, but any one comparison will detect some inconsistencies 
and not others. This line of criticism has led various workers to classify the 
types of variance that can contribute to “error.”’ 

Thorndike (1947) classified variance into five categories: 

1. Lasting and general. For example, level of ability, and general test- 
taking ability. 
2. Lasting but specific. For example, knowledge or ignorance regarding a 
particular item that appears in one test form. 
3. Temporary but general. For example, buoyancy or fatigue reflected in 
performance on every test given at a particular time. 
4. Temporary and specific. For example, a mental set that affects success 

in dealing with a particular set of items. 
5. Other, particularly chance success in “‘guessing.”’ 

The lasting—general variance is almost always ‘“‘wanted”’ information about 
individual differences; the ‘“‘other’’ or residual category is almost always 
“‘error.’’ Temporary—general characteristics are significant for the investigator 
who is studying response to immediate conditions, but they are “‘error’’ for 
the investigator who wants to know the subject’s typical level of response. 
Thus, an evaluator may wish to detect how much an adolescent’s interest in 
reading about science here and now is aroused by the particular kind of 
stimulation a visiting lecturer provides. This evaluator is interested in the 
subject’s temporary state. But a guidance counselor wants to measure the 
same adolescent’s everyday, typical interest in science. He regards temporary 
departure from the student’s norm as a source of error, since he is interested 

in a characteristic that transcends the stimulation of the moment. A split-half 
analysis treats the temporary variation as consistent information; the 
heightened interest raises scores on both halves of the measure. Therefore, 
from the viewpoint of the guidance counselor, the split-half index of agree- 
ment is falsely encouraging. 

Thorndike’s breakdown is multifacet in conception, recognizing occasions 
and stimuli (test forms) as logically distinct facets. However, it does not 
suggest how the investigator can estimate the magnitude of each type of 
variation separately. Cronbach’s rather similar treatment (1947) went only a 
small step further in this direction.
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The views to be developed here were foreshadowed in Guttman’s (1953) 
review of Gulliksen’s Theory of Mental Tests (1950). Guttman’s remarks are 

worth quoting at length, because they exemplify how the experimental 
procedure for investigating generalizability derives from substantive con- 
siderations. Because a study of consistency among samples of behavior 
challenges or confirms the investigator’s working concept of the variable, 
it is a part of instrument validation as well as a study of instrument precision. 
From Guttman’s review: 

Current sampling theory by itself cannot solve many problems of 
prediction and external validity. Conventional sampling problems concern 
the selection of people from a large population. Mental test theory faces 
also another type of sampling problem—that of selecting items from one 
or more indefinitely large universes of content. This is a basic problem of 
item analysis. To this reviewer it appears that there can be no solution 
without a structural theory [p. 129]. 

Tests are parallel if they have common means, variances, and inter- 

correlation coefficients. It is not so easy to see, however, that the definition 
is unique. It seems to this reviewer that one could find the same test to 
belong to more than one set of parallel tests and thus in general to have 
more than one “reliability coefficient.” 

Consider the following example of a series of ‘‘parallel’’ tests. Let test 1 
consist of but a single item: “Write down all the words you can think of 
that begin with the letter ¢.’’ For a given population, and a given time limit, 
the score for each person is the number of words he writes down beginning 
with ¢. 

There are at least two different directions in which one could go to 
construct tests parallel to this one. One direction is to vary the letter 
involved. For example, test 2 could be: “Write down all the words you can 
think of that begin with p,”’ while test 3 could use instead the letter d, say. 
By adjusting the time limits, all three tests can be made to have the same 
mean. There seems no absolute barrier to their also having common 
variances and correlation coefficients. For our particular population, let us 
suppose the three tests are actually parallel, and that their common 
correlation coefficient is 0.70. Then, according to the book’s theory, test 1 
has reliability coefficient 0.70. 

Another direction in which we could have gone to construct tests 
parallel to test 1 is to vary the places of the letter, and not the letter itself. 
Thus, test 2 could be: “Write down all the words you can think of in 
which the second letter is f,’’ and test 3 could ask for ¢ as the third letter. 

Again, for our population, there is no physical bar to the tests turning out
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to be parallel. But this time, let-us assume that the mutual intercorrelations 

turn out to be equal to 0.60. Then test 1 has reliability 0.60. 
Therefore, test 1 has reliabilities 0.70 and 0.60 simultaneously, according 

to the theory of parallelism [p. 125]. 

To go beyond the limited information contained in a simple correlation 
between two tests, one would collect data with at least four and preferably 

eight or more fluency tests. These tests would be designed to vary syste- 
matically with respect to the letter prescribed, the position in the word of the 
letter prescribed, and the length of word prescribed. Thus, one could com- 
pare, for example, a test asking the subject to list four-letter words beginning 
in ¢ with a test that asks for four-letter words beginning in d, then with one 
asking for four-letter words whose second letter is t, and with one asking 
for six-letter words beginning in ¢. With more than four tests the tester could 
introduce additional variations. For example, he might then discover that 
the “‘second-letter” tests consistently rank people differently from the 
“first-letter’’ tests. If so, they call upon different mental processes. 

As it happens, Gulliksen (1936) had published perhaps the first formal 
multifacet analysis of test consistency in a paper that was summarized in the 
book Guttman criticized. Two forms of an essay test were administered, and 
each paper was scored by two graders. The cross-correlations of the four 
resulting scores answer three distinct questions about consistency of measure- 
ment having to do with different forms, different scorers, or both. Gulliksen’s 

procedures could estimate some but not all of the components of variance 
that nowadays are determined by analysis of variance. 

There has been a steady flow of concepts from Fisherian analysis of 
variance into educational and psychological statistics, but the presentations 
encountered by most students emphasize the testing of null hypotheses by 
means of the Fratio. This reflects the earlier phase of factorial experimentation, 
during which the effects an experiment was designed to assess were regarded 
as fixed. An agricultural experimenter testing the effects on yield of three 
types of fertilizer, for example, is primarily concerned with those specific 
fertilizers. He is not studying fertilizers-in-general. The same is true in many 
psychological and educational studies of treatment effects. A study in which 
results of the PSSC physics course are compared with those of the course 
developed by Harvard Project Physics regards those treatments as fixed; 
there is no intention to formulate conclusions about any larger set of physics 
curricula. 

In the late 1940’s, statisticians came to distinguish among “fixed,” 
“random,” and “mixed’’ models for the analysis of variance. Attention to 

the components of variance followed. The random and mixed models 
recognize that sometimes the conditions used in an experiment are of little
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interest in themselves; rather, they represent a class of conditions. For 

example, the plot on which a crop is grown is a sample from a population 
of plots over which the experimenter intends to generalize. An experimenter 
who establishes that soil variation is significant is ordinarily not interested 
in the fields that happen to have been employed in the research. Rather, he 
wants to know to what extent yields vary from plot to plot, so that he can 
take this into account in his recommendations. The random model assumes 
that the experimental conditions are randomly selected from the set of 
possible conditions. The original (fixed) model assumes that the study has 
obtained data under every one of the conditions that is currently of interest. 
The mixed model allows some aspects of the experiment to be fixed and 
others to be determined by sampling (e.g., the set of fertilizers fixed, soils 
random). 

In an especially significant theoretical paper on multifacet designs, Corn- 
field and Tukey (1956) embodied all three models in a single formulation. 
The paper considers the n values of a facet used in an experiment to be 
samples from the N values in the universe of conditions for that facet, where 
N can take any value from n to oo. (For example, in the Guttman example 
of fluency tests, the initial letters t and d are presumably sampled from a set 
where N = 26.) There is a set of general formulas for estimating the expected 
magnitude of the effects (i.e., of the components of variance) for any N 
between n and oo. But the intermediate possibilities are commonly ignored; 
analysis proceeds as if, for any facet, N equals either n or 00. Where N = n, 
the conditions of the facet are fixed. 

In the behavioral sciences, conditions of measurement or observation are 

commonly thought of as representative of a large set of conditions. In 
observational studies of teachers, the persons doing the observing and the 
occasions on which observations are made represent many other equally 
admissible observers and occasions. Similarly, where two forms of a test are 
used in a study, these two item-sets are considered to be samples from a 
universe of item-sets “like these.”” While universe and population are logically 
interchangeable terms, we shall reserve the word population for subjects, and 
apply the word universe to conditions under which the subjects might be 
observed. 

The classical theory of reliability postulates strictly “‘parallel’’ measures 
such that test forms have equal means and variances and there is no inter- 
action of subject with test form. Variance is considered to arise from “‘true’’ 
subject differences combined with random variation among observations 
(“error”). While this model is reasonable for carefully equated parallel forms 
of tests, it is less descriptive of other types of measures. For example, raters 
are likely to differ in the central tendency of the values they assign (producing 
a main effect for raters) in the spread of their ratings, and in the qualities they
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attend to (these latter producing a subject-rater interaction). Behavioral 
observations, such as of talkativeness, for instance, can also be expected to 

exhibit both situation (main effect) and interaction variances. Tests often 

lack second forms, and investigators turn to internal-consistency analyses. 
But half-tests are imperfectly parallel, and item scores do not conform at all 
to the classical model. 

The theory presented here derives from amendments to the classical theory 
that, in the 1950’s, proceeded along these lines: 

1. It was formally recognized that conditions of observation are not 
necessarily parallel. (See Ebel, 1951, who made a place for inequality of 
condition means.) 

2. Conditions (particularly test items) were thought of as sampled from a 
universe randomly or in accord with a stratified design. (See Lord, 1955a, 

1955b; Tryon, 1957.) 
3. Two or more facets were analyzed simultaneously. 

The papers bearing on the third point are closely enough related to this 
monograph to be catalogued. 

Applications of analysis of variance in psychology and education stem 
directly from the work of Fisher and others at the University of London in 
the 1930’s. The senior educational psychologist at London at that time, 
Cyril Burt, translated Fisher’s materials for the benefit of his students and 

applied them to the reliability problem, but his formulations reached print 
only in fragmentary form after World War II. Burt’s 1955 paper was a 
comprehensive exposition of the application of analysis of variance to 
reliability problems, with particular attention to test forms and occasions as 
separable sources of variation. A companion paper by Mahmoud (1955) 
treated the same data factor-analytically, demonstrating some links between 
the two systems of analysis, such as, for example, the correspondence of 
person-form interactions to the specific-factor content of a test form. 
Burt dealt only with the completely crossed design where each test form is 
given to all subjects on two occasions. Other treatments of the reliability of 
tests by means of analysis of variance reflect the influence of Palmer Johnson, 
an associate of Jerzy Neyman in the mid-1930’s at London. The list of 
associates and students of Johnson who have contributed to the literature on 
reliability includes R. W. B. Jackson (who worked with Neyman), Hoyt, 
Mitzel, and Medley. Reference should also be made to the continually 
developing thoughts of another Burt associate, R. B. Cattell. While the 
present monograph does not coincide fully with Cattell’s views, his thinking 
has been oriented toward similar analyses for a long time (see Cattell 
& Warburton, 1967, p. 36 ff.). 

Lindquist’s extensive exposition of multifacet theory (1953) focused on
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reliability coefficients and treated components of variance incidentally. 
Lindquist only partially developed the methods of using one study to 
estimate the precision of measurements that could be collected with various 

alternative designs. However, he did make clear that a multifacet analysis 

allows for alternative definitions of error. Hence, several distinct coefficients 

can be obtained for any one measuring procedure. He demonstrated that 
increasing the number of observations has different effects, according to 
which facet the added observations sample. 

Very likely the first report on reliability of measurement in terms of the 
analysis of variance components was Finlayson’s (1951) study of grades 
assigned to essays where the student writes on more than one topic and the 
paper is graded by several readers. Pilliner, with whom Finlayson worked, 
published (1952) a theoretical exposition of the relations between intraclass 
correlations and analysis of variance. 

In 1965 Pilliner assembled the thinking of many years into a doctoral 
dissertation. This coincides with our paper (Gleser, et al., 1965) not only 
in time but in much of its thinking. Most of Pilliner’s illustrative applications 
concentrate on one-facet studies of agreement among graders, but some 
studies treat pupils as nested within schools. The recognition that the school 
mean is at times the variable of interest takes the work into ground that has 
rarely been touched upon. (See also Pilliner, Sutherland, & Taylor, 1960, 
and a paper on two-facet studies by Maxwell & Pilliner, 1968). 

Loveland (1952) carried out a doctoral dissertation under the direction of 

E. E. Cureton in which he computed components of variance to estimate the 
magnitude of variation from five sources: persons, person—occasion inter- 
action, person-form interaction, a form—occasion effect, and a residual. 
The model appears to differ at least in minor particulars from those used 
subsequently, because of a preoccupation with individual differences charac- 
teristic of older test theory. 

Another application of multifacet analysis to educational measurement 
was that of Medley, Mitzel, and Doi (1956). They carried out a three-way 
analysis of classroom observations of teachers to demonstrate the effect of 
conditions of observation, stressing the distinction between the mixed and 

random models for analysis. Medley and Mitzel (1963) presented the argu- 
ment more completely, displaying a four-way analysis. This work is to be 
examined further in Chapter 7 (p. 189 ff.). 

The intraclass correlation, originally developed by Pearson, was made a 
part of the theory of variance analysis by Fisher. Many well established 
reliability formulas, including those of Kuder and Richardson, are now 
recognized to be intraclass correlations, as are all the coefficients of generaliz- 
ability that our procedures generate. Many persons discussed the intraclass 
formulas during the 1950’s and 1960’s, and connected them with reliability
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theory. Particularly extensive work on the variants of the intraclass formulas 
was done by Buros (1963). The authors’ first publication on generalizability 
theory (Cronbach, et al., 1963) emphasized the interpretation of intraclass 
correlations. However, the correlations considered came from data organized 
with respect to only a single facet: multiple ratings of each person on a single 
trait, for example, or a persons xX items matrix of scores. An unpublished 
paper by Stanley (ca. 1955) emphasized the multifacet conception of the 
reliability problem, and showed that with a relatively complex design one 
can arrive at a number of intraclass correlations, each having its own meaning. 
This same conception was emphasized in the paper of Gleser, et al. (1965) 
on which the present monograph is based. With regard to univariate studies 
our chief additions to Stanley’s formulation are the concept of the universe of 
generalization and the distinction between G and D studies; these con- 

siderably enrich interpretations. 
In his 1954 Psychometric Methods, Guilford applied analysis of variance 

to ratings, discussing the effects for subjects, raters, traits, and their inter- 

actions. However, he did not extract variance components, nor did he relate 
the analysis to the reliability problem as conventionally stated. Stanley (1961) 
returned to the problem, and indicated the desirability of estimating and 
interpreting the several variance components. However, Stanley formulated 
the problem in terms of various types of covariances (e.g., the mean co- 
variance between pairs of raters rating the same trait). The covariances can 
be estimated directly from the mean squares of the analysis of variance, and 
can be interpreted as composites of the variance components. The covariance 
formulation, while mathematically equivalent to the analysis of variance 
components, is probably less satisfactory. This is because the covariance 
formulation is less directly tied to conventional statistical procedures, and 
because it omits some information obtainable from the variance components. 
Stanley derived a number of recommendations for improving the design of 
the rating procedure, similar to those stemming from a generalizability 

analysis. 
Where the literature reviewed above touches on internal consistency of 

tests, it usually regards items as randomly sampled. Tests are often con- 
structed according to complex specifications regarding the distribution of 
content and perhaps of difficulty. This suggests (see Lord, 1955; and Tryon, 
1957) that tests should be regarded as having items sampled within strata, 
which calls for a relatively complex analysis. We have explored such pos- 
sibilities, particularly in a 1960 technical report, published with some 
revisions in 1965 (Rajaratnam, et al., 1965; see also Cronbach, Sch6nemann, 

& McKie, 1965). Independently, Pilliner discussed similar applications of 
analysis of variance in his 1965 dissertation.
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Guttman (1958) suggested the possibility of analyzing data from a three- 
way matrix of scores factor-analytically, in order to arrive at factors repre- 
senting each of the (fixed) main effects and each of the interactions. This is 
directly pertinent to his conception of abilities as organized according to 
facets, and might be applied to the hypotheses implicit in the Guilford 
“structure of intellect.’’” Unfortunately, no systematic procedure was offered 
and the method was neglected. Only very recently have studies of this 
character been carried out (Boruch & Wolins, 1970; and Merrifield, 1970). 

This kind of controlled factor analysis can carry much of the information 
that appears in the estimates of variance components, and adds information 
about the magnitude of the effect associated with each particular condition 
of the facet. 

The three-mode factor analysis of Tucker (1964, 1966) (see also Snyder, 

1968) approaches the problem somewhat differently. The aim is to describe 
the complex of variables in terms of a small number of factors. Whereas 
Guttman would investigate how much of the score variance is accounted for 
by the hypotheses represented in the facet structure, Tucker attends to 
common factors that may not have been hypothesized. Generalizability 
theory, like Guttman’s analysis, examines the power of the gross facet 
structure to account for variance, whereas Tucker’s method tends to suggest 
new structures. As LaForge (1965) pointed out, a factor analysis of corre- 

lations between conditions will serve purposes a generalizability study 
cannot. 

Reliability theory and generalizability theory have hitherto looked at 
the accuracy of one score at a time. That is, they have been univariate in 
conception. Even for examining profiles of scores, the only special procedure 
invoked was the calculation of various difference scores, for each of which a 

univariate reliability study was made. In 1966 we stumbled into the realization 
that all the data in a profile may help one to estimate the universe score on 
any one of the variables. Travers, in an unpublished paper, developed for us 
the multivariate extension of the mathematics for one-facet generalizability 
studies. This has evolved into the theory discussed in Chapters 9 and 10. 

There seem to have been almost no predecessors of multivariate error 
theory. The one general paper that has come to our attention is the proposal 
by Bock (1966) to evaluate the multivariate reliability of a battery by ob- 
taining a coefficient for each canonical variate found in scores from parallel 
batteries. It can be seen now that work on “profile similarity’ of the early 
1950’s (Cronbach & Gleser, 1953) needed only an additional twist to unlock 

the door to these psychometric riches, but the opportunity was missed. 
Nearly all of the current developments are implicit in Lord’s first paper 
(1956) on the measurement of change, where multivariate methods much
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like ours are applied. Even though Lord’s work stimulated many papers by 
leading psychometricians on the narrow problem of “‘change,”’ the broader 
usefulness of the model escaped attention. 

The possibilities of the multivariate model have recently been given 
significant publicity in a presentation by Novick (1971), who discusses it as 
part of a general defense of Bayesian methods in test analysis. The more 
technical reports that are to come will, we trust, be compatible with and so 
augment and clarify our theory. 

B. Formulation 

The theory to be presented employs several interrelated concepts. While 
each of these will be elaborated in turn, a brief initial statement setting out 
all the main concepts should give a helpful perspective. 

A measuring procedure is used as a basis for decisions or conclusions, and 
the accuracy of measurement must in principle be examined separately for 
each application of the procedure. At least four kinds of interpretation may 
be made: 

1. Absolute decision. Where an individual is to be classified in some way, 
performance standards may be set which determine how he will be treated. 
For example, a test is given an applicant for a driver’s license, with the 
predetermined rule that a score of 85% is considered adequate for licensing. 
In making the decision, this person is considered by himself; we shall call 
this an ‘“‘absolute’’ decision, in contrast to comparative decisions (item 3 
below). Another kind of absolute decision is that made in evaluation, where 

the performance of a group must reach a predetermined standard if the 
treatment is to be judged satisfactory. For example, an author of a pro- 
grammed textbook determines how many errors students make after studying 
a lesson, proposing to revise all lessons where the percentage of errors 
exceeds some specified figure. 

Instead of stating the standard in terms of the test performance itself, the 
decision maker may state what criterion performance is desired. Thus it 
may be decided that any student whose expected grade average is below C 
will not be admitted to a certain curriculum. Since the expected grade 
average is inferred from some pretest, any error of measurement on that 
test will affect the decision. 

2. Comparison between two courses of action for an individual. Here, as 
in the first type of decision, each individual is considered separately. This 
type of decision is especially common in guidance, where the person chooses 
one curriculum rather than another on the basis of a difference between his 
scores on the abilities pertinent to each. The decision maker asks whether the 
difference between two measures, or the difference between two expected
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outcomes, reaches a predetermined standard. (If there is a quota limiting 
the number of persons who can enter any curriculum, comparison of type 3 
is also involved.) 

3. Comparison between persons. An interpretation is made of a difference 
between scores of persons or groups. Examples: a selection test is used to 
choose among applicants; a dependent variable is used to compare groups 
in an experiment. 

4. Conclusion about the relation between pairs of variables. For example, 
the relation between ability to solve Hidden Figures problems and ability 
to attain concepts is investigated. 

The score on which the decision is to be based is only one of many scores 
that might serve the same purpose. The decision maker is almost never 
interested in the response given to the particular stimulus objects or questions, 
to the particular tester, at the particular moment of testing. Some, at least, 
of these conditions of measurement could be altered without making the 
score any less acceptable to the decision maker. That is to say, there is a 
universe of observations, any of which would have yielded a usable basis 
for the decision. The ideal datum on which to base the decision would be 
something like the person’s mean score over all acceptable observations, 
which we shall call his “‘universe score.’’ The investigator uses the observed 
score or some function of it as if it were the universe score. That is, he 

generalizes from sample to universe. The question of “‘reliability’’ thus resolves 
into a question of accuracy of generalization, or generalizability. 

The universe of interest to the decision maker is defined when he tells us 
what observations would be equally acceptable for his purpose (i.e., would 
““give him the same information’’). He must describe the acceptable set of 
observations in terms of the allowable conditions of measurement. This gives 
an operational definition of the class of procedures to be considered. The 
investigator may, for example, say that he would accept the score on any 
form of the Jones mental test, administered at any time during the Spring 
of the high-school student’s senior year. In this way he defines the universe 
in terms of two facets: test form and occasion. The investigator may fix the 
condition of a certain facet; e.g., he may specify that only Form A of the 
Jones test is acceptable. He invariably leaves out of the description certain 
aspects of the conditions of observation. The investigator in our example 
appears to be willing to accept the result from any tester, obtained in any 
room, etc. The facets that are mentioned in his specifications will be explicitly 
represented in the experimental design when scores for decision making are 
collected. 

Knowing that observed score and universe score are not identical, the 
decision maker will want to take the discrepancy into account. One way to
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do this is to accompany each report by an expression of uncertainty, in the 
way that a physical scientist reports a value as 0.065 + 0.003. Another 
possibility is to ‘correct’? the observed score in some manner so that it 
better approximates the universe score; this corrected value also will have 
an uncertainty. 

A confidence interval—a band within which it is reasonable to suppose 
that the true measurement falls—is often reported when an absolute decision 
is contemplated. Suppose that a standard of 88 has been set, so that persons 
known to have universe scores above 88 are to be treated in one way and 
those below are to be treated in another way. If it can be said that a certain 
person’s universe score very likely falls in the interval 91-97, the decision 
about him will be made with great confidence. If the interval for another 
person is 85-90, the decision about him cannot be made with any confidence 
until further evidence is collected. Another frequent use of such intervals is 
to examine whether a difference between two scores can confidently be 
regarded as greater than zero. Suppose one wishes to advise a student that 
his interest in scientific activities is greater than his interest in mechanical 
activities. The two scores are presumed to be expressed on comparable 
scales, and bands are established for the two scores. If the upper end of the 
mechanical score-band does not reach as high as the lower end of the scientific 
score-band, the statement that his scientific interest is greater would very 
likely be confirmed by further testing. If the bands overlap, however, one 
has to entertain the possibility that the universe-score difference is in the 
reverse direction from the observed-score difference. When the person is a 
member of some group (e.g., a high-school class) whose score distribution is 
known, another option becomes available. One can estimate the person’s 
universe score by a regression equation that describes the relation between 
universe scores and observed scores in the reference group. 

We distinguish decision (D) studies from generalizability (G) studies. A 

G study collects data from which estimates can be made of the components 
of variance for measurements made by a certain procedure; a D study 
collects data for the purpose of making decisions or drawing conclusions. 
For example, the published estimates of reliability for a college aptitude test 
are based on a G study. College personnel officers employ these estimates to 
judge the accuracy of data they collect on their own applicants (D study). 
The G data may be analyzed to determine the generalizability of D data that 
will be collected under other designs. Sometimes, of course, the same data 
serve for both G and D studies. 

In a G study, one obtains two or more scores for the person by observing 
him under different conditions, and examines the consistency of the scores. 
The analysis estimates components of variance, each attributable to one 
facet or combination of facets represented in the experimental design. These
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estimates may show, for example, that one set of test stimuli (within the 
universe) elicits about the same behavior as the next, but that variation in 

behavior from occasion to occasion is substantial. In the light of this, one 
proposes a suitable design for collecting D data and estimates how well 
one can generalize from the scores that will be obtained. 

Where individual differences are the primary concern, the variance of 
universe scores for the population being studied, and also the variance of 
observed scores likely to be obtained in the D study will be of special interest. 
One can estimate the universe-score variance from the components of variance 
and can also estimate the ‘“‘expected’’ observed-score variance (i.e., the 
variance likely to be obtained under a certain experimental plan). 

The plan for collecting data is often evaluated by estimating the coefficient 
of generalizability, the counterpart of the traditional “‘reliability coefficient.” 
This is defined as the ratio of universe-score variance to the expected observed- 
score variance. It expresses, on a 0-to-1 scale, how well the observation is 
likely to locate individuals, relative to other members of the population. 

The size of the coefficient depends on the experimental design used for 
the decision study, as well as on the population of persons considered. The 
coefficient is employed in interpreting the correlation of this variable with 
other variables. It is also calculated as an intermediate step in obtaining the 
formula for making a point estimate of the universe score. 

G and D studies 

Our separation of G and D studies formalizes and extends an idea implied 
in the Spearman—Brown “‘prophecy’’ formula. When one 20-item test has 
been correlated with another, the prophecy formula estimates the reliability 
of a 40-item test. The study with the 20-item tests was a G study, an investi- 
gation of the instrument; the prophecy is made because a 40-item test might 
be used in collecting subsequent data for decision making (D study). The 
idea is also present in the customary correction of a reliability coefficient to 
fit a new range of ability. The scores in the G study have a certain standard 
deviation, but one can forecast the reliability in a D study where the sample 
has a different standard deviation. 

Rajaratnam (1960) introduced the distinction between G and D studies to 
clarify analyses of ratings. Often, in a G study, a certain set of raters is 
asked to judge all subjects. An intraclass correlation among raters is calcu- 
lated that ignores differences in rater means (p. 79 ff.). This coefficient is 

pertinent if whatever raters are used in the D study will rate all the subjects. 
But if the raters in a subsequent D study differ from subject to subject, one 
needs to know the intraclass correlation that treats rater leniency or severity 
as a source of error (p. 77). This correlation can be estimated from the
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original G data. In general, the plan and purpose of the D study determine 
the questions to be asked of the G data. 

The distinction between G and D studies is no more than a recognition 
that certain studies are carried out during the development of a measuring 
procedure, and then the procedure is put to use in other studies. When an 
investigator factor analyzes questionnaire items in order to decide how to 
organize them into dimensions and how many items of each kind to use, he 
is making a preliminary study analogous to our G study. An even closer 
parallel is the research on optimal design of a battery for predictive purposes 
(Horst, 1949, among others). The data for the design study are collected by 
means of a trial version of the battery. On the basis of intercorrelations, 
correlations with criteria, and reliability coefficients in these data, a new 

battery is designed that is used to collect D data. 

Generalizability studies ought to be regarded as a part of instrument 
development, and therefore G studies should take place prior to collection 
of the D data. To be sure, one will occasionally use the actual D data for an 
analysis of generalizability. But since it is then too late to take advantage 
of the information to improve the D data, this is a weak use of the method. 

Distinguishing between G and D studies is especially valuable in multifacet 
investigations, because separation of facets makes possible a great variety 
of experimental designs. Different designs may be and usually should be used 
for the G and D studies. Even if the investigator who conducts the original 
G study knows that he will adopt that same design in his D study, another 
investigator may choose an alternative design for collecting similar obser- 

vations. Information from the G study should therefore be reported in such a 
form that each new investigator can plan his D study and estimate the error 
of generalization arising under that plan. 

Universes 

A behavioral measurement is a sample from the collection of measurements 
that might have been made, and interest attaches to the obtained score only 
because it is representative of the whole collection or universe. If the decision 
maker could, he would measure the person exhaustively and take the average 
over all the measurements. 

Educators and psychologists have traditionally referred to the average 
reached via exhaustive measurement as “‘the true score’’ for the person. We 
speak instead of a universe score. This emphasizes that the investigator is 
making an inference from a sample of observed data, and also that there is 
more than one universe to which he might generalize. Any person fits within 
many different populations. John Doe may be considered a sample from 
any of several sets: residents of California, electricians, persons with a 
$15,000 income, Republicans, etc. Any observation likewise fits within a
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variety of universes. “The universe score is estimated to be 75’’ is without 
meaning until we answer the question, “Which universe?’’ This ambiguity 
is concealed in the statement “‘The estimated true score is 75,’ for no one 

thinks to inquire, ““Which truth?’”? 
An observation is described in terms of conditions: the task or stimulus 

presented, the day and hour, the setting in which the observation is made, 

the observer, and possibly additional features of the operations performed. 
The general term referring to conditions of a certain kind is facet. Thus, 
observations may be classified with respect to the facet of tasks presented, 
the facet of days of testing, the facet of observers, etc. 

The facets, alone or in combination, define universes. A child is asked to 

draw a cowboy on Friday, May 12. This drawing belongs to a universe of 
cowboy drawings made on various days, to a universe of drawings on various 
themes that might have been made on May 12, to a universe of cowboy 
drawings that might have been solicited by various testers, etc. To ask which 
universe is relevant is to ask how the investigator proposes to interpret the 
measure. 

A universe of observations will be characterized with respect to one, two, 

or more facets. Almost everywhere we shall assume that joining one condition 
of the first facet with a condition of every other facet defines a possible 
observation. For example, in a drawing task the facets may be themes for 
drawing and testers. Any tester might ask the child to draw a picture on 
any of the admissible themes, hence, any pairing of theme and tester defines 
an observation that may, in principle, be made. If occasions constitute a 
third facet, the argument is extended: any combination of theme, tester, and 
occasion defines a possible observation. 

The universe to which an observation is generalized depends on the 
practical or theoretical concern of the decision maker. Consider a supervisor’s 
rating of an employee. This rating differs from what would be recorded on 
another occasion, since the supervisor’s mood at the time of rating and his 
recent experience with the employee have some transient effect. The investi- 
gator concerned with employee effectiveness surely wants to generalize over 
the class of ratings the supervisor might have given at other moments. The 
investigator will generalize over a time period of perhaps a month if the 

2 Another difficulty with the term true score is that the statistical concept of a limiting 
value approached through extensive observation is readily confused with some underlying 

in-the-eye-of-God reality. Sutcliffe (1965) referred to the way things “really are’’ as a 
‘Platonic’ concept of the true score. The Platonic measure of the mean income of Americans, 
for example, might be determined by some all-seeing and impartial accountant. It would 
be quite unlike the operationally defined mean produced by compiling the incomes reported 
to the Internal Revenue Service. Any bias in the class of measuring procedures adds a 
corresponding bias to the universe score, which is in that sense ‘‘untrue.”’
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rating is taken as an end-of-year report of the employee’s qualities. Any of 
the moments within that month would presumably have been a suitable time 

. for the inquiry. In another study, where the rating is a datum for an intensive 
study of week-to-week changes in supervisor attitudes during a human- 
relations course, the investigator will generalize over only a single day. If 
the rating is a criterion against which he will validate an ability test, he needs 
to generalize over supervisors as well as occasions. But if the sole concern is 
whether the employee is getting along with this supervisor, the universe of 
possible supervisors is irrelevant. Since it is impossible for the developer of a 
procedure to anticipate all its uses, his G study can at best report data for 
prospective users to assemble in the light of their own decisions and designs. 

At times it is necessary for us to distinguish among universes that perform 
different functions. The test developer or other investigator who carries out 
a G study takes certain facets into consideration and, with respect to each 
facet, considers a certain range of conditions. The observations encompassed 
by the possible combinations of conditions that the G study represents is 
called the universe of admissible observations. We may also speak of the 
universe of admissible conditions of a certain facet. A decision maker, 

applying essentially the same measuring technique, proposes to generalize 
to some universe of conditions all of which he sees as eliciting samples of 
the same information. We refer to that as the universe of generalization. 
The G study can serve this decision maker only if its universe of admissible 
conditions is identical to or includes the proposed universe of generalization. 
Different decision makers may propose different universes of generalization. 
A G study that defines the universe of admissible observations broadly, 
encompassing all the likely universes of generalization, will be useful to 
various decision makers. 

The universe of admissible observations and the universe of generalization 
may be identical; then the decision maker may simply think of “the universe’ 
in taking the G study into account. Some decision makers, however, will 
generalize less broadly, taking as universe of generalization a subset of the 
universe on which the G study was based. The decision maker may propose 
to generalize over only one facet, for example, where the G study took 
several facets into account. In such a case, a careful selection among formulas 
is required to make proper use of the G study. 

The third possibility is that the decision maker will propose to generalize 
beyond the universe of admissible observations. His universe of generalization 
includes conditions not present in the universe from which the G study 
samples conditions. The G study then does not give him the information he 
needs, though it may give him some rough ideas as to the accuracy of his 
proposed generalization. We shall rule this case out of consideration. 

The universe of generalization is necessarily determined by the decision
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maker. The instrument developer, carrying out a G study to guide users of 
his instrument, will, in the design of that study, treat systematically the 
facets that are likely to enter into generalizations of various users. Sometimes 
he will examine a facet over which a particular user does not care to gener- 
alize. The extra information does no harm, so long as the user properly 
interprets the report of the G study. 

A G study treats a facet in one of three ways: 

1. The facet is systematically represented by sampling two or more 
conditions of the facet; or 

2. A single constant condition of the facet is employed in all G-study 
observations; or 

3. Conditions of the facet vary in the G study without direct experimental 
control. 

In a study of ratings, the investigator might treat occasions and supervisors 
as facets of the first kind, collecting ratings from two or more supervisors on 
two or more occasions. The investigator might regard his pencil-paper rating 
form as fixed, that is, as a condition of the second kind. He would collect 

all G data with this form; then he gets no information as to what would 
happen if the wording of the items, their content, or format were changed. 
Such a G study will not serve someone who needs to generalize over contents 
or formats. Inevitably, a great number of potential facets remain uncontrolled, 
falling into the third category. For the study of ratings it is inconceivable 
that the investigator would control (for example) the number of minutes since 

the supervisor has interacted with the worker. Decision makers presumably 
intend to generalize over uncontrolled facets; such facets ordinarily contrib- 
ute to the undifferentiated residual variance in the G study. The investigator 
designs the G study in terms of facets of types 1 and 2 (1.e., those to be 
controlled through multiple representation and through single representation, 
respectively). He does not attempt the impossible task of listing the many 
uncontrolled facets, though he and his readers must be aware of their 
existence. A future, more elaborate G study may profitably turn its attention 
to one of these presently unanalyzed sources of variance. 

With regard to any facet of the first type, admissible conditions must be 
defined. For example, what category of supervisors is the sample to represent? 
It is one thing to investigate the agreement among supervisors who have just 
been handed the form for the first time, and quite another to investigate the 
agreement among supervisors specially trained by the investigator. The 
category may sometimes be limited to the conditions actually used in the G 
study, but it will ordinarily include a much larger number of conditions. 

Ideally, the investigator carrying out a G study would formally define the 
universe of admissible conditions corresponding to each facet of the first type,
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would sample in a strictly random or stratified-random fashion, and would 
combine at random conditions drawn from the several facets. That is, he 

would pair a random rater with a random occasion, etc. Practice never 
conforms to this idealized model. Even if the investigator were formally 
to specify some collection of raters and sample from it for his G study, one 
can be sure that the raters in subsequent D studies will not be a truly random 
sample from the same collection. In this as in any use of models, practice 
departs from the ideal and results are indicative rather than definitive. The 
investigator should describe how conditions were selected for his G study, 
considering each facet that is systematically varied. The class of conditions 
should be described with sufficient clarity that a reader of his report will 
know whether the conditions (e.g., raters) are like those he plans to employ 
in the D study. Similarly, any fixed condition in the G study must be clearly 
described. If the D study brings in essentially different conditions of any 
facet, the G-study results convey no more than a hint about the variation to 
be expected from that facet in the D study. 

It is not reasonable to regard the time limit set for a test as sampled from 
an array of time limits. The definition of the universe has to include the time 
limit as a fixed condition, for two reasons. The first is that tests similar in all 

respects save working time collect different amounts of information, and 
hence do not have the same degree of generalizability. Second, altering the 
time limit is likely to alter what the procedure measures, so it is unwise to 
consider procedures with different time limits as acceptable for the same 
purpose; that is, as members of the same universe. 

While we mention occasions as a facet worthy of investigation, sampling- 
from-an-aggregation is a dubious model for occasions, because occasions 
occur in a time sequence. In the traditional investigation of “retest re- 
liability’’ the psychometric model ignores the time interval between the two 
testings. Interpreters, however, regard the correlation obtained as an index 
of stability over a specified time interval, rather than as an index of accuracy 
of measurement alone. It is reasonable to think of occasions as randomly 
sampled from a certain time span, whenever we regard the behavior observed 
as being in a “‘steady state’ for the subjects (i.e., as not undergoing systematic 
change due to learning, fatigue, etc.). 

A model that takes the sequence of conditions into account can surely be 
developed. Instead of generating an overall index of agreement between the 
observed value and the expected value over all conditions, one would 
describe degree of agreement between observations as a function of their 
separation in time. Within the present model we have no alternative but to 
treat occasions as an unordered facet, and to speak of generalization from 
the observed score to the mean of possible scores during a reasonable period 
of time—perhaps, during the same month.
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A so-called facet may involve two or more entangled effects. Indeed, the 
facet on which observations are classified is usually impure. Ratings are 
usually classified with respect to the persons who do the rating; but the 
ratings reflect the information available to each rater as well as rater bias, 

etc. Because, in principle, data might be classified with respect to both the 
situation where behavior is observed and the observer, whenever the situation 

is not controlled the two effects are confounded in the “‘observer’’ facet. 

Estimating a universe score 

The heart of traditional measurement theory is the so-called reliability 
coefficient, the ratio of ‘‘true score’’ variance to observed-score variance. 

This concept is altered in the theory we are about to present. First, because 
with several possible universes of generalization, there are correspondingly 
many variance ratios. Second, because each alternative for the D-study design 
generates a different variance of observed scores, and this alters the ratio. 
(This has been ignored in reliability theory because of a tacit assumption 
that the design of the D study will be essentially like that of the G study, or, 
indeed, that the D data are themselves the data of the G study.) 

Our theory tends to subordinate coefficients in reporting a G study. The 
end point of measurement is a decision. The decision about a person is in 
principle based on his estimated universe score or his estimated criterion 
score. The primary question is: how may his score best be estimated? The 
secondary question is: how large is the error arising from incomplete obser- 
vation? 

Coefficients of generalizability bear directly on the original problem for 
which Spearman invented reliability theory. Where a study is intended to 
determine the correlation between two variables, it is valuable to find out 

how much the observed correlation is reduced (attenuated) by errors of 
measurement. Coefficients of generalizability can be employed in estimating 
correlations of universe scores, much as in classical theory, but our theory 
offers a more direct way of dealing with this question, and poses the question 
in a more complex form than has been traditional. 

There are several ways of arriving at an individual score for decision 
making. The first is simply to use the raw score as an estimate of the person’s 
average score over all observations in the universe of generalization. Most 
testers do this, though this may not be their conscious intention. Interpreting 
the raw score, one reaches a decision about the individual without considering 
scores of other persons. Such reasoning is commonplace in physical measure- 
ment, where the observed weight of a chemical sample, for example, is 
taken as the best estimate of its true weight. The statistician considers the 
experiment to be one of a population of possible experiments when reason- 
ing about the dependability of the conclusion from it. But information
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about other specimens is not used in estimating the weight of this specimen. 
Sometimes an observed score is expressed in terms of percentiles or 

standard scores or grade equivalents, and this value is taken as an estimate 
of a norm-referenced universe score. Data on other cases define the scale but 
are not used to adjust an individual’s score. This is a procedure unique to 
behavioral science, and one that has serious faults (see Chapter 5). 

When the decision is based on the person’s rank within the sample tested 
or on his deviation from the mean, further use is made of reference-group 
data. Ranking is at the base of many quota-controlled decisions such as 
hiring, though it is rarely discussed explicitly in test theory. Test theory has 
traditionally focussed on individual differences, and in our formulation it 1s 
the statements about deviation scores that come closest to matching the 
conventional theorems. 

The regression equation for estimating the universe score from the in- 
dividual’s observed score makes still more substantial use of information 
from other cases. While the regression technique is recognized in classical 
theory, it has not been very prominent. Perhaps this is because the regressed 
scores of individuals are perfectly correlated with observed score, so long as 

the same regression equation applies to the whole sample. Regression 
estimates do alter comparative decisions when the persons in the sample can 
be identified with subpopulations, since regressing each person toward the 
mean of his own group does alter ranks. Decisions based on an absolute 
standard also are changed when regression estimates replace observed 
scores. Multiple-regression methods alter the estimates still further. 

We shall confine attention to linear estimating equations. Complex kinds 
of estimation such as Lord is currently investigating (see Lord, 1969; Ross 
& Lumsden, 1968) may ultimately be of practical value, but they cannot be 
accommodated within the present techniques of generalizability analysis. 

For each of the kinds of universe-score estimate, there is a corresponding 
error. The following distinctions will be necessary: 

1. Decision based directly on the observed score: error A. The observed 
score is taken as an estimate of a universe score for the person, the universe 

score being expressed on the same numerical scale as the observed seores. 
(Thus, if the observed score is a standard score on a scale with a mean of 
50 and a standard deviation of 10, the universe scores will also be expressed 
on that scale. The universe scores will, however, have a standard deviation 

smaller than 10.) The symbol A will be used to identify the error in such an 
interpretation; that is, A is the discrepancy between observed score and 
universe score. 

2. Decision based on the observed deviation from the sample mean: error 
6. Interpretations that are entirely concerned with individual differences,
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implicitly or explicitly, rest on deviation scores. The observed deviation score 
is, in effect, treated as an estimate of the deviation of the person’s universe 
score from the group mean. Again, the universe score and the error are 
expressed on the scale of the observed score, except that a translation has 
made the mean of the score distribution under any condition equal! to zero. 
The error 6 is the discrepancy between the observed deviation score and the 
universe score expressed in deviation form. (For a formal statement, see 
p. 93.) 

3. Decision based on a regression estimate: error «. A third approach is 
to use a linear regression equation that combines information about the 
individual with information about the group mean. The equation may take 
other variables into account along with the observed score. This kind of 
estimation is only a specialized application of the ordinary technique for 
forecasting criterion scores. Consequently, the error « is an error of estimate, 
in the usual statistical terminology. 

In this volume, the scale of observed scores is used for universe scores and 
for A, 6, and e. Distinguishing the three kinds of estimation and their 
associated errors is an important step beyond classical theory.® Classical 
theory, being concerned primarily with individual differences, assuming 
uniform means for all conditions, and in most developments assuming that a 
single undifferentiated population is under consideration, does not need this 
distinction. Observed scores and the corresponding deviation scores differ 
only by a constant, and hence are perfectly correlated. Moreover, within an 
intact population, the regression estimate of the universe score described in 
classical theory is perfectly correlated with the observed score. With our 
greater interest in absolute scores, our weaker assumptions, our recognition 

of alternative universes of generalization, and our interest in regression 
estimates of universe scores that make use of multiple predictors and sub- 
group means, we find no such consistency from one method of estimation to 
another. In the typical study, the three errors have different variances; 
methods for estimating these variances will be discussed in Chapter 3. 

Score components and components of variance 

The analysis of a G study generates estimated ‘“‘components of variance.”’ 
These are variances of hypothesized components of an observed score. We 

3 Gulliksen (1950, pp. 39-45) and Lord and Novick (1968, p. 66) distinguish several kinds 

of error. The “error of measurement’’ arising when the observed score is substituted for 
the true score is our A. The “error in estimating true score’’ from a regression equation is 
our ¢. The “error of prediction’’ is the difference between the observed score on one of two 
parallel forms and the estimate of that score made from the score obtained on the other 
form; this does not enter our discussion. Gulliksen mentions a fourth error that we can 

also ignore: the simple difference between observed scores on the two parallel tests.
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start with the model for a one-facet study. The universe of admissible 
observations is classified with respect to a facet i. We will also use i as a 
general label for various conditions of that facet (i = A,B,C,...). In the 

one-facet model the number of conditions of i in the universe of admissible 
observations is ordinarily taken to be indefinitely large, and we assume that 
the universe of generalization is identical to the universe of admissible 
observations. For every person p a score X,; (= X,4,Xpp,---) Can in 
principle be observed for each condition of facet i. At times attention is 
directed to a particular condition or person by a notation such as i* or p*. 
(See p. 113ff.) 

The investigator wishes to generalize over all conditions of facet i; he 
would like to know w,, the universe score of p. u, = & X,,;. We also 

z 

define the mean uw; for each i and a general mean yu over persons and con- 

PD D,t 

For the observation corresponding to a particular p and i, we have the 
identity: 

(1.1) Xi = U (general mean) 

+ Uy — pb (person effect) 

+h; bw (condition effect) 

+ X5i— Mp — Hi te (residual) 

This equation divides the observed score into components representing 
hypothesized effects. Mathematically, it is no more than a tautology. 

The observed value X,,; will be larger or smaller than the sum of the first 
three components because of uncontrolled variation. Suppose rater i happens 
to see the subject at a time when he is performing unusually well; in that 
event, the residual will be positive. The residual will also include any syste- 
matic effect of p and i in combination (an interaction). Perhaps, for example, 
rater i* is more favorable than other raters to introverts, In this case, if 

p* is an introvert, X,.;. — y will be greater than the sum of the two main 
effects: the rater’s constant error over all subjects exhibited in uw; — u, and 
the person’s general rating u,. — uw. If some raters spread out their ratings 

4 All notation is summarized on p. xv following the Table of Contents. The reader’s 
attention is directed to a mathematically strict development for the one-facet case offered 
by Hunter (1968). The model for this case is also treated by Lord and Novick (1968, 
pp. 154-165).
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more than other raters (“use more of the scale’’), this also contributes to 

the residual term. 
In principle, the number of possible observations on p under any single 

condition i is indefinitely large; within this set of observations, conditions of 
any facet other than / vary in an uncontrolled manner. Hence, we can define a 
mean u,; over these varying conditions of other facets, and can resolve the 
residual into (u,; — My, — M; + uw) +.e,,. (There will almost never be a 
direct correspondence of e with the error A, 6, or e.) 

Each score component has a distribution. Considering all the conditions i 
in the universe, there is a distribution of u; — ~, whose mean is zero. The 
variance of these values o?(i) [= &(u,; — y)*] is called the “variance com- 

a 

ponent for 7’ or the “7 component of variance.’ Over persons, there is a 
variance of u, — wu, symbolized by o*(p). Over pi combinations there is a 
variance of X,; — uw, — w, +m [l.e., of (up; — Mp — Me + Bw) + e,,]. This 
is the residual component of variance, o?(pi,e), which combines o7(u,; — 

My — #4; + #) With o%(e,,). 
The collection of X,,, for all persons and conditions has a variance o?(X,,;) = 

6 (X,; — »)*. The variance here is defined over all admissible observations, 
Di 
and is analogous to the “‘total’’ sum of squares in analysis of variance. This 
variance equals the sum of the variance components: 

(1.2) o*°(X,;) = o(p) (person component) 

+ o*(i) (condition component) 

+ o(pi,e) (residual component) 

There is no variance component for mu, because yu is constant for the popu- 
lation and universe. The covariance terms [e.g., é (up, —- Me, - = 

é (u, — 2) é (u; — /)] vanish because expressions such as é (u, — “) reduce 

to zero. It will later become clear that o*(X,,) is different from what is 

traditionally called “the observed-score variance,” 
The component o?(p) resembles the “‘true-score variance’ of classical 

theory. The component o(i) is the variance of constant errors associated 
with various conditions—for example, the varying difficulty of test forms 
or the varying leniency of raters. The residual variation o?(pi,e), which equals 
O(n; — bp — Mi + &) + 07%(e), combines the person—condition interaction 

with variation from unidentified sources. The two parts could be sepa- 
rated only by a two-facet study with more than one observation on each 
p.i pair.
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If conditions are classified with respect to two facets i and j, seven com- 

ponents of the score and seven variance components are identified: 

(1.3) Xpi5 = oh OX yi) = 

persons p + My — bs + o%(p) 
conditions i +M;,— pb + o*(i) 

conditions 7 + uj; — ps + o(j) 

interactions 

pl + My — Mp — Mi + + o?(pi) 

Pj + Mp5 — My — My + be + o*(pj) 
i] + fig — Ms — Hy + + o7(i/) 

residual pij,e + X 5:5 — Mai — Ms — Mas + 0°(pij,e) 
+ hy + hy + hy — bb 

This model takes the number of conditions of i and 7 in the universe of 
admissible conditions to be indefinitely large. Formulas for estimating 
components of variance are considered in Chapter 2. The pattern of (1.3) 
generalizes to 15 definable components for a three-facet study, to 31 for a 
four-facet study, etc. 

More often than not, a number of separate observations X,, are averaged 
(or added) to form a score. A test score, though it is a single observation 
representative of a universe of tests, is also a composite of observations on a 
set of items. At times i will refer to a test, and at times to a half-test or an 

item. Which point of view is taken in any given analysis will be clear from 
context. We shall use a capital letter 7 (as in X,,) where it is necessary to 
speak of a set of conditions 7. The score X,,, is the average of some number 
of values of X,,. The score X,, divides into components just as X,; does; 
the meanings of uw; — mw, o(u;), etc., will be obvious. So long as the i are 

1 
randomly assembled into sets of size n;, uw; = — > m,, etc. Over sets of 

1 Ny tel 
randomly assembled J, o?(u;) = — o?(u,). Similarly for other components. 

Nn; 
Note that i is simply a special case of Jin which n; = 1. For a second facet, 
J will be used to denote a set of 7; for a third facet, we use symbols K and k. 
A group of persons is denoted by P; thus, a sample mean of X,, is Xp;. 

In the G study, a set of observations is made on each person. Several tests 
may be given; alternatively, parts of a test, or items, may be treated as 
separate observations. The finest subdivision of a facet that yields a separate 
score in the G study will be assigned the letter i (or /, etc.). Variance com- 
ponents are estimated for elements of that size, e.g., o?(i), o?(pi). These
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components of variance can be divided by the appropriate number of obser- 
vations whenever the variances of components of a score X,,; are needed. 

The one-facet model considers the universe of generalization to be the 
set of X,, for the person under all admissible conditions. The universe mean 
to which the decision maker generalizes is u,. A two-facet model allows the 
decision maker a choice between three types of universe of generalization. 
There is the grand universe that includes the full range of both 7 and j, and 
is the same as the universe of admissible observations. There are two types 
of restricted universe, one in which an / is fixed and one in which a J Is 

fixed. There are corresponding universe scores u,, pz, and uw, 7. A universe 
with J fixed at, say, /* is a subset of the grand universe. In it, 7 ranges over 
all its possible values, each 7 being paired with each of the conditions j € J* 
in turn. 

This implies that the label uw, in the one-facet study and the corresponding 
concept of true score in classical theory are deceptively simple, since stating 
that generalization is over i does not indicate whether other aspects of the 
procedure such as / are held constant or are allowed to vary along with i. 
No matter how many facets are taken into account in the experimental design 
of the G study, there are additional potential facets to be considered in 
interpretation (see p. 122). 

The conception of alternative universes of generalization is closely related 
to the test theory developed by Lord and Novick (1968, Chapter 8) for 
“imperfectly parallel’? measurements. They consider the possibility that 
there are a number of distinguishable tests, and that each test may be ad- 
ministered more than once. One might then generalize over performances on 
the same form at different times or generalize over both forms and occasions. 
The expected value of the person’s observed score over trials on a particular 
form is called a “specific true score’ by Lord and Novick (1968, p. 43); 
it is comparable to our y,;.. The expected value over forms and occasions, 
our y,, they call a “generic true score.”’ Lord and Novick do not distinguish 
our third possibility: the scores hypothetically obtainable by administering 
all the forms at essentially the same time. For this universe, the universe 
score is 4,;.—a true score corresponding to the person’s temporary—general 
state rather than to a lasting trait. Our model goes beyond Lord and Novick 
also in considering the possibility of additional facets (e.g., testers). 

EXERCISES 

The exercises offered for Chapter 1 are similar to those of the usual textbook, allowing 
the reader to test his understanding of basic concepts. For some of these exercises, 
however, more than one answer can be defended. In later chapters the exercises often
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serve to extend the text, presenting problematic cases for which the body of the 

chapter does not provide a model solution. The reader will often be well advised to 

think briefly about the challenge an exercise poses and then to turn at once to our 
suggested answer, instead of trying to attack the problem independently from the 
outset. In an exercise with several parts, he should compare his answer to ours as each 

part is completed. 

E.1. An “‘in-basket”’ test is devised to assess the judgment of an administrator (a 

factory manager, a school principal, etc.). In the test, a file of correspondence, 

memos, etc. is placed before the man and he is allowed two hours to work through 
the pile and indicate appropriate actions. There are various scores—for example, the 
number of items on which action is taken, and the number of items delegated to a 
subordinate. 

Use this problem to illustrate, from the viewpoint of the person developing the 
procedure, the following concepts or distinctions: 

a. G study vs D study 
b. universe; facet; condition of a facet 

c. the pi component of the score (for a facet mentioned in 5) 

E.2.. What facets should be investigated systematically in a G study of each of the 
following measures? 

a. A trait of impulsiveness is postulated. To measure it in nine-year-old children, 
items are prepared in which a main drawing is followed by six possible choices. 
All but one are exactly like the main drawing, and the subject is to find the variant. 
When a subject marks a choice identical to the main drawing, the response is 
regarded as an indication of impulsiveness. 
b. It is supposed that children’s interests can be described in terms of emphasis on 
“people” or “‘things.” As a test procedure, the child is shown a brief movie 
covering six incidents in the park. He is then asked two or three questions: “‘Tell 
me what you saw.” “‘If we make another movie like this what would you like us to 
show?” etc. The response is recorded on tape and later scored for number of 
references to people and to things. 
c. Speech samples are recorded during therapeutic interviews. The investigator 
proposes to have experts rate each sample on “‘affectivity’—free expression of 
feelings. He wants to examine changes from month to month during the course of 
therapy. 
d. A test of proficiency in proofreading asks the job applicant to circle every error 
in spelling, printing, etc. on a page, doing as much as he can in three minutes. 

E.3. The following exercise asks for careful application of terminology. For each of 
the lettered phrases a to /, apply one or more of the following labels. There is room 
for uncertainty in making some of the responses. 

A. Would not be termed a facet, or a condition of a facet. 

B. Can be termed a facet, or a condition of a facet. 

C. Likely to be fixed, in the universe of generalization.
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D. Likely to be seen as representing a facet over which one wishes to generalize. 
E. A facet which in the universe of generalization has a different condition(s) for 

different persons. 

A high-school orchestra is to be formed in a suburban community where a 
reasonable pool of young people have had previous instrumental training and can go 
directly into ensemble work. To choose among candidates, the music director holds 
tryouts. Each pupil comes at a scheduled time, and has half an hour for warm-up 
and study. He may bring his own instrument or may borrow a school-owned 
instrument. When he enters the tryout room, after his warm-up, he plays two 
selections (or excerpts) of his own choice, each five minutes long. He is also to play a 
piece for which the sheet music was handed him at the start of the warm-up period, 
to test ability to read unfamiliar music. 

a. The conductor (teacher) of the orchestra (who rates each candidate). 
b. Music teacher Smith, who sits in on many of the tryouts and helps judge 
candidates. 
c. The instrument used by the candidate who has chosen to bring his own 
instrument. 

. The instrument used by the candidate who borrows a school instrument. 

. The number of years the candidate has been playing the instrument. 

. The sex of the candidate. 

. The piece of music chosen by the candidate as a tryout piece. 

. The piece of music the candidate is asked to play after short study. 

. The room in which the tryout is held. 

j. The duration of the tryout piece. (Set at five minutes in the procedure described 
above.) 

k. The composer or period of the music the candidate chooses to play (e.g., 
baroque). 

|. The number of candidates applying for the percussion section. 
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E.4. Classify the following according to whether the decision is absolute, or requires 
comparison of persons. (If you think “‘it depends,” on what does it depend ?) 

a. A state licensing examination for lawyers. 
b. As part of a medical checkup, vision is tested. 
c. An experimenter wants to know whether learning in statistics is improved when 
students have access to a computer. 

d. An experimenter wants to know how faint a sound signal sonarmen are 
likely to detect, late in a two-hour shift. 

e. A counselor wants to know whether a student likes outdoor work better than 
indoor work. 

E.5. List reasons one might have for carrying out a G study separate from a D 

study, instead of determining generalizability from the decision data. 

E.6. ‘“Three types of facets” in a G study are discussed on page 2. Illustrate the 
three types with reference to the following study.
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To test proficiency of pilots in making instrument landings, the pilot is asked to 
land the plane with the cockpit hooded. The plane is equipped with recording 
instruments from whose records the quality of the performance can be judged. To 
get data on generalizability, each pilot is tested on several days. 

E.7. Write the full algebraic expression for each of the following components of the 
observed score X,,;, in a three-facet study. 
a. person ob. pj _— c. pjk 

Answers 

A.1. a. In the G study some group of subjects would be tested with two or more 
separate in-baskets. Analysis will indicate how many separate baskets, and how 
many decisions regarding each basket, are needed to reach adequately precise 
scores. This information will be the basis for designing the procedure to be used 
on a large scale to investigate characteristics of principals trained in different 
ways. The latter inquiry is a D study. 

b. There is a universe of possible memos, letters, etc., that could be included in 

the in-basket for the person playing the role of principal of Central High School. 
There is also a universe of schools, any of which might be considered. One may 
wish to generalize over schools, items of material within schools, and occasions of 
testing. Each of these three is a facet. Central High is a condition of the school 
facet. The letter asking that funds for the Red Cross be solicited is a condition of 
the facet items-of-material. 
c. Principals who are generally similar but who differ in attitudes toward co- 
operation in community affairs will act differently on the Red Cross request; this 
is a pi effect. 

A.2. a. Drawings, occasions of testing, possibly tester, etc. (Here and elsewhere 
where illustrations are called for, other answers might be added, or one might 

argue that an answer we suggest is relatively unimportant.) 
b. Incidents portrayed, interviewers, scorers, occasions of viewing (trials), and 

probably probe questions. 
c. Raters, occasions during a limited interval (one week ?), topics of conversation. 

(The interviewer is likely to be fixed within the person. It will be noted that topics 
cannot ordinarily be assigned and that the topics that enter the conversation are 
very likely not a random sample of the person’s concerns.) 
d. Pages of text, sampled from diverse kinds of material; occasions or trials. 

A.3. a. B, C. It seems that one wants to know whether the candidate suits this 

teacher’s requirements, since this teacher is a part of the criterion situation. 

b. B, D. Smith is only one of many teachers who might equally well help in 
choosing candidates. 
c. B, C, E. The instrument will presumably also be used by him when the 
orchestra is formed, and so is part of the criterion task. If he does better on this 

than he would on instruments generally, this is not a source of “error” in the 

selection process. It is unlikely that he will do worse with a familiar instrument. 
(Admittedly, it is unfair to give the pupil who owns and has become familiar with
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a good instrument a better chance for the orchestral experience than others; but 

that is how such orchestras are usually managed.) 

d. B, D. Presumably this child will borrow or rent an instrument from a universe 
of instruments, if he enters the orchestra. 

e. A. Subject characteristics are not called ‘‘facets’”’ in our theory. 
f. A. 
g. B, D, E. The candidate has his own repertoire on which he has practiced, and 

the observers look on what he does as a sample of what he can do with pieces on 
which he has had plenty of practice. 
h. B, D. 
i. B, D. (While the tryout room may be the hall the orchestra will use for re- 
hearsal and concert, there is surely no intent to build a one-room orchestra.) 
j. Two points of view might be taken. 

B, D appears to be the best answer. One certainly is interested in ability to play 
pieces of any duration, and one looks on the five-minute excerpt as a sample of 
what other excerpts would show. One could define a universe of selections that 
vary in length, but restrict the sample to five-minute selections. This is not the 
strictly random sampling called for by our model. 

On the other hand, one might answer B, C, since the rules of this procedure 

define a universe of five-minute elements. 
k. B, D. The judge surely wants to evaluate ability to play a fairly wide repertoire, 
and if time were not limited would perhaps call for several musical styles. 
l. A. 

A.4, a. Absolute, assuming that there is a predetermined passing level. 
b. Absolute. 
c. Comparative; scores in one group will be compared with those in another. 
d. Absolute. 
e. Absolute decision based on a difference score. Presumably scores are not 
expressed in terms of norms. 

A.5. A G study carried out in advance can make the D study more efficient. 
A single elaborate G study can give information pertinent to a variety of D studies 
for different purposes, calling for different designs. 
A G study must employ two or more conditions of each facet; this may be imprac- 
tical to do with a large sample of persons, yet the D study may require a large sample. 
A publisher has responsibility for providing G-study information to guide persons 
who may later carry out D studies. Data for decisions may come in only gradually 

over a long period of time. 

A.6. The variable, controlled facets may be: Days. Approaches within a day. 
Fixed: Plane. Recording instruments. (Likely to be constant because of cost of 

duplicating.) Airfield. 

Variable, uncontrolled: Winds. Pilot’s physiological state, etc. 

A.7. a. My — L 

b. Upy — Hp — By + 
C. Uyjn — hpi — Pon — Bix + Up + Bg + BE



CHAPTER 2 

Experimental 

Designs and 

Estimates of 

Variance 

Components 

A. Varieties of Experimental Design 

With multiple facets, a great variety of experimental designs are possible. 
Each design, applied in the G study, calls for formulas to estimate variance 
components. These estimation formulas are the main topic of this chapter. 
There is also a choice to be made among experimental designs for the D 
study, and that choice determines how the information on components is 
assembled to evaluate generalizability. This last is the topic of Chapter 3. 

Terminology and notation 

We refer to “‘facets’’ and “‘conditions”’ where the literature on experimental 
design speaks of “‘factors’’ and “‘levels.”’ If two aspects of a measuring 
procedure vary systematically in a study, we speak of a two-facet study, 
though persons constitute a third basis for classification of data. Similarly, 
we speak of a conventional two-way matrix of several ratings for several 
persons as a “‘one-facet’’ study, raters being a “‘facet’’ of the observing 
procedure. (While our scheme of counting departs from statistical con- 
vention, referring to persons as a facet would lead us into extremely awkward 
locutions.) 

The number of persons entering into a G study is denoted by n,. We 
consider only designs in which each person is observed under the same 
number of conditions, and also restrict ourselves to designs in which there 
are n, observations per person or, with two or three facets, n,n; or n,n,n,, etc. 
Every such G study produces, in effect, a box-like array of observations; the 
dimensions of the box are n,, n;, n;,.... 

34
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The terms crossed and nested are commonly used by statisticians to 
describe designs. If the design provides for observing every subject under 
every condition i, we say that p is crossed with 7. Following Millman and 
Glass (1967), we denote this by i x p. Similarly, i x j x p is a crossing 
that produces a score for every subject p under every pairing of conditions ij. 
An example is the study in which n, raters observe the same pupils simultane- 
ously on n; occasions. 

Raters might visit the classroom, not simultaneously, but at different times. 
Then occasions are said to be nested within the rater; for each rater i there 
is a different set of; occasions. For j nested within i, we write j:i. The crossing 
relation is commutative: i x 7 = / x i. But j:iis not the same as i:/. Nesting 
is not commutative. 

These symbols may be combined in various ways. There might be nesting 
such that a rater observes all pupils during each of his n,; occasions of obser- 
vation, with occasions differing from rater to rater. The study is described 
as (j:/) X p: pupils crossed with raters i and with occasions j, occasions 
nested within raters. 

In learning this system, schematic diagrams are helpful. Figure 2.1 shows 
layouts for two one-facet designs. Each cell represents a different p,i combi- 
nation. In the crossed design, every person is observed under every condition. 
In the nested design, there is a different set of conditions for each person. 

The reader can sketch for himself the design p:i, which may be encountered 
(for instance) if there are several raters, each giving information on one 
subgroup of subjects. We shall give no more than incidental attention to 
designs in which subjects are nested. In measurement of individuals, and in 
generalizability studies, designs rarely have subjects nested. In this mono- 
graph persons appear as nested within schools in some illustrative studies 
where the measurement problem is to estimate the mean for the school or to 
estimate a population mean. However, in this context the “subject” of the 
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FIGURE 2.1. Schematic Representation of One-Facet Designs.
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FIGURE 2.2. Schematic Representation of Some Two-Facet Designs. 

inquiry is the school or the population, not the person. It may be sometimes 
necessary to nest subjects in the G study. Fleiss (1970) points out that 
under some circumstances it is impossible to have a subject interviewed 
twice, where one wishes to appraise the extent to which the interviewer is a 
source of variance. For this purpose Fleiss designs a G study where persons 
are nested within interviewers, though this design does not permit one to 
disentangle person from person-interviewer effects. Excellent use of a 
persons-nested design is seen in an elegant but intricate study by Coffman 
and Kurfman (1968). Assigning essays to graders in a counterbalanced 
design, they were able to show large effects that implied shifts in the graders’ 
standards over time. 

A few of the possible two-facet designs are illustrated in Figure 2.2. The 
crossed i X j X p design (diagram a) has an egg-crate structure. In the 
second design (diagram b), (j:i) x p, p is observed under each i and under 
each j, but each / is paired with only one i. The third sketch (diagram c) 
shows (i:j) X p. The reader can sketch i x (j:p) for himself. The final sketch 
(diagram d) is for (j x p):i. For each i, there is aj x p design, but different
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p and j are associated with each i. An example would be a study in which 
teachers are rated by a team of judges, but a different set of judges (and 
teachers) is used in each school i. 

One further symbol will be helpful. Sometimes each rater observes on 
one and only one occasion, different for every rater. This is nesting (/:i) 
with n; = 1. We employ the special symbol i, / for complete confounding of 
this type. We shall speak of the i, 7 pattern as having “7 joint with /.”’ 

Possible two-facet designs 

In this section we present a great deal of information on two-facet designs, 
recognizing that there is too much detail to be readily comprehended. The 
compilation will serve primarily for reference. The patterns exhibited here 
have counterparts for designs with three or more facets, which the reader 
can trace for himself once he understands the approach. 

Figures 2.3 and 2.4 present Venn diagrams of one- and two-facet designs. 
These diagrams make it possible to determine which components are con- 
founded in nested designs. There is one circle for persons (solid line) and 
one for each facet (broken or dotted line). In diagram (a) of Figure 2.3, the 

TN 
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FIGURE 2.3. Schematic Representation of Components of Variance for One- 

Facet Designs.
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crossed design, there are three areas, corresponding to the components of 
variance for p, i, and residual (pi,e) given by the two-way analysis of variance. 
In diagram (b), the nested design, the / circle is within the p circle. The pi,e 
area is not separated off; the linking of i,pi,e represents the fact that the 7 
component is confounded with pi,e. The reader is warned not to think of 
circle size as representing the number of observations of each kind. In the 
nested design, the number of different i will be greater, not smaller, than the 

number of p. 
When this scheme is extended to two facets, there are circles for p, i, and 

j and there are seven components of variance to be accounted for, as shown 
in Figure 2.4.1 (With three or more facets, it is sometimes possible to make 
similar diagrams, but many higher order designs cannot be represented in a 
plane figure.) 

The first line of Figure 2.4 refers to part (a) of Figure 2.2. In thisi x 7 X p 
design, seven components of variance can be separately estimated; we 
therefore call it Design VII. The analysis of variance generates mean squares 
for ‘main effects’’ p, i, j, plus mean squares for interactions pi, pj, and ij, 
plus a residual mean square; for each mean square there is a component of 
variance. An example would be a study in which a checklist of n; symptoms 
of tension is filled out by a set of n, raters, each of whom examines all n, 
subjects. Illustrative G studies of this type will be presented in Chapter 6. 

We shall need the within-person variance to estimate the magnitude of 
errors X,;; — “@,. The within-person design is a slice of the grand design 
made up of observations on a single person. As shown in Figure 2.2, the 
within-person pattern in Design VII is i x j. These patterns are listed in 
Figure 2.4 for all designs. 

Further information on Design VII appears in Table 2.1. The design 
samples each score component the indicated number of times. To see how 
these values are derived, consider a study with two persons (1, 2), two con- 

ditions of i (A,B) and three of 7 (a,b,c). Then we may express each score in 

terms of components according to (1.3): 

Xy4q = B+ (ty — BW) + (eg — BE) + a — DF a a Ba + 

+ (Mia — ba — Ma +B) + (aa — Ha — Ma + DF C140 

1 The list of designs displayed in the figure is not exhaustive. One can develop a number 
of complicated designs by organizing conditions or persons into blocks. For example, to 
measure the teaching ability of teachers r, one might organize lessons i into two groups 
I, and /,, for instance, and assign pupils 7 to the tJ combinations. This is a design 
with j:(J x t), but it gives more information than Design IV-A because it has 7 nested in J. 

Such designs have apparently not been used in generalizability studies, and they appear 
in this monograph only in connection with an analysis of Wechsler scores in Chapter 8.
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TABLE 2.1. Number of Observations of Each Score Component in Various G 
Studies Having njn; Observations per Person 

  

  

  

  
    

    

  

      

  

    

    
  

    

  

Within- Number of observations® 
Design of person 

G study design Uy~ My~ Mj~ Lym Mai~ Hii~m — Mpis.e™ 

Vil ixjxp ix] Ny Nn; N; = NygN; NygNjy N,N; NpNjn; 

VA (Gi xp fi Ny Nn, MN; NyNy Nynny = Nyny NNN; 

V-B ix(:p) ixj ny Ng MgMy Np; Nyy NyNny — NyNyn; 

IV-A 7: xp) ji Ny Ng MyM; NpNy NyNNy NNN; — NyhjN; 

IV-B @Xj)ip iXjf My Mn; MyM; Ny; NpNy  NghyN; NyN,n; 

I-A j:i:p ji Np MpNy Ny; NgN; Np~NyN; NpNjN; NpN,n; 

II-B? (i,j)xp i,j My My Ny MyM; NyNny — NN; NyMiN; 

> i, f):p i, j Ny  MpM{Nj NyMN; NyNN; NjNN; NyNN; — Nyhjn; 
  

  

® Components with similar underscores are estimated as part of a single confounded 
variance, corresponding to an area in Figure 2.4. 
b Number of observations is fixed at 1,7; per person for comparability to other designs; that 
is, n,n; values of i are paired with an equal number of /. 

To save space and focus attention on the crucial symbols, let us write 
fy~ for wy — BM, Wya~ for w4 — Wy, — wa +H, etc. Then for the design 

under discussion we have 

X40 = b+ ym + bam + Mam + Mam + baa + baa + C140 

Xan = Bt Mam FH bam + bow + bam + bao~ + bam + ear 

(2.1) X46 = B+ Ma + bam + Me™ FH yam + bac + Maem + Cte 

Xe 4a = be Mam + bar + Mam + beam + Me™ + Maa + 240 

Xepe = b+ bem + Mp~ + ben + apm + Hoc + UBe™ + Cape 

Evidently, n, = 2 different values of the person component are sampled, 
n, = 2 different values of the i component, and n, = 3 different values of the j 
component. There are n,n, = 4 different pi components (14, 2A, 1B, 2B); 
likewise there are 6 pj and 6 ij components. Finally, each observation generates 
a different residual value, and there are n,n,n, of these. These frequencies 
are entered in Table 2.1. 

The next design to be considered, (j:i) x p, is shown as part (b) in Figure 
2.2. The example given earlier will be recalled: each of the n,; raters observes 
all n, subjects on n,; occasions, but the raters do not make their observations 
simultaneously ; there is a different set of 2; occasions for each rater. Because a
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given j is present in connection with only one of the i, one can never observe 
the j main effect independent of the ij interaction. The 7 and the i score 
components are confounded, and appear together in the analysis as a 
“‘within i’? mean square. Likewise, pj is confounded with pij,e. Because of 
this confounding only five components of variance, two of them composites, 
can be estimated, and hence we call this a Design V. The Vern diagram 
in the last column of Figure 2.4 displays this regrouping of components. 

For this design, suppose there are persons 1 and 2, and two conditions 
of i (A,B). If 1; = 3, under our convention there will be six conditions of 
j (a, 6, ¢ within A and d, e, f within B). Each observed score breaks into 

components as before. 

Xyaa = + ay~ + Mam + ba + bam + baa + Hata 
T+ Hi4a™ F 140 

(2.2) Xap = Mb a Mar FH Mem FH bam H+ berm + 
Xiao = Be Ma + Mam + Mem FH am + be + °°: 

Xepy = + bem + pm + My~ + bapm + Mayr +7: 

There are 12 such rows. Just n, = 2 components of the type u,~ have 
been sampled, and n, = 2 components of the u,~ type. There are 6 different 
j components (6 = 2 x 3 = n,; X n,). The reader can work out the rationale 

for the four remaining entries in the V-A row of Table 2.1. 
The reader who writes out the full set of equations above will see that 

f4g~ 1s present only when uw4,~ is also present. Likewise for u“,~ and 
Ht4y™, etc. This is confounding of 7 with ij. Variances for components so 
tied together cannot be separately estimated. Confounding is indicated in 
Table 2.1 by underscores. Thus, in the row for Design V-A, single under- 
scores appear in the / and ij columns, repeating in another code the indication 
of confounding that appears in the Venn diagram of Figure 2.4. 

The design (i:j) X p is formally like (j:i) x p, and the entries for the 
former can be obtained by simply transposing i and j wherever they appear 
in the V-A row of Table 2.1. 

In Design V-B, with i x (j:p), the within-person design is i x j. There 
is a symmetric design j x (i:p). Designs V-A, V-B, and their two transposes 
are basically similar; the analysis of variance is essentially the same for 
each of them. 

Figure 2.4 or Table 2.1 can be used to trace relations among designs. For 
example, IV-B is like V-B except that in IV-B, i is tied to pi. A study of 
these relations shows that V-B gives whatever information about com- 
ponents IV-B gives. We may say that Designs IV are weaker than the corre- 
sponding Designs V because, other things being equal, a study with Design
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V-A or V-B yields more information about components of variance. Design 
III-A is like Design IV-A and IV-B save for additional confounding. 

Designs III-B and II have i joint with 7, hence these two facets are com- 
pletely confounded. An example is the study where every rater sees the 
subject on a different occasion, one occasion per rater. For this to occur, n, 
must equal n,, so that in effect we are dealing with just one facet of i,7 pairs. 

Design III-B can be seen as a one-facet design in which p 1s crossed with 
the variable i,j. The three-way analysis of variance degenerates to a two-way 
analysis. Design II is the weakest of all these designs; the analysis degenerates 
to a one-way analysis yielding components for p and “within p.”’ There is 
no point in listing separately the degenerate design i,j,p which results from 
setting n, =n; = 1 in Design II. 

A stronger design may be preferred for a G study, as it separates the 
components more completely. But a weaker design is often appropriate. 
For example, an investigator who is fairly sure a priori that the ij interaction 
is small may be quite content to leave ij confounded with the residual, if 
this makes his G study easier to carry out, or less expensive. When the 
purpose of a G study is limited, one of the weaker designs often gives all the 
imformation required. For a D study also, the choice of design is dependent 
upon too many considerations for any rule of thumb to apply. Problems of 
design are illustrated concretely in Chapters 6 and 7. 

Apart from its general significance as one of a set of alternative designs, 
Design IV-A has special interest because it embodies the Lord—Novick 
conception of “‘specific”’ reliability, which is a step away from classical theory 
in the direction of a multifacet model. They envision tests i crossed with 
persons p in a G study and in the universe, and they envision the possibility 
of “replications” of observations under condition i. These replications 
appear formally as the nested 7 in Design IV-A (see p. 29). 

B. Analysis of Design VII under the Random Model 

The first G study to be considered is that with Design VII, the completely 
crossed design that yields n, X n; X n, elemental scores. The first step in 
analysis is to perform the usual analysis of variance (McNemar, 1969, 
p. 359 ff.). This produces the familiar table of sums of squares, degrees of 
freedom, and mean squares. In our presentation the final row of the table 
is labelled ‘‘residual’’ rather than “‘error’’ so that “error” can be given other 
meanings later. The example in Table 2.2 comes from a study in which the 
facets are scorers and items. A sample of 30 patients took an individual test of 
10 items; 3 qualified scorers simultaneously observed the performance, each 
recording a set of item scores. Thus, the data form a 30 x 10 x 3 array. 

After having obtained the mean squares, the next step is to estimate the
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TABLE 2.2. Analysis of Variance fora Study with 30 Patients Crossed 
with 10 Test Items Crossed with 3 Scorers® 

  

  

Source Sum Degrees 
of of of Mean 

variance Squares freedom Square 

Patients p 5300.24 29 182.7670 
Items 7 1168.65 9 129.8494 
Scorers 65.35 2 32.6744 
pi 2421.11 261 9.2763 
Pj 214.38 58 3.6963 
ij 67.65 18 3.7584 
Residual 817.26 522 1.5656 
  

4 Analysis of PICA Subtest III. See Chapter 6 for descriptive information. 

seven components of variance. The equations used here assume that the 
population of persons and the universes of i and ; are all infinite. 

Any one study, carried out with random samples of p, i, and j, yields a 
mean square for a certain effect. Another study carried out in exactly the 
Same way generates another such mean square. The average of mean squares 
for this particular effect, over all the possible studies applying the same 
design to the same universe and population, is the “expected” mean square 
for that effect. As any one study is considered to be a random sample of the 
possible studies, an obtained mean square can be taken as an unbiased 
estimate of the expected mean square (EMS). 

The expected mean squares can be shown (Cornfield & Tukey, 1956) to 
be weighted sums of the components of variance defined in Chapter 1 
(pp. 27, 28). 

EMS p = o°(pij,e) + n,o?(pj) + njo?(pi) + njn,o?(p) 

EMS i = o*(pij,e) + n,07(ij) + njo?(pi) + n,n,o°(i) 

EMS j = 0°(pij,e) + 1,0°(pj) + n,o(ij) + nn,0°()) 
(2.3) EMS pi = o°(pij,e) + n;0?(pi) 

EMS pj = o°(pij,e) + n,0?(p/) 

EMS ij = 0*(pij,e) + n,0%(i/) 
EMS res = o°(pij,e) 

The structure of these equations is related to the Venn diagrams of Figure 
2.4. The p circle for Design VII contains four segments that correspond to 
the four terms in the equation for EMS p. Similarly, the pi area defined by 
the overlap of p and i circles has two segments which correspond to the two
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terms in the equation for EMS pi. The EMS equations can be written from 
the Venn diagram, using n, as multiplier if a component does not include 
p in its label, 1; if i does not enter the label, etc. 

To solve for the unknown components, the actual mean squares from the 
analysis of variance are written into the equations in place of the EMS 
which they estimate. The equations are then solved for the components, 
starting from the bottom. With the use of the data in Table 2.2, we first 

note that the mean in square for residual is 1.57 and take this as (pif, e). Then 

3.76 = 1.57 + 300°), hence o*(i/) = 0. 07. Continuing, we find that 

o°(pj) = = 0.21, o*(pi) = = 2.57, 0°(j) = 0.09, 0%(i) = 1.32, and 0?(p) = 5.71. 
The “‘hat”’ symbol (~~) signifies ‘“‘estimate of.”’ These estimates are the main 
results of the G study. Their interpretation and use will be taken up in 
subsequent chapters. 

We urge the reader to fix in mind the difference between a variance com- 
ponent and an ordinary variance. The observed-score variance is the variance, 

over persons, of scores X,7,7. In Design VII, X,,,; is the average of n,n; 
values of X,,;. The sample variance of observed scores is 

1 
> (Xorg ~ X pry)” 

ny — 1 y) 

  

The variance component for persons is the population variance of universe 
scores, 1.e., 

  Lim 
Nyro Nn, 

12 (Uy ~~ p)? 

where 2, is the average of all admissible values of X,,; (any i, any /). 
This type of variance analysis is related to correlational analysis, but we 

postpone discussion of the relationship to Chapter 8. 

Extension to simpler and more complex crossed designs 

The equations given above for the two-facet study have simpler counterparts 
for the one-facet crossed study (design i x p): 

EMS p = o*(pi,e) + n,07(p) 

(2.4) EMS i = o°(pi,e) + n,07(i) 

EMS pi,e = o*(pi,e) 

The symmetry in this set of equations and in set (2.3) suggests how the 
equations would look for studies with a greater number of facets. Repre- 
sentative formulas for the three-facet crossed design are given in Table 2.3.
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TABLE 2.3. Selected Equations* for Expected Mean Squares in a Crossed Three- 
Facet Design (i x j x k x p) 

  

EMS p = o*(pijk,e) + n,07(pjk) + njo*(pik) + n,0*(pij) + njn,o7(pk) 

+ n,n,07(pj) + njn,0*(pi) + njNjn;,07(p) 

EMS pi = o*(pijk,e) + njo(pik) + ny,07(pij) + njn;,0?(pi) 

EMS pij = o(pijk,e) + n,0(pij) 

EMS pijk,e = o(pijk,e) 
  

® Other equations may be written by symmetry. 

C. Analysis of Partially Nested Designs 

A design that involves nesting or joint sampling confounds two or more of 
the components. Therefore, the G data do not allow us to estimate these 
components separately. Sometimes practical constraints make such a design 
necessary even though the crossed design would be more informative. On 
the other hand, a design in which there is some confounding may be entirely 
Satisfactory or even preferable to a crossed design generating the same 
number of observations per person. In particular, where certain components 
are to be confounded in the D study, it may be better to use a G study where 
there is similar confounding, because more precise estimates of the con- 
founded components are obtained than would be obtained from the fully 
crossed design. 

We identify a compound component of variance by entering in its label 
all the arguments used in labelling the underlying components. Thus, a 
random-model component of variance in which the pi and pij,e effects are 
combined is labelled o?(pi,pij,e). In Design III-B, (i,j) X p, Figure 2.4 
indicates that the available components are o(p), o°(i,7,ij), and o7(pi,pj,pij,e). 

Determining mean squares 

Where the analysis of variance is to be made by computer, the investigator 
will often be able to locate a specific program for analyzing whatever design 
he has employed, and if a ready-made program is not available he can 
always prepare one. It is often more convenient, however, to follow an 
all-purpose procedure that generates the mean squares for any design where 
there are n,n; (or n,n,n,, etc.) observations per person. The scores Y pig can 
be treated as if the design were completely crossed by arbitrarily assigning 
the nested i and/or j to rows and columns. Then one carries out the analysis 
of variance by the formulas that give sums of squares for Design VII. Any 
of our two-facet designs can be rearranged into a data box of size n, X 
n; X n;. For example, the (j:i) x p design (part b of Figure 2.2) can be
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TABLE2.4. Recombination of Sums of Squares and Degrees of Freedom to Recog- 
nize Confounding in ani x (j:p) Design® 

  

Analysis of variance as if 

    

  

crossed? Analysis as actually nested 

Degrees Combined Combined 
Source of Sum of of Sourcesas sumsof degreesof Mean 
variance squares freedom confounded squares freedom square 

P 154.37 28 P 154.37 28 5.51 
within p 

J “2 3 i, pj 643.02 522 1.24 pi 616.30 so4f 27 ons 
i 0.01° 1 i 0.01 1 0.01 
pi 39.89 28 pi 39.89 28 1.42 
within pi 
ij 14.45 18 oo. 
pijse 261.40 <04| ij, pij,e 275.85 522 0.53 

  

@ Analysis of data from the study of Belgard and others discussed in Chapter 7. In this 
study n, = 29, n; = 2, and n, = 19. 
b Rows are ordered to correspond to the combination of effects in the design. 
¢ This value is small because data had been put into standard-score form. 

rearranged into a 5 x 4 x 3 box, ignoring the fact that the entries in the 
slice representing the “‘first value’ of 7 actually come from a different 7 
for each i. The analysis of variance is performed with degrees of freedom 
determined from n,, n;, and n,—the dimensions of the box, not the actual 

number of different i or j in the study. The mean squares coming out of this 
program are discarded; only the sums of squares and degrees of freedom are 
retained. These are recombined to obtain the appropriate mean squares. 

First the confounded components are identified, perhaps with the aid 
of Table 2.1 or Figure 2.4. The sums of squares and degrees of freedom 
from the crossed analysis are pooled to derive mean squares for the con- 
founded components, as shown in Table 2.4 for an example of Design V-B: 
i X (j:p). Here j is confounded with pj, and ij with pij,e. 

Estimating random-model variance components 

The random-model equations relating expected mean squares to variance 
components are different for each design, but they follow a pattern defined 
by the following rules:
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1. For each source of variation shown as a separate area in the Venn 
diagram for the design (see Figure 2.4), there is an equation; the left side 
of the equation is the corresponding EMS. 

2. For a particular expected mean square, one lists every component of 
variance whose argument contains the letter or letters that identify that 
mean square. Thus the equation for EMS p contains any components in 
which p appears. In Design VII, EMS p contains the components for p, 
pi, pj, and pij,e. In Design IV-A, EMS p contains three components: 
P; pi; and j, pj, ij, pij,e. These are the areas appearing within the p circle 
of the Venn diagram for each design. For EMS j, pj of Design IV-B the 
equation contains the two components in whose labels j or pj appears 
(but not the component for p or pi). The Venn diagram can be used to 
identify the terms of any equation. 
3. Each component is multiplied by n, if i does not appear within the 
argument of the component, by n, if j does not appear, etc. Hence in a 
two-facet study o?(p) is multiplied by n,n, in any equation where it appears; 
likewise, the weight for o?(pi) or o(p,pi) is always n;. 

For Design V-B, i x (j:p), the equations are as given below. This set of 
equations is written in the order in which components are estimated, which 
is the reverse of the order of (2.3) and (2.4). 

EMS 9, pij,e = 0°(ij,pij,e) 
EMS pi = 0°(ij,pij,e) + n;0?(pi) 

(2.5) EMS j, pj = 0°(Y,pij,e) + n,0°(,pj) 
EMS i = o°(ij,pij,e) + n,0?(pi) + n,n,0%(i) 

EMS p = 0°(ij,pij,e) + n,0?(j,pj) + n,0?(pi) + n,n,jo*(p) 

These equations allow us to estimate components from the data of Table 2.4 
by substituting a mean square for each expected mean square. 

One may also identify simple computing algorithms from the Venn 
diagram, as in Figure 2.5. For instance, the i circle (diagram e) can be seen 
as the sum of the p,i intersection (A + C) and D. Hence to obtain D, which 
equals n,n,0°(i), one need only subtract EMS pi from EMS i. One word of 
caution is required. If an estimate of o? is negative, the simplified algorithm 
cannot be used to estimate succeeding components into whose expected mean 
Square equation that variance enters (see p. 57). Starting with diagram (b) 
of Figure 2.5, 

MS ij, pij,e = 0.53 = o*(ij,pij,e)



  

(a) Components in the design 

  

EMS #j,pij,e = A EMS j,pj = A+B 

(b) The p,#,7 intersection (c) The 7 circle 

     
EMS pi=A+C EMSi=A+C+D 

(d) The p,1 intersection (e) The # circle 

EMS p=A+B+Ct+E 

/ (f) The p circle 

  

Expected Mean Squares. 

48
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Then, 

1.24 = 0.53 + n,0%(j,pj); and —-o*(j,pj) = 0.36. 

1.42 = 0.53 + n,0%(pi); and (pi) = 0.05. 

0.01 = 1.42 + n»n,o°(i); and o°(i) is taken to be zero. 

5.51 = 1424+0.71 +.n,0%(p); and —_—-6®(p) = 0.09. 

As a further example, consider equations for Design IV-A, j:(i Xx p). 

EMS within pi = o*( j,p/,ij,pij,e) 

EMS pi = 0*( j,pj,ij,pij,e) + ;0(pi) 
EMS i = 0°( j,pj,ij,pij,e) + njo?(pi) + n,n,o(i) 

EMS p = 0*( j,pj,ij,pij,e) + njo?(pi) + nn,0?(p) 

(2.6) 

The estimation of components from G studies with Designs V-B and III-A, 

and also from certain three-facet designs, is discussed in Chapter 7. 

D. Sampling Errors of Estimates of Variance Components 

The estimates of variance components obtained in one G study are not 
numerically identical to those from a second G study employing the identical 
design. Sampling of persons and conditions causes the estimate in any 
study to depart somewhat from the value for the population and universe. 
One would like some idea regarding the extent to which an estimate of a 
variance component reached in a G study departs from the true value. 
Adequate study of this matter will ultimately provide much-needed guidance 
to the person designing G studies. The literature reviewed below leads us to 
think that the behavioral scientist is on dangerous ground when he employs 
estimates of components and coefficients from a G study with the usual 
modest values of n; and n,, unless he can confidently make assumptions of 

equivalence, homoscedasticity, and normality. In this monograph we have 
done what can be done with available techniques and samples of customary 
size, but all these G studies are primitive. Far more effort will need to be 
given to the collection of G data in the future, and far more subtlety of 
design will be needed if that effort is to be deployed economically. 

Mathematical statisticians have studied the estimation of variance com- 
ponents in various ways. We cannot review that literature adequately, and 
any attempt to recapitulate the mathematical reasoning would have little 
meaning for the majority of our readers. More work is needed on the mathe- 
matical properties of components constrained by weak assumptions and on
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the numerical properties of estimates. From that work, advice for the 

behavioral scientist planning and carrying out G studies should emerge. 

Monte Carlo studies 

One intellectually simple approach is to generate hypothetical data and to 
calculate statistics for one sample after another. The accumulation of sample 

values locates the parameter of interest with increasing precision and indicates 

how the sample statistics distribute themselves around that value. This 

Monte Carlo method has been applied to the statistics of reliability and 

generalizability, but only in relatively elementary problems (mostly one- 

facet). 
For example, a person interested in studying the error of estimating the 

universe-score variance, i.e., the distribution from sample to sample of 

o*(p), might proceed as follows: 

1. Assume that an error-free ability measure T is normally distributed with 
arbitrary mean zero and variance one. 
2. There are an indefinitely large number of items; every item can be 
characterized on this same scale by a scale value 6,. Specify the distribution 
of 6. Usually, this distribution would be made normal or rectangular, and 
two parameters would have to be specified to define the distribution. 

3. Assume that every response is scored 1 or 0, and that the probability P 

that person p will earn a score of 1 on item i is an ogival function of 
T, — 6,. Let P approach 0 as this difference becomes large and negative, 

approach 1.00 when the difference is large and positive, and equal 0.50 

when the difference is 0. This item-characteristic curve has a single param- 
eter ¢, which is inversely related to the steepness of the curve. Assume 
this to be uniform for all items. 
4. Choose values of the parameter ¢ and of the two parameters of the 
distribution of 9. Specify that the G study will have the design i: p. Specify 
n, and n,;. This completes the definition of the problem. 
5. Now draw at random one value from the distribution of T. Draw at 
random one value from the distribution of 6. Enter the ogival function 
with this T, — 6, and read off P. Then, from an aggregation of zeros and 
ones mixed in the ratio (1 — P):P, draw one value. Call this the score X,,;. 
6. Retaining the same T,, draw another 6, and determine another score. 
Repeat until there are 1, scores for the first person, each on an independ- 
ently sampled item. 
7. Select a second T,, and generate n, scores for that person as in steps 
5 and 6. Repeat until sets of scores have been generated for n, persons. 
One has now simulated the collection of data for a single G study. Calculate 

o°(p).
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8. Repeat steps 5, 6, and 7. This gives a second estimate of o7(p). Continue 
until a sufficient number of estimates have been assembled. 

9. Summarize the distribution of o°(p), over studies, in terms of a con- 
fidence interval for o*(p), a standard deviation of the estimates, or some 

other statistic. 
10. One may repeat the process, starting with step 3, to learn the effect 
of altering any one parameter or any combination of parameters on the 
sampling error. 

The process is laborious and expensive even in the simple case detailed 
above. The labor rises exponentially when two- and three-facet models are 
considered. Some economies are possible. For example, in the course of 
carrying out the study with one value of n,;, it is easy to treat subsets of the 
data to obtain results for smaller values of n;. With some elaboration of 

technique one can examine sampling errors of o°(p), 0°(i,pi,e) and p(X fH) 
at the same time. The basic plan described above can be amended to ac- 
commodate any experimental design, to accommodate continuously scored 
observations, etc. 

This technique is illustrated in studies of the intraclass correlation co- 
oN 

efficient é’'p?(X,u,) arising under the i x p design, with randomly sampled 
items (Cronbach & Azuma, 1962) and with stratified-sampling plans (Cron- 
bach, Schénemann, & McKie, 1965). These studies were illuminating, but 

they fall far short of answering our present questions about sampling error 
for variance components in multifacet designs. 

We strongly recommend further Monte Carlo work. In particular, work 
is needed on two-facet designs where scores are continuous (or vary over a 
wide range of integers). Comparison needs to be made of various G-study 
designs all of which involve the same total number of observations n, x 
n, X Nj. 

Procedures based on statistical theory 

The majority of papers on sampling error of variance components in the 
statistical literature assume score components to be normally distributed. 
Furthermore, they either assume a very weak design such as i:j:p or they 
make strong equivalence assumptions (e.g., that the population variance of 
scores under one condition is the same as the variance under any other 
condition). 

In every analysis of variance the residual sum of squares leads directly to 
the estimate of a variance component. Depending on the design of the 
study, this component may be identified as o?(pi,e), o(i,pi,e), 

o7(i,j,pi,pj,ij ,pij,e),
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or something else. For convenience here, we shall omit the designation and 
simply speak of sums of squares (SS), degrees of freedom (d.f.), and o?, 
recognizing that the point estimate of o? is given by sum-of-squares/degrees of 
freedom. Then under certain assumptions, 

(2.7) Sum of squares = o7y3 5 

If this formula is applicable, and one wishes a 95% confidence interval for 
o”, one need only turn to the y? table for the number of degrees of freedom, 
look up Y6.0205-a., ANd YG 975-4, and divide these into the sum of squares. 
That 1s, 

    (2.8) P( 5 55 <oc<cs 58 = 0.95 
Xo.975:4.t. X0.025;4.f. 

The assumption is made that the score component is normally distributed 
and has the same variance for each person (Scheffé, 1959, pp. 226-229). 
In a one-facet i:p study, (2.8) would give limits for o(i,pi,e). This use is 
warranted if the within-person variance over all conditions in the universe is 
the same for every person. This, however, is untrue if some persons are more 

variable, from task to task or occasion to occasion, than others. If the G 

study is i X p, (2.8) might be applied to estimate o(pi,e). Additional as- 
sumptions are now required: that all within-condition distributions have the 
same variance, and that the correlation between pairs of conditions is uniform 
for all pairs. That is, observations must be equivalent in the sense of classical 
test theory. Scheffé (1959, p. 345) discusses the effect of violations of as- 
sumptions upon the trustworthiness of the confidence interval, and finds 
departures from normality to be a source of serious difficulty. His exploration 
of the effects of nonequivalence is less complete. 

A somewhat more complicated formula of the same general character is 
given by Scheffé (1959, p. 231 ff.), following a development by Bulmer (1957). 

This applies, not to the case where o? = MS, but to the case where 0 is 
given by (MS, — MS,)/n and MS, satisfies the conditions of (2.7). Thus, 

in an i:p design, the Bulmer—Scheffé procedure applies to o?(p), because 

o?(p) = (MS p — MSres)/n,. The formula would not apply to the p com- 
ponent in ani x j X p design, because in that case o?(p) is not proportional 
to a difference between two EMS. The reader should consult Scheffé for 
details of the argument and formulas. A representative formula has the form 

(2.9) gy =F, 1 + (1 — *) 
MS, F,MS, F, 

The product MS.gy gives the upper limit of the confidence interval for the 
variance component. The value F;, is from the F-table for oo, d.f., degrees of 
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freedom, while F, is the value for d_f.., d.f.,. Again Scheffé warns of serious 
consequences of nonnormality. 

A mathematical development by Welch (1956), reduced to a textbook form 
by Graybill (1961, pp. 368-374), applies to any of the estimated components 
in the kinds of balanced design our G studies employ. It assumes a normal 
distribution for each score component, but appears not to require homo- 
scedasticity and equivalence of conditions. 

Any of the components may be estimated by a linear composite of observed 
mean squares. To describe the basic procedure we may write general expres- 
sions in the Welch—Graybill notation. For the moment, then let i symbolize 
any source of variance including persons or residual. Any one study generates 
several MS i. The equation for expressing the variance to be estimated in 
terms of EMS (i.e., of variances of certain scores or marginals) can be 
written: 

(2.10) o? = gioi + g,03 +°°- = > g,0? 
1 

where all but one g may be zero or negative. For simplicity, write 

Hy, %q,...5 Uy... 

for the mean squares, and write n,,7.,...,”;,... for the corresponding 
degrees of freedom. We now define an integer n, by 

2 

(2.11) ng = eB Biv) 
>, (g;%;/n,) 

The calculation on the right is carried out and rounded. If 7, is less than 10, 
one is advised not to proceed, because the interval formed will be undepend- 
able. 

24 —2 3.3 

(2.12) C= RQ + D({> gn] > a > a - 7 
i nN; 

Here z is the normal deviate corresponding to the desired risk (e.g., 1.96 
for a 95% confidence interval). The corresponding percentage points of the 
x* distribution with n) degrees of freedom are obtained from a table. Then 
the confidence interval for o? takes the form 

(2.13) p( rae Bt <o< esa) = 0.95 
Xo.975:no — C X0.025;n9 — 

The foregoing methods of establishing confidence intervals are closely 
related to the methods for obtaining unbiased estimates of the variance 
components. The statistical literature increasingly discusses maximum 
likelihood estimators of components (Hartley & Rao, 1967). The procedures



54 Experimental Designs and Estimates of Variance Components 

developed include a method of establishing a confidence region for the set 
of variance components. For the most elementary one-way analysis, Wang 
(1967) and Klotz, Milton, and Zacks (1969) demonstrate that the unbiased 

estimator has a larger sampling error than a maximum likelihood estimator, 
and suggest still other estimation procedures that might improve results. 

There is one more line of theoretical work to be mentioned: the use of 
polykays. Hooke (1956) and Dayhoff (1966) show how one may estimate the 

second and higher moments of the distribution of estimates of variance 
components. Thus, in principle one can obtain an interval estimate without 
relying on normal assumptions. The procedure is laborious and appears to 
require extensive data. | 

A ‘‘jackknife’’ procedure? 

Whereas all the approaches of the preceding section attempt to derive a 
formula appropriate to a particular theoretical model, the “jackknife” 
method makes only the random-sampling assumption. It offers a general 
procedure that will apply to virtually any investigation of sampling error 
(Mosteller & Tukey, 1968, p. 133 ff.; Miller, 1968). It requires judgment at 
various points, and it may give rather crude information where data are not 

well-behaved. 

A one-facet, mixed-model study. By way of introduction we discuss the 
jackknife analysis of a study in which 5 raters rate 10 persons, and raters are 
regarded as fixed. Interest attaches to the variance of scores X,, in the 
population of persons. This study is of course not a G study, because no 
generalization over raters is attempted, but the observed score X,; is a 
universe score, for the five-rater universe. For the sake of analogy to our 

second example, o°(p) will be written for the variance of X,, in the sample. 
The data are arrayed in a matrix with 10 rows and 5 columns. The procedure 

is as follows: 

1. Label the usual mixed-model estimate of the person component o?( P)tany> 
to indicate use of all data in the 10 x 5 matrix. The calculation of this 
component, and all subsequent calculations, should be carried to more 
decimal places than would ordinarily be necessary. 
2. Eliminate row 1 (person 1) from the data. Now define the symbol [1] 

to mean “not 1” (i.e., use of all data but those from 1). Treating the 

9 x 5 matrix we have just formed by the analysis of variance produces an 

estimate we may call o?(p)/4)- 
3. Repeat for every row in turn. 

2 The advice of J. W. Tukey on this section is gratefully acknowledged.
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4. For each row, compute a “‘pseudovalue’’ by an equation of this form: 

(2.14) Yer = 10 log o(P)ra — 9 log o*(p) 11) 

{Variance components sometimes have negative estimates, but one cannot 
take the logarithm of a negative number. Where a negative estimate seems 
likely with a given set of data, Tukey suggests that in place of the logarithm 

some other function of o?(p) be used; one possibility, likely to give 

reasonable results, is [o?(p)}*/5}. 
5. The pseudovalues y,,,...,Yx19 are a new type of estimate that can 
usually be treated satisfactorily (as if independently sampled from a 
distribution of estimates) by the Student ¢ procedure. Compute an s? for 
the 10 pseudovalues as if they were a sample of 10 observations. Use the ¢ 
distribution as a basis for establishing a confidence interval [expressed in 
terms of log o?(p)] around the mean pseudovalue. Take antilogs to return 

to the scale of o?(p). 

This slightly rough-and-ready procedure can be understood best by 
thinking of a split-half study. We might have divided the original 10 x 5 

matrix into two 5 x 5 segments, computed 0?(p) for each segment, and 
compared the two values to get a rough indication of the adequacy of the 
estimate. A correction would be needed to take into account that the estimate 
in hand is based on 10, not 5, persons. The jackknife procedure is a version 
of this that tends to minimize bias and to use the full power of the data. 
The analysis outlined above could be made with n, as small as 3, though 
skimpy data can be expected to yield a disappointingly wide confidence 
interval. 

A one-facet study with random conditions. Matters become a bit more 

complicated when sampling of both persons and raters must be considered. 
The procedure now takes this form: 

1. Compute o°(p) ram by the random-model equations. 

2. Eliminate row | and column | and compute o(p);13;1) from the resulting 
9 x 4 matrix. 
3. Repeat for each pair of rows and columns, to get other values of 

O*(P) row) {col}: ; ; 

4. Repeat eliminating row 1 but not eliminating a column, to obtain 

07(P)t13t-) [which was labelled o?(p),,; in the earlier analysis]. Continue, 
eliminating all rows in turn. Repeat, eliminating columns and not rows, 

to get five values of 07(p)t_11c01)-
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5. Calculate pseudovalues by letting row and col take on the various 
possible values in 

(2.15) Yerow,col = 50 log 07(P) tan} — 45 log 0"(P) row] [—] 

— 40 log 07(P)i— j[co1] + 36 log 0*(P) row) {col] 

6. From the 10 x 5 matrix of pseudovalues, estimate components of 

variance in the usual manner (random model) to get o7(Yrows)s O7(Ycois), and 

6?(Yres)- Then the required variance for log *(p) is estimated as if we had a 

simple two-way sample in which both the columns and rows were sampled 
randomly and independently by 

1 1 1 
(2.16) n. o"(Yrows) + — o (Yeois) + — o°(Yres) 

> n, nN; 

7. From the square root of this variance, the square root of the number 
of y, and the ¢ distribution, establish a confidence interval symmetric 
around the mean of all the y. This interval will be in terms of log o?(p). 

Take antilogs. 

A similar procedure applies to other components, and in principle can be 
extended to more complex designs. 

The computational labor involved in a jackknife analysis becomes very 
great as the total number of observations increases, and it is substantially 
greater for a two-facet study than a one-facet study. There are various 
possibilities for reducing the labor without serious loss of information. The 
most practical device is to form random groups of persons and random groups 
of conditions. Thus, if a one-facet study had data for 20 persons and 12 
conditions, one might randomly assign persons to 5 groups of 4 persons, and 
randomly assign conditions to 4 groups of 3 conditions. One would form an 
average score for each block of the data. The resulting 5 x 4 matrix of Xp, 
would be treated as the matrix of X,,; was treated above. Since the variance 
component for P is one-fourth as large as the component for p, the com- 
ponent for J one-third as large as the component for i, etc., simple rescaling 
of the calculated confidence interval gives the desired intervals for o(p), 
o*(i), and o?(pi,e). 

An extensive exploration of the application of the jackknife procedure to 
generalizability studies appears in a recent doctoral dissertation by Collins 
(1970). He concludes that the method can indeed be used with increasingly 
complex multifacet designs to establish rough confidence intervals for 
variance components. This is true provided that score components are 
normally distributed, that the number of conditions of each facet is ap- 
preciable, and that the error components are relatively small. He recommends
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against use of the technique for the coefficient of generalizability, and 
against its use with nonnormal data. He recognizes that the basic jackknife 
procedure can be altered in many ways. Hence, with further research it may 
be adapted for data that presently generate an interval in disagreement with 
the accurate interval determined by Monte Carlo techniques. 

Treatment of negative values 

Estimates of variance components and composites of components are the 
statistics most often reported in generalizability studies. Variances must be 
non-negative, but estimates obtained by the procedures given above are not 
infrequently negative because of sampling errors (Leone & Nelson, 1966). 
Interpretation of negative estimates is a problem, a problem much like the 
interpretation of F ratios that are less than 1.00. A plausible solution is to 
substitute zero for the negative estimate, and carry this zero forward as the 
estimate of the component when it enters any equation higher in the table 
of mean squares. This is the method we shall use. When a zero is substituted 
for a negative value, the short-cut equations that call for subtracting the 
corresponding mean square from a mean square higher in the table should 

not be used. The calculation must use the several o? already computed, 
including the zero value, to avoid error. 

Scheffé (1959) recommends against substituting zero values for negative 
values on grounds that have to do primarily with formal statistical inference. 
The sampling distribution of estimates so modified is much more complicated 
than that for direct estimates. The simple formulas for the sampling variance 
of estimates under the normal assumption are no longer valid, and the 
modified estimates are biased. 

Nelder (1954) notes that a negative result is a warning that the random- 
effects model may be invalid. For example, if there is an opportunity for one 
set of observations to influence another, this may violate the model. Hill 
(1965, 1970) takes a similar position. Hill (and also Tiao & Tan, 1965) 

considers the estimation of variance components from a Bayesian point of 
view. Hill concludes that a large negative unbiased estimate of a between- 
conditions component indicates that an uninformative experiment has been 
conducted in which the likelihood function for that variance component is 
extremely flat. The study is not to be taken as strong evidence, then, that 

the variance component is near zero. Hill would recommend that the investi- 
gator suspend judgment about the component, and consider alternative, 
weaker models. This work is extended by Novick, Jackson, and Thayer 
(1971), who find the Bayesian approach particularly valuable when measure- 
ment errors are large. The designs to which Bayesian methods have been 
applied are, to this point, quite restricted. The Bayesian estimates are never
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negative, and it may ultimately be possible to employ them in place of the 
more conventional estimates derived from equations such as (2.3). 

E. Components of Variance Where the Universe is Finite 

To this point we have assumed that the G study samples n; conditions of i 

from an indefinitely large number of admissible conditions of that facet. 

(Similar statements apply to facets j, k, etc.) It is possible, however, for the 

number of conditions of a certain facet to be limited, either in the universe 

of admissible observations or in the universe of generalization. To discuss 

the possibilities, we follow Cornfield and Tukey by introducing the symbol 

N. Let N, be the number of conditions of i in the universe of admissible 

observations, with 1, < N; < oo. All observations in the G study are 

admissible; when the conditions of i employed exhaust the admissible 

conditions, n; = N;,. 

Cornfield and Tukey offer equations expressing expected mean squares as a 

function of components of variance which take N,, etc. into account. Earlier 

equations like (2.3) are the forms approached by the Cornfield—Tukey 

equations as N,, Nj, etc. all become large. The limiting case where some N 

are indefinitely large and others are equal to the corresponding n is the set 

of equations fitting the so-called mixed model for variance components. 

We shall not devote attention to the equations for intermediate cases 

where for some facet n < N < oo. The Cornfield-Tukey equations then 

multiply certain components by (1 — n/N). If n = N these components 

vanish; as N becomes large, the multiplier approaches unity. Ordinarily, 

when n < N, N is sufficiently large that a multiplier of 1.00 is accurate 

enough. 
We must go beyond Cornfield and Tukey to take account of the distinction 

between the universe of admissible observations and the universe of generali- 

zation. When N, is large, the decision maker may propose not to generalize 

over all conditions of i. Let N,; represent the number of conditions of i 

defining the universe of generalization; n’' < N; < N,. The constraint 

N; < N, is required for the G study to be applicable, and n; < N; is required 

to make the D study sensible. To simplify matters we shall not consider 

intermediate values of NV’ nor the case n; < N; = N,; < oo. 

With respect to any facet, these possibilities are to be considered: 

1. N— oo, N’— 00; n,n’ are unrestricted. 

2. N— o,n’ = N’ takes on any value from 1 upward. 

3. N takes on any value greater than 1, and n’ =n = N’= N, 

The same conditions of the facet enter the G and D study. (If m = 1, the G 

study has a “hidden facet,” which creates problems of interpretation that
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Chapter 5 will discuss.) Case 1 is what we have discussed in previous sections. 
Case 3 is like the conventional mixed model. Case 2 arises only in generaliz- 
ability theory. Throughout the following technical section, discussion will 
be limited to alternative interpretations regarding the universe of 7, keeping 
N, large but letting N; and N; vary. The argument can readily be applied to 
alternative interpretations of facet i, and to studies with more than two facets. 

Modified notation for components 

The usual treatment of variance components writes o7(p) for “‘the person 
component’ regardless of the value of N,; assumed. This, however, is in 
general equal to &(u,; — uz)*, where J is the set of N,; conditions that 
defines the universe. The tautology 

(2.17) Mog — by = (Up — B) + Ups — Mp — Bs +B) 

makes it evident that the o?(p) of the random model is the limiting case as 
N; becomes large, and that for each N;, o?(p) takes on a different definition. 

This can generate considerable confusion for us and we therefore develop a 
special notation for the finite universe where the fixed facet 1s crossed with 
all other facets. 

For case 3, there is a fixed set of NV, conditions of 7 that appears in the G 
and D study. Here® we shall call this J*. The universe score over all admissible 
observations is the expected value over i and j of X,,;, but since we are 
limited to j € J*, the universe score is w, 7.. In place of (1.3), where NV; was 
taken to be indefinitely large, we write a new expression for the decomposition 
of the score. We make the preliminary tautological statement 

(2.18) X pi = Apige + (X pij X pigs) 

and then decompose these two parts separately. Note that 2X, — Xyi7) 
equals zero. Decomposing the first term we have 

(2.19) Xpige = Mae + Myse — Mae OX pize) = 0°(p | J*) 
+ fise — ye + o(i | J*) 

+ Xp5:70 — Myge — Mise + bye + 07(pi,é | J*) 

The conditional notation for the variance is a way of emphasizing that the 
variance applies to scores obtained under the set of conditions J*. The 
variance in the right-hand column is the mean square over all p and/or all i 
of the component at left. We write é for e,,7. to distinguish it from e,,;. 

Components of the second term in (2.18) contain “within J*”’ information, 

3 A more complicated convention is used in Chapter 4. (See p. 114.)
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that is, effects associated with the separate / in the set J*. The breakdown is as 
follows: 

(2.20) X oii — Xpige = My — bye O( X53 — Xpize) = o*(j | J *) 

+ bys — pss — Hy + Mss + 0°(pj|J*) 
+ Mig — Bigs — Uy + bye + o(ij | J*) 

+ X555 — Mas — big — Boise + o(pij,e | J*) 

+ Myge + Mise + My — bee 

The score components of (2.19) and (2.20) combined make up the whole of 

X ij and the variance components make up o?(X,,,). 

Analysis of crossed designs 

The G study with Design VII (i x j xX p) is analyzed as before to obtain 
mean squares and, if desired, the mixed-model equations for expected mean 
squares may be employed. These fall into two groups: 

EMS p = n,o(pi,é | J*) + n,njo7(p | J*) 

(2.21) EMS i = n,o?(pi,é | J*) + n,n,07(i | J*) 

EMS pi,e = n,o*(pi,é | J*) 

For within-J* components there are the further equations: 

EMS j = 0?(pij,e | J*) + n,o*(ij | J*) 

+ n,o?(pj | J*) + n,n,0?(j| J*) [je J*] 

(2.22) EMS pj = 0°(pij,e | J*) + n,07(pj | J*) [je J*] 

EMS ij = 0(pij,e | J*) + ,0°(ij | J*) [jes*] 
EMS res = 0?(pij,e | J*) [jeJ*] 

Considering (2.21) and (2.22) together, and comparing them with (2.3), we 

see as differences the confounding of é with pi, the absence of o(pij,e) from 
the first three expected mean squares, the absence of o?(pj) from EMS p, 
and the absence of o?(ij) from EMS i. All these changes are a consequence 
of the change in definitions of the components to be estimated. 

So long as generalization in the D study is over facet i from scores X,7,7+ 
obtained using the fixed conditions J*, there is no need for the within-J* 
components, and hence no need to solve equation (2.22). A two-way analysis 
of variance of the X,,,+* yields the necessary mean squares. These, substituted 

for the expected mean squares in (2.4), give o?( p\J*), o(i | J*) and o*(pi,é | J*). 
The expected mean squares of (2.21) are n, times those of (2.4).
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Analysis of nested two-facet designs 

If J* defines the universe of j but there are indefinitely many p and i, it is 
not possible to have j nested within p or i. The design for the G study may 
have p crossed with J*, and conditions of i nested in p, j, or pj. These are 
Designs V-B, V-A, and IV-A, respectively. 

Considering first the V-B design, j x (i:p), one obtains equations (2.23) 
for the expected mean squares from a three-way analysis of variance. 

EMS p = n,0°(i,pi,é | J*) + n,n,o*(p | J*) 

EMS i, pi, € = n,0*(i,pi,é | J*) 

(2.23) EMS j = o°(ij,pij,e | J*) + n,0?(pj | J*) + nn,0?(j| J*) 

EMS pj = 0°(ij,pij,e | J*) + n,07(pj | J*) 
EMS res = o°(ij,pij,e | J*) 

Here, the expected mean for p and for 7 within p contain no components 
involving j, pj, ij, or pij, Components for j, pj, and ij, pij,e are estimated 
by the last three equations. However, as we noted for Design VII, it is 
unnecessary to estimate these components when J* is to be used throughout. 
A one-way analysis of variance of X,,,;+ provides MS p and MS i within p. 
These have to be multiplied by n,; to estimate the EMS p and EMSi within 
p of (2.23). 

In Designs V-A and IV-A, since pi and pij are confounded, the variance 
components are best obtained from an appropriately nested three-way 

analysis. In both of these cases 5°(p | J*) is given by 

MS p — MSres 

nn, 
  (2.24) 

Estimates of all other variance components with these designs are numerically 
identical to those obtained using the random model. 

Relationship between variance components obtained 

under fixed and random assumptions 

It is always possible to obtain estimates of variance components for a 
universe with a fixed facet from estimates computed under the random model. 
Consider Design VII for the moment. Because the values of mean squares 
calculated from a set of data are the same no matter what is assumed about 
the universe, the same set of values would be entered on the left-hand sides 

of (2.21) and (2.22) as are entered in (2.3). Equating the right-hand terms
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from the two sets of equations we obtain 

o°(pij,e | J*) = o°(pij,e) 

o°(ij | J*) = o°(ij) 

o°(pj | J*) = o°(pj) 

(2.25) o°(j | J*) = o°(j) 

o*(pi,é | J*) = o°(pi) + 4 o"(pij,e) 
Nn. 

3 

o*(i | J*) = o%(i) + — oj) 
n . 

J 

om “om 1 om ; 

o*(p| J*) = o%(p) + ~ o*(pj) 
j 

Estimates of components of variance defined by the random model can be 
combined in this way to determine estimates for components defined in 
terms of a fixed facet. 

These same equations can be used to arrive at the relationship between 
the two sets of components in any permissible confounded design. In Design 
V-B, for example, i and pi are confounded. Amalgamating the equations for 
i and pi,é above, one obtains: 

(2.26) o°(i,pi,é | J*) = o(i,pi) + + Sij,pij,e) 
Nn; 

Similarly, 

(2.27) o(ij,pij,e | J*) = o*(ij,pij,e) 

In V-A we have i and ij confounded, and 

o*(pi,pij,e | J*) = 0*(pi,pij,e) 
(2.28) _ a 

(i, ij | J*) = o%(i,i/) 

To give some sense of the effect of the shift in universe definition, we 
reanalyze the data of Table 2.2 under the assumption of fixed scorers, 
admitting that this is not a particularly likely interpretation.
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In Table 2.2, MS pi is 9.28, n; = = 3. Then from (2.21) o*(pi, é | J*) = 3.09. 

Continuing, o2(i | J *) = = 1.34 and o2(p | J J”) = 5.78. These may be compared 

with o°(pi) = 2.57, 5*(i) = 1.32, and o*(p) = 5.71. The estimates with J* 

fixed are all larger than the same estimates with N; — oo. This is generally 
the case, as can be inferred from (2.25). 

F. The Universe with a Nested Facet 

All the discussion to this point has assumed that the universe of admissible 
observations follows the i x j x p pattern, so that for every i and j a score 
X ij 18 defined, and each such score is as likely to be drawn as any other. 
We shall continue with that model in almost all the rest of our theoretical 
discussion, but it is necessary to mention other possibilities. 

A universe may have the pattern (j:i) x p. That is, in the universe each / 
goes with one particular i and no other. The commonest example is items 
nested within tasks (subtests). If i is the digit-span task, there is a universe 

of items 7 from which one can draw. The supply of admissible items—02356, 
61728, 74731, .. .— is not “indefinitely large,” but it is large enough that we 
need not qualify our statements so as to keep the size limit in mind. One 
would make a digit-span test by drawing n, items; for every such item there 
is an admissible observation X,,;.. We have written j; to indicate that 7 is 
drawn from the universe of conditions of j that is dictated by the particular i. 
An item such as 92356 belongs with the digit-span task and no other; it 
could not possibly be used in connection with a figure-analogies or vocabulary 
subtest. (To be sure, the series of digits could be used in a paired-associates 
task, but we need not blur the issue with far-fetched cases.) 

Where the universe has the structure (j:i) x p, an observation X,,;, is 

inadmissible: an i item cannot be used with the i’ task. This affects our 
interpretation of components. The grand mean vy is still an expectation over 
all i and 7, but it logically has to be seenas & (6 Xyij,). The person com- 

p,t 

ponent is eX pij, — @); We may continue to speak of uw, and o°(p). The 

subtest component is analogous, and is again w,, with variance ot). Nothing 
like the 7 component now exists, because one cannot define &X,,, . There is a 
component for 7 within 7, defined as CX yi — Mj. . 

Obviously, a universe of the type ‘( si) x p cannot be investigated by a 
G study in which? x j or i:j. Despite its novel features, this kind of universe 
presents no great difficulties in analysis or interpretation, as examples will 
later show (see pp. 203 to 225). 

The universe pattern i x (j:p) or any other “nested in p”’ structure is 
harder to discuss and is rarely examined. There are conditions relevant to
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observations on one person and not another. To echo the language of Egon 
Brunswik, conditions are ecologically tied to the person. When Roger Barker 
observes a boy as he passes through the behavior settings that make up his 
environment, it makes little sense to regard the data as a sample of what the 
boy would do in all possible environments. Sam comes down to breakfast 
with his widowed mother. He is an only child. His actions cannot be general- 
ized to a universe that includes “‘breakfast with father and mother and three 
siblings,” which is the situation Herb is exposed to next door. Herb’s situation 
is not and could not be a part of the universe of admissible observations for 
Sam (unless we wander into science fiction). The universe of admissible 

observations for Sam differs from that for Herb. 
We shall not elaborate on this kind of universe, which is not encountered 

in later examples. It is an appropriate problem for future work within 
generalizability theory, since naturalistic observation often does sample from 
and generalize to an ecological universe. The models developed in this book 
make sense for such problems only if one assumes a strong null hypothesis. 
Thus, while Sam and Herb have different acquaintances, one might generalize 
peer ratings over a universe of all possible peers. But this assumes that the 
acquaintances Sam makes are randomly selected, without reference to 
Sam’s personality. The factors that in reality cause Sam to make different 
acquaintances than Herb does are entangled with the ratings Sam receives. 
Brunswik’s protest against designs and models that deny this entanglement 
was well taken, and points to a limitation in generalizability (and reliability) 
theory. 

EXERCISES 

E.1. In the manner of p. 40, write out the components of score X24». 

E.2. Prepare a table like Table 2.1 (p. 40) for one-facet studies. 

E.3. Prepare a diagram for a design (i x /):p in the manner of Figure 2.2 (p. 36). 

Give a concrete illustration of a possible study of this sort. (Hint: Consider an 
oral-examination procedure.) 

K.4. Write algebraic expressions for the following parameters of scores Xpz,7 in 
terms of i and j rather than J and J. 

a. My — My — os + 

b. o(plJ) 

C. o*( uy — B)
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E.5. A three-facet study has the design (k:j:i) x p. Locate the 15 definable 
components of variance within the 7 areas of the Venn diagram below. 

  

E.6. Consider that 60 persons took a 40-item test where each item was scored 1 
or 0. The analysis of item scores yielded the following mean squares: for persons, 
0.640; for items, 1.920; for residual, 0.120. Calculate estimates of the variance 

components. What do these estimates describe? 

E.7. A study in which persons, tasks, and observers were crossed generated the 
following analysis of variance: 

  

Degrees 
Sum of of Mean 
squares freedom Square 

P 369.593 52 7.108 
Tasks i 35.970 4 | 8.992 
Observers / 18.920 1 18.920 
pi 412.183 208 1.982 
Pj 69.302 52 1.333 
ij 11.530 4 2.882 
Residual 153.180 208 0.737 

a. What are the values of n,, n;, and n;? 
b. Estimate the variance components assuming N,, N; very large. 

E.8. Prepare a figure similar to Figure 2.5 for the j:(¢ x p) design whose expected 
mean square equations are given on p. 49. 

E.9. Write equations for estimating the variance component for persons and the 
within-persons component, when a one-way analysis of variance of data has been 
made of an /:p design. 

E.10. Develop equations to estimate variance components for Design IV-B. 

E.11. Treat the information presented in Exercise 7 as if it had come from a study 
with design (i:j) x p. Estimate components of variance assuming N;, N; very large.
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TABLE 2.E.1. Ratings of Subjects in ani x j X p Design (after Guilford, 1954, p 282) 
  

Traits by rater 
  

  

  

A B C D E 

Subject 
a b ¢ a bee a 6b ¢ a beoe¢ a b ee 

1 5 a) 5 5 § 3 4 5 5 6 7 3 3 «3 
2 9 8 7 7 7 7 5 5 5 8 7 7 5 2 #5 

3 3 4 3 3 5 5 3 3 5 7 6 5 1 6 § 
4 7 5 5 3 6 3 1 4 3 3 5 3 3 5 1 
5 9 2 9 7 4 = =7 7 3 #7 8 2 #7 5 3 7 
6 3 4 3 5 4 3 3 6 3 5 4 § 1 2 3 
7 7 3 #7 7 3 7 5 5 7 5 5 5 5 4 #7 
  

E.12. Guilford reports the data in Table 2.E.1. Seven scientists p in a research 

organization were rated on five traits j having to do with creative performance. The 
three raters i were senior scientists in the same group. 

Carry out a three-way analysis of variance,* estimate the variance components 
assuming N large, and discuss what their relative size indicates. (It will be illuminat- 
ing to compare your interpretation with Guilford’s presentation based on several 

two-way analyses.) 

E.13. Estimate the variance components for the Guilford data under the as- 
sumption that the set of traits J* is fixed and N; is 5. (Make use of the answers to 
Exercise 12.) 

E.14. Determine variance components for the data below, from an i xj x p 

study. 

  

Sum of Degrees Mean 

Squares of freedom square 

P 795.52 9 87.28 

Observers i 200.04 2 100.02 

Occasions j 108.60 1 108.60 

pi 109.34 18 6.13 

Pj 406.98 9 45.22 

ij 39.24 2 19.62 

Residual 111.96 18 6.22 
  

E.15. For trait A in Table 2.E.1, apply the jackknife procedure to establish a 
confidence interval for o?(pi,e). (Since the computation required is extensive, it is 

suggested that the reader set up each stage of the problem, check against our 
formulation, and then use our numerical answer for that stage to formulate the next 
stage. Only persons with computer facilities should attempt to carry out the many 

calculations.) 

If a computer is not available, take the sum of squares from the answer page.
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Answers 

Al. Xg4y =H + (He — #) + (4g — BE) + (Uy — BE) + (leg — He — Mg tO 

+ (Hey — Me — My + BH) + (May — hg — My + 

+ (Xo4y — Moa — Hoy — Hay t+ Me + og + by — #) 

  

  

A.2. 

Number of observations on 

Design P i pi,e Compounds 

pxi Np n; NyN; None 
i:p Ny NN; NyN; 1. within p 

  

A.3. See Figure 2.E.1. Each person has his own examiners and his own set of 
questions. 

  

  

    
  

        

Persons Conditions Conditions j 

p i abe 

A | ft EE 
c | 
D 

2 E oy 

F 

(i X p):p 

FIGURE 2.E.1. Answer to Question E.2.3. 

  

1 1 1 
A.4. a. nan Ho 

n,n; 

b 1 2( ij) 

- in.” SPY 
arg 

i 2 Cc. — o'(u; — B) 
nh; 

t 

A.5. See Figure 2.E.2. 

pk, pjk, pik, pik, e    

   

k, jk, ik, ijk 

~ \ 

a 
| 

v7 Uy 

FIGURE 2.E.2. Answer to Question E.2.5.
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A.6. o?(p) = 0.013; spread of universe scores. As o(p) is about 0.12, universe 

scores range over much of the 0-to-1 scale. 

62(i) = 0.030; spread of item means for the population. As o(/) is about 0.18, the 

items range from extremely difficult to extremely easy. (Maximum ao, 0.50, occurs if 
half the items have u,; = 0 and half have u; = 1.00.) 

o*(pi,e) = 0.120. This is the combined effect of the person’s specific difficulties 

with particular items and of “‘chance”’ variation in his performance. In any single 
item the effect is fairly large. 

[Maximum possible variance from all three components is 0.25. o7(X,,;) is 0.163.] 

A.7. ny = 53,n; =5,n; =2 

Effect P i J pi Pj ij pie 
Estimated o? 0.45 0.05 0.06 0.62 0.12 0.04 0.74 

A.8. See Figure 2.E.3. 

A.9., O(i,pi,e) = MS within persons 

o*(p) = [(MS p) — MS within persons]/n; 

A.10. EMS p = o*(ij,pij,e) + n;o*(j,pj) + njo*(i,pi) + nn;o7(p) 
EMSi, pi = o*(ij,pij,e) + n,07(i,pi) 

EMSj,pj = o(ij,pij,e) + n,07(j,p)) 
EMS jj, pij,e = o*(ij, pij,e) 

A.11. 

Sum of Degrees Mean 
squares of freedom square Estimated o? 

P 369.593 52 7.108 0.58 

J 18.920 1 18.920 0.05 

Pj 69.302 52 1.333 (0) 

i, ij 47.500 8 5.937 0.09 

pi, pij,e 565.363 416 1.359 1.36 

These results are a correct application of the algorithm for the nested design. It will 
be noted that these results differ substantially from those in Exercise 7, particularly 
in the vanishing of the pj component. 

An investigator sometimes analyzes a study according to a design other than that 
actually employed in sampling conditions; for example, a design that was actually 
crossed may be analyzed as if nested, or vice versa. Any such mismatch between the 
design and the analysis runs grave risk of error. In the present instance, the in- 
vestigator should be able to verify whether , or n,n; different tasks were used in the 

G-study observations on any person. The former implies i x j and the latter 
implies i:/. 

A.12. Effect P i J pi Pj i pij,e 
Sum of 
squares 94.914 9.048 46.533 98.686 51.467 12.953 56.644 
Estimated 020.94 0.07 0.09 0.01 0.35 0.29 2.77
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EMS j,pj,ij,pij,e = A EMS pi= A+B 

(b) The p,ij intersection (c) The p,é intersection 

poet teeth een, | 
C o' ° . .     ° 

Serecncce”® 

Bee crs 

EMSi-A+B+C 

  

(d) The circle (e) The p circle 

FIGURE 2.E.3. Answer to Question E.2.8.—the j:(i x p) design.
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A.13. Effect p\|J* ilJ* pie|J* pj:J* — if:J* _ pijje:J* 
Estimated o2 1.01 0.13 0.56 0.35 0.29 2.77 

A.14. Effect P i J pi Pj i pie 
Estimated o? 7.01 4.02 1.66 0° 13.00 1.34 6.22 

A.15. First carry out the anova for the full 7 x 3 data matrix. Then carry out the 
same analysis for each of the 3 possible 7 x 2 matrices, eliminating one column at a 

time. Then, carry out the analysis for the 7 possible 6 x 3 matrices, eliminating one 
row at a time. Finally, carry out the same analysis for each of the 21 possible 6 x 2 
matrices. As the exercise calls for information on the residual component only, we 
are able to tabulate the results of all the foregoing analyses in Table 2.E.2. As is 
usual in the jackknife formulation, the number in parentheses identifies the row or 

column deleted from the data. The symbol [—] indicates that there was no deletion. 

The second stage of the analysis is to form a 7 x 3 matrix of pseudovalues. The 

formula (2.15) is specialized to: 

Yxr.c = 21 In Fpi,edpar — 18 In 0%(55,e)trow,—J — 14 In %(55,e)f, con 

+ 12 In O(y3,€)[row,col} 

This gives the entry for the residual for row and column. For cell 1,1, one has 

21 In 3.42856 — 18 In 3.68888 — 14 In 4.64284 + 12 In 4.79999 

or approximately —0.292. Logarithms to any base may be used; natural logarithms 

TABLE 2.E.2. Residual Component of Variance in Successive Analyses of Data for Trait A 

of Table 2.E.1 with Rows and/or Columns Eliminated 

  

Column eliminated 
  

  

Row 

eliminated 1 7 3 _ 

1 5.73333 0.53333 4.79999 3.68888 

2 5.73333 0.33333 5.533338 3.86667 

3 5.73333 0.53333 4.79999 3.68888 

4 6.08332 0.33333 5.55000 3.98888» 

5 2.00000 0.53333 2.13333 1.55555 

6 5.73333 0.53333 4.79999 3.68888 

7. 5.14999 0.53333 4.88332 3.52222 

— 5.16666° 0.47618 4.64284 3.428564 
  

@ Value from anova with person 2 and judge 3 disregarded. 
b Value from anova with person 4 disregarded. 
© Value from anova with judge 1 disregarded. 
d Value from conventional anova, no data disregarded. 

5 Calculated value is —0.045.
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were available to us through a convenient computer program. The entire array of 
pseudovalues appears in Table 2.E.3. 

TABLE 2.E.3. Pseudovalues Derived from Tables 2.E.1] and 2.E.2 

  

  

  

Rater 
Subject 

1 2 3 

1 0.34353 5.22319 —0.29206 
2 —0.50375 — 1.26418 0.56677 

3 0.34353 5.22319 —0.29206 
4 —0.35280 — 1.82428 0.04276 
5 3.24863 20.76558 5.51967 
6 0.34353 5.22319 —0.29206 
7 —0.11192 6.05536 0.74664 
  

Next, an analysis of variance of the pseudovalues is carried out, with these 
results: 

  

Degrees Mean Component 

Source of freedom square of variance 

Row 6 37.083 8.3 

Column 2 57.756 6.5 

Residual 12 12.213 12.2 

The equation for the sampling error variance of the residual component, or 
rather of its logarithm, is similar to (2.16): 

2 I “3 I “2, I 2 
= Ny o"(Yrows) + ny OY cols) + ph; o"(Y res) 

= 7(8.29004) + $(6.50619) + 31:(12.21287) = 3.93458 

s = 1.98 

s[n/2 = 1.98/211/2 = 0.43 

Because the mean of the entries in Table 2.E.3 is 2.31949, the confidence interval is 

established symmetric about that number. But it will be noted that the distribution 
of pseudovalues is highly skewed, and this presages difficulty. 

For 20 degrees of freedom, the 95% confidence interval is +2.09 times the stand- 
ard error of the mean. We arrive at the interval 

2.319 — 0.899 < In o%(res) < 2.319 + 0.899 

1.420 < In o%(res) < 3.219 

Hence, 

4.1 < o(pj,e) < 25.0
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This ends the jackknife analysis. It remains to note that the actual value computed 
from the original matrix is 3.43, which falls outside the confidence interval! All that 
can be said is that things like this happen. In the table of raw data it can be seen that 
judge 5 is quite idiosyncratic, notably in his rating of person 5. This necessarily 
implies that values of components obtained from a G study with three judges will be 
undependable, and the extremely wide confidence interval calculated is under- 
standable. The next sample might consist entirely of judges like 1 and 3, or of 
judges like 2; or it might consist of two judges like 2 who produce eccentric values 
and large residuals, plus one judge like 1 or 3. While there are possible ways of 
exploring further when so anomalous a result is reached by the jackknife procedure, 
that is scarcely in point with this example.



CHAPTER 3 

Inferences from 

D-Study Data 

Regarding the 

Universe Score [py 

The preceding chapter presented procedures for deriving estimates of com- 
ponents of variance from a G study. We now examine inferences based on 
these estimates. 

One or more experimental designs are under consideration for the D 
study; we can forecast how well the observed scores obtained under each 
design will agree with the universe scores of interest. The D study will 
generate an observed score for each person p. This is only one of many 
scores that could be obtained by applying the same design repeatedly, each 
time sampling afresh from the universe of conditions of observation. These 
observed scores depart from the universe score. 

It is assumed throughout this chapter that the investigator wishes to 
generalize over all facets represented in the G study, and that the number of 
admissible conditions for each facet is large. Discussion of restricted universes 
of generalization and the associated problem of “‘hidden’’ facets is reserved 
for Chapter 4. Also for the sake of directness, we discuss procedures here 
without attention to underlying assumptions. The stringent assumptions 
underlying both the confidence interval technique and the regression technique 
will be given thorough consideration in Chapter 5. In these applications the 
classical theory and the established practices in test-score analysis embody 
much the same assumptions as the theory of generalizability does. Fifty 
years of experience has shown that much can be accomplished with analytic 
procedures that employ strong assumptions. Useful though we expect the 
procedures developed in this chapter to be, it is important to plant a doubt. 
Chapters 5 and 9 will suggest that some well-known techniques such as the 

73
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confidence interval for a universe score rest on shaky foundations. The 

hazard in using these techniques is as great in generalizability theory as in 

classical theory. 

A. One-Facet D Studies 

The nested design 

To begin with a comprehensive example, we discuss the one-facet i:p design. 

The discussion will be superficial, because to discuss rationale and alternatives 

would defeat the purpose of this section as an overview. The argument on 

each point will be developed much more fully in later parts of this chapter 

and in Chapter 5. 
Suppose that a G study has estimated two components of variance: for 

persons o%(p) and within persons o°(i,pi,e). The D study consists of n; 

observations on n, persons, different conditions being drawn for each 

person. It is assumed that the same population and universe are represented 

as in the G study, but there is no necessity that the number of observations 

per person be the same. 
In accord with statements on p. 28, we define the observed score X,, as 

the mean over the 7; observations. (Formulas arising under this definition 

would be readily modified if the observed score were defined instead as a 

sum over the n; observations.) The expected value of X,; over the universe 

of conditions is the score uz, to which we would like to generalize. 

Table 3.1 presents the concepts that conventional reliability analysis would 

apply to these data and, in the second column, the corresponding concepts 

from generalizability theory. This design presents the simplest possible case. 

Conditions are randomly sampled, separately for each person. It follows 

that if the measuring procedure is carried out twice on the same indefinitely 

large population of subjects, new conditions being sampled each time: the 

two population means will be the same, the covariance of the two observed 

scores will equal o?(p), and the observed-score variance for the two measure- 

ments will be the same in the limit, as more persons and hence more con- 

ditions are considered. Thus, even if conditions i and i’ lack equivalence in 

the classical sense, scores arising from the nested design conform to classical 

assumptions. 
Figure 3.1 is a representation, in terms of variance components, of 

quantities to be discussed in the next several paragraphs. While this figure 

is very simple, more elaborate diagrams of this kind will be quite helpful 

with complicated problems. Venn diagram (a) represents all the information 

in the model. The p circle also represents the score variance in an i:p design 

with n) = 1. If nj > 1, I may be substituted for i in all-labels. Where yu, is
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TABLE 3.1. Comparison of Parameters Considered in Conventional Reliability 

Theory and Generalizability Theory (i: p Design) 

  

Term employed in 
reliability theory 
and usual symbol 

Corresponding concept 

and symbol in 

generalizability theory Remarks 
  

True-score variance, 

0*( Xo) 
Observed-score 

variance, o?(X) 

Error variance, 

o*(E) 
Reliability coefficient,” 

Universe-score variance, Directly estimated by 
o*(uy) o*(p) from the G study. 

Observed-score variance, To be estimated by 
o*(X 7) combining components 

of variance for p and 
I, pi, e. 

o*(A) = 0°(6) for this design Consists of the i, pi, e 

component of variance. 
Coefficient of generalizability, Essentially the same as 

p(X,X") = p2(X,X~) the ratio of universe-score and the Horst (1949) ver- 
observed-score variances. sion of the intraclass 

Denoted by p?. correlation. In the 

population, equals 
squared correlation of 
observed and universe 

scores. 

Confidence interval Confidence interval for Determined from 

for true score universe score o(A) = o(6). 
Regression estimate Regression estimate of 

of true score, equal to universe score. Like that 

X.. + p(X,X')(Xpr — X..) at left using 

p” (X. pl My) 

as coefficient 

Essentially no change. 

Error of estimate, 

squared, o(e) 

Error of estimate, 

squared 
Essentially no 

change. 
  

® In conventional theory, X and X’ are “‘parallel”’ observations. 

the universe score, diagram a may be divided, as shown in diagram b, into 
true and error components. 

The universe-score variance, as Table 3.1 indicates, is directly estimated 

by the o?(p) obtained in the G study. The observed score can be regarded as a 
sum of score components. In the abbreviated code introduced on p. 40, the 
observed score X,, equals uw, + (uy~ + Uz7~ + 57). Because of random 
sampling, the expression in parentheses is independent of the universe score, 

hence the observed-score variance equals 3°(p) + o*(LpI ,€).
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(a) Total variance of Xp; over all admissible 

observations on all persons 

  

* 

<—<$_$> 1, pi, e 

Universe-score Within—person 
variance 07 (p) variance 07(A) = o2(6) 

(b) Components of observed score variance 

FIGURE 3.1. Separation of Kinds of Variance in an i:p Design. 

The error A,, was defined as X,; — mu,, and hence equals uy~ + 
Uyr™ + €pz. The quantity, o7(A) for the observed scores in the D study is 
estimated by o?(J,p/,e). The error 6 can be defined as (X,7 — Xpz) — (uy — 
ut). (We shall use a slightly different definition on p. 93.) The expression 
can be rewritten as X,;, — “, — (Xp; — ). In the i:p design each person is 
observed under different conditions and as n; or n, increases, the term in 
parentheses approaches zero. Hence 6,; approaches A,;, and in the popu- 
lation o?(A) = o7(6) = o°(J,pl,e). 

Under the i:p design the traditional statement adds that the observed- 
score variance is the sum of universe-score variance and error variance, 

whether the error is A or 6. This variance includes a variance component for 
condition means that in strictly classical theory is assumed to be zero. Horst 
(1949) and Ebel (1951), discussing the reliability of ratings, noted that the 

conditions means are often unequal in practice, and modified the concept of 
error variance to take this into account, much as we have. Differences in
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condition means contribute to the differences among observations on the 
same person made under various conditions. They also contribute to the 
differences among persons observed under an i:p design, because one 
person will draw easier items or more lenient raters than another. 

In any application of the i:p design to a large group, the mean value of 
observed scores will approach the mean of universe scores. As more persons 
are tested, more conditions enter the mean, and the expected values of the 

several components of the error score approach zero. This is true even when 
the conditions are not equivalent. Also, the population variance of observed 
scores is the same in every application of the design. It is conventional to 
define the interval estimate of uy. as Xp, + 6(A) or X,.; + 1.966(A), 
associated, respectively, with supposed confidence limits of 67 and 95% 
(see pp. 130-134). 

Lengthening the series of observations by increasing n; reduces o?(A). 
If we write o?(A,,;) for the variance with a single condition per person. 

o2(A,,,) = 02(A,,)/n; as is usual for the variance of means of randomly 

sampled observations. 
Because a different set of conditions is drawn randomly in each application 

of the measuring procedure to person p, neither the 7 nor the pi component 
covaries with u,. Consequently, observed scores have the same population 
correlation with universe scores in every application of the design, and the 
population correlations between sets of observed scores are uniform. This, 
taken with the equivalence of population means and observed variances, 
implies that in this design, the classical equivalence assumptions apply fully 

to the X,,;. 
The ratio of universe-score variance to observed-score variance equals 

p*(X,7,4,). This coefficient of generalizability is estimated by dividing a? P) 
by the estimate of observed-score variance. It is readily shown that the 
statement made above about the effect of n; on o(A) leads to the Spearman— 

Brown formula, which describes the effect on the coefficient of an increase 

in n;. (We shall write the coefficient simply as p? in the remainder of this 
section.) 

The coefficient is an intraclass correlation among observed scores. It 
differs from the coefficient proposed by Horst for the reliability of ratings only 
in that Horst followed pre-Fisherian formulas, where we follow Fisher in 
employing degrees of freedom in our estimation procedure. As Ebel pointed 
out, the Horst coefficient applies to ratings when there are different raters for 
each subject (i.e., i:p) and not when the same raters rate all subjects (ie., 

i X p). These points were clarified in the unpublished work of Buros (1963). 
Among other contributions, Buros offered a general intraclass correlation 
formula that takes into account the possibility of varying n; and so embodies 
the Spearman—Brown adjustment. From the one-way analysis of variance one
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could get 

MS p — MS within persons 
  

(3.1) intraclass = ; 

MS p + (is = mi) MS wp 
n; 

This coefficient equals the ratio of estimated universe-score variance to 
estimated observed-score variance, if the D study has an i:p design. Here, it 
makes no difference whether we regard the coefficient as a squared correlation 
between the observed score and the universe score, or as a correlation of 

two sets of observed scores. The distinction does become pertinent in designs 
where distributions of observed scores do not satisfy equivalence assumptions. 

The regression formula for estimating the universe score, assuming p? 
and « known, is 

3.2) fp =p + Ho 
o([X pI) 

When the sample for a D study represents the same population as the sample 
for the G study, the quantities p? and w can be estimated from the G study. 
Later in this chapter we shall discuss estimation for subpopulations whose 
parameters are presumed to differ from those of the population represented 
in the G study. 

The variance of errors of estimate is customarily defined by 

(3.3) o*(€) = oy — My) = o*(p)(1 — p?) 
Strictly speaking, the third member of the equation equals the second only 
when population parameters, rather than their estimates, are used in (3.2). 

The reader familiar with the Ebel paper will recognize that generalizability 
theory does not depart from his analysis of this simple design in any im- 
portant way, though we offer a slightly more general rationale. 

It has been assumed that the G study has an i:p design. If the G study 
were of the type i X p, one could still estimate the quantities discussed. 
The observed-score variance, for example, is obtained by noting that 

o°(I,pI,e) is 1/n; times the sum of the i and pi,e components of variance. 

It is possible, then, to use a single G study to obtain information on both 
the nested and crossed one-facet D studies (Cf. Ebel, 1951, and Rajaratnam, 

1960). Multifacet G studies may also estimate the needed components, but 
to fit facets of the larger study into the one-facet design requires a good 
deal of judgment. As will become clearer in Chapter 4, a j component may, 
in the D study, be confounded with p or with i; or it may enter the residual. 
And, if the universe of generalization is defined narrowly as u,;., the j com- 
ponent of variance becomes irrelevant. 

p(Xp7 — = p Xo +d - pu 

The crossed design 

Traditional test theory has generally dealt with the crossed i x p design, 
because it is usual to apply the same test form to all subjects. A consideration
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of the i x p D study draws attention to some major differences between 
generalizability theory and classical theory. 

For the D study, one selects n; conditions at random; these are applied 
to all subjects. The G study has presumably supplied estimates of the com- 

ponents of variance for p,i, and pi,e. Again, o7(p) is the desired estimate of 

universe-score variance. Table 3.2 summarizes the contrasting concepts from 
reliability theory and generalizability theory. Note the changes from Table 
3.1. 

If one does not assume equivalence of conditions, then the observed-score 
variance for the particular conditions employed in the D study can be known 
only after the D study is carried out. Each set of conditions has its own 
variance, hence the observed-score variance will differ from one application 
of the design to another. When evaluating a proposed measuring procedure 
before carrying out the D study, the only alternative is to estimate the 
expected value of the observed-score variance. That is, one estimates the 
mean value of the variances that would be found in the course of an in- 
definitely large number of applications of the design. (A condition used in 
the D study occasionally is one of those used in the G study, but it is almost 
never practical to evaluate the generalizability of scores from a specific 
condition or set of conditions; see p. 101.) 

The observed-score variance is, by definition, the variance of the deviation 

score X,; — wz. From the model, this equals uy~ + Myr~ + @pz. The 

component w;~ does not enter the deviation score, hence, the observed- 
score variance has an expected value equal to o*(p) + o*(pl/,e). In this 
design 05; = (Xp; — #z) — (Up — #), and o7(6) has the expected value 
o*(pl,e). The expected observed-score variance equals the universe-score 

variance plus this expected error variance (Figure 3.2). In Figure 3.2, diagram 
(a), the /eft circle represents the observed-score variance in ani X p design 
with n; = 1; if n; > 1, J may be substituted for i in all labels. Where yw, is 

the universe score, diagram (a) may be divided as in diagram (b). The 
observed-score variance may also be divided as shown in diagram (c) of 
Figure 3.2. 

The “error of measurement” X,; — wu, or Az; is the sum of the J and 

pl,e components, as in the nested design. There are several variances of A,; 
that might be considered: 

EN, (over sets of conditions that might be sampled, 

i for p fixed) 

EEN, (average, over the population, of the above; variance 

pl of A for the population and universe) 

2 

6 (a, 17—-@A, : (over persons, for a particular set of conditions) 
Pp Dp



TABLE 3.2. Comparison of Parameters Considered in Conventional Reliability 
Theory and Generalizability Theory (i x p Design) 

  

  

Term employed in Corresponding concept 
reliability theory and and symbol in 

usual symbol generalizability theory Remarks 

True-score variance, Universe-score variance, Directly estimated by 

o*(X.,.) o*( uy) o*(p) from G study. 

Observed-score Expected observed-score To be estimated by 
variance, 02(X) variance, &0(X,7) combining p and 

I pi, e components of 
variance. 

o*(A) equals the expected Combines the i and pi, e 

Error variance, variance within the person components of 
o2(E) variance 

&0*(0) < o%(A) Difference between 

I universe-score and 
expected observed- 
score variances. 
(Consists of the pi, e 
component of 

variance only.) 
Reliability coefficient, Coefficient of generaliz- An intraclass correla- 

p(X,X"') = p2(X,X,) ability, the ratio of tion. Interpretable as 

universe-score and ex- approximately 
pected observed-score 6 p(X p74) if con- 

variances. Denoted by &p*.  “*.. ; 
ditions not equivalent. 

Confidence interval for Confidence interval for Determined from o(A) 

true score universe score in generalizability 
theory. Classical theory 

assumes effect of i com- 

ponent absent. 
Regression estimate of Regression estimate of uni- Since the regression 

true score, equal to verse score, which ideally coefficient for the 
X.. + p(X,X")(X,, — X..) would be estimated by particular set of i 

+ p*(Xp7,My)(Xpz — Mz) used in the D study 
cannot be estimated, 

& p* must be used. 
Error of estimate, Error of estimate, squared, Estimated by a formula 

squared o(e) like the classical one, 

but this is an under- 

estimate in generaliz- 

ability theory. 
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(a) Total variance of Xp; over all admissible 

observations on all persons 

  

Universe-score Within—person 

variance o 2(p) variance o 2(A) 

(b) Division of total variance 

  

Universe-score Error variance for 

variance o 2(p) deviation scores @2(6) 

(c) Division of observed-score variance 

FIGURE 3.2. Separation of Kinds of Variance in ani x p Design. 

$1
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Throughout our work we shall be interested in the second of these and will 
denote it simply by o7(A,7), or, where no confusion will arise, by o2(A). 
Occasionally we shall refer to the first of the three variances and will label 
it o7(A,, | p) (read “for a fixed p’’). The third of the definitions, even though 
analogous to the definition of observed-score variance, can be ignored since 
it proves to be identical to o?(6,,) for condition J. 

With a crossed D study, o(A) is the sum of o?(I) and o(p/,e), and so is 
identical to o?(A) in a nested D study with the same n;. (See Figure 3.2(d)). 
How much a person’s observed score is likely to differ from his universe 
score in no way depends on whether the same conditions are used to observe 
other persons. Under the i x p design, o?(A) ordinarily exceeds &0°(6), 
although the two were equal in the nested design. 

Classical theory, assuming uniform condition means (uy = yw), ignores 
the distinction between A and 6. Lord (1962) pointed out that condition 

means are unlikely to be equal when tests are not carefully equated. Lord 
showed that the variance of the within-person error A, over nonequivalent 
tests, differs from the error variance calculated by classical formulas [which 
is like our &0?(6)]. A confidence interval of the conventional sort has to be 

defined in terms of o(A), not o(6); only if all tests (or other procedures) 

yield strictly equal means is it appropriate to use o(6).} 
To estimate o?(A) and/or &07(d) one divides o?(pi,e) and o?(i) by n;. This 

again leads ultimately to the same results as the Spearman—Brown formula. 
Whereas the Spearman-Brown formula can be brought to bear only 
in a limited way on designs with more than one facet, the principle of 
dividing components of variance by the number of conditions generalizes 
fully. 

The coefficient of generalizability has been defined (p. 17) as the ratio 
of universe-score variance to expected observed-score variance; this is 
approximately the expected value of the squared correlation of observed 
score and universe score. The coefficient is denoted by &p? for convenience. 
To estimate it, one employs the variance estimates already calculated. This 
coefficient is an intraclass correlation among observed scores, of the type 
that discards the condition component of variance from the error term and, 
hence, from the observed-score variance. 

When n; =n; the variance ratio is identical to the coefficient from the 

Hoyt analysis-of-variance procedure, Kuder—Richardson Formula 20, 
Cronbach’s «, and several other well known formulas. The most common 

procedure has been to compute the variance of scores under each condition— 
1.e., the several s?(X,, | i)—and of total scores on the test, s2(X,7). Then 

' We shall write o(6) in place of [#o?(6)]}/?, even though the latter is technically correct.
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the universe-score variance for test scores is estimated by [n/(n — 1)][s?(Xp7) — 

> SX p; | i)].2 This can be divided by s*(X,p7) to estimate the coefficient 

& p*; the same estimate can be reached from the variance components. 

For nj # n,, our approach yields a coefficient identical to that given by 

the Spearman—Brown correction of a coefficient from one of the procedures 

mentioned previously. Ebel recommended application of this type of intra- 

class formula to G data where the same raters rate all subjects. Buros (1963) 

offered a version of the formula that takes into account directly the possibility 

that n; differs from n;,: 

MS p — MSr 
  

(3.4) rintralcass — n—n 

MS p + (=— i 
n 

MSr 

The more nearly uniform the observed-score variances and the p*(X, pep) 

under separate applications of the design, the more closely does the intraclass 

correlation coincide with p?(X,;,4,) for any one application. Monte Carlo 

studies (Cronbach & Azuma, 1962; Cronbach, Sch6nemann, & McKie, 

1965; Cronbach, Ikeda, & Avner, 1966) show that the discrepancies between 

the population intraclass correlation and the alternative coefficients listed 

above are extremely small whenever the number of conditions of a facet is 

reasonably large in the D study, or the variance within conditions differs 

little from condition to condition. 

The formula for making point estimates of universe scores, expressed in 

terms of population means, is 

“~~ 
(3.5) fay = (Ep?) Xor — MD) + 

In Chapter 5 we shall discuss whether the sample mean from the D study or that 

from the G study, or a combination, should be used in evaluating the means. 

Where conditions are equivalent in the classical sense (equal means, equal 

variances, and equal intercorrelations) and n, is indefinitely large, the 

equation is identical to the regression equation of classical theory. An 

expected correlation is used in the estimation equation instead of the genuine 

regression coefficient for the particular condition in the D study. Therefore, 

if conditions are not equivalent, the estimate is not the best one conceivable. 

An equation for estimating the variance of errors of estimate is 

a™N 

(3.6) a%(e) = o%(p)(1 — &p*) 

2 The vertical line is a conditional notation like that used with fixed J* in Chapter 2. 

Here, it implies that while p varies, i is held constant.
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This is strictly appropriate only where the genuine regression equation 
applying to the conditions in the D study is used. If conditions are not 
equivalent, the estimates from (3.5) will have an error greater than (3.6) 

oN oN 
indicates. Formula (3.6) should be distinguished from [€0?(X,,)](1 — &p?), 

which estimates ¢’o7(6) when applied to this design. 
Our numerical results for the i x p design depart from those obtained 

under the classical formulas in only one major respect. That is the use of 
6(A) in defining the confidence interval rather than 6(6). When tests are 

strictly equivalent, and the sample of persons for the G study is large, our 
theory reduces to the classical theory and our formulas give precisely the 
same results as traditional ones. [Where x, is small, there will be some 

difference between the intraclass correlation and the average of correlations 
r(X,X°), even though conditions are equivalent in the population.] Our 
theory has more radical implications in multifacet studies. 

B. The Error A 

This section presents in detail the technique for estimating o(A), which is 
used in establishing confidence intervals. 

The decision maker who forms a confidence interval for the person’s 
universe score is presumably interested in its absolute value , and he takes 
the observed score as a direct estimate of it. We shall discuss interpretation 
based on the raw score. Though a similar logic may be applied to standard 
scores, IQs, etc., this introduces some risk of misinterpretation (see p. 134). 

The term A,,, is written for the discrepancy X,77 — fy. The within-person 
standard deviation, to which the confidence interval is proportional, is 
o(4,7,). We can represent the universe score, and consequently A, in terms 

of the score components introduced earlier. Whatever the components of A 
may be, the variances of these components make up o?(A). An estimate of 
the average value of o7(A,,, | p) over all persons in the population can be 
obtained from the G-study estimates of component variances. The square 
root is taken as an estimate 6(A). This estimate, subtracted from and added 
to the observed X,.,,, defines an interval that, according to the model, is 
likely to contain “,,. We first review statements made above regarding A 
in one-facet D studies. This allows us to display a scheme of analysis that 
will be useful with more complex designs. 

One-facet studies considered in detail 

In arriving at a confidence interval for u,., there is no need to consider 
whether other persons are observed, or under what conditions they are 
observed. The within-person design is simply i:p*. Crossing of p with i does
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not affect o(A), the ‘“‘within-person’’ standard deviation. The term o(A) is 

defined over all sets J that could be drawn from the universe. 

In Table 3.3 there are five columns where scores and variances are resolved 
into components of the one-facet model. It is to be understood that a score 

or variance indicated at the head of the column is the sum of the components 

appearing below it. Only the “frequency” column is of a different type. 

TABLE 3.3. Components of Scores ina D Study with the Design i:p or i X p 

(Generalization to Up) 

  

Variance Frequency 

  

Xr Ly Apr component within p o2(A) 

be Lu 
Ly™~ Hy™ o*(p) 

By~ y~ o*(i) n, o*(I) 
Mpt™; e Myr ™> & o*(pi,e) Nn, o*(pl,e) 
  

The first column of Table 3.3 contains the basic breakdown of X,,; into 

score components, and the second column contains yu, in terms of the 

components. Since A,; = X,; — fy, one subtracts, component by com- 

ponent, to identify the components of A,,;. For each component of Xp; 

(except the constant yz) there is a variance component that should have been 

estimated by the G study. The D-study design yields n; observations on the 
u,~ and u,,~,e score components. Then, because o°(J) is the variance of 

the mean of n; values of uw,;~, o7(I) = o7(i)/n;. This gives the required entry 

for the final column. In general, any entry for the o?(A) column is obtained by 

dividing the elemental component of variance by the frequency with which 

the corresponding score component is observed in the D study. Figures 3.1 
and 3.2 both indicate that the total variance of all X,,; for many persons and 
conditions decomposes into a person component and a sum of within-person 

components. The person component is the variance of universe scores, and 

the within-person variance is the variance of the A,,. 

In drawing aconclusion about person p*, one would like to know o(A,, | p*), 
the standard deviation of scores for p* alone. This need not be the same as 
o(A |p) for other persons, because o°(pi,e |p) may vary from person to 

person. [o?(i) is the same for all persons.] In theory, it would be wise to 

make a direct estimate of o(A) for p* by observing p* under a great number 
of conditions, using those data alone for a G study. Unfortunately, it is 
almost never practical to do this for a person about whom a decision is 
being made, because 7; is almost always small. Rarely, it is practicable to 
work out a value of 6(A) for persons having observed scores in a limited 
range. The usual practice is to estimate the expected value of 0?(A,; | p) for
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the population of persons represented in the G study, a population from 
which p* is presumed to come. 

To estimate &o7(A,,), the entries in the last column of Table 3.3 are 
simply summed. The square root of that sum is the estimate of o(A). The G 
study may have used a i x p design, in which case the required o2(i) and 
o*(pi,e) have been directly estimated. If the G study used an i:p design, 
only the confounded o*(i,pi,e) was estimated. But this is simply the variance 
of Ujy~ + Myr + ep, and is equal to o7(i) + 0°(pi,e). Since the divisor for 
both components is n;, o?(A,,) can be estimated by the procedure shown in 
connection with Table 3.3. 

The confidence interval is formed by combining a multiple of é(A) with 
the observed score. The usual practice of testers is to employ 1 as the multi- 
plier. Assuming a normal distribution, they conclude that X,, — 6(A) < 
Ly S Xp, + G(A) with a probability of 0.67. That is, it is presumed that 
when this technique is applied consistently, one-third of such statements 
locating uw, for individuals will be incorrect. This is a high rate of error, 
but the developer of psychological and educational tests finds the interval 
embarrassingly wide if he moves to a more conservative risk level. It is 
awkward enough to admit that a test of the usual length locates the “true”’ 
IQ somewhere in a range from 105 to 115, for instance. To form a confidence 
interval by raising the multiplier to 1.96 (the value most often used in 
statistical inference) would generate the embarrassing admission that the 
IQ is located only within the broad range 100-120. However, the probabilities 
associated with universe-score confidence intervals are misleading in several 
ways, as Chapters 4 and 5 will show. 

Two-facet D studies 

We move on to the two-facet D study that employs an i x j design within 
the person. This design may be any of the three where i x j appears in the 
“within-person”’ column of Figure 2.4 and Table 2.1. There are n; conditions 
of i and n; of j. 

To evaluate o2(A), Table 3.4 (similar to Table 3.3) is compiled with seven 
components of variance. (See also Figure 3.3.) If a component such as 
o*(pi) has been estimated in the G study, the corresponding o(p/) is estimated 

by dividing 5°(pi) by the entry in the frequency column. Entries for the 
frequency column can be obtained from Table 2.1, considering a crossed 
within-person design, setting n, = 1, and, of course, adding primes to show 
that a D study is under consideration. 

The G study introduced in Table 2.2 provides the basis for a numerical 
example. The analysis in Table 3.5 assumes that the D study will use 10 
items and | scorer. (Three scorers were used in the G study). We find that
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TABLE 3.4. Components of Scores ina D Study Where i is Crossed with j within 

the Person (Generalization to [p) 

  

Variance Frequency 

  

Xr Mp Apts component within p o2(A) 

iu yu 
by~ Hpy™ o*(p) 

My~ My~ o°(i) ni o*(I) 
My~ by~ o°(j) n; o*(J) 
Upy~ Upy~ o*(pi) n, o°(p!) 

Moy ~ May ~ o*(pj) n; o°(pJ) 
Mry~ Pry ~ o*(ij) nin, ov(1J) 
Hoty ~> © Lot y~> © o*(pij, €) nin; o(pIJ, e) 
  

6(A) is 0.93. Compared to the range of 16 points allowed by the grading 

scale, this implies fairly good agreement. It may or may not be adequate for 

the intended use of the scale, and if it is inadequate, one would increase n; 

or n; or improve the scoring rules. 

An investigator might have investigated this design by a G study with a 

single scorer, having i as the only variable facet. The two-facet information 

shows the pjcomponent to be a rather large element in o°(A); this information 

could not have been obtained from the one-facet G study. 

Only a G study with Design VII estimates the variances of all components 

of X,,; separately. If a study has used some other design and estimated 

TABLE 3.5. Estimation of o°(A) for a D Study with the Design i Xj X p 

(n, = 10, n, = 1; Generalization to My) 

  

  

Estimate 

Source of variance Frequency 

of variance component® within p o2(A) 

P 5.71 

i 1.32 n, = 10 0.13 

j 0.09 n, = 1 0.09 

pi 2.57 n, = 10 0.26 

Pi 0.21 n; = 0.21 

ij 0.07 nin; = 10 0.01 

pij, é 1.57 nin, = 10 0.16 

0.86 = o%(A) 
  

  

@ Calculated on page 44.
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certain variance components only in combination, one may still apply the 
results to the Design VII D study. Because, for example, the frequency within 
the person for i and pi is the same in the D study, the combined contributions 
of these effects to o?(A) can be estimated from any design having i and pi 
confounded. Similarly, a design with j and pj confounded estimates the 
combination of those effects. Therefore, a G study with Design IV-B, 
(i x j):p, or Design V-B, j x (i:p) or i X (j:p), provides the estimates 
needed. (The reader may find it profitable to determine why 7 x (i:p) is 
usable but j:(i x p) is not.) If n; or nj equals 1, estimates from still other 

designs may be used; for example, if n; = 1, it is possible to use a G study 
with design j:(i x p), where j,p/,ij, and pij,e are confounded. 

If the D study has 7 nested within 7, one alters the j and pj entries of the 
frequency column in accord with Table 3.6 (which is based on Table 2.1). 
The j and pj components are sampled n; times as often as in the crossed D 
study. Consequently, o?(A) is smaller. That is, X,7, is generally closer to uy 
when a j:i within-person design is used for the D study than when a crossed 
design that collects the same number of observations per person is used. 

As might be suspected, weakening the design to (i,j):p further reduces 
o*(A). Consider a study in which one j is sampled along with each i. To 
obtain the same number of observations per person as before, more con- 
ditions of i must be selected. Doing this keeps the components for J,pJ,1/, 
and plJ,e the same as before, and reduces the components for J and pl. 

Consequently, where X,;, is to be taken as an estimate of the value of py, 

there is an advantage in carrying out the D study by the very weak design 
that pairs each 7 with just one /. 

Measuring procedures most often employ a crossed design. For example, 
the typical investigator administers the same set of items on two occasions, 

TABLE 3.6. Number of Observations of Each Component of Ajz3 as a Function 
of the within-Person Design of the D Study 

  

Number of observations per person 
  

  

Score 
component ix] jul tJ? 

_~ n / nin’ 

Mi i n; il; 
pw n’ nin’ nn’ 

0 i pa a 
Hpai™ M; M , My 

iio) "hy ah m4 
Ma mn ne ney 
Mpij ~s € nn; nN; nn; 
  

@ These entries employ the convention stated in footnote b in Table 2.1. The product nin; 
equals the number of observations per person.
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crossing items with occasions. In another study, he collects three protocols 
of a teacher’s classroom remarks, and has each protocol scored by the same 
four scorers. But he would get a smaller o(A) if he were to break the test 

into many small parts, each to be given on a different day, or, in the second 
study, if he collected 12 protocols and had each scored by a different person. 
Practical considerations limit the use of such designs. It is inconvenient to 
test on many days; a fragment of a test may be too short to allow for proper 
warmup; setting up recording equipment in the teacher’s classroom a dozen 
times may be impractical. Our analysis shows a benefit to be gained, however, 
by weakening the design when one can. These remarks apply, of course, 
only to the error A; weakening the design increases other kinds of error. 

If a certain component of o7(A) is large and an absolute interpretation of 
Xpr1z 1S intended, it would be wise to sample that effect quite thoroughly ina 
D study. If an effect is small, on the other hand, an effort to control it in the 

experimental design, or to sample it extensively probably is not warranted; 
this type of reasoning will be discussed in Chapter 7. 

C. Observed-Score Variance and the Error § 

Observed-score variance as a function of the D-study design 

Whenever decisions are to be determined by the comparative standing of 
individuals, one is interested in locating the individual within his group as 
accurately as possible. The absolute universe score is then unimportant. 
Research concerning correlations among variables similarly emphasizes 
comparative rather than absolute standings. To evaluate interpretations of 
these sorts, one compares the universe-score variance with the expected 
observed-score variance; the higher the ratio, the more the observed ranks 
correspond to the ranks of the universe scores. The developments in this 
section are also pertinent in making point estimates of universe scores. 

Estimation of the observed-score variance receives no particular attention 
in classical theory, because the variance of the scores in the reliability study 
is directly calculated. For us, however, the G study is a basis for thinking 
about data that may be collected in future D studies. The observed-score 
variance that will arise in any one study cannot be directly calculated, but, 
knowing the proposed design, it is possible to estimate the variance. How- 
ever, one can do no better than estimate the average of variances for all D 
studies with such a design in this population and universe. The average is 
referred to as the expected observed-score variance. 

The observed-score variance is defined as the mean square of the deviation 
score—the person’s score minus the mean over persons. The mean is for 
scores collected according to the design proposed for the D study. As long 
as the sample variance is an unbiased estimator of the population variance,
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it makes no difference whether the deviation score is taken from the sample 

mean or the population mean. Notational problems become quite awkward 

when we attempt to distinguish the means and variances formed under 

various designs. Therefore, we shall minimize notational refinements, 

generally writing o?(X) for the population variance arising under a single 

application of whatever design is under discussion, and é0?(X) for the 

expected value over all applications of the design. 
Table 3.7 employs a scheme similar to Tables 3.3 and 3.4. This scheme 

breaks the observed score and the mean for Design VII into components. 

The score breakdown agrees with Table 3.4. In Design VII all subjects are 

observed under the same J. Consequently, the same ,; component enters 

every score and also the mean, m;,. Similarly wz enters the mean. Score 

components that differ from one person to another become zero in the 

population mean, as indicated by the blank spaces in the column for com- 

ponents of 7. These are the components that remain in the deviation score 

formed by subtracting 4, from X,; 7. Estimates of the variance components 

are taken from the G study. The variance for each component of the deviation 

score is divided by the frequency (within the person) with which that com- 

ponent was observed in arriving at X,,,; this estimates the contribution of 

the component to the expected variance of observed scores. 

TABLE 3.7. Components of Expected Observed-Score Variance in a D Study 

with the Designi x j X p 

  

  

Frequency 

Population within 

mean Deviation Variance deviation 

X pis Mry score component score 60°(X) 

le ye 
My My o*(p) 1 o*(p) 

My~ ey~ o*(i) 
by~ My~ o(j) 

Up ~ Up ~ o*(pi) n; o*(p!) 
bog ~ Uny™ o*(pj) n; o*(pJ) 

ry ™ Myy™~ , o*(ij) 

Hoty ~> © Morty ~> © o*(pij,e) nin; o*(pIJ,e) 
  

In Figure 3.3, diagram (b) indicates the composition of the observed-score 

variance. Score components that fall outside the p circle in diagram (a) are 

the same for all persons under this crossed design. Therefore, they do not 

contribute to observed-score variance and are omitted from diagram (b). 

A similar analysis may be made for any other D-study design. Which 

components drop out of the deviation score depends on how conditions are
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TABLE 3.8. Number of Observations on Each Component of the Deviation Score 
as a Function of the Design of the D Study* 

  

Design of D study 

  

  

Score VII V-A V-B IV-A IV-B III-A III-B® IJ» 

component i Xj Xp (j:i) X pi X Gf:p) jf: X p) GX j):p jrisp Gj) xX p Gj):p 

Hy~ 1 1 1 1 1 1 1 1 

hy~ ny n, nin; 
, so? / yes see 

hy~ Nn; n,n, n; n,n; nn; 

J , / 4 / / ye? of 

boi~ n; n; n; n; n; n; n,n; nN; 
bys n; nn; mm Mg tit; 

47? | a se ff ae 

Hiy~ nin; n,n; nin; mals , MMs 
‘es 4d ef fs oof? / a 

  

@ The contribution of each component of variance to &0(X)is inversely proportional to the 
number shown. 

b Number of observations fixed at n,nj pairs per person for comparability to other designs. 
Normally 2) = n,. 

crossed with persons. In Designs IV-B, III-A, and II, the population mean 
of observed scores is u. Therefore, seven score components from X,,, carry 
over to the deviation score and contribute to the variance. Table 3.8 sum- 
marizes the way the components of variance enter the observed variance, 
and presents arrays comparable to the “‘Frequency’’ column in Table 3.7. 
Reciprocals of the frequencies serve as weights for the variance components. 
If there is no entry beside a component, the component does not contribute 
to observed variance for the design in question. 

The reader is reminded once again of our convention of using average 
scores rather than totals. For ratings and observations, it is common to state 
the composite score in the form of an average. All the formulas we have 
given apply directly to averages over conditions. Test scores, however, are 
usually totals of item scores. For the sum-of-observations type of composite, 
the expected observed-score variance given by the procedure just outlined 
must be multiplied by the square of the number of scores entering the sum 
in the D study. Occasionally, the observed score may be formed by averaging 
over one facet and summing over another. Then the observed-score variance 
obtained by the method outlined must be multiplied by the square of the 
number of summands, whether these are themselves elementary scores or 
averages. 

The G study generates one particular observed variance. That variance is a 
single sample from the distribution of variances the design would generate. 
The &o0*(X) derived from the G study is unlikely to coincide with the actual 
observed-score variance in a study made later.
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The error 8 

It is convenient to define the error 6,7, as the difference between Xp77 — bry 

and uw, — where. A slightly different value would be obtained if the deviation 

from the sample mean Xp;, were considered as on p. 76, but this dis- 

crepancy is of no consequence. The mean mz, of course is determined by the 

design for the D study and the sample of conditions selected. 

In classical theory, ‘““observed-score variance equals true-score variance 

plus error variance.’’ In our terminology, the expected observed-score 

variance in the population equals the universe-score variance plus é0°(0). 

This follows from the fact that the observed-score variance is the mean 

square of the deviation scores; each deviation score may be divided into 

two components: one the universe score, expressed as a deviation 

from the population mean, and the other 6,7. The composition of é 07(0) 

and its magnitude depend on the experimental design. 

In Table 3.8, components of the deviation score for various designs were 

identified. All the components except “.,~ are components of 6. Therefore, 

&0°(d) = &02(X) — o7(u,). Now it is possible to complete the interpretation 

of the preceding figures. In Figures 3.1, 3.2, and 3.3, the expected observed- 

score variance is decomposed into the universe-score variance and é’0°(0). 

The reader can contrast the components of &07(6) with the components of 

o?(A). 
It is possible to convert the observed deviation score for p into an interval 

estimate of u, — m, by writing (Xp77 — Xprz) + 46(6). For tests that have 

been rendered equivalent, either by careful construction or by means of a 

conversion scale, 6 = A, and the standard deviation of either may be referred 

to as the standard error of measurement. Where conditions are not equivalent, 

the standard error computed by the classical formula resembles o(0) rather 

than o(A). The interval estimate of the deviation score based on 6 appears to 

have little practical significance. However, o(6) is pertinent to the problem 

taken up in the next section. 

Confidence interval for a difference between persons 

Comparative decisions, such as the selection of the best 3 out of 10 applicants 

for employment, are based on individual differences. The decision that 

applicant 3 is truly better than applicant 4 can be made confidently if their 

observed difference is substantially larger than its standard error. 

In this type of comparison we have scores X,,; and Xp, where p and p’ 

differ, but i and i’, or j and j’ may be the same. For simplicity, it is assumed 

that n =n), = 1. Presumably, one wishes to generalize to the universe-score 

difference Uy — [My 
Table 3.9 shows how the error of generalization for the difference can be 

evaluated. If conditions i and j are nested within persons, there is a different
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i and j for each person. Therefore, all score components except “,~ contrib- 
ute to the error. The expected variance of wj~ — wy~ equals 20°(i); a 
similar expected variance is found for each other component. 

The next column examines the possibility that iis crossed with persons and 
jis not. In such a D study the component for i cancels out of the difference 
score. In the third design, where both i and j are crossed with p, the final 

column indicates that the 7 and ij components also disappear from the 
difference score and from the variance. 

It is readily seen that the error variance for the difference in each case 
equals 2607(6,,;) where that variance is properly calculated for the design 
under discussion. This same general statement holds for designs with larger 
n, and n;. Therefore, 6(6) gives an indication of the adequacy of the measuring 

procedure for making comparative decisions. Table 3.9 is developed in terms 
of components of the error (i.e., of the discrepancy between the observed- 
score difference and the universe-score difference). Only trivial changes in 
notation would result if deviation scores were used in the development. 

If many judgments are to be made regarding the comparative superiority 
of individuals, a confidence interval could profitably be formed for each 
person’s score, extending, for instance, 6(6) units on either side of the observed 

score. Then, if the interval for one person is entirely above the interval for 
another person, the difference in their observed scores is at least 1.41 times 
the standard error of the difference score. Judgments that the universe 
score of the higher scoring person is superior to that of the lower scoring 
person will be correct with probability >0.84. Criticisms to be made later of 
such probability statements do not apply here. If the two persons are members 
of the same group, and therefore the only information on which one can 
distinguish them is the observed score, the statistical inference is sound. 

It is now evident that a design that minimizes &o?(6) improves the accu- 
racy of conclusions about individual differences in yw. Allcomponents of X57, 
except that for p can contribute to the error of generalization. Conse- 
quently, when individual differences are the concern, a D-study design that 
eliminates other components from the observed score, or samples them 
frequently to reduce their contribution to variance, is preferred. The familiar 
crossed Design VII is good for this purpose, because it brings several potential 
sources of unwanted variance under experimental control. But III-B— 
(i,j) X p—proves to be better. Design III-B eliminates the same components 
as Design VII, and it samples each of the remaining components a greater 

number of times. 
Suppose that each preschool child is to be observed by several child- 

development students, to provide a score representing differences in aggressive 
behavior. Generalization over observers and occasions is intended, and it 

has been decided that a total of 25 observer-hours may be used. Then Design
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VII would probably call for sending five girls to visit the school together 
five times. Design III-B would call for sending 25 girls, each at a different 
time. In either design all pupils are observed by the observer on each visit. 
According to Table 3.8, Design III-B would reduce the pi and pj components 
of variance markedly. These components are regarded as “errors of obser- 
vation’”’ by the investigator who is interested in aggressiveness without 
regard to occasion or observer. Because he wants to minimize the effect of 
occasion and observer, he prefers Design III-B to VII. Further examples of 
this line of reasoning will appear in Chapters 6 and 7. (The practical tester 
has to be concerned with nonmathematical matters also, such as whether 25 

adequately qualified observers can be recruited.) 

Confidence interval for a group mean 

The reader should be familiar with the textbook technique for determining 
the standard error of a mean. The standard deviation of observed scores is 
divided by the square root of the number of observations. The resulting 
standard error can be used to establish a confidence interval for the popu- 
lation mean. It is this technique that the tester has adapted to establish a 
confidence interval for a universe score. 

In experimental research, in educational evaluation, etc., a tester may be 

primarily interested in the group mean. The textbook teaches him to derive 
the confidence interval from the standard deviation of observed scores and 
n,. This may work well enough for many studies, but it tends systematically 
to underestimate the confidence interval for the mean the tester should be 
most interested in. The conventional approach, applied to a score X,,, and 
its mean Xp; 7, establishes a confidence interval for u;,, not for u. The 
sampling of persons, but not the sampling of conditions, is taken into 
account. 

If the tester wishes to generalize from the sample mean X>p,, to p, the 
mean expected over the population of persons and conditions, the error is: 

(3.7) Apry = Xpry — = bpm + ew + bw + pra + py~ 
+ hy + bprg~ + epry 

The experimental design determines how many i and j enter the means. 
With the use of the information in Table 2.1, for a D study of Design VII, 

1 1 1 
(3.8) Apyy = n > by + n! > him + n’ > ha 

ee > Hpi to ne > Mai + TT 7 2 > big 
" n,n 

' n ’ > > > (gr + Cy: 3) 

pln; 
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Hence, the variance over samples of persons and conditions: 

(3.9) o*(Apry) = ~~ 0%(p) + ~ o*(i) + ~ oj) 
Np I 

1 . 
+ — o(ij) + 4 C0513) 

nin’. n and D 

The components o?(p) and &o%(6) together constitute the expected observed- 

score variance; the second, third, and fourth terms of (3.9) are omitted from 

the error variance for the group mean as it is usually calculated in statistics 

texts.® 
With other two-facet designs, similar equations apply. Components enter 

&o%(6) with different weights in each design, and the multipliers for the i 

and j components of variance change. If i is nested within p, o?(i) disappears 

from the equation [but is counted in &o%(6)]. Similarly for j nested, or 7 

and j nested. This nesting reduces the discrepancy between the conventional 

standard error of the mean and ours. Where the foregoing argument applies, 

the investigator wishes to generalize beyond the particular conditions /, J, 

etc. represented in the experiment or test to a larger universe. Increasing n, 

has only limited ability to increase the power of his experiment; even with 

the sample of persons indefinitely large, the population-universe mean is not 

precisely estimated. 

D. The Coefficient of Generalizability and the Error & 

Where the universe score is 4, 0(p) alone is the universe-score variance. If 

multiplication of observed-score variance (e.g., by ,”) is required to estimate 

variance for a total score rather than an average, the estimate for universe- 

score variance must be similarly multiplied. 

The intraclass correlation 

The coefficient of generalizability for a certain universe and D-study design 

is the ratio of the universe-score variance to the expected observed-score 

variance for that design—an intraclass correlation. It is completely com- 

parable to the traditional reliability coefficient except that full attention has 

to be given to the universe definition and to the design of the D study. Since 

3 Our statements here have much in common with those of Mosteller and Tukey (1968, 

p. 122 ff.). The flavor of their discussion is given by section headings, to wit: “Hunting out 

the real uncertainty,’’ and “How a// n can mislead.”
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the D-study design need not be the same as that in the G study, one can 
arrive at a number of different coefficients from a single G study. 

The coefficient for a certain D-study design could be obtained directly by 
applying the design repeatedly to the same large group of persons, a different 
set of conditions being drawn for each application. Each sample of conditions 
would produce an array of scores, which could be converted into deviations 
from the group mean. An intraclass correlation could then be computed for 
the matrix of deviation scores arising from the several applications of the 
design. Taking deviations eliminates any effect that is crossed with persons. 
The coefficient to be estimated is a value for the population and universe; 
it equals the limit of the intraclass correlation, as the number of persons and 
the number of applications of the design increase without limit. 

One might think of intercorrelating all pairs of columns in the hypothetical 
matrix of scores from many D studies. The average correlation would be akin 
to the conventional correlation between two independent measurements for 
the same persons. The intraclass correlation is quite similar to this in con- 
ception, but has the advantage that a single calculation takes into account 
all pairs of conditions at once. Scores are not standardized within columns 
as they are in calculating the conventional interclass correlation. Any 
differences in population variances among the several sets of observed scores 
will therefore lower the intraclass coefficient to some extent. 

Because the relation of observed score to universe score is more funda- 
mental than the relation between independent observed scores, we think in 
terms of the squared correlation of observed score with universe score. This 
varies from one application of the design to the next when conditions are 
not equivalent; the intraclass correlation approximates its expected value. 
We therefore identify the coefficient as &p?(X 77,4) and use the abbreviated 

symbol é’p?. The expectation is defined over experiments applying the 
specified design to the population. A fuller notation would indicate the facets 
and their crossing and nesting in the D-study design, and would give the 
values of n; and nj. The reader is reminded once again that for any measuring 
procedure there are many coefficients—one for each design that may be 
proposed. 

The estimate of &p? is made as in the one-facet study, by dividing the 
estimate of universe-score variance by the estimate of expected observed- 
score variance. This is a consistent estimate (Lord & Novick, 1968, p. 202) 

but not a truly unbiased one. Although a ratio of unbiased estimates of two 
parameters is not a strictly unbiased estimate of the ratio of the parameters, 
this is unlikely to introduce appreciable error. With the use of the com- 
ponents estimated on p. 44 from the data of Table 2.2, and assuming a 
crossed D study with 2; = 10 and n; = 1, Table 3.10 yields these estimates: 
~~ “~ aN 

&0*(X), 6.34; o?(u,), 5.71; and &p?, 0.90.
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TABLE 3.10. Estimation of & p*, o*(e), and &0°(6) for a D Study with the Design 
ix j x p(n, = 10,n, = 1; Generalization to wy — 4) 

  

  

Estimate 

Source of Frequency 
of variance within the 

variance component® deviation score €o*(X) o*( Uy) 

P 5.71 1 5.71 5.71 

i 1.32 

J 0.09 

pi 2.57 n, = 10 0.26 

Pj 0.21 n; = | 0.21 

ij 0.07 

pij,e 1.57 nn, = 10 0.16 

6.34 5.71 

a 5.71 0.903 

e634 
o%(e) = 5.71(1 — 0.903) = 0.55; (ec) = 0.74 

aN 
&07(5) = 6.34 — 5.71 = 0.63; 6(6) = 0.63!/2 = 0.79 

o7(A) = 0.86; 6(A) = 0.93 (from Table 3.5) 
  

® Calculated on page 44. 

Extension to subpopulations. Very often D data are collected on a sub- 
population rather than on the full range of the population represented in 
the G study. Ideally, there would be a new G study for the subpopulation, 
but this is not always practicable. Estimates from the original G study can 
be modified to fit the subpopulation, as in classical theory. Classical theory 
assumes that the ‘“‘error variance’ has the same magnitude in the subgroup 
as in the original population. Having obtained the observed-score variance 
directly from the subgroup data, the classical approach subtracts the error 
variance to estimate the true-score variance for the subgroup. The procedure 
is applied not only to samples that are subgroups of the original population, 
but also to groups that have a wider range of ability. 

A similar correction for “restriction of range’’ can be made in generaliz- 
ability theory. It is necessary to assume that all components of o?(A), or at 
least all components of &o7(6) in the D-study subpopulation, equal those in 
the G-study population. As in classical theory, cases entering the subgroup 
must be selected without regard to scores on the particular conditions 
selected for the D study. 

It is presumed that the distribution of u, in the subpopulation differs from 
that in the population. It is necessary to obtain observed scores for the
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D-study subpopulation and to calculate the observed-score variance directly. 
One then subtracts from the observed-score variance the G-study estimate of 
any component such as o?(p/) or o?(/) that contributes to it, to obtain the 

new 5?(U,). This, divided by the observed-score variance for the D-study 

sample, gives a value of Ep for the subpopulation. 
The assumption made is one of long standing, and is often plausible. 

However, if the subpopulation falls near the upper extreme of the scale, 
ceiling effects may reduce other components of variance as well as o?(p). 
At the lower extreme, there may be a floor effect; but, under circumstances 

where guessing is possible, the residual component may be increased in a 
low scoring subpopulation. 

Testers will undoubtedly continue to use the correction for restricted 
range as a rule of thumb, because tests are applied in subpopulations where 

no generalizability study has been made. Empirical studies comparing 
indirect adjustments of o?(p) and &p? with those directly determined from 
distinctive subgroups within the G-study sample should be made for some 
typical measures and populations. This will increase our knowledge regarding 
the extent to which the indirect procedure is misleading. Such studies em- 
ploying the more complex designs and weaker assumptions of generalizability 
theory would supplement earlier work under the classical model (Gulliksen, 
1950, pp. 197-198). 

Effects of nonequivalence of conditions. Our model acknowledges the 
possibility that different conditions will produce scores with nonuniform 
Statistical characteristics. The classical assumptions that tests have equal 
means, variances, and intercorrelations have been avoided. This limits one’s 
inferences—for example, from a G study with the i x p design, we estimate 
the expected value over I of o?(X,, | J). When we do not assume equivalence 
we can regard this as no better than a rough estimate of the observed-score 
variance arising under the conditions of i that may be drawn for any one 
study. Nonequivalence similarly restricts inferences about correlations. 

For D-study designs that do not cross p with any other facet, scores 
obtained under the random-sampling model completely satisfy the classical 
equivalence assumptions. This is true even if there is marked non-equivalence 
of scores from condition to condition. The scores obtained under every 
application of the design have the same limiting distribution as nj, increases. 
The interclass correlation between scores from any two applications ap- 
proaches a limiting value equal to the intraclass correlation & p?. 

Where there is crossing of p with facet i (or j, etc.) observed-score variances 
may differ from one application of the design to the next, and intercorre- 
lations between pairs of independently obtained observed scores may differ. 
The intraclass correlation (our coefficient of generalizability) truly equals
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the mean of p(X,X’) or the mean of p?(X,u,) only if all observed-score 

variances are equal. One must be hesitant, then, in taking the coefficient of 
generalizability as representing the parameter p?(X,u,) for any particular D 
study with conditions crossed. The hazard is much reduced when many 
conditions of i and j are sampled for the D study, because this tends to 
produce equivalence of J and J from different applications of the design. 

It would be highly desirable to have numerical experiments with higher- 
order designs, similar to those that have been made for the one-facet crossed 
design (see p. 83). These would provide needed information concerning the 
correspondence of the intraclass correlation to interclass correlations and 
to the squared correlations of observed score with universe score. Empirical 
studies with various kinds of data would also be illuminating. One can be 
sure that no serious discrepancies will arise where the number of conditions 
of each facet in the D study is large or where the conditions are closely 
comparable. Ordinarily, except where the facet considered is test items or 
peer raters, however, an investigator uses only a small number of conditions 
in his D study. 

Difficulties of evaluating specific conditions. The model that we employ 

recognizes that the conditions employed in the D study have their own 
specific components uw; — f, U,y~, etc. Therefore, where the design has / 

crossed with p, one might think of evaluating o7(A,,;| J), o?(X,;), and 
p*(X,7,/4,)- Of these, the D data directly estimate only o?(X,,). 

In theory one might carry out a G study with ij x p that includes the 
particular conditions J* as part of a larger collection of conditions of i. 
One could then infer from this the parameters that indicate how well X,7+ 
or X,7*,, etc. can be generalized to uw,. Equations can be developed for this 
purpose. For example: Write I’ for a set of n; conditions in the G study that 
has no 7 in common with J*. Then in aj: (J x p) study that collects data on 

both /* and J’, the covariance of X,;+, with X,,7 estimates o(X,;+,u,); the 

estimate improves as n, (i € I’) increases. 

The difficulty with such a proposal is that the size of the set J’ must be 
very large to achieve a stable estimate of the specific covariance. It is not 
worthwhile to attempt this unless the covariance varies from one J to another. 

Yet the more the parameter varies, the larger the sample of conditions 
required to make I’ representative enough of the universe to obtain stable 
estimates. A small amount of numerical experimentation leaves us pessimistic 
about the practical utility of investigations of parameters for specific con- 
ditions from conventional crossed designs. 

Possibilities that we have not investigated are opened up by the theoretical 
work of Lord and Novick (1968) who stay within the one-facet model for 
“nominally” parallel tests. Formally, this is equivalent to our assumption
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that conditions i are randomly sampled from a large set. Lord and Novick 
arrive at conclusions generally similar to ours, but they recommend (p. 210) 
estimating what they call the “generic reliability coefficient” —our p?(X,,;4,/l,): 
They suggest that this can be estimated not only by the design discussed 
above, which is ordinarily of no practical value, but also by an item-sampling 
design. Essentially, their plan is to divide a large sample of persons at random 
into three or more subgroups and to observe each subgroup under i* and 
one other condition i (different for each subgroup). Another tentative 
proposal is made by Overall (1968). These possibilities have not yet been 
studied in any detail, and nothing is known about the difficulties that may 
arise when they are extended to the multifacet universe. 

The Lord—Novick argument, which is a modern version of methods ex- 

plored by Burt (1936, pp. 270-297), becomes particularly appealing when the 

set of tests is believed to have just one common factor. In this case, inter- 
correlations among three tests (derived from one large sample or three 
separate large subsamples) provide a sufficient basis for accurate determi- 
nation of the correlations of scores for each of the three with the universe 
score. This model can accept multifacet data, and can recognize the systematic 
difference in error variance that might be associated with different facets. 

The point estimate of the universe score 

A linear function of the observed score gives a better estimate of the universe 
score than the observed score itself. The function is a weighted average of the 
person’s observed score and the observed mean in some group to which he 
belongs, as was seen in (3.2) and (3.5). The person’s raw score in the D study 
is weighted by the coefficient of generalizability, and the group mean is 
weighted by one minus the coefficient. The group mean and the coefficient 
should be estimated for the same population, universe, and D-study design. 

Where there are two or more subpopulations, each has its own equation; 

the values of 4 and ep would ideally be determined from separate G studies 
within the subpopulations. Lacking separate G studies, one is forced to use 
the correction for range suggested earlier. 

In this section we shall employ an estimation equation derived from 

Ep. This is not, in general, a genuine “regression’”’ equation because where 
nonequivalent conditions are crossed with persons in the D study, the slope 
and the constant term of the regression equation depend on the particular 
conditions selected. We proceed for the present without further discussion of 
the anomalies that may result with nonequivalent conditions, and return to 
the subject in Chapter S. 

Test theorists have long recognized that when a fifth grader and a fourth 
grader earn the same score on an achievement test, it is likely that the fifth
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grader is superior (i.e., has the greater universe score). “Regression toward 
the mean”’ is inevitable. The observed score is an indicator of ability, but so 
is the mere fact of membership in a group with a high (or low) mean, since 
that fact is a consequence of realities of age and past performance. 

One of the most complete discussions of point estimates is that of Truman 
Kelley (1947, p. 409ff.). In quoting his remarks, we substitute our own 
notation and equation numbers, and alter some punctuation. He starts with 
an equation comparable to (3.5), but not recognizing our distinction between 
G and D data. We write it in terms of our coefficient: 

A a™ aN 

(3.5a) by = (Cp*)Xp7 + (1 a 6p") X py 

This [he says] is an interesting equation in that it expresses the estimate of 
true ability as a weighted sum of two separate estimates—one based upon 
the individual’s observed score X,, and the other based upon the mean 
of the group to which he belongs Xp;. If the test is highly reliable, much 
weight is given to the test score and little to the group mean, and vice 
versa. Suppose fourth-grade pupil p and fifth-grade pupil p’ each score 45 
on a test having a reliability of 0.80 in each grade, and that the means and 
standard deviations for the grades are: Xpyy4y) = 40; Sx (a4) = 10; Xpy5) = 
50; and sx ,5, = 10. For pupil p we estimate his true ability thus: “4, = 
0.80(45) + 0.20(40) = 44. For pupil p’: 4, = 0.80(45) + 0.20(50) = 46. 
This difference in outcome is certainly sound. We know two things about 
pupil p. The first fact (¥,,; = 45) suggests a true ability of 45, and the 
second fact (member of group whose mean = 40) suggests a true ability 
of 40. The best composite of his ability is 44, as given by [3.5a]. Suppose 
for the single hour when tested pupil p had sat with the fifth grade, would 
we now use the fifth-grade mean and estimate his true ability as 46? 
Certainly not, for pupil p is still a fourth-grader. This group membership 
is not a whim, but a thing as definitely attached to pupil p as is his score 45. 

If the mean and reliability for the group to which the tested person 
naturally belongs are known, it is always preferable to use the regressed 
score as the estimate of true ability. Since this best practice is infrequent 
practice, ... [most writers use 6(0) as a standard error]. 

[Further results throw] interesting light upon the classification of 
individuals by fallible measures. Suppose upon a scholastic test we have 
fourth, fifth, and sixth grade means of 40, 50, and 60, and that o(u,) for 

the fifth grade is 10. Assume a normal distribution of ability and a rule
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which demotes? fifth-graders scoring below 40 and promotes fifth-graders 
scoring above 60. If the reliability of the test is 1.00, we obtain the correct 
result of 16% below 40 and 16% above 60, and thus, we reclassify 32% 

of the pupils. If the test has a reliability of 0.50, we find that o(X) = 14.14. 
Employing raw scores, reference to a normal probability table informs us 
that we would now reclassify 48%, which is an excessive number. If, 
however, we use regressed scores fi, we have a distribution whose standard 

deviation is 7.07 and reclassify 16%, which is a conservative number. It 
can also be shown, using volumes of a normal bivariate surface, that of 
the 48% reclassified upon the basis of raw scores, 26/48 did not in truth 

fall beyond the limits set, and that of the 16% reclassified upon the basis 
of regressed scores, 6/16 did not in truth fall beyond these limits. In short, 
the use of a fallible measure at its face value in connection with promotions, 
classifications, etc., will lead to or create many misplacements,> while the 

use of this same fallible measure properly regressed will create few mis- 
placements. If we will but regress scores and compute standard errors of 
estimated true scores, we need not hesitate to use an instrument of low 
reliability. 

Substituting a linear function of the observed score for the observed score 
itself would not alter a decision that simply considers ranks of persons within 
an undifferentiated group, but if there are subgroups (by sex, education, or 
other demographic variables) the use of separate regression estimates for 
each subgroup alters ranks. Application of the appropriate linear function 
to each individual also alters ranks if some persons have been observed more 
thoroughly than others. Regression of scores alters decisions that rest on 
comparisons of individual scores to an absolute standard, or decisions that 
consider the shape of a score profile. 

Estimates of universe scores are rarely made by test interpreters. While 
there are arguments against regressing scores, the objections are surely no 

more damaging than the arguments against more commonplace procedures 
of test interpretation. One is left with the impression that estimation pro- 
cedures were neglected in the past merely because theorists did not com- 
municate their value to practitioners. The topic is allotted about two pages 
in texts on test theory, and is left out of the discussion of reliability in texts on 
psychological statistics or applied testing. Very likely one deterrent to the 

* This reference suggests a more rigid practice in classifying pupils than is to be found 
in schools currently, but reassignments within today’s nongraded schools or in individually 
prescribed instruction follow a similar logic. 
» Kelley does not give due recognition to the fact that the number of errors of omission 
(failures to promote or demote pupils whose true scores are outside the 40-60 range) 
increase when regressed scores are used. This ‘; a fault of inaccurate measurement, however, 

rather than of the regression technique itseif.
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use of estimates is the amount of arithmetical labor it adds to test scoring; 
the availability of computers should lessen resistance. 

It is known that the error ¢ is smaller on the average than the error A or 0. 
So far as we know, no one has made the more startling point that regressed 
scores are likely to be more reliable (!) than observed scores. This is the case 

whenever the linear estimates of universe scores take into account the 
different means of identifiable subgroups. Then the correlation of uw, with 
fi, for all cases together exceeds that for u, with X,;. (This will not be 
strictly true if conditions are not equivalent. The following discussion 
assumes equivalence.) 

To develop this point, consider two or more fixed subpopulations, each 
with a mean universe score denoted by wp. For simplicity, assume that all 
subgroups have the same very large number of cases and the same within- 
group variance. Call the grand mean X ;. The observed score, expressed as a 
deviation from the grand mean, is X,; — X_;; it resolves into two orthogonal 
components: (X,; — Xp z) + (Xp; — X 7). The first is the within-group (w.g.) 
deviation score and the second is the between-groups effect. Considering all 
cases together, the latter is a variable and not a constant. When one deter- 
mines multiple-regression weights for predicting u, from the two orthogonal 
variables, each weight is equal to the relevant covariance divided by the 
variance of the predictor: 

O° (My,W. 8. ) O o(up) (3.10) Est. (iy — a) = GOP Mor = Xen) + ag (Xen — Xd 

In a large sample the second regression weight approaches 1, X ; approaches 
pu, and Xp; approaches mp. The regression estimate of the universe score, 
then, is an optimally weighted combination of X,; with a good estimate of 
the score wp. The correlation of the estimate with yw, (all cases considered) 
is a multiple correlation, and must be at least slightly greater than the corre- 
sponding zero-order correlation of X,7 with u,. 

The increase in the squared correlation has the following form: 

[Fo°(4)}" x _o(up) 
(3.11) ; 5 5 

o*(u,, all cases) x o°(X, all cases) x o°(X,w.g.) 

Other things being equal, the greater the separation of group means, the 
higher the multiple correlation. 

Recognize, however, that when o?(u,) and o?(wp) are fixed, the advantage 

of the multiple-regression procedure increases with é07(d). When one has 
an accurate observation procedure, the observed score is an excellent pre- 
dictor of the universe score and introducing a second variable can add 
nothing. For further discussion, see p. 151f.
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Regressing toward subgroup means is sometimes open to criticism on 
grounds of social policy. To point to the most obvious example, black and 
white applicant populations commonly have different means on aptitude or 
proficiency tests. Regression equations developed from G studies on the 
racial groups separately are likely to give a white a higher estimated universe 
score than a black who has the same observed score. While the alteration 
will, on the average, produce slightly more accurate predictions of relative 
standing on the criteria, it seems most unlikely that one could convince the 
black applicant or the FEPC (Fair Employment Practice Commission) 
examiner that the regression estimate is legitimate and unbiased. For further 
remarks on this point, see p. 383ff.; see also Novick (1971). 

Charges of social injustice are not so likely when tests are used for guidance. 
It can readily be seen that failure to regress gives the above-average member 

of a group that has a low average a falsely favorable picture of himself, 
underestimates the difficulties he will encounter, and so misleads him. The 

fact remains, however, that when scores are regressed, fewer members of 

the low-scoring group are given encouragement to set high goals. It is a 
serious question whether statistically realistic forecasts are to be preferred 
Over optimistic ones, when there is a need to redress social imbalance. 

The error of estimate 

Let us return to the one-facet D study with design J:p. The sample mean 
estimates u, the constant term of the regression equation (see p. 14If.). 
With this nested design, p?(.X,7,u,) is the same for every application of the 
design to the same population (or subpopulation) and universe, because 
each application draws a large random collection of i. The regression 
equation when the parameters are known is: 

(3.2) fy = - + pP*(Xor a LL) = PX or + (1 a p*)u 

The estimate “, departs from the actual uw, by some amount e, (i.e., this 
error equals 4, — mu,). Assume that excellent estimates of p? and wu are 
available. Then: 

(3.12) ent = p*(Xpr — My) + (1 — pA — H,) 
Now X57 — My = Agr = My~ + Myr + pz, and (4 — w,) is the person 
component. It follows that in the population: 

(3.13) -6(e) = (p)?o*(I) + (p?)20*(pl,e) + (1 — p*)20%(p) 
Recognizing that 

p® = o*(p)/[o?(p) + o7(1) + o7(pl,e)]
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or 

o*(p)/o7(X), 
we can write: 

(3.14) Feo = 20 Reon + Aw — 2A 
o o*(X) 

and 

(3.3) *(e) = o%(p)(1 — p*) 
This is the familiar variance for errors of estimate in linear regression. 

Both “ and po come from finite samples, so the regression equation is not 
exactly known. This enlarges the error of estimate above the value given by 
(3.3). We encounter an unsolved statistical problem here. There is statistical 

theory for taking sampling of persons into account in a regression estimate 
of one observable variable from another. However, this is inadequate for the 
regression equation (3.5) even under classical assumptions, because the 

correlation of true score with the predictor (observed score) cannot be 
directly calculated. It is very possible that statistical theory can be extended 
to this case, and to a regression equation based on the intraclass correlation. 

Conceivably it could be extended further to take sampling of conditions into 
account. Lacking such theory, studies with the jackknife procedure should 
be made to learn how much the magnitude of errors is underestimated by 
(3.3) in typical studies. 

For the crossed i x p design, one cannot evaluate the regression equation 
for the specific condition; the substitutions made will be discussed later 

(see p. 142). One may calculate: 

(3.15) o(e) > op) — Ep) 
but the equality does not hold even approximately unless p(X,u) and o(X) 

are equal for all J. 
Formulas (3.5) and (3.15) generalize to any number of facets. The observed 

— 
score in (3.5) becomes X,,,.... and &p? is calculated as required by the D- 
study design. It may be worth noting that, for any design, 

aN 

60°) _ oe) “~N 

=1-—6)°   (3.16) = = 

€o°(X) o°(p) 

(See also numerical example in Table 3.10.)
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E. Reporting and Interpreting the G Study 

It may be well to summarize here the various suggestions that have been made 
regarding the reporting of a G study. Experience will be needed to 
discover the most useful ways of organizing a report, and it is likely that a 
sound report will mean little to a reader who does not understand generaliz- 
ability theory. However, in our opinion, a presentation covering the following 
information should be far more satisfactory than the sketchy reports of G 
studies usually offered. 

1. Description of data collection, including design, number of conditions 
of each facet, nature of the conditions sampled (e.g., qualifications and 
special training of scorers), conditions held constant in all observations, 
and conditions confounded with a facet deliberately sampled. 
2. Number and character of subjects, including pertinent facts about age, 
sex, educational background, and selective factors. 

3. Estimates of all components of variance the G study allows one to 
evaluate, with a clear indication of the size of unit represented (e.g., 

whether 7 stands for a single item or for a 50-item test). 

The essential requirement, in the spirit of the Test Standards, is to describe 

the data in such a way that the reader can decide whether the findings apply 
to the D data he proposes to gather. 

Beyond this, the investigator can repackage the data in various ways to 
show what precision is expected from alternative experimental designs or in 
generalizing to various universes. There are usually many possibilities, 
however, and the initial investigator can reasonably be asked to present 
statistics for only a few likely possibilities. Appropriate summary statistics 

a™N. 

include &p?, 6(A), 6(6), and 6(e). Whichever of these appear relevant should 

be given for the likely D-study designs. The person reporting the G study 
may appropriately go on to advise his reader regarding the designs most 
likely to improve the precision of information for various purposes, at least 
cost (see also p. 175). 

The three chapters now completed have presented the essential machinery 
of generalizability analysis and the interpretation of the results. For many 
readers, an appropriate next step is to skip ahead to Chapters 6 and 7, which 
deal with numerical examples. Most of the procedures demonstrated there 
have already been explained in full, and the remainder have been touched 
upon. Chapter 4 presents some of the more complex reasoning required to 
take into account fixed facets in the universe of generalization and hidden 
facets in the G study. This is a logical extension of Chapter 3. Chapter 5 is
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a further comment on theoretical matters opened up in the present chapter. 
Specifically, it examines the assumptions and validity of the usual applications 
of standard errors of measurement and estimating equations. 

For another category of reader, it may be appropriate to leap ahead to 
Chapter 9, which extends Chapters 1-3 into the multivariate theory for 
dealing with test batteries. This material is considerably more difficult than 
what precedes it, and for most readers it can best be examined after the 
examples of univariate analysis are understood. 

EXERCISES 

E.1. The following passage is from a manual for an aptitude test (slightly modified). 
Alternate-forms reliability was determined by giving Form A and Form B in 

counterbalanced order, within a two-week period, to the same 484 pupils. In 
Grade 2 the raw-score mean and standard deviation were 98.3 and 23.0 for Form A, 

98.4 and 22.8 for Form B. The correlation was 0.89. Data from the two testing 

sequences were averaged in determining the correlation. 
Reorganize the results to estimate the following if possible: &02(X), o7(u,), OC) 

for forms, o(pi,e), o%(A), &07(6), &p, o7(e), and the regression equation for 

estimating 4,. Consider Table 3.1 or 3.2 as a partial guide. Assume that the forms 

are carefully equated. 

E.2. Suppose the pupil is a member of a second-grade class whose mean and s.d. 
on the form used are 99.0 and 21.0. Considering the information in Exercise 1 and 
the answers to it, develop an equation for estimating the pupil’s universe score. 

E.3._ A G study provides these estimates of components of variance: 

pi j pi pi ¥ pie 
5 21 8 4 1 10 

A D study will have the designi x (j:p);n; =4,nj; = 1,n, = 10. If generalization 

is to 4p, calculate estimates of 0?(A), &07(6), 0?(X), and & p*. 

E.4. The mother of a preschool child is observed while she and her child follow 
certain task instructions. One task i asks the mother to tell the child about wild 
animals pictured on a card, another asks mother and child to converse over toy 
telephones, etc. Observers j rated tape recordings of the conversations, using 

several 1-to-9 scales. 
In the course of preliminary studies, Leler (1970) investigated generalizability by 

having 2 observers judge 23 mother-child pairs p on 6 tasks. The design was 

i x j x p. Table 3.E.1 gives data for two of the rating scales.
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TABLE 3.E.1. Information from Generalizability Study of Mother-Child Interactions 
(after Leler, 1970) 

  

Component of variance 
  

Scale pi J pi Pj ype 
  

A. Mother’s affectionateness 0.44 0.21 —0.01 0.17 0.08 0.11 0.58 

M. Child’s dependency 0.00 0.08 0.04 1.10 0.27 0.04 1.91 
  

a. Leler intended in her main study to examine the relations of the child’s language 
development (as observed independent of these interaction data) to the variables 
describing mother-child interaction. In the light of this purpose, which of the 

following should the generalizability study be most concerned with: o7(A), &07(6), | 

orépP 2 LAY “oN 
b. Calculate €0(6) and & p? from the data in Table 3.E.1 assuming ani x j x pD 
study, n; = 6, nj = 2. 

a“™ 
c. What will be the effect on &p? for scale A of changing n; to 4? to 10? 

aN 

d. What will be the effect on &p? for scale A of changing nj to 1? to 4? 

e. Leler discarded scale M in the final study. What explanations can you suggest for 
its small person component? 

E.5. In Israel, ability of pupils at the end of secondary-school Hebrew Composition 
is measured by an essay test that is typically graded by two persons. A generaliz- 
ability study considered scores assigned by 2 representative examiners to each of 
373 papers written by graduates of 11 schools. The analysis done by Pilliner 
(1965, p. 289) generated estimates of components of variance for schools, examiners, 

schools x examiners, candidates within schools, and candidates x examiners 

(within schools). 

a. What is the meaning of the component for schools x examiners? 
b. Of the candidates-within-schools component ? 
c. Suppose that all candidates are in competition with each other for a limited 
number of places in higher education. Suppose further that in the D study many 
different examiners will take part in the grading, two for each essay. Which score 
components contribute to error of measurement in this case? 
d. Suppose one wants to judge, from the data described in c, which schools 
produce on the average the best graduates. (Ignore the fact that some draw superior 
entrants.) Which score components contribute to error of measurement in this case? 
e. Pilliner gives these values for the components, in the order stated above: 3.4, 0, 

1.3, 13.5, 21.1. What can be learned from an inspection of these, without further 

calculation? 
f. In the G study, the same topics were assigned to all candidates. Does one intend 

to generalize over topics? How does this modify the interpretation of the G study?
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Answers 

A.1. As these forms were equated, it seems most reasonable to regard o°(i) as zero 

and to consider the intraclass correlation equal to the interclass correlation. 

o™. 

€0®(X) = 4[(23.0)2 + (22.8)?] = $(529 + 520) = 524.5 

O(u,) = 524.5 x 0.89 = 466.8 
aN ~ 

€07(6,;) = o°(pi,e) = 57.7 
a “~~ 
o2(A) = &02(6) = 57.7 

vo 
& p*(X, Uy) = 0.89 

o%(e) = 467(1 — 0.89) = 51.4 

Confidence interval (67%) Xp; — 7.6 < Uy < Xp; + 7.6 
Regression estimate 4, = 98.35 + 0.89(X,; — 98.35) = 10.8 + 0.89.X,; 

A.2. Observed-score variance = 441. Assuming that 6°(pi,e) remains at 57.7, 
msN 

o%(p) = 383, and &p? = 0.87. 

A, = 99.0 + 0.87(X,; — 99.0) = 12.9 + 0.87X,; 

  

A.3. 

Component 
Component of Frequency 
of observed population Component within 

score mean? of variance persons o?(A) & 07(0) 

P 5 1 
i Yes 2 4 0.5 
pi 8 4 2.0 2.0 
J: Pj 5 1 5.0 5.0 
ij, pij, e 11 4 2.75 2.75 

o2(A) = 10.25 9.75 = 
“—~ 
& 0°(6) 

“™~ 

14.75 = &0°(X) 
aN 

5/14.75 = 0.34 = &
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A.4. a. &p’, and perhaps to a lesser degree &07(6). The main investigation proposes 
to compare individual differences in development with the interaction score. 

“™ 

b. Scale A: 02(6) = 0.12: opt = 0.79, 

Scale M: o2(6) = 0.48; a = 0.00. 
Becomes 0.75; 0.83. 

. Becomes 0.68; 0.85. a9
 

. Perhaps dependency is highly determined by the situation, so that variance in 
general dependency” is negligible. It seems unlikely that it is truly zero, as this 

would imply negative correlations between dependency for many pairs of situations. 
In Leler’s small sample of persons and conditions, the low value of the component 
of variance could be a vagary of the sample in hand. Perhaps with more cases one 
would find that the component is comparable to that for other scores. A more 
extensive study might also find that, while the hypothesis of a trait of general 
dependency is not powerful, tasks fall into two or three reasonably homogeneous 
classes, and that dependency does generalize over the class. 

- 
© 

6 

A.5. a. School-examiner interaction implies that some characteristic associated 
with the school (type of pupil? type of instruction?) attracts higher marks from 
some examiners than from others. 

b. The candidate component is a variance over persons, assuming each to have been 

scored by very many examiners. Examiner variance is ruled out, and so are school 
differences. 
c. Examiners, schools x examiners, candidates (within schools) x examiners. See 

also Answer / below. 

d. Examiners, schools x examiners, candidates within schools, candidates x 

examiners (within schools). Candidate variance within the school is not error if 

there is no generalization beyond this year’s graduates, all of whom are tested. 
e. Examiners seem to be using much the same scale, but disagree markedly in 
grading the same paper. There is, as expected, large variation among candidates. 

The variation over schools is remarkably large, considering that the component for 

the school is an average over the population of its students. 
f. Surely the decision maker is interested in performance over topics in general 
(and also over occasions). Interest is not confined to the topics assigned. But 
Pilliner’s design leaves topics (papers) as a ‘‘hidden’’ fixed facet (see p. 122ff.). The 

component for candidates determined here includes the candidate-topic interaction. 
This interaction is actually a source of error in generalizing.



CHAPTER 4 

Universes 

with 

Fixed 

Facets 

In Chapters 2 and 3 attention was directed toward the so-called random 
model, in which the universe is assumed to include an indefinitely large 
number of conditions of i, of j7, and of any other facet. The universe score to 
which the investigator wishes to generalize was consistently taken to be py, 
the expected value of p’s score over all possible conditions. As was mentioned 
in Chapter 1, the investigator may select a more restricted universe of 
generalization. He may, for example, propose to infer u,;. from Xp77-, 
generalizing over only the facet i. The interpretations suggested ..1 Chapter 3 
have to be modified when the investigator proposes to generalize over some 

but not all facets. 
Almost the opposite problem arises when the investigator intends to 

generalize over a facet, but fails to represent it adequately in the G study. 
He might, for example, wish to generalize over both i and j, but collect all 
G data under a particular condition of j. With j held constant in the G study, 
he learns nothing about the error of generalization that arises from sampling 
of conditions of j. Investigators sometimes fix a facet without realizing it, 
and if so they reach incorrect conclusions. This chapter will discuss how 
such a “hidden’’ or implicit facet confuses the interpretation of a G study. 

A. Generalization Where the Universe Has a Fixed Facet 

It is the substantive interest of the investigator that determines how broadly 
he wishes to generalize. In a study where observers i have rated the creativity 
shown by pupils on several tasks j, for example, there are three pertinent 

113
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universes. An investigator will generalize to 1, if he looks upon creativity as a 
global variable, transcending particular tasks or raters. The investigator who 
wants to investigate task-specific creativity will generalize to 4,,, the pupil’s 
universe score on one of the tasks; that is to say, the investigator generalizes 
over observers, for each task in turn. Still another possibility is generalization 
over tasks, to a score w,;. A social psychologist might be interested in what 
persons a particular observer rates as most creative rather than in treating the 
observer as a source of random error. There can be no rule about what facets 
to generalize over. Different degrees and directions of generalization serve 
different practical and scientific ends. 

Until this point, we have used a single asterisk to identify a particular 
condition or set of conditions. It will now be necessary to consider two 
distinct sets of conditions in some of our discussions, and hence to make a 
notational distinction between J* and J**. In this chapter we shall invariably 
use J** to refer to the set of n conditions used in the D study where these 
define the universe of generalization. That is, where the generalization is to 
Lpzee, from observed score X577... Now a different set of conditions used in 
the G study should obviously be denoted J* for the sake of making the 
required distinction. But when J** itself constituted the set of conditions for 
the G study (x; equalling nj), there is no particular reason to make the 
distinction. This chapter will employ the symbol J** when the set in the G 
study is the same as in the D study and universe. 

Assume an intent to generalize over facet i and not j, to the universe score 
pss. Assume that the universe of conditions of i is indefinitely large. There 
are two basic cases: 

1. J** used in G study. That is, the conditions of j used in the G study will 
also be used as the conditions for the D study. J** is crossed with persons 
in both studies. A particularly common example is the study of a test 
score that is a composite of certain fixed subtests. While conditions of this 
facet are fixed, conditions of some other facets (items within subtests, 
occasions) are random; this then can be described by a “mixed model.” 
Lord and Novick (1968, Chapter 8) present the theory for this case at some 
length, under assumptions more restrictive than ours. 
2. J** not used in G study. Conditions j for the G study were sampled 
from an indefinitely large universe of conditions of j. (The set sampled 

* Since the “fixed’’ J** can be thought of as a sample from a much larger set of j, the 
G data could also be interpreted under the random model. The intention to generalize to 
pz** is a decision by one particular user of the procedure, and does not preclude broader 
generalization to 4, by someone else. We shall argue later, for example, that even though 
essentially the same subtests appear in all forms of the Wechsler test, the interpreter may 
reasonably regard them as samples from the domains of Verbal and Performance tasks.
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could be called J*.) The n; conditions to be used in the D study may be 
regarded as a random sample from this same universe, but they have not 
yet been selected and there is a negligible probability that they will be the 
ones that appeared in the G study. It is intended to make inferences about 

Lpsee from Xprgee 

From a theoretical standpoint (though not necessarily an operational one) 
the two cases are distinct. In the former, the two sets of conditions of 7 are 
identical, and identical to the universe of conditions of that facet; in the 

latter, the sets are independently sampled from the universe of conditions. 
There are a number of intermediate possibilities, and some of these can be 
discussed briefly after the two basic cases are considered. 

The error A 

The discrepancy Aj; 7.4 = Xpzye0e — Myzee Will be considered first. This will 
be interpreted in terms of the components of X,,,|J introduced in (2.19) 
and (2.20). 

D-study designs having i x j._ We shall consider various D studies in which 

the i are crossed with the j that compose J**. Then we can average over / to 
obtain X,,,;.. for each p,i pair. When this is done, however, each of the 
“within J’? components defined in (2.20) becomes zero, and the corre- 
sponding components of variance vanish. 

Consider Design VII; Table 4.1 resolves the observed score X,77+. and the 

universe score fp,7+. into the components defined in (2.19). This table is much 

like Table 3.3 fora p x idesign with generalization to 5. In fact, the present 
D study can be regarded as having a one-facet (i x p)|J** design, with 
every X,,; observed under the same fixed conditions J**. 

Where the D data use the same set of conditions J** as the G data, there 

are several ways to estimate the needed variance components: first, a two- 
way random-model analysis of the X,,;.. from the G study, assuming an 
indefinitely large number of possible 7; second, a three-way analysis of X5;,, 
using mixed-model equations for expected mean squares; third, a recombi- 
nation of components estimated by the random-model equations applied to a 
three-way analysis. All three give the same variance estimates for the com- 
ponents listed in Table 4.1 and lead to the same o*(A). 

If J** differs from J* there is no way to obtain information directly 
relevant to X,,7.. from the G study. However, by assuming that both J** 
and J* are randomly sampled sets from an indefinitely large universe (case 2), 
we can estimate the expected variance of observed and universe scores for 
any set of n; conditions. Random-model estimates of variance components
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TABLE 4.1. Components of Scores in a D Study Where i is Crossed with j within 
the Person (Generalization to Upzes) 
  

  

Xprses Mysee Agryss 0%(A) 

Uyee Lyre 

UoJen — Lye Hosen — User 

1 
MIyes — Myo MIges — Myee =, o°(i | J**) 

a 

Hol yee — Unsere Mplyee™ 

—HIyee + Hyer n o°(pi,é | J**) 

Col see Crls** . 

  

are obtained from the G study. In terms of these estimates, 

(4.1) o°(A) = 1 Go + + o*(ij) + o°(pi) + + “ri. 
n; n; nj 

If n; = n,, the numerical value from (4.1) is the same as would be obtained 

under the assumptions of Case 1, even though J** and J* are different sets 
of conditions. 

A modification of the Venn diagrams previously used may help to give an 
intuitive picture of the components entering various scores and variances. 
Consider diagram (a) in Figure 4.1, which refers to the completely crossed 
design. In earlier presentations the dotted circle representing effects associated 
with J was shown complete. In Figure 4.1, it is shown incomplete because 
observed scores do not vary with respect to J. The dotted line passing through 
the region labelled p | J** reminds us that that effect includes information on 
[4y; aS Well as wy; similarly in the other regions of the diagram. The diagram, 
with the lower part of the j circle eliminated, includes all components of the 
observations X,,7.. from which generalization to w,7.. is attempted. 

If we now ignore the shaded area, which represents the universe score, all 
the remainder of the diagram represents components of A,,;... For this 
design, o?(A) is made up of the i|J** and pi,é|J** components. (See 
Figure 4.2 below.) Noting that each of these components is sampled n; 
times in the D study, 

(4.2) o(A) = -, [°G | I**) + opie | I*) 

This differs from o7(A) for generalization to 4, because o*(pj) has moved 
over to the universe-score variance.
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(b) V-A (i:j) X pj e J** OF 

(IX p)| J** 

       

  

       

  

    

  

   coh 4 is 
eA 

  

(c) V-B (i:p) X J** (d) IV-A i:(p X p), g € J** 
or (I:p)|J** 

FIGURE 4.1. Separation of Kinds of Variance in Designs where a Fixed J** is 

Crossed with Persons. 

Another design that has i crossed with j is V-B, (i:p) x J**. As shown in 
diagram (c) of Figure 4.1, the 7 component does not contribute to variance, 
hence is disregarded. The remaining diagram is precisely that for a one-facet 
i:p study, save for a notation recognizing explicitly the use of several fixed 
j. For each p the D study makes n’ observations (confounded) of 

(i,pi,é | J**). 

Accordingly, a G study of Design VII using conditions J** gives the estimates 
required by (4.2). A mixed-model analysis of a Design V-B G study gives 

o*(i,pi,é | J**) = o%(A). For Case 2, (4.1) is again the suitable general 

equation.
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D-study designs having i:j. Again, suppose that p is crossed with J** in 

the D study, but 7is nested. Then we are concerned with Design V-A or IV-A. 

(Design III-B is simply a version of IV-A.) For scores Xpz7«+, the design is 

in effect (I x p)|J** and the Venn diagram is almost like that for Design 

VII. The most general formula, comparable to (4.1), uses values of com- 

ponents estimated by random-model equations: 

foi) + oi) + PR) + RI.) 
are7g 

(4.3) o°(A) =   

o?(A) is like that for generalization to u,, except that the pj and j components 

are removed. 
Design IV-A reduces to (I:p)|J** and the Venn diagram is almost like 

that for V-B. Formula (4.3) applies to this design also. 

Observed-score variance, the error 5, and the coefficient of generalizability 

The Venn diagrams, interpreted with the aid of Table 3.8, provide a basis 

for direct identification of the components of the observed score, the devi- 

ation score, and the corresponding variances under any one of the designs. 

Any component lying outside the circle drawn with a solid line (1.e., any 

component that does not contain p in its identification) is the same for all 

persons and is eliminated from the deviation score. Any component within 

the solid circle is a component of the observed deviation score, and of the 

observed-score variance. 

The components of the deviation score, located within the p circle, divide 

into two groups: those contributing to the universe score, which correspond 

to the shaded area, and the remainder, which make up the error 6. The 

decomposition for Design VII is shown in Figure 4.2. Comparing it to 

Figure 3.3 (p. 88) we see that the only change is the transfer of pj infor- 

mation to the universe-score component of variance. A similar division could 

be made for each of the other figures. 

Because the number of observations on each component in the D study is 

the same, whether generalization is to wy or #, 7, the number of components 

indicated in Table 3.8 serves as divisor for each component of variance. The 

expected observed-score variance is the same as that determined in Chapter 3, 

and the universe-score variance is o(pJ**), which is estimated by o?(p) + 

[o2( pj)|n;]. The new value of &0*(6) is the same as that determined in Chapter 

3 save for the transfer of 0°(pj)|n;, to the universe-score variance. 

Since the observed-score variance has not been altered, and the universe- 

score variance contains an additional component, the coefficient of generaliz- 

ability is larger when wy 7+. is the universe score instead of py. Counting 

individual differences specific to conditions j as wanted information produces
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the increase. With a new value for the coefficient, there will be a new regres- 
sion equation and a new value for 0°(e). 

Intermediate and complex cases 

Several problems that have been ignored to this point will now be discussed 
briefly. We have assumed that the J in the D and G studies are identical, 
or are randomly sampled from a large number of possible conditions. There 
is an intermediate case where J* of the G study defines the universe of 
admissible observations (n, = N,), and a subset of these j constitute the J** 
of the D study. For this case, the components of variance are obtained from a 
mixed-model analysis of the G data. To use the random-model equations 
would be incorrect. The expected observed-score variance contains the 
component: 

( _ “2) o*(pj | J*) 
nN; nN; 

(a variance assuming sampling from a finite universe without replacement). 
Generalization to either u,7. Or 47+. could be intended. The universe-score 

variance would correspondingly be either o?(p | J*) or 

o(p | J*) + (1 _ *) “eH J*) 

The argument is similar when a random set of n, conditions is sampled for 
the G study from the N; conditions, and a set of size n/ is sampled for the D 
study. These sets may or may not be identical. The components of variance 
are correctly estimated by the Cornfield-Tukey equations for sampling from 
a finite universe (see p. 60f.), but the distinction is unimportant for N,; > 7, 
and nj. 

Mention was made earlier of stratified tests as an example of generalization 
where there is a fixed facet. Possible test content is divided into strata (e.g., 
“‘verbal’’ and “‘quantitative’’ items), and the test constructor is instructed to 
draw a certain number of items n;, from stratum j, a subuniverse. Thus, in 
the universe of items, i is nested within j, and the j are fixed. This model is a 
much better description of actual test construction than the random-sampling 
model is. Each test is still seen as a random sample from the universe of tests 
formed by the given sampling rules, applied to the given universe of items. 
Rabinowitz and Eikeland (1964), Rajaratnam, Cronbach, and Gleser (1965), 
and Cronbach, Schénemann, and McKie (1965) have developed intraclass- 
correlation formulas for “‘stratified-parallel” tests that consider items and 
persons as sources of random variance.
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The formulas as developed originally took various forms, but essentially 

an analysis of variance was made for the stratum j to get MS res (7) = 

o*(pi,e| j). Assume that the D study will have n;, = n,,, and that all persons 

will take the same items. Then if the stratum score is a total score n,,X 57, 

and the test score X,7 1S 2 ni,X pr,» {or the universe of tests, 

  

  

(4.4) o(Up) = 60(Xyz) — >, n50°(pi,e | j) 

>. no pixe |) 

(4.5) Ep'(XprMy) =1—- FAK) 

“~ > n; MS res (j) 

(4.6) Ep'(Xprsby) =1—- Fie D 

It was suggested that &o*(X,r) be estimated directly by the sample variance 
s?(X,,7) if the n, are fixed. Equation (4.6) is a variant of the long-established 

Jackson-Ferguson “battery-reliability’’ formula (1941); using an alpha 

coefficient (3.4) for the stratum or subtest in their formula produces the same 
result as (4.6). Where Ni, [n;, is the same for all j, the value of &p? 

changes in accord with the Spearman—Brown formula. 
Use can also be made of the mixed-model formulas similar to those 

treated earlier. However, these formulas have embodied assumptions of 
uniform n, over strata (e.g., see p. 221ff.) The stratified test is actually a 
battery of subtests, and to deal comprehensively with such data requires a 
much more complicated model. In Chapters 9-10 we shall set forth a multi- 
variate model that applies to the stratified test. It allows for the possibility 
that one will alter the universe of tests by assigning different lengths or 
weights to the strata. A single G study may then be applied to many quali- 
tatively different stratified tests. 

Throughout this chapter we have assumed that the universe of generali- 
zation contains one score X,,; for each pij combination, restricted only by 
the requirement that j belongs to J* or J**. However, one might have the 
fixed facet nested within person p in the universe. That is to say, for each 
person there is a fixed set of conditions J,, and generalization of p’s score 
over other conditions of j is not intended; the conditions that enter J, differ 
from person to person. When p’s spouse fills out a questionnaire, one 
intends to generalize over the universe of items. Because there is a different 
spouse for each p, spouse j is nested within p or, one might say, p and j are 
confounded in the universe. One can think of cases where a whole set of J is 
confounded with p; for example, for a college teacher, the courses he teaches
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may be considered a fixed set of conditions. Generalization over one facet 
when another facet is fixed within the person was treated briefly by Gleser, 
et al. (1965). We shall not go into this subject here, as no examples of this 
design occur in the following chapters. 

B. Implicit Facets in G Studies 

The three-way analysis of scores X,;7. is, as we have said, precisely like the 
two-way analysis of scores X,;. This brings to attention a basic difficulty in 
interpreting all generalizability (reliability) studies. Unless all facets that 
might conceivably affect scores are explicitly identified in describing the 
experimental design, one may easily make too sweeping an interpretation. 

Very often, what looks like a one-facet random-model G study actually 
has unmentioned facets represented in the design in some manner. When 
several observations are made under various conditions of a facet i, some 
single condition of an additional facet may have been designed into the 
observing process. For example, when two or more test forms are applied, 
it is common for them to be administered by the same tester. Testers form a 
facet; these G data, then, are collected by the design i x j x p, n; = 1. 
The situation is essentially the same when several conditions of j are averaged 
to generate each score, so long as the same set of conditions is used in 
observing every person. The casual identification of scores with test forms, 
for example, tends to overlook such facets as tester and occasion. 

It is natural to speak of generalizing to a universe score u,. This is often a 
considerable oversimplification, even though most of the literature on 
reliability in education and psychology speaks of a single “true score” 
whose properties are those of uy. In the most conventional of reliability 
Studies, there are likely to be facets that partly define the universe and yet 
are not mentioned in describing it. 

In any study where data are laid out in an m-way array (persons, plus 
m — | facets), there are further facets along which observations might have 
been classified. Consider any one such unmentioned facet, k. There are three 
possibilities: 

1. k confounded with p, or i, or some other facet. Each condition of k 
is associated with a certain person or a certain condition of a specified 
and systematically varied facet, for instance i, so that when a certain 7 is 
sampled a particular k is always selected also. It is possible to have k 
confounded with both p and i, etc. 
2. A uniform condition k (or a uniform set K) is used in every G-study 
observation. 
3. k varies randomly and independently from observation to observation.
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Case 3 gives no trouble, because all effects associated with k contribute to 

the residual component of variance. Any error in generalizing over facet k 

is properly taken into account. 
In Case 1, if the sampling makes k joint with i, the interpretation must 

bring a k into every statement that contains the symbol i. Thus, for example, 

[tp; is really a tp,,. A variance component such as o?(pi) is really a com- 

ponent for o?(pi,pk,pik). Without an experiment that samples k separate 

from i there is no way of estimating the pure component for pi. With such 

systematic confounding, it is best to express conclusions in terms of the i,k 

compound. If such raters as the school counselor and the Latin teacher 

differ because they see pupils in systematically different situations, one can 

accept the pertinent variance component as reflecting rater differences 

combined with situation differences, rather than as an error “attributable 

to raters.’’ Confounding of k with i, 7, or both does not preclude the usual 

interpretations when the universe score is 4. The contribution of variation 

from k to the various errors is fully recognized, though it is entangled with 

another facet. Variances for D studies can be estimated only if the same 

confounding of k with i, etc. is retained in the design. 

When k is tied to p, there is a greater problem. What the analysis reports 

as a component for p is actually a component combining the p, k, and pk 

effects. Likewise, the supposed pi component is augmented by the ik and 

pik components. In effect, such a study treats pk, not p, as the subject of 

inquiry. This is all to the good if p and k are tied together in daily life in the 

same way they are tied in the investigation—if condition k is, as it were, 

an invariant aspect of p’s environment. If p and k are tied only in the in- 

vestigation, the study is hard to interpret. An example of the p and k “tied 

together in daily life’ is a study of teachers, in which all observations on a 

particular teacher are made in the particular classroom where the teacher 

normally works. Perhaps the teacher would teach differently if he moved to a 

different physical environment, but the stability of teacher assignments 

makes it reasonable for scores to reflect the teacher-plus-classroom com- 

bination where this is looked on as an independent variable. (Data with this 

confounding would not be entirely satisfactory as a criterion in a teacher- 

selection study, however, as one never hopes to predict how well the teacher 

will do in a particular physical setting he is later assigned to.) 

Case 2, where the same conditions of k enter all observations, has perhaps 

caused the greatest misunderstanding of reliability coefficients. A G study 

with a single k necessarily estimates components of scores “within k.”’ This 

is also true where several k are present in every score but are not treated as a 

facet in the analysis. To speak of a retest study over two days and a study 

applying parallel forms on the same day as both estimating “‘the”’ standard 

error of measurement is clearly misleading. The retest study investigates
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within-person variation among a universe of observations in which the test 
form is fixed and occasions vary. The form-to-form study provides infor- 
mation about a universe in which forms vary and the occasion is essentially 
fixed. Other temporarily fixed conditions such as examiner and scorer also 
restrict the universe of generalization. In an observational study of pupils, 
perhaps the subjects’ teachers are a fixed, unrecognized, but influential 
source of variation. 

Whenever a condition of a facet is uniform throughout the G study (or 
is crossed with persons and other conditions but not analyzed as a source of 
variance) there is no way to estimate what effect the sampling of that facet 
has on the error of generalization. Therefore, it is most important in re- 
porting a G study to recognize conditions that have been held constant and 
to qualify any statement about generalizability accordingly. 

Results are ordinarily described as simply as possible; therefore it is 
natural, in a one-facet study, to designate variance components “for persons,”’ 
and “for test forms.”” However, one must be careful to recognize shifts in the 
meaning of common labels and symbols. If a one-facet G study is made that 

holds constant some condition k* (Case 2), the estimate designated as o7(i) 

is actually o*(i | k*), for example. The component includes the usual o?(i) 
and also the variance component for w4,.. If i and k vary jointly (Case 1), 

5*(i) includes variance from o*(i), o2(k), and (ik) components. In a Case 3 
study the ik interaction forms part of the residual, along with every other 
component involving k. 

EXERCISES 

E.1. Data for rating Mother’s affectionateness (Scale A) while mother and child 
engage in certain tasks were presented in Chapter 3, Exercise 4. Consider here the 
possibility that the universe of generalization is limited to six tasks, these being the 
same as the tasks actually used in the D study, but that the investigator intends to 
generalize over an indefinitely large number of raters, so that the universe score is 

Moye 

a. What is the variance of universe scores? 
b. What is 07(6) when the same two persons rate all responses collected in the D 
study ? ~. 
c. For the same design, what is & p?? Why does this differ from the value obtained 
in Chapter 3, Exercise 4b. 

E.2. An instrument for measuring ego defenses (Gleser & Ihilevich, 1969) 
describes 10 conflict situations to the subject. After he reads the description, the 
subject is asked what he would do in such a situation—rather, to select one of five 
courses of action as most likely and one as least likely. Of the five choices, one 
represents the defense of projection. He receives a score of 2, 1, or 0, depending on
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TABLE 4.E.1. Analysis of Variance for a Measure of Ego Defenses® 
  

  

Degrees Mean 
Source of variance of freedom square 

Person p 10 2.6400 
Story s 9 2.5076 
Level ¢ 3 7.3939 
Occasion within person 9, po 11 0.3091 
ps 90 0.5920 
pe 30 0.4773 
s¢ 27 1.4503 
SO, pso 99 0.2409 

fo, plo 33 0.1545 

ps¢ 270 0.3300 
Residual 297 0.1905 
  

@ Score components are on the scale of Xps¢o. 

whether he picks that choice as most likely, or leaves it unmarked, or picks it as 
least likely. (Scores for other defenses are also obtained, but we ignore them.) The 
question about actual behavior represents one of four “‘levels” of response; there are 
questions regarding three other levels: fantasy, thought, and affect. The entire 
instrument for measuring tendency to use projection then consists of 10 stories, 
crossed with 4 levels; the test score is the sum over these 40 responses. 

In one study, the test was administered on two occasions approximately a month 
apart, to eleven persons. Treating the study as having the design ¢ x s x (0:p) and 
analyzing the entire matrix of responses yielded the mean squares in Table 4.E.1. 

a. Estimate variance components under the assumption that levels are fixed. 

Treat occasions and stories as random. 

b. Estimate o?(u,7+), 02(A,gz00), and €07(X,g70) for D data using the total for 

ten stories, four levels and one occasion. The D-study design is ? x s x (o:p). 
“—~ 

c. Interpret o*(p?| L*). 

E.3. The levels of content in the above test can be considered to be a stratification 
of the response domain into these four levels. Summing over stories for any level 
then yields a subtest score. Conceivably an investigator might want to use only one 

subtest score for a particular decision. 
a. Estimate the expected subtest observed-score variance. 

o™ 

b. Compute &07(6), assuming that the investigator intends to generalize from the 

subtest score, over the universe of stories and occasions, keeping level fixed. 

Answers 

AL. a. O%(fy70) = 0.44 + 16(0.17) = 0.47 
b. £02(5) = 0.04 + 0.048 = 0.088 
Cc. &p = 0.84. This is larger than the value (0.79) computed in Chapter 3, 

Exercise 4b. Although both coefficients apply to the same D data (i.e., two raters
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and six tasks), generalization here is over a limited universe and is therefore more 
accurate 

A.2. a. All components in Table 4.E.2 except so, pso, é are the same as obtained 
under the random model. 

TABLE 4.E.2. Interpretation of Analysis for Measure of Ego Defenses® 
  

  

Estimate of Expected variance 
Source of variance of observed total 
variance component score? o*(A) 

p|L* 0.0248 39.68 
s|L* 0.0218 — 34.9 
ps|L* 0.0439 7.02 7.02 
o,po | L* 0.0017 2.72 2.72 
so,pso,é | L* 1/4 (0.2409) = 0.0602 9.63 9.63 
¢| L* 0.0257 
pe|L* 0.0074 
s¢| L* 0.0509 
psé|L* 0.0698 
fo,p to | L* (0) 
s €o,ps €o,e | L* 0.1905 

59.05 22.86 
  

® Components are on the scale of Xps/o. 
> As the total score is a sum of 40 responses, each component is multiplied by 1600. 

b. o%X(uprs) = 39.68. &62(X) = 59.05. 02(6) = 22.86. 

c. o*(pf| L*) indicates the extent to which persons vary in their response, 
depending on the level of response about which inquiry is made. Thus, it has the 
Same meaning as in the completely random model save that ¢ is constrained to be a 
member of the set L*. The estimate is calculated on the assumption that levels are 
sampled with replacement. 

Most often, however, when there is sampling from a finite set, sampling without 

replacement is assumed. Under this assumption the variance attributable to person- 
level interaction is decreased by 1/N; from the value obtained under the random 
model. 

A.3. a. The components entering observed-score variance (for sums over 10 
stories) are 

P | L* 100(0.0248) = 2.480 

ps | L* 100(14 »)(0.0439) = 0.439 
o,po| L* 0.170 
so,pso, é| L* 0.602 
pe| L* (100)(1 — 14)(0.0074) = 0.555 

pst | L* 100(249)(1 — 34)(0.0698) = 0.523 
fo,pto | L* (0) 

s€o,psfo,e | L* 1.429 

b. 02(6) = 0.439 + 0.170 + 0.602 + 0.523 + 1.429 = 3.163



CHAPTER 5 

Assumptions 

Underlying 

Estimates of 

the Universe 

Score 

To this point, we have devoted minimal attention to mathematical as- 
sumptions. Our primary aim has been to show how a multifacet approach, 
together with the overt distinction between G and D studies deals with the 
traditional questions of reliability. The only assumption invoked throughout 
the argument has been the random sampling of conditions and persons. This 
assumption, in some ways a strong one, is nonetheless weaker than the 
classical model, which ignores sampling of persons and assumes conditions 
to be strictly equivalent. 

We have treated two kinds of estimate of the universe score: the confidence 
interval symmetric around the observed score, and the regression estimate. 
Testers almost invariably use the observed score as if it were an estimate of 
the universe score (true score). Midway in the history of classical theory, the 
concept of a confidence interval was added; plotting test scores so as to 
display a ‘confidence band’”’ is now a common technique. The regression 
estimate, though long recognized in test theory, has had little place in 
testing practice. While developing generalizability theory, we have become 
very much conscious of the intricate rationales underlying the two approaches. 
In this chapter we shall trace the logic behind each of them. The criticisms 
we make apply, for the most part, to interpretations under classical theory 
as well as to generalizability theory. 

The regression and confidence interval estimates are radically different 
techniques. Once information on the error of measurement is available, it is 
possible to set up a confidence interval for the universe score when a single 
person is measured by himself. There is no need to bring in a reference group. 

127
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The regression estimate, however, can be made only by bringing estimated 
parameters for a reference group into the picture. Where the confidence 
interval relates solely to the distribution of observed scores “within p*,”’ the 
regression estimate relates to the joint distribution of observed and universe 
scores in the population. This distinction has rarely been pointed out in 
writings on test theory because the traditional stress on individual differences 
brings a reference group into many discussions of confidence intervals. 
Such mixing of concepts is a source of great confusion to beginning students 
of test theory. 

Perhaps matters will be clarified by placing the interpretations in a Bayesian 
framework. Classical statistics was developed by Fisher, Neyman, and 
others who advanced beyond the base laid down by Karl Pearson. The 
classical approach requires the user of statistics to phrase his question 
formally: “‘Is it likely that this evidence would be obtained when such-and- 
such hypothesis is true?’’ If the answer is ‘“‘no,” the hypothesis is rejected. 
Fisherian logic does not allow one to consider “the probability that the 
hypothesis is true.”’ Bayesian logic, which has many advocates today, does 
make statements about the tenability of the various alternative hypotheses. 
To do so, it takes advantage of whatever estimate of these probabilities one 
can make prior to the experiment. In a study where a mean or other measure 
is wanted, the investigator is asked to state the “prior’’ probability that the 
true measure will fall in each interval of the scale. He may arrive at those 
probabilities by direct tabulation of past experience with similar events or 
may simply state “‘beliefs’’ derived quite indirectly from experience (Mosteller 
& Tukey, 1968, pp. 160-183). The prior probabilities are weighted into the 
final solution along with observed values. 

The tester seeks to settle upon one hypothesis or a range of reasonable 
hypotheses about the subject’s universe score. The regression estimate of the 
universe score can easily be seen as a weighted combination of prior infor- 
mation with direct observations. As soon as the tester knows any basic fact 
about the subject, he knows something about what hypotheses are reasonable. 

Knowing that the person is a college student, for example, one can say 
a priori that an IQ in the range of 110-130 points is fairly likely to be his 
universe score. One would be astonished to find that his universe score is 75. 
While a universe score of 160 is not out of the question, we would lay odds 
against such a rare value. These prior probabilities are derived from 
experience with college students previously tested. Much more definite 
probabilities are available when we can identify the subject as a senior in 
College C and the score distribution of that senior class is known. The distri- 
bution may be still more sharply defined if, for instance, he is an honor 
student, and we can obtain the score distribution for that group.
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The scores in such a distribution do not give literally “prior’’ information, 

if all the persons’ scores become available at once. From a Bayesian stand- 

point, however, they are priors because looking at the distribution permits the 

tester to make some judgment about the subject before he turns to the 

observations made directly on him. Test interpreters of course do make 

judgments from priors very often; this is most clearly seen in the statement 

that a certain test score is suspect “‘because it occurs so rarely among such 

persons as this one.’ The regression estimate is one technique—less subtle 

than most of those used in Bayesian statistics—of using prior information 

along with test evidence to reach a more accurate conclusion about the 

universe score. 
Though the confidence interval arose in the classical framework, it can be 

given a Bayesian interpretation. The tester marks off a multiple of 6(A) on 

each side of the observed score and takes the resulting interval as his con- 

clusion about the universe score; thus, no weight at all is given to prior 

information. The Bayesian theorist considers this reasonable only when the 

distribution of priors is nearly flat: “gentle,” to use the Mosteller-Tukey 

term. Sometimes the tester has little or no prior basis for judging what 

universe score to expect, except as the scoring rules set a ceiling and a floor. 

If that is the case, the tester cannot “weigh in” the prior information. 

It is precisely this situation in physical science that makes it appropriate to 

report an observation as, for example, 13.005 + 0.002 grams. The scientist 

has some prior knowledge; merely from looking at the specimen he can be 

sure that its weight is closer to 10 grams than to 500 grams. However, he has 

little basis on which to say that, in the range 12.50-13.50, one value is ap- 

preciably more likely than another. His region of uncertainty is wide relative 

to the errors of measurement, and his prior probabilities within that region 

are equal (or nearly so). Taking priors into account in the Bayesian fashion 

would make no difference; to the right of the decimal place, the balance 

reading is all the evidence there is. 

The psychological tester has taken over the ‘“‘plus-or-minus’’ technique 

from physical measurement, without realizing that his situation is funda- 

mentally different. He almost always knows something about the score 

distribution to be expected for a population from which his subject comes, 

and his error of measurement is fairly large. When a tester anticipates that 

his subject’s IQ (universe score) is in the range of 120-130 points but can 

make no finer prior judgment, the range over which his priors are equal is 

about 20(A). In contrast, the physical scientist’s range of flat priors was 500 

times the standard error. 
The preceding paragraph implies that the regression technique is advan- 

tageous, but there is perhaps a case to be made for the confidence-interval
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method. If it requires fewer (or more acceptable) assumptions than the 
regression estimate, it will be preferred in many applications. Therefore, a 
detailed look at assumptions is required. 

A. The Logic of Confidence Intervals 

The complications of generalizability theory will be sidestepped in this 
section. Emphasis on a familiar model will make the crucial points a good 
deal more evident. Assume strictly parallel measures X,,, Xp2, etc. Assume a 
population mean of 0 and a variance (over persons) of 1.00. Suppose that 
the coefficient of generalizability is 0.75, hence the standard error of measure- 
ment is 0.251/2 or 0.50. A confidence interval is stated in the form X,, — 

0.50 < up < Xp; + 0.50. The standard error will be referred to as o(A), not 

o(6), though under the assumption of equal means o(A) does equal o(6). 
This section does not discuss confidence intervals based on o(e). 

The rationale in general statistics 

Establishing a confidence interval for a universe score rests on the statistical 
rationale for an interval estimate of a population mean. Because that rationale 
is presented in many statistics texts (Hays, 1964, p. 287 ff.; McNemar, 1969, 

pp. 99-105), we need only summarize it here. It is usually assumed that an 
indefinitely large number of samples of size n could be drawn from the 
population and that the sample means so collected would form a normal 
distribution. The standard deviation of sample means o(X) is equal to the 

standard deviation of the individual scores in the population, divided by n’/. 
The assumption of normality implies that the distance of a sample mean 

from the population mean will rarely be two or three times as large as o(X). 
In 33% of the samples, the sample mean is outside the range defined by 
marking off o(X) on each side of the population mean. If we have an estimate 
6(X), the observed mean +6(X) is an interval estimate of the population 
mean. Because in 67% of all such analyses the interval will contain the 
population mean, it is called a “67% confidence”’ interval. Other multiples 
of 6(X) correspond to other confidence levels. If the interval ¥ + 1.960(X) is 
used, the normal distribution assumption implies that the corresponding 
confidence level is 95%. 

The argument is modified if the ¢ distribution is used to recognize the fact 
that o(X) is estimated rather than known. In the usual statistical analysis 

there is a single sample of size n from which o(X) is estimated. If n is as large 
as 5, the interval Y + 6(X) encloses very nearly 67°% of all sample means, 
and to derive the precise confidence level from the ¢ distribution instead of 
the normal would have only a trivial effect on the interpretation. When the 
sample is smaller than 5, the interval given by +1.960(X) includes appreciably
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less than 95°/ of the sample means, according to the ¢ distribution (Mosteller 

& Tukey, 1968, pp. 84-85). 
To adapt the statistical rationale to measurement problems, the test 

theorist notes that the act of measurement produces samples from a distri- 

bution of admissible scores for the person, a distribution that has the universe 

score as its mean. The observed score is a sample mean, whether it is based 

ona single event and the sample size is 1, or is a composite of a whole series 

of observations, for instance, of n, item scores. (The observed score may be a 

total over n observations instead of a mean; if so, this would require small 

changes in wording of many statements below.) 

The distribution of scores from an indefinitely large number of obser- 

vations on the same person is a within-person distribution of scores. This 

distribution, like that for single observations, has the universe score as its 

mean. An inference about the within-person distribution has nothing to do 

with differences between persons or with the universe-score variance. The 

standard deviation of possible sample means (observed scores) for a single 

person is analogous to the standard error of sample means drawn from a 

single population. 

There would be no essential difficulty in applying the usual rationale if a 

sizeable number of observations on p* were available from which to estimate 

o(X pez) = [E(Xpe1 — Hys)*]. It would have to be assumed that each 
I 

observation is randomly sampled from the within-p* distribution, and that 

the distribulion of X,.; is normal. These assumptions do not seem unreason- 

able for test scores each of which is based on a large number of items. 

However, one may have only a single X,.; for the person observed in the D 

study, and if n', is moderate in size, one must employ the ¢ distribution. This 

would produce a wider interval than the tester ordinarily establishes. 

The tester’s assumption of uniform within-person distributions 

The familiar way around the difficulty of obtaining o2(A,7) separately for 

each person is to add an assumption. Assuming parallel tests, o?(A,7) for all 

p and J together is the same as the variance o?(A,,| J) for any one test. 

Now the assumption is added that o7(A,;) = o?(A,; |p) for any p in the 

population. This, or some slightly weaker statement about approximate 

equality, is the basis on which confidence intervals are justified in most 

extant test theory. 

The assumption of a uniform o(A | p) for all p may or may not be justified 

by the facts. If the assumption were valid, the standard deviation across 

persons would be the same at each level of u,. Scatter diagrams for test 

against retest frequently show that this assumption is untenable. Most 

commonly, it appears that the within-person standard deviation is large for
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persons who find the test difficult, and small for persons with fairly high 
universe scores. But just the reverse is reported at times; the Stanford-Binet 
evidently has a much smaller o(A) for a child whose score is below average 
than for a high scorer. 

Suppose intervals are established on the basis of 6(A) estimated for the 
population, but the o(A | p) actually vary from person to person. Then, by 
the ordinary statistical reasoning, the confidence level must be larger than 
0.67 for persons whose o(A | p) is relatively small, and vice versa. Concretely, 
suppose that o(A) is 10, and the interval is made 20 points wide (+10 
points). Then for the subset of persons whose o(A |p) is 15, the interval 
spans only +0.67o and the confidence level is 0.50. For the subset whose 
a(A | p) is 5, the interval spans +20 and the confidence level is 0.95. 

The foregoing discussion suggests that the tester has had little basis for 
stating what confidence level can be associated with the interval estimate 
for a person. 

Problems of interpretation 

Does the interval for p* contain u,,? Lord and Novick have shown (1968, 

pp. 511-512) that confidence intervals are likely to be misleading in the 
interpretation of scores even when the assumptions the tester usually makes 
are fully satisfied. For the moment, assume that there is a population of 
persons to which person p* belongs, that universe scores in that population 
are normally distributed, and that the within-person distribution of observed 
Scores is normal and has the same standard deviation for every person. 
Assume also, for simplicity, that the parameters o7(u,), uw, and o?(A) are 

known. Then the joint distribution of observed and universe scores will be 
bivariate normal. If confidence intervals of the form X,.; + o(A) are now 

set up, the intervals will contain 4, for two-thirds of the persons, which is 
the risk chosen in setting up an interval of this width. What is often over- 
looked is that the risk that 4,, will fall outside the interval is greater than 
one-third for individuals whose observed scores are far from the mean. 
This is offset in the overall odds by the fact that for persons with observed 
scores near the mean the universe score falls within the interval with prob- 
ability greater than two-thirds. 

To be specific, consider further the test with o(X) = 1, p= 0, p? = 0.75, 
hence o(A) = 0.50. Suppose p* has an observed score of +4; an extreme 
value deliberately chosen. The interpreter following customary methods is 
likely to say to p*: “The chances are two out of three that your score is in 
the range 3.5-4.5.”” Are these the right odds? 

The odds stated by the interpreter apply to the whole population of 
persons. But we already know that p* belongs to the subclass of persons whose 
observed score is 4, and the odds in that subclass are not two out of three.
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Consider the slice of the bivariate distribution where X = 4. This is a distri- 
bution of universe scores; it is normal, with mean 3 and standard deviation 

0.43, in accordance with equations (3.2) and (3.3). We do not know which 

score in the distribution belongs to p*. But each score belongs to a person 
for whom the same interval estimate of the universe score would be given; 
for what fraction of these persons does the universe score actually fall in 
the range 3.5—4.5? Practically none have universe scores above 4.5, as that 
is more than 3 standard deviations above the mean of the distribution; but 

3.5, the lower edge of the interval, is 1.15 standard deviations above the 

mean and therefore about 87% (!) of the persons who are told that their 

universe scores fall between 3.5 and 4.5 actually have universe scores below 

3.5. 
The reader, knowing that scores as high as +4 standard deviations are 

unlikely, may not be impressed by this example. While we chose an extreme 
value to produce a dramatic result, there will be similar but lesser contra- 
dictions of expectation when the observed score is much less extreme. 
Moreover, if one’s measure has a low coefficient of generalizability, dramatic 

contradictions will be obtained for scores that occur more frequently. 
Suppose that the coefficient is 0.40. Then 81% of persons with an observed 
score of +2 will have universe scores below the lower edge of the confidence 
interval. The interval will contain u, for 63% of the persons having an 
observed score of 1, and this might seem at last to be a case where a 67% 
interval is working out about as it should. Surely, however, the subject who 
is told that the chances are two in three that his true score is in the range 
0.23-1.77 is left with the impression that his chance is one in six of falling 
above the range and one in six of falling below. Actually, the cases with u, 
outside this interval are almost all on the low side of it. 

In the examples so far, the universe scores have tended to fall outside the 
interval. Just the opposite occurs also, as is necessary to return the overall 
error rate to the theoretical value. On a test with a coefficient of 0.40, a 

person with an observed score of 0 is said to have w, between —0.77 and 
+0.77. This will be true for 88% of such persons, not 67%. 

In statistics, an interval ranging over +1 standard deviation is said to 
“include the mean with probability 0.67.’ That is, when such intervals are 
established for a large number of means, the mean will lie within the interval 
for about 67% of the intervals so formed. There is no basis for asserting that 
the probability is 0.67 for any one designated distribution. The tester is in a 
position, granted the several assumptions, to say that for two-thirds of the 

persons for whom confidence intervals are formed, the interval will contain 

ty. This is not logically the same as saying that for persons like p*, or for 

p* himself, the odds are two out of three. Lord and Novick discuss the 

point at some length (1968, p. 512), stressing that “no confidence statement
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can be made about a particular, nonrandomly chosen examinee in whom we 
happen to be interested. Nor can any confidence statement be made about 
those examinees who have some specified observed score.”’ 

The paradoxes considered are not very paradoxical. Where a population 
can be differentiated into subpopulations whose members are distinguishable 
on any nonchance basis, one expects probabilities for the subclasses to be 
different. The demonstration of the shift in odds as a function of X rests 
basically on regression toward the mean, a phenomenon with which all users 
of correlation are familiar. So long as the mean of yw, is less than X,, 
for persons with X,, > mw, and greater than X,, for persons with X,, < m, 
there will be effects such as we have illustrated. The departures from the 
population odds will be modified by various changes in the assumptions 
(e.g., by nonuniform error distributions), but departures there will be— 

unless the w,-on-X regression coincides with that for X on u,. 

Obviously, if p? is near 1.00, the two regressions will nearly coincide and 
subclass probabilities will not shift appreciably from one level of X to 
another until the most distant tails of the X distribution are considered. A 
second possibility is that the universe-score distribution is rectangular.} 
Where that is the case, and errors are normally distributed around y,, the 
regression line is a much-flattened ogive, running close to the X-on-y, 
regression line until it hooks away as the end of the , range is approached. 
The ends of the uw, range are asymptotes. Only for persons with X near or 
beyond the extremes of the uw, range does regression toward the mean distort 
probabilities. These persons will be a small fraction of the group if o?(A) is 
small relative to o?(u,). In general, the interval estimate of a universe score 
can defensibly be interpreted in terms of the specified risk level if prior 
probabilities are fairly flat, and not otherwise. 

What scale does the estimate refer to? Several commercial tests arrange 
for the tester to display a pupil’s score as a “band” rather than a point. 
There may be a table in the test manual that converts a raw score of 66 into 
a band of 63-69, for example, to take into account the error of measurement. 

The band for the test score is plotted onto a record sheet that usually em- 
bodies a percentile (or standard-score) conversion. Alongside the scale-point 
for 63 one may read that the percentile equivalent is 82; beside 69, that the 
percentile equivalent is 91. So the pupil is told that his universe score probably 
lies between percentiles 82 and 91. Percentiles of what? 

The scaling procedure is such that the percentiles refer to an observed-score 
distribution. The pupil, then, is told that his universe score is unlikely to 

1 We have also given thought to severely skewed and bimodal distributions. In such cases 
one is likely to have regression toward the mean in some arrays and regression away in 
others. The odds will again vary from subgroup to subgroup.
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fall below the 82nd percentile for observed scores. This is scarcely a useful 

statement. Universe scores have a smaller standard deviation than observed 

scores. While 63 may fall at the 82nd percentile for observed scores, it falls 

higher (88th percentile, perhaps?) among universe scores. It is not meaning- 

ful to place the universe score against the observed-score distribution. 

It seems neither feasible nor desirable to convert the confidence interval 

into a norm-referenced statement. One cannot ordinarily get good data on 

the distribution of universe scores. To apply universe-score percentiles to the 

confidence interval, moreover, is to bastardize the argument. Once one 

admits the presence of a reference group for whom the prior distribution is 

known and non-flat, there is no justification for reporting a result consistent 

with flat priors. 

Comparing the score to an absolute standard. The difficulties examined 

above are less troublesome in certain kinds of decisions where an absolute 

standard is invoked. One can, for instance, defend the common practice of 

using bands to make an inference that the difference between two universe 

scores departs from zero. That procedure will be treated in Chapter 10, since 

it is a multivariate problem. As will be seen, the common procedure (in 

effect) sets up an interval estimate for the observed difference score symmetric 

about the hypothesized (null) universe-score difference. This is relatively free 

from the faults of stating that u, for an ordinary difference falls within an 

interval. Nevertheless, in Chapter 10 we shall argue against displaying the 

bands on a profile sheet. 

Intervals may be used in judging a single score against an absolute standard. 

It may be agreed, for example, that algebra students who cannot solve 75%, 

of the equations in a specified universe should receive further training on 

such problems before moving to advanced topics. The decision could be 

based on whether X¥,,; > 75 (assuming that scores are expressed as per- 

centages), but this ignores errors of observation. A safer procedure is to set 

up a band symmetric around the standard, for instance, from 75 — 1.960(A) 

to 75 + 1.960(A). Then one would hold back students whose scores fall 

below the band and assign advanced work to students whose scores fall 

above the band; that is, whose universe scores are very probably in the 

lower or upper region, respectively. It would be sensible to test further those 

whose scores fall within the band. After each stage of testing, the band 

narrows, because larger n; implies a smaller error. Elementary cases of this 

kind of sequential testing were discussed by Cronbach and Gleser (1965, pp. 

69-85, 91-96), and a recent practical application of such techniques by 

Ferguson (1970) makes their utility in instructional tests quite evident. We 

may also refer to the work by Mathur & Kumar (1969), who derive from the 

classical model a sequential procedure relating the confidence interval to
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the amount of additional testing the investigator is willing to undertake. 
They indicate the extent to which the procedure reduces erroneous decisions, 
assuming that average testing cost (on a per-subject basis) is fixed. 

To revert to our example: Where the correct value of o(A | p) is used and 
the within-person distribution is normal, 95% of the persons whose (un- 
known) universe scores precisely equal the standard will be held for further 
testing. The probability is 0.025 that such a person will be held back, and 
0.025 that he will be sent to advanced work without further testing. The 
probability is less than 0.025 that a person for whom pu, > 75 will be held 
back, or that one for whom yw, < 75 will erroneously be sent to advanced 
work. The procedure does not guarantee that 97)4 persons out of 100 sent 
into advanced work will be up to the standard. If there are very many weak 
students, and very few above the standard, then the number misclassified into 
the advanced group may be large; indeed, it may be larger than the number 
who are properly assigned there. 

Bayesian methods are able to take base rates into account. One can also 
take into account the relative seriousness of the two types of misclassification. 
Such considerations would lead to a decision rule that does not use cutting 
scores symmetric about the standard. 

Considerations added by generalizability theory 

In developing the theory of Chapters 1-3 the equivalence assumptions of 
classical theory were avoided. The model and the equations that lead to 
estimates of variance components depend solely on the assumption that 
conditions are randomly and independently sampled from the universe. The 
first consequence of this weakening of the model is that in many D studies 
components for i, pi, and the like enter the error A; this makes necessary 
our distinction between A and 6. 

The likelihood of unequal condition means was obvious in early studies of 
the reliability of ratings, as early as the 1920’s. Much more recently, Lord 
(1955a, 1962) noted that when tests are formed by random sampling of 
dichotomous items, the variation in item difficulty introduces a component 
into the error of measurement that classical theory ignores. Generalizability 
theory provides a systematic way of identifying and estimating such com- 
ponents of error. It goes further, and considers components arising from the 
sampling of more than one facet. This complicates reasoning about con- 
fidence intervals. 

Either classical theory or generalizability theory allows for the possibility 
that a G study will be carried out on the particular person p* about whom 
conclusions will be drawn. An adequate multifacet study of this kind is 
harder to carry out than a study that observes p* under conditions of a single 
facet. Therefore, it is likely that the o?(A) derived from a sizeable sample of
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persons will be taken as o7(A | p*) for any p*. Employing a single value of 

o?(A) for all persons is perhaps more risky under a multifacet model than 

under the classical model, because some of the added components probably 

vary from person to person. 
Fixing accurate confidence levels for an interval based on 6(A) is difficult. 

It is convenient to assume that the A,, are normally distributed, but this is a 

stronger assumption than it was in the classical case. While the pi, pj, and 

pij,e components may reasonably be thought of as normally distributed, 

assuming normality for i and j components is more questionable. Further- 

more, values of n, and n, in G studies are often small, which means that the 7 

and j components are not well estimated. If normality of score components 

is assumed, the ¢ distribution provides a precise small-sample theory for 

arriving at confidence levels. 

Forming an interval estimate of the mean yu for a population on the basis 

of sample data is a legitimate application of confidence-interval theory. The 

textbook approach forms such an interval directly from Xp;. and s(X57s), 

for some sample from the population.2 Only sampling of persons is 

considered. This is sound enough as a way of establishing a confidence 

interval for the condition mean ;., but it does not allow for sampling of 

conditions. A procedure that recognizes all sources of variance in Xp, 1s 

required when both p and i are sampled. This procedure (p. 96) is open to 

few of the objections that apply to the interpretation of confidence intervals 

for single persons. The priors are likely to be flat. The assumptions that 

conditions for G and D studies are randomly drawn from the same universe, 

and persons for the studies drawn from the same population may or may 

not be acceptable. The most severe difficulty is that confidence levels are not 

soundly determined from the normal distribution when the number of 

degrees of freedom for any sizeable component of variance is small in the 

G study. In the face of this difficulty a jackknife procedure is probably 

advisable. 

B. The Logic of Regression Estimates and Similar Equations 

At various points in Chapter 3 equations were presented for making a point 

estimate of a person’s universe score. Variants of these equations are listed 

in Table 5.1. These will now be helpful in elaborating on points barely 

touched upon in Chapter 3. Each one of the equations shown has a simpler 

counterpart that estimates the deviation score uw, —m rather than the 

absolute value y,; to obtain the right-hand side of the counterpart equation, 

simply ignore the first term of the equation in the table. For example, in the 

2In this chapter we use a single asterisk, dropping the double-asterisk convention of 

Chapter 4.
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TABLE 5.1. Alternative Equations for Estimating a Person’s Universe Score 

  

Formula® Remarks? 

  

Equation for a nested one-facet D study: 

  

(S.1) fy = Xpr + [e?*(Xp7,Hp) NX pr _ Xp) Cf. Table 3.1 and 

(3.2) 

Cf. Table 5.2: 1, 

| 2a, 3a, 4a 
Equations for D studies with I* x p: 

(5.2) fy = Xpz + [p*(Xpre, Uy) ](Xpre — Xprs) Cf. Table 3.2 and 

Table 5.2: 2b, 

2c 

. O({ty) Cf. Table 5.2: 4b, 
(5.3) fy = Xpz + Est o(XpI) p(Xpr+,Up) 4c 

x (Xpre — Xpie) 

O2( utp) Cf. Table 5.2: 3b, 
(5.4) ip = Xpx + >— (Kore — Xpie) 3c 

o*(X pre) 

a 

(5.5) fp = Xpz + [6 p*(Xp7,4y | D](Xpre — XpPre) Cf. (3.5a). This 
> (i) ‘estimation 
oO : 99 

= Xp; + —e (Xprs — Xpre) equation ap- 

€o°(X.7) plies to all 
pl crossed designs 

of Table 5.2. 

  

& XpI+ is the D-study mean. The value of Xp may be determined from the G study or the D 
study or both together (see text). 
> The cross-references to Table 5.2 indicate the conditions that call for application of each 
equation. 

series of equations in Table 5.1 (5.1-5.5), (5.2) changes to Est(u, — uw) = 

p(X p1+ — X pzs). A number of cross-references are made between Tables 5.1 
and 5.2; these are used to trace the assumptions and operations behind each 
formula. As we proceed, we shall clarify how various quantities entering the 
equations are to be estimated. 

Equations such as these take into account the fact that the subject belongs 
to a population (or subpopulation), a fact the procedures discussed in 

’ Throughout the next several pages we shall assume that equations for the population 
sampled in the G study are under discussion. We return later to equations for distinguish- 
able subgroups.
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Section 5.A ignore. In classical theory, it is assumed that tests are fully 
equivalent and that the parameters of the joint distribution of one observed 
score with another are known; from these, the population value of the 
regression coefficient px x, is obtained. Under these assumptions, the 
regression of true score on observed score is the same for every test. A 

reliability study is used to obtain values of pe and Xp, for entry in (5.1). 
In classical theory, no distinction is made between G and D studies, and 

there is no need to ask whether the two values of Xp, should be taken from 
the reliability study, or whether one or both should be taken from the D 
study. Generalizability theory greatly complicates the estimation problem 
when it recognizes that conditions may not be equivalent and considers any 
set of conditions to be a sample from a universe. 

There are no particular difficulties in making a regression estimate when 
the D study uses a nested design. As there will be a new condition for each 
person, there is no thought of adjusting his score for the “‘constant errors” 
associated with that particular condition; these are manifestly impossible 
to separate from the person’s own characteristics. In the joint distribution of 
universe scores with observed scores from a nested design with n, uniform 
over persons, the regression of 4, on X,, has the slope o?(p)/o?(X,,). This 
is a function of all p and i, and can be written as p?(X,7,u,). Equation (5.1) 
applies. While (5.1) is written in terms of the nested one-facet study, the 
equation would apply equally well if subscripts for j and other facets were 
added. The weaker assumptions of generalizability theory, then, create no 
problems in making regression estimates for a nested D study that are not 
inherent in the classical model also. Generalizability theory does offer 
greater flexibility in determining regression equations for a variety of nested 
D-study designs from a single G study. 

Difficulties introduced by weak assumptions 

Table 5.2 lists a variety of ways in which the classical assumptions may be 
weakened, and summarizes points to be developed in the following section. 
As assumptions become progressively weaker, it becomes more and more 
difficult to obtain a satisfactory regression formula. 

Let us start with the most troublesome case, presented in line 4c of the 
table. There is a crossed I* x p D study, and conditions J* are not repre- 
sented in the G study. The regression equation, (5.3), calls for parameters of 
the joint distribution of uw, and X,;., but very little is known about that 
specific distribution. As indicated in Chapter 3, the most practical solution 

aN 

is to substitute @p? as the slope, shifting to (5.5). This use of the average 
slope makes (5.5) an estimation equation, not a genuine regression equation. 
It is only an approximation to the desired regression equation unless a strong
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equivalence assumption is made. Line 4c of Table 5.2 is read as follows: 
The regression equation, (5.3), calls for two terms that are difficult or 

impossible to estimate. The three terms of the estimation equation, (5.5), 

can all be estimated. An examination of line 1 also will help us to explain the 
format of the table. This line refers to the strict classical case. For (5.1), the 
genuine regression equation, all needed parameters can be estimated when 
the assumptions hold. There is no need to discuss a substitute “estimation’’ 
equation. The same is true of nested D studies (lines 2a, 3a, 4a), no matter 

what the assumptions about equivalence of conditions. 

The constant term. Each equation adds a fraction of the person’s deviation 
score to the estimated universe-score mean, to get the estimate of his universe 
score. The constant term of the equation is written in two parts. One constant 
is the first member of the equation (our best estimate of the universe-score 
mean 1). The other, used in forming the deviation score, is a product of the 
regression slope and the mean in the D study. 

If conditions have the same mean (Case 1), (5.1) applies; the mean in the 
G study or the mean in the D study may be taken as an estimate of either or 
both constants. When one is satisfied that the persons in both studies are 
random samples from the same population, the mean based on the greater 
number of observations might reasonably be employed. A combination of 
the two means makes fuller use of the data. Each mean has its own standard 
error and is to be weighted in inverse proportion to that error. 

In general, for G studies, the variance of sample means over successive 
applications of the design: 

(5.6) o(X py — uw) = ~ o%(p) + 
Dp 

1. 1 . 
— oi) + — o°(pi,e) 
n; NyN; 

Assuming equivalent conditions, o?(i) becomes zero. There is an analogous 
equation in n, and n; for the D study. Write wg) and ap) for the two 
standard errors, and write Xpyg) and Xpyzp) for the two sample means. 
Then the best weighting is 

  

(5.7) i= (G)®(p) [= PH 4 —Pup)) 

Wg) + ®p)L Me) W(p) 

Even though we rely on the random-sampling assumption in all our 
theoretical development, perhaps the investigator will wish to lessen his 
dependence on it. If the D-study mean departs from the G-study mean by a 
modest amount [relative to 6(p)], employing the D-study mean alone in 

forming deviation scores guards against a possible systematic difference 
between the G and D samples. It is hard to advise whether to take as the 
first Xp; of the equation the D-study value or the weighted value from (5.7).
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The decision rests in part on the size of each study, and in part on the in- 
vestigator’s commitment to the various assumptions. If the means of the 
G and D studies differ substantially, a reexamination of assumptions is 
critically needed. 

For a nested design the argument is similar. The weighting formula has 
the form of (5.7), but the standard error of the mean in a nested design is: 

    oi) + o°(pi,e) 
pl; non, 

1 “sN 

(5.8) cota = + op) + 
Ny 

In a D study, one has the same equation with n; and nj. 
With crossed designs and nonequivalence, the mean from the D study is 

used in forming deviation scores. The weighted average from (5.7) is pre- 
sumably the best estimate of the universe-score mean. However, when the 

G study and D study use the same conditions, one obtains no information 
on “7. — p. In effect this is taken to be zero. 

The slope. Estimating the slope of the regression equation is a straight- 
forward matter if one can assume strict equivalence, or uniform X-on-y, 
regression slopes along with uniform error distributions for various con- 
ditions. It is also a simple matter if the D study is nested. The ratio of esti- 
mated universe-score variance to estimated observed-score variance serves 
quite adequately as a slope for (5.1) or (5.2). 

However, when weaker assumptions are made, and the D study employs a 
particular set of conditions J*, serious problems arise. The ordinary G study 
is unable to give a usefully precise estimate of the specific p?(Xp7.,u4p). The 
conditions J* would have to be used in the G study along with a considerable 
number of other conditions. We noted earlier the suggestion of Lord and 
Novick that one may be able to estimate the specific coefficient by an item- 
sampling design which distributes conditions other than J* over subgroups 
of subjects. This possibility deserves development, though it obviously 
cannot be applied routinely to deal with all the different sets J that might 
be used in D studies. 

In (5.4), dividing the estimated universe-score variance by the actual 
observed-score variance for condition J* is suggested. This does indeed give 
the regression slope if the X-on-u, slope (designated b, in the development 
below) is the same for all conditions. Then nonequivalence of 4,-on-X slopes 
arises solely from differences in the variances 0?(u,;~,e | i). We are skeptical 
that this intermediate equivalence assumption can be justified, and hence 
point to (5.4) for its interest rather than its practical value. 

If the investigator who avoids an equivalence assumption must fall back 
on the estimation equation when he has a crossed design, what are likely to 
be the consequences of this substitution? More bluntly, how bad are his
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estimates of u,? To examine this, we modify the basic model of (1.1) in which 
score X,,; was divided into components u,~, w,~, and u,,~,e. Write b, 
for the X-on-u, regression slope,’ and define »,, by the following equation: 

(5.9) Mom = (6; — I)ug~ + 1p; 

This divides the interaction into two portions, one that is correlated with 
{ty and one that is independent. The equation could be rearranged: »,, = 
Loi — Oily — Bi + 56. Using these symbols, the model (1.1) becomes 

(5.10) Xp; = t+ boy — BW) + (Ms — HE) H+ Yi + Co 

This is not a change in the model. According to Chapter 1 the expected value 
of “;~ is zero, and hence, the expected value of the covariance over persons 
O(Uy™,4y;~), Considering all i, equals zero. This does not imply that each 
separate covariance is zero. 

Unless one is dealing with tests carefully constructed to be parallel, it is 
entirely likely that the interaction for some conditions will covary positively 
with the universe score, hence b; > 1, and that others will have a negative 
covariance and b; < 1. It is well known that some judges, for example, 
extend their ratings over the full range of a scale, while others tend to crowd 
their ratings into a narrow range. That is to say, some judges are emphatic 
and some are conservative in reporting information. The result is an inter- 
action component yu,,~ that is correlated with w,; indeed, wz; — vp, 1S 
perfectly correlated with y,. Classical theory assumes b; to be 1 for all 7. 
We weaken this to &b,; = 1 (which must be the case if &X,,; is to equal w,). 

é 

Using an estimation equation rather than a regression equation is made 
more hazardous by an increase in o*(b,), and less hazardous by an increase in 
n,. [Because b;. = (1/n;) > b,, the variance of b; equals (1/n;)0?(b;).] How 

ieI* 

much does the result from (5.5) depart from the result (5.3) would give if it 

could be used ? To explore this numerically, we set up a hypothetical problem: 

For person p*, “5. = 1. Conditions in the universe fall into three equally 
frequent classes, defined by allowing b; to equal 1.2, 1.0, or 0.8. All con- 
ditions have the same error variance o?(7,e). All conditions have the same 

mean, equal to zero. o*(u,) = 1. 

The variation assumed for the b; is appreciable, since the largest value is 1.5 
times the smallest. 

Figure 5.1 presents detailed results for each of nine different combinations 
of the three b, with three values of o7(v,e). We shall explain later how the 

4A coefficient 8, similar to b, appears in the Lord—Novick formulation for nominally 

parallel tests (1968, p. 209).
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calculations were made. Only the higher values of &p? are represented in the 
figure. The left portions of the curves are readily constructed, because in any 

panel both of them extend steeply downward to the point (—1,0). The 
reader may find much of interest in the details of the relationships, but the 
main interpretation has to focus on how each approach works out on 
the average. 

The departures of the estimate from the universe score, without regard to 
sign, were averaged over all nine cases. The average discrepancies for both 
the estimation equation and the regression equation have a trend about like 
this: 

6 p* 0 -*+ (9.60 0.70 0.80 0.90 0.95 

Mean absolute 1.00 --: 0.46 0.40 0.32 0.23 0.16 

error 

This may be compared with the discrepancy between the observed score and 
the universe score, for which the trend is: 

6 p* 0 -*+ 0.60 0.70 0.80 0.90 0.95 

Mean absolute oo -** 0.59 0.47 0.36 0.25 0.19 

error 

The estimate from (5.5) has, at all levels of &p?, a greater mean departure 

from the universe score than the regression estimate; but the difference is 
negligible unless ¢p? is large: 

6 p* 0-0.85 0.90 0.95 1.00 

Difference in mean <0.01 0.02 0.06 0.14 

absolute error 

The correspondence of the two estimates would have been less close if we 
had employed a wider spread of b;. Also, use of a different u,. would change 
the results somewhat. Nonetheless, we conclude that the use of (5.5) in place 

of (5.3) will generally give satisfactory results. 
Let us now present enough detail to enable the reader to derive these 

results, and also to work out results for other hypothetical problems. For 
any condition, 

(5.11) o(X) = Bo%(u,) + 0%(v,¢) 
Because o?(u,) = 1 and o*(7,e) is uniform, 

(5.12) €o(X) = &b? + 0°(r,e) 

&b; = (1/3)(1.44 + 1.00 + 0.64) = 1.03. For purposes of this illustration 
take o7(v,e) to be 0.09. For this universe, with n; = 1 we obtain @o?(X) = 
1.12. For &p? we evaluate the usual formula: o7(u,)/€o7(X) is 1/1.12 = 0.89,
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If the condition drawn has b; = 1.2, (5.11) indicates that o2(X) = 1.44 + 
0.09 = 1.53. The regression slope b;/o2(X) is 1.2/1.53 = 0.78. This is to be 
compared with the 0.89 of the estimation equation. Likewise, if b, = 0.8, 
o*(X) = 0.73 and the regression slope is 1.09. The actual @p? for a given 
o°(v,e) is found by calculating b;/o(X) to get pj, and averaging over the 
three values of b;. For o?(y,e) = 0.09 we get p? = 0.94, 0.92, and 0.87. 
which averages 0.91. 

Consider Case 4 of the figure, where b, = 1.2 and the regression slope is 
0.78. We have up. = 1. When o(y,e) = 0.09, X,.; = 1.2 + o(v,e) = 1.50. 
When we multiply this by the regression slope we obtain 1.18, which is 0.18 
greater than w,,. Multiplying by the estimation slope gives 1.34, and a 
discrepancy of 0.34. A point at (0.91, 0.18) helps locate the solid line of the 
figure; a point at (0.91, 0.34) lies on the broken line. Other values of 07(v,e) 
are used to get additional points. 

Estimating universe scores resembles the forecasting of criteria. But if a 
faulty prediction equation is put into use, it is automatically called into 
question at a later time when actual outcomes do not accord reasonably 
well with the predictions. There will never be observations of the universe 
score, and if the estimation equation is faulty, that fact may not be discovered. 
It is possible, for example, that the equation is highly accurate when initially 
established. However, changes over time in the population mean, universe- 
Score variance, or correlation among conditions may make it inapplicable. 
The possibility of change should be recognized in any attempt to use results 
from a G study in subsequent years, but the estimation equation may be 
more sensitive to such changes than are other applications. 

Interpreting the estimate 

The estimate may be interpreted on the basis of norms, or may be used to 
forecast criterion performance, or may be used to describe how well a 
universe of content has been mastered. We shall discuss the difficulties and 
puzzlements involved in such interpretations. It is to be emphasized that the 
problems are present whether one assumes the strong classical model or our 
weaker one. To simplify the discussion we shall write this section in terms of 
strictly equivalent conditions. 
Norm-referenced interpretation. The score fi, locates the person on the 
scale common to both observed scores and universe scores. But the norms 
for observed scores do not apply. The percentile rank of ji,. in the distri- 
bution of estimated universe scores ji, is the same as the percentile rank of 
the observed score X,. in the X distribution. Surely, a norm-referenced 
interpretation should be based on the location of the estimate within the 
distribution of actual universe scores 4,—not the distribution of ji, or of X,,. 

The distribution of «4, is unknown. The most plausible approximation
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ordinarily available isa normal distribution with mean / and variance o7(p). 
(Information about higher moments of the universe-score distribution, and 
therefore a check on its normality, may in principle be obtainable when the 
G data are very extensive. See Lord & Novick, 1968, pp. 232-233, 245-248 ; 

Lord, 1969). 

If deviation scores uw, — pu are estimated, one can if he desires introduce a 
standard-score scale for universe scores. Suppose this to have mean 50 and 
standard deviation 10. Then one could express o(p) in raw-score units and 

assign the value 60 to an estimated universe score that falls o(p) units above 
the mean, and so on. A simple table could be prepared for any reference 
population in which a G study has been conducted. If one has reasonable 
confidence in the estimate of mu, then the table could convert an absolute 

estimate fi, to a standard-score scale for which o(u,) = 10. 

The tester has long been trained to read a standard score of 60 as implying 

a percentile rank of 83, and to make similar interpretations for other scores. 
If actual universe scores were known, that interpretation would apply to 
normally distributed universe scores. When universe scores have a standard 
deviation of 10, the estimated scores have a standard deviation of 10(&p?)'””. 
This implies that the tester will have fewer extremely high and extremely low 
standard scores to interpret than he has when working with ordinary standard- 
score transformations of observed scores. That is good, because with a 
fallible test one has no warrant for making extreme statements. It is strange to 
think that one might test a representative group of job applicants and 

conclude that no one ranks above the 90th percentile. It is less strange when 

the statement is recast as follows: ‘‘Given the fallibility of the test, our best 

judgment locates this person (the highest scorer) as falling somewhere around 

the 90th percentile of the universe-score distribution.” 

Pursuing this line of reasoning leads to fresh questions about matters long 

taken for granted. Should the deviation IQ be defined, as in the past, so that 

observed IQs have a standard deviation of 16? This amounts to defining a 

unit of measurement in terms of a fallible operation. An accurate mental 

test and an inaccurate one, both scaled to yield IQs with a standard deviation 

of 16, will have different standard deviations for w,. If two forms of any 

test so scaled were averaged, the standard deviation of observed IQs for this 

more accurate procedure would be less than 16. Paradoxes like this make it 

obvious that a unit one intends to use in describing individuals and in 

stating functional relations should be defined in terms of universe scores and 

not in terms of a fallible operation. This argues strongly for changing norming 

practice, see also p. 257. 
While any one measure belongs to various universes of generalization, it 

would seem to be feasible to select the universe that most interpreters are 

likely to have in mind and to select the reference population most of them
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are interested in, and to calculate o(u,) for that universe and population. 
This would then be used in place of o(X) to define the unit for the standard- 
score scale. If that is done, percentiles should similarly be inferred for the 
universe-score distribution, though this requires an assumption of normality 
unless very extensive G-study data are available. 

Criterion-referenced interpretation. The usual form of criterion-referenced 

interpretation draws on past experience to report what criterion performance 
is typical of persons having a given observed score. This may take the form, 
for example, of a regression equation for predicting grades from an aptitude 
measure, or of an expectancy table that gives the grade distribution corre- 
sponding to each score level. Provided that all persons are members of the 
same population, and that a test of the same length will be used both in the 
follow-up study from which data on expectancies come and also in measur- 
ing individuals in the D study, there is no value in making any adjustment 
for error of measurement. One might estimate universe scores for persons 
in the follow-up study, and express criterion expectations as a function of 
estimated universe scores. But this tabulation, entered with the estimated 

universe score for a person p*, will report precisely the same expectation 
for him as the observed-score table did. The same would be true of an 
expectancy table relating actual universe scores to criterion scores. 

The situation is different when some persons are measured more thoroughly 
than others. Suppose that a population of college freshmen has a mean of 
600, that a certain person has the observed score 800, and that the regression 

line indicates an expected grade average of 3.50 for him. Consider now 
another person who is tested twice, earning scores of 750 and 850. Perhaps 
the regression line indicates expected outcomes of 3.20 and 3.80 for these 
scores individually, or 3.50 for the average. This interpretation is unsound, 
as a person who earns a high score twice probably has higher aptitude than 
a person who earns that score once. If universe scores were estimated, the 
single test score of 800 would be regressed to, say, 770 and the score based 
on two testings to 784. It appears, then, that when some persons will be 
measured more thoroughly than others it is appropriate to alter the expec- 
tancy table or criterion-on-test regression function to take this into account. 

It is possible to get the criterion-on-universe-score regression function. 
The empirical follow-up data give the covariance of criterion score with 
observed score, which estimates the expected covariance of criterion score 
with universe score. Dividing this by the universe-score variance calculated 
from a G study gives the slope relating criterion score to universe score. 
Such a correction requires that the follow-up study and the G study employ 
the same sample, or, if separate samples are used, that they be reasonably 
large and unquestionably from the same population.
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If the follow-up data show a curvilinear regression of criterion on observed 
score, one can easily take this into account when the observed score is 

interpreted directly. We have no way to translate the curvilinear function into 
the comparable function relating criterion score to universe score (though 
perhaps methods for this purpose could be developed). Similarly, while one 
might reconstruct an expectancy table relating criterion to universe score by 
making strong assumptions of bivariate normality, one has no way to 
convert the typical heteroscedastic expectancy table into the comparable 
table for universe score. | 

In establishing a regression function relating criterion score to universe 
score, estimating universe scores for the individual, and interpreting them 
with the aid of the function, one must invoke a large number of assumptions. 
The hazards of the procedure are therefore considerable. Practically, it may 
be sufficient to warn test interpreters that any expectancy table or criterion- 
on-observed-score regression is accurate only for test data in which n; is 
the same as in the original follow-up study. For a limited number of in- 
dividuals a different n; will have been used; a sophisticated interpreter will 
be able to take this into account without actually going through the rather 
treacherous two-stage regression. Fortunately, the predictor variables that 
enter into criterion-referenced interpretations are usually highly reliable. 
Therefore, an effort to take error of measurement into account formally 
would produce little difference in the final interpretation. 

Content-referenced interpretation. Interpretations that consider the observed 

score as representative of the universe of content from which a test is sampled 
are becoming increasingly prominent. This is seen in many forms of in- 
struction where the lessons a student is given next week will be determined 
by his score on this week’s test. Where the computer is used to regulate 
instruction, the tests employed may be designed on a sequential basis that 
administers far more items to some students than others. The decision rule 
may be, for example, that students who can solve 75% of a domain of 
quadratic equations are ready to proceed to a new topic. If the test is a true 
sample from that domain, the estimated universe score, expressed in terms 
of percentage correct, is a better basis for the decision than the observed 
score. 

The estimation equations offered by generalizability theory can be used to 
estimate the universe score. In the instructional situation, however, one may 

feel that such a complication is unnecessary because wrong decisions resulting 
from the direct interpretation of the observed score may not be costly. If 
estimation equations are to be used, it may be well to consider a multivariate 
estimation procedure of the sort introduced in Chapter 10. 

Where measuring procedures are sequential, it is necessary to recognize
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that generalizability is greater for those pupils who are measured most 
thoroughly. If the sequential procedure simply draws additional items at 
random in measuring certain persons, then our equations apply; one forms 

“™ 
the ép? of (5.5) for various values of n; and applies to each person the 
equation that corresponds to the n; used in observing him. The typical 
sequential procedure in educational measurement, however, selects easier or 
harder items for the second, third, etc. stages of testing, depending on the 
person’s success at previous stages. To interpret the resulting scores calls 
for a Bayesian analysis; this kind of analysis is still in the process of develop- 
ment. (See Novick, Jackson, & Thayer, 1971.) 

Interpretation of o(s) 

The error of estimate « indicates in a gross sort of way the adequacy with 
which the observed score forecasts the universe score. Even when the popu- 
lation parameters b, and (6) are the same for all conditions, however, the 
inferences made from the G study are only approximate. The regression 
coefficient is estimated from a finite body of data, and therefore is affected 
to some extent by sampling error. Therefore, regression equations derived 
from successive, independent G studies would vary in both slope and inter- 
cept, marking out a pattern of criss-crossing lines with a more-or-less hyper- 
bolic envelope. When conditions are not equivalent, the estimation equations 
(5.5) will show a similar pattern, but the variation from one sample to 
another will be greater, unless n; is large. 

For persons whose observed scores are near the population mean, the 
prediction of the universe score is relatively accurate. However for persons 
far from the mean, the variability of possible estimation or regression 
functions is substantial, and o(e) (which ignores sampling of persons and 
conditions in the G study) gives much too conservative an account of the 
error of estimate. It follows that a simple confidence interval of the form 
fly — O(€) K My K fly + O(E) is not useful. 

Our reservations about the direct interpretability of o(e) do not apply in 
the D study where conditions are nested within persons. Under those circum- 
stances the relevant parameters are likely to have been well estimated and 
the slopes are uniform over D studies. A confidence interval symmetric 
around f, [using the value of o(e) appropriate for a nested study] may then 
be interpreted with some confidence, except where ceiling and floor effects 
call the assumption of linearity into question. 

Estimation on the basis of subpopulation means 

Kelley’s original introduction (1923) of the regression estimate of true 
scores placed considerable emphasis on the fact that the estimate takes into
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account the mean of whichever group the person belongs to. Therefore, it 
draws different conclusions about, for example, a fourth grader and a fifth 
grader having the same observed score. We have pointed out that the regres- 
sion equation can be interpreted as a multiple-regression equation that 
assigns appropriate weights to the individual information and the group 
information, greater weight being placed on the former as the coefficient of 
generalizability becomes greater. 

Whether subpopulation parameters should be employed in place of 
population parameters in the equations of Table 5.1 involves three distinct 
questions. One is the political question referred to on p. 106: Will persons 
tested and institutional decision makers regard a procedure as fair if it 
leads to different decisions for persons who earn the same test score? We 
postpone discussion of this to Chapter 11. Another is a straightforward 
numerical question: Does the use of subgroup information alter scores by an 
appreciable amount? The third question is complex: To what extent can one 
have confidence in the assumptions underlying the use of subgroup regresssion 

equations? 

Practical significance. The use of subgroup information produces a “4, for 
which the correlation &p?(i,,u4,) ought to be larger than the correlation 
E p*(Xy;:/4p), Which equals the correlation &p?(fi,,u,) for the “, obtained 
from the population estimation equations. Equation (3.11) showed that this 
increase depends on the separation of the subgroup means and on the value 
of &o?(6). It is useful now to consider some specific numerical values. 

Suppose that o7(u,, within groups) is 200 and o?(up, between groups) 1s 
50. This is a moderately large separation of groups; the two means differ by 
about one within-group standard deviation. Then for various values of 

& 0*(6) we have: 
Increment as 

Increment resulting proportion of 

  

“oN “~ from use of subgroup aN 

6 07(6) E p?(Xpi,Hp) E p*(fin,My) information 1 — E p*(X pity) 

0 250/250 = 1.000 1.000 0.000 — 
20 250/270 = 0.925 0.926 0.001 0.01 
50 =. 250/300 = 0.833 0.839 0.006 0.04 

100 250/350 = 0.714 0.734 0.020 0.07 
co 0.000 0.200 0.200° 0.20 

We used (3.11) to calculate the increments, and added these to the second 

column to get &p?(fi,,u,). The last column indicates the fraction by which 
one would have to increase n; to get the same increment in &p?(X5;,{p). 

5 This value equals o7(u4p)/o*(u,, all cases).
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None of these increments makes for appreciable improvement in the useful- 
ness of the score. That is, with a group separation of o(u,) or less, one 
gains nothing from the controversial procedure of regressing toward the 
subgroup mean. 

One further set of examples will be useful. Keep the within-group variance 
at 200 and raise the between-group variance to 200. Then the difference in 
means is twice the within-group standard deviation—a large value indeed. 
These results follow: 

— — Increment as 

  

& 0(6) E p*(X pip) E p* (tip, My) Increment proportion 

0 400/400 = 1.000 1.000 0.000 — 

20 400/420 = 0.952 0.954 0.002 0.04 

50 400/450 = 0.889 0.900 0.011 0.10 

100 400/500 = 0.800 0.833 0.033 0.17 
200 400/600 = 0.667 0.750 0.083 0.25 
©O 0.000 0.500 0.500 0.50 

Even with this quite large separation of groups, the gains in accuracy are 
modest unless the original coefficient of generalizability is low. 

In general, it does not appear that regressing toward subgroup means will 
improve estimates of individual universe scores by a great deal. However, 
the above calculations consider the average improvement over all cases. It 
should be remembered that regressing toward the group mean will make an 
appreciable difference in the ranking or the absolute value of ji, for those 
persons belonging to the lower-scoring subpopulation who have exceptionally 
large observed scores, and also for low-scoring persons within the higher- 
ranking population. 

Regression toward subgroup means has been suggested by Lord (1960) 
and by Porter (1967) as a means of improving the interpretation of experi- 
ments where persons are not assigned to treatments at random. It is suggested 
that using “#, (from 3.10) as a covariate will do more to counteract the bias 
introduced into the experiment by nonrandom assignment than will use of 
X'p; 48 a covariate. While this is not invariably the case, the procedure does 
seem to be advantageous. The numerical analysis above does not imply that 
regressing toward the subgroup mean has little effects in this application. The 
slope of the regression of dependent variable on covariate universe score is 
greater than that for the regression on covariate observed score, the two 

“~ 
slopes having the ratio 1/@p*. This will not produce a large numerical shift 
in the adjusted between-groups difference in outcome. But if the covariate is 
only moderately reliable, the change will be enough in many experiments to 
change a significant F-ratio to a nonsignificant one or vice versa.
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Use of subpopulation equations introduces no special problem in norm- 

referenced interpretation or content-referenced interpretation beyond those 
discussed earlier. In criterion-referenced interpretation, it is necessary to 

recognize the possibility that there is a different criterion-on-universe-score 

regression equation for each subpopulation. This, of course, will not be 

known unless a follow-up study is carried out in a sample from each sub- 

population. 

Dependability of interpretation. Our earlier discussion of the pitfalls in 

interpreting estimation equations was restricted to the population estimation 

equation. Certain additional hazards are introduced by the use of equations 
for subpopulations. Although the following statements are brief, they raise 
questions of considerable importance. 

On page 141 we discussed the difficulty of estimating the constant term of 

equations in Table 5.1. Estimating the universe score mean (or that of u7+ — 

u) for a subpopulation is even more difficult, unless one has carried out a G 
study within the subpopulation. This has no serious consequences when one 
is primarily interested in comparing two subpopulations, as in the Lord— 

Porter technique. In that application, any fault in the estimate of wz+* — mu 

affects both groups in the same way. 
In determining the slope for the regression equation (5.1) the classical 

theory has to make a correction for “‘restriction of range’’ (see page 99) 
which assumes that the error variance is the same in all subpopulations. 
With non-equivalent conditions, we can make a similar correction only by 
making the much stronger assumption that all components of variance 
except that for persons are the same in the two subpopulations. 

The Bayesian approach to estimation of universe scores 

It was mentioned in Chapter 2 that Bayesian statistical methods are beginning 
to be applied to the analyses this monograph calls for. It will be useful here 

to introduce some notes on the Bayesian replacement of the regression 

equation offered by Novick and his colleagues. To do this, we quote from a 

summary statement recently prepared by Novick and Jackson (1970, pp. 
473-475). We have modified the notation to conform to that used elsewhere 

in this book. A number of comments made following the quotation will 

assist the reader to understand the key differences between this approach 

and ours. 
Unfortunately, there is a difficulty in attempting to apply the Kelley 

formulation [see p. 103] in most practical applications because the popu- 
lation mean is typically not known before measurements are taken and 
hence the regression formula cannot be used in its given form. In effect, 
what is needed is a regression estimate based not on the person’s observed
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score and a known mean observed score, but rather one based on the 

person’s observed score and the average observed score of a random 
sample of people from the population. Results of this type are available 
in the framework of Bayesian methods with normality assumptions. The 
first of these was given by Lindley (see the discussion in Stein, 1962); 
later a fuller development was given by Box and Tiao (1968) and by 
Lindley (see Novick, 1969). These estimates are of the form, wX,; + 
(1 — w)Xpy, 1.€., a weighted average depending on weights w, the person’s 
observed score X,, and the mean observed score Xp; in the sample. In 
this formulation the quantity w is an estimate of the reliability of the 
observed score. It tends to unity as the number of observations on the 
person increases without limit and to zero as the number of observations 
on the person tends to zero. For intermediate cases its value depends on 
the relative number of observations on the particular person, the number 
of observations on all persons and also on the number of persons on whom 
observations are available. 

For our purposes it will be useful to consider Bayesian estimates obtained 
by Lindley since this method easily generalizes to the case of unequal 
replications. Under moderate conditions and using the specific prior 
distribution suggested by Novick (1969) to characterize a situation in 
which we have no prior information, Lindley shows that the mode of the 
conditional distribution (the posterior Bayes distribution) of the true 
SCOTeS {px after obtaining all observed scores can be calculated as the 
solution of the n, equations 

How — X ps (n, a I)\(u, 7 Lp) _ 

mss +30: = Hy) > (Hy — Mp)? 
where X,, is the ith observation on the pth person, n, is the number of 
persons, n, is the number of replications on each person, s2 = > (X,, 
Xo)*|Ni, Xpr = 2 X>y,/n; and up = 2 f4,/n, and where it is assumed that 

(5.13) n     

4, are not all equal. These are the simplest of the Lindley equations. Because 
the quantity w,, is a part of the mean value wp, these equations cannot be 
solved directly. An approximate solution to these equations for large n, 
and n; having the general form described above is 

    (5.14) — 7 (uy) Xn ta (E))ns X py 
*(u,) + 0°(E)|n, O'(Up) + o%(E)/n, 

p* =1,2,...,n 

where 6's are the usual ANOVA estimates and Xp; = > X;, 1) [np. 
Pp
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For small samples, equations (5.13) and (5.14) do not give the same results. 

Further details of a method for obtaining the exact solutions to the Lindley 

equations by iteration, the modest conditions under which they are valid 

and reasons for preferring the Lindley method are given by Novick, 

Jackson and Thayer (1971). A generalization of these equations to include 

the case of unequal replication numbers and including technical im- 

provement to guarantee convergence was provided by Lindley (1969). 

The true score estimates given in (5.13) were obtained from a Bayesian 

structural model which assumes that the observed scores for each individual 

are normally distributed with mean equal to that person’s true score and 

with homogeneous error variance o?(E) and that the true scores are 

normally distributed with mean mu and variance o*(u,). It was further 

assumed that there was no information available [prior to the G study] 

about the true or error score variances or the mean true score. Formally 

this was accomplished by using the indifference prior distributions for 

ft, o2(u,) and o?(E) suggested by Novick (1969) as developed from the 

work of Novick and Hall (1965). These indifference priors consist of 

independent uniform distribution on yu, log o(E) and log o(u,). However, 

if some prior information is available either about the distribution of true 

or error scores, this information can be incorporated into the prior distri- 

bution using the procedure suggested by Novick (1969) as developed from 

the work of Novick and Grizzle (1965). Often it is useful and sometimes 

it may be essential to do this. However, it seems to be true that when the 

number of persons being tested is large, prior information can be Jargely 

disregarded (Novick, Jackson, & Thayer, 1971). 

The choice of the prior distribution for this analysis reflects prior 

information and beliefs (or lack of them) concerning the mean true score 

in the population, the spread of true score values and the average variability 

within persons. These, in total, imply a prior distribution on the individual 

true scores u,. After obtaining observations on persons we have a new 

Bayes distribution for the «4, and we also have a new Bayes distribution for 

the mean true score, the variance of the true scores, and the variance of the 

error scores, and all of this information is available to guide any decision 

that must be made at any stage of testing. Lindley’s methods and the very 

similar ones of Box and Tiao provide improved techniques for estimating 

true and error score variances and reliability. The details are given in a 

paper by Novick, Jackson, & Thayer (1971). 

The point to be emphasized here is that at any point in the data gathering 

the Bayes distribution for any particular uw, reflects more than just the 

observations on person p. Rather it reflects the combined information 

relevant to all of the u,. Thus after one obtains information on some 

lt, he is no longer completely uninformed about a new y,.; rather the
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prior distribution for this new u,. would effectively be the estimated 
distribution of 4, values in the population of people. As has been seen, the 
effect of this is to regress estimates of true score towards a common mean. 
This regression provides the Bayesian solution to a number of statistical 
problems. Thus for this rather complex Bayesian structural model the 
actual use of a vague prior for data analysis seems appropriate when the 
number of persons is large, but for less complex models objections can be 
raised (e.g., Novick & Grizzle, 1965). This is so because the buildup of 
information is much more rapid with the structural model than with 
simpler models. 

This statement embodies an essentially classical assumption, strengthened 
by the assumptions of normal distributions. The remarks would apply to a 
one-facet nested design or to a crossed design with complete equivalence. 
While the distinction between the G and D studies is not mentioned, such a 
concept is actually embodied in the Bayesian approach. Where we have 
discussed the Bayesian point of view earlier in this chapter, we pointed out 
that one could regard the distribution of scores for other persons as “prior 
information.” In this statement by Novick, the information on other persons 
is taken as essentially simultaneous with the observations on p*. All refer- 
ences to prior information in the passage quoted have to do with information 
collected in the past. The statement is worded to suggest that the investigator 
starts his G study with a blank slate, and that p* is included as one case 
within the G study. If one were to make our separation between G study and 
D study, he could treat the G-study information as prior to that in the D 
study whether the D study is based on one person or more. In that event, 
the prior distribution should not be disregarded. The variance estimates in 
(5.14) are of the kind we use in this monograph, following the methods of 
Chapter 2. Elsewhere in the paper, Novick and Jackson emphasize that 
Bayesian analysis of variance may give more satisfactory estimates when the 
data contradict the strong assumptions embodied in the solution above. It 
remains for future work to determine how much practical difference the 
application of Bayesian methods for this basic case will make, and to deter- 
mine whether the methods can practically be extended to some of the complex 
designs with which this monograph deals. 

Summary 

This chapter has traced the intricate arguments required in making inferences 
about the universe score. We have seen impressive evidence that interpre- 
tation even under the simple model of classical theory brings in assumptions 
or logical leaps that are difficult to justify. Generalizability theory, by
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bringing many of these logical difficulties to the surface, performs a con- 

siderable service. On the whole, however, the more elaborate model of 

generalizability theory complicates the problem of making inferences. 
The practice of forming confidence intervals symmetric around the 

observed score is open to severe criticism, even when the G data are extensive 

and the interval is properly based on the error A rather than 6. The determi- 

nation of 6(A) does provide a superficial but useful statement regarding the 

extent to which observed scores are likely to depart from universe scores. 

Going on to form an interval estimate for the individual is a dubious practice 

because any confidence level attached to the estimate is likely to be misleading. 

The confidence-interval technique can be justified as a way of studying a 

few particular questions. It is an appropriate method of summarizing 

information on a group mean. The confidence level that the multifacet model 

calls for will be known only roughly, however, unless one can assume 

normality of score-component distributions. Second, é(A) can be used to 

advantage when one attempts to test a hypothesis about the universe score 

instead of attempting to estimate it. This is exemplified in the inspection of 

score differences to learn which ones depart reliably from zero, and in the 

use of sequential methods for selection or classification. 

The linear equation for estimating the universe score with the aid of 
“~ 
& p* is a regression estimate only under strong assumptions, essentially like 

those of the classical theory. Although marked nonequivalence makes such 

estimation equations misleading, we are inclined to recommend cautious use 

of such estimates of the universe score. For most subjects the estimate will 

be closer to the truth than the observed score. The benefit from regressing 

scores toward subpopulation means, however, rarely will be great enough 

to justify the extensive assumptions required. 

EXERCISES 

E.1. In 1960, Mahalanobis suggested that nationwide examinations to select 

among college applicants in India be formed by sampling from a universe of multi- 

ple-choice items stratified on content and difficulty. He would select a set of 

items independently (with replacement) for each applicant. This would exclude 

any possibility of copying another student’s responses. The same large pool of 

questions could be used for several years, permitting maintenance of uniform 

standards. 

a. Is it reasonable to suppose that all students would receive examinations of 

comparable difficulty ? a 

b. Das (1967) develops the proposal, showing how o2(A) would be computed and 

used to form an interval for the applicant’s universe score, symmetric around his
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observed test score, “‘The student’s true intelligence or scholastic attainment is 
expected to lie, with 95% or 99% confidence, within these limits.”’ This chapter 
has criticized the formation of confidence intervals of this kind. If the test is used 
to select the best 100 applicants out of 1000, is the interval helpful in decision 
making ? 
c. Das recommends that each student be given three stratified-parallel tests. 
(Each of these might be formed by drawing just one item from each content- 
difficulty stratum.) From these scores, Das would estimate o(A | p) for each 
student separately. Assuming that this general type of information is wanted, 
what are the arguments for and against calculating 6(A | p) rather than 6(A)? 

E.2, The National Longitudinal Study of Mathematical Abilities applied many 
short tests to large groups of students who had studied from one or another text- 
book. Each test was reported on a standard-score scale, where the mean for the 
entire group of students (all textbooks together) was set at 50 and the standard 
deviation of observed scores was set at 10. A typical comparison chart shows the 
means for several textbook groups on each of the measures. For example, on the 
test Rational Numbers the range of these means is 46-56; and on Multiplication of 
Fractions, the range is 32-67. One is tempted to conclude that textbook differences 
produce large differences in learning on fractions, and rather small differences on 
items dealing with rational numbers. 
Do the standard-score scales permit this kind of interpretation ? Is information on 

generalizability of the scales in any way pertinent? (Assume that each mean is 
based on a large sample and that the textbook groups were comparable in back- 
ground.) 

E.3. John Doe (p. 18) is a resident of California, an electrician, a person with a 
$15,000 income, and a Republican. In a study of political radicalism, he (along with 
several hundred other adults) is given an attitude scale. If one wished to adopt the 
suggestion that universe scores be estimated by subpopulation regression equations, 
what subpopulation should be considered in the case of Doe? 

E.4. In certain types of individually paced instruction, a student is advanced to a 
new unit of study only after he demonstrates a specified level of mastery on the 
preceding unit. The standard may be, for example, ‘‘can perform two-digit multi- 
plications with 95% accuracy.” Logically, this standard would seem to refer to the 
person’s universe score, and hence, one faces the problem of designing a test with 
adequate precision. 

Sequential testing is suggested by Cronbach and Gleser (1965, pp. 91-96) for 
decisions of this kind. The proposal, in its simplest form, is as follows: Set up a band 
of width 2a6(A) symmetric around the standard. If the observed score, expressed in 
per cent, lies above the band, advance the student. If it lies below the band, return 
him to further instruction on the multiplication unit, and let him ‘‘come up for 
promotion” after another week of training. If the score is within the band, ad- 
minister a second random-parallel test. After this second test, average the two 
observed scores. Calculate 6(A) for the double-length test, and set up around the 
standard a band proportional to this 6(A). This band is narrower than the one for 
the single test. Apply the same decision rule to the averaged score. Some fraction of
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the students will be sent on to a third test, and the same process is applied to those 
scores. Ultimately all students will have been classified as above or below the stand- 
ard, and assigned to the advanced or basic instruction. Is this procedure (recom- 

mended some years ago) sound, in view of the present Chapter 5? 

Answers 

A.1. a. This can be assured if the items have been pretested for difficulty and the 
difficulty scale is finely stratified, or if a substantial number of items is drawn from 
each stratum. It would be possible to determine, from o?(/) within a stratum and the 

number of strata, the number of items required to reduce the systematic error 
4; — “to any desired level. 

b. The transformation of the observed score into the interval estimate has no 
direct bearing on the selection decisions. These decisions are based on the rank order 
of subjects; one would select the same 100 subjects whether he examined the 

observed score, or the lower ends of the confidence intervals, or the scores regressed 

toward the mean of all applicants. Reporting the interval estimate to the selectors 
might warn them of the uncertainty associated with judgments of the last candidates 
to make up the quota, and so motivate them to seek additional information on those 
cases. Therefore, the interval might be helpful even though the preselected con- 

fidence level does not apply. (Though one may attempt to set 99% confidence 
intervals, he cannot say that for individuals at a particular observed-score level the 

probability is 99 out of 100 that their universe scores lie within the interval.) 
c. In theory, o(A) will vary from person to person. The person with the universe 
score of 100% will have o(A) = 0 and, in general, the more extreme universe score 

will be associated with a smaller o(A). 

To make a G study with three tests for every subject in the D sample will be 
difficult when each test must be long, on account of the total number of content x 

difficulty strata. Moreover, with only three or four tests per person, one is not likely 
to obtain an accurate estimate of the idiosyncratic value of each person’s o(A | p). 

It appears far more practical to conduct a single G study on one sample of 
students, and to carry that information forward to future cases. The nature of the 

test construction makes that extrapolation to a new sample quite legitimate. It 
would be well, however, to calculate 6(A) separately for subsamples in different 

ranges of observed score, to check on the possibility that the value changes ap- 
preciably. If it does, one would apply to person p the 6(A) corresponding to his 
observed score. 

A.2. In the first place, the scales do not have a meaningful common metric. There 
is no reason to think that a difference of one standard deviation on the test of 
fractions is ‘‘equal to” one standard deviation on the Rational Numbers test. (The 

standard deviation of IQ is 16 points. The standard deviation of height of adult men 
is about 3 inches. Is 3 inches equal to 16 IQ points? Is such a question meaningful ?) 

Even so, one might be interested in examining the overlap of distributions for 
different textbooks on the same scale. The apparent finding that the means are 
crowded together on the Rational Numbers test is an artifact of the standardization.
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Suppose there are just two textbooks, for which the universe-score means are 20 and 
30 (respectively) on both variable 1 and variable 2. Suppose that the universe-score 
standard deviation for each variable is 10. Now suppose that the test of variable 1 is 
highly fallible, so that the observed-score distribution has a standard deviation of 
100, most of which arises from error. The standardizing operation transforms the 
raw-score scale by dividing scores by 100; the difference between the textbook means 
on v2 will shrink from 10 points to 0.1 point. Suppose that v, is perfectly reliable; 
then the observed-score standard deviation will be 10, and the standardization will 
not alter the difference between means on V2. In general (other things being equal), a 
less reliable scale will tend to report smaller differences in standardized observed 
score between individuals or groups. It appears that the only way to make the 
intended examination of overlap is to estimate the mean up and 0(uy) separately 
within each textbook group. The raw score is appropriate for use in that calculation. 

A.3. There will not be a sufficient sample of California Republican electricians 
with a $15,000 income to serve as reference group, even though logically it is the 
correct one. There is a reasonable chance that the national sample will include a few 
dozen persons with an income near $15,000, or a few dozen in the skilled crafts. 
And it will have a hundred or more Republicans. Perhaps a group of 50 Republicans 
with income $8000 to $20,000 can be found; that would be a fairly suitable reference 
group for Doe. 

It should be possible to form a regression equation that would assign appropriate 
weights to the means of several reference groups [e.g., 0.7X,; + 0.2 (mean for 
Republicans) —0.4 (mean for skilled craftsmen) +0.1 (mean for $15,000 income)). 
The theory for such estimates has not been explored, however. 
A.4. Yes; the sequential procedure employs sound statistical inference. It asks 
whether the evidence (observed score) wauld be likely to arise, given the hypothesis 
that the person’s universe score is at or below the standard. The probability can be 
denoted by P(E | HH). When one advances the person, the evidence E has allowed him 
to reject the hypothesis H. 

Constructing a symmetric band around the standard is not open to the objections 
made to a confidence interval symmetric about the observed score. However, the 
number of erroneous decisions matches the risk the investigator intends only if, 
among persons whose universe scores equal the standard, the observed scores are 
normally distributed with a standard deviation equal to 6(A). 

The procedure is weaker than a Bayesian procedure because it makes no use of 
information on the scores of other subjects. A Bayesian procedure asks about the 
distribution of universe scores among persons who have the same observed score (or 
series of observed scores). To paraphrase the question asked in the first paragraph 
above: Is the hypothesis that the universe score equals a certain value likely to be 
true, given the evidence of the observed score? (I.e., what is P(H | E?) Because 
Bayesian analysis takes additional information into account, Bayesian analysis of 
sequential data can classify subjects just as accurately as the non-Bayesian pro- 
cedure can, giving fewer tests, on the average. That is to say, Bayesian analysis will 
assign more persons after the first stage of testing than will the basic sequential 
procedure, and at each later stage will have fewer persons awaiting further testing.



CHAPTER 6 

Illustrative 

Analyses of 

Crossed 

Designs’ 

A. A Test for Aphasic Patients 

Description of instrument and basic data 

The Porch Index of Communicative Ability (PICA; Porch, 1966, 1970) is 

an individual test designed for use by speech pathologists. It is intended for 
initial diagnosis of patients with aphasic symptoms and for measuring the 
change or lack of change during treatment. There are three sections, calling 
respectively for oral, gestural, and graphic responses; these sections are to 
be regarded as fixed modes of response. 

Each section of PICA is divided into subtests (Figure 6.1). and the mean 
score over 18 subtests is taken as an ‘“‘overall’’ score. There are four oral, 

eight gestural, and six graphic subtests, hence the weighting of sections in the 
overall score is not uniform. Each subtest consists of 10 items. In any item 
an object (e.g., a comb) is presented and the subject is directed to respond 
in some manner. Directions for a few illustrative subtests are approximately 
as follows: 

a. I. Oral. Tell me what you do with this object. 
b. If. Gestural. [Points at object] Pick it up and show me how you 

can use it. 
c. III. Gestural. [Hands object to patient] Show me how you can use it. 

1 Partially nested designs appear at two points in this chapter (pp. 173 and 174). 
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Figure 6.1. Structure of the Porch test (PICA) 
  

  

  

  

Section Subtest* Object Subtest score 

1 2 -:: 10 

Oral I Tells what to do with 
object x° x x xd Score on 

IV Tells name of object x xX x x Oral 
IX Sentence completion x x x x Gg 

section 
XII E says name; S repeats x x x x 

Gestural II Shows how to use object x x x x | 
III Shows how to use object =x x -:: x x 
V Reads name and matches 

to object X MK tts &X x 
VI Points out object whose 

use E states xX XK ttt & x Score on 
VII Matches printed name to Gestural 

object without reading xX XK ss &X x | section 
VIII Matches printed picture 

to object xX xX tts &X x 
X Points to object Enames x xX <-:: xX x 

XI Matches duplicate object 

with object xX KX tts &X x 

Graphic A. Writes use of object x x x x 

B. Writes name of object x x x x 

C. E says name, S writes x x x x Score on 
D. E spells name, S writes x Xx x x Graphic 
E. Copies name from model section 

script x xX x x 
F. Copies drawing of object x x x 

xX Overall scoref 
  

® Order of administration is I to XII, then A to F. 
b Called Verbal by Porch. 
¢ Each score is a numeral on a 1-16 scale. 
d Average over 10 objects. 
© Each section score is an average over subtests. 
f Overall score is an average over subtests.
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d. IX. Oral. Finish the sentence [read by the examiner]: “You lock a 

door witha--:.” 
e. A. Graphic. Write down what you use that for. 

The same 10 objects (or their names or pictures) are used in every subtest; 

hence modes of response are crossed with stimuli. The objects are to be 

regarded as sampled from a universe of objects. 

Every response is scored on a 16-point scale. A score of 6, for example, 

goes to a response that is “intelligible but incorrect,” and 11 to a response 

that is “accurate but delayed and incomplete.’”’ Testers score responses as 

they are given. The subtest score is the average of item scores, that is, of 

performance on the 10 objects under the subtest directions. The subtests are 

administered in a fixed order, progressing from those that offer a minimum 

of cues to those that provide lavish cuing. Some subtests are essentially 

repetitions of earlier subtests with added prompting. Each subject is put 

through the entire sequence of tests, though the early tests are quite difficult 

for the severely impaired person, and the later tests are quite easy for the 

person whose speech involvement is slight. It is probably most reasonable to 

regard the subtests as fixed, because the range of possible communicative 

tasks is limited. Nevertheless, for the sake of illustrating techniques, in some 

analyses we shall regard subtest tasks as randomly sampled from a universe 

of tasks. 
Porch collected data for his studies from a series of clinical testings in a 

large hospital. Certain atypical cases were eliminated, but the remainder 

may be regarded as run-of-the-clinic sample. Two subsamples are used here. 

The first was a series of 30 cases tested by one clinician while two additional 

clinicians observed through a mirror and independently scored the perform- 

ance (sample 1). The other subsample (sample 2) consisted of 40 cases tested 

twice. Some of these retests were requested for clinical purposes, but others 

were obtained specially to get data on stability. The interval between tests 

was less than two weeks. Tests were generally but not invariably given by the 

same tester. 

Porch studied the accuracy of generalization over scorers, over objects, 

and over occasions. The facets were treated in separate one-facet studies in 

the original report (Porch, 1966). We have been able to reanalyze the data 

by the more illuminating multifacet method and also to examine some 

questions that fell outside Porch’s area of interest. Porch’s one-facet analyses 

are reviewed for the sake of comparison. 

Analysis 1: Patients X scorers 

A one-facet analysis of sample 1 extracted mean squares for scorers /, 

patients p, and residual for each subtest in turn, for each section, and for 

the overall score.
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This G study employed aj x p design. The mean squares given in Table 

6.1 were calculated by us from data supplied by Porch. Because it is necessary 

to subtract one mean square from another, we find it advisable to carry 

calculations for mean squares to an unusually large number of decimal 

places, rounding off when estimates for components of variance are reached. 

The variance components indicate the magnitude of person effects, scorer 

effects, and a residual. Because objects are held constant in the scores Xz; 

analyzed in this study, the estimates are for components within the set of 

objects. For this reason, components have been labeled p | I, j | I, and 

pj.é | I. Occasions vary from person to person; therefore, the person com- 

ponent is confounded with any occasion effect or person x occasion effect. 

For Subtest I, 6(p| J) is almost 4, which implies that, on this difficult 

subtest, universe scores range over the whole 16-point response scale. The 

scorer effect is negligible, and the residual rather small. The value of 6(A) 

being only 0.4, one can be satisfied with the accuracy of scoring; 677% of the 

observed scores fall within 0.4 of the corresponding universe score. To 

determine the possible value of adding scorers, one divides o?(A) by various 

n;. With three scorers, for example, o?(A) = 0.06 and 6(A) = 0.25. 
The error components for Subtests II and III are somewhat greater. For 

Subtest III, é(A) is 0.7, which suggests that the scoring rules for that subtest 

could profitably be revised. Porch carried out a further analysis on each 

item separately, as a way of learning more about the locus of scoring errors. 

The person components of variance for Subtests IT and III are much smaller 

than for Subtest I, indicating that patients are more nearly uniform in 

ability to perform these easier tasks. 
Section scores are based on a large number of responses and the error 

components are correspondingly smaller. Scoring of graphic responses is 

evidently harder for judges to agree upon than oral ones in the present stage 

of development of the method. Oral scores have a much greater p | J com- 

ponent of variance than graphic scores. 
This is a clinical instrument, and interpretations are almost invariably to 

be made about one person at a time. The profile is treated as a description 

of the person on an absolute scale; because the raw-score profile is to be 

interpreted, o(A) is a suitable index of the seriousness of scorer error. 

The variance over persons and the coefficient of generalizability are of 

minor interest. Because the constant errors of scorers are negligible, the 

observed-score variance is nearly the same when scorers change from person 

to person as when the scorer is held fixed. Individual differences in PICA 

scores are excellently generalizable over scorers, where these scorers are 

trained by Porch’s methods. The very high coefficients result from the wide 

range of pathology in a clinic sample, as well as from the excellent scoring 

rules.



166 Illustrative Analyses of Crossed Designs 

While PICA is a wide-range instrument, its chief purpose is to make 
precise differentiations that will aid the therapist in planning a treatment for 
the current patient, somewhat different from that for the next patient who 
has the same gross pathology. Therefore, the degree to which PICA differ- 
entiates within the total population of patients is of little relevance save as 
an upper limit to its ability to make useful clinical differentiations. The 
coefficient estimated here is &p?(X,7;,457), either with the same scorer for 

j 
all persons or with varying scorers. The fact that the 7 component is small 
warrants mixing together, in any study of a group, records obtained from 
different scorers. 

Analysis 2: Patients x objects 

The second one-facet analysis of sample 1 treated objects as randomly 
sampled. The average score X,,; assigned by the three scorers to each 
response was analyzed; here, the set J is implicitly fixed. The occasion is 
again confounded with the person. The results are tabulated in Table 6.2. 
The mean squares are very much larger than those in Table 6.1 simply 
because the data come from a 30 x 10 score matrix whereas those used 
in Table 6.2 come from a 30 x 3 matrix. 

While the component for persons is rather close in size to that in Table 
6.1, we must stress that the two tables define these components differently. 
In two-facet notation, the so-called person component of Table 6.1 is 
o*(p,plI) and that of Table 6.2 is o?(p,pJ). 

The object component is rather large for Subtests II and III. This argues 
for presenting the same test objects to all subjects when person-to-person 
comparisons will be made or when norms will be used in interpreting. 
Interestingly, the object component is negligible for Subtest I; this may 
Suggest something about the manner in which severe aphasic impairment 
affects the retrieval mechanism for speech responses. To pursue this lead, 
one would try to explain why difficulty varies markedly from object to object 
in II and III and not in I. 

The error of generalization from one object to the universe of objects is 
ordinarily larger than the error of generalization from any one scorer to 
the universe of scorers. This is a reflection both of the unpredictability of an 
aphasic’s response at any moment and of his specific difficulty with particular 
objects. The efficiency of the patient varies from moment to moment and 
this produces object-to-object variability, but it does not cause scorings of 
the same response to differ. Since there are 10 objects, the i| J and pi,é | J 
components of error shown in the table are reduced by a factor of 10 in the 
subtest score. The quantity o(A) is around 0.5 to 0.7, which implies that the 
observed score is not often more than one unit distant from the score that 
would be obtained by testing with an extensive set of objects.
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As Porch proposes to use an i x p design in practice, we calculate an 
observed-score variance and a coefficient only for that design. The data 
would also permit calculations for the i:p design and for values of n/ other 
than 10. While these relatively conventional one-facet studies give an adequate 
answer to the chief questions about errors arising from sampling of scorers 
and test objects, a multifacet analysis teases out interactions, separates 
the p component from p/ and pJ, and is more compact than two separate 
analyses. 

It is possible to analyze one subtest at a time or several subtests together. 
Since our purpose is to illustrate procedure, two additional analyses are 
carried out: 

Analysis within a subtest. Subtest III is chosen because its large scorer 
effect is of interest; scorers and objects are facets, crossed in the G data 
with each other and with patients. 

Analysis within a section. The Graphic section is chosen. Subtests k, 
objects i, and scorers j are facets, crossed with each other and with patients. 
(ifost instruments have items nested within subtests, but the common 
objects of PICA create a crossed design.) A composite estimate of the 
various components over all subtests is needed. An analysis is carried out 
in which subtests are considered to be fixed and another in which 
subtests are considered to be samples of an indefinitely large number of 
response modes. 

It may be worth mentioning that the analysis demonstrated within a 
section (Analysis 4) could also be carried out for the entire test, simply by 
ignoring the division of the test into sections. This procedure is not as 
Satisfactory as the multivariate procedures to be developed in Chapters 9 
and 10. 

Analysis 3: Patients x scorers x objects 

A multifacet analysis was made of the scores generated by 30 patients, 3 
scorers, and 10 objects under the directions for Subtest III. The mean squares 
for this study were presented in Table 2.2. The mean squares for p, i, and j 
in the two-facet analysis agree with those from Tables 6.1 and 6.2, after 
allowance is made for the fact that the one-facet mean Squares are scaled 
down by factors of 10 and 3, respectively. For the two-facet study components 
of variance are given in Table 3.5. 

The components have been redefined in going to the multifacet analysis. 
Consider the “component for persons.” In Table 6.1 p was confounded with 
pt; in Table 6.2 with pJ. In the two-facet study the p component is separated
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out. The person component of variance in each table is a universe-score 

variance, but the universe changes as follows: 

Table 6.1: Universe of scorers, 10 objects fixed. 
Table 6.2: Universe of objects, 3 scorers fixed. 
Table 2.2: Universe of objects and scorers. 

The pi interaction thus contributes to the universe-score variance in Table 

6.1, but not in Table 6.2 nor in the two-facet study. This interaction emerges 

explicitly in the multifacet analysis, and the “person”? component of variance 

is correspondingly reduced. The scorer component is numerically much the 
same in Table 6.1 and the two-facet study, though in the former it includes 
the object-scorer interaction. A comparable statement can be made about 
the component for objects. The two-facet study, like the one-facet study, 

has hidden facets, notably occasions and testers. 

In the two-facet study, the large effects are those for patients, for objects, 

for patients x objects, and for residual. Scorers evidently are not a source 

of appreciable variance. The person-object effect implies that some items 

(an item being defined by the object together with the subtest directions) 

are much more troublesome for a given patient than their general difficulty 

and his general impairment would suggest. To be sure that there is a genuine 

person—object effect, however, it would be necessary to present the same 

object more than once. In retrospect, we see that Porch would have learned 

somewhat more about components of variance, with an equal expenditure 

of effort, if he had presented half of his objects twice, with a rest period 

between trials. Occasion effects could then be appraised. (It is unusual to 

have a residual smaller than an interaction, but it is understandable in this 

study. The residual represents discrepancies between scorer ratings of the 

same performance, after correcting for scorer main effects and simple 

interactions. Where the subject performs inconsistently, the scorers agree 

in their reports of that inconsistency; hence, the variation is assigned to the 

patient—object interaction.) 
The large components of variance in X,,; are reduced by using 10 objects. 

With 10 objects and a single scorer, the estimated o7(A) (using values from 

p. 87 and dividing by the proper n’) is the sum of o*(I), 0.13; o*(J), 0.09; 

(pl), 0.26; o(pJ), 0.21; (1), 0.01; and o%(pl,e), 0.16. Hence, (A) 
equals 0.86 and 6(A) is 0.93 points on the 16-point scale. This statement 

assumes that the observed score will be taken as an estimate of mp. If it 

were taken as an estimate of w,,;, the pI contribution of 0.26 and the J 

contribution of 0.13 would not enter the error variance. In that case, 6(A) 

would drop to 0.69, which is in agreement with the o2(A) of 0.47 in Table 6.1.



170 Illustrative Analyses of Crossed Designs 

By what reasoning can one judge whether yz, or uy, is the more appropriate 
universe score ?? If the tester is attempting to describe the person’s ability 
to perform the gestural task of Subtest III, no matter what the stimulus 
object is, uw, is clearly the target score. But if there is to be only one form 
of the Porch test, meaning may come to surround a “Porch score” of, 
perhaps, 11 that to some extent reflects the stimulus characteristics of these 
specific objects. If the Porch score is considered as describing response to 
these particular objects, 4»; is the universe score, and the correspondingly 
smaller o(A) is pertinent. 

The expected observed-score variance depends on the design of the D 
study. Not all designs make practical sense; it seems most unlikely that one 
would nest scorers within objects, for example. The designs J x J x p, 
I x (J:p), and (J x J):p might plausibly be used. Table 6.3 presents estimates 
of observed-score variance and the coefficient for Subtest III, assuming that 
I scorer and a 10-item test produce each patient’s score. 

TABLE 6.3. Expected Observed-Score Variances and Coefficients of Generalizability 
for Subtest III for Various Experimental Designs 

  

  

  

Coefficient, 

Components Expected if universe 

entering observed-score score® is 
Design of observed-score variance 

D study variance (n; = 10, n; = 1) Ly Lyr 

Objects x scorers P: pi, pj, pis, e 6.34 0.90 0.94 
x patients 

Objects x (scorers: all but i 6.44 0.89 0.93 
patients) 

(Objects x scorers) all 6.57 0.87 —b 
:patients 
  

® Variance of 4, estimated as 5.71. Variance of u,, estimated as 5.97. 
> It is highly unlikely that one would generalize to 4, 1,» Where objects defining the universe 
differ from person to person. In such a case, the universe-score variance includes p, pl, 
and J components. 

The first point to note in Table 6.3 is that the coefficient for the J x j x p 
design with generalization to wz, is 0.90. This value is smaller by a practically 
significant amount than the values of 0.94 and 0.95 from Tables 6.1 and 6.2. 
Taking two sources of error into account simultaneously has given a less 

It should be noted that there is a hidden fixed facet, k*, since one is not generalizing 
beyond Subtest III here. Therefore, to be strict in designations, these universe scores 
should be identified as wp,z6 and Myrze.
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flattering picture of the test than the conventional one-facet study did. In 
effect, the two-facet study estimates the correlation expected if responses to 
one set of objects judged by one scorer are compared with responses to 
another set of objects judged by another scorer. This is surely of greater 
interest than either of the one-facet coefficients. 

If one is interested in measuring individual differences within a run-of-the- 
clinic sample, it makes little difference whether the i x j x p design or the 
i x (j:p) design is used. The third design, with objects different for each 
patient, seems at first glance not be to much worse than the first two. The 
drop in the coefficient from 0.90 to 0.87 implies, however, that the third 
design with 10 objects is no more effective in estimating mu, than the first 
design would be with only 7 objects. 

The Spearman—Brown formula was capable of evaluating the effect of 
altering n; in Analysis 2 or n; in Analysis 1. It cannot be used, however, 
when the design has more than one random facet, because different divisors 
apply to the several components of variance. “Doubling the length of the 
test’’ (i.e., doubling n;) reduces the components for J, pl, IJ, and plJ,e—but 

not those for J and pJ. If the test is extended to infinite length, the coefficient 
of generalizability with ~, as the universe score does not go to 1.00 as the 
Spearman—Brown rule implies. With increasing n;, it is only the coefficient 
for generalization to “,, that has 1.00 as its limit. 

Analysis 4: Patients X scorers X objects x subtests 

A four-way variance analysis of scores on the Graphic section, in which 
10 objects are crossed with 6 subtests (modes of response), generates the 
mean squares given in Table 6.4. The components of variance have been 
estimated under assumptions of subtests random and subtests fixed. There 
is little numerical difference between the components for this test under the 
two models. 

The two components for p deserve special consideration. In generalizing 
over subtests the universe score is 4,. With generalization to a fixed set of 
subtests the universe score is “4x5. The person component of variance with 
fixed subtests is o7(p | K*); because it includes the pK interaction of the 

random model, this variance is larger than o*(p). In this example the pK 
interaction is the average of interaction components for six subtests, hence 
its variance (0.29) is one-sixth of the variance for the pk component (1.71). 

The estimation formulas for the mixed model differ from the random- 
model formulas, for each component identified with an a in the last column 
of Table 6.4. Where the random model has: 

MS pij — MS pijk, e 

Ny 

  (6.1) o*(pij) =



172 Illustrative Analyses of Crossed Designs 

TABLE 6.4. Estimates of Variance Components for Graphic Section 

  

Estimate of variance 
component if subtests are 

  

  

  

Source of Degrees Mean Randomly selected 
variance of freedom square from large collection Fixed 

Patients p 29 1030.71678 5.30 5.59° 
Objects i 9 95.95480 0.13 0.15% 
Scorers ] 2 55.97745 0.02 0.02 
Subtests k 5 2458.43769 2.65 2.65 
pi 261 15.26016 0.41 0.74* 
Pj 38 11.38810 0.15 0.16° 
pk 145 59.17398 1.71 1.71 
ij 18 3.12108 0.00 0.01° 
ik 45 18.24349 0.12 0.12 
Jk 10 5.05145 0.01 0.01 
pij 522 1.88159 0.15 0.31% 
pik 1305 7.00967 2.01 2.01 
pik 290 1.71136 0.07 0.07 
ijk 90 1.38559 0.01 0.01 
Residual 2610 0.99167 0.99 0.99 

® These are to be interpreted as components with K* fixed [i.e., as o?(p | K*), .. . o?(pij,é | 
K*)]. The remaining components in this column are “within K*.” 

the mixed model has 

(6.2) o*(pij,é| K*) = MS Pij 
Ny 

In estimating the component for pi| K*, MS pij is subtracted from MS pi; 
similarly with pj and ij. The mixed model analysis assumes that the six 
subtests comprise the universe of subtests. Therefore it provides direct 
estimates of the variance of uyx+, Uys, etc. Table 6.5 shows how to com- 
pute o?(A) assuming fixed subtests. With subtests fixed, generalization is to 

MoK*- 

While we have treated various PICA scores in accord with the univariate 
theory developed in preceding chapters, the instrument is multivariate, and 
methods to be developed in Chapters 9 and 10 could appropriately be 
applied. These probably would not improve generalization over objects and 
scorers appreciably, because the coefficients of generalizability obtained by 
univariate analysis are high. In view of the considerably larger error variance
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TABLE 6.5. Composition of Error Variance for Graphic Section if the within- 
Person Design isi x j x k (nj; = 10, nj = 1, n, = 6; Generalization to uyK+) 
  

Estimate of 
variance Frequency 

  

XorgK* MoKe Ajrzx* component withinp (A) 

UKe UKe 

MoK*+™ UoK+™ 

Mike™ MIK*™ 0.15 10 0.02° 

MyKe™ HMyK*™ 0.02 1 0.02° 

Myre MerKe™ 0.74 10 0.07 
MoT K*™ LoyK*™ 0.16 1 0.16 

Moyes ~ MrgKRe~ 0.01 10 ~—-0.00¢ 
MaryKe~s@ MarKe~sé 0.31 10 ~— 0.03 

0.30 = 0%(A) 
—™. 

0.26 = &0%(6) 
  

a Components written by analogy to (2.19). 
b Values calculated in Table 6.4. 
© Components not entering o7(6). 

associated with occasions (to be discussed shortly), multivariate estimation 

of the subtest universe score might well offset some of the error arising from 
sampling of occasions. The retest data available to us are not sufficient to 
warrant that kind of analysis for PICA. 

In generalization to u, (over subtests), the K and pK components would 
make large contributions to o(A). If generalization over subtests were in- 
tended, it would be desirable to use a much greater number of subtests, 
possibly with fewer items per subtest. For example, consider three possible 
values of n; and the possibility of using different objects for each subtest 
(i:k) while holding the total sample of behavior to n,n, = 60. Table 6.6 

gives values of 5(A) for the Graphic section of PICA under the random 

model, for various designs. Generalization to yw, is clearly improved when the 
number of subtests is increased. Nothing important appears to be gained by 
varying objects from subtest to subtest, even though this would increase the 
sampling of pi and other components. To increase the number of subtests 
while holding the overall testing effort constant would make the several 
subtest scores less useful, because the error in generalizing to the several 5, 

increases as n; drops. 
Table 6.6 has substantive implications. The large subtest component is 

expected, because some responses are especially hard for the aphasic patient
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to make. It would be unwise to generalize from the absolute level of scores 
on one mode of response to the absolute level on other modes. The large 
patient-subtest interaction confirms that the subtests call upon somewhat 
different functions, hence differences within the profile are likely to have 
meaning. The pik interaction is made large by momentary fluctuations of 
responsiveness which are probably greater for aphasics than for normal 
subjects. 

Reporting the study 

Having approached the Porch data dealing with object and scorer variation 
in various ways, we may reflect on what would be recommended to the 
developer of such a test who wants to make as straightforward a study as 
possible and to report it simply. The developer should design a G study to 
systematically represent as many important facets as he can. He may then 
consider the effects on generalizability of many possible D-study designs. If 
he is prepared to recommend one single design to all users of the procedure, 
he can make a fairly straightforward report. It also makes the report simpler 
if only one universe of generalization is likely to be of interest to users. 

A report along the following lines would appear to be suitable for the 
study we have been considering: 

1. Assume an intention to generalize over objects and scorers, for the 
score on each subtest separately, the score for each section, and for the 
overall score. Regard subtests as fixed. Report the experimental design for 
the G study and, describe in general terms, the scorers used. Assume that 
the D study has design i x j x p, and specify n; and nj. 
2. Perform a three-way analysis of variance of X,,; within each subtest. 
Report mean squares. Use the random model to estimate components of 
variance, and o(A), &o07(X), and &p? for each subtest. 
3. Perform a three-way analysis of variance of scores X,,;n+ for each 
section and report mean squares. Calculate estimates for components of 
the type o?(p | K*), etc. and report them. For each section score report 

aN “— 
6(A), &07(X), and & p?. 
4. Combine within-section data (by methods for composite scores to be 
presented in Chapter 10) to get estimates of the variance components for 
the overall score and of its o(A), &o7(X), and &p?. 

This gives more detail then any one user needs, but it answers a variety of 
questions and provides information from which the user who has an unusual 
question can calculate an answer for himself. The report might be extended to 
give similar estimates for a design with scorers nested within subjects, 
because some clinical practice and research will mix records obtained by 
different scorers. Or, if the data support the statement that generalizability
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with nested scorers is nearly as good as for crossed scorers, the report might 
say simply that. 

Obviously, reports of this sort will require a more sophisticated audience 
than test manuals now assume. Nevertheless, if generalizability is a compli- 
cated matter, research reports must somehow make full findings available 
and hope that readers can be educated to use them. A report that tells a 
simple but incorrect story is not to be recommended. 

Analysis 5: Variance associated with occasions 

Porch analyzed the data of sample 2 to determine the consistency between 
tests given on two occasions within a two-week period. Several patients 
had been tested many times during their treatment; if there are three or more 
scores for a person, we use only the earliest pair of tests. Since all these 
patients were tested by Porch, tester and scorer are hidden facets in the design. 

There are two ways to regard this study. From one point of view occasions 
are crossed with patients; from another, occasions are nested. If we consider 
occasions as differing because they occur on different calendar dates (ac- 
companied by different weather, different degrees of attentiveness of the 
tester, etc.), occasions are nested; only sporadically are two subjects tested 

on the same date. If, on the other hand, we entertain the possibility of an 
order effect, because of the fact that the patient makes some recovery during 
the two-week interval, or profits from practice on the test, there is good 
reason to distinguish between the first and second test and to treat occasions 
as crossed. Every subject does have a score that identifiably belongs in the 
first or second column. The random-sampling model of generalizability 
theory applies satisfactorily only if we assume the subjects to be in a steady 
state or at worst assume that any practice effect is a constant that can be 
corrected for. The random model cannot give serious attention to an order 
effect; it might be appropriate to regard “‘first’’ and “‘second”’ occasion as 
fixed. We shall analyze the Porch retest data for Subtest III within the 
random model, with two interpretations of the design. 

Organizing the data according to ani x o X p design permits a three-way 
analysis of variance, with results given in Table 6.7. The large effects are 
those attributable to patients, objects, patient-object interaction, and 
residual. The sample includes a wide variety of clinical types, and consequently 
the variance component for patients is large relative to the score range of 16 
points. The substantial pi effect implies that a person who scores higher on 
some objects and lower on others tends to show the same pattern the next 
week, a fact that may have diagnostic significance. Moreover, this implies 
that a person’s standing on one object, even if determined by repeated measure- 
ment, has limited value as an indication of his standing, averaged over 
occasions, on the universe of objects. The substantial object i component 
reflects the difficulty of handling some objects correctly in this subtest.
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TABLE 6.7. Estimates of Variance Components for Subtest III Over Occasions 
  

  

Degrees 
Source of Sum of of Mean Estimate of 
variance Squares freedom square variance component 

Patients p 3890.3744 39 99.75319 4.65 
Objects i 733.8747 9 81.54163 0.95 
Occasion o 14.5800 1 14.57997 0.03 
pi 1891.6162 351 5.38922 1.17 
po 170.9198 39 4.38256 0.13 
io 16.3702 9 1.81891 —* 
Residual 1073.1228 351 3.05733 3.06 
  

& Negative value, treated as zero. 

The pio,e component of variance is quite large. This reflects a trial-to-trial 
inconsistency of performance (which contributed to the sizeable pi component 
of our earlier analysis—see p. 167—within subtests on a single occasion). 
The small io mean square generates a negative estimate of the io component 
of variance. To treat this component as zero seems entirely reasonable, 
because there is no reason to think that certain objects will be systematically 
easier to respond to on the first occasion than on the second, and others 
harder. The occasion effect is quite small, implying that these patients did 
not make appreciable progress during the period between tests and that there 
was little practice effect. The po component is also rather small, implying 
that day-to-day fluctuations in responsiveness are not a particularly significant 
source of error of measurement. 

Patients are not tested on the same two occasions, therefore the G study 
may be considered to have the design i x (o:p). Then, as can be inferred 
from information on Design V-B in Figure 2.4 and Table 2.1, the io com- 
ponent is confounded with pio,e and the o component is confounded with 
po. Combining sums of squares and degrees of freedom as suggested in 
Chapter 2 gives these values for the confounded components: 

Sum of squares Degrees of freedom Mean square 
0,po 185.4998 40 4.637 
io,pio,e 1089.4930 360 3.026 

The variance components are estimated to be as follows: 

p 4.64 
i 0.95 

pi 1.18 
o,po 0.16 

io,pio,e 3.03
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TABLE 6.8. Estimation of o*(A) and &6*(X) for Subtest Ill for a D Study with the 
Design i x (0:p) (nj = 10, nj = 1; Generalization to u,) 
  

Estimate of 

  

variance Frequency 
XpI0 A pro component within p o*(A) &07(X) 

P 4.64 4.64 
I by~ 0.95 n; = 10 0.10 
pl Uyr~ 1.18 n; = 10 0.12 0.12 
O, po Uo,po™ 0.16 no = 1 0.16 0.16 
Io, plo,e — M0, n10,.e™~ 3.03 non; = 10 0.30 0.30 

0.68 5.22 
  

While the components for p and pi (and in the third decimal place i) have 
been altered, with these data the change in analysis makes no difference in 
the interpretation. 

We shall consider a nested D study, since it conforms more satisfactorily 
to our model, and there is little evidence of systematic o effects over a limited 
time span. The resulting estimates are listed in Table 6.8. Using these values 

“~™ 
we obtain & p? = 4.64/5.22 = 0.89. 

We now have the following distinct kinds of coefficient (among others) 
for Subtest III: over objects (Table 6.2), 0.95; over objects and scorers 

(Table 6.3), 0.90; over objects and occasions (Table 6.8), 0.89. Insofar as 

we can judge from these data, which arise from two distinct samples, scorer 
disagreement is as much a source of inexactness as is variability of response 
and scoring from one occasion to another. One might well ask for a further 
study that allows for a combined estimate for all three sorts of variability, 
and, indeed, that goes on to investigate effects associated with the person 
who administers the test. 

B. A Two-Facet Anxiety Inventory 

Description of instrument and basic data 

The S—R Inventory of Anxiousness (Endler, et al., 1962) is similar to PICA 

in that items are defined according to a two-facet design. Every item asks 
the subject to indicate on a 1-5 scale how strongly he experiences a certain 
response (e.g., “gets an uneasy feeling’) when confronted with a certain 
situation (e.g., “starting off ona long automobile trip”). Thereis, presumably, 
a universe of situations and a universe of modes of response, and an item 
can be formed for any situation-response pair. Data are collected by Design
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VII, with n, = 11 situations crossed with 1, = 14 modes of response; the 
subject responds to 154 items. [Additional forms of the test have been 
prepared, and there is an inventory of hostility of the same type. (Endler 
& Hunt, 1968)]. 

The 1962 report on the test included an analysis of variance. At that time, 
mean squares were erroneously used as a basis for inferring the magnitude 
of the several effects. That is to say, mean squares were interpreted as we have 
interpreted variance components. In 1966, Endler estimated components of 
variance from these same data, incidentally describing how components 
change when one assumes a mixed model rather than the random model. A 
substantive interpretation of the variance components was presented by 
Endler and Hunt (1966). These interpretations of course differ from those 

originally derived from the mean squares, because the mean squares reflect 
the arbitrarily chosen values of 1,, n,, and n;. 

Three samples are treated in the 1966 paper; we confine attention to a 
sample of 169 Pennsylvania State University freshmen. This analysis is 
reprinted because it is a clear and useful illustration, and because we can 
add to the interpretation by considering designs other than the one employed 
in the G study. 

Summary of the Endler—Hunt results 

Table 6.9 presents the chief results for students tested at Pennsylvania State 
University. The analysis assumes an indefinitely large number of admissible 
modes of response. It is reasonable enough to think of the universe of 
anxiety-inducing situations as very large, but perhaps the number of kinds of 
response indicative of anxiety is rather limited. If the universe were restricted 
to a finite but large number of conditions, however, the estimates would 

not change greatly. 

TABLE 6.9. Estimates of Variance Components for the S-R Inventory of 
Anxiousness (after Endler & Hunt, 1966) 
  

  

Source of Degrees Mean Estimate of 
variance of freedom square variance component Percentage 

Subjects p 168 21.26 0.10 5.6 
Situations 10 244.37 0.09 5.0 
Modes of response / 13 836.51 0.44 24.6 
pi 1680 3.16 0.18 10.1 
Pj 2184 2.86 0.20 11.2 
ij 130 20.62 0.12 6.7 
Residual 21,840 0.66 0.66 36.8 

100.0 
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TABLE 6.10. Estimates® of Variance Components in Seven Male Samples Taking 
S-R Inventory of Anxiousness Form 0 
  

  

Source of variance Range Median? 

P 0.08-0.13 0.11 

i 0.06-0.09 0.07 

J 0.34—0.44 0.41 

pi 0.16-0.21 0.19 

Pj 0.13-0.23 0.20 

ij 0.07-0.14 0.10 

py, e 0.61-0.75 0.66 

Number of cases 30-206 93 

  

® From Table C of supplementary materials for Endler and Hunt, 1969. 
b Corresponding medians for females from the same schools: 0.11, 0.15, 0.48, 0.23, 0.25, 

0.12, and 0.68; the median N is 55. 

In interpreting the components, it must be borne in mind that what has 
been analyzed is the variance of item scores (i.e., of single pij combinations). 
The components are not on the scale of the test scores. 

Data were collected with the same form on seven samples of males. The 
information in Table 6.10 gives some indication of the sampling error of 
components. There are differences from sample to sample, but they are 
remarkably small, considering that samples of 30, 41, and 53 cases 
are included. Even for the two largest samples (n, = 206 and 125), there are 

disagreements. That the two values of o7(p) should be 0.13 and 0.08 very 

likely is explained by differences in selection of cases. That o?(ij) should be 
0.12 in one of the large samples and 0.07 in the other is difficult to under- 
stand. Nevertheless, the full set of results suggest that estimates of compo- 
nents are reasonably stable, where n, and n, are as large as they are in these 
G studies. 

The Endler—Hunt (1966) interpretation of Table 6.9 made the following 
substantive points: 

There is no single major source of behavioral variance, at least so far 
as the trait of anxiousness is concerned. Human behavior is complex. In 
order to describe it, one must take into account not only the main sources 

of variance (subjects, situations, and modes of response) but also the 
various simple interactions (Subjects with Situations, Subjects with 
Modes of Response) and, where feasible, the triple interaction (Subjects 

with Situations with Modes of Response). Behavior is a function of all 
these factors in combination.
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The fact that very substantial portions of the total variance [of single 
observations X,,;;, over p, i, and j] come from the interactions of subjects 
with situations, of subjects with modes of response, and of situations with 
modes of response, and from the triple interaction, has importance for 
personality description and for the design of inventories to predict either 
behavior or feelings. First, itimplies that accuracy of personality description 
in general calls for statements about the modes of response that individuals 
manifest in various kinds of situations as well as statements about their 
general proneness to make certain responses rather than others, and about 

their proneness to be responsive rather than unresponsive. 
Second, the fact that substantial portions of variance come from the 

interactions suggests that the validity of predictions of personal behavior 
should be substantially improved by asking the individuals concerned to 
report the trait-indicating responses of interest in the specific situations, 
or at least in the specific kinds of situations, concerned. 

Endler and Hunt cite studies indicating that subscores for particular situations 
have substantial correlations with behavior in those situations. Evidently, 
group factors or factors specific to the situation (pi components) are worth 
interpreting even though a general factor (p component) is present. 

Endler and Hunt did not use the components as a basis for discussing the 
generalizability of scores. They had reported conventional one-facet reli- 
ability studies in the original monograph, calculating for each i in turn a 
coefficient « that indicates how well one can generalize from X,,7 to U5; 
They also gave a coefficient for each j. Let us now see what a multifacet 
interpretation can offer. 

Interpretation in the light of generalizability theory 

Generalization to ,. Assume for the present an intention to generalize 
to 4y, that is, to interpret the overall score as a measure of general anxious- 

ness. Then all components of variance save that for p contribute to o7(A). 
How great is the error of measurement? In Table 6.11, look first at the 
columns to the right, where it is found that for the 11 x 14-item instrument 
6(A) = 0.26. This error is to be judged relative to the scale range of 4.0. 

aN 
The expected value &07(0) is estimated by adding just the components 

[other than o?(p)] that contribute to observed-score variance in the crossed 

design. We note that 6(6) is 0.17; since é(p) = 0.10'/2 = 0.32, the test does 
not discriminate well between persons. This is confirmed by the estimate of 
0.77 for &p?, a low value for a questionnaire with 154 responses. However, 

it is to be realized that the scale was constructed by 11 + 14 acts of sampling, 
not 154.
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TABLE 6.11. Estimation of o(A), o(6), and &p* for D Studies with the S-R 
Inventory of Anxiousness (Generalization to py) 
  

  

  

Estimate of Contribution to o7(A) 
Frequency variance 

Source of within component® ni= 1 7 11 14 22 = = 154 
variance P (4; =1,n;=1) no= 154 22 14 11 7 1 

i n; 0.09» 0.09 0.01 0.01 0.01 0.00 0.00 
J n; 0.44 0.00 0.02 0.03 0.04 0.06 0.44 
pi ni, 0.18 0.18 0.03 0.02 0.01 0.01 0.00 
Pj n; 0.20 0.00 0.01 0.01 0.02 0.03 0.20 
ij nin; 0.12» 0.00 0.00 0.00 0.00 0.00 0.00 
pij,e nin, 0.66 0.00 0.00 0.00 0.00 0.00 0.00 

Est 02(A) 1.69 0.27 0.07 0.07 0.08 0.10 0.64 
Est &07(6) 1.04 0.18 0.04 0.03 0.03 0.04 0.20 
Est o(A) 0.52 0.26 0.26 0.28 0.32 0.80 
Est o(0) 0.42 0.20 0.17 0.17 0.20 0.45 
Est &07(X) 0.28 0.14 0.13 0.13 0.14 0.30 
Est &p? 0.36 0.71 0.77 0.77 0.71 0.33 
  

® Values calculated in Table 6.9. 
> Components not entering €07(6) and &o7(X). 

The reader will recall that the Spearman-Brown concept of reliability as a 
simple function of “length of test” is not applicable to a multifacet instru- 
ment. While an investigator improves generalizability by increasing n; and 

aN “os 

n;, there is no simple formula relating &p? or o?(A) to the total number of 
observations. Accuracy of generalization is a function of the sample size for 
each facet. 

Consider the efficiency of various designs for an S-R inventory, all eliciting 
154 responses per subject, but with n; ranging from 1 to 154.and nj from 154 
to 1. Table 6.11 estimates o(A), o(6), and &p? for several values of n; and nj. 
Each change in the n;, n; balance alters these indices even though the “length’’ 
of the instrument remains constant. For this example, the optimum &p? and 
o*(0) are obtained for nj; and nj; nearly equal. In another instrument one 
might have another result; the optimum balance depends on the relative 
size of the interaction components. The minimum of o?(A) is achieved with 
n; around 8 and nj; around 19. There are different “best designs”’ for different 
purposes. 

Generalization to u,;. The investigator concerned with situation-specific 
anxiety will generalize over modes of response, taking w,, as his universe 
score. Then the pi component is added to the p component in the universe- 
score variance; this variance is estimated to be 0.28. This value refers to the
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average variance over all situations, and, therefore, is an unbiased estimate 
a™N 

of universe-score variance in any one situation. This leads to &p? of 0.82 

for n; = 14 and n; = 1, where generalization is over modes of response only. 

A more informative analysis would be to treat scores on each situation 

separately. This, of course, is what Endler ef al. did in calculating « for 

each situation. Their «’s range from 0.55 to 0.90 (average 0.76). Each of these 

is a coefficient of generalizability indicating how accurately one can generalize 

from an observed score with 14 modes of response and a fixed situation, to the 

universe score for that situation, over all modes of response. 

Because i is fixed, the i and pi components no longer enter o?(A). Using 

the analysis for all situations together, @?(A) for a one-item test equals 

1.42 (= 1.69 — 0.09 — 0.18) and é(A) = 1.19. $o%(8) = 0.86. All com- 

ponents contributing to o?(A) and 0*(8) are proportional to n; for the 

one-situation test. To appraise the effect of any n;, one merely divides o°(A) 

or $o%(8) by nj. To estimate &o07(X) for any n;, we add 0°(t1;) = 0.28 to 
a™ “~™ 
& 0*(6); then 0.28/&0?(X) estimates &p*. As there is just one variable facet, 

the result is consistent with the Spearman—Brown formula. We arrive at 

these values: 

  

ni 1 5 10 20 30 

Est £02(3) 0.86 0.17 0.09 0.04 0.03 
Est £02(X) 1.14 0.45 0.37 0.32 0.31 
Est & p? 0.25 0.62 0.76 0.87 0.90 

Design recommendations. Now the tester can begin to think about the 

desired design of his instrument. Suppose he intends to generalize to py, 

will use the crossed Design VII, and has a fixed total number of items 

(= njn}) in mind. If he wants to keep o(A) at a minimum, this is achieved by 

taking a value of n; smaller than nj; (Table 6.11). If he wants to maximize 

& p and to minimize error in the point estimate of 4, he will make n; nearly 

equal to n}. This is not the whole answer, however. Perhaps he should nest 

j within i so that he would sample the large j component (and pj) n,n; times. 

If he retained n; at 11 and chose 14 different n} for each i, (A) would drop 
a™N 

to 0.18 and 6(6) to 0.14, and &p? would rise to 0.83. 

It becomes obvious that, if estimating u, is our only concern, the best 

design is III-B: 154 ij pairs in the test with no i or j repeated. For that design, 
a™ 
& p* is 0.94! This mathematically ingenious solution, unfortunately, is almost
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certainly impractical, because it would take considerable psychological 
ingenuity to prepare a list of 154 relevant modes of response. 

What if the score for each specific situation is of interest? This introduces 
the bandwidth-fidelity dilemma: as more i are covered in an instrument of 
fixed overall length, the information on each one becomes less dependable 
(Cronbach & Gleser, 1965, p. 97 ff.). Consequently, there is some limit on 
the number of facts one should try to collect. If we inquire about 154 situ- 
ations with one mode of response for each, and generalize to each of the 

aN 
Hy:, (8) = 0.86"? = 0.93; with more responses &0°(6) is inversely pro- 
portional to n;. It is hard to say just what precision the tester should want 
in a score, but if he decided that o(6) should not exceed 0.19, for example 
(so that &p? in generalizing to w,, is 0.88), 2 would have to be 23, and this 
would set the limit at 7 situations. (The number of modes of response would 
have to vary from situation to situation, to bring each specific coefficient to 
0.88.) It must be remembered that the optimum design for estimating several 
f4y; 18 not optimum if one is interested also in simultaneously estimating 
various fy; for specific modes of response. 

The decision about bandwidth can be improved by going on to a factor 
analysis of some type. The presence of a variance component for pi does 
not tell us whether that interaction arises from just one factor that divides 
the items into two clusters, or from 11 situation-specific factors or something 
between. For the S-R inventory a conventional factor analysis (Endler, 
et al., 1962) and a three-mode (multifacet) factor analysis (Tucker, 1964) 
have been reported. Many of the methods developed in Chapters 9 and 10 
could profitably be applied to this instrument. 

The investigator planning a D study will not find it hard to draw a con- 
clusion about the proper design, but the conclusion will depend on his 
purpose. Once he conceptualizes: 

1. The relative importance of wy, u,y;, and fty;, OF Up, Mp,, and up, as 
targets of generalization 
2. Whether he wants to interpret the observed score, or observed in- 
dividual differences, or the point estimate of the universe score 
3. A preliminary estimate of the total number of observations per person 
he can afford 

the investigator can quickly arrive at an appropriate design. 

EXERCISES 

E.1. In Table 6.1 and 6.2, residual components of variance for PICA subtests are 
estimated. What kinds of variation in performance contribute to the residual 
component in each analysis ?
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E.2. Porch analyzed X,,; at the item level i, obtaining the mean squares listed 
below, among others. 2, = 30 and n; = 3. Determine components of variance as in 
Table 6.11. Interpret the findings. 

  

Subtest III P J Residual 

Item 

1 toothbrush 23.539 17.544 1.740 

2 cigarette 16.757 14.011 2.563 
3 pen 25.278 6.633 2.622 

E.3. Calculate o?(A) for generalization over objects, scorers, and subtests, using 

the components estimated for PICA in Table 6.4. Assume n = 10, n; = 1, n, = 6. 

E.4. Calculate o?(p|K*) and the coefficient of generalizability for 6 fixed 
subtests, 10 random objects, and 1 random scorer. Use the data from Tables 6.4 

and 6.5. 

E.5. Silverstein and Fisher (1968) administered the S—R Inventory of Anxiousness 

twice to the same subjects with a one-month interval between tests. The design was 
treated as having occasions nested within pij, though it could have been treated as 
oxi xj Xp or as i xj xX (o:p). Discuss the pros and cons of this choice, 
knowing that the subjects were prisoners assigned to a “‘guidance center,’ and that 
the first test was part of a general battery of measures given to the prisoner in- 
dividually about a month after arrival. 

E.6. The analysis of the Silverstein—Fisher data gave these mean squares: 

Pp i j Pi py OF pay sSwithin pij 
  

39.92 144.24 985.31 3.84 5.62 10.21 0.73 0.56 

n, = 100, n; = 11, n; = 14. Estimate the components and indicate what is learned 

from this study that adds to, or contradicts, the Endler—-Hunt results. 

E.7. Leler (see Chapter 3, Exercise 4) collected data on preschool children inter- 
acting with their mothers as they performed various tasks. Assuming generalization 

a™ 
over observers and tasks, 6(6) and @p? were calculated for the design with tasks 

(n, = 6) and raters (n = 2) crossed with mother-child pairs. In the light of Table 
6.E.1, what recommendations seem sensible for improving subsequent data 
collection ? Consider the costliness of increasing the demands upon subject time that 
would be involved if more tasks were added. Because all scales are rated from the 
same tape, there is little saving in cost by allowing smaller n, for some scales. The 
alternatives open include dropping a scale, increasing the number of conditions of 
i or j, shifting to some kind of partially nested design, and perhaps others. You 
may be able to suggest specific information an investigator could seek in the data 
that would help in deciding on the revisions.
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TABLE 6.E.1. Information from G Study of Mother—Child Interactions (after Leler, 1970) 
  

Component of variance 
  aN 

Scale Mean 6(6) pp? p i J Pi Dj ij —pij,e 
  

D. Mother’s use of 

criticism 2.9 0.56 0.00 0.0 0.1 13 O5 03 #490.1 1.1 
I. Mother’s use of 

reasoning with 
child 3.0 0.71 045 O04 O77 12 06 O06 = 0.1 1.1 

K. Mother’s discour- 

agement of child’s 

verbalizations 24 0.68 O11 O10 11 O02 O03 #10 04 = 1. 
L. Child’s independ- 

ence 4.7 0.63 057 05 O01 00 O07 O23 O1 1.3 
Approximate median 

for 14 scales 0.55 050 04 06 O01 O5 02 O21 111 
  

Answers 

A.1. The residual in Table 6.1 includes any scorer—patient interaction, and un- 
systematic variation in the scoring operation that might arise from the scorer’s 
inattention or shifting standards. 

In Table 6.2, patient—item variation enters the residual. This includes any effect of 
momentary inattention or blocking by the patient, as well as any systematic difficulty 
the patient has with a certain word. 

A.2, Universe scores appear to vary over the entire 16-point scale. Scorer stand- 
ards differ very little. The residual component shows a moderate amount of 
scorer inconsistency that is probably irreducible since the scorer has to judge a single 
brief response. 

  

o%(p |i) o7(;| i) o(pj,é |i) 

Toothbrush 7.3 0.5 1.7 
Cigarette 4.7 0.4 2.6 
Pen 7.6 0.1 2.6 

A.3 140(0.13) + (0.02) + 16(2.65) + %{9(0.41) + (0.15) + 14(1.71) 

+ 49(0.00) + 4 9(0.12) + 16 (0.01) + 4% 9(0.15) + 1% 9 (2.01) 
+ 16(0.07) + 4%0(0.01) + % (0.99) = 1.031 

A.4. o%(p| K*) = 5.59 
a™ 

6o7(6) = 0.07 + 0.16 + 0.03 = 0.26
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A.5. Treating occasion as nested within pij implies that each “‘question”’ (stimulus 
paired with mode of response) is answered by the person on a different occasion. 
Operationally, the questions are reached at different instants in time, so that if 
occasion variation is interpreted as moment-to-moment variation, the analysis is 
pertinent. But this analysis lumps into one residual term the occasion, occasion x 
stimulus, occasion x stimulus x mode of response, and other components that 

might be separated in a different analysis. 
A crossed analysis emphasizes the two distinct occasions a month apart (i.e., 

occasion is interpreted as primarily reflecting effects associated with first-test-vs- 
second-test differences). Momentary variation will remain in the residual term, but 
there will be separate estimates of components such as pio (the tendency of the 
person to respond differently to a stimulus on the first and second occasions). One 
can imagine that faking on certain questions might be different if the person believes 
at the time of the first testing that his responses will affect his treatment in prison. 

Treating occasions as nested within persons implies that the occasion of the first 
test is different for each person. That is, occasion is identified with the calendar date 
on which the person is tested, rather than with “‘first’” or ‘‘second”’ test. This 
analysis will leave confounded certain components that the crossed analysis 
separated (e.g., o and po). 

This decision about analysis cannot be made on purely statistical grounds; it is 
essentially a matter of selecting the definition of ‘‘occasion” that the investigator 
considers most meaningful. If one needed unambiguous information about effects 
related to time, a more elaborate experiment would be designed involving some 
same-day retests and some crossing of days with persons, to evaluate the strength of 
effects associated with calendar date, order of testing, and momentary variation. 

A.6. There is close agreement between the results tabulated below and those of 
Endler and Hunt (p. 179) for the p, 7, and pj components. The other four compo- 
nents estimated by Endler and Hunt are larger than their counterparts in this analysis ; 
variance has been reassigned to the within-pij component. The variance shifted from 
the Endler-Hunt / component to “‘within pij’’ must be io variance. Likewise, there 
is evidence that the pio and ijo components are not negligible. (In the Endler-Hunt 
analysis the hidden facet of occasion left these confounded with pi and jj re- 
spectively.) There is evidently some shift from occasion to occasion in the stimuli the 
person identifies as arousing anxiety, but little shift in his report on modes of 
response. 

within 

Pt f phe PE OG pH py 
0.10 0.05 0.44 0.12 0.22 0.05 0.08 0.56 

A.7. There is no certain answer to this question. The decisions actually made by 
Leler were reasonable; perhaps other suggestions could profitably be made. 

To begin, Leler discarded none of these scales. While many coefficients were low, 
none was too low to permit her to investigate whether the variables correlated 
significantly with language, in a D study using about 60 cases, 

It was not feasible to add tasks or raters under the cost limitations of her study. An 
extra rater would have reduced the generally large pj and pij components of variance.
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Because the 7 and j components are occasionally large, a nested design is not 
recommended. 

With regard to Scale D, the key problem is absence of person variance rather than 
extremely large error. The exceptional component for raters / led to further inquiry, 
which disclosed that one rater was taking only the mother’s words into account while 
the other was also considering tone of voice. Directions for raters were modified to 
increase emphasis on tone of voice. If the trait is better defined, generalizable data 
may be expected. 

With regard to Scale I, the j and pj components are larger than for other scales. 
Conferences with raters showed a difference in their definitions for ‘‘reasoning”’ ; the 
directions were revised. A task-by-task study showed deviant scores on the sixth 
task, where the mother was required to fill out a form while the child had op- 
portunities to distract her. The mother had little occasion to reason with the child 
while preoccupied; this task was dropped from the scoring of Scale I (and also from 
Scale D). 

On Scale K, the mean for the sixth task was high. In retrospect, it was realized 
that discouraging the child’s verbal interruptions was appropriate here, and there- 
fore had a different psychological significance than elsewhere. The sixth task was 
ignored in subsequent use of this scale. This constitutes redefinition of the universe. 
No way of reducing pj effects was discovered. 

On Scale L, the only improvement was to revise wording of some scale items. After 
these revisions, on a larger sample of subjects, the coefficients became: for D, 0.61 
(vs 0.00 originally !); for I, 0.66 (vs 0.45); for K, 0.64 (vs 0.11); for L, 0.68 (vs 0.57).



CHAPTER 7 

Illustrative 

Analyses of 

Partially 

Nested 

Designs 

A. Observations of Classrooms 

We have referred earlier to the pioneering expositions of the multifacet 

approach by Medley and Mitzel (1963; with Doi, 1956). Their theoretical 

statement gives an excellent introduction to the basic crossed design. We 

propose to work with the numerical example of their 1963 paper. 

Design and basic data 

Medley and Mitzel were concerned with characteristics of classrooms. The 

“class’’ is the subject under study: data are collected to learn about the tone 

of the classroom rather than the traits of particular pupils. To evaluate the 

technique, 2 recorders simultaneously observed each of 24 teachers, each 

on 5 occasions. This is Design V-B [r x (0:t)], occasions nested within 

teachers and crossed with recorders. 

A statement in which the authors emphasize the significance of a multifacet 

analysis is worth quoting (notation has been adapted to conform to that in 

this work), to reinforce points made in our own theoretical chapters (Medley 

& Mitzel, 1963, p. 310): 

Most observational studies in the past have studied reliability either in 

terms of per cent of observer agreement or in terms of an interclass corre- 

lation (usually the product-moment, but occasionally the rank-order, 

coefficient) between two sets of observations. 

A per cent of observer agreement tells almost nothing about the ac- 

curacy of the scores to be used, mainly because the per cent of agreement 

189
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between observers is relevant to only a part—and, the evidence indicates, 
a small part at that—of the reliability problem. The experience with 
observational studies summarized in this chapter clearly bears out a fact 
pointed out by Barr in 1929: that errors arising from variation in behavior 
from one situation or occasion to another far outweigh errors arising 
from failure of two observers to agree exactly in their records of the same 
behavior. It is not impossible to find observers agreeing 99 per cent in 
recording behaviors on a scale whose reliability ... over occasions does 
not differ significantly from zero. 

Reliability can be low even though observer agreement is high for a 
number of reasons. For example, observers might be able to agree perfectly 
on the number of seats in a room, yet if the number of seats in all rooms is 
equal, or nearly so, the reliability of seat counts as a measure of differences 
between classes will be zero. Near-perfect agreement could also be reached 
about the number of boys in a room wearing red neckties; but if every 
boy changed the color of his tie every day, the reliability of these counts 
would be zero. So long as an interclass (product-moment) correlation is 
based on scores obtained on two different occasions by two different 
observers, it does estimate px x-. But it is not likely to be a very accurate 
estimate because the number of classrooms n, is usually small in obser- 
vational studies, and the size of n, determines the precision of a product- 
moment correlation coefficient (its standard error varies inversely as the 
square root of n,). In even a rather ambitious study, using 100 classrooms, 
the 90 per cent confidence interval of px x. estimated in this way would be 
about 0.33 points wide! If the number of situations or occasions per teacher 
(n,) is increased to more than two, several correlations can be calculated, 
one between each pair of situations; but since they are not independent, 
it is difficult to combine all of the correlations into a single best estimate. 

A single intraclass correlation can be calculated from an analysis of 
variance of a set of data collected according to the plan suggested above. 
Such a single coefficient combines all of the information in the n,n, inde- 
pendent measurements of each of the n, classes. The estimate of px x. so 
obtained is unbiased and also more precise than any combination of 
interclass correlations .... Moreover, the different reliability coefficients 
appropriate to the various uses to which the scores might be put can all 
be estimated from the one analysis of variance. 

Review of original analysis 

The design of greatest all-around importance in generalizability studies is the 
completely crossed Design VII, and for their pedagogical aims Medley and 
Mitzel develop the example as if such a design had been used, teachers ft 
being crossed with observers r and occasions 0. They speak of “situations”
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TABLE 7.1. Estimates of Variance Components from a G Study with the Design 

r xo xt (after Medley & Mitzel) 
  

Estimate of variance component 

  

  

Degrees when N, is considered to be 

Source of Sum of of Mean 
variance squares freedom square Very large 5 

Teacher t 203 23 8.83 0.53 0.81 
Recorder r 13 1 13.00 0.10 0.10 
Occasions o 19 4 4.75 0.03 0.03 

tr 17 23 0.74 0.01 0.15° 
to 321 92 3.49 1.41 1.41 
ro 1 4 0.25 —* —* 

Residual 62 92 0.67 0.67 0.67 

  

a Negative value, treated as zero. Because of this procedural decision, the numerical values 

for r and o components disagree with the values given by Medley and Mitzel. 
b The formula used by Medley and Mitzel to estimate the tr component obtains a different 

result because they, in effect, assume the fro interaction to be negligible. 

where we speak of “occasions,” and analyze the data as if each teacher had 

been observed “‘in the same situations.”’ This might be a reasonable interpre- 

tation, if each teacher taught certain standard lessons and the recorders 

observed each teacher with each lesson. Although this is not the study 

actually made, we review the crossed analysis both as an additional demon- 

stration of the method and to show what difference a change to the strictly 

correct analysis makes. 
Table 7.1 (see Medley & Mitzel, 1963, pp. 314-316) tabulates (in our 

notation) the main results from the crossed three-way analysis of variance 

components. Medley and Mitzel made two analyses for illustrative purposes; 

one that assumes an indefinitely large number of occasions, and one that 

regards the universe as limited to five fixed occasions (situations). The latter 

model would be especially reasonable if there were one observation on each 

of the five school subjects in the school program, though one would then 

like to have two observations per school subject (crossed with teachers and 

recorders) in order to disentangle occasion effects. 

The notable difference in the teacher component between the analyses with 

N, large and N, small is readily understood. If situations are fixed, generaliz- 

ation is over recorders and the universe score is 49+ (0* referring to the set 

of situations). Therefore, the to component contributes to o7(¢ | O*). The to 

component is 1.41 when N, is assumed large. For five situations from this 

large universe, the tO component is one-fifth of 1.41, or 0.28; 0.81 = 0.53 + 

0.28. Similarly, o°(tr | O*) is increased by one-fifth of the tro,e component.
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For the D study, Medley and Mitzel note, the universe-score variance for 
generalization to uw, will be 0.53(n}n;)?. (They treat the observed score as a 
sum rather than as an average as we do.) Assuming a crossed design for the 
D study, the corresponding expected observed-score variance will be 
n,n,(0.53n,n, + 0.01n, + 1.41n; + 0.67). “Inspection of this formula shows 
clearly that increasing the number of visits nj, will [decrease observed 
variance relative to universe-score variance and, hence, will] increase 
reliability much more rapidly than increasing the number of recorders n’... . 

“—™ 

When n, = 1 and n, = 5, for example, &p? = 0.55; when n’. = Sand n’, = 1, 
os 

&p* = 0.26 [notation altered].”’ Clearly, the first requirement for improving 
generalizability is to sample the large to component repeatedly. 

Medley and Mitzel (1963, pp. 315-316; notation altered) expand: 
The largest components of variation in these observational records are 

three: o°(t), o7(to), o?(tro,e). Variation from situation to situation within 
the same class o°(to) appears greater than variation in average behavior 
from one class to another o2(t). In order to measure differences between 
classes reliably, therefore, it is necessary to observe each class in a number 

of situations, so that the fluctuations measured by o?(to) can cancel one 
another out. 

The large contribution of unexplained sources of variance indicated by 
the magnitude of o(tro,e) shows that there are sizable influences affecting 
behavior records that were not isolated in this experiment. 

There is no variation at all which can be attributed to interaction 
between recorder and situation o?(ro), indicating that the observers are 

not biased in favor of any one situation over any other. The fact that 
o*(tr) is estimated to be only .01 reflects the fact that ‘‘observer errors” are 
very slight. 

The fact that the estimates of o(tr), o?(0), and o(r) are all relatively 
small, but not zero, makes one wonder whether or not they could be 

neglected, i.e., whether true values could be assumed to be zero... . 

It would be quite satisfactory in using this scale to employ only one 
recorder per visit; if more than one competent observer were available, it 
would be advisable to send them to visit the classes one at a time, so that 
the number of different situations recorded would be as large as possible. 

Prior to the last paragraph quoted, the authors recommend use of the F 
test to decide the significance of each component, with the idea of replacing 
any nonsignificant component with zero. This we do not recommend. A 
facet is represented in the G-study design only if it is thought to be a source 
of variation, whether large or small. If the model is soundly chosen, the
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analysis gives an unbiased estimate of the components involving that facet. 

When the occasion component of 0.05 is “‘nonsignificant,”’ 0.05 is nonetheless 

likely to be a better estimate than 0.00. Indeed, because the “significance” 

of a component is a function of the number of times that component was 

sampled in the design, as well as its magnitude, there is a risk of discarding a 

meaningfully large component when only a few degrees of freedom went 

into its estimate. 

Analysis as a partially nested design 

To arrive at the proper mean squares, it is recognized that the Medley- 

Mitzel design is of type V-B, r x (0:1). Figure 2.5 illustrates the design 

(though it uses the symbols p, i, and j in place of the present ¢, r, and 0). 

Within t, the components for o and fo are confounded. Consequently, one 

pools the component sums of squares and degrees of freedom, arriving at 

these within-t results: sum of squares = 340, degrees of freedom = 96, 

mean square = 3.54. For ro, tro, e a similar procedure yields sum of 

squares = 63, degrees of freedom = 96, mean square = 0.66. 

The mean squares from Table 7.1, along with those calculated above for 

within ¢ and within tr, are taken as.estimates of the expected mean square. 

The five components estimated from (2.3) are as follows: 

o*(within tr) = 0%(ro,tro,e) = 0.66 

6*(tr) = 0.02 

5*(r) = 0.10 

62(within t) = o%(0,t0.) = 1.44 

0°(t) = 0.52 

The estimate for the teacher component is almost the same as the estimate 

of Table 7.1 with N, large. The recorder component is not changed. The 

new within-teacher component replaces the to component. This estimate, 

like the original one, implies the necessity of observing the teacher on many 

occasions, but now a systematic teacher-occasion interaction is not implied. 

The design used for the G study could give no information on the compara- 

tive size of o and fo effects. 

For ni, = 1, n, = 5, &p? is estimated at 0.56. While shifting to the correct 

scheme for analysis of these data makes no great difference in conclusions, 

the reader should not conclude that that will usually be the case. The esti- 

mation formulas for a design not actually used can give misleading estimates.
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B. Classroom Observations as Dependent Variable in an Experiment 

Description of study 

Dwight Goodwin (1966) carried out a study (also distributed as a contract 

report under the authorship of Krumboltz & Goodwin, 1966) of a special 

teacher-training technique that was intended to promote, as an end result, 
better conduct and attentiveness among the pupils directed by those teachers. 
Unlike the study of Medley and Mitzel, which was concerned with scores for 
single classrooms, this is an experiment where conclusions rest on com- 
parisons of sets of pupils whose teachers have been treated differently. The 
effectiveness of the training procedure had to be judged at two levels: by 
determining whether the teachers adopted the prescribed practices, and by 
determining whether the pupils acted in the desired way. Both questions were 
investigated by sending trained observers into the classroom according to a 
time-sampling schedule. 

Generalizability studies were made during Goodwin’s preliminary testing 
of the procedure, and again during ‘“‘baserate’’ studies that investigated the 
frequency of significant kinds of behavior prior to training. Similar analyses 
might also have been made of post-training data, but the G studies were 
carried out primarily to aid in the planning of final data collection. 

Goodwin’s observer watched a particular pupil during a 5-second period 
and recorded a numeral to represent teacher and pupil behavior. There were 
five spaces within which the numeral could be written, representing five 
explicitly defined “degrees of task orientation of the pupil.’’ The numeral 
(1-9) described the extent to which the teacher encouraged what the child 

did; for example, | indicated individual reward for the child being observed, 
and 8 indicated punishment or scolding of a group of which the child is part. 
The data in effect constitute a pair of scores, one for the pupil’s action and 
one for the teacher’s response. 

The 5-second intervals of observation were made consecutively, during a 
1-minute period. During the next minute, the observer made 12 observations 
of a second child. He continued to alternate between the two children for 
10 minutes, after which he rested. During a single class hour there would be 
three 10-minute intervals of active observation, 5 of the 10 minutes being 
devoted to each child. All data were collected in second- or third-grade 
classrooms. We shall discuss two analyses of partially nested designs em- 
ploying Goodwin’s data. 

Baserate study of pupil scores: intervals within days within pupils 

In the baserate study, with one observer per pupil, the primary question of 
generalizability was the adequacy of the time sampling. The pilot study
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(discussion following) had by this time given satisfactory evidence of observer 

accuracy, and only one observer was used to collect baserate data on any 

child. However, not all children were observed by the same persons, there- 
fore any variance arising from observer differences is confounded with 
pupil components. Components of variance associated with the observer are 
thought to be negligible, however. 

The baserate study provided both G and D data. The design of the study 

is intervals i within days d within pupils p (i.e., Design III-A, i:d:p). Atten- 

tion in this analysis is entirely on the pupil’s score for each 5-second obser- 
vation. A group of 60 scores (1,2, . . . , 5) were recorded for a child during a 

10-minute interval. (In this analysis the companion score for the teacher is 

ignored.) There were three intervals of observation on one day and three 

intervals on another (n, = 28,n, = 2,n; = 3). Days weretreated as randomly 

and independently sampled within pupils, even though several pupils were 

observed on the same day. 
A score was available for each 5-second interval, but there seemed to be 

no major purpose in the present study in determining components for 

units of behavior smaller than the 10-minute interval. The 60 observations 

for any 10-minute period were therefore entered in the computer simply as 

replicates. Analysis within the 10-minute period might be useful if one 

were considering the possibility of taking fewer samples of behavior within 

the 10-minute period. 
As usual in a nested design, the estimates for seven sums of squares and 

mean squares are obtained and grouped to arrive at the correct mean squares 

(Table 7.2). The additional step of dividing mean squares by 60 is required 

to correct for the fact that 60 observations enter the analysis for each interval. 

The component of variance for pupils is quite small because the sample 

was selected to represent inattentive pupils, and therefore has a restricted 

range on task orientation. In a correlational study, pupil variance is usually 

“wanted”’ variance, but not in the pretest for an experiment. The small pupil 

component here is encouraging, as variation among pupils contributes to the 

standard error of the means on which the conclusions of the experiment 

ultimately rest. 
The component for intervals is considerably larger than that for days. 

This implies that variation in attention is associated with shifts in the class- 

room activity or fatigue more than with the pupil’s mood on a particular 

day or the general level of excitement in the class on a particular day. 

The Venn diagrams shown in Figure 7.1 may be used for practice in 

deriving the estimation equations; results can be checked by entering the 

mean squares from Table 7.2 in the equations and comparing the estimates 

of variance components with those of the table. 

These baserate data were used to draw conclusions about the initial



TABLE 7.2. Estimates of Variance Components from a G Study with the Design 

  

  

i:d:p 

Analysis of variance 
as if crossed Analysis as nested 

Estimate 
Degrees Degrees Mean of 

Source of Sum of of Sum of of Mean square variance 
variance squares freedom squares freedom square rescaled* component 
  

P 1149 27 1149 27 = 42.55 0.71 0.04 
within p 

d ns 762 28 27.20 0.45 0.08 
pad 691 27 
within pd 

i 48 2 
di 1.69 2 
pi 874 54 1400 112 12.50 0.21 0.21 

pdi,e 526 34 

  

® Dividing by 60 reduces data to the basic 1-5 scale. 

(a)    
(b) the 7 circle (c) The d circle (d) The p circle 

FIGURE 7.1. Schematic Analysis of the i:d:p Design. 
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similarity of experimental and control children and as a base for estimating 

changes during treatment. The error in the individual score is the discrepancy 

Ap; between observed score (two days combined, six intervals combined) 

and universe score. Therefore o2(A) = 07(d,pd)/2 + o?(within pd)/6 = 0.075 

and 6(A) = 0.28. Judged against the possible range of 4.00, this was 

considered to indicate adequate precision. The technique is inadequate 

for determining individual differences within the inattentive group, but that 

is irrelevant to the study. 

For the main study, interest centered on a comparison of the means for 

groups of children. The means of greatest importance to Goodwin were to 

be calculated for groups of seven pupils (there being just seven trained and 

seven control teachers, each with one “‘target’” pupil). Sampling errors 

arising from intervals and days are independent for the seven children. The 

problem of generalizability for Goodwin was to compare Xppr, the average 

for the group of seven, with , the mean for the population and universe. 

As conclusions were not to be drawn about individual pupils, Goodwin’s 

tentative plan for the posttest study called for n, = 7, ng = 2, and n, = 3 

in an i:d:p design. Then, for the discrepancy of the observed mean from p,* 

G3(A) = 46°(p) + ,0°(d,pd) + 3,0%(within pd) 

— 0,006 + 0.006 + 0.005 = 0.017 

The standard error of the mean is therefore 0.13, and that for a difference 

between groups is 21/2(0.13) or 0.18. While this does not seem to be large, 

relative to the range, Goodwin decided to obtain somewhat greater precision 

by observing on a third day. This reduced o2(A) to 0.013 and 6(A) to 0.11. 

Adding more pupils, which would have increased the teacher’s effort, was 

judged to be impractical. In the main comparisons on the posttest data, the 

variation within groups from the pupil component was reduced by means of 

analysis of covariance, using the baserate observation as covariate. 

Another feature of Goodwin’s investigation called for comparing matched 

pairs of pupils, one pair in each experimental class. Within a pair, one child 

had been randomly selected as a “target” child, and the teacher had been 

told that the child would be observed in order to judge the teacher’s success. 

On the posttest the second child was observed without the teacher’s awareness, 

to guard against the possibility that the teacher was using the techniques only 

on the target child, to impress the observer. The observer was instructed to 

observe the target child and the non-target child during alternate minutes of an 

1 There is no reason to think that o2(p) in the experimental group at the posttest will 

equal the value found in the pretest. But the pretest value must be used at the time of 

planning, unless the design can be changed after some posttest data are collected.
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interval. This eliminates, from the observed difference between these children, 
components associated with d and i (but not the pd and pi interactions), and 
makes the comparison more precise. We have no measure of the pd and pi 
components of variance by themselves, because no generalizability analysis 
was made from posttest data. 

(The reader may be tempted to make inferences from the original sums of 
Squares that were compounded to form the within-p and within-pd estimates. 
He might, for example, conclude that SS i of 48 with 2 degrees of freedom 
Suggests a large i component. No such inference is warranted. The sum of 
Squares for is simply a calculation based on averages, each a combination of 
many different i arbitrarily assembled in the same column of a matrix. A 
similar remark is to be made about any other entry in the “analysis as if 
crossed.’’) 

An analysis was made for pretest teacher scores. The estimated variance 
components for tp and days within ¢p were less than 0.01, indicating marked 
similarity among teachers prior to the treatment. The within-tpd component 
was estimated at 0.13, leading to the conclusion that the technique was 
sensitive enough to detect effects of the training. 

This study is not really adequate, however, because it deals only with the 
numerals on the 9-point scale. The psychological significance of that score 
depends on what the pupil is doing. That is, a response of 1 (rewards) is 
desirable teacher behavior when the pupil is attentive but not when the 
pupil is creating a disturbance. In the main study, teacher and pupil data were 
considered in combination and rescored—in effect on a 3-point scale, by 
counting certain score-pairs as desirable, certain others as undesirable, and 
assigning zeros to the remainder. For this ad hoc method of recombining 
data, an equally ad hoc method of appraising generalizability could be 
developed. 

Pilot study of pupil scores: intervals within days, days within pupils, these 
crossed with observers 

Prior to the baserate study, Goodwin made various pilot studies. One of 
these illuminated the plan for later observing. The design was (i:d: p)xr. 
For each pupil, two days were sampled, not the same for every pupil. For 
each pupil-day combination, two intervals (observation periods) were 
scheduled. Within each interval, the observer recorded 48 ratings (not 60 
as in the study treated above). There were two observers who worked simul- 
taneously; observers, then, are crossed with Pp, 4, and i (Figure 7.2). 

A group of 12 children were studied from 6 classrooms; 6 had been 
nominated as habitually inattentive and 6 as habitually attentive. Neither 
of these breakdowns enters the pilot-study analysis.
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FIGURE 7.2. Schematic Representation of the (i:d:p) x r Design. 

A 4-way analysis generates 15 sums of squares that recombine as shown 

in Table 7.3. For two effects, the estimates are negative. The apparently 

small recorder main effect confirms that the raters were well instructed in 

their task. This is further supported by the very small components for pr, 

within pr, and within prd. | 

It is more surprising to find a small estimate for the within-p component, 

which implies that pupil behavior does not vary much from day to day. This 

is in contrast with the large within-pd component, implying large variation 

between periods observed on the same day. According to these data, it is 

inappropriate to say of a pupil, ““He’s having an off-day today.’’ Attentiveness 

shifts a good deal from period to period within the day. 

It may be worthwhile to examine the estimation equations for this complex 

design. Figure 7.3 makes the equations easier to grasp intuitively. As usual, 

the finest division of scores in the design gives a residual mean square that 

estimates the residual variance component. 

(7.1) EMS i within prd = o?(i within prd) = A 

o*(within prd) = 0.008 

This is a bundle of effects—ri, pri, rdi, prdi, e—representing rater disagree- 

ment in viewing the same series of incidents within an interval. 

Diagram (b) of Figure 7.3 shows the d,r intersection, representing EMS 

d within pr, as containing the kernel identified as A in diagram (a), plus the 

shaded area that represents the component o°(d within pr). Adding the 

needed multiplier, the diagram suggests the equation: 

(7.2) EMS d within pr = A + B 

= A + n,o*(rd,prd) 

o°(rd,prd) = 0.001



TABLE 7.3. Estimates of Variance Components fromaG Study with the Design 

  

  

(i:d:p) xr 

Analysis of variance 
as if crossed Analysis as nested 

Estimate 
Source Degrees Degrees Mean of 

of Sum of of Sum of of Mean square __svariance 
variance squares freedom squares freedom Square rescaled* component 
  

P 337.92 11 337.92 11 30.72 0.640 0.001 
(A+B 
+C+D 

+E+F) 
within P 

d 0.92 1 258.54 12 21.54 0.449 0 pd 257.62 i °. (ALB 

+D +E) 
within pd 

i 1.29 1 

te oy " 720.44 24 3002 0.625 0.309 
pdi 24012 11 (A + D) 

r 0.11 1 0.11 1 0.11 0,003 0 
pr 12 86 7.26 0.66 0.014 0.001 

(A+B+0) 
within pr 

rd 0.21 1 612 12 0.51 0.011 0.001 prd 591 11 (A +B) 
within prd 

ri 0.33 1 

yy io " 9.61 24 0.40 0.008 0,008 
(A) prdi,e 4.75 11 

  

* Dividing by 48 reduces data to the basic 1-5 scale. Capital letters refer to Figure 7.3.



    (a) The pj intersection 

  
(e) The d circle (f) the p circle 

FIGURE 7.3. Schematic Analysis of the (i:d:p) x r Design. 
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There is little or no tendency for raters to vary their standards from day to day. 
A similar argument, applied to diagram (c), gives: 

(7.3) EMS pr = A + B + n,n,07(pr) 
o*(pr) = 0.001 

The negligible pupil—observer interaction is all to the good; it denies that 
raters show favoritism. 

The i-within-pd mean square includes all the information within the i 
circle, as shown in diagram (d): 

(7.4) EMS i within pd = A + n,0*(i,pi,di,pdi) 

o*(i,pi,di,pdi) = 0.309 

This is the large component reflecting hour-to-hour pupil variability. There 

is a temptation to look back at the analysis as if crossed and to emphasize 
the magnitude of the pi mean square. But the design thoroughly confounds 
i and pi. If the hour-to-hour shift in behavior were entirely due to an interval 
main effect (i.e., to a tendency of the whole group to be disorderly during 
some periods) one would observe this in large pi and pdi mean squares, as 
long as a different pupil is seen in each period. The low i mean square is a 
misleading value; it is a composite based on many intervals whose main 
effects tend to cancel out. 

The equation corresponding to diagram (e) is: 

(7.5) EMS d within p = A + B+ D + n,n,07(d,pd) 

A + B=0.011 and D was just estimated as 0.617. This would imply that 
n,n,o*(d,pd) equals 0.449 — 0.628. Because this is negative, we estimate 
o*(d,pd) to be zero. For the p component (diagram f): 

(7.6) EMSp=A+B+C+D+E+4,n,n,07(p) 
= EMS within p + n,n,0?(pr) + n,n,n,o*(p) 

The calculation must use a value of zero for E. Then o?(p) = 0.001. [The 
computation of the r component is left as an exercise (Exercise 3, this chapter). ] 

The implications for design of Goodwin’s D study lay in the large com- 
ponent for intervals within pd and the small components for r and its inter- 
actions. The decision was made to raise the number of scores within the 
interval to 60 and the number of intervals within the day to 3. Also, it was 
decided that one observer for any session was sufficient, and that no pains 
need be taken to cross observers with children or teachers. One might have 
decided to observe at six intervals on the same day rather than at three on 
each of two days, in view of the small component for days within pr. How- 
ever, this offered no practical advantage. This set of recommendations is an
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especially clear example of the usefulness of a multifacet G study. The 

baserate study demonstrated that they lead to satisfactory data. 

C. Pupil Achievement as a Measure of Teacher Effectiveness 

Belgard, Rosenshine, and Gage (1972) collected data on the effectiveness of 

teachers in presenting informational lessons by the following set of operations: 

1. A textual lesson on Yugoslavia, and 10 pertinent test items, were 

prepared. 
2. The teacher was given the text and five of the test items to define 

what he was to teach. 

3. He presented the lesson to his own regular class as a lecture (under 

certain constraints). 

4. The 10-item test was given to the pupils. The average score earned by 

his pupils was taken as the teacher’s unadjusted score. 

This procedure was repeated for a lesson on Thailand. For purposes of this 

discussion we shall ignore the difference between the five exposed items and 

the five secure items. We shall also ignore an adjustment of scores made to 

allow for variation in pupil ability. 

Design and basic data 

The G study collected data on 43 classes, each of which received both 

lessons. The teachers ¢ are the objects of investigation; the facets are pupils 

p; lessons j, and items i. The design is lessons crossed with teachers and 

pupils, pupils nested within teachers, items nested within lessons and crossed 

with teachers and pupils [(i:j) x (p:t)]. 

Here we encounter a facet nested in the universe. The structure of the 

universe is (i:j) x t x p. While in principle, any teacher might be assigned 

any pupil and any lesson, the items accompany one and only one lesson. 

The model underlying the observed score takes the following form: 

(7.7) X ips = + (ee — BD) + Ho — BE) + 4) 

+ (Hip — Me — Ma + B) + (Meg — Me — a + YD 
+ (fps — Ma — My +B) + gs — a) Mets — Bas 

— fy, + My) 

+ (Moss — Pos — Bai + Hy) + (Mins — Pep — bts — bo; 

+ oy + by + 4; — BL) 
+ (Mipss — Past — Posi — Peas 1 beg Fb + Ba — H3) 

+ Cini 

The usual “;, {44:5 4>;. and “,,, are undefined. Because one can average over 

i only within lessons /, any i effect is part of such a score component as ji,
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tji, etc. (For convenience we shall refer to the item-within-lesson effect as a 
ji interaction. The other “interactions’’ also are unconventional in form.) 

Summary of results 

The original investigators analyzed the data by several conventional tech- 
niques before multifacet analysis was considered. The analyses slice through 
the data in many ways; there are confusing shifts in the definition of the 
universe score and in the composition of the “error’’ variance that are 
unavoidable in one-facet studies. We therefore start with a summary table. 
For purposes of this table all results are stated in terms of a score based 
on just 1 lesson, where the 10 items are summed to provide a pupil score and 
the teacher’s score is an average over pupils. The number of pupils varies 
from 10 to 31, with a mean of 21. Throughout these studies, interest centers 
on differences among teachers. Because all teachers teach the same lessons, 
components j and ji can be ignored. In effect, we discuss the teacher’s deviation 
from the mean of the group of teachers who taught the same lesson and 
gave the same test. 

In the first and second one-facet procedures, two scores were obtained 
for each teacher, and two observed-score variances and the inter-correlation 

were calculated. The estimate of the universe-score variance is the product 
of the observed-score variance and the correlation; the remainder of the 

observed-score variance constitutes the “error.” 
Lesson j is a hidden facet in analysis 1, treated as fixed in the universe. 

In analysis 2, lessons vary; pupils are in effect fixed, though the fixed set of 
pupils P, varies with the teacher. Items are fixed within lessons but there is 
nevertheless generalization over items, as the number of items in the universe 
of generalization (all lessons) is large. In analysis 3, pupils are treated as the 
source of error; lesson and items within the lesson are fixed. The one-facet 

procedures generate separate estimates of variances for each lesson. The 
multifacet study reports one estimate, applying to the expected variance of 
teacher’s mean scores (any lesson, any set of pupils). 

The most obvious fact in Table 7.4 is the variation in rationale and results 
from one procedure to the next. One-facet analyses produce coefficients 
ranging from 0.63 to 0.76. The multifacet study, which attends to all types of 
error simultaneously, reports a coefficient of only 0.49 (cf. p. 181). The 
universe-score variance changes similarly. When the universe score is defined 
as the teacher score averaged over all lessons and all pupils, its variance is 
estimated as 0.38. In analyses 1-3, where averaging is over only pupils or 
lessons or item-sets, the estimate is larger. Each such average leaves a facet 
fixed, and interaction components and the main effect for the fixed facet are 
then counted in the universe score. If the investigator wants to generalize 
over lessons and items within lessons and pupils, so that only the component
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for ¢ enters the universe score, the only usable one-facet correlational pro- 
cedure is to correlate a score on one lesson for one group of pupils with the 
score on another lesson in a second group of pupils. This confounds lessons 
and pupils as sources of variance, but both appear within the error and 
reduce the correlation. 

Analysis 1: Split-half study of generalizability over items 

Analysis | is a conventional split-half study. This type of analysis investigates 
generalizability over items, assuming pupils and the lesson fixed. 

For each five-item half-test, a class mean was calculated for each teacher. 
The split-half correlation, after correction by the Spearman—Brown formula, 
was 0.71 for the lesson on Yugoslavia and 0.76 for Thailand. Such a co- 
efficient indicates the extent to which administering different item sets alters the 
comparative standings of the teachers. Any moment-to-moment inconsistency 
of performance (e.g., pupil’s careless reading of any item) also reduces the 
coefficient. Stable pupil effects are confounded with teacher effects, and 
contribute to the estimated universe-score variance. 

At the risk of notational indigestion, we shall try to identify components 
precisely by letting P, represent the particular set of pupils associated with 
teacher ¢ (i.e., the pupil sample for the teacher), and letting J, represent the 
item-set employed for lesson j. The universe score implied by this split-half 
analysis is specific to the teacher, the set of pupils for this teacher, and the 
given lesson; it is an average over the universe of items for that lesson. It 
could be denoted u,p.;.. There is no asterisk on P because in this analysis a 
different set of pupils defines the universe of generalization for each t. The 
very fact that our symbol must be so complicated highlights the inadequacy 
of the classical theory, which looks on the corrected split-half correlation 
as the squared correlation of observed score with “the” true score of the 
teacher, which is denoted by some simple expression such as y,. 

It is instructive to ask what the split-half study indicates about variance 
components. In the basic model for decomposing X,,,; (7.10) there are three 
main effects, four first-order interactions, three second-order interactions, 
and one final tpji,e component. The correlation is determined from deviation 
scores. The j and ji components drop out of consideration, because they 
appear in the mean Xpp,; and therefore do not enter the deviation score. 
The “error’’ variance determined by the split-half analysis embraces all the 
remaining components that involve i. The analysis allocates the components 
as follows: 

  

To universe score To error 

Main effects t, P, 

First-order interactions tP,, *, P,j* 
Second-order interactions tP,j* U* ja, P,j*Tix 

Residual tP,]*Tjx, e
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The universe-score variance (six components combined) is estimated by 
multiplying the observed-score variance (0.815 for Yugoslavia) by the 
coefficient (0.71). Therefore, the estimated universe-score variance is 0.579. 

The remainder is the “‘error’’ variance (0.236). An alternative estimate is 

made from the Thailand data (see Table 7.4). 

Analysis 2: Correlation of one lesson with another 

Analysis 2 obtained an interclass correlation of 0.63 between the Thailand 
and Yugoslavia scores. This analysis compares two scores for a teacher-class 
combination; it gives information on how closely the score of the class on 
one lesson is likely to agree with the universe score that could be determined 
from very many lessons. In generalizing over lessons, one inevitably generalizes 
over items also. The use of deviation scores in computing the correlation 
eliminates the 7 and ji components from consideration. 

The universe score implied by this analysis is 4,»,, which embraces com- 
ponents for t, P,, and tP,. The universe-score variance is smaller than that 

from the split-half study, as it embraces fewer components. For Yugoslavia, 
the estimated universe-score variance in the split-half study is 0.579 and in 
this analysis is 0.514. The difference of 0.065 is a rough indication of the 
combined magnitude of the three j* interactions that contributed to the 
universe-score variance in analysis 1. 

Analysis 2 provides only one coefficient (see Table 7.4), not a separate 
coefficient for each lesson. The coefficient is lower than in analysis 1 because 
generalization is to a broader (and more significant) universe. The split-half 
study, treating the lesson as fixed, did not examine how well the observed 
score represents the teacher’s general power to teach all lessons of this type. 
But analysis 2, like analysis 1, ignores pupil characteristics as a source of 
error in evaluating the teacher. 

Analysis 3; One-way anova over pupils 

Analysis 3 produced an intraclass correlation for teacher scores with pupils 
as the variable facet. The coefficient is like the one Horst (1949) recom- 

mended for “reliability over raters,’’ except that here the correlation was 
computed from unbiased variance estimates. Since the analysis was made 
on each lesson separately, the universe score has the form j,,*7*. 

A one-way analysis of variance (pupils within teachers, Design II) was 
carried out for the lesson. This is not entirely a routine matter, because the 
number of pupils per class varies. Two alternatives are available for coping 
with this (apart from the device of discarding cases to make the number of 
pupils the same for every teacher). The procedure suggested by Horst is to 
estimate the within-teacher variance for each teacher separately, and average 
over teachers. The alternative is to estimate the within-teacher variance 
from the mean square within teachers (i.e., data for all teachers pooled).
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The former procedure weights teachers or classes equally, the latter weights 
individual pupils equally. If it may be assumed that variance within the 
teacher is uniform in the population, or that these variances—while not 
uniform—are uncorrelated with class size, then the calculation from the 

pooled mean square is to be preferred. (However, the two results are unlikely 
to differ appreciably.) 

The one-facet analysis of variance gives a mean square for teachers, but 
because class sizes vary, a special treatment is needed to estimate the universe- 
score variance. Let us define symbols as follows: 

ny number of teachers in study 
n,|t number of pupils in class of teacher f 

n number of pupils in study (- > Ny | | 
t 

o*(a) sum of within-teacher components of variance, weighted as in G study 
o7(b) universe-score variance 

n® — > (n;| 1) 
t 

n(n, — 1) 

The expected mean square takes the form (Graybill, 1961, p. 353): 

  (7.8) ko = 

(7.9) EMS p = o7(a) + ko?(d) 

The results are given in Table 7.4 and need not be repeated here. 
The within-teacher mean square is an unbiased estimate of the variance 

arising from differences among pupils and from inconsistency in the pupil’s 
performance (e.g., inattention). The estimate of this variance embraces 

components p, pj*, pj*}., tp, tpj*, and tpj*I, e. 
The fact that the estimate of this error variance is considerably lower than 

the error variance in analysis 2 is suggestive. Because shifting the components 
involving ¢/* from error to universe score has reduced the error variance by 
about one-third, teacher-lesson or teacher-lesson-item interaction must be 

substantial. Comparisons from one single-facet study to another can shed 
light on the magnitude of variance components. It is difficult to disentangle 
the effects, however, and a multifacet study is more directly informative. 

The intraclass correlation estimated from the variances counts the pupil 
main effect as error. In analyses 1 and 2, where generalization was over items 
and lessons, respectively, the main effects for items and lessons were dis- 

regarded. In analysis 3, where generalization is over pupils, the pupil main 
effect contributes to the observed-score variance and the error variance. The 
intraclass correlation recognizes that each teacher is measured by different 
pupils; pupil main effects add to observed differences among teachers.
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Analysis 4: The multifacet study 

A G study along the lines suggested in this monograph proceeded from the 
scores of individual pupils on individual items. To avoid complications in 
data processing, the scores were reduced to a “‘box’’ design by discarding all 
classes with fewer than 19 pupils, and discarding at random within the 
remaining classes to reduce the number to 19. This means that the data are 
not identical to those used in the one-facet studies (analyses 1-3). 

In Chapter 2, a two-facet analysis from this study was displayed in Table 
2.4, which was not interpreted. To avoid substantive considerations irrelevant 
at that point, the design was described as i x (j:p). In our present notation, 
the design for that three-way analysis is j x (p:t). Items were ignored, and 
analysis proceeded from the test score for each lesson. Moreover, the test 
scores used had been standardized within lessons. We shall not discuss the 
three-way analysis; the results are not inconsistent with the four-way analysis. 

Estimation and interpretation of components. The four-way design is 

diagrammed in Figure 7.4. The analysis of variance was performed as if the 
data had been collected under a crossed design, and sums of squares and 
degrees of freedom were then combined to reflect the nesting of pupils within 
teachers and of items within lessons (Table 7.5). We have given the equations 
for expected mean squares to enable the reader to trace the complex calcu- 
lations, and, in Figure 7.5, the diagrams corresponding to the equations. 

Table 7.5 separates many of the components that previously were con- 
founded. The components are stated on the scale of the scores that entered 
the analysis (1.e., for a single pupil on a single item). Elsewhere, results have 
been reported for a sum of 10 items; to shift to that scale, components of 
variance will be multiplied by 100 in Table 7.6. 

The size of the components indicates something about the structure of 
behavior and about the sources of error to be brought under control. As 

Pj, tpj     
FIGURE 7.4. Schematic Representation of the 

(i:j) <X (p:t) Design.
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(d) The i circle 

  (e) The p circle (f) 

   
(g) The 7 circle (h) The ¢ circle 

FIGURE 7.5. Schematic Analysis of the (i:j) x (p:t) Design.
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usual,” the largest component is the residual. This is not surprising; whether a 
pupil will get a particular item correct is difficult to predict from his ability, 
the item difficulty, and other basic effects. Vagaries of attention, lapses of 
memory, and chance in guessing all contribute to this residual. As such a 
component is sure to be sampled many times in any design, its magnitude is 
not of great concern. 

Next largest is the within-lesson component. This component has to do 
with item difficulty, and can be reduced by using a large number of items. 
Since the component does not affect differences among teachers (where items 
are crossed with teachers), it is of no concern in the Belgard study. The same 
may be said about the component for lessons; as long as lessons are crossed 
with teachers, they do not affect teacher differences. The tiny size of this 
component implies that the investigators developed lessons and tests of 
similar difficulty. This tends to warrant using one lesson as pretest and one as 
posttest in some experiment. A counterbalance of order would not be critical. 
The tj component, also small, indicates the extent to which teacher scores 
depend on the lesson they are teaching. Since the tj variance is small relative 
to the ¢ component, ability to present lessons of this type appears to be 
general over topics. This finding is welcome, because a large component 
would force the investigator to explain how “ability to teach about Yugo- 
slavia’’ differs from “‘ability to teach about Thailand,”’ etc. 

The third largest component is that within t, which arises from pupil 
variability. Since in operational use of the procedure, different teachers will 
teach different pupils, this source of error is one to be held under control. 
This can be accomplished by random assignment, by using many pupils per 
teacher, and/or by partialling out pupil differences with some covariate such 
as an ability test. 

The value of 0.0108 for i within tj suggests the presence of a teacher—item 
interaction. This need not cause concern; it is obvious that teachers will 
emphasize different subtopics, and each will present some more clearly than 
others. Employing many items will reduce the effect of this unwanted com- 
ponent in the teacher’s score. . 

Finally, the p-within-tj component suggests a pupil-lesson interaction of 
modest size. Most likely, this represents variation in attentiveness from day 
to day. Its effect on the teacher’s score will be reduced by using more pupils 
or more lessons. 

Generalizability in the D study. To appraise any one design, it is necessary 
to divide the components by the number of observations made on each. 

2 Usual, that is, except where one facet is observers. In such studies, momentary variations 
in subject behavior appear in some component higher in the table, because the several 
observers concur in reporting that fluctuation.
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TABLE 7.6. Composition of Variance in a D Study with Design (i:j) x (p:t) 

  

One-lesson study? Two-lesson study 

Estimate of 
Source of variance Assumed Contribution Assumed Contribution 

variance component* Frequency frequency to &0°(6)° frequency to &0°(6)° 

  

  

t 0.38 1 
tj 0.09 on} 1 0.090 2 0.045 
pwithint 148 27, 19 0.078 19 0.078 
pwithin tj 047 — npn} 19 0.025 38 0.012 
iwithin fj 1.08 nin; 10 0.108 20 0.054 
iwithin ptj 17.78 ninin; 190 0.094 380 0.047 

aN 
— —__ 

02(6) 0.395 0.237 
a™ 
€02(X) 0.775 0.617 
  

® Estimated from Table 7.5, rescaled to test-score scale. 

b Result used in Table 7.4. 
© Expected observed-score variance equals £0°(6) plus universe-score variance given by ¢ 
component. 

This is done in Table 7.6. We have already mentioned the rescaling employed 
to make these numbers comparable to those from the one-facet analyses. 
Because only comparisons between teachers are intended, the components 
for j and i within j are not carried forward. In this crossed design, components 
lying outside the ¢ circle of Figure 7.4 are the ones missing from the observed- 

score variance. 
Table 7.6 assumes that the D study will employ a design just like that of 

the G study, except for possible variation in the number of pupils, items, or 
lessons. The assumption is that the number of pupils will be the same for 
all teachers. If this assumption is grossly violated in the D study, one can 
compute the error variance for each possible n, | t and use the distribution 
of n, to compute a weighted average error variance. 

For comparability to the one-facet studies, Table 7.6 gives results for a 
one-lesson D study. We observed that in analysis 1, the error variance is the 
sum of ¢ and p interactions with items (within a lesson). Table 7.6 shows this 
sum to be 0.108 + 0.094 = 0.202; this compares well with the values of 
0.236 and 0.163 calculated for the lessons separately in Table 7.4. 

The two-lesson error variance of 0.237 (Table 7.6) implies a standard error 
6(6) of 0.49 on the 10-point scale. From this, the investigator decides whether 

the two-lesson design is adequate to measure differences in teacher effective- 
ness. Since the standard error of a difference between teachers will be 
21/2(0.49), the measurement is moderately satisfactory. An observed difference
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between two teachers of one point on the ten-point scale will be inconsistent 
with the direction of the universe-score difference in about one case out of six. 

The universe-score variance implies a standard deviation for universe 
scores of 0.62; evidently, teacher scores are confined to a range of about 
three scale points. For the two-lesson study, the ratio of universe-score 
variance to observed-score variance is 0.38/(0.38 + 0.24) = 0.62. This 
coefficient of generalizability is large enough to justify using the procedure 
in studies that correlate teacher differences with other variables. However, 
the procedure is probably not adequate where a measure of the comparative 
standing of the individual teacher is desired. 

Alternative D-study designs. A multifacet study does not end with the 
report of a coefficient. An important use of the results is to evaluate possible 
designs for a D study. One may consider not only changes in nj, n/,, etc., but 
also a relaxation or tightening of crossing and nesting. Some of this can be 
done by inspection. For instance, it would be inexpensive to increase the 
number of test items. Would this have a worthwhile effect? In Table 7.6, n; 
affects two fairly large components. It looks as if doubling nj would reduce 
the error variance for the two-lesson study by about 0.05—a worthwhile 
gain. (But not as large as routine application of the Spearman—Brown formula 
would have suggested. That formula assumes that doubling test length cuts 
the entire error variance in half.) Extending test length would have diminish- 
ing returns; even an indefinitely long test would not reduce the error variance 
below 0.135, at which point the coefficient of generalizability would be 
0.38/0.515, or 0.74. 

Another alternative would be to have each teacher teach a lesson to two 
classes. This would not require extra preparation, and might be more 
practicable than increasing n;, the number of lessons. We can only assume 
that teaching a second class is the same as teaching a class twice as large, as 
we have no data to assess the teacher—presentation interaction (with lesson 
fixed). We do know that the teacher—lesson effect in Table 7.6 is small; 
because the lessons were given on different occasions, this encourages us to 
think that occasion-to-occasion variation in a teacher’s effectiveness is small. 
Consider the effect of doubling n,; this chops three components in half, 
reducing the error variance from 0.24 to about 0.17 and raising the coefficient 
to 0.69. The hypothetical limit, from an infinite number of presentations, is 
0.10 for the error variance and 0.79 for the variance ratio. Generalizability 
improves indefinitely as one increases both the number of lessons and the 
number of pupils, but this enters the realm of fantasy. 

More interesting is the question of the “exchange rate” between lessons 
and pupils. One may specify a certain number of lessons, three for instance, 
and ask what total number of pupils per teacher-lesson, if any, will bring
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the coefficient to, arbitrarily, 0.75. While this problem takes a different form 

in every study, and therefore no algorithm can be offered, a detailed example 
may assist the reader to formulate such problems. 

Let r equal the desired coefficient, and write y for the corresponding error 
variance, equal to [(1 — r)/r]o?(t). Label the five components of the error 

a, b, c, d, and e, in order. 

(7.10) y= 4 24 y ye s_.? 

Nn; Ny, NN; AN; NNN; 

    

Assume for the sake of argument that n; is fixed and n; is temporarily fixed. 

Solving for n,, 
/ 

ve njnjb + nic +e 

ninjy —na—d 
  (7.11) 

For our example, n; = 10. The desired r is 0.75. Suppose a trial 7; is set at 3. 

Since o?(t) is 0.38, y = 0.127. 

Ve 30(1.48) + 10(0.47) + 17.80 _ ,. 

> 30(0.127) — 10(0.09) — 1.08 
  

If ni, were 10, to construct a dramatic contrast, the required n, is 16. The 

investigator could get roughly the same precision by using 3 lessons with 

classes of size 37 or 10 lessons with classes of size 16. 

By simply setting the denominator of (7.11) equal to zero and entering Nis 

one can determine the lowest value of 7; that allows the coefficient to reach the 

desired r. Within the given y, the minimum nj equals 1.6, which means that 

there is no increase in the number of pupils alone capable of raising the 

coefficient to 0.75 when n; = 1 and n; = 10. 

To illustrate one further improvement in design, consider joint sampling 

of pupils and lessons. Let the teacher teach two classes, one lesson to each 

class. This, without increasing the total number of manhours of work, 

doubles the number of observations on p within ¢ (because in this design 

there are n,n; such observations). The error is reduced by 0.04. 

D. Item-Sampling Studies of Test and Item Means 

A striking innovation in recent educational testing has been the “item 

sampling” design (Lord & Novick, 1968, Chapter 11; Sirotnik, 1970). 

Different test items, selected at random, are given to different pupils or 

groups of pupils. The design was originally suggested by Turnbull and by 

Ebel to meet a practical problem in the collection of test norms. A testing 

program often requires new forms of its test each year, and these forms
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have to be more or less parallel. In testing for college admission, for example, 
the new test must be kept secure until the date of use, yet statistical infor- 
mation on items is needed to assemble the new form. Suppose that the pool 
of tryout items is divided into small subsets, and that these subsets are 
introduced into the regular forms of the test of the current year. Each pupil 
would receive only one of the subsets in his test booklet. By this device every 
item is applied to a representative fraction of the national sample. The 
resulting data about the experimental items permit selection of items that 
will give next year’s test the desired statistical properties. Since no one has 
seen much of the new test, it is adequately secure. 

Item sampling is sensible in evaluation studies, experiments, and surveys 
where interest attaches to performance on a domain rather than on a fixed. 
set of items. Because many more items can be administered than in the items x 
pupils design, the behavioral domain of interest is more adequately sampled 
and the universe-and-population mean and variance are better estimated. 
Another advantage appears in questionnaire surveys conducted by mail, 
where a short list of questions will bring more returns than a long one. 

Generalizability theory provides a useful approach to the evaluation of 
item-sampling designs, because the components of variance indicate just how 
much is to be gained or lost by changes in the proportion of pupils who 
receive each item and by other variations in design. To illustrate our analytic 
methods, we employ data collected in the National Longitudinal Study of 
Mathematical Abilities (NLSMA), made available through the courtesy of 
E. G. Begle, project director, and Leonard Cahen and Walter Zwirner.? 
The general concern of NLSMA has been to compare groups who studied 
certain texts with respect to various mathematical accomplishments. The 
inquiry estimates the mean score of a population of pupils on a universe of 
items. The comparative study calls for an estimate for each textbook group 
as a separate population. We shall discuss only a single such group. 

Bock and Wiley (1967) investigate how many schools and how many 
pupils within a school should be used to estimate a mean efficiently; but they 
use a fixed test form and so deal with just a part of our problem. Lord and 
Novick restrict themselves to one-facet G studies and use specialized mathe- 
matics applicable only to items with 1-0 scoring. For such items, they offer 
procedures for estimating moments of the universe-score distribution in the 
population. They assume random distribution of items over subjects, and 
they introduce corrections for sampling from a finite universe. We ignore these 
corrections but we treat pupils as sampled within schools and so take school 
differences into account. 

* For another report on NLSMA item sampling that investigates other aspects of the 
procedure, see Cahen, Romberg, and Zwirner (1970).
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FIGURE 7.6. Schematic Representation of 

the p:(s x f) Design. 

A study with Design IV-A 

Data are available for ninth graders who took a certain test in the item- 

sampling manner. The test had been divided into ten 5-item “forms’’ by 

random allocation of items. Within a class, the pupils to receive each form 

were determined at random. Data were available from many classes, large 
and small. Because class size varied, sometimes as few as four pupils in a 
school received a certain group of items. Wherever more than four pupils 
in a school had taken any form, we reduced the number to four by random 

selection. 
The design of the study is type IV-A, p:(s x f); every form is given in 

every school, and pupils are nested within sf cells (n, = 29, n, = 10, ny = 4; 

Figure 7.6). It is assumed that schools are a random sample from those using 

the text, that the forms are random samples from a pool of admissible items, 
and that pupils are random within schools. Table 7.7 gives the analysis of 
variance components. The score on a five-item set is totalled, allowing a 0-5 
range of scores; components are expressed on that scale. 

Since items are randomly assigned to forms, it would be possible to analyze 
scores at the item level. For any one form, the design is i X (p:s) so 
that components of variance for pi, spi and p, ps can be isolated. These 
components, which are now confounded in p:sf, would be important in 

TABLE 7.7. Estimates of Variance Components fromaG Study with the Design 

pils x f). 
  

  

Degrees 
Source of Sum of of Mean Estimate of 
variance squares freedom square variance component 

Schools s 225.61721 28 8.05776 0.165 
Forms f 264.21030 9 29.35670 0.241 
sf 363.58319 252 1.44279 0.018 
p:sf -1194,00000 870 1.37241 1,372 
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determining the generalizability of scores for individual pupils, but that is 

not the concern of this G study. 
A study of this character calls for a radical change in our mode of inter- 

pretation, for we are not interested in the universe score for the pupil, nor 

in the universe score for the school. The D study is intended to estimate the 

mean over the population of schools and the universe of items. 

We ignore school size. As we state the problem, each school is assigned 

equal weight in the mean. In effect, we estimate the error variance in a mean 

based on schools of the same size, assuming score components independent 

of school size. The argument becomes much more complicated if we deny 

that assumption or allow schools to enter the universe mean with weights 

proportional to enrollments. 
The problem, then, is to evaluate the likely magnitude of the error A 

under any proposed D-study design, where Xgp,y is the observed sample 

mean, is the mean over the population and universe, and Agp,y is the 

difference. An argument could be made for examining an error Agpsy — 

(u..7 — p), because the form component is irrelevant to the comparison of 

textbooks if the same forms are applied to all textbook groups. But inter- 

actions between test items and textbooks are quite likely. In our analysis, the 

textbook is a hidden fixed facet and the F component includes any effects 

arising from item-—text interaction. If o?(A) is used to judge a design where 

textbooks are compared on the same forms, all variation in item difficulty, 

in effect, is being treated as if it were a consequence of the textbook inter- 

action. Calculations on the opposite assumption that the interaction is zero 

appear in the exercises. 
Table 7.8 permits us to examine the errors of estimate, first under the 

assumption that the D study has the same design as the G study (except that 

n, = 30). For illustrative purposes we consider two further alternative 

designs: giving the same 10 items to all subjects, and decreasing the number 

of schools while taking more pupils per school. There are many alternatives, 

but these will give a sufficient sense of the way variance components may be 

used. In each of the designs of Table 7.8, 1200 pupils each take 5 items. 

While the error variance for the first design is quite small numerically, a 

mean error square of 0.0311/2 = 0.18 would rarely be acceptable in estimating 

a population mean on a 0-5 scale, for a survey of this kind. The other three 

designs do not give appreciably better results. As the table shows, using 10 

schools gives a much poorer result than using 30; but a 60-school sample is 

not much better. If we are to evaluate the result on the basis of o(A), it is 

clearly necessary to reduce o?(F) by using more forms. If forty 5-item forms 

were used in a 30-school Design IV-A study, one form per pupil per school, 

6(A) would drop from 0.18 to 0.11. (Another line of extension is to consider 

making the test forms longer or shorter. But one cannot estimate o(A) for 

the longer or shorter form unless Design V is used in the G study, for reasons 

that will become apparent.)
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Reasoning such as this, applied to a pilot study, can be of considerable 
value in designing an efficient experiment or a study to estimate a population 
mean. Applied to a D study, it indicates the precision of the estimate obtained. 
The error of generalization over forms is considered in addition to the error 
from sampling of persons that usually enters the standard error of a mean. 

A study with Design V 

It is not essential, and perhaps not desirable, to use an item-sampling design 
in the G study when one is evaluating item-sampling plans. Design V, 
i X (p:s), can estimate the components of interest. As an example, we 
employ data for a 15-item test administered to fifth grades in 19 schools. 
In any school where more than 18 pupils completed the test, we have reduced 
the number to 18 by random sampling. Item scores are analyzed, and the 

score scale has a 0-1 range. We need not give details of the estimation of 
components of variance; the results are as follows: 

Schools 0.004 

Items 0.019 

Schools x items 0.002 

Within schools: 

P. Sp 0.023 
pi, spi, e 0.117 

The item-sampling D study with Design IV-A will confound the two 
within-school components shown above. Because components are assumed 
to be independent, the variance of a compound is simply the sum of the 
variances of the parts going into it. If each “form’’ in the item-sampling 
design consists of a single item, we estimate the within-sf component of the 
item-sampling design as 0.140 (= 0.023 + 0.117). If a form is to be made up 
of five items, the pi, spi, e component is sampled five times in the pupil’s 
score and the p, sp component only once. Using the average score over the 
five items, to keep the scale of components the same, the estimate of the 

within-sf component is 0.023 + 0.023 or 0.046. The f and sf components 
would be reduced, respectively, to 0.004 and 0.0004 when five items are 
averaged. The effect of a change in n; could not be determined in the Design 
IV-A G study above, where the pi and p effects were confounded. The reader 
can trace out how well alternative designs estimate a population mean, in 
the manner of the foregoing section. 

In a D study that is chiefly concerned with understanding educational 
results, one might estimate an item mean wu for a fixed item. The observed 
mean is Xgp;, and Agp, is the weighted sum of u~, Mim, Ugp™~, and 
Lspi™> @ Components. (The i component is not a source of error when the 
item is fixed.) One divides the four corresponding components of variance
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by the number of observations to be made within the item for that com- 
ponent. Suppose that 500 pupils, 50 in each of 10 schools, will be given the 
item. Then, from the estimates of variance components given above, we have: 

  

Component Frequency Contribution to o?(A) 

s 10 0.0004 
si 10 0.0002 
Pp» SP 500 0.0001 
pi, spi, e 500 0.0002 

Hence, 02(A) = 0.0009. The value of 6(A), 0.03, is probably adequately low 
for evaluative conclusions. 

E. A Stratified Achievement Test 

We have spoken of the possibility of regarding an achievement test as a 
sample from a stratified universe in which items are classified a priori ac- 
cording to content or task. “Stratified-parallel’’ tests formed by sampling 
within strata agree more closely than the analysis based on random sampling 
indicates. 

Description of data 

The NLSMA study provides illustrative data from a test having three sections, 
each containing six items. The test was given to 18 pupils in each of 24 
schools. One would generalize over the universe of tests formed by repeatedly 
sampling 18 items, 6 from each stratum. We investigate generalizability of 
both the pupil score and the school mean. The design of the G study is 
(items:strata) x (pupils: schools)—(i:/) x (p:s), similar to that in analysis 4 

of the Belgard study (see Table 7.5) except that J* is fixed. For each je J*, 
i is nested within j in the universe. The components involving i are defined 
differently from those in (2.19) and (2.20). The i component, for example, 
has to be u,; — ws; (jE J*). This makes the distinction, for example, between 
o*(i | J*) and o?(ij | J*) unnecessary. It is probably wise to think of pupils as 
nested within schools, in generalizing over pupils; this does not require the 
modification of any procedures, however, if the number of pupils per school 
can be taken to be very large. 

Estimates of components and their interpretation 

The four-way analysis of variance produces the mean squares in Table 7.9. 
We present the full set of “‘mixed-model’’ equations for expected mean 
squares, which may be compared with the random-model equations given in 
Table 7.5. The components would also be correctly estimated by applying
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the equations of Table 7.5 except that the results would have to be further 
treated by evaluating the right side of: 

3 “3 13. oO. 
a*(s | J*) = o%(s) + — [o°(sj) + o°(pj,spj)] 

and 

o*(pasp | J*) = o%(p.sp) + — o(Pisspi). 
j 

In interpreting components it should be remembered that with 0-1 scoring, 
no variance can exceed 0.25. The residual component, then, is large; it 

includes all miscellaneous effects from distraction and guessing, as well as 
from a pupil’s ignorance regarding a particular item. The second largest 
effect is items within strata, a reflection of variation in item difficulty. The 
pupil (within school) and school effects are equivalent to standard deviations 
of about 0.1, on a l-unit scale. It is remarkable that school means should 

contribute as much to variation in X,,,; as the pupil-within-school com- 
ponent does. Evidently, schools vary enormously in effectiveness, or in the 
quality of pupils they take in, or both. 

The strata differ only slightly in average difficulty, according to the 7 
component of 0.0028. The extremely small sj component implies that the 
order of difficulty of the strata is the same from school to school. The com- 
ponent for p within sj is only 0.0036, implying that factors specific to the 
strata are weak.* The component for p within s indicates that the strata are 
moderately intercorrelated. The factor common to all strata (which generates 
the p component) accounts for four times as much of the within-stratum 
variance of pupil scores on single items as does the stratum-specific pj factor 
(0.0121/0.0036). Over all pupils taken together, the general factor is an even 
more potent source of variance. The questions likely to be of greatest interest 
are these: 

1. How great is X,,77 — spy? This compares the pupil to his own 
universe score, recognizing that his assignment to a school is fixed. And 
how great is (Xsp77 — Mspz) — (Usyz — gz)? This is pertinent where 
comparative standings of pupils within the school are of interest. (The 
number of pupils in the school will be treated as very large.) 
2. How great is X;p.77 — My = A,p.z? This is the relevant question 
about the absolute school mean. 

4 The suggestion of Rabinowitz and Eikeland that the null hypothesis be accepted if 
MS(p: sj)/MS(pi:sj) does not yield a significant F is not followed. If items are classifiable 
on some logical ground, the hypothesis o#(p:sj) = 0 is not very reasonable.
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TABLE 7.10 Estimated Error of Generalization from a Stratified Test 
  

Estimate Frequency Contribution to Frequency Contribution to 

  

Source of of variance within variance of within variance of 

variance component P Xsprt — Usps s Xsp,JI — Mss 

Schools s 0.0114 l 1 

p within s 0.0122 1 18 0.001 

Strata j 0.0028 3 3 

i within j 0.0386 18 0.002? 18 0.002 

Sj 0.0000 3 3 

within sj: 

Pj, Sp} 0.0036 3 54 0.000 
si, si] 0.0055 18 0.000# 18 0.000 

A residual 0.1786 18 0.010 324 0.001 

o2(A) 0.012 0.004 

  

® Does not contribute to &o? (6). 

The analysis for pupils in Table 7.10 indicates o(A,, 77) to be in the neigh- 
borhood of 0.1. The 18-item test does not locate the individual very exactly 
within the 1-point range. The variance of universe scores “,,,7 for pupils in 
the same school is estimated as 0.0122. The variance of A,y77 = (Xsp77 — 
Uspz) iS 0.012. To estimate observed-score variance the i and si components 

are ignored (0.012 + 0.012 = 0.024). The within-school coefficient of 

generalizability is 0.51. 
Assuming the 18 pupils to be a random sample of the within-school 

population, o(A,p,;;) for the school mean is estimated to be 0.06; this 
precision is not very adequate. If we convert the 0-1 scale into percentages 
(0-100), the standard error of the school mean is about 6 percentage points. 

EXERCISES 

E.1. In the Medley—Mitzel study, what modification of the experimental plan 

would change the design to o:(t x r)? 
Suppose the G study had been carried out in that way and had yielded the “as it 

crossed”? sum of squares and degrees of freedom shown in Table 7.1. Recombine 
these to get the mean squares and estimated variance components for the 0:(¢ x r) 

design. 

E.2. Write formulas for estimating variance components in the study diagrammed 
in Figure 7.1 and show how to calculate the estimates given in Table 7.2 (p. 196) 

from the rescaled mean squares.
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E.3. Show how o*(r) is computed in Table 7.3 (p. 200). Prepare a diagram similar 
to those in Figure 7.3. 

E.4. The older literature on the reliability of measures often stated rules of thumb 
regarding the level a coefficient should reach if a measure is to be used for individual 
measurement or group measurement. Thus, it has been suggested that the coefficient 
derived from parallel forms given on different occasions should reach 0.50 if a group 
is being appraised (rather than individuals). Does generalizability theory confirm 
the reasonableness of this rule, where the investigator’s intent is to measure the 

attitude of one ethnic group toward another ? 

E.5. Pilliner (1965, p. 91) reports a study of a test with three kinds of arithmetic 
items. The analysis of variance yielded the following tabulation: 

  

Sum of Degrees Mean — 
Source squares of freedom square 

Children (28) 100.1471 27 3.7092 
Strata (3) 4.2137 2 2.1066 
Items :strata (25 per stratum) 97.5585 72 1.3550 
cs 12.5374 54 0.2322 
c X i:strata 305.6811 1944 0.1572 
  

a. Estimate @p? for the family of stratified—parallel tests. (Treat strata as fixed, 
items as random.) _ 

“~ 
b. Calculate &p? for a 75-item test, generalizing over strata and items. 
c. Collapse the analysis so as to ignore the stratification, into that fora persons x 
items design. Estimate ¢@p? for the family of random-parallel tests this test 

represents. 
d. Compare the above results, explaining similarities or differences. 

E.6. Use the data for Exercise 5 to compute 6(A) for a school mean. Assume that 

there are 100 children per school in the relevant grade, that all of these are tested, 
that all interaction components involving school are zero, and, further: 

a. that the test has 25 items in each of the three fixed strata, crossed with children. 

b. that an item-sampling design is used, with 5 items from each of the three fixed 
strata (15 items in all) given to each subset of 20 children. 

E.7. For each design in Table 7.8, calculate the error variance in the population 
mean that would be important for textbook comparisons. Assume that forms are 
applied in a similar manner to all textbooks, and that there is no item—textbook 
interaction. 

E.8. Using the findings of the G study of Design V (p. 218), calculate o?(A) per 
form for each of these designs, on a 0-1 scale. 

a. Design of 30 schools, 1 form of 10 items, 40 pupils per school per form. 
b. Design of 30 schools, 10 forms of 10 items, 4 pupils per school per form. 
c. Design of 30 schools, 20 forms of 5 items, 2 pupils per school per form.
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Answers 

A.1. If every rater visited every teacher, but no two raters visited a teacher on the 
same occasion, the design would be 0:(¢ x r). Technically, one might defend adding 
the specification that only one teacher is observed on any given date. However, 
occasion variance seems far more likely to arise from events within the single 
classroom than from the date itself. 

  

Sum of Degrees Mean Component 
squares of freedom square of variance 

t 203 23 8.83 0.67 
r 13 1 13.00 0.09 
tr 17 23 0.74 (0) 
residual 403 192 2.10 2.10 

A.2. 07(i,pi,di,pdi,e) = EMS residual; hence o%(i, ...) = MS residual; here, 0.21. 

n,0*(d,pd) + o(i,...) = EMS within p; 

hence, 

o(d,pd) = - (MS within p — MS residual) 

Here 

o°(d,pd) = 0.08 
Similarly, 

o(p) = 

Here, o7(p) = 0.045. 

  (EMS p — EMS within p) 
nynq 

A.3. 
The diagram indicates that EMSr =A +B+C+G. 
And from Figure 7.3, EMS pr = A + B+ C. 
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Numerically, MS pr is greater than MS r. Therefore, the estimate of G is negative 
“nm. 

and we take zero as o(r). 

A.4. The result in such a study will be expressed as a sample mean (or median, etc.) 

for the responses of ethnic group A when asked about ethnic group B. The question 
about precision of measurement has to do with the accuracy of this sample mean on 
the form used (assuming a crossed design) as an estimate of the population mean 
Over a universe of forms. Consequently, one is concerned, not with the coefficient 
of generalizability, but with o(Xp,; — u). This depends not only on the instrument, 

but on the proposed sample size. 
It does not report, as the coefficient does, the magnitude of the error relative to 

individual differences within the population. That does not bear on this investi- 
gator’s inquiry. If one population of respondents has a completely uniform 
attitude [o(u,) = 0], one could still measure that attitude very accurately, even 

though &p? = 0. 
It should be noted that o(A) may well vary from one population of respondents to 

another, and that the standard deviation of responses among subjects of group A 
referring to ethnic group B may differ from their responses regarding group C. 

A.5. The questions have to do with individual differences in a crossed D study. 
The components of variance required are: 

Cc cS clis 
  

0.0463 0.0030 0.1572 

This result is carried to more decimal places than is justified, for the sake of the 

following discussion: 
a. Treating strata as fixed, 

  

2 _ 0.0463 + 14(0.0030) 

0.0463 + 14(0.0030) + 145(0.1572) 

0.0473 
= 00504 > 0.959 

b. Treating the kinds of items in this test as randomly sampled from a universe of 
kinds of items (i.e., treating strata as random), 

Bye — 110463 _ 9.939 
P 0.0493. 

c. Carrying out the calculation without regard to stratification, one forms 

MS ci + 318.24/1998 = 0.1593 = (ci). And 62(c) now equals 0.0473. Then, 

~ 0.0473 0.0473 
é p* = = = 0. 

P 0.0473 + 45 (0.159) 0.0494 0.957 
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d. For the domain of arithmetic tested, the kinds of items are not distinct; the 

small cs component of variance implies that items within a stratum are little 

more homogeneous than items from different strata. 

The coefficient in b is lower than that in a because the proposed generaliza- 

tion is to a broader universe. The coefficient in c might be considered to be an 

estimate of the accuracy of generalization from the test to the universe score based 

on all items within the collection defined by fixed strata. This is another estimate of 

the value given in a, and the two agree closely. But the value in c mistakenly 

includes the contribution of the cs component in the error, and is smaller than it 

should be. If the cs component were large, or the number of items within strata 

small, the disparity could be important. 

The result in ¢ might also be considered an estimate of accuracy of generaliza- 

tion over all items of all kinds (i.e., to the same universe score as in 5). In this 

interpretation, the result in ¢ is an overestimate because it ignores the fact that 

items were cluster-sampled, and consequently, reports that the universe is more 

homogeneous than it actually is. 

A.6. In this problem children are treated as fixed (i.e., the sample exhausts the 

population within the school) and strata are fixed. The components involving items 

are the sources of variance that contribute to o(A). For items within strata, the 

component is estimated to be 0.0142, and for ci within strata it is 0.1572. 

a. There are 75 items, and the ci interaction is sampled 7500 times. 

o2(Ap,) = %5 (0.0142) + 4500 (0.1572) = 0.0002 

6(A) = 0.014 

b. With the less complete test, the sample still exhausts the universe of the com- 

ponents for c, s, and cs. There are still 75 separate items, but only 1500 samples of 

the ci interaction. 

o2(Ap,) = %5 (0.0142) + 14500 (0.1572) = 0.0003 

6(A) = 0.017 

These two designs gave nearly the same value of 6(A), but would not agree as well 

with smaller samples or a larger ci interaction. 

A.7. Ineach case, remove the contribution of the fcomponent from 62(A) as given 

in Table 7.8. The results are, in order, 0.007, 0.018, 0.004, 0.007. Where the em- 

phasis is on comparison, the single-form design (no item sampling) serves better 

than it did for absolute measurement. The first or third design would be preferred, 

however, if textbook-form interactions were at all likely.



230 Illustrative Analyses of Partially Nested Designs 

A.8. Estimate 

  

Estimate of 
variance 

Source | Component Design a® Design b® Design c° 

Schools 0.004 30 =: 0.00013 30 §=©0.00013 30 =: 0.00013 
Items 0.019 10 0.00190 100 0.00019 100 0.00019 
si 0.002 300 0.00001 3000 0.00000 3000 0.00000 
within s 

P> Sp 0.023 1200 0.00002 1200 0.00002 1200 0.00002 
pi, spi, e 0.117 12,000 0.00001 12,000 0.00001 6000 0.00002 

  

® 30 schools, 1 form of 10 items, 40 pupils per school per form. 
> 30 schools, 10 forms of 10 items, 4 pupils per school per form. 
¢ 30 schools, 20 forms of 5 items, 2 pupils per school per form.



CHAPTER 5& 

Multifacet 

Correlational 

Analysis 

A. Comparison of Correlational Analysis with Variance Analysis 

Early discussions of multiple sources of error in test data (Gulliksen, 1936; 
Thorndike, 1947; Cronbach, 1947) were cast in correlational terms. It is 

useful to relate correlational analysis to score components and their variances. 

This will help the reader to grasp generalizability theory and will aid in 

judging what previously published correlational analyses of significant tests 

have said about the generalizability of their scores. 
The number of published studies applying correlational analysis to data 

organized with respect to two or more facets is very limited. An occasional 

study can be found where two forms or half-tests on two occasions were 

given inai x j x p design. This design generates four scores to be correlated, 

representing the paired conditions ij, i’j, ij’, and i’j’. There are six pairs of 

scores, which yield six possible interclass correlations. Classical theory treats 

these correlations as if equal in the population. It is more likely, however, 

that scores having one condition in common (e.g., ij and i’) will correlate 
to a greater degree than will scores obtained under totally unlike conditions 

(e.g., if with i’j’). The multifacet model permits interpretation of the 
differences among correlations such as these. 

Comparability of results when conditions are equivalent 

While the classical model represented in such works as Gulliksen’s Theory 

of Mental Tests does not separate facets, its assumptions can be put into 

multifacet language. The sample of persons for the G study is treated as 
indefinitely large. With two facets, scores within conditions are assumed to 

231
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have uniform means p,,, the variance over p of observed scores X,,; is 
assumed to be the same for every ij combination, and the covariance over p 
for two sets of observed scores is assumed to be uniform for all possible 
combinations of conditions 

[1.e., OX p55,X pig) = OX py X p05) = O(Xpi5.X pry) = ° °°). 

The assumptions imply that the following score components equal zero: 
Lis Lis bis Pai™>s Loj™> Loi. The corresponding components of 
variance vanish, leaving only o?(p) and o7(e). Under these assumptions, the 
covariance between scores observed under two conditions equals o?(p), and 
the within-condition observed-score variance equals o*(p) + o(e). The ratio 
of these is the intraclass correlation between measures. The correlational 
analysis and the analysis of variance of G data yield identical results when 
the strong classical assumptions hold. 

It makes very little difference whether data to be analyzed are arrayed 
with respect to two facets, or are arrayed in a one-facet layout—if the strict 
equivalence assumptions hold. A two-way analysis of variance components 
will yield a near-zero value for the variance components for conditions; 
in a three-way analysis the i, 7, pi, pj, and ij components will be near 
zero. Both analyses produce intraclass correlations. Alternatively, the 
investigator may compute interclass correlations for pairs of conditions and 
average them. All procedures will lead to the same result, save for fluctuations 
arising from sampling error. 

If conditions are not fully equivalent, standardizing scores does not 
necessarily make them so. Standard scores have equal means and variances, 
but covariances need not be uniform. 

Much of what follows deals with covariances. All statements made about 
covariances apply to correlations also, because a correlation is a covariance 
of standard scores. In this chapter all attention is on covariances over 
persons. (Covariances over conditions will appear in Chapter 9.) 

Variance components entering into covariances when conditions are not 

equivalent 

When conditions in the universe of admissible observations are organized 
with respect to two facets, three types of correlation or covariance are 
found. The distinction between types was made in Gulliksen’s 1936 study 
where two essays per person were each graded twice. First, there is a co- 
variance for unlike conditions (e.g., between scores on two essays) each 
judged by a different grader. Second, there is an i-common covariance 
(essay common, grader different). Third, there is the analogous j/-common 
covariance. Two covariances of each kind can be formed where n,; = n; = 2, 
as is the case in the Gulliksen study. With n, = 2 and n, = 3, there are 15
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i=A i=B 
    

j= a b c a b c 

  
  

  

      
  

       S(XpAuX pAb) S(XpAaXpAc) S(Xpaa,XpBa) 5(Xpaa,XpBb) S(XpraXpBo)    

     
     

   

      

    

5(Xpab,XpBu) S(Xpab,X ppp)    

    | S(Xpac:XpBa) 

A         
Covariances for unlike conditions=< -/ 7 cnr 

Covariances, i common —-~=—-=-- co... ~ y 
~~ Covariances, j common ©=22----— ane ee ee ee mee Bee ee wee yo" 

Variances 

  
  

  

  a . 

s2 (Xppa) 5(Xppa Xppo) S(XpparX pre) 

S(X pup, X pz ) 

s? (X pac)         
  

FIGURE 8.1. Three Types of Covariance in a Study with Design VII. 

covariances, with 6, 6, and 3 of the respective types, as shown in Figure 8.1. 

It is reasonable to expect that the average values of covariances of different 
types will differ. Although Figure 8.1 deals with just six observations per 
person, one can imagine extending the table to represent all conditions in the 

universe. 
Readers may recognize the resemblance of Figure 8.1 to the multitrait— 

multimethod matrix of correlations (Campbell & Fiske, 1959; see also 

Norman, 1967). However, the interpretation of a multitrait study where there 
is no intention to generalize over traits is somewhat different. Attention may 
also be drawn to the Stanley—Wiley paper (1962) on covariances in multifacet 

designs. 
Consider the average of each type of covariance over all pairs of conditions 

in the universe. The expected value of i-common covariances, for example, is 

é¢ O(X555X viz). 

The following equation regarding the expected variance of X5,; — Mi;
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for Design VII is taken from Table 3.7 (for additional discussion, see Ap- 
pendix). 

(8.1) é 0X54; | if) = o%(p) + o(pi) + o°(pj) + o(pij,e) 

These additional equations hold for the three types of covariances: 

EE OX gipX pix) = (Pp) + Opi) (i-common) 
tig’ 

(8.2) CE WX gi. X yi) = OCP) + O(Di) (j-common) 
ii’ j 

E E WX oii Xpir5) = OCP) , (no common 
ene GFF condition) 

The expansion into components given in (8.2) applies also to the expected 
covariance of average scores. Accordingly, for i-ccommon covariances, the 
upper line of (8.2) applies to the expectation of o(X5,7,X5,7:), provided that 
sets J and J’ are drawn at random. Where many i are involved, as in 

O(Xp77,X prz")> 

o*(pi) in (8.2) must be divided by n,. In the j-common covariance, o*(pj/) 

must be divided by 7;. 
Assuming random sampling, any s(X,;,,X5,;) from a G study is an un- 

biased estimate of the expected i-common covariance; etc. Equations (8.1) 
and (8.2) are entered with means of observed covariances of each type from 
the G study; components of variance are then estimated by solving the equa- 
tions. If covariances between scores on whole tests are calculated (e.g., if irep- 

resents test forms and / represents graders), the equations yield components 
for whole test scores. Similar analyses can also be carried out for items 
and part-tests. 

Covariances obtained from partially nested designs can also be used to 
estimate variance components. Some components will be confounded, just 
as in the analysis of variance for the same design. 

B. Theory for a Test Organized into Subtests 

The Wechsler Verbal Scale will be taken as an example for multifacet corre- 
lational analysis. Its organization into subtests introduces especially inter- 
esting questions. We shall assume that in all D studies the same test form is 
to be given to all subjects. We also assume that no two persons will be tested 
on the same day, in order to avoid complications in the discussion. 

Four facets are to be distinguished: subtests /, item-sets i within subtests, 

days d, and trials t. The smallest item-set considered will be the half-subtest,
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ptaj   
FIGURE 8.2. Components in Scores on Item-Sets of the Wechsler Verbal Scale. 

for two reasons: the number of half-subtests is two in any subtest, conse- 
quently, n; = 2 in every study (though the number of items varies); second, 
we have split-half data for subsequent illustrations of G studies, not item 
data. For any subtest such as Vocabulary, we assume that the universe 
contains an indefinitely large number of items that could be assembled into 
forms or half-length forms. 

Any trial on any day with any item-set from any subtest falls within the 
universe of admissible observations. The universe of conditions has the 
structure (t:d) x (i:j), and there are observations on all conditions for all 

persons. Trials are nested within days in the universe and item-sets within 
subtests, as indicated in Figure 8.2. The nesting shown is present in the 
universe of admissible observations. Instead of writing such a pair of com- 
ponents as ¢ and fd separately, with t:d we use the label ¢; for the trial- 
within-day effect (see pp. 63ff.). This, and a similar simplification for 
i-within-j, leaves us with 18 components of the observed score. Several of 
these components will be ignored in correlational analysis of G data from a 
crossed design. 

Universes of generalization 

What universe of generalization interests the Wechsler interpreter? More 
broadly, what are the conceivable universes of generalization ? The interpreter 
will surely generalize over item-sets and over the moments when any item-set 
might be presented within a day. The interpreter usually generalizes over 
days also, because Wechsler scores are taken to describe the person at a given 
stage of development. After about age 8, a person’s score has a “useful life”’ 
of a year or more under most circumstances. 

Whether the Wechsler interpreter normally generalizes over subtests
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(from the specific Verbal tests to the Verbal domain) is arguable. The tasks 

may be regarded as a sample from a broad domain of eligible tasks, or as the 
entire set of relevant tasks. The former appears to be more usual. Just as the 
vocabulary items are recognized as no more than a sample of suitable words, 
Wechsler’s formulation-of-definitions task is just one selection from a 
domain of usable verbal tasks. Other tasks include opposites, synonyms, 
verbal analogies, and picture vocabulary. The view that tasks are sampled is 
not at all strange to users of the Stanford-Binet. Form L and Form M are 
composed of largely different tasks representing a broad domain. Task-to- 
task variation was counted as a source of error in the basic Terman—Merrill 
reliability study where L and M were given on different days and the scores 
were correlated. Willingness to generalize over tasks was even more evident 
when Merrill later reduced the Stanford-Binet to the single form L-M and 

suggested that, if an L-M IQ needs to be checked, the Wechsler Scale for 
children serves to estimate the same thing. Interpreters of Wechsler Verbal 
(Ve) and Performance (Pe) IQs seem to regard them as representative of the 

respective domains of intellectual tasks. 
There are six conceivable universes of generalization for a test score: 

1. Generalization is over trials, that is, over administrations within a day. 

The person is tested repeatedly on a particular day, but the day typically 
differs from person to person. All observations in Universe 1 employ the 
same fixed set of items. This universe is included here only to square off a 
formal structure. 

2. Generalization is over trials and item-sets. Each administration presents 
the same set of subtest tasks, with a new set of items, however. There is no 

attempt to generalize beyond the day on which the person is tested. 
3. Generalization is over tasks, as well as over trials and item-sets. Again, 
the day is treated as fixed for the person. Each admissible test employs a 
new set of subtest tasks. That is, each testing uses a fresh set of subtests 
drawn from the general domain, not alternate forms of the original 
subtests. Subtest-specific effects thus become a source of error. A new 
subtest automatically brings in new items. 
4. Generalization is over days, and consequently over trials as well. 
Observations are made on days within a certain time period, with subtest 
tasks and items fixed. 

5. Generalization is over days (and trials) and over item-sets. Observations 
are made on days within a certain period, with subtests fixed but with 
items changing from day to day. 
6. Generalization is over days (and trials) and tasks, and hence over 
items also. Observations are made on days within a certain period with 
subtests (and items) changing from day to day.
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Score components w;~ and m,;~ will be disregarded. One or both of 
these does cater the observed score and, for certain universes, enters the 

universe score, but they are of negligible importance because standardization 
greatly reduces them. Moreover, subtests are always crossed with persons; 
consequently variance components for / and i; cannot enter the score variance. 
For purposes of the formal analysis the d and t, components will be retained, 
because these are confounded with the person and enter the observed-score 
variance if not the universe-score variance. 

Table 8.1 arranges the remaining components to show which ones contrib- 
ute to the universe score for each of the six universes. All other components 
contribute to the observed score, but not to the universe score. In Universe 6, 

all components except that for persons contribute to the discrepancy between 
observed score and universe score, hence count as error. In Universe 5, 

subtests are fixed, so that the person x subtest component is part of the 
universe score, not of the error. And so on. Theerror is greatest in generalizing 
to the broad Universe 6, and least in generalizing to Universe 1. The set is 
partially ordered: (6) > (3) > (2) > (1) and (6) > (5) > (4) > (1). 

The person-subtest interaction u,,;~ reflects the extent to which certain 
subtests are consistently easier or harder for one person than for others. 
The person-item interaction “;,~ arises from a person’s greater mastery 
of some items than of other items of the same character. We would expect 
reasonably large pi, interactions within Vocabulary, but interactions should 
be comparatively small within Digits Forward, as those items have few 
distinctive features. 

The person—day component 4,4~ departs from zero if the individual does 
better on some days than on others. Practice effects or other trends common 
to all persons are not included in this interaction. The component uy4;~ 
comes from day-to-day variation in ability to perform particular tasks. For 
example, some subtests may be sensitive to anxiety on the day of testing, 
while other subtests are insensitive. 

Six alternative experimental plans and their analyses 

Table 8.2 catalogues G studies in which two scores for the person are obtained 
and correlated. The immediate retest (type 1) is rarely used because of 
memory effects; it is included in the table for symmetry. 

All studies of type Iv are formally the same regardless of the interval 
between testings. The longer the interval, however, the larger the components 
for day and its interactions are likely to be. For example, the pd component 
of variance is likely to increase with greater lapse of time, and the p com- 
ponent to be reduced. The greater time interval often reflects choice of a 
broader universe of generalization. (The same is to be said, of course, about 

studies of type Vv, or VI.)
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Plan 11 and plan v call for administering two forms of the conventional 
sort, where the same subtests appear in each form, but the items are changed. 
This is to be contrasted with Plans m1 and vi, which call for a second form 
employing subtests different from those of the first. 

It would be possible to employ split-half designs in place of u, m1, v, and 
vi. If the half-tests were separated in the test administration, they would 
conform precisely to the description in the table (e.g., two forms given on 
the same day), except that the forms are shorter than the usual test. The fact 
that half-subtest scores are usually obtained by a split-half scoring after the 
entire subtest has been administered as a unit means that the assumption of 
independence is violated. The two halves of the subtest are likely to be more 
highly correlated than they would be with independent administrations. 
There are two ways to split a test such as the Wechsler Verbal Scale. One 
can separate odd and even items, as is conventional. Making two short forms 
of each subtest is comparable to plans 11 and v. One can also divide the 
subtests into two groups; half-tests with different subtests resemble plans 11 
and vi. In the argument that follows we shall continue to speak in terms of 
whole test forms, but in the numerical example we shall employ split-half data. 

There is a one-to-one correspondence of experiments with universes. In a 
study of type Iv, just the components of the universe-score variance for 
Universe 4 raise the correlation between tests. Correspondingly, for type v 
and Universe 5, type vi and Universe 6, etc. However, one can process data 

more complexly. As will be seen in the next sections, one experimental plan 
can give data on generalizability to several universes. Rather than examine 
this further theory, the reader may prefer to move at once to illustrative 
Wechsler data (p. 246). 

Multifacet analysis of variance. In any one of the studies described in 

Table 8.2, the half-subtest scores could be processed by the analysis of 
variance components as in Chapter 2. (Analysis of whole subtest scores gives 
less complete information.) Alternatively, one could calculate a complete 
matrix of intercorrelations for all pairs of half-subtest scores. There are close 
correspondences between the two types of analysis. The following section 
describes the possible results from an analysis of variance under each of the 
six designs. It will then be shown how the findings from correlational analysis 
correspond to those results. 

It is assumed that halves within a subtest are experimentally independent, 
and that having previously responded to an item or subtest task does not 
systematically affect a person’s second performance on it. These are as- 
sumptions traditional in reliability studies. Figure 8.3 indicates what com- 
ponents of variance can be estimated from half-subtest scores in a retest 
study.
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Eight components of variance 

(a) Retest on same day. (1) 

di, ti, pdi, pti, e 

  

Eight components of variance 

(b) Retest on two days. (IV) 

FIGURE 8.3. Components of Variance Obtainable from Analysis of Variance of 

Half-Subtest Scores in Retest Studies. 

The first possibility to be considered is the same-day retest (plan 1 of 
Table 8.2). The upper half of Figure 8.3 represents this design. Person and 
day are confounded since persons are tested on different days. We treat trials 
as nested within p,d, though we could have classified first and second 

observations as distinct and so have treated t as crossed, as we did with 

PICA data (p. 176). It should be noted that where i appears in this and the 
following chart, this is an abbreviated notation for i, (i-within-j; see p. 235). 
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Correspondingly, any ¢ stands for t-within-d. It would be possible to describe 
the design for the same-day retest as (i;:/) x (t:[p,d]). The notational 

conventions are not very satisfactory, however, when we deal with such a 
complex design. This coded statement, for example, leaves somewhat 
ambiguous whether i is crossed with ¢. (It is, in a retest.) We shall abandon 
the code for crossed and nested designs entirely in the remainder of this 
section, though the diagrams represent crossing and nesting faithfully. 

The diagram for plan I indicates that analysis of variance estimates eight 
components, most of these being compounds. Only the components that 
fall within the p circle affect a correlation, as the use of deviation scores 
eliminates other sources of variance from consideration. The six components 
identified within the p circle for plan 1 can also be inferred from variances 
and covariances of half-subtest scores in a same-day retest study. 

Plan Iv is the same in all respects except that the retest takes place on a 
second day, and diagram (b) is correspondingly similar to (a). Trial ¢ is 
now joint with day, and both are nested within the person. Again, eight 
components of variance can be estimated, but the confounding is different. 

The study may employ parallel forms with the same subtests and new 
items. Figure 8.4 includes representations for plans 11 and v (diagrams a and 
c, respectively); the two differ only in that d is confounded with p in one 
diagram, with ¢ in the other. The diagrams have a feature not previously 
encountered: an arc cutting off the lower portion, and an incomplete circle 
representing the residual term. For the reader who is interested in these 
matters we digress to spell out our basis for using these odd conventions. 

It is envisioned that a different test form f will be given on each trial. 
Because every subtest appears in both forms, we have j crossed with f, and 
i; nested within jf. The large arc is a portion of the “‘f circle,’ in a sketch 
representing / x f X p. By our usual convention, the outer part of that 
circle would represent an “f component.”’ But the f score component proves 
to be nothing more than the average of the u; — mu; this average is zero, and 
is not reflected in the diagram. Where the f and j circles intersect we might 
display a jf component. However, this “‘interaction’’ arises only from differ- 
ences in the items chosen for the two forms, and therefore is indistinguishable 
from the J; component. We arbitrarily chose to erase a part of the i circle 
rather than to erase part of the j circle. A similar incomplete circle for forms 
appears in the diagrams for plans m1 and vi; the outer part of it is absorbed 
into the 7 component. In all these diagrams, form is confounded with trial. 

The reader will see that the upper and lower diagrams in Figure 8.4 differ 
only with respect to the way in which d is confounded. The chief difference 
from left to right is that on the left there is a distinction between pj-dj-pdj 
and tj-ptj because these can be separated, whereas on the right they are 
confounded. The progression from eight to seven to six components, as we



Theory of a Test Organized into Subtests 243 

   
Seven components of variance Six components of variance 

(a) Parallel tests with same (b) Parallel tests with new 
tasks on same day. (II} tasks on same day. (III) 

   
Seven components of variance Six components of variance 

(c) Parallel tests with same (d) Parallel tests with new 

tasks on two days. (V) tasks on two days. -(VI) 

FIGURE 8.4. Components of Variance Obtainable from Analysis of Variance of 

Half-Subtest Scores in Studies with Parallel Forms. 

move from plan I to plan Il, or from Iv to VI, is noteworthy. What would 
appear at first glance to be the more complex and more informative design 
estimates fewer components then the simple retest design. There are two 
countervailing considerations that may tend to make 11 or vi preferable to 
I or Iv. First, the assumption of independence is less plausible in a retest 
design. Second, the parallel-form designs sample some components more 
thoroughly than a retest G study of the same overall size, and so will give 
better estimates of some of the variance components that appear in both 
studies. Accordingly, if 7 is a half-subtest, and n; = 5, plan 1 involves 10 
distinct i,, while 11 and m1 involve 20.
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Interpretation of the test-score correlation. The traditional investigator has 

computed just one correlation in any correlational study, employing the 
total test score from each testing. He presents this result as a “reliability 
coefficient.’” The diagrams just examined clarify what causes the six co- 
efficients for any given instrument to differ. 

Any correlation is a ratio of a covariance to the product of two standard 
deviations. When the two scores correlated are observations from the same 
universe, the numerator can be regarded as an estimate of the expected 
covariance between pairs of scores obtained under the design used. The 
denominator can be regarded as an estimate of the expected observed-score 
variance. The expected observed-score variance under any design is made up 
of the components of variance falling within the p circle of the corresponding 
diagram. The expected covariance and, therefore, the correlation is raised 
by the person component and also by whatever components within the p 
circle arise from conditions that are the same for both measurements. 

To be specific, consider plan 1, the same day, test-retest design. All com- 
ponents within the p circle in the upper part of Figure 8.3 enter the expected 
observed-score variance. Among those components, the ones lying outside 
the ¢ circle (i.e., p,d,pd; pj,dj,pdj; pi;, di;, . . . ,pdi;) raise the retest correlation. 
Hence the retest correlation reports on the magnitude of this conglomerate of 
components, relative to the entire set of components involving or confounded 
with p. A component enters the conglomerate with a certain weight; for 
instance, pj is sampled n, times in each score, so enters with weight 1/n,. 
The diagram is consistent with Table 8.2; the covariance does not include 
the components for trials, the person-trial interaction, etc. All these fall 
within both the p and t¢ circles. 

To make a similar interpretation of the other five types of covariance and 
correlation, working from the other diagrams, is left as an exercise. 

Interpretation of subtest and half-subtest covariances. Far more information 

about components is obtained if one examines covariances for half-subtests. 
These can be organized so as to supply the same information about com- 
ponents involving p as the analysis of variance offers. 

Consider the same-day retest study. As diagrammed in (a) of Figure 8.3, the 
p circle that contains the components of the observed-score variance has six 
segments. This divided p circle is reproduced in diagram (a) of Figure 8.5. 
Common groups of elements within areas are keyed to the legend by arabic 
numbers. Each of the diagrams is identical; shading indicates which com- 
ponents of variance contribute to the quantity named in the label for the 
diagram. Diagram (b) represents the covariance for trials of the same 
subtest (i-/-common), averaged over subtests. This is seen to be the weighted 
sum of components of variance for p, d, pd; pj, dj, pdj; and pi;,, di,, pdi;.



  

  

(b) Covariance 

(a) Subtest of like subtests (c) Covariance of 

variance trials on two unlike subtests 

( i,j common) on two trials 

nererene,, 
. * . .     

(b1) Covariance of (b2) Covariance of 
like halves of same unlike halves of same 

subtest on two trials subtest on two trials 

( i,j common) (7 common) 

   
(d) Covariance of (e) Covariance of 

unlike subtests unlike halves of same 

on same trial subtest on same trial 

(ft common) ( t,7 common) 

FIGURE 8.5. Components Entering Average Variance and Average Covariances 

Obtainable from Subtest Scores and Half-Subtest Scores in a Same-Day Retest 

Study (Type 

1 = pj, dj, pdj 
2 = taj, ptad 

3 = pi,, di;, pdi; 

4 = tgi;, Ptal;, e).
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Similarly, one can diagram covariances for unlike subtests on different trials 
(diagram c) and unlike subtests on the same trial (diagram d). Once numerical 

values for the three kinds of subtest covariance and the variance are calcu- 
lated, one can form four simultaneous equations. These cannot be fully 
solved, of course, because there are six unknowns. 

A full solution is achieved by considering the covariance for halves of the 
same subtest, within and across trials. For any subtest there are two values 
of t-j-common covariances: within trial from halves of the subtest (diagram 
e). There are two values of i-j7-common covariances: between trials, from 
applications of the same half-subtest (diagram bl). Finally, there are two 
values of j-common covariances: between trials, from unlike halves of the 
subtest (diagram b2). Multiplying each of these mean _ half-subtest co- 
variances by four yields estimates of mean subtest covariances of the three 

types. Averaging the estimates of i-j/-common and j-common half-subtest 
covariances gives the i-j-common, between-trial covariance (diagram b) for 
the subtest. 

When one equation is written to correspond to each circle of Figure 8.5, 
except the redundant diagram (b), there are six equations referring to 
observable quantities (five average covariances and one average variance). 
Therefore, the components can all be estimated. A complete analysis of 
the covariances for the retest study using split-half techniques gives the 
same information about the components of variance that contribute to 
individual differences as does the analysis of variance sketched in Figure 
8.3. The analysis of variance is much more straightforward. 

A similar procedure can be followed with every other experimental plan. 
The diagrams in Figures 8.3 or 8.4 can be used as a basis for a mapping of 
components of variance into covariances in the manner of Figure 8.5, and 
these give rise to the equations from which components of variance are 
estimated. 

C. Numerical Example: Interpretation of WPPSI Correlations 

Previous correlational studies of tests have compared scores arising under 
two conditions of a facet, or two observations that differ with respect to two 
facets. Such information must be patched together to arrive at a multifacet 
interpretation. Though such reasoning is tortuous, it will be required to 
take full advantage of past studies. 

Two correlational studies are reported in the manual for WPPSI, the 
Wechsler test for preschool ages (Wechsler, 1967). A split-half study was 
conducted at each of several ages; we shall give attention only to that for 
children of age 51%. In the second study, the test was given twice. From the 
correlations we shall infer variance components and examine the generaliz- 
ability of the Verbal score to various universes. (Similar analyses could of
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course be made for the Performance section of the test.) The Verbal data 

are based on six subtests, though five would normally be used in D studies. 

Data 

Sample 1: A group of 200 children, age 52, who constituted the standardizing 
sample for the test at that age. Each subtest was split in half. We start from 
the published correlations for the halves within each subtest, corrected by 
the Spearman-Brown formula, the correlations between subtests, and the 
standard deviations for subtests. The correlations will be converted to 
covariances in the course of the analysis, and the standard deviations will 
be converted to variances. 

Sample 2: A group of 50 children, tested at about age 5} and again some 
weeks later. We start from the covariances between scores for the same 
subtests on the two occasions, the covariances between unlike subtests within 

and across occasions, and the variances for subtests on each occasion. While 

the manual gives correlations and standard deviations, we have used co- 
variances supplied by Dr. Jerome Doppelt of The Psychological Corporation; 
the data for unlike subtests have not been published before. 

It would be more satisfactory to deal with a single sample, but the original 
record sheets for sample 2 are not available and we cannot analyze that 
study within subtests. In fitting the two sets of findings together, we encounter 
the troublesome fact that sample 2 has a limited range. The standard deviation 
of IQs was 13.9 on the first test and 14.7 on the retest, instead of 15. In 

sample 1, the standardizing sample, the standard deviation is 15 and the 

subtest scaled scores have standard deviations in the range 2.9-3.1. (The 
departure from the ideal 3.0 very likely comes from smoothing the conversion 
table across ages.) We take as a working assumption that all components of 
variance except o%(p) are the same in the populations the two samples 
represent, and designate the components for persons in the two populations 
as o?(p:1) and o?(p:2). The former population is the one of general interest. 
We have subtest variances from Study 1 and from Study 2. The covariances 
available are: 

Like subtests on two trials Study 2 
Unlike subtests on two trials Study 2 
Unlike subtests on same trial Study 1 and Study 2 
Unlike halves of same subtest on same trial Study 1 

To determine what components of variance are to be estimated from these, 
Venn diagrams might be construcied in the manner of Figure 8.5. But we 
shall further simplify by treating all the following components of variance 
as negligible in size: d, t, ti, di, tj, and dj. It seems most unlikely that there 

are important systematic effects associated with day or trial. For example,



Study 1 (split—half) 

\    XN 
V:1 

(a) Subtest (b) Covariance (c) Covariance 
variance of like| subtests of unlike subtests 

( d,t,j common) (d,t common) 
Study 2 (delayed retest) 

    
V:2 : 

(d) Subtest variance (e) Covariance of (f) Covariance of 

like subtests on unlike subtests 
different days on same day 
(4,7 common) (d,t common) 

  

(g) Covariance of 
unlike subtests, 
different days 

FIGURE 8.6. Composition of Variances and Covariance in WPPSI Data.
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Digit Span would not be particularly easy for all subjects on March 22. We 
continue to recognize all interactions involving persons. Figure 8.6 represents 
these data under the simplifying assumption; where ¢ and i appear, read 1, 
and i;,. 

Study 1 is a split-half study with n, = 2, n, = 6, ny = 200. Person, day, 
and trial are confounded; only a single day and trial are involved in the 
study and, therefore, there is considerable confounding of components. 

Figure 8.6a indicates what information enters the subtest variance in this study. 
Three components can be extracted from this variance (compare with Figure 
8.5 or with the p circle of Figure 8.3a, ignoring the ¢ circle): 

o*(p,pd,pt,) 

o"(pj,pdj,ptaj) 
o°(pi;,pdi;,ptgi;,e) 

In Study 2 (retest), 2; = 6,n, = 2,n, = 50. Here, the variance contains four 

separable components, as seen in Figure 8.6d (compare with the p circle of 
Figure 8.3b, ignoring the i circle): 

o°(P) 
o*(pd,pt,) 

o°(Pj-Pis) 
o*(pdj,pta j,pai,,ptgi;,€) 

These two breakdowns are less elaborate than those of previous figures, 
because in Study 1 there is only one trial, and in Study 2, half-subtest scores 
are not available. 

Because our theory calls for decomposition of covariances, we transform 
the correlations reported for Study 1 to that form (Table 8.3). The first entries 
in Table 8.3 are the subtest reliability coefficients (split-half, corrected) and 
the subtest variances. Under the assumption that half-subtests have equal 
variances, the full-length coefficient multiplied by the subtest variance equals 
four times the half-subtest variance. The product formed here equals four 
times the covariance between halves of the same subtest. Under our assump- 
tions, this is an unbiased estimate of the expected value of the covariance 
between forms of the same subtest administered at the same sitting. 

The right-hand portion of Table 8.3 contains the subtest covariances. It 
is convenient to label each of the averages in Tables 8.3 and 8.4. In Table 
8.3 the means are labelled v:1, A, and B. 

v:1 is the mean of subtest variances. 

A is the mean of covariances for like subtests (same task, same trial, 

same day, different items) estimated from half-subtest correlations.
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TABLE 8.3. Data from WPPSI Split-Half Study* 
  

  

  

Corrected split-half Covariance matrix 
correlation, variance, 

Subtest and product of these Inf Voc Ari Sim Com _ Sen 

Information 0.81 9.0 7.3 5.85 6.00 5.30 5.58 5.22 

Vocabulary 0.85 9.0 7.6 4.87 4.65 5.49 4.05 

Arithmetic 0.86 8.4 7.2 4.59 5.22 4.35 

Similarities 0.82 9.6 7.9 4.56 4.37 

Comprehension 0.84 9.0 7.6 5.22 
Sentences 0.87 9.0 7.8 

Total 54.0 45.4 75.32 
Mean v = 9.00 A = 7.57 B = 5.02 

  

® Covariances calculated from data given in test manual, p. 29. Correlations and variances 
taken from test manual, p. 22. 

B is the mean of covariances for unlike subtests on the same day and 
trial. 

The data matrix for Study 2, given in Table 8.4, contains variances of 

subtests, i-j-common covariances (same subtests, different days), d-t-common 

covariances (unlike subtests, same day), and covariances for unlike subtests 

on different days. Averaging, we have: 

v:2. Mean of subtest variances. 
c. Mean of six i-7-common covariances. 
D. Mean of 30 d-t-common covariances. 
E. Mean of 30 unlike-subtest, different-day covariances. 

Estimation of components 

We are now in a position to estimate the several components of variance of 
subtest scores that can be determined from correlations. Each diagram in 
Figure 8.6 can be read as an equation of the sort introduced in (8.1) or (8.2). 
From the split-half data we read 

B = 5.02 = o°(p:1,pd,pt,) 

A = 7.57 =B + o°(pj,pdj,pt,j) 

2.55 = o%(pj,pdj,ptaj) 
V:1 = 9.00 =A + 0(pi,pdi,,pti;,e) 

1.43 = 0°(pi,,pdi, pt,i,,e)
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These components are on the scale of the total score for the whole subtest, 
not of the half-subtest. From the retest study: 

E = 4.19 = 0%(p:2) 

D = 4.46 =E + o°(pd,pt,) 

0.27 = o*(pd,pt,) 

C= 5.77 =8 + o%Xpj,pi) 
1.58 = o°(pj,pi,) 

V:2 = 812 =p + o%X(pj,pi,) 

+ o°(pdj,pt,j,pdi,,ptais,e) 
8.12 = 4.46 + 1.58 

+ 0°(pdj, pt, j,pdi;,ptgi;,€) 

2.08 = 0°(pdj, .. . ,e) 

To this point, we have simply interpreted two separate G studies, estimating 
aggregations of components. Further inferences can be drawn from the two 
sets of data together, under the working assumption that components other 
than o?(p) are of similar magnitude for both groups of children. The con- 
founded components overlap, as can be seen in Figure 8.5, and limited 
inferences are possible. 

For sample 1, the component that confounds p with pd and pt, is 5.02. 
For sample 2 we have the separate values 4.19 and 0.27, implying a value 
of 4.46 for the compound. These two findings are consistent enough, because 
we know that the variation in sample 2 is less than in the standardizing 
sample. 

Consider the remaining components. These have a different total in each 
study: in the first study, 2.55 + 1.43 = 3.98, and in the second, 1.58 + 
2.08 = 3.66. These are not distressingly far apart, and perhaps the difference 
reflects sampling error. This suggestion is checked by noting that this set of 
components corresponds to the area v:2 less the area D in Figure 8.6. In 
the retest study, each day provides data for an estimate of the quantities 
v:2 and Dp. On Day 1, v:2 — D = 8.13 — 4.63 = 3.50; on Day 2, the 

comparable figure is 8.10 — 4.28 = 3.82. This strongly supports the notion 
that sampling variation is sufficient to account for the value of 3.98 in the 
first study. 

It is of interest to try to isolate smaller bundles of components, and, in 

order to reach a more definite statement, we arbitrarily multiply the estimates
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entering v:2 — Din the second study by 1.1 (= ca. 3.98/3. 66). The adjustment 

produces this information: 

Total from Study 2 adjusted by 
a factor of 1.1 

  

    
  

Pi Pi; 1.7 =(c —8) X 1.l 

Pdj,ptaj | pdi;,ptal;,e 2.3 = [v:2 —p — (c — 8)] 
x 1.1 

Total from 2.6 1.4 4.0 = (v:2 — D) x 1.1 

Study 1 A—B v:l—A =v:l—B 

From this, one can set upper and lower bounds for the components: 

3 < o%(pj) < 17 
0.9 < o7(pdj,ptaj) < 2.3 

0.0 < o(pi;) < 1.4 

0.0 < o*(pdi,,ptji;,e) < 1.4 

These bounds are too loose to be of great interest. The pj components 
(specific factors in the subtests) are evidently much less influential in the 
subtest scores than is the general factor that runs through all verbal subtests. 
The general factor is reflected in the p component of variance, which is only 
a little less than 5.0 in sample 1. The pdj, pt,j component may be as large 
as pj. This would imply a tendency for the shape of the profile of scores on 
the subtest tasks to change substantially from day to day even if the subtests 
were quite long. To pursue such matters properly requires a study in which 
all the components are estimated from the same, preferably large, sample. 
One might well divide the sample to have several substudies with different 

intervals between tests. 

Inferences about D data 

The discussion that follows is no more than illustrative; any serious evalu- 
ation of WPPSI should be based on far more substantial data. Furthermore, 

some of the arguments to be developed in Chapters 9 and 10 should enter 
any attempt to draw conclusions about the generalizability of the profile of 
subtest scores or the Verbal composite. 

The Verbal score. Consider the Verbal score to be the average of the 

scaled subtest scores obtained when the test is administered in the usual 

manner. This will later be rescaled to the standard deviation of 15 usually 

associated with IQ. The design of the D study is presumed to be (i:j) x 

(p,d,t), as in ordinary administration of the test. To be as definite as we
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might if the G data had all come from one sample, we arbitrarily assign the 
value 1.0 to o*(pdi;,pt,i;,e). This is at the high end of the range 0.0-1.4, 
chosen because experience shows that there are substantial momentary 
fluctuations in performance. Assigning this value enables us to calculate the 
other previously indeterminate components, and the resulting values serve 
well enough in the ensuing illustration of technique: 

person (Study-1 population) 4.7 
person xX subtest 1.3 
person xX (item-set: subtest) 0.4 
person x day, person xX (trial: day) 0.3 
person x day x subtest, person x (trial:day) x subtest 1.3 
person X day xX (item set:subtest), etc. 1.0 

Considering n; = 5,1 the components entering the variance of the Verbal 
score are as follows: 

Pp Pj pi; pd, pt,z_— pj, ptaj ~—ippdi;, .. . 
  

4.7 0.3 0.1 0.3 0.3 0.2 

The expected observed-score variance is 4.7 + 0.3 (one-fifth of 1.3) + 0.1 + 
0.3 + 0.3 + 0.2 = 5.9 for the Verbal score. (If a total score instead of an 
average had been used, this variance would be 25 times as large, i.e., 148. 
This is consistent with the value of 149 directly calculated from scaled scores 
for the standardization sample.) 

The variance of universe scores depends on the universe. Making use of 
Table 8.1 we can construct Table 8.5. The table gives the universe-score 
variance for each universe, and the coefficient of generalizability (ratio of 
universe-score variance to observed-score variance). When the observed-score 
variance is rescaled to 225, that is, to the IQ scale, we have the universe-score 
and error-score (0) variances given in the last two lines of the table. In the 
table, pd is called for and not pd, pt,, because only the former enters the 
universe score. Inequalities have to be used for components involving d, 
since our estimates above include trial effects. Probably the trial effect is 
small relative to the day effect, save in the last component. 

If investigators do indeed wish to generalize to Universe 6, the coefficient 
of generalizability is 0.80. The published coefficients calculated directly from 
retest scores (0.86) and split-half scores (0.94) give much too favorable an 
impression of the generalizability of Wechsler Verbal IQs. Coefficients of 
generalizability to Universe 6 are not inescapably low, because tests can be 

* There is no need to consider 1}, as components are already scaled to recognize that two 
half-subtests are added together.
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designed with such generalization in view. Terman and Merrill calculated a 
coefficient of 0.91 from Stanford-Binet scores obtained under a design of 
type vi, taking Universe 6 as the universe of generalization. There are several 
possible reasons for their larger coefficient. The universe from which they 
sampled covered a small time period; they used 7-year-old, not 53-year-old, 
subjects; and their n; was large because of the Stanford-Binet format. 

The considerable drop from the Universe-5 coefficient to the Universe-6 
coefficient is the key point to be understood. Both are what can be called 
coefficients “of stability and equivalence.” If performance is unstable 
between testings, or if too few items are used to give an adequate sample of 
abilities, either coefficient will be lowered. But in generalizing to Universe 5, 
one looks on the test as a sample of performances within a fixed universe of 
tasks defined by the subtests. In Universe 6, the subtests are seen as repre- 
sentative of a larger class of possible subtests. Apparently, WPPSI gives 
fairly good data about a pupil’s ability on this particular set of verbal tasks, 
but on another set of verbal tasks of the same general nature ranks would 
change appreciably. The Stanford-Binet has a considerably greater diversity 
of tasks, and is better adapted for estimating the Universe-6 score. The price 
of this is that no subtest scores can be interpreted. Single tasks are not 
represented by enough items in the Stanford-Binet to justify a breakdown of 
the IQ. 

Inspection of the magnitudes of the components leads to suggestions for 
improving the generalizability of the Verbal score. The components involving 
item-sets are comparatively small, and one could add subtests (keeping n,n; 
fixed) without changing the net contributions of these components. Shorten- 
ing subtests would improve generalization over Universe 6 for the Verbal 
Score; but it would reduce generalizability to the subtest universe score. The 
components involving pd interactions account for much of the error variance 
in generalizing to Universes 4, 5, and 6. To reduce this error, one could 
administer half the test on one day and half on another. Assuming that the 
“day”’ portion is much larger than the “trial” portion in the fourth and fifth 
components, splitting administration of the test over two days would cut the 
pd contribution by 0.01 or 0.02, and would raise the Universe-5 coefficient 
from 0.86 to about 0.89. 

The inequalities are troublesome. The only way to separate “day’’ from 
“trial”? components is to administer the same items twice on one day. The 
immediate retest design is ordinarily considered questionable because 
memory effects raise the test-retest correlation. With our analysis that 
considers internal consistency simultaneously with retest information, any 
such spurious evidence of consistency would raise the “day’’ components 
at the expense of the “trial’” components, but it would not alter the co- 
efficients for generalization to Universes 4, 5, and 6.
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The ideal design for a G study is difficult to specify because investigators 
will set different priorities. A design that disentangles components more 
completely is likely to sacrifice precision of some estimates. To give some 
sense of the range of possibilities, consider the following design that (like a 
conventional parallel-form study) obtains 12 subtest scores: 

Day 1: Subtests 1, 2, 3, 4, 5, 6; 1 and 2 repeated 

Day 2: Subtests 3, 4, 7, 8. 

This generates covariances for scores reflecting no common facets, or having 
d, or j, or d and t, or d and j in common. Something is now learned about 
the distinctive contributions of d and ¢. A split-half scoring adds further 
information. 

If the investigator is interested only in Universes 4, 5, and 6, an elaborate 

breakdown such as we have made is not essential. From the matrix of 
covariances between and within testings, the first three components in Table 
8.3 can be estimated. The observed-score variance can be obtained directly 
from the data. This information is all that is needed to arrive at the coeffi- 
cients for generalization to Universes 4, 5, and 6. However, much infor- 

mation useful in altering the design of the D study is not obtained by this 
analysis. 

A question regarding standard-score scales is raised by Table 8.3. It is 
hard to justify a conversion to IQ that holds the variance of observed scores 
constant. The universe-score variance is a function of the universe of general- 
ization and the D study. Any modification of the D-study design, such as 
splitting the test administration between two days, will alter the observed- 
score variance. In fields other than psychology and education, units of 
measure are defined in terms of the ideal. It seems likely that, where standard 

scores are wanted, tests should be rescaled to set the standard deviation of 

universe scores equal to some preferred constant such as 10 (considering the 
proper universe of generalization). However, this would be troublesome for a 
test that is interpreted with reference to more than one universe because each 
universe would require a different numerical scale. 

Subtest scores. It remains to apply the information collected in the G 
study to the evaluation of subtest scores. It would be possible to investigate 
each subtest separately, carrying out a G study on the halves of that particular 
subtest on two trials. Components estimated for all subtests taken together 
give a gross impression but do not indicate which subtests have the highest 

degree of generalizability. 
The expected value of observed-score variance on an unspecified subtest is 

estimated from the components of variance, with n; = 1 and, in this case,
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no adjustment for n; because components are already scaled to refer to 
whole subtests. The estimated observed-score variance is 4.7 + 1.3 + 0.4 + 
0.3 + 1.3 + 1.0, or 9.0. The components of the subtest universe score and 
its variance depend upon one’s intent. One is unlikely to generalize from 
just one subtest to a universe of subtests, and therefore Universes 6 and 3 
are ignored. Information is too limited to make a report for Universe 1. For 
practical purposes Universe 5 appears to be the most likely universe of 
generalization. The universe-score variance is 4.7 + 1.3 = 6.0 and the 
coefficient equals 6.0/9.0 = 0.67. For Universe 4, the values are 6.4 and 0.71; 
for Universe 2, 7.6 and 0.84. 

Differences between subtests. Profile interpretation assumes that observed 
difference scores correspond reasonably well to difference scores in the 
universe. The universe presumably is one in which the pair of subtests is 
fixed, the items are variable, and the days of testing are variable. The theory 
for this kind of analysis will be delayed until Chapters 9 and 10, as two 
distinct variables are under consideration. Nevertheless, it may be useful to 
make a sketchy analysis here, with machinery already at hand. 

Consider subtests a and b, with the difference based on scores from the 
same trial (as is typically the case). The universe score is u,, — Hop The 
components that enter the universe-score variance for the subtest are those 
for person and person x subtest. However, because the person component 
enters scores for both subtests, it does not enter the universe-score variance 
for the difference. As both subtests contribute interactions, that variance is 
20°(pj). The person x day component is ignored because this enters both 
scores and cancels out of the observed difference. The remaining components 
enter the observed-score variance with weight 2, because each subtest samples 
items and moments independently. Consequently, these estimates are 
obtained: 

1. Expected observed-score variance for a difference between subtests 
given on same day 2(1.3) + 2(0.4 + 1.3 + 1.0) = 8.0. 
2. Universe-5 score variance for a difference between subtests 2(1.3) = 2.6. 
3. Coefficient of generalizability for difference score 0.32. 
4. The value 6(6) for subtest difference score 5.41/2 = 2.3. 

This 6(0) is appreciably larger than the standard error of about 1.8 used by 
the test developers in telling the reader of the manual what differences are 
likely to be significant. Variation from day to day has been considered to 
be a source of error, where the test developers base their figure on the split- 
half coefficient that treats day as fixed.
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EXERCISES 

E.1. Complete this table: 

Study (as in Table 8.2) I II III IV Vv VI 
  

Diagram (as in Figures 8.3, 8.4) 8.3a 

Components adding to correlation p, d, pd; 

Pj, Y, pa; 
Phy, di;, 

pai; 

E.2. State a general rule, in terms of n; and n;, regarding the number of i-common, 
j-common, and other covariances (over all persons) in a study with Design VII. 

E.3. A universe of admissible observations is defined by a listing of numerous 
topics for essays and numerous graders. This universe is the same for all persons. In 
principle, a person may write on a topic more than once and a grader may score a 
particular essay more than once. 

Complete the table (in the general style of Table 8.1) identifying four universes of 
generalization, and the score components that might contribute to the universe 
score. For the sake of simplifying the response, do not list any component such as 
grader that does not involve the person. 

Universe of generalization 

  

1 2 3 4 

Topic Fixed Fixed Variable Variable 
Grader Fixed Variable Fixed Variable 

  

person 
person x topic 
person xX grader 
person x topic x grader 
trial: person x topic 
[trial: (person x topic)] x grader 
trial x rescoring:(person x 

topic x grader) 
  

E.4. The average observed-score variance for an essay (one topic, scored once, all 

persons scored by the same grader) is 100. The correlation between essays for two 
particular topics scored by the same grader is 0.70. What does this tell about 
components of variance in the universe of admissible observations described in 

Exercise 3?
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E.5. Two simple random-parallel achievement tests were administered twice 
(Westbrook & Jones, 1968). The correlations are as follows: 

Al Bl <A2_~ B2 
  

Al 0.63 0.82 0.71 
Bl 0.55 0.71 
A2 0.62 
B2 

What inferences can be made about variance components, taking 1.00 as the 
observed-score variance for each test (i = A or B) on each occasion ( j =1or2)? 

The sample used in determining the correlations was modest in size. 

E.6. Suppose that the number of Wechsler subtests were doubled, and the length of 
each subtest cut in half. Using the components of variance from which Table 8.5 
was derived, what effect would this change have on the error variance and the 
coefficient of generalizability for each of the six universes? 

E.7. Explain the difference between the coefficients for generalization to Universes 
2 and 3 in Table 8.5. 

E.8. Suppose that a clinician attempts to generalize from a single Wechsler subtest 
score to Universe 6—the person’s expected score over all admissible verbal subtests. 
What is the coefficient of generalizability ? 

E.9. From the average covariances between subtests given in Chapter 9, 
Exercise 7 (p. 304), which components of variance for Verbal and Performance 
subtests can be estimated? 

Answers 

A.1. 

Study II III IV V VI 
  

Diagram 8.4a 8.4b 8.3b 8.4c 8.4d 
Components adding 

tocorrelation _—p, d, pd; pj, dj, pdj p,d, pd; ta, pta Pp, pj, pis PP) ——~P 

A.2. There are n,(,;)(n; — 1)/2 different values of i-common covariances, and 
nwn;(n,; — 1)/2 different values of j-common covariances. There are (n;)(n; — 1) x 

(n;)(n; — 1)/2 different values of covariances with both i and j different. There are no 
i-/-common covariances.
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A.3. 

Universe 
  

  

person 
person x topic 
person x grader 
person x topic x grader q

a
c
c
q
 

a
c
 

All other cells shown in statement of exercise are empty. 

A.4. The sum of the following components is approximately 70: person, person x 

grader. 
The sum of the following components is approximately 30: person x topic, 

person x topic x grader, trial:(person x topic), trial x grader, and the residual 

(trial x rescoring, etc.). 

  

A.5. 
Components adding to correlation 

Average of i-common correlations 0.765 P: pi 
Average of j-common correlations 0.625 P> Pi 
Average covariance, i, j different 0.630 P 

A.6. Components were originally determined for whole subtests. A subtest of half 
length will have double the value originally determined, for any component in- 
volving i; However, those components are sampled 10 times in the test, hence their 
contribution to the Verbal score is the same as before. The components involving j 
and not i; are now sampled 10 times rather than 5. We have these values: 

  

person 4.7 4.7 4.7 
person x subtest 0.13 rounded to 0.1 0.1 
person X i; 0.08 0.1 0.1 
pd, pta 0.3 0.3 ignoring tg portion <0.3 
pa), ptaj 0.13 0.1 <0.1 
pai;, etc. 0.2 0.2 <0.2 

Observed-score variance 3.5 

1 2 3 4 5 6 

Universe-score variance <5.5  <5.2 <5.0 4.9 4.8 4.7 
Coefficient <1.00 <095 <0.91 0.89 0.87 0.85 

Theory requires the improvement in the coefficient for Universes 3 and 6. The 
improvement observed for Universes 4 and 5, and the lack of improvement for 
Universes 1 and 2, are functions of the particular numerical values used in the 

example.
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A.7, In each case, one is generalizing over scores obtained on a single day, but in 
Universe 2, admissible observations are confined to a single set of five fixed subtests. 
Generalization over subtest tasks (to Universe 3) is not very accurate when the 
observed score is based on only five tasks. 

A.8. The components given on p. 254 indicate that the observed-score variance is 
9.0. The universe-score variance derives entirely from the person, hence the coeffi- 
cient is 4.7/9.0, or 0.52. 

A.9, A three-way analysis of variance is reported on p. 282. The covariances allow 
one to estimate components of variance as follows: 

  

Result for Result for 

Verbal Performance 

Persons. Take average covariance of unlike 
subtests in different forms. 8.16 4.84 

Persons x subtests. Subtract person 
component from average covariance of 9.12 — 8.16 6.34 — 4.84 
like subtests in different forms. = 0.96 = 1.50 

Persons x forms. Subtract person com- 
ponent from average covariance of 
subtests in same form (both forms (8.66 + 7.67)/2 (5.59 + 4.17)/2 
considered). — 8.16 = 0.01 — 4.84 = 0.04 

Sum of remaining components. Subtract 

above components from average variance. 2.34 2.20



CHAPTER 9 

Introduction to 

Multivariate 

Generalizability 

Theory 

To this point, observations on a single variable have been considered. 

Examining the generalizability of multiscore instruments and composite 

scores requires an extension of the theory. To be sure, the theory so far 

developed is applicable to any composite score, because an observed com- 

posite score is a sample from a universe of composite scores formed according 

to the same combining rule. A G study in which two or more suitably inde- 

pendent values of the composite score are obtained for each individual 

can provide an estimate of the generalizability of a similar score in a D study. 

For example, the investigator may be interested in the difference score formed 

by subtracting the Wechsler Performance IQ from the Verbal IQ. If an 

abbreviated form of the notation to be developed below is used, the observed 

composite score can be labelled ,X¥ = yeX — peX. A conventional way to 

evaluate generalizability would be to test a sample of persons twice, preferably 

using two forms of the test, to obtain two values of ;,X,,; for each person. 

Either analysis of variance or a simple correlation would indicate how well 

observed differences agree with the universe scores gy. 

Instead of first computing the ,X,,, a multivariate analysis of the Wechsler 

would treat the two values of y,X and the two values of p.X simultaneously. 

There would be G studies of the Ve and Pe scores, and an analysis of the 

correlations or covariances of Ve with Pe. This information can be recom- 

bined to reach the conclusions given by the analysis of the ,X,;, but it also 

leads to additional conclusions. It permits one to ask about the optimal 

design of the D study. Thus, for example, the number of conditions for 

263
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observing the Pe score perhaps should be greater than the number of con- 
ditions for the Ve score; this question can be investigated best by multivariate 
analysis. 

A multivariate analysis of observed scores on the separate variables 
attends to information the univariate analysis discards, and takes into 
account complexities ignored in most test theory. This chapter develops a 
rationale for multivariate analysis and applies it to the study of correlations 
between variables. Chapter 10 applies the theory to linear composites 
(including difference scores) and to score profiles. Wherever possible, the 
present chapter will paraphrase relevant parts of Chapters 1 and 2, because 
the multivariate theory is a more general case of the theory already presented. 

Multifacet analysis of multivariate data is not easy to discuss. To make 
the main features of multivariate G studies clear, we treat only the most 
basic cases and designs. Even so, there will be no shortage of novel ideas for 
the reader to ponder over. 

The material presented in preceding chapters has been under development 
for many years, and most of it has been exposed to thorough criticism. 
Moreover, it has been put to use in a number of investigations. The multi- 
variate extension of generalizability theory is relatively recent and less tested. 

A. Formulation 

The basic concepts of generalizability theory, developed in Chapter 1 
(pp. 14-29), apply, with slight rephrasing, to composites. That discussion 
need not be repeated here. 
When there are two or more variables, the person has a universe score on 

each variable and relations of the components of one variable with those of 
another require examination. The universe-score variance, the expected 
observed-score variance, etc., for a composite variable depend on components 
of covariance as well as on the components of variance. Components of 
covariance, along with components of variance, determine the correlations 
between universe scores on any two variables and the expected correlations 
between observed scores obtained under various designs. Decomposition of 
covariance into components is a direct extension of the decomposition of 
variance. Our presentation is influenced by the work of Kenneth W. Travers 
(unpublished) that capitalized on Tukey’s dyadic analysis of variance (1949) 
and Bock’s discussion of multivariate analysis (1963). 

Observed scores and universe scores 

Only two variables need to be explicitly considered in developing this theory. 
Once the basic concepts are developed, the notation and equations extend in
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an obvious manner to any number of variables. To indicate that variable v 
is under discussion, we employ a prescript, designating an observed score as 
»X,;, for example. In general expressions, a second variable is denoted by v’. 

Thus o(,X,,,X) is a general expression for a covariance; when v’ = 2, this 

is a variance. For ease of reading we shall ordinarily refer to the specific 

variables v, and v,, whose covariance is 0(,X,.X). 

To begin, assume that observations on any variable are classified with 

respect to just one facet. Let ,X,, represent a score on a variable v, arising 

from the observation of person p under a single condition of facet i. Obser- 

vations on v, can be made under an indefinitely large number of conditions 

N, of facet i. Let .X,, represent a score on v,; the conditions under which v2 

may be observed are said to be classified with respect to facet g. Assume 
also that N, is indefinitely large. We use the symbol g to make the notation 

general. One specialization is to let g represent the same facet as i, but to 

suppose that sampling of conditions for variable v, is independent of sampling 

for v,. A further specialization is to assume that the same particular conditions 

I are used to observe both variables. 
A universe of admissible observations is defined, such that for person p 

there is a score ,X,, for every condition of facet i, and a 2X, for every 

condition of g. Sampling one i and one g yields a pair of scores 1X5;, 2X pq 

for person p. Each possible pairing of a condition i with a condition g defines 

a pair of scores that could be observed.! As an example, consider as variables 

mechanical interest and mechanical ability. There is no reason to think that 

in the universe a certain form of the interest test is paired with any particular 

form of the ability test. Similarly, if the two variables are a test score and a 

rating, there is no reason to think of any test form as associated particularly 

with any one rater in the universe. 

The decision to measure v, and the condition under which it is observed 

are assumed not to affect the scores on v,. 

The investigator most often wishes to generalize to the profile of universe 

SCOFES 4p, ofp. Alternatively, the investigator may wish to generalize to a 

composite of the form w, 14, + We ofp. The usual difference score is such 

a composite, having w, = 1 and w, = —1. To write generally, an observed 

composite is denoted by > w, ,X,p;, where v now stands for any member of 
Vv 

the set of variables and i for the appropriate member of the set of facets 

1, 25.06. 

1 Formally, the universe may be thought of as having the form (i:v) x p, with variables 

fixed. There is a score Xpyi, for each condition. The placement of v as a prescript seems to 

be a clearer notation. (If the set of i is identical to the set of g, the universe is fully crossed: 

i Xv X p.)
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Score components and components of covariance in the universe of admissible 

observations 

Along with ,u,, the universe score for p on variable v, we define the means 
»/4; and ,“, comparable to the uw, and wu of earlier chapters. For each obser- 
vation corresponding to a particular v, p, and i, 

(9.1) Ani = ol (general mean for v) 

+ .f4p — »4 (person effect) 

+ 4; — »& (condition effect) 

+ ,res 

This merely adds the symbol v to the univariate model of (1.1). 
Suppose that every condition of i is taken in combination with every 

condition of g. Each combination yields a pair of scores. We shall refer to 
such a pair (and, more generally, to a series of scores on n, variables) as a 
vector of scores. The set of vectors that results from forming all possible 
pairs is termed the universe of admissible vectors of observations. (A restricted 
universe of vectors will be defined later.) 

Any observed-score pair can be expanded as in (9.1): 

1Xpi = fl + (My — 4) + Gus — 1) + Gres) 

2X. pg = oft + (oy — oft) + (oft, — oft) + (ares) 

Considering all persons and/or all conditions, each score component has a 
multivariate distribution. Where the univariate G study examined components 
of variance, in the multivariate study attention is given to both variances 
and covariances. 

Testers are familiar with the within-condition variances of observed scores 
that we denote by o?(X,, | i). We have also directed attention to o(X,,), 

the variance of observed scores over all persons and conditions. With regard 
to the covariance of observed scores, a similar pair of definitions is required. 

The familiar covariance for two sets of scores (i.e., for two designated 
conditions) is O(XpisyX po | 1.8) = P(X oi — HwX vg— vl)» The co- 
variance analogous to o7(X,,) is O(,XpisyXp_) = ee EX ni — ov X pg — 

yt). This expectation takes into account all admissible pairs of conditions 
of facets i and g. These and other covariances to be defined are listed in 
Table 9.1. 

There is a variance—covariance matrix for observed scores whose general 
element is o(,X,;,,-Xp,). For two variables it can be written as 

07(1.X5:) OX pis2X pg) 

o(1X, pi 2X. pg) o (2X, pg) 

(9.2) 

(9.3)



Formulation 267 

TABLE 9.1. Definitions of Components of Variance and Covariance in the Multi- 
variate Model 

  

  

  

Univariate model Multivariate model 

Variance Variance Covariance Matrix® Remarks?” 

o*(X,,; | i) O(yX pili) O(yX piryXpq | 1.2) Defined within conditions as 

é (yXpi — oltiMyXpg — vty) 

o*(Xp4) O2(yXpi)  O(yX pir’ X pg) > Xvi Defined over all admissible 

pairs of conditions as 

EEE( Xp; — W(yXp9 — vt) 

o* (Uy) O* (ftp) Oy psy'lp) DP 

o?(u;) O2(yM;) (pM asy'My) >v Defined over all admissible 

pairs of conditions as 

EE (ots — of (uly — vl) 
07 (Uy:,€) O(a) OM pisl5y’Mpgs€) > Pi, e Defined over all admissible 

pairs of conditions as 

GCE X yi — otty — of + ot) 

xX OX, pg — vy — og + vl) 
  

® The notation in this column is explained on p. 272. 
b These definitions apply to the universe of admissible observations. The analogous 
definitions for the universe of linked observations (see p. 271) have & in place of é é . 

The component for persons has a variance-covariance matrix such as this: 

O7(1My — 14) O(n — 1, oly — oft) 

Oily — ah, ay» — oft) O7 (sly — oft) 

The general term of such a matrix is o(,u5,,,4,); When v = v’, one has a 

diagonal element, a variance. o7(,u, — 4) simplifies to o?(,u,), etc. Pre- 

viously, the variance of the person component has been written as o7(p); a 
multivariate study requires notational distinctions such as these: 

o*(,p)—abbreviated form of o7(,u,), the variance component for persons 

on variable v; 

o*(,p)—same specialized to variable 1. 

For the condition component, there is a matrix whose general term is 
O(,fisy{4,) that can be abbreviated to o(,i,,,2). And for the residual there is a 

similar matrix of o(,res,,-res) or, in a better notation, o(,pi,e;,,pg,e). Only 

the matrix for the person component is of basic interest. The components 
defined above, for scores obtained with all possible pairings of i and g, are 
required in developing the theory, but the covariance components for 

(9.4)
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conditions and residual to be estimated from a G study are defined differently. 
This will be made clear shortly. 

The variance o7(,X,,), analogous to the “total sum of squares’ in analysis 

of variance, is partitioned as follows: 

(9.5) O*(yXp:) = (yp) + O%(,1) + 07(opi,e) 

This is the result—originally (1.2)—on which our univariate theory was 
based. It specializes to 

O°(1X5:) = Op) + 07 i) + 07(pi,e) 

0*(2X nq) = O*(2p) + o7(22) + o7(spg,e) 

The first of these equations has, on the right, the sum of the upper-left 
elements of the matrices for persons (9.4), conditions, and residual. A similar 

statement can be made about the off-diagonal elements: 

(9.6) 

(9.7) OX i52X. og) = O(1P.2P) + O'(s7,02) + O(, pi,e;2pg ,e) 

Therefore, we may say that the matrix (9.3) is the sum of the variance- 
covariance matrices for person, condition, and residual components. Our 
concern is limited to the covariance matrix for persons. Because we are 
considering all possible pairs (every condition of i with every condition of g), 
(11,22) is Zero.? Correspondingly, o(,pi,e;.pg,e) = 0. 

Joint sampling in multivariate studies 

Though all possible pairings of conditions of i with conditions of g usually 
define meaningful vectors, the tester may be interested in only a restricted 
set of pairs. The most obvious example arises where observations on 2, 
and v, are classified with respect to the same facet. In this case ,X,,« is 

directly related to .X,;., and less related to any other ,X,;. The investigator 
may know that he will always, in his D study, pair each ,X,,; with the corre- 
sponding ,X,, and not with any .X,,,. Thus, an observed composite score 
could be ,Xp4 + 2Xp4 OF 1Xyp + 2X pp but not 1X,, + 2X,R. To deal with 
this formally, it is necessary to use the concept of joint sampling, introduced 
originally in considering univariate designs such as (i,j) x p and (i,j):p 
(see p. 37). Joint sampling is to be contrasted with independent sampling. 

The multivariate G study collects observations for both variables on the 

? As seen earlier (p. 27), certain products vanish when expectancies are taken. For example, 
EE (Us — 1H4)(oMg — 9/4) can be factored into the product of E(u; — yu) and F(guy — 21), 

and each of these is zero. If facets i and g are identical, we may make the same argument, 
because the number of conditions is indefinitely large, and every i is paired with every 
other i.
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same persons, with two or more conditions of facet i and of g. Assume that, 

within variables, n, and n, are uniform for all p. 

In independent sampling, the conditions of g are selected without knowledge 
as to the i selected, and vice versa. The G study samples n, conditions from 
the universe of i, and independently samples n, conditions from the universe 
of g. (E.g., the investigator might select at random a series of occasions on 
which to observe aggressiveness, and select independently occasions on 
which to observe constructiveness of play.) If independent sampling is 
continued indefinitely with replacement, one pair of observations being 
drawn at a time, the entire universe of admissible vectors is generated. 

In joint sampling, pairs i, g are to be sampled. One possibility is that facet 
g is the same as facet i; then joint sampling ordinarily means that whatever 
condition of i is drawn will be used to make observations on both v, and 1. 

However, there can be joint sampling where v, and v, are observed under 
different conditions. The occasion for observing a child’s attentiveness 
might be the class period immediately after a sample of blood is collected 
for analysis of blood-sugar level. The observation is more closely linked to 
this blood sample than to a blood sample taken prior to some other obser- 
vation. By slight license, we speak of having taken observation and blood 
sample on the same occasion. Joint sampling can even occur where facet i 
and facet g are different in kind. For example, i might represent informants 
whose ratings constitute v,, and g might represent situations in which the 
person is systematically observed by a trained team to get scores v,. The two 
sets will be in correspondence when informant i* has formed his impressions 
of the person in situation g* (e.g., the sports field), and not in other situations 
where the team might also directly observe the person. There is joint sampling 
of informants and situations if we systematically choose informants who are 
ecologically paired with the observation situations we have chosen. There is 
independent sampling if the informants are chosen without regard to the 
sample of situations where observations are being made. With independent 
sampling, the French teacher can show up as an informant even if the 
trained team makes no observations in the French classroom. 

A joint-sampling plan is, formally, a plan for drawing i, g pairs according 
to some rule, instead of drawing i and g separately. Strictly speaking, to 
have a rule for drawing pairs one must specify that conditions are paired 
a priori within the universe of i and g. The mathematical results to be stated 
regarding joint-sampled data hold even when pairs are sampled from a 
universe of i and g within which the pairing is entirely arbitrary. Independent 
sampling can therefore be seen as a degenerate case of joint sampling where 

the pairing makes no difference. 
The theory can also accommodate the case where drawing a particular i 

alters the probability that the various conditions of g will be drawn, yet does
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not determine that a certain g will be selected with probability 1.00. Subse- 
quent statements are not worded to cover this possibility. 
When joint sampling was considered in univariate studies, the number of 

conditions of j was always equal to the number of conditions of i. Where 
there was a many-to-one correspondence of j to i, we spoke of the design 
as j:i. In sampling i and g, it is usual to have n, = n, or n; = nj, but many- 
to-one correspondences are possible. 

We refer to observations ,X,,; and ,X,, as “linked”? when i and g are 

jointly sampled. The “‘bullet’’ symbol will be used to indicate linkage; for 
example, in describing an experimental design we may include the expression 
te g. Ani can be linked with more than one g. Where we wish to emphasize 
the fact that i and g are independently sampled, we use the symbol o (‘‘hole’’) 
as iniog. As we assume that the i are sampled randomly, it follows that 
when i « g andi’ e g’, jog’ andi’ og. 

Where there are two facets, the model extends readily to the drawing of 
i,g pairs and the drawing of j,h pairs. Complex combinations might exist in 
the universe; for example, i might be linked to g and also to A, with  inde- 
pendent. We shall ignore such possibilities in our discussion. 

The universe of linked observations. When a very large number of i and g 
are drawn under a joint-sampling scheme, the observations on v, ultimately 
cover the universe of N, observations on v,; similarly for v,. Because of the 
pairing rule reflected in the sampling scheme, however, not all of the ad- 
missible score vectors will be obtained. If the i and g are put in one-to-one 
correspondence (implying N, = N,), only N, of the N; admissible pairs of 
scores may be considered. These pairs consistent with the sampling rule 
constitute the universe of linked observations. This is a subset of the universe 
of admissible vectors. The components of linked observations are the same 
as those listed earlier, and (9.2) applies. The vector of universe scores ,5, 

g/t, iS the same for the universe of linked observations as for the universe of 
admissible vectors, and (9.4) applies. But only a subset of the original com- 
ponent vectors for conditions and residual enter into joint-sampled observed 
scores, hence the components of covariance are different. 

Covariance components are mean products of score components, averaged 
over pairs of observations that could be formed by applying a certain sampling 
rule repeatedly to the universes of conditions i and g. The sampling rule is 
an aspect of the experimental design. In univariate studies, the components 
to be estimated in a G study are components of the universe; the design is 
irrelevant. In a multivariate study, design still has no influence on variance 
components, but the design does define the universe of linked observations 
and hence the components of covariance. 

Different joint-sampling rules ordinarily produce different covariances.
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As one example, suppose observations are classified with respect to oc- 
casions, and the occasions for observing v, are selected jointly (i.e., in a 
one-to-one pairing) with occasions for observing v,. The interval between 
the members of the pair could be a few minutes or it could be a few days. 
Same-day observations probably covary to a greater degree than same-week 
observations, and to a lesser degree than same-minute observations. 

Covariance components for the universe of linked observations. The variances 

and covariances in the universe of linked observations are as follows: 

Variances Covariance 

Condition component 07(,1); 07(2) * o(si,22) 
Residual component 0(,pi,e); (opg.e)  °o(.pi,e/2pgZ,e) 
All observations 07(,X pi); 07(2X po) OX pis2X pg) 

The bullet in each case is a reminder that we are considering only the pairs 
that can be formed according to the joint-sampling rule. Therefore, the 
covariance component for i is defined as 

(9.8) “o(isa8) = & Gms — H)(aby — 2H) 
where the index i « g indicates that products only for linked i and g enter the 
expectation. The variances are the same as in independent sampling and in 
univariate studies. The covariance components for linked observations will 

not, in general, be zero.® 
While linkage has to be considered in defining components of covariance 

for conditions and residual in the universe of linked observations, the 

definition of o(,p,.p) is not altered. In joint sampling, the analog of (9.7) is 

(9.9) * O(1X n512X pq) = 0(:P.2p) + * o(1i,02) + * o( pie sepg.e) 

With each change in the sampling rule that links i and g, a new universe of 
linked observations is defined and the linked covariance components change. 

The reader may be puzzled by the inclusion of a covariance component for 

e, because errors are generally thought of as uncorrelated. It is possible, 

however, that the component ,e,, will correlate with ,e,,. As a simple 

example, consider the case where i = g, and variables 1 and 2 are two 

scorings of the same performance. Thus v, might be speed in arithmetic and 

3 The linked covariances are derived from a subset of the products of components that 

enter o(,i,9¢)—discussed on p. 268. That subset has a nonzero mean. The products in the 

subset for non-linked conditions have an expected value of zero. Thus, a set whose expected 

value is zero has been decomposed into subsets, one having a zero mean and one having a 

nonzero mean. This is possible because the proportion of the total set that consists of 

linked observations becomes vanishingly small as more and more observations are con- 

sidered.
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v2 might be accuracy. On any problem sheet 7, both scores are recorded. Any 
tendency for the subject to hurry faster than usual on a particular problem 
sheet is likely to raise ,X,, and to lower ,X,,. We interpret this as a reflection 

of the e component rather than of the pi component, because there is no 
reason to think the person would work especially fast everytime he works on 
this particular problem sheet. The covariance for e is likely to depart from 
zero whenever ,X,, and ,X,, are “not experimentally independent,” as the 
traditional language has it. 

Just as (9.3) could be seen as the sum of variance-covariance matrices for 

persons, conditions, and residual, we can consider the variance-covariance 

matrix whose general term is °o(,X5;,2Xp,) to be the sum of three matrices: 
(9.4) for person components, a matrix for condition components that 
contains the linked covariance, and a matrix for the residual components 
containing their linked covariance. (9.6) gives the diagonal elements and (9.9) 
the off-diagonal elements. 

A general notation and statement of identities 

To discuss a large number of variables, matrix notation is useful. We shall 
rarely employ this notation in subsequent discussion, but in the later 
evolution of multivariate generalizability theory such a flexible notation will 
probably prove useful. No significant use of matrix algebra is required in the 
statements made here. 

Where previously we spoke of specific variables v, and v, we may write v 
for the series of n, variables v,, v.,.... We let i stand, not merely for the 

facet associated with v,, but for whatever facet is associated with a particular 
variable, as in the general expression for a vector of observed scores ,X5;. 
This expression serves for the string of scores ,Xy;, 2Xp,,..-. We write uy 

to represent ,W5, op, ...; similarly for other components. 
The general form of (9.1) expresses in vector notation a system of equations 

(9.10) vA pi = yer (yi — v4) + (M4; — v4) + (,res). 

The observed vector of scores is thus described as a sum of vectors of score 
components. The vector of universe scores is ,{M>. 

With n,, variables, the matrix of variances and covariances for observed 
scores (9.3) is extended to n, rows and columns; each diagonal entry is a 
variance, and each off-diagonal entry a covariance. We denote this matrix 

by > oXp;,3 its general element is, as before, o(,X5,,..Xp,), but now v = 

1,...,”, and v’ = 1,...,n,. There is a similar general symbol for each 
other matrix, as indicated in Table 9.1. 

The various sums referred to in the two-variable case can be expressed in 
general equations. The statements made in (9.6) and (9.7) combine, and
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extend over all variables, in 

(9.11) > Xvi = > P+ > at Dd vie 

It will be recalled that this statement applies to the universe of admissible 
observations, and that the off-diagonal elements in the second and third 

matrices on the right vanish. 
For linked observations there is a comparable statement: 

(9.12) "SS Xo = > P+ > dt °D vpie 

For each expression in i there is a completely analogous expression in J, 
where J stands here as a general symbol for J,G.... We are familiar with 
the fact that o2([) = 0(i)/n,. Similarly, ifn; =7,, °o(2G) = °o(i,.g)/n, 

and, 

. leo len (9.13) 2 Xor = Dw + Lite >, wie 

B. Varieties of Experimental Design 

For variable v,, any of the designs employed in univariate studies may be 

used; similarly for v.. We identify designs by means of a notation like that 

used earlier, with a small addition. Formerly, with one facet, the alternative 

designs were i x p and i:p. With two variables the following are possible: 

i(i X p), og X Pp) 

i(i:p), o(8:p) 

i(i:p), og X Pp) 
ili X Pp), o(g:p) 

We append [i « g] to the notation where sampling of i and g is joint. 
Where sampling is independent, we may write [io g], but ordinarily we 
merely omit the linkage notation. A design such as ,(i:p), 2(g X p), [ie glis 
little more than a hypothetical possibility; selecting a particular g would 

have to imply selecting a particular i or set of i for each person, different from 

person to person. We shall ignore such designs. 
With two facets and independent sampling, one may have any combination 

of the designs listed in Figure 2.4. Joint sampling may call fori gorj* A, 

or both. The design considered for the D study determines which G-study 

designs are suitable. If there is to be joint sampling of i and g in the D study, 

the G study must employ the same joint-sampling rule (or a complex rule 

that embodies the rule for i and g) if it is to provide useful information. 

Suppose, for instance, that the D-study design is: ,[j:(i x p)], a[h:(g x p)I, 

[ie g,je A]; ie., ,[V-A with ,IV-A, with joint sampling. Then the following
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G-study designs, among others, will estimate the needed components of 
covariance: 

,VII with ,VII: ,@i x j X p), lg X AX p), [ie g,je A] 

,V-A with ,V-A: i[(/:i) X p], [(A:g) x pl, [ie g,je Al 

LV-A with ,IV-A: ,[7:(i x p)], o[h:(g x p)], fie g,je Aj 

The G study should embody any joint sampling and any crossing that will 
appear in the D study. 

Values of n; and n, need not be equal, nor will n; and n, generally be equal 
in the D study. The latter is the more important to consider. We have seen 
earlier that the G study suggests how many conditions of a facet should be 
drawn in the D study to attain the level of precision desired for a particular 
decision. There is no reason to think that in any given study the same 
number will be recommended for v, and v,, because the corresponding 

components of error variance will not in general be of the same size. Suppose 
v, is a measure of conduct in the English classroom, and v, a measure of 
conduct during the physical education period. Time-samples are taken of 
each and, because there is interest in day-to-day variability, observations are 

made for both variables on the same day. The G study may suggest that it is 
desirable to take two samples per pupil during the physical education period, 
and only one during the English period, if there is greater within-period 
variability for the former. 

We have spoken as if a single G study on v, and »v, is carried out. Instead, 
three separate studies may be used to estimate the variance and covariance 
components. (Something like this has often been done in correcting corre- 
lations for attenuation.) Estimates of variance components can be obtained 
from a G study observing v, several times in one sample of persons, and 
from a similar G study on v, using a second sample. The covariance com- 
ponent(s) can be estimated in a third study that makes just one or two 
observations On v, and ve, both on the same persons. 

A multiple-sample procedure is advantageous when one is considering 
several variables; this makes it difficult to collect extensive G data for every 
pair of variables on a single sample. The method is reasonable as long as the 
several samples of persons are large and represent the same population. To 
be sure, the conclusions reached by combining estimates are likely to be less 
accurate than those from an integrated G study that collects the same total 
number of scores for a single sample. Statistical theory for combining data 
from separate samples in a problem like this is still crude.4 

* For another use of three-sample designs see p. 102.



Analysis of G Studies 275 

It is a bit anomalous to refer to the third part of a three-sample study as a 
“G study.”’ Consider the case where the developer of the Stanford-Binet 
test for the blind calculates components of variance from a G study on it. 
Independently, the developer of a version of the Block Design test for the 
blind does likewise. A third investigator, applying both tests to a new sample 
of blind subjects, wants to estimate the correlation of the two universe scores. 

He need only administer each test once, keeping conditions independent, to 
obtain the estimate of o(,p,.p) that, along with the components of variance, 

gives the desired correlation. While his study, with one condition per variable, 
is not truly a G study, it fulfills a G-study function. 

C. Analysis of G Studies 

One-facet G studies 

The analysis of a multivariate study estimates components of covariance as 
well as components of variance, and to do this it forms sums of products 
and mean products. The analysis of jointly sampled observations is more 
elaborate than that for independent observations, and we shall begin with it. 

Joint sampling, n,;=n,. Assume, for the moment, that the G study has the 

design ,(i X p), 2(g X p), [ie g], n; =7,. Then sums of products (SP) are 

defined by 

*SP 1,2P = N; >. GX pz — 1X pp(eX ng — 2X pq) 
p 

(9.14) *SP 12! = Nn, > GX p; — 1X pp )(oX pg — 2X pq) 
isg 

"SP 1,2lotal = > > GX pi — 1X pYeX oq — 2X pq) 
p weg 

The symbol > implies that sums are taken over linked i,g pairs. The 
teg 

product for any i with any g to which it is not linked is ignored, as the 

expected value of such products is zero. There is a set of equations in 

the form of (9.14) for each pair of variables. If we write, more generally, 

(9.15) "SP vwP = Nn; > (,Xp7 — oX pry X ng — »X pq) 
p 

it is evident that for v =v’ the definition reduces to that for the sum of 

squares for persons. The equation calls for forming an average score over 

conditions and converting it to a deviation score. The product of the person’s 

deviation scores on the two variables is calculated, and the sum over persons 

is taken. (This is precisely what one would do in computing a covariance of 

average scores in ordinary correlational work.)
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Considering two or more variables one has matrices for °SP ,p, °SP ,i, and 
*SP ,Total; subtraction gives °SP ,res. All have the sum of the squares in the 
diagonal. Degrees of freedom n, — 1, n; — 1 and (n, — 1)(m, — 1) are used 

as divisors to form matrices of mean products °MP ,p, °MP,i, and °MP ,res, 
respectively. Each of these has mean squares in the diagonal, and (2.4) is 
applied to the mean squares to estimate variance components. The com- 
parable equations for components of covariance have the form: 

E°MP, ap = °o(,pi,esepg.e) + n,0(1p.2p) 
(9.16) E°MP , of = °o(, pi,es2pg.e) + Np O(ri,22) 

E°MP, .res = °o(,pi,e32pe,e) 

The °MP of the G study are substituted for the E° MP to estimate the com- 
ponents. 

From the crossed G study one can also estimate the covariance component 
* o(,i,pi,e32.2,pg,e) that would be relevant to a nested G study. Adding the 
*SP for conditions and residual, adding the degrees of freedom similarly, and 
dividing, gives °MP within p, which estimates the within-person covariance 
component. 

If one has a nested G study with n; = n,, one calculates "SP pand °SP 
Total as in (9.14), and subtracts to get °SP within p. There aren,(n, — 1) 
degrees of freedom. 

E°MP, op = °o(;i,pi,ejog,pz,€) + 1,0(p.2P) 
9.17 

( E*MP 1,2T€S = * o(1i,pi,e 308 PZ.€) 

Joint sampling, n, = kn,. The definitions and formulas may be extended 

to cover many-to-one sampling. Suppose that, for each g, k values of i 
are drawn; this of course implies multiple pairing in the universe of linked 
observations. The data on ,v can be described in terms of n, sets of size k, 
and the set of conditions associated with any g can be referred to as J,. 
The score 1 

1X51, = kid, 1Xpi 

If the design is crossed, one may apply the formulas given above to the 
scores ;Xy7, 2Xp,, because ny = n,. One arrives at estimates of o(:p,2p), 

*o(l,.g), and °o(,pl,e;.pg,e). As the covariance of an average equals the 
average of the covariances for the elements entering the average, °o(,J,.2) = 

*0(,i,22); similarly for the residual. [This case is different from the °o(/,G) 

considered earlier where there was one-to-one sampling and each i was 
linked to only one g €G.] If n, = kn,, 

*o(aInG) = = 
n 

g 

° (11,22).
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Independent sampling. Where the G study is crossed and sampling is 

independent, with n, = n,, we have: 

(9.18) SP 1 op = n, > GXpr — 1X ppoXoq — 2X pq) 
Dp 

There are n, — 1 degrees of freedom. 

(9.19) EMP i 2p = n,O(1Ps2P) 

No equations are written for conditions and residual. We know that these 
components of covariance in the universe of admissible observations are 
zero, and need not estimate them. 

The use of the multiplier n, in (9.18) has no effect, as it is offset by the 

multiplier in (9.19). However, it is retained to maintain the similarity to the 

equation for SS p and to the °SP p for joint sampling. Ifn, # n,, the equation 

may be used as stated, though there is no logical justification for the multiplier. 

Discussion. The universe-score covariance remains the same, whether the 

design calls for joint or independent sampling. This should be obvious, 
because the linkage of i with g does not enter into the definition of the 

universe Score ;/p, oy. In view of this, it may be puzzling that (9.16) and 

(9.19) for EMP p differ. The covariance for residuals enters (9.16) because, 

with joint sampling, its expected value is not zero. When independently 

sampled data are treated as if jointly sampled, after randomly pairing i and 

g the estimates from (9.16) differ from those of (9.19) only because the 

°MP res used in evaluating (9.16) is based on a random subset of i,g pairs 

rather than all pairs. 
When there is joint sampling, components of covariance for conditions and 

residual can reasonably be expected to have nonzero values in the population. 

Suppose that the design calls for teacher i to rate pupils p on both ability v, 

and motivation v,. Some teachers give higher ratings on the average than 
other teachers do; the i component represents this bias. The constant errors 
in v, ratings are likely to covary (over teachers) with the constant errors in 
v, ratings. The covariance °o(,i,,i) then would be positive. In another study, 

the covariance component might be negative; for example, if v, is a rating 
on ability and v, is a rating on anxiety. A positive covariance component 
for pi,e would reflect other consistent tendencies. For example, Miss Smith 
rates Johnny higher than other teachers do on both ability and motivation 
either because of her stable bias in perceiving Johnny, or because she feels 
positive about Johnny at the time of rating; this raises the covariance. 

The problem of hidden facets (p. 122) returns in various troublesome 

ways. There may be a hidden condition j* that enters all G-study observations 
on v, and does not enter observations on v2. The supposed estimator of 
o?(,p) from such a G study really estimates 07(,p | /*), as discussed in Chapter
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4. Similarly, the supposed estimator of o(,p,.p) estimates o(,p | j*, op). 
Over studies using different j, o(,p | j,.p) will have the expected value o(,p, p), 
but a particular j/* may generate v, scores that covary to a greater or less 
degree with ,u, than the average condition j does. The problem is slightly 
different if the same j/* enters all G-study observations on both v, and v,, 

as the expected value of the bias (over all j) is probably not zero. There is 
nothing new to be said here regarding strategies for coping with the hidden- 
facet problem. 

Alternative methods of analysis. ‘We need mention only briefly that there 
are alternative ways to estimate components of covariance. One can derive 
the desired results from successive analyses of variance of observed scores 
and of such averages as (,X,7 + 2Xpq)/2. This is because the variance of an 
average combines variances and covariances. (See Tukey, 1949.) 

Also, score covariances can yield most of the components. In a linked G 
study, for example, 

"3X 5; — ,Xp,, 2X ng - 2X py) = 0(1:P.2P) 
10g 

(9.20) 

é "(1X pi — 1X py aXpq — 2X py) = OsPs2P) + °O(spi,e,.p8,e) 
“eg 

Suppose one has drawn the following i,g pairs: 1,a; 2,b; 3,c. Then one 

averages the la, 2b, and 3c covariances to estimate & os, and averages co- 
variances 1b, Ic, 2a, 2c, 3a, 3b to estimate & °s. Subtracting the second 

average from the first estimates the covariance component for residual. 
The 6(:p,2p) from (9.20) is identical to that from (9.16) applied to the same 

data, provided that n, — 1 is used in computing the covariances. Covariances 
over persons give no basis for estimating the covariance component for 
conditions, however. 

Iwo-facet G studies 

The components of covariance for a two-variable two-facet universe are 
analogous to the components of variance for a one-variable two-facet 
universe. Resembling the variance component o°(pi), for example, there is a 
covariance component o(,pi,,pz), the expected value of (445; — iy — 

Hi + 1 )(obng — ofp — oftg + 24). This component is zero if sampling is 
independent, but for jointly sampled i and g, it is nonzero in general. 

We elaborate only on the G study that uses Design VII to collect data on 
both v, and v,. When the reader understands this development he can 

develop multivariate procedures for analyzing other combinations of designs 
by extending the formulas of Chapter 2.



Analysis of G Studies 279 

Design VII with independent sampling. Assume that the G study has the 

design ,(i x j X p), (gxA™x p), licg,ich,jog,joh]. This couples a 

Design-VII study of v, with a Design-VII study of v,. There is no reason to 

make n, or n; equal to n, or n,. Components of variance are estimated as if 

there were two separate univariate studies. With this design, the only non- 

zero component of covariance is that for persons; it is most convenient to 

estimate it from scores averaged over conditions: 

A 1 
(9.21) GGD.2p) = a > GXer7 — 1X pra)(eX eH — 2X pan) 

p _ Pp 

[Cf. (9.18) and (9.19).] 

Design VII with joint sampling. Assume that in the G study Design VII is 

used for each variable independently; i « g,j ¢ h, butich, jog;n,; =n, and 

n; =n, Because n; =n, and n; =n,, sums of products are defined by 

(9.22). 

“SP op = nn; > Xorg — 1X pr eXren — 2X pan) 

*SP 1,2! = N,N; > GX pi — 1X pra (eX pon — 2X pgn) 
“eg 

“SP, j= ngs 2.GX prs — 1X pzyz)(oX pan — 2X pan) 
je 

*SP, opi =n; > D> GX pig — 1X17 — 1X Piz + 1X pry) 
p ig 

(9.22) X (:Xp9H — aXnaH — 2X Pon t+ 2X pau) 

*SP  opj =n, >, 2 Xr — 1 Xyr7 — 1X pry + 1X prs) 
p je 

X (eXpen — 2XnanH — 2X Pan + 2X pqu) 

“SP 1,21) = Ny > > GX pis — 1X pis — 1X pz3 + 1X prs) 
i*g jeh 

X (2X pon — 2X pon — 2X Pan + 2X pgy) 

*SP 1,2PU,e = >. >. > GX vi; ~ iX pis ~~ X pri —~ 1X pi; + Xorg 
pitg jeh 

+ iX pig + 1X py; ~ 1X pr 2X pon — 2X ngH ~~ 2X nGn 

— Xp + 2Xpen + 2X pon + 2X pen — 2X pan) 

ICf. (9.14).] 

While some of these sums of products will perhaps have negligible expected 

values, this need not be the case (see p. 271, regarding the e component, for
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example). In general, 

E*MP 1 2p = °o(,pij,es,pgh,e) + n;°o(.pi,pg) 

+ n;°o(:pj.2ph) + nnj0(.p,2p) 

EMP 12f = “o(spij,esapgh.e) + nj" o(spiapg) + ny” o(,if,2gh) 
+ ngn;? o(ri,02) 

E*MP 1 oj = °o(:pij,esapgh,e) + n;,°o(,pj,.ph) + np? o(sij,2gh) 

+ ngn,° o(sj,2h) 

E*MP 1 spi = “o(spij,esepgh,e) + n;°o(:pi..pg) 

E°MP 1,2pj = “o(:pij,esepgh,e) + n,° o(:pj,2ph) 

E*MP ,,ij = * o( pij,eapgh,e) + Ny O(,i),0gh) 

(9.23) 

E*MP , »pij,e = °o(:pij,es2pgh,e) 

Substituting the calculated mean products, one estimates all components 
of covariance. Each equation can be written in matrix notation, e.g.: 

(9.24) E*MP vP = > vPij,e + n° > vp + n° > vP + nn; > vP 

Equations and degrees of freedom can be modified to allow n; = kn, or the 
opposite. 

If one hasi g, but jog, jh, the expected mean products for pij, e, pj, ij, 
and j are zero, and the corresponding sums of products would not be calcu- 
lated. 

Partially nested designs. A similar analysis applied to G studies in which 
the design is nested to some degree. The equations for sums of products given 
previously are applied. Whatever components of variance and covariance are 
confounded can be identified with the aid of Figure 2.4; the sums of products 
calculated for those components are pooled before calculating mean products. 
Expected mean product equations for confounded components can be 
written by analogy with equations for the expected mean square. 

Numerical Example: WISC and WAIS 

To provide an example of components of covariance, we examine a further 
set of Wechsler data. These data were collected by Ross and Morledge (1967), 

and they were supplied to us through the courtesy of Dr. Ross. There are 
scores on subtests of WISC for a sample of thirty 16-year-olds, together
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with their scores on WAIS administered four weeks later. We shall work 
exclusively with scaled scores, ignoring the IQ conversion, and take the 
average over five subtests as the Ve or Pe scale score. (We ignore the Digit 
Span subtest so as to have five subtests in each scale. Ross and Morledge 
counted six Verbal subtests, prorating to get the Ve score for WISC.) 

Formally this study is like the WPPSI retest study of Chapter 8, but here 
we organize the data differently. Scores are classified with respect to persons, 
a facet of test forms, and a facet of subtests nested within scales. Day and 
trial are confounded with form. We regard Ve and Pe as fixed variables, 

We consider WISC and WAIS subtests to be in one-to-one correspondence 
ignoring slight differences in form of task such as the shift from Coding to 
Digit Symbol. 

Let k and / refer to test form (along with the confounding day and trial 
effects), and let j and A refer to subtests. This notation is chosen for con- 
sistency with Chapter 8. We presume that the investigator wishes to generalize 
over forms, days, trials, and subtests. The subtest scores have the form 

veX nj, and p,X,,. Forms and subtests are crossed with persons and each 

other, within the variable. While the subtests of WISC and WAIS are in a 

sense linked, this is recognized by treating subtests as crossed with forms. 
The design, then, is »,(j X k X p), p.(h X & X p), k « @. The linkage con- 
siders the fact that Ve and Pe are observed on the same form (WISC or 

WAIS) obtained on a single day and trial. 
With this design there are seven components for each score. The nonzero 

covariance components are o(y,P,p.P), °O(yeks pet), and °o(y,pk, ppt). The 
first has to do with scale universe scores, the second with an order effect or a 

standardization error common to the two scales of a form, and the third 

has to do with person-form-day effects common to the two scales (e.g., day- 
to-day variability of the person). 

The variance components come from three-way analyses of variance of 
scaled subtest scores for Ve and Pe separately. This scale, it will be recalled, 

has a mean of 10 and standard deviation of 3 in the norm group. The sum- 
mary listing in Table 9.2 includes the estimates for components of covariance, 
reached by procedures to be discussed below. The residual here includes the 
person x day x subtest effect and various interaction effects at the item 
level; these could be examined separately in the WPPSI data, where a split- 
half analysis was carried out (p. 250). 

The Ve scale has a strikingly high person component of variance and a 
relatively small person x subtest component. For the Ross—Morledge 
16-year-olds, there are evidently well-defined individual differences in 
verbal ability that are stable over days and subtests. The range of this sample 
appears to be somewhat greater than that in the standardization group.
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TABLE 9.2. Components of Variance and Covariance for Wechsler Subtest 
Scores 

  

  
  

  

Estimate of variance Estimate of covariance 

components components 

Ve Pe Ve x Pe 

Persons 8.16 4.84 5.54 

Forms, days, trials (k, 2) 0 0 ca. 0 
Subtests (/,/) 0.05 0.04 Oe 
Persons x forms 0.01 0.04 0.02 
Persons x subtests 0.96 1.50 0Q® 

Forms x subtests 0.05 0.15 0* 
Residual 2.33 2.20 0* 

  

@ Component known to be zero. 
D Assumed value. (See p. 283.) 

Two components of covariance were estimated from the covariances of 
the scale scores. (Again, alternative procedures were available.) The co- 
variances obtained from the sample (using 29 as the divisor of SP) are: 

Verbal 

WISC WAITS 
  

  

Performance WISC °6.13 °6.15 
WAIS °4.92 *5.11 

The two independent covariances, averaged, give 6(p.p,p,p) = 5.54. We 
have entered this in Table 9.2. 

The person component of covariance is large; evidently the universe scores 
for Ve and Pe correlate substantially, since o(p,p,p,p) is of the order of 
magnitude of the variance components for persons. The two linked co- 
variances, which average 5.62, estimate o(p,p,p,p) + *o(p.pk, ppt); this 
implies that “o(y,pk,p,p¢) = 0.08. For reasons to be explained, we do not 
enter this in the table. 

The attempt to estimate the covariance component for conditions en- 
counters the difficulty that the estimate of the variance component for 
conditions is zero for each variable. If this is the case, the covariance com- 
ponent must also be zero. There are four means over persons, and one can 
calculate sums of products using the second equation in (9.22). Start with



Inferences Regarding Composite Scores 283 

these values: 

Mean scores Mean of deviations 
    

Verbal Performance Verbal Performance 
  

WISC 9.567 10.387 +0.200 + (0.037 

WAIS 9.167 10.313 —0.200 — 0.037 

Mean 9.367 10.350 

The sum of products is 30 x 5 x [(0.200)(0.037) + (—0.200)(—0.037)] = 

2.22. The mean product is also 2.22, because there is one degree of freedom. 
In the equation for E°MS, the covariances involving j and 4 are known to 

be zero, hence, 
2.22 = 5° o(,pk opt) + 150° oko) 

2.22 = 5(0.08) + 150° a(,k,¢) 

and the covariance component is estimated to be 0.012. While this value is 
inconsistent with the variances, we can properly conclude that the covariance 
associated with forms is quite small. We have entered in the table that the 
estimate is about zero. 

Similarly, the estimated component of covariance for person-form inter- 
action (0.08) is larger than the estimated variance components (0.01, 0.04). 

The discrepancy is quite small, however. For the sake of some later examples 
we insert in the table a value of 0.02 in place of the calculated 0.08. 

It may seem that nothing much was learned from the application of a 
fairly complex model to the Ve—Pe relation. There is, however, reason to 

take satisfaction in the apparent smallness of form and person—form com- 

ponents of covariance and variance. If, for example, there had been a 

sizable variance component for forms, this would imply either that scores 
tend to run higher for one of the two forms (because of poor standardization), 
or that there is a systematic order effect. And if variance components for 
persons x forms had been sizable, then the negligible size of the corre- 
sponding component of covariance would refute the interpretation that the 

person’s variations show discrepancy between “‘good days” and “‘bad 

days.” The finding of a small covariance along with large variances would 
have suggested that day-to-day (or form-to-form) variation is largely a 

within-scale phenomenon. In the present study, the findings are undramatic 

but not unimportant, as they rule out some counterhypotheses that, if true, 

would distress the interpreter. 

D. Inferences Regarding Composite Scores 

The components of variance and covariance can be used to draw conclusions 

about the generalizability of any composite of the variables. Consider a
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Ne 

composite with specified weights w,. > w,y,X».; is a new variable; we 
v=1 

may denote it simply by ,,X,,, and its universe score (over all i and /) by ,,5. 
Assume that single observations are made on the several variables. Then, 

win; = WX pig — why = > Wy(_X. pig volty)- 
wv 

From the usual formula for the variance of a sum, 

No Ny 

(9.25) o°(,,A) = 2 2 WW O(yX pis — vf4p» vo X pon ~~ o'My) 

= 22 WW y(n: jroAggn) 

Now ,A is the sum of components. Whether these covary with the com- 
ponents of ,.A depends on the design of the D study. 

The argument may be extended to D studies with nj, nj, etc. > 1. For 

example, if we make njn; = n,n, =... , all the foregoing statements hold, 

except for the necessary substitution of J for i, etc. In (9.25), the covariance 

of ,A,7,7 with ,A,gq is required. 
In the multivariate study, there are three possible regression procedures: 

1. Estimate ,,u, from ,,X,;7 with the aid of the estimated & p?(,,X,,,45). 
2. For each v in turn, estimate ,u, from the corresponding ,X,,, with the 

aid of 6 p2(,X sp); then form >w, ofp. 

3. Make a multiple-regression estimate of », from ,X57,. 

The third procedure is superior, and will be discussed in Chapter 10. 

Independent sampling in the D study 

Assume that io g, joh in the D study. Then all covariance components 
except that for persons are zero, and 

(9.26) oA) = & wyor(,A) 

The value of 07(,A) will be calculated, as in any univariate study, by a 
formula fitting the design of the D study (see p. 84ff.). Nothing is new 
here. To minimize o*(,A) within some constraint on the total number of 
observations, one can adjust n’ separately for each variable and each facet. 
The universe-score variance is: 

Ny Ny 

(9.27) O(whty) = > 2. WoW oPrw’P) 
v=1 v’= 

The expected observed-score variance for the composite consists of 
07(,,4p) plus the weighted variances of any other components that enter the 

expected observed-score variance of the ,X,;,. Thus, the only components
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of covariance entering &0°(,,X,7,7) are those for persons, which enter through 
o°(,,44,). What components of variance are to be considered depends on the 
design for observing each v; their contributions are calculated as in Table 3.7. 

As usual, the ratio of 67 (softy) to &0%(,,X) is an estimate of &p?(,X wl). 

Joint sampling in the D study 

With the design i » g, n; = nj, andj h, nj =n, (but ich and go/), o7(A) 
includes terms of the form: 

(9.28) “oGA,,A) = ~ “o(1i,28) ++ a: jah) 
n; =

 

1 e ° 1 e ° 

— “o(:Pi,2pg) +o 0(:Pj.2ph) 
j =

 
—
 

  1 - 
+ tae “o(:ij,28h) + |; n' tn! *o(,pij,e,opgh,e) 

n,n; j 

~~
. 

The G study has presumably estimated such covariance components. In 

o*(,,A) they are to be weighted by 2w,w,. and combined with variance com- 

ponents as in (9.25). With several variables, each pair for which there is 
linked sampling contributes a series of covariance terms. 

Equation (9.27) again holds for the universe-score variance. 

As shown in Table 9.3, the first step in determining the expected 
observed-score variance is to list the components of the deviation score for 

each variable. This is determined in the manner of Table3.6. Table 9.3 considers 

three variables, each observed under a different design ; the components of each 

deviation score appear across the top of the table. For each such com- 

ponent, a properly weighted variance term enters the observed-score variance. 

Each component of the deviation score that is jointly sampled gives rise to a 

covariance component that appears in the variance; there is also a 

covariance component for persons. 

The first composite score assumes a crossed design for variables 1 and 2, 

with linkage of both facets. The expected observed-score variance is then the 

sum of eight components of variance and four components of covariance, 

as listed in the table. 
In the second example, the crossed design is used to measure v, and a 

partially nested design for v3. Moreover, there is an i,g linkage only. The 

variance components for this composite are like those for the first composite, 

except that the nesting of / within p causes the variance components for h 

and gh to affect the observed score. There is no entry for the j,4 covariance, 

because with independent sampling, its expected value is zero. This also
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accounts for the nonappearance of covariance terms for pj, ph and pij,e; 
pgh,e. 

Where a composite involves three or more variables, determination of the 
makeup of observed-score variance is more complex. The variance com- 
ponents may be listed for one variable at a time, as in Table 9.3. The covari- 
ance components may then be listed for each pair of variables in turn, taking 
the linkage for that pair into account. For example, consider the composite 

W11X + We oX + wz 3X, where the D study employs the design indicated in 

Table 9.3 and ji ° og © 3g but ,jo,ho3h. There are 14 different variance 

components to consider, these being the ones listed in various lines of 
Table 9.3. Of the covariances listed, those involving 7 and h vanish. The 
following make up the expected observed-score variance: 2w,w20(:p,2P), 

2W1W30(1Ps3P), 2W2W30(2P,3P)> 

2W1We 2W, 
WwW e ° 

a o(,pi, pg), n - o(,pi, 3pg), and       

2WeW3 » 
7 O(2Pg; sPg). 

g 

(Note that denominators can be written with either 7; or nj.) 

E. Relations Among Variables: the ‘‘Attenuation’’ Problem 

Reliability theory originated in Spearman’s desire to interpret correlations 
between operationally distinct variables. He knew that two operationally 
realizable scores cannot correlate perfectly even when they reflect the same 
basic construct, because each is subject to random errors of observations 
that reduce correlation. He estimated the magnitude of these errors by 
making a reliability study of each variable, and then adjusted for the “attenu- 
ating”’ effect of errors from the original correlation by dividing by the square 
root of the reliabilities. In our notation his formula would be 

A r( xX a? xX ) 

(9.29) AG Mpltp) = 
(€ 1p” ‘6 op)? 

The numerator on the right is ambiguous, because i and g may or may not 
be linked. The correlation for linked i and g is likely to differ from the 
correlation obtained when the conditions are not linked. Classical theory 
ignores the distinction, but generalizability theory forces us to take the 

probable difference seriously. 
The problem is a broader one than that of estimating the correlation 

among universe scores. The G study observes a correlation for a score based 
on n, observations with another score based on n, observations, and can 
establish the equation for predicting one variable from the other. But one 
may be interested in obtaining the correlation or the regression equation in a 
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D study where there are n; and nj observations on the two variables, or 
where the design is modified in other respects. 

Universes classified with respect to one facet 

Suppose that observations are classified only with respect to facet i or g. 
The D study will generate observed scores ,X,,; and ,X,g where J is a set 
of n; conditions and G is a set of n; conditions. Because our model does not 
assume strict equivalence, we have to estimate an expected correlation 
between pairs of tests used in various D studies with this design. The corre- 
lation is not presumed to be uniform for all pairs of tests so formed. 

Where iog, the covariance °o(,Xp7 — 1X pz, 2Xnq — 2X pq) has as its 
expected value o(,p,.p). This is true in a crossed or nested one-facet design, 
and for all values of n; and n,. The estimate of the covariance component is 
available from the G study. 

We estimate a correlation by dividing a covariance by the root mean 
square of the variances for the variables. The unbiased estimate of a variance 
does not produce an unbiased estimate of the standard deviation, but that 
is not a critical matter. Nor is it critical that we use a ratio of unbiased 
estimates, rather than an unbiased estimate of the ratio. Where i g, 

oot 6(Ps2P) 
(9.30) Ep Xp12X pq) = AN = 

[Po°(. X57) ° €o%(2X pq)” 

The variance of observed scores takes on different values according to the 
design of the D study; Chapter 3 gave the necessary estimation formulas. 

No matter what the design of the D study, as n; and n} increase, (9.30) 
approaches: 

  

A G( DP, Pp) 

(9.31) PGMps2ftp) = ——— 
[o*p)-o (op)? 

This is Spearman’s result, restated in terms of estimated variance and 
covariance components, and reached without assuming all test forms to 
have the same variance. Equations (9.30) and (9.31) can be evaluated whether 
io g orie g in the G study. Spearman should be credited with considering 
linkage and proposing an adequate procedure for taking it into account in 
one-facet studies (1910, p. 277). 

If i g in the D study, the expected covariance of ,X,, with ,X,g is not 
equal to the covariance component for persons. The expected covariance 
in a crossed D study is 

  

e 1 e . 

(9.32) é OX y7:2X pq) = 0(1P,2P) + n! o(,pi,e,.pgZ,e) 

t
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1, . , 
In a nested D study, — °o(,i,2g) also enters the covariance. The denominator 

Nn; 
a 

of the formula for estimating & °p(,X,.X) is the same as in (9.30). With 

ie g, in the limit as n; and 7; increase we reach (9.31), whether the single 

facet of the design is crossed or nested. 
Intuition may suggest that scores obtained with joint sampling will always 

correlate higher than those from independent sampling, whether the number 

of conditions is large or small. Ratings of leadership and intelligence given 

by the same rater do correlate higher than those given by different raters. 

But, when 10 raters are averaged, the individual biases (constant errors and 

biases favoring certain types of men) tend to cancel out. Consequently, as 

ni, increases, covariance arising from joint sampling adds less and less to 

the correlation. 
The correlation between universe scores obviously cannot depend on the 

experimental design. A correlation between universe scores is a considerably 

more fundamental aspect of nature than an observed correlation, which 

is determined by the experimental designs. Therefore, conceptual interpre- 

tations of instruments should rest on estimated correlations between universe 

scores (Block, 1963). 

Spearman’s attenuation correction has a rather bad name because an 

occasional estimate exceeds 1.00. This may be a consequence of sampling 

errors or of hidden linkages; any underestimate of the universe-score variance 

or any overestimate of the covariance will inflate 6(,4y,24,). Despite these 

difficulties, the plain fact is that the correlation between universe scores 

answers the substantive question the typical correlational study asks. The 

uncorrected correlation manifestly gives only a tangential answer to that 

question. Such an answer may be quite misleading, notably when a low 

observed correlation is allowed to testify that constructs are essentially 

unrelated. The uncorrected correlation is as much subject to sampling 

errors of unknown direction and magnitude, and to effects of hidden facets, 

as is the corrected correlation. The remedy for sampling error is not to 

interpret uncorrected correlations, but to collect sufficient and appropriate 

data. 
Some further discussion of the effect of hidden facets may be instructive. 

Suppose there is a three-sample study, and that the estimates of o?(:u,) 

and o7(,,) are based on a proper random-model design, with no fixed, hidden 

condition. Then we have an unbiased estimate for the denominator of (9.31). 

But suppose that the study from which the covariance is obtained has a 

fixed j*. Then the equations that ordinarily estimate o(;4p,.44y) will actually 

estimate o(,4p,2/4,) + o(:pj*.2pj*). The added term will most often have the 

same sign as the covariance of universe scores. Consequently, one tends to 

overestimate the absolute value of the numerator of (9.31) and the absolute
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value of p(,Hy,2/4y). If a hidden facet j* also influences the estimates for the 
denominator, the denominator will be overestimated by the addition of pj* 
components of variance. The net effect when there are errors in both numer- 
ator and denominator is unforseeable. 

In the two-facet study, to which we shall turn in a moment, there is also 
a risk of hidden facets. Those who employ the correction formula (9.30) or 
(9.31) are likely to think only of the facets taken explicitly into account. 
The interpreter should constantly bear in mind the question “‘What universe ?,”’ 

to recognize the explicit facets, the confounded hidden facets, and the fixed 
hidden facets. Fixed facets restrict the universe and the meaning of the 
correlation. 

In the linear equation for predicting ,X,g from ,X,;, the regression 
coefficient is o(,Xp7, 2X pq)/02(,Xp7). Where we do not have data on the 

specific G and J, we have to use the expected coefficient: 6a(,X p12% aq) 

&0*(,X). This, however, is to be interpreted as 6(,u5,2,)/602(,X) if Io G, 

and as °6(Xp7.2.Xyq)/€o%(,X) if I* G. That is, different equations are 

required for the two cases. 
Either coefficient can be evaluated for any n; and nj. If n; and nj become 

indefinitely large, the regression slope becomes 6(,5,0/¢,)/0%(,u,) for both 
linked and independent designs. The slope describes the expected universe 
score on one variable as a function of the other universe score; there are, of 

course, two such functions, the ,“,-on-,u, regression and the ,u,-on-.4, 

regression. 

Universes classified with respect to two facets 

Scores ,X,; may be generalized to universe scores i, 1/4pi, OT 1f4p;3 for v2, 

the possible universe scores are ofp, oftyg, OF oft, Any of the first three 
scores, paired with any of the second three, defines a correlation. At first, it 
may seem pointless to consider any combination except ,u, with ,u,, but 
that reaction is no more than an outcropping of the classical conception of 
the problem. Many a study in the past has estimated one of the other corre- 
lations and represented it as an estimate of p(,y,./4,). There is good scientific 

information to be found in almost any combination of the universe scores, 
when the correct interpretation is made. 

Consider a study of English compositions. Let v, be a judgment on quality 
of writing and v, a judgment on quality of content. Let i or g be a topic, and 
j or ha judge. Now one might ask these questions: 

1. Do writing ability and quality of ideas go together in general? This 
implies correlating ;4, with ou.
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2. Do writing quality and content quality on any one theme go together? 
Correlate ,Uy;+ With ofp; +. 
3. Does the judge who likes a person’s style also tend to like the quality 
of his ideas? Correlate ,,;. with oM5;.. 

(Meaning can also be given to the correlation of 4, with oM;6, 1p; With 

oftp, etc.). 
The model defines one correlation of the first kind, NV; of the second, and 

N, of the third. Because the i represent a population of topics and the j 
represent a population of raters, a general description of relations is given 
by a correlation of the first kind. A general answer to the second question 
is given by é * 0(sf4p:s2!4p,). A Similar expected value answers the third 

question in a general way. Correlations for separate topics and separate 
judges are valuable supplements. The three kinds of correlations are some- 
what redundant, because their numerators always include o(,p,.p). Direct 
examination of the components of covariance sheds more light on the way 
in which judgments of content and quality covary than does comparison of 

correlations for universe scores. 
To evaluate the correlation of ,u, with ,u,, one divides G(,p,.p) by the 

square root of the product of the two universe-score variances. That is, 
formula (9.31) serves. To evaluate & * PGP vés2bt a0): one estimates the expected 

covariance of ,u,; With .4,, aS 6(:p.2p) + °S(:pi,epg); this is the numerator. 

The variance estimates for the denominator are of the form o7(p) + o?(pi). 

For the slightly less regular case p(,y,2/4,;), the numerator is simply 6(:p,2p). 
Where the i are topics for essays and i = g (the strongest possible linkage), 

the estimate of e * 0(:4pis2/4p,) indicates the correlation expected on the 

average between ratings of content quality and writing quality, where each 
rating is the pooled judgment of all raters in the universe on the same 
essay. One may contrast this with @ °p(,45;,2/4p,), for ratings of different 

essays. 
If a study is made with the design ,(i x j X p), 2(i x h x p), the same I 

being used for observing v, and v,, one may analyze data for any particular 
i* EI to estimate ° p(,y;6,2/4p;«). Thus, if the i are topics for essays, the 7 

may be judges who rate content while the / are judges who rate writing. 
(The two sets of judges may be the same.) To learn that ratings of content 
and ratings of writing correlate more strongly for some topics than for others 
may be valuable, especially if one wishes to separate the two variables. 
Even if the same topics are not to be used again, it may be possible to describe 
how the topics that yield high correlations differ from those yielding low 
correlations. Such a conclusion would be helpful in selecting topics for future 

examinations.



292 Introduction to Multivariate Generalizability Theory 

The correlations for universe scores are actually limiting values of corre- 
lations between observed scores, as n;, n,, etc. increase. In principle, one 

can estimate the correlation for observed scores obtained with any number 
of conditions and any experimental design. Rather than trace out all the 
possibilities, we shall assume a crossed design for the measurement of both 

variables, and let n; = nj and n; = n,. The covariance is then estimated 
(in general) by: 

° 1. ; 
(9.33) é 01 X577:2X pgx) = 0(:P.2p) + n 0(,pi,2Pg) 

t 

+ + "o(:Pj.eph) + = “o(: pij,e;,pgh,e). 
nj n,n; 

This applies directly when i « g andj « h. If ie gand jh, the last two co- 
variance components vanish; if io g and j « h, the second and fourth vanish. 
Estimating the expected observed-score variances as in Chapter 3 enables us 
to calculate the correlation. 

Relevance to causal inferences 

Adjusting empirically observed relations for error of observation is required 
in all science. In the social sciences, particularly sociology and economics, 
there has recently been an increasing emphasis on attempts to reason causally 
from correlational findings (Blalock, 1968; Wittrock & Wiley, 1970, p. 
351ff.). Path analysis and similar techniques set forth a model regarding 
the hypothetical flow of influence. An increase in the supply of money, for 
example, is thought conducive to a reduction in interest rates and an increase 
in new home construction. Basically, the model consists of a set of equations 
rather like regression equations, in which certain coefficients are specified 
a priori to be zero. Thus, in accounting for new home construction, the 
money supply and the rate of formation of new families would plausibly 
receive weight; one might argue for or against fitting a nonzero weight to the 
‘influence’ of sales figures for automobiles, depending on whether or not 
the automobile is regarded as competing with homes for the same dollars. 
The statistical procedures used attempt to estimate how much change in a 
dependent variable is associated with a certain change in one of the hypothe- 
sized causal indicators. 

It is now recognized that errors of observation can distort the results of 
any such analysis. To take the simplest example, a model may postulate 
linear relations in which 2, is the sole cause of v,, and v, the sole cause of 03. 

Then any “influence’’ of v, on vg is mediated by v, and the partial covariance 
of v, with vs, v, constant, should be zero. This will be confirmed, however, 

only if the observed v, is a perfectly accurate measure of the corresponding 
construct in the model. Issues of validity as well as adequacy of sampling
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arise here; for present purposes, we need only connect the sampling concerns 
in causal inference with those of generalizability theory. It may be noted that 
Ross and Smith (1968, p. 348ff.) discuss generalizability (by that name) as a 
central matter in the interpretation of social experiments. They point not 
only to the hazards that arise from sparse data, but also to the hazard that, 
in selecting one indicator from a number of qualitatively different but 
equally admissible indicators, one will obtain inadequately generalizable 
data. In the same volume, Siegel and Hodge (1968, pp. 28-59) devote a 
chapter to the study of measurement error in the context of causal analysis. 
(See also Blalock, 1970, and Wiley & Wiley, 1970.) 

Those who examine structural models have customarily mentioned plural 

sources of error, but have been less than explicit in identifying facets and 

estimating their contributions to variance. It is fairly common, for example, 
to collect social or economic data from a panel of informants in the com- 
munity, or a panel of firms. It is obvious that these informants or firms are 

intended to represent a universe, and that a small or ill-chosen sample will 

tend to introduce an error into the indicator based on their reports. Vari- 

ability is associated with the selection of a date of inquiry (assuming that 

the indicator is intended to be representative of a period rather than an 

instant in time). The particular wording of a question also alters results. 
While a growing number of studies attempt to assess the impact of error and 

to correct for it, we have found no study in this vein that decomposes the 

error variance, and on that basis recommends a better design of a measure- 

ment procedure. It is in this respect that multifacet theory is particularly 

superior to the older correction for attenuation. 
The concept of correlated error (i.e., of linkage introduced by joint 

sampling) is highly pertinent to causal analysis and has been recognized in 

that research more often than in psychological measurement. The use of the 

same panel to supply data on two variables inevitably introduces linkage. 

Whether this linkage is “correlated error’? or not depends on the causal 

model. To collect data on family formations, and at a later time on housing 

starts in the same community, introduces linked error if the community 

data are taken to represent national data on each variable. But if the model 

is concerned with community-specific effects (e.g., “In a community where 

the rate of family formations is large, one expects such-and-such a trend in 

local housing starts’) the parameters to be estimated are community specific. 

Then the linkage is a part of the phenomenon to be described rather than an 

irrelevance. It seems likely that benefits will follow from a careful restatement 

of some of the problems of causal inference using concepts from generaliz- 

ability theory. 
One other phenomenon noted in the causal-inference context may be 

mentioned in passing. It is not a phenomenon that generalizability theory can
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now treat effectively, as our sampling model assumes that sampling con- 
dition i for p in observing v, does not affect p’s score on v2. When variables 
are observed one after the other, there is a possibility of “propagated error,”’ 
to use the term suggested by David Wiley (personal communication). 
Suppose, for example, that one is studying a pupil’s participation in classwork 
as a function of his score on the preceding week’s test, the study perhaps 
being motivated by some theory regarding the effect of increased or decreased 
competence and self-esteem. Suppose that the teacher gives the pupil a mark 
greater than the universe score he deserves—greater, let us say, than the 
mark this teacher would assign on several re-readings of the paper. There is 
error, in that the reported measure of competence departs from the universe 
score. The mark is an independent variable influencing the mediating variables 
of self-esteem and teacher esteem. Consequently, the “‘error’’ is as much a 

part of the treatment as is the accurate part of the score. So far as the teacher 
and pupil know, the pupil who received an A “is an A student’ and the 
classroom interaction will proceed on that assumption. If esteem, rather than 
competence, determines the interaction, then the correlation between an 

interaction measure and the prior fallible mark will very likely be greater 
than the correlation of the interaction measure with the universe score on that 
prior test. This is one of many kinds of problem involving successive obser- 
vations in a changing situation that the model based on sampling of con- 
ditions of observation does not describe adequately. 

Illustrative studies of universe-score relationships 

A TAT study. The relatively simple example to be considered first is 
hypothetical, though suggested by a published paper. To study relations 
between motivational variables, four TAT pictures were presented to 
subjects at the same sitting and scored by a single rater. Scores on two 
variables will be considered. The investigator reports an observed correlation 
of 0.25, which implies a considerable degree of independence. The only 
reliability information offered is that a second scorer agreed with the first: 

= 0.90 for v, and 0.80 for v,. The implication is that error of measurement 

is not a source of concern, and that the observed correlation probably 
indicates how independent the constructs v, and v, are. No formal correction 

for attenuation was made. 
Applying the concepts of our work, the first question is, what is the 

universe of generalization? The investigator has acted as if he were concerned 
with generalization over scorers and not over other facets. A score has the 
form ,X,7;., where jis picture, j is scorer, and o is occasion; this investigator 

carried out a G study pertinent to universe scores ,u,;,. The observed 

standard deviations are assumed to be unity so that we can write in terms
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of covariances. The value of 0.25 then represents the covariance of 1X 57;, — 

iXprjo With oXyrj9 — 2X prjo, Which, on the average, equals o(:p,2p) + 

*o(:pi,epi)/4 + *o(1Pj,2Pj) + *a(:po,2po) + * o(:pij,epij)/4 + * o(,pio,epio)/4 
+ °o(,pjo,.pjo) + °o(,pijo,e;spijo,e)/4. The two-scorer study allows us to 
estimate 0?(,;,), Which equals 07(,p) + 07(,pi)/4 + o7(,po) + o°(,pio)/4, and 
67(o447,), Which is similar in form. Obviously, the investigator is in no 

position to evaluate * p(,p70,9/¢p7,) even if that is his desire. A covariance 

would be required for these universe scores, and the only covariance available 
is affected at least to some extent by the linkages of j as well as those of i 
and o. His report permits no inference about any universe-score correlations. 

If generalization is over judges, it is necessary for him to divide® 

° 6 (Mp ror2l4vI0) 

by G(:4p7,) and 6(.7,)- The divisors have been directly estimated but the 
covariance has not. The author should not have correlated scores given by 

the same judge; [°5(\X prj002X prio) + "SGX p15'02X prio) l/2 is an unbiased 

estimate of °o(:Mpro.2!pIo): 
In fact, with two scorings of a reasonable number of protocols, one 

could inquire into generalizability over pictures as well as over scorers. 
Consider the following covariances: 

*6(1X yijo02 piso) estimates * (HM porettpo) + *a(,pi,pio ;2pi, pio) 

+ *0(:pj,Pj0iePi,Pi0) 
+ o(:pij,pijo,e ;,pij, pijo,e) 

“o(1 x pijo2® pt 40)” estimates “O(1Mpor2lpo) + *o(1 Pj »Pj O 52PJ »PJ 0) 

“oOo X 934022 pii'o) estimates "01M po2t4po) + *o(,pi, pio ;2pi, pio) 

“oy X yi 5002 pi'j'o) estimates “O(1Myor2ttpo) 

With two judges and four pictures, there are 8 covariances of the first kind 
that can be averaged, 12 of the second kind, etc. Subtraction of these 

average covariances from one another enables one to estimate each of 
the four covariance components. The comparable variance components 
can be derived from a three-way analysis of variance. [The covariance 
components could also be calculated from sums of products, as in 
(9.22) and (9.23).] From the variances and covariances, one can estimate 

“PCH vor2ht v0)» * p(iMyror2l4vr0) for any 1;, ° p(:Mysor2nso) for any n;, and also 
PX pr7092X vr so) for any Nj, N;- 

5 © o(,Mpior2lpio) is a sum of p, pi, po, and pio covariance components—linked, in that 

conditions i and o are the same for both variables. ° o(,459;9/4po) is a sum of p and po co- 

variance components. 
§ °6()Xpirj0:2X pijo)- In the next line there is a similar alternative.



296 Introduction to Multivariate Generalizability Theory 

Some investigators of motivational constructs would prefer not to treat 
occasions as fixed. Recent experiences affect TAT responses, implying that 
covariances of scores linked by sampling of occasions will be larger than 
those for independent scores. It follows that this G study would have been 
more informative if two pictures had been applied to each subject on each 
of two occasions, and each protocol had been rated twice. If this seems too 
expensive, various incomplete designs could be used. From such a design 
one could estimate not only the correlations above, but also p(iip,0/t>), 
e e e ® 

PGMorf1)>  POMas.tas)> ~PGMpo2kv0)> ° piers .fors)s ete. 
We have not developed this example numerically, but it should be obvious 

that these correlations need not be close to the correlation of 0.25 for ob- 
served scores. At the end of the chapter, Exercise 2 deals numerically with a 
somewhat simpler problem of this kind. 

Wechsler Verbal and Performance scores. The Ross data, for which com- 
ponents were determined earlier (p. 282), allow us to illustrate the multiplicity 
of correlations among universe scores. The covariance component for 
persons for the Ve and Pe scores was estimated to be 5.54, the component 
for forms k, @ was 0.00, and that for persons x forms was 0.02. Even though 
the estimates are based on small samples, they will be adequate to illustrate 
the kind of reasoning needed. 

Suppose that one proposes to generalize over subtests and forms (and, 
because forms are given on different days, over days as well). The universe 
SCOFES AF€ yefty and pefly, and their covariance is given by o(yeP,pep), Which 
equals 5.54. The variance of y.u, is given by the person component of 
variance for that score, estimated to be 8.16; the corresponding value for 
Pe is 4.84. From (9.30) we then have A(vellp,Pelly) = 5.54/(8.16 - 4.84)!/2 = 
5.54/6.28 = 0.88. This may be compared with the expected correlation of 
linked observed scores (i.e., scores obtained on the same form and day 
using the average of 5 subtests). This correlation is 5.56/(8.83 - 5.62)!/2 = 
0.79. 

If we generalize over forms (and days) but not over subtests, the universe 
SCOFES AT€ yellyse ANd poflpzz+. The covariance of these is again estimated to 
be 5.54, as the person—subtest component of covariance is zero. (There is 
no linkage of subtests.) The estimated variance of y,u,,7. is now estimated 

by o°(vep) + 3?(vepj)/5, according to the argument developed in Chapter 4; 
similarly for Pe. Hence, 

  

Sect >= 5.54 
PAvelioy*»PelinHt*) ~ (8 16 + 0.19)"(4.84 + 0.30)! 

554 gs 
~~ 2.89-2.27
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A different question is to be raised about the agreement of Ve and Pe 
scores obtained by exhaustive testing on a single occasion. When one is 
interested in short-term fluctuations in mental efficiency, is the Ve—Pe dis- 

tinction profitable? This inquires about the correlation of you ,. with 
Peflpxs, Zeneralization being over subtests. The covariance is the sum of the 
person and person-form components (unweighted, because n;, = 1). If we 
take 0.02 as the person-form component of covariance (see p. 283) we have 
5.54 + 0.02 = 5.56. The universe-score variances are analogous; for Ve, 
8.16 + 0.01 = 8.17, and for Pe, 4.88. 5.56/(8.17 - 4.88)! = 0.88. The 
correlation for exhaustive Ve and Pe measurements on a fixed day is therefore 
no higher than the correlation for scores based on an exhaustive series of 
measurements spread over many days, according to these data. The corre- 
lation of 0.88 does imply a very considerable degree of overlap between the 
constructs represented by Ve and Pe. 

Still another variant inquires about generalization over items, leaving 
subtests and occasions fixed. To determine the correlation of yep 7+, With 

pellpHexe Tequires evidence on components for items or half-tests, not available 
for the Ross—Morledge data. This would be answered by a split-half in- 
vestigation. We suspect that most investigators trained in classical methods 
of analysis would think that dividing the Ve—Pe correlation (within a testing) 
by the square roots of reliability coefficients based on splits within subtests 
is the proper way to correct for error of measurement. Judging from the 
earlier study of WPPSI, it is likely that items-within-subtests account for 
about one-fourth of the variance arising from person-subtest interactions in 
the present study, because item and subtest effects are confounded here. 
Suppose, then, that we take the values as follows: 

Ve Pe Ve x Pe 
  

Persons 8.16 4.84 5.54 

Person xX subtest (unconfounded) 0.72 1.13 — 

Person xX (items: within subtest) 0.24 0.37 — 

Person x (form, occasion) 0.01 0.04 0.02 

Then the estimated universe-score variance with subtests, form, and occasion 

fixed will include the person, person Xx subtest, and person x form com- 
ponents above, the subtest component being multiplied by 1/5. The corre- 
lation of universe scores is estimated to be 5.56/(8.31 - 5.10)*/? = 0.85. 

Figure 9.1 provides a summary that enables one to trace the successive 
changes as generalization is broadened. The covariance changes little, and 
that change is due to the departure from within-day linkage. The variances 
decrease as fewer components are taken into the universe score. And, in 
this study, the correlation tends to increase as the universe of generalization 
broadens, but that will not inevitably be the case.
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FIGURE 9.1. Changes in Covariance, Universe-Score Variances, and Correlation 

with Shifts in the Universe Definition (Data are for Wechsler Verbal and 

Performance Scores)
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Validating a test of aptitude for science. A more complex example of corre- 

lations among universe scores (correlations corrected for attenuation) is 
provided by research of Lesser, et al. (1962). The Hunter Science Aptitude 
Test (v,) has two forms, individually administered. The test score is ,X 5,5, 

where i = form, j = examiner, and o = occasion. A group of 58 children 
were given both forms, within a two-week period; for practical reasons, 

each form was given by a different examiner. The interclass correlation was 
0.64.7 The correlation may be considered to be an estimate of the squared 
correlation of test score with universe score ,u,, the mean that would be 
approached if the subject were tested on many occasions during a period of 
two weeks or so by many examiners with many forms. 

The criterion score ,X,qzz09 WaS a score over seven achievement tests, each 
given at the end of an instructional unit. Here g = item and A = unit. Its 
reliability was estimated to be 0.82 by a split-half analysis, based on splits 
within the subtests. The coefficient is to be interpreted as the squared corre- 
lation of observed score .X,,¢770 With the score .4.77¢ obtained from a universe 

of items representing the seven fixed units, each unit being given the same 
raw-score weight as in the total score used by Lesser. Occasion O is treated 
by Lesser, et al. as if fixed; it is a set of seven occasions, each associated 

with one A. 
The observed correlation of aptitude with achievement is 0.77 for Form A, 

0.74 for Form B. By the usual Spearman formula, we have two estimates of 
the correlation of ,u, with o4@ 5779: 1.06 and 1.02. These values exceed unity, 
presumably because of inadequate sampling of persons and conditions. 
From these facts, one can only conclude as Lesser, et al. did: ““The predictive 

validity is about as high as it can be, given the test reliability and the reliability 
of the criterion.” 

A further statement by the authors shows a misunderstanding. “These 
coefficients probably represent slight overcorrections because the parallel- 
forms reliability estimates of Forms A and B take into account error variance 
resulting from day-to-day variations in the children’s performances as well 
as inter-examiner variability. The correction for attenuation assumes reli- 
ability estimates that exclude both these sources of error variance.’ This 
seems to mean that the correction should count person—day and person— 
examiner components as true variance. Our theory leads to a different view. 
One might consider several different universes of predictor information; let 
us concentrate on these three: 

* The authors apply a correction formula developed by Angoff that introduces issues we 
must ignore. We shall extract from their discussion as if this special formula had not 
been used.
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1. Universe 1: All forms, with a single examiner and on a single day. 
The universe score is y{4;,. 

2. Universe 2: all forms, with a single examiner; many days within a 

certain period of time. The universe score is ,/;. 
3. Universe 3: all forms, many examiners, many days within a certain 
period of time. The universe score is ,,. 

Each one of these has its own correlation with .u,70, and each of these 

corrected correlations can be estimated if the corresponding coefficient of 
generalizability is determined from the G study of v,. The G study carried 
out by Lesser, et al. estimated the coefficient for Universe 3, and the attenu- 

ation formula therefore gave the correlation of the criterion universe score 
with ,u,. Nothing in our theory (or in the classical theory, for that matter) 
““assumes’’ that the correlation with the universe score for Universe 1 should 
be estimated, as the quoted words of Lesser, et al. suggest. Indeed, if a 
genie were to offer to supply one of the three universe scores as a predictor, 
we would certainly ask him for the score on Universe 3, because person— 

examiner and person—day interactions must interfere with prediction of 
classroom learning. 

The universe score 5779 is not the only possibility for the criterion. One 
might have planned to sample criterion measures for any unit on several 
occasions, as well as sampling several sets of items. The universe that .u5770 
describes consists of all items suitable for the given units, the test on each 
unit being administered on just one occasion; call this Universe 01. It may 
be contrasted with Universe 02: all items suitable for the given units, ad- 
ministered on several occasions within a certain period of time. The universe 
SCOre IS of,77. The G study actually conducted estimated a coefficient of 
generalizability for Universe 01; this is larger than the coefficient for Universe 
02. The latter is lowered by variance arising from person—occasion inter- 
action. Consequently, we expect the corrected correlation for Universe 02 
te be higher than the coefficient the authors reported. 

Consider a different question. What if the criterion universe had been 
defined in terms of a collection of units (N, large) of which the given units 
are considered to be independent random samples? Does not a test intended 
for a talent search seek to predict achievement in primary science units 
generally, rather than achievement in the seven fixed units? Then the universe 
score 4, (call this Universe 03) would be the mean score over all units (and 

over all items suitable for a given unit) over various occasions. Because 
generalization over the broader Universe 03 would lead to a smaller &p?, 
an even greater corrected coefficient is to be anticipated. 

Admittedly, when the sample data produce an estimated correlation 
between universe scores of 1.00, it means little to talk of universes for which
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the correlation would be still larger. But the rationale we have set forth 
makes it even more obvious that chance inflated the value reached by Lesser, 

et al. 

EXERCISES 

E.1. Children responded to tape-recorded dramas by describing the speaker’s 
emotions, and the degree of insight or comprehension was scored. Successive tapes 
dealt with the themes of happiness, anger, anxiety, and sadness. The intercorrelation 

of scores on different tapes (different themes) was approximately 0.35. The author 
(Rothenberg, 1970) says: ‘‘While the correlations are not so high as to lead to the 
the conclusion that all four tapes are measuring exactly the same thing, they are high 
enough to justify pooling into one measure of social sensitivity.” 

Suppose that a study of similar subjects had shown that the correlation between 
two tapes on the same theme was approximately 0.50. How would this information 

bear on the advisability of pooling the scores? Suppose the correlation between 
tapes on the same theme was approximately 0.80, instead; how would this influence 

the decision to pool? 

FE.2. Children are observed in a preschool setting; observers 7 are crossed with 

occasions 0. Two scores are recorded on each observation: v,, seeking help; v., 
task persistence. The intercorrelations are calculated for all degrees of linkage. The 

TABLE 9.E.1. Correlations for Observations of Children 

  

    

  

v,: Seeking help v,: Task persistence 

j=l 2 1 2 1 2 1 2 

o=1 1 2 1 1 2 

v j o 

1 1 1 1.00 0.50 0.70 0.30 —0.20 0.00 -—0.20 —0.15 

1 2 1 1.00 0.30 0.70 0.00 —0.20 —0.15 —0.20 
1 12 1.00 0.50 —0.20 —0.15 —0.20 0.00 
1 2 2 1.00 -—0.15 —0.20 0.00 —0.20 

21 1 1.00 0.50 0.70 0.30 
2 2 1 1.00 0.30 0.70 
2 1 2 1.00 0.50 
2 2 2 1.00 
  

(artificial) data in Table 9.E.1 may be regarded as averages over many observations, 
hence as good estimates of the respective correlations. To minimize complications, 
observed scores are to be thought of as standardized.
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a. Calculate the components of variance and covariance that can be determined 
from these correlations (covariances of standard scores). 

b. Calculate p(,15, of). 

c. Calculate ° p(,45,, ofp): 

d. Explain what the two correlations mean and why they differ. 

E.3. Suppose that in Exercise 2 the variance and covariance components had 
been as follows: 

  

P Pj po Pjo,e 

Variance component 0.30 0.40 0.20 0.10 

(either variable) 

Covariance component —0.12 —0.35 —0.15 —0.08 

What do these components of covariance and variance tell us about observer 
behavior? 

E.4. Levin, Rohwer, and Cleary (1971) administered four paired-associate lists, 
two per occasion. The form lists employed sets of pairs that were equally difficult to 
learn, other things being equal. On each occasion, one list paired verbal stimuli with 
verbal response terms, and the other list paired pictures. The following average 

correlation (over six different groups) summarizes the findings with school children. 

Same kind of list, different occasions r = 0.50 for verbal, 0.50 for pictures 

Same occasion, different kind of list r = 0.27 

Different kind of list, different occasion r = 0.20 

Assume that the standard deviation for a verbal list is always 2, and that for a 
picture list is 3. 

a. What can be learned about components of variance and covariance for the two 
variables, verbal learning and pictorial learning? 
b. What more could be learned if a study were to employ two separate verbal lists 
and two separate picture lists on each occasion? (Eight lists in all.) 

c. A V-P difference is formed, using scores on the same occasion to get the observed 
difference score. (w, = 1, w, = —1). What is the coefficient of generalizability from 
this score to the difference score in the universe (many lists of each kind, on many 
occasions) ? 

d. How would the answer in c be modified if the universe score were defined in terms 
of numerous verbal lists on one set of occasions, and numerous picture lists on a 
different series of occasions? 
e. How would the answer in c be modified if the observed difference score were based 
on V and P lists on separate days? 

E.5. Table 9.E.2 summarizes a combined variance-covariance analysis of scores 
and ratings on the Gross Forms Test (Gross & Marsh, 1970), a measure of creativity



  

Exercises 303 

TABLE 9.E.2  Variance-Covariance Analysis of Scores and Ratings on Gross 
Geometric Forms Test 
  

Score = v, Rating = v2 Score x Rating 
  

Source of — Degrees Sum of Mean Sum of Mean Sumof Mean 
variance of freedom squares square squares square products® product 
  

P 29 127.987 4.413 1069.494 36.882 773.118 26.658 
i:p 270 171.362 0.635 541.470 2.005 301.074 1.115 
r 5 1.550 0.310 
pr 145 304.355 2.099 
ri, pri, e 1350 405.000 0.300 
  

® The sum of ratings by six raters was used in this computation. 

for young children. The child is to make “‘something,” given a set of 48 different 
colored cardboard geometric forms and a feltboard. After each trial the examiner 
asks the child to tell about what he has made; the examiner takes notes on the 

product and the explanation. Later each product is scored on a six-point scale by 
formal rules. 

As one step in the construct validation of the test, Gross investigated the ap- 
propriateness of the formal scoring system by asking six “‘creative” people in the 
community to rate (on a five-point scale) the products of 30 children. The cor- 
relations between the total rating over 10 products and the total formal score for the 
same products ranged from 0.69 to 0.83 for various raters (average, 0.75). No 

further interpretation was made by the authors. 
The design of this G study was ,[j* x (i:p)]; ofr x (:p)]; n; = 1, n, = 6, 

n; = 10, n, = 30. Variable 1 refers to the formal score with one scorer /* and v, 
refers to the ratings given by raters r. Because each child’s products / were unique to 
him, this facet is nested in persons. Facet i is identical for the two variables. 
a. Construct a table of estimated variance and covariance components similar to 
Table 9.2. 
b. Calculate the coefficient of generalizability for the average formal score on 10 
products, generalizing to a universe of products (scorer fixed). Calculate the 

coefficient of generalizability from an average rating given by 6 raters to 10 products, 
generalizing to a universe of raters and products. 
c. Estimate the correlation between the formal score on the universe of products 
(using one scorer) and the rating for a universe of raters and products. 

d. It is estimated (from other data) that the generalizability of scores on 10 products 

over a universe of scorers is 0.94. What, then, is the expected correlation between a 

universe of scorers and a universe of raters on a universe of products? 
e. What conditions of testing have been held constant in this example that limit the 
universe of generalization and could affect interpretation of the result in d?
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E.6. In the example of p. 290 what importance might the following correlations 
have? 

a. PUM pis oly) 

b. p(y Mp5 2p) 

E.7. One can process the Ross—Morledge data (p. 280) with four fixed variables: 
WISC-Ve, WISC-Pe, etc. Consider subtests as variables, nested within scales and 

TABLE 9.E.3 Mean Variances and Covariances for Ross-Morledge Data 

  

  

  

  

WISC Ve WISC Pe 

subtests subtests 

Mean variance 12.98 (5) Mean variance 9.79 (5) 

Mean covariance Mean covariance 

within WISC Ve 8.66 (10) within WISC Pe 5.59 (10) 

with like Ve with like Pe 

subtests of WAIS 9.12 (5) subtests of WAIS 6.34 (5) 

with unlike Ve with unlike Pe 

subtests of WAIS 8.16 (20) subtests of WAIS 4.84 (20) 

with Pe subtests with Ve subtests 

of WISC 6.13 (25) of WISC 6.13 (25) 

with Pe subtests with Ve subtests 

of WAIS 4.92 (25) of WAIS 6.15 (25) 

WAIS Ve WAIS Pe 

subtests subtests 

Mean variance 9.93 (5) Mean variance 7.37 (5) 

Mean covariance Mean covariance 

within WAIS Ve 7.67 (10) within WAIS Pe 4.17 (10) 

with like Ve with like Pe 
subtests of WISC 9.12 (5) subtests of WISC 6.34 (5) 

with unlike Ve with unlike Pe 

subtests of WISC 8.16 (20) subtests of WISC 4.84 (20) 

with Pe subtests with Ve subtests 

of WAIS 5.11 (25) of WAIS 5.11 (25) 

with Pe subtests with Ve subtests 

of WISC 6.15 (25) of WISC 4.92 (25) 
  

jointly sampled (j « /) for like scales. (E.g., WISC Arithmetic joint with WAIS 

Arithmetic.) 

The average variances and covariances in Table 9.E.3 were calculated. The 
numbers in parentheses are the numbers of values contributing to the various means. 
a. Estimate the covariance component o(wisg¢-veP>»wisc_PeP) 

b. Estimate o(wisc_veP>wats—veP)
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. e e 

c. Estimate _wisc-veP/ >wais—vePh) 
d. Estimate Owisc_peP/>wais—PeP) 

e. Estimate o(wigc_veP>»wais—PeP) 

E.8. Using the components from p. 282 and p. 297, estimate the following 
correlations for a test that employs a single verbal and a single performance subtest. 
a. The expected correlation of Ve and Pe observed scores on the same occasion. 
b. The correlation of y.My,+ with po Upz«- 
c. The correlation of y.Mpje,« With pi Mpjezs- 

E.9. Two moral attitudes are measured, each by a 13-item test requiring judgment. 
Each item is in the form suggested by Piaget, where two undesirable actions of 

children are described and the subject is to judge which action is worse and why. 
The correlation of the scales is low; the score reflecting tendency to judge in terms of 

the child’s intentions (rather than the extent of damage he causes) correlated 0.19 

with a score from other problems on knowing the meanings of rules (H. Harris, 

1970). 
The question arises whether these are two independent types of moral develop- 

ment or the low correlation reflects the fact that observed scores are poor measures 
of the respective universe scores. 
a. What universe of generalization is relevant to this inquiry ? 
b. The investigator reports separate investigations of test-retest reliability and scorer 
agreement. What universe-score correlations can be inferred from these two findings? 
c. What additional G-study information would be extremely useful ? 

Answers 

A.l. If 50% of the observed variance on any tape arises from person-tape vari- 
ability, and 35% is common over themes, only 15% is left for person x theme 

variance. This argues strongly that little information on individual differences is lost 
by pooling themes. If, however, the within-theme correlation for two tapes is 0.80, 

about 45% of the variance arises from person x theme interaction. Then much 

might be learned by retaining separate scores for the several themes. Rothenberg is 
apparently interested in the universe score for response to all possible dramas on 
the several themes, and probably regards the themes as fixed. The small magnitude 
of the person—theme interaction argues that if themes were selected randomly rather 
than by the stratified pattern of one for each theme, the results would be almost 
equally suitable as a basis for generalization. It would of course be possible to 
generalize over the universe of tapes on each single theme, but this will be of little 

value unless several tapes on the theme are combined in a single “‘subtest”’ score. 
The interpretation is somewhat different when the within-theme correlation for 

two tapes is 0.80, since about 45% of the variance arises from person-theme 
interaction. Now one can generalize to the universe score for any single theme with 
considerable accuracy with a very small number of tapes on that theme. And it is 
crucial to use a stratified design in which each theme is properly represented if one is 
to generalize from the total score, to the universe score for pooled themes.
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A.2. a. 

Types of Value for same Value across Components 
correlation variable variables included 

j, 0 common 1.00 —0.20 P; Pj, 2 Pjo, & 
j common 0.70 —0.20 P> Pj 

o common 0.50 0.00 P; po 
independent 0.30 —0.15 P 

P Pj po pjo, e 

Variance component 0.30 0.40 0.20 0.10 

(either variable) 

Covariance component —0.15 —0.05 +0.15 —0.15 
—0.15 

b. pGHp.24y) = 0.30120. 3018 ~ —0,50 

e —0.15 + 0.15 
C. © pGH a2 po) = 050'20.5012 = 0.00 

d. The former correlation indicates the extent to which the trait of seeking help is 
correlated with the trait of persistence, considering all occasions during a certain 
period, observed by an indefinite number of observers. The second correlation is 
that within an occasion, and asks: Assuming thorough observation, to what extent 

does the child who seeks help on a certain occasion persist during that particular 
performance? The negative p component of covariance (and the correlation where it 
is the numerator) implies that persistent children are typically not those who seek 
help. The positive po component implies that when a child seeks help he is likely 
also to persist longer on that occasion than he usually does. (Note that ° p(,po~, 
2po~) = 0.75.) The p and po covariances offset each other; general persistence 
correlates negatively with general tendency to seek help, but on any one occasion 
there is no relationship between these aspects of behavior. 

A.3. The large pj components of variance indicate that observers form substantially 
different impressions of the same child; a child one sees as consistently dependent, 
the other may see as much less dependent. There is a strong tendency for observers 
who rate a child as characteristically dependent also to rate him as characteristically 
lacking in persistence. The correlation of ,4,;~ with .4,;~ is —0.87. There is a 
similarly strong correlation (—0.80) between components ;Uyjo~, € and oUpjo™, e. 

When an observer reports a tendency to seek help that is not reported by other 
observers, he tends also to report an exceptional absence of persistence. The two 
results together strongly suggest a semantic linkage such that a perception of 
behavior—even a random error in perception—implies to the observer opposite 
things regarding the two variables.
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A.4. a. 
Components of variance Components of covariance 

Vv P 

Persons 050 x4=2.0 4.5 0.20 x 6 = 1.2 

Person X occasion 
Residual 2.0 4.5 0.07 Xx 6 = 0.4 

b. Examining the list-to-list covariance on the same occasion would enable one to 
separate person x occasion variance from the residual variance for each variable. In 
the design with only four lists, occasion and list (within variables) are confounded. 

C. °a(yX,pX) = 1.2 
© o(yX,pX) = 1.6 

2.0 +45 —2(1.2) 4.1 

44+9-2(1.6) 98 — 
d. No change. The universe-score variance is not altered. 

~ 4.1 4.1 

  E PGX,ah) = 0.42 

  

  

2 =. OO ———- — 

©. © = 779-20 ~ 1067 9? 

A.5. a. 

Estimated covariance 

Estimated variance components components 

Formal score v, Rating v, Score x Rating 

Persons 07(,p | j*) = 0.378 o(.p) = 0.551 6p |j*.p) = 0.426 

Products within 

persons 0°(,i,,¢ | j*) = 0.635 O'(9i,) = 0.284 °6(i, | j*safp) = 0.186 

Raters and o*(or) = (0) 

related . o(gpr) = 0.180 
interactions G7 (ory, Prips€) = (0.300 

The notation i, follows the convention of Chapter 8, for a facet that is nested in 
the universe. The products are different for each individual. We have to interpret the 
e component with some care. Because there is only one “trial” on a particular 
product, the product cannot be regarded as a member of a class of products 
representing the same condition of the facet i. There is variation of the scores 
assigned by person j* when he scores the drawings repeatedly, and this e is con- 
founded with the i, component of variance for v,. Error of the same sort enters the 
ratings by any rater, but appears at another point in the variance analysis for v9. 
The expected covariance for these two kinds of judge inconsistency is zero, because 

the raters are sampled independently of the scorer. 

b. 0°(.X pri*s1pi*) = 0.856; P°(2X pr 79!) = 0.897
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0.426 

© PGMs 249) = 378 x 0.551) 
d. Approximately 1.00. 
e. Examiner and occasion are both constant in this study. Both numerator and 
denominator of d are probably inflated by these hidden facets. Consequently, the 
correlation of universe scores over scorers, raters, trials, examiners, and occasions 
cannot be estimated. 

  = 0.934 

A.6. a. Does the person who is rated well for his style on topic i* generally win 
approval for his ideas? If this were higher than the correlation for other topics, it 
would suggest that /* is a topic where the person’s ideas influence the rating of his 
style. 
b. Does j* tend to give high or low style ratings to the person whose ideas are 
generally regarded as good? If this were higher than the correlation for other judges, 
it would suggest that j* tends more than others to take ideas into account in rating 
style. 

A.7. a. Gwisc_veP»wisc-PeP) = 6.13 
b. G(wisc_veP>wais—veP) = 8.16. (Considering like subtests would bring in a pj 

covariance.) 

C. ° 6 Cwisc_veP/>wais—vePA) = 9.12 — 8.16 = 0.96 

d. 6.34 — 4.84 = 1.50 

  

e. 4.92 

AS. a 5.54 + 0.02 

"(8.16 + 0.72 + 0.24 + 0.01)’4(4.84 + 1.13 + 0.37 + 0.04)% 

5.56 
= 77167 0.73 

5.56 } 
b. (8.17) 44.88)4 = 0.88 

5.56 
Cc. (8.89)4(6.01)% = 0.76 

A.9. a. It appears that one would like to generalize over questions, occasions and 
scorers. 
b. The information on scorer agreement permits us to evaluate the correlation 
between measures of the two kinds of attitude, very accurately scored, with fixed 

questions and occasions. The retest information indicates the correlation for scores 
over a universe of trials, with fixed questions and scorers. It should be possible to 

estimate the person-scorer and person—occasion components of variance by as- 
suming the person-scorer—occasion interaction to be negligible. Then one could 
infer the correlation of two kinds of problems over a universe of scorers and 
occasion, still with questions fixed. 

c. The retest data could have been analyzed by a two-facet design [questions x 
(occasion: person)] so as to evaluate the components associated with questions and 
question-occasion interaction. This is essential to estimate the correlation between 
scores in a universe where questions are a variable facet.



  

CHAPTER 10 

Multivariate 

Estimation of 

Universe Scores: 

Profiles, Composites, 

and Difference Scores 

Multivariate data have power considerably greater than previous psycho- 
metric treatments of profiles, composites, change scores, etc. have capitalized 
upon. This chapter combines generalizability theory with an extension of 
ideas that otherwise have been discussed only in the context of measurement 
of change (Lord, 1956, 1958; Harris, 1963). 

Observing each person on several variables generates a score profile. The 
interpreter is usually interested in the profile of universe scores, and any 
procedure that enables him to reach a better estimate of that profile will be 
helpful. It is possible not only to obtain sounder information on the scores 
originally defined, but to reorganize and simplify the variate set by elimi- 
nating dimensions regarding which the information is highly fallible. After 
discussing profiles, we go further into the attenuation problem and then 
turn to composite scores, including difference scores and change scores. 

A. The Profile of Universe Scores 

Universe scores are far more fundamental than observed scores, because the 

latter are affected by the design for data collection and the vagaries of each 
performance. The scientist is concerned with relations among constructs, 
which are always universe scores or functions of universe scores. To him, 
observed scores are no more than a basis for inference. Universe scores are 
especially to be emphasized when two or more variables are interpreted 
simultaneously, because differences among the person’s observed scores on 
the variables may result solely from inadequate observation and describe 

309



310 Universe Scores: Profiles, Composites, and Difference Scores 

nothing of significance. In counseling for example, it seems that one should 
examine the best available estimate of the person’s profile of universe scores, 
rather than interpret his profile of observed scores as it stands. The observed 
profile shape may convey radically wrong information when the coefficient 
of generalizability varies considerably from one variable to the next, or when 
the mean profile for a subpopulation has a distinctive, irregular shape. 

While the discrepancy between observed score and universe score is 
acknowledged by the confidence-band technique, that technique has serious 
limitations (p. 131 ff.). Its assumptions are rarely satisfied, and it ignores 
information. With norm-referenced profiles there is the further difficulty that 
the percentile or standard-score distribution for observed scores is not 
pertinent to universe scores (see p. 146). Consequently, the profile ‘“‘shape”’ 
suggested by the display of score bands will not correspond to the shape of 

the profile of standardized universe scores. We shall explore the possibility 

of estimating each universe score in turn by regression methods. The profile 
of such estimates can be displayed on either absolute or norm-referenced 
scales. 

Regressing may or may not make a great difference in the conclusions 
drawn about a person. Under some circumstances (if scores are extremely 
reliable; or if scores are equally reliable and equally intercorrelated, and 
have equal means in the pertinent subpopulation), the profile shape remains 
essentially the same. But for most variables employed in profiles, and in 
differences and other composites, these conditions are not satisfied. 
We suspect that substantive conclusions drawn from multivariate data, in 
either counseling or research, will often be altered if our proposals are 
followed. 

Adoption of our proposals will pose serious difficulties for the test inter- 
preter, because he is inevitably guided by his experience. Clinical interpreters 
have had experience only with observed-score profiles, and they will have to 
build up a whole new body of experience to make sound use of estimated 
universe-score profiles. (The labor of calculating regression estimates of a 
series of scores might be a considerable deterrent, but computerized scoring 
can remove this difficulty.) It is fair to question whether an innovation that 
requires extensive retraining of investigators is worthwhile. But the fact that 
interpreters already possess a frame of reference for interpreting, for example, 
the observed difference between Wechsler Ve and Pe IQs can scarcely be a 
justification for rejecting a more reasonable estimate of the universe-score 
difference. On occasion, regression methods will indicate that a certain 
person whose observed-score difference is negative most probably has a 
positive universe-score difference (or vice versa). Any procedure that stands 
“obvious” conclusions on their heads in this manner is too important to 
brush aside for reasons of convenience or tradition.
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Assumptions for one-facet universes 

In presenting univariate theory, it was pointed out that regression estimates 
from crossed data are untrustworthy when observed scores under various 
conditions do not have identical relations to the universe score. In this 
chapter, to reduce complications, it is assumed that all conditions are equivalent. 

Specifically, it is assumed that for any v, v’, i, i’, etc., and for any subpopu- 
lation for which a regression equation is formed, 

o"(,,X p,) = o"(,X pi’) 

E(X yi) = E(yX pi) 

p p 

(10.1) P(X pisvltp | i) = P(X pi rvollp | i’) 

"A(X wiry X pg) = "A(X perry’ X pg’) 

*O(yX pisy’ X pg) = "O()X pirsy' X pq’) 

Essentially, these statements imply that the factorial composition of scores 
arising from a condition i is the same as for scores arising from a condition i’. 

We thus return to classical assumptions. Random sampling from a universe 
of conditions is retained, as is our concern with the design of the G and D 
studies and the concept of joint sampling. But we assume, formally, that 
conditions within the single-facet universe are equivalent. 

The requirement of strict equivalence is unnecessarily severe. When 7; is 
large and sampling of i is random, scores ,X,; and ,X>5; are likely to be 
nearly equivalent even if the ,X,, taken singly are not. When conditions are 
nested within persons in the D data, the means, covariances, etc. tend 

toward equality even without an equivalence assumption. (See also the 
discussion of assumptions on p. 100 ff.). If conditions are far from equivalent, 
however, one must use the procedures discussed in this chapter with great 
caution. The problems arise not from our model so much as from the fact 
that virtually any interpretauion proposed involves generalization. Complex 
generalizations are difficult or impossible to make when conditions of 
observation are not roughly equivalent. 

Scores being compared have to be expressed in “the same”’ metric. It is not 
necessary that the distribution of observed scores or universe scores for v 
be the same as that for v’. What is necessary is a reciprocal relationship, such 
that when a score of 12 (say) on v, is said to “correspond to’’ a score of 27 
on v, for the purpose of some interpretation, it is implied that a score of 27 
on v, “corresponds”’ to 12 and only 12 on v,. Further, the relation must be 
monotone; i.e., scores 12, 13, and 14 on v, may be mapped respectively 
into 27, 29, and 35 on vg, or into 27, 23, and 20 (preserving the order) but 
not into 27, 35, and 29. Any correspondence is set up in a particular context,
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with reference to a certain kind of interpretation. How many ounces of 
butter corresponds to a cup of corn oil? There is one answer if we think in 
terms of cost, another if we think in terms of calories, and a third in terms of 

effect on the arteries. Psychologists should not rely exclusively on equiper- 
centile correspondences. 

To simplify further it is assumed that all variables in the G study enter 
the D study and vice versa. 

Statistical considerations as agenda for the future. Classical test theory 

was developed in terms of population parameters. Until the Lord—-Novick 
text of 1968 few papers and almost no textbook presentations took sampling 
of persons into account, or studied sampling distributions effectively. This 
statistical side of classical theory is now beginning to yield to attack, but even 
with strong assumptions about test equivalence, progress is slow. We have 

connected the weaker model of generalizability theory for single variables 
with statistical reasoning through the medium of the jackknife procedure. 

As we turn to multivariate problems, we shall retreat as far as possible 
into that ideal world of indefinitely large samples where statistical problems 
do not arise. The majority of writers on classical theory, and even those 
applying analysis of variance components to psychometrics, have likewise 
stopped at the edge of the statistical cliff. They barely caution the reader that 
statistics are not parameters; after that, they avert their eyes from the edge 
and proceed as blithely as though their data stretched to the horizon; we 
shall do the same. In multivariate country the statistical abyss is deeper and 
more dizzying than the one with which we are, so to speak, at home. All 
the warnings ever uttered about shrinkage, collinearity, the need for cross- 
validation, and the problems of estimating factor scores for individuals 
apply with great force to what is discussed in this chapter. 

By assuming very large samples, we are able to set out many valuable 
concepts and to identify what we would like to estimate. Once this is stated 
clearly, it is reasonable to hope that mathematical statisticians will come to 
our aid, and provide better solutions or identify the boundary conditions 
that set limits on the use of large-sample solutions. 

Univariate and multivariate estimation 

Under the equivalence assumption with an i x p design, one has the usual 
equation for estimating ,, from the observed score on v: 

(10.2) vlty = [p?(.X prs vl@tp) (Xr ~~ ol) + ott 

This is essentially a restatement of (3.2), employing parameters for the 

population to which p belongs. We write p? in place of é p?, because with 
equivalent conditions and a large sample the several p? are equal and very
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accurately estimated. We shall customarily simplify in this manner in this 
chapter, writing as if the G study yielded parameters rather than estimates. 

A reader of Kelley (see p. 103) might determine the raw score mean, 
standard deviation, and reliability for ninth-grade boys of the DAT Verbal 
Reasoning score, and regress the observed score of each ninth-grade boy by 
means of (10.2). Repeating this univariate analysis for each v in turn forms a 
new profile, expressed in terms of the original units. One can convert this to 
a standard-score profile of estimated universe scores, using scales such that 
one unit on the v scale equals 6(,,). This procedure does not recognize that 
an observation on v, contributes information regarding the universe score 
on any variable that ,u, correlates with. We now propose a method of 
estimating universe scores that is truly multivariate. 

The findings from a G study are to be brought to bear on D data to 
estimate the n, x n, values of ,u,. Suppose that the G study takes the form 
of n, administrations of a battery of 7, measures. The D study consists, let 
us say, of a single administration of the battery. Let , 4, be the universe score 
for the variable v* whose universe score we are at the moment attempting to 
predict. Generalization is over administrations, and the regression equation 
for estimating the universe score ,, from the D data takes the form 

(10.3) ally = 2. Be, (X53 — vl) + xl 

The symbol £ stands for a population regression coefficient, not necessarily 
standardized. 

The anticipated design of the D study is taken into account in estimating 
variances and covariances. The variances of predictors are estimated as in 
Chapter 3 and the covariance as in Chapter 9. Where the predictors ,X and 
»X are scores within a single battery, i g; it isappropriate to use °o(,X,,-X), 

calculated within occasions, as a covariance between predictors. The covari- 
ance of any predictor with the target variable ,, has the form o(,X,,/5), 
which is equivalent to the covariance component o(,p,,p) for any predictor 
except ,X,,; there, one uses 07(, p). 

The analysis will produce a p?(,X>5,,x/4p) for each v*. This is a squared 

multiple correlation equal to p?(,/4y,4/4p), hence a new sort of coefficient of 
generalizability. Such a coefficient will almost always be greater than the 
coefficient from univariate analysis for the same universe score (and never 
less). Using all the information in the profile will produce a superior estimate 
of the universe score whenever the ,X,, are correlated, though the difference 

may be trifling. A new, smaller 07(, ¢) accompanies the estimate. 
As far as we know, the determination of profiles for test interpretation by 

multiple regression has hitherto been proposed in only one context. In the
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middle 1960’s the 16 PF Test of Cattell was provided with a computer- 
scoring service that estimates factor scores by entering the 16 observed scores 
into estimation equations (Cattell, Eber, & Tatsuoka, 1970, pp. 37-38). 
While the theory and technical characteristics of the analysis have not been 
published, Professor Cattell has provided us with a draft of an article on the 
subject (Eber, Cattell, & Delhees, in preparation). Estimating factor scores 
differs only in detail from the estimation of scores on universe-defined 
variables. According to the available reports, 16 PF scores that are predicted 
in a univariate fashion with p? = 0.75, for example, are predicted from all 
data with p? near 0.85 (corrected for shrinkage). To obtain this accuracy of 
generalization from the univariate estimate one would have to double the 
test length. The multivariate estimates of the 16 PF scores are more highly 
intercorrelated than the conventional estimates; this reflects, not a true 
reduction in differential information, but the elimination of some undepend- 
able differences the observed profile reports. 

In general, the profile of estimated universe scores generated by a multiple- 
regression procedure (i.e., the vector of ,u,) will differ from the observed 
profile ,X,, and from the profile formed by estimating each ,u, from the 
corresponding , X,; alone. For most persons, the new profile will be flatter, 
as an extreme example will make obvious. Suppose ,X and ,,X are actually 
two equally good measures of the same variable, so that ,u,, = yt, for all Pp: 
Then the best estimator of ,u, and of ,.u, will be a function of (Xp; + 
»'Xp:)/2. No matter what difference in observed scores was produced by 
errors of measurement, the two estimated universe scores will be equal, as 
are the actual universe scores. While it will distress the person who seeks 
information from differences within a profile to be confronted with relatively 
flat profiles, the regression estimates are closer to the truth. 

Numerical example: the Wechsler Performance Scale. As a simple example 
of multivariate estimation we shall use the Ross—Morledge data from p. 282. 
We use the mean of scaled scores on Verbal subtests as y,X and the mean for 
Performance subtests as p.X. We treat the WISC and WAIS data as two 
samples of the same kind of performance; we propose to generalize from 
data on one form over a universe of Performance measurements. Symbols 
h and j represent subtests, and k and “represent forms. This universe has two 
facets, but the concepts discussed in this chapter in terms of one facet‘can be 
applied. 

The multiple-regression technique is most advantageous when subtests are 
regarded as random. Generalization is over subtests, items within subtests, 
days, and trials within days. The data are presented in Table 10.1. For this 
example, the means are arbitrarily set at 10, but we employ the actual 
standard deviations for the Ross sample. (The variance of the universe score
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TABLE 10.1. Data Used in Forming a Multiple-Regression Estimate of the Universe 

Score for the Wechsler Performance Scale 

  

Correlation with 

  

  

Standard 

Variable Mean ___ deviation 1 2 3 

1. Verbal Scale, observed 

score 10.0 2.97 1.000 0.790 0.847 

2. Performance Scale, 

observed score 10.0 2.37 1.000 0.928 

3. Performance Scale, 

universe score (over 

subtests and days) 10.0 2.20 1.000 

  

is 4.84, ay determined in the G study discussed on p. 282.) Each correlation 

is calculated from covariance and variance components. The value of 0.847, 

for example, is the covariance component o(yep,pep) of 5.54 divided by 2.97 

and 2.20. 
The univariate equation for prediction of p.u, from the observed Perfor- 

mance score is 
pellp = 0.861 peX nz + 1.39. 

The multiple regression equation is 

Polly = 0.639 peX pe + 0.224yeX pH, + 1.36. 

The squared multiple correlations are as follows: 

Univariate  &p°(peX pelts) = Ep*(peliprpolty) = 0.861 

Multivariate E p*(pellpspeltp) = 0.896 

The increase of 0.035 is practically significant. It implies a 25% reduction 

in the error variance—a benefit equivalent to what one would gain by 

lengthening the Performance Scale by a quarter. (That is, the gain is greater 

than one would get by adding a subtest to the scale, since that would lengthen 

it by one fifth.) 
The multiple-regression technique has little advantage when ye/ly is taken 

as universe score. The squared correlation rises from 0.925 to 0.934, which 

implies a 10°% reduction in error variance—worth having, but unimpressive. 

The components calculated from the Ross—-Morledge data can also be 

used to form regression equations for estimating the universe scores with 

subtests fixed. For this limited generalization, the two-variable estimation



316 Universe Scores: Profiles, Composites, and Difference Scores 

equation reduces error variance by 1/9 for Pe and by 1/16 for Ve. In general, 
when the univariate coefficient of generalizability is large, the introduction of 
information on a second variable is unlikely to produce much improvement. 

Parameters determining improvement in prediction. When a predictor is 
added, p*(x/in,%/4») is increased in an amount equal to the squared part 
correlation of the added predictor with ,,. (This increment is labelled a 
below.) The greater the part correlation, the greater is the resulting multiple 
correlation. It is instructive to ask what the correlation of the added infor- 
mation with the target variable must be to increase the coefficient of generaliz- 
ability by any given amount. While the relationship could be expressed in 
many ways, we have chosen as parameter the correlation between the 
observed ,X and the auxiliary predictor ,X. Let ,X be any score or score 
composite that does not include , X. Then the increase in the multiple corre- 
lation depends on p(,X,,X). If a is the squared part correlation 
P*[xH(oX *~X)], and if ,X is observed independently of , X, 

(10.4) ap" Xy4/éy)[1 —_ P'(»X,4X)] = P(yX+4X)[1 ~~ Pa X sab)? 

The curves plotted in Figure 10.1 indicate the correlation of ,X with ,X 
required for several different increments. Large increments are of course 
not possible when p?(, X,,4,) is already large. 

Equation (10.4) is developed under the assumption that the conditions for 
observing auxiliary predictors are sampled independent of the conditions 
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FIGURE 10.1. Increment in Squared Multiple Correlation when a Supplementary 

Predictor ,X is Used in Predicting the Universe Score 4.
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for ,X. Where there is linkage, the equation takes on a far more complex 

form: 

(10.5) apa Xsabty EL — °° Xs4X)] 

= *p%,X,,X)[1 — aXe | 1 -   *o( pl, 4PL) | 

*o(,X,4X)[1 ~ (4X sly) 

When the component °o(,p/,, pl) is zero, this reduces to (10.4). Where the 

component is positive, the value of a calculated from (10.4), but using 
the correlation for the linked observed scores, will be too large; that is to 
say, the increment will be less than Figure 10.1 suggests. The component 
could be negative, making the increment greater than Figure 10.1 suggests, 
but this is most unlikely when ° p(,X,,X) is positive. 

The figure can be used both to assess the general value of auxiliary pre- 
dictors and to judge what can be expected from particular data. As a rule 
of thumb, we suggest that a gain of 0.05 is worthwhile if the coefficient of 
generalizability is above 0.40 and a gain of 0.025 is worthwhile if the coeffi- 
cient is 0.85 or above. 

We may apply this to specimen data without attempting to be very precise. 
Cronbach (1970, pp. 355, 358) has assembled data on the DAT and GATB 

batteries. For the former, several scores have generalizability coefficients | 
(over forms and days) near 0.80. The chart suggests that an auxiliary pre- 
dictor correlating 0.60 or better with the observed score will give a useful 
increment. For nearly every one of the DAT tests there are other tests in the 
battery for which intercorrelations reach this level; consequently, unless 
linkage produces a substantial covariance component, the regression tech- 
nique would have practical value. The Verbal Reasoning test, for example, 

has a generalizability coefficient of 0.78. If one predicts the universe score 
from a combination of the observed Verbal score with an independent 
Grammar score (which has a correlation with Verbal of perhaps 0.70), the 
squared multiple correlation would be raised by perhaps 0.07, to 0.85. 

For GATB some coefficients of generalizability are in the range 0.81—0.86, 
and these tests have no intercorrelation above 0.45. It follows that a multiple- 
regression estimate for their universe scores would add _ next-to-nothing. 
For Form Perception, however, the coefficient is 0.72, and another test 

(Clerical Perception) correlates 0.66 with it. The squared multiple correlation 
would then be around 0.80, a worthwhile gain. A similar, slightly smaller 

gain appears to be possible in the motor area, where coefficients for single 
tests are in the neighborhood of 0.65 to 0.75 and intercorrelations are 

around 0.50. 

Limits on the number of usable predictors. In applying multiple-regression 
methods, one must be wary lest he capitalize on chance. The number of 
predictor weights that may properly be fitted will depend on the sample size.
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It will often be advisable to reduce the number of predictors by combining 
them. Rarely will more than two supplementary composites produce a 
worthwhile increment in the accuracy with which the universe score is 
predicted. One procedure is to form a priori composites as we illustrate below. 

Numerical example: the DAT profile. To expand on the possibilities of 

regression estimation of universe-score profiles and to draw attention to 
decisions the investigator must make, we apply methods suggested above to a 
set of data from the Differential Aptitude Tests. These data were supplied by 
Jerome Doppelt of The Psychological Corporation. The study is analyzed 
and reported in a deliberately sketchy fashion; a full presentation for all 
target variables would become so extensive that it would distract the reader 
from the main ideas of this chapter. Moreover, a good deal of trial and error 

will be required with various sets of data before any model of procedure can 

be set forth or any substantive conclusions drawn. This illustration is an 
early trial of the technique and the equations reached are emphatically not 
recommended for practical use. 

The data come from the testing of boys in Grade 10 of two communities 
in Pennsylvania; in one school two forms (same tests, different items) were 

given a month apart, and in the other there was a six-month interval. There 
are 174 persons in all. (Some of these data are similarly pooled in the DAT 
manual, pp. 4-5. Means and standard deviations are available, but to 
simplify, we have treated the data as if all means were zero and all standard 
deviations unity. Consequently, we derive standardized regression weights. 
Because the standard deviations of tests did change from occasion to occasion, 
and sometimes departed from those in the standardizing sample, taking them 
into account would greatly complicate the discussion.) 

The universe of generalization for each test presumably consists of various 
sets of items and various occasions within a period of some six months. 
This choice of universe appears to be consistent with the interpretations 
commonly made of DAT scores, although a longer time interval is sometimes 
implied in the interpretation. 

There are two symmetric matrices of intercorrelations of observed scores 
within forms (within occasions), and an asymmetric matrix of correlations 
across forms (across occasions). We collapse the two within-form matrices 
into a single matrix of °r(,X,,-X) by averaging. (For example, we average the 
two correlations of the Verbal and Numerical tests. Also, we make the between- 

forms correlation matrix symmetric by averaging across the diagonal; thus, 
the correlation of Form A Verbal with Form M Numerical is averaged with 
that for Form M Verbal and Form A Numerical. Call these correlations 
“r(,X5.X). This method of introducing symmetry is consistent with the 
equivalence assumptions of Chapters 9 and 10.
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We take °r(,X,,X), the diagonal entry in the second matrix, as an estimate 

of p%(,X,,4). We estimate p(,Xy1t) by (Xv X)/[°r(y Xo XI, and p(oftyyH) 
by °r(,X5yX)/ Pr, X5,X) 1(yX5,X)}. This corrects for attenuation to form 

two new matrices of correlations. These are assembled into a supermatrix: 

A B 

we 
where the entries in A are the original °r(,X,,-X), entries in Bare the p(,X,,,), 

and entries in C are the A(,u,,4). The entries in A serve as predictor inter- 
correlations and the entries in B are predictor-criterion correlations. The 
matrix C is prepared only if the computer program used calls for a square 
matrix; C plays no role in the calculations. If any entry in C had exceeded 
1.00, however, it would have been prudent to scale down the entries in the 

corresponding row and column of C and B by a sufficient amount to correct 
this anomaly (or else to reject the batch of data as too much perturbed by 
sampling error). 

To give some impression of the data without introducing excessive detail, 
Table 10.2 presents the key correlations for one variable, Abstract Reasoning, 
and the coefficients of generalizability for all eight scores. 

The added variable VERTO is a composite of Verbal, Spelling, and Gram- 
mar, equal weights being given to the three standardized scores; TOTAL is a 
similar composite of all eight scores. The composites were introduced as a 
simple means of capturing most of the predictor variance in two scores. 
TOTAL is a first centroid factor among the tests, and VERTO recognizes a 
group factor among the three verbal tests. This use of composites allows a 
kind of reduced-rank solution. While ours is not likely to be the most powerful 
solution, it is easily interpreted, and from the data it appears that use of 
principal components would give much the same final efficiency. 

TABLE 10.2. Illustrative Data Entering into Multivariate Estimation of DAT 

Abstract Universe Score 
  

Variable 
  

Ver Num Abs Spa Mch Clr Spl Gra VERTO TOTAL 
  

Correlation with 0.591 0.585 1.000 0.667 0.507 0.279 0.395 0.532 0.583 0.795 
Abstract observed 
score on same form 

and occasion 
Estimated correlation 0.676 0.663 0.828 0.712 0.598 0.402 0.424 0.609 0.656 0.858 

with Abstract 
universe score 

Coefficient of 0.779 0.793 0.686 0.823 0.679 0.483 0.828 0.741 — — 
generalizability 
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TABLE 10.3. Coefficients of Generalizability for DAT Scores Estimated by 
Multiple-Regression Methods 
  

Squared multiple correlation Proportionate reduction 
where estimate is made from in error variance with 

  

Universe Corre- 

  

score sponding Three Eight 
to be observed preselected observed Three Eight 

estimated score predictors® scores? predictors _ predictors 

Verbal 0.780° 0.845 0.857 0.30 0.35 
Numerical 0.794° 0.835 0.839 0.20 0.22 
Abstract 0.686 0.810 0.817 0.39 0.42 
Space 0.823 0.836 0.844 0.07 0.12 
Mechanical 0.679 0.725 0.764 0.14 0.26 
Clerical 0.483 0.555 0.619 0.14 0.26 

Spelling 0.828 0.851 0.864 0.13 0.21 
Grammar 0.741 0.832 0.835 0.35 0.36 
  

® The corresponding observed score, plus VERTO and TOTAL. 
b Because stepwise procedure with redundant variables introduced discrepancies in the third 
decimal place, these values were calculated directly from the eight original scores. 
¢ Values differ by 0.001 from values of original coefficients because of rounding. 

Calculations were carried out by a stepwise regression program under these 
constraints: to predict any ,u,, the corresponding ,X was to be entered as the 
first predictor; at the second and third steps, VERTO and TOTAL were to 
be entered in whatever order gave the larger second-step multiple correlation; 
then six of the remaining observed scores were entered, in whatever order 

maximized the multiple correlation at each step. 
As Table 10.3 shows, the increase in multiple correlation after the third 

step was small in most instances. We shall later consider in some detail the 
Mechanical and Clerical scores for which convergence was relatively slow. 
The benefit from making a multiple-regression estimate can be judged from 
the increase of p?(,f4,,,/4,). Numerically small gains at the upper end of the 
scale must not be regarded as trivial. To maintain perspective, we have 
expressed the increment in the coefficient in terms of the change in error 
variance. It will be recalled that, in ordinary univariate estimation of a 
universe score, lengthening a test by half (multiplying n; by 1.5) reduces the 
error variance by 33%. Roughly, this degree of improvement is achieved with 
three predictors, for Verbal, Abstract, and Grammar. While the gains for 

other universe scores are less impressive, they are attained at negligible cost. 
What coefficient shall be accepted as the best representation of the gain 

from combining predictors? In predicting Abstract we might stress the
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coefficient after four steps rather than that after three steps, or the somewhat 
inflated coefficient for eight predictors. 

The F-ratio for the increment from the fourth predictor, Spelling, is signifi- 
cant, and further predictors add no significant increment. A similar argument 
could be applied for other universe scores. Except for Mechanical and 
Clerical, this decision is quite unimportant; any later coefficient is very nearly 
the same as that for three predictors. 

The next question is, which regression equation should be used? For any 
target variable there are eight sets of regression weights, each later equation 
using a small additional bit of information. In writing equations, we trans- 
lated any weight calculated for VERTO by dividing any weight by o( VERTO) 
and assigning the quotient as an added weight for Verbal, Spelling, and 
Grammar. We similarly distributed the weight for TOTAL uniformly over 
all the original scores. Applying this rule, we have the set of alternative 
equations for Abstract displayed in Table 10.4. The most important thing to 
note in the table is how little difference there is between weights at the 
various later stages. The choice of one equation rather than another, from 
the fourth through the eighth, will almost never alter the predicted universe 
score for an individual to a perceptible degree. 

We have decided to examine the eight-predictor equation for each universe 
score, determined directly rather than stepwise. Although weights in this 
equation capitalize on chance to some slight degree, there is no reason to 

TABLE 10.4. Regression Weights for Predicting Universe Score on Abstract after 
Each Stage of the Stepwise Analysis 

  

Step number Standardized regression weight for 
and predictor 

added Ver Num Abs Spa Mch Cir Spl Gra p*(,fy,,H5) 

  

  

1. Abstract 0.83 0.686 
2. TOTAL = 0.09 0.09 0.49 0.09 0.09 0.09 0.09 0.09 0.794 
3. VERTO 0.04: (0.15 0.46 0.15 0.15 0.15 0.04 0.04 0.810 
4. Spelling 0.11 0.15 0.44 0.15 0.15 0.15 —0.07 0.11 0.8184 
5. Mechanical 0.11 0.15 0.44 0.15 0.13 0.15 —0.07 0.11 0.818 
6. Grammar 0.10 0.15 0.44 0.15 0.13 0.15 —0.07 0.09 0.818 
7. Numerical 0.10 0.14 0.44 0.16 0.13 0.16 —0.07 0.09 0.818 
8. Clerical 0.12 0.14 0.43 0.17 0.12 0.15 —0.07 0.09 0.818 

Weights by 
single-stage 
calculation 0.12 0.14 0.44 0.16 0.13 0.15 -—0.07 0.09 0.817 
  

@ Last significant increment. This value and the p? at all later steps are slightly inflated 
because of collinearity and consequent exaggeration of rounding errors.
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regard it as less meaningful than any equation with fewer variables. We 
have, however, stressed the more conservative multiple correlation based on 
three steps. (If sample size were much smaller, one would be far more 
hesitant to adopt the final weights.) 

For Abstract, it appears that the prediction is essentially to be based on 
the Abstract observed score, plus the factor running through the nonverbal 
variables. The result is consistent with the view of Abstract Reasoning as a 
test requiring fluid adaptive ability. The small differences in weights for 
various tests do not deserve to be given a psychological interpretation until 
they are crossvalidated. 

Table 10.5 displays the final weights for estimation equations for all 

TABLE 10.5. Regression Weights for Predicting All Universe Scores, Obtained by 

Fitting All Predictors 

  

Universe Standardized regression weight* for 
score to be 
estimated Ver Num Abs Spa Mch Cir Spl Gra 
  

  

Verbal 0.6 0.1 0.1 0.2 0.1 

Numerical 0.1 0.7 0.1 0.1 0.1 0.1 

Abstract 0.1 0.1 04 0.2 0.1 0.1 —0.1 0.1 

Space 0.1 0.8 0.1 —0.1 

Mechanical 0.2 0.1 0.2 0.6 —0.1 

Clerical —0.2 0.2 0.3 —0.1 0.6 0.1 

Spelling 0.1 0.1 —0.1 0.8 0.1 
Grammar 0.2 0.1 0.2 0.5 

  
® Blanks represent weights in the range —0.05 to +0.05. 

variables, rounded to emphasize major features of the equations. Few of the 
weights are difficult to rationalize; but substantive interpretations should be 
withheld until a relation is observed in further samples. 

The reader has very likely noted that, in deriving equations from the 
correlation matrix, we have predicted each universe score on a scale where 
the standard deviation of the universe score is 1.00. If one wishes to express 
universe scores on a scale such that the universe-score standard deviation 
equals approximately o(,/,), he can simply multiply the scores estimated by 
our equation by the product A(,X,44,)6(,X). The estimated universe scores 
will of course have a smaller standard deviation equal to A(4fp."4p)O(eMp)- 
The whole issue of choice of scale for regression estimates is a vexing one 
that needs further thought. We remind the reader, finally, that for simplicity 
we have suppressed consideration of scale means; use of local means (along
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with variances and covariances for the local group) would of course change 
the equations. 

Reorganization of the profile 

For a profile of n, scores there are n, universe scores, which can be thought of 
as defining a space of n, (or perhaps fewer) dimensions. The observed scores 
do not provide equally good information about all these dimensions, and, 
in fact, some of them may be very badly estimated. Where that is the case, 

it may be advisable to replace the original profile by a smaller set of variables, 
the universe score on each new variable being a composite of the original 
variables. (We shall use the word composite in a general sense; when all the 
w, except one are equal to zero, the composite coincides with one of the 
original variables.) The aim is to obtain a set of dimensions that are reliably 
measured and psychologically interpretable. 

A suitable procedure for this follows the scheme described by Bock (1966). 
Using the mean squares and mean products as a starting point, he determines 
a series of composites. The first composite is that combination of the ,X,; 
for which the coefficient of generalizability is greatest. The second composite 
is orthogonal to the first, and has the largest coefficient of generalizability 
among the possible orthogonal composites. Each successive composite has a 
smaller coefficient than those previously extracted. The investigator can 
judge, on the basis of these coefficients, how many dimensions are reasonably 
well measured and should be retained. 

The coefficients may indicate that the most prominent dimension in the 
universe-score space is measured with more precision than is necessary. 
If so, it should be possible to adjust test lengths so as to reduce the coefficient 
of generalizability for that dimension and to increase those for some dimen- 
sion or dimensions that were inadequately observed with the original distri- 
bution of items. 

Within the subspace defined by the selected composites, it is likely that 
correlated dimensions will be more interpretable than the orthogonal com- 
ponents determined mathematically. The test designer can rotate the orthog- 
onal components into whatever set represents constructs he judges to be 
optimally interpretable. Universe scores on these variables can be estimated 
from the original observed scores. 

Reducing and reorganizing the profile in this manner seems likely to 
retain all the information that can be reliably interpreted, and it reduces the 
interpreter’s task by eliminating many differences within the profile that 
would not be confirmed if a second set of observations were made. It seems 
likely that for an instrument such as the Wechsler Scale, with its 11 subtests, 
as few as five dimensions may be sufficient to report a large proportion of the 
reliable information in the scores.
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The Bock procedure is not the only method that can be used to examine 
the dimensions of the universe-score space and the accuracy with which each 
dimension is estimated. Nanda (1967) explored the application of Tucker’s 
(1958) interbattery factor analysis. The vectors selected in this procedure are 
those whose projections into the universe-score space are largest, rather than 
those for which the coefficients of generalizability are greatest. Rao (1965) 
developed a technique of interbattery analysis, and in his early work on a 
‘familial’ correlation (1945, 1953) applied a procedure much like Bock’s. 

Abelson (1960) analyzed Semantic Differential data, where there is a score 

for each concept (e.g., mother) on each scale (e.g., strong-weak), given by 
each rater. Abelson employed discriminant analysis to form the composites 
of scales that are maximally generalizable over raters. His composite of scales 
is comparable to our composite of variables; in his analysis, concepts are the 
objects of inquiry where for us persons are ordinarily the objects of inquiry. 
Abelson’s discussion is consistent with our separation of the facets over which 
one generalizes from the other bases for classifying data. Since Abelson’s 
argument is developed in terms of the Cornfield-Tukey model, it can be 
directly extended into a multifacet approach. Abelson’s interest in dis- 
criminant analysis reflects his awareness of a point made earlier by Tukey: 
that conventional factor analysis is distorted by linkage in the design. Factor 
analysis of covariance components for persons would apparently be con- 
sistent with Abelson’s thinking. 

The Tukey (1951) paper on “‘components of regression,’’ even though two 
decades old, will necessarily be a point of departure for further development 
of the multivariate analysis discussed here. The paper is multifacet in principle. 
Among other points of interest, Tukey notes that the factors postulated in 
traditional factor analysis are composites of universe scores. However, if 

conditions for administering tests of a battery are linked (e.g., same occasion), 
nongeneralizable information will augment the test intercorrelations. In such 
an event, the factors accounting for intercorrelations will not be perfectly 
generalizable. 

A major task of synthesis remains. The several formulations by Tukey, 
Tucker, Bock, Abelson, and others are essentially compatible, and com- 

patible with our scheme. Yet the language of each argument is a bit different, 
and the point of view sometimes changes in subtle ways. Tucker’s multimode 
factor analysis (see pp. 13) treats in symmetric fashion the several ways of 
classifying observations, whereas we (like Abelson) assign a distinctive place 
to persons and another distinctive place to variables. Still another variant 
appears in the “alpha factor analysis” of Kaiser and Caffrey (1965), which 
regards the v as samples from a universe. One can obviously have further 
patterns that none of the present formulations is ready to deal with. For 
example, in the S-R Inventory of Anxiousness one can consider stimuli i
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and modes-of-response ; as fixed, and replications or occasions as defining 
the universe of generalization; then one can embark on a multivariate 
examination of the ,,;X,,. 

Our formulation appears to generate no mathematical result that cannot 
be reached along the line suggested by Tukey and Abelson. Our way of 
stating the problem connects more explicitly the multi-way analysis with 
traditional problems in test theory, and so directs attention to particularly 
significant applications. 

B. Relations among Universe Scores: the Multivariate 

“Attenuation” Problem 

The estimation of p(,4y,,’/4p) was discussed in Chapter 9, where the classical 
correction for attenuation was modified to take multiple facets into account. 
We are now in a position to extend the correction in another way, estimating 
the multiple correlation p(,u5,,/,), ¢ being a “criterion” variable not in- 

cluded in y. We shall not go beyond the one-facet case. 

>, vp o(D; cP) 

(10.6) P= 

O(,P.cP)) (cP) 

This is the variance—covariance matrix for the universe scores on the set v 
(regarded as “‘predictors’’) and the “‘criterion”’ wy. 0(,p,-p) is a column vector 
of covariances of the form o(,p,,p). One can derive regression weights and 
the multiple correlation directly from P, but it may clarify matters to discuss 
the analysis in terms of correlations. For standardized variables, P becomes 

R P(,P» <P) | | 4/2 
(10.7) Q= = [diag P]'/P[diag P]~ 

(PP) I 
This is a correlation matrix of order n, + 1; diag R = I. Then 

(10.8) cllp = yin’ B 

where |, is ann, X n, matrix of universe scores dnd B is a column vector 

of regression weights. 

(10.9) B = R“eGp..p) 

Finally, the squared multiple correlation 

(10.10) P'Morcltn) = [0(vPscP)]”R™ P(yPseP) 

In practice, quantities in P are estimated rather than known. The off- 
diagonal entries may be filled with the covariances of the observed scores, or
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with estimates derived from a multivariate G study. Where there is linkage, 
it is necessary to employ °6(,X,,-X) and °6(,X,,X), not the linked covariances. 
The o?(p) for the diagonal come from a G study. Unless all values entering R 
come from the same data, there is a risk that it will not be invertible. Reduced- 

rank methods may be employed in the analysis to reduce capitalization on 
chance. 

The method may be extended to canonical correlations, simply by replacing 
the c row and column of P or Q with matrices. Consider ¢ to be not a single 
target variable but a set of variables (that ordinarily has no element in 

common with v). Then o(,p,,p) becomes > PrP and o(,p) becomes > P: 

The whole matrix is standardized and the usual canonical analysis is per- 
formed. Meredith (1964) showed that, in the absence of linkage, a squared 
canonical correlation for universe scores p?(,u,.{4) is equal to 

P°(X eX )[P(yX sya) P(X volta) 1”, 

the squared correlation for the corresponding observed scores corrected by 
the Spearman attenuation formula. 

Cochran (1970) pointed out the need for investigating the extent to which 
“errors of measurement weaken or vitiate the uses to which multiple corre- 
lation is put.” (It is striking that the whole issue of correcting multiple 
correlations for attenuation has only so recently entered the literature, in 
view of the fact that the attenuation formula for simple correlation was 
introduced between 1904 and 1910, and that the multiple correlation was 
also coming into use at that time.) Cochran shows that the Spearman attenu- 
ation formula extends to the multiple correlation when predictors are 
uncorrelated; one need only substitute the weighted average of the predictor 
reliabilities for the usual predictor reliability p(X,X’). This average is the 
reliability of the best predictor of the criterion (or of its universe score). We 
can similarly substitute in the denominator of (9.31) a weighted average of 

the o7(,,p). The weights are the squares of the standardized regression weights 
for combining the universe scores to predict the criterion (or its universe 
score). The numerator, of course, will be the covariance of the predictor 
(weighted composite) with the universe score of the target variable. 
When predictors are correlated, no simple relation exists between the 

1iultiple correlation based on observed scores and that based on universe 
scores, according to Cochran. He was thus forced to confine attention to 
very limited cases, but our formulation is more powerful, and yields the 
desired multiple correlation in every case. 

The essential difficulty Cochran encountered in seeking a straightforward 
conversion formula like Spearman’s is this: the best combining weights for 
the fallible predictors assign quite different relative weights to the underlying 
universe scores than they have in predicting the same target directly from
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universe scores. That is to say, the corrected and uncorrected correlations 
report on the validity of distinctly different composites. A predictor that is 
inaccurately observed receives little or no weight in the observed-score 
composite even when the correlation of its universe score with the criterion 
is high. 

Cochran emphasizes that conclusions about the relevance or irrelevance of 
variables will be incorrect if one attempts to interpret the regression weights 
in the observed-score equation substantively. Moreover, when the multiple 
correlation obtained from observed scores is low, the investigator may 
mistakenly conclude that further causal factors need to be unearthed, when 
inadequate observation of the present predictor variables is what holds down 
the correlation. The procedures described in this section enable one to learn 
about the contributions to the criterion of the predictor universe scores. 

Ideally, an investigator who employs multiple-regression methods in an 
attempt to understand a system of variables will collect predictor and 
criterion data on the same large sample. He will replicate or subdivide the 
predictor observations in such a way that adequate estimates of the co- 
efficients of generalizability and the intercorrelations can be made from the 
same sample. It is less critical to assess criterion generalizability, because the 
regression weights are not affected by it; but that coefficient is also useful. 

C. Multivariate Estimation of Universe Scores for Composites 

The covariance of a weighted composite ,,X with any variable ,X equals the 
weighted sum of the covariances of the elements of ,,X with ,X. This theorem 
enables us to derive covariances for ,4,, and from the covariances one can 
develop a multiple-regression estimator of 5. 

If n, variables enter ,,X, their linked covariances form an n, X n, matrix. 
One adds n,, columns for the °o(,,X,,,X), which are interpreted as o(,X,,-p). 

Finally, one sums across the columns of this second matrix with weights w, 
to get a column of o(,X,,u,). Suppose, for example, that ,,X is defined as 

6,X + .X. In the covariance matrix, the first two columns contain the 

variances and °o(,X,.X) = °o(,X,,X); there are two columns for 45, ofp, 

and a final column for ,,. The last column equals six times the ,u, column 
plus the .4, column. Summing the elements of this column with weights w, 
gives o7(y[>)- 

Using 4, as the target variable and the ,X as predictors in a regression 
analysis produces an estimating equation, plus a o?(e). It also generates a 
new coefficient of generalizability p?(y/p,w4>), Which is the multiple corre- 
lation of the ,X,; with ,m,. It is greater than p?(,X5,,wfp), though not 

necessarily by a worthwhile amount.



328 Universe Scores: Profiles, Composites, and Difference Scores 

The covariances of ,, with other variables, and the correlations and 
regression slopes for predicting other variables from ,,u,, are to be determined 
directly from the variance-covariance matrix, not from the estimated 
universe scores. 

Defining the universe score for a composite 

Multiple-regression estimates of universe scores on composite variables 
depart substantially from those given by conventional test theory, even when 
classical assumptions hold. Take so simple a composite as the Full Scale (FS) 
score on the Wechsler test. This is the sum of Verbal and Performance 
scores. The reliability of the Full Scale score would customarily be determined 
either from two administrations of the test (with the same or different forms) 

or from an internal-consistency analysis (splitting within subtests). One 
could also carry out a multifacet study like those in Chapter 8, recognizing 

that subtests are nested within Ve and Pe scales. 

Any such obtained coefficient estimates one kind of squared correlation 
of the observed Full Scale score with a universe score. An estimate of the 
person’s “true’”’ Full Scale score would be made by regressing the observed 
score toward the group mean. Such relatively conventional estimation 
procedures assign equal weight to the Verbal and Performance observed 
scores (means of scaled subtest scores). A multiple-regression procedure, 
however, will assign unequal weights. Which is to be preferred? 

Perhaps the fundamental question is: if Wechsler had been fully conscious 
of the issues involved, how would he have defined the variable ygu,? (To 

sidestep questions of universe definition, we assume that generalization is 
over trials t, days d, items i, and subtests 7. But for every reasonable alter- 

native, the present argument would be much the same.) One imagines that 
Wechsler might have articulated either of two definitions for the Full Scale 
score (before conversion to IQ): 

(i) rsX ptdly — ver ptaIg + Per ptdlJ> 

  

FSHp = C wgX ptdl J 
p.tdJIiJ 

= Vel-p + Pep 

(ii) rs/ty _ Vellp PelAy 

O(velty) O(pelty) 

Definition (i) is perhaps the more obvious, because it embodies the classical 
concept of the true score as an expected value of observed score. But definition 
(11) very likely comes closer to the construct Wechsler had in mind, because 
it assigns equal effective weights in the universe score to the verbal and 
performance aspects of intellectual performance. If Wechsler did not have
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such a balanced concept in mind, it is hard to understand why he assigned 
equal nominal weights in the Full Scale to the observed scores for Ve and Pe. 
(This he did by scaling and prorating subtests before calculating the Full 
Scale score.) 

Clearly, an investigator must define carefully the universe score on a 
composite. This demand has consequences ranging far beyond the Wechsler 
scale. The true score of classical theory, which equals 2w, ,u,, may not 
correspond to the construct an investigator has in mind. In the typical 
achievement test, an investigator seeks to achieve a certain balance among 
types of content, and so sets out a stratification plan that assigns a certain 
proportion of the test items to each stratum. What is meant by weighting of 
‘‘influence”’ is obscure, because the number of possible score points gives 
one indicator of proportionate emphasis, a comparison of variances of 
stratum scores gives another, and a comparison of correlations of sections 
with the total provides a third. Here we raise comparable questions regarding 
the influence of the stratum universe scores in the universe score for the 
composite. 

We need to reflect further on definition (ii). There is considerable appeal 
in the idea of combining standardized universe scores. Unfortunately, this 
will almost never be a viable definition. Standard deviations of universe 
scores such aS yes, vary from one subpopulation to another. To apply 
definition (ii) to the Wechsler, one would have to evaluate o(y.u,) and 

O(pefp) Within a specific population and define the person’s universe score 
as a function of some population to which he belongs. Then two persons 
having the same universe scores ye, and pe, would be assigned different 

rsp if they belong, for example, to different age groups. (This is not a 
recurrence of the principle that the best estimate of the person’s universe 
score differs from the estimate for another person with the same observed 
score, when the two persons belong to groups with different means. Here, 
we have been forced to define the universe score #4, by two different functions 

of Vell and pelty-) 

While the combining weights for yu, and pw, for the 20-25 and 25-30 
age groups, for example, will not differ much, this is merely the entering 
wedge of the problem. Once the proposal has been made to define universe 
score relatively, logic pushes toward a separate definition for men of age 
20-25, or even for college graduates within that group. Where a construct 
is intended to describe performance of persons in different subpopulations, 
it is surely unwise to define it in terms of the parameters for each subpopu- 
lation. 

The information of interest is contained in yu“, and peu,y. It appears 
most important to estimate these separately and not to limit attention to the 
composite, however that is defined. But there will continue to be a need for
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composites. It appears that the composite should be defined so that weights 
of universe scores for the elements remain fixed, regardless of the subjects 
considered. This does not force Wechsler back upon definition (i). In place 
of (ii), he can employ a definition of the form: 

(ii1) FSU yp = Wve Veln + Wpe Pe/-p 

It would be reasonable in deciding on the weights to take into account 
information on the standard deviations of y,u, and peu, in one or another 

reference population. But there should be no pretense that any set of pre- 
determined weights will cause component universe scores to have equal 
correlations with the Full Scale universe score in every population or sub- 
population to which the test is applied. This is no more than a specialized 

version of the truism that the factorial makeup of any test is likely to change 
from one population to another. To the statistical considerations discussed 
in this section, considerations of construct validity must be added. These are 
discussed on p. 339. 

Difference scores 

The multivariate regression approach in this chapter has previously been 
treated theoretically only in connection with measures of ‘“change.”’ Lord 
(1956) introduced the idea that when a certain variable is measured at time 

1 and again at time 2, the best estimate of the “true’’ difference ou, — iu 

is a multiple-regression estimate.! The same logic applies to other kinds of 
difference scores, such as discrepancies between self-concept and self-defined 
ideal, or between Ve and Pe IQs. 

Conventionally, the observed difference has been defined as 2X, — 1X 5:3 
we shall call this ,X,;. The reliability of the difference score has been defined 
by a well-known and much-used formula. The rationale for the formula 
conceives of the D study as having the design ,(i x p), 2(g x p), [icg]. 
Classical theory, assuming complete randomness of error, has not needed to 
distinguish between conditions or alternative designs. In our notation, the 
traditional formula is as follows: 

(10.11) “(aX piraX pvr) = PAX piralty) 

_ Op) + op) — 2° Xs9X) 

o°(,X) + o*(,X) —? °a(, XX) 
  

1 No issue of standardization arises; one expects the variance of a posttest to differ from 
that of the pretest and wishes to retain that information.
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As the formula is usually given, the expression p(,X5;.1X p;)0"(,Xp;) replaces 

the first term in the numerator, and a similar expression in ,X,, replaces the 
second term. 

Taking linkage into account. A distinction between linked and independent 

covariances has to be made (Stanley, 1967). The classical model which leads 
to formula (10.11) requires that errors in measuring v, be uncorrelated with 
errors (departures from universe score) in measuring v,. However, in short- 
term experiments appreciable correlation of error may arise when the same 
test form is used for pretest and posttest or if the same examiner makes both 
measurements. The pupil may recall certain answers, or the examiner may 
reinstate good or bad rapport such as was established during the initial 
measurement. The likelihood of “‘correlation of error’ is even greater when 
one is examining the difference between two scores within a profile. The 
person’s mental set in taking the Wechsler, his alertness, his reaction to 
the examiner, etc. will tend to produce a higher correlation between Ve and 
Pe scores on the same testing than between measures on different days with 
different examiners. 

The following more general version of (10.11) should be employed wherever 
there is any possibility of linkage. 

o'(,p) + o(sp) — 2 °0(,X,.X) 

o°(,X) + o°(,X) — 2 °0(,X,.X) 

This formula is identical to (10.11) save that the denominator contains a 

linked covariance. Investigators in the past have at times made the mistake 
of employing a linked covariance in both the numerator and denominator of 
the classical formula. Assuming that v, and v, are positively correlated, this 
produces an underestimate of the generalizability of the difference score. 
Another implication of (10.12) is that an investigator ought, where possible, 
to use a linked design in estimating the difference score, because this raises 
the coefficient of generalizability provided that v, and v, have a positive 
relationship. Unwanted components such as ,u,;~ tend to cancel out of 
the difference (see p. 94). 

Estimates of the various terms of (10.12) can be obtained from a suitably 

linked G study; °o(,X,.X) = o(,p,.p). While this equation holds for designs 
other than the crossed one, each design produces a different expected observed- 
score variance and, therefore, a different denominator. The situation is not 

appreciably modified by introducing additional facets; one needs only to 
make sure that the linkage in the G study permits one to estimate the co- 
variance that is defined by the linkage in the D study. 

  

(10.12) p (aX pirdlty) = 

Significance of an observed difference. Classical theory concludes that the 

variance of the error of measurement for the difference score (in raw-score
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units) equals the sums of the variances of the errors for the two variables: 

(10.13) o°(,A,,;) = o°GA,,) + 07(2A,,) 

[For many tests o?(,0,;) will be much the same as this, but o7(,A) is the 
theoretically appropriate error measure for an absolute difference.) The 
commonly used overlap technique forms a confidence interval for ju, 
symmetric about ,X,,, its width being a multiple of o(,A), and forms another 
such interval for .u,. If these two intervals, laid out on the same numerical 
scale, do not overlap, the decision is that ,u, differs from zero. The confidence 
interval ordinarily employed for each variable is +10(,A). Such intervals will 
not overlap if |,X,,| > o(,A) + o(,A). If the two error standard deviations 
are equal, and the errors are independent, this limit equals 1.41 o(,A). The 
decision rule rejects the hypothesis that ,4, = 0 with an «@ risk (two-tailed) 
of 0.16. 

In reasoning such as this it is necessary to take linkage into account. It 
will be recalled that in a one-facet D study with n; = 1, 

1A,; = Gus — 4) + GX pi — 1p — 14 + 1H) 
and 

Ay, = (oft, — oft) + (Xx pg — 2p — oftg + oft) 

If i ¢ g, these components are not independent in the way the traditional 
argument requires. In calculating the variance within the person of the 
difference of these errors, i.e., of ,A,,, the crossproduct terms do not vanish, 

and in place of (10.13) we have 

(10.14)  °a?(,A,,) = 091) + og) — 2 °o(siog) + 07(pi,e) 

+ o%(,pg,e) — 2 °o(spi,e;opg.e) 

= 07(,A) + 0°(,A) — 2 °o(,A,,A) 

One may use °o(,A) or °o(,A) directly to test the null hypothesis that ,u, 
equals some specified value: zero, or the mean ,u, or any other value x. 
Whatever the value of «, the procedure is to consider an interval ranging 
from x — a6(,A)to« + a6(,A). If ,Xp., lies within the interval, the hypothesis 

al4pe = « Cannot be rejected. When one rejects the hypothesis because the 
observed difference is outside the interval, the level of confidence depends 
on the value of a. 

In Chapter 5 we questioned the formation of confidence intervals for the 
universe score symmetric about the observed score. The universe score is 
far more likely to lie within that interval than the interpreter believes, when 
the observed score is close to the mean, and far more likely to lie outside the 
interval when the observed score is far from the group mean in either direction.
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Here we are dealing with a confidence interval symmetric about x, and the 
objection considered previously does not apply. If in the universe the values 
of ,A for every subject are normally distributed with variance o7(,A), the 
observed score for a person whose ,, truly equals « will indeed fall outside 
the interval with probability equal to the risk the interpreter intends. Vio- 
lation of the assumption of uniform o(A) or of normality probably does not 
introduce great distortion. 

In all confidence-limit procedures, one may misinterpret the finding 
that a statistic lies within the specified interval. The procedure is effective in 
making sure that one does not reject the null hypothesis too frequently, but 
it allows errors “‘of the second kind,’’ of accepting the null hypothesis when 
other hypotheses are sound. Errors of the second kind are particularly 
numerous among persons having a universe score such as x + ao(,A). As 
many as half of these persons will have observed scores falling within the 
interval, yet the investigator will interpret scores for these persons as if their 
al4p = k. This is a consequence of the hypothesis-testing strategy, and not of 
special problems inherent in score interpretation. The investigator who 
wishes to avoid this kind of risk must turn to the point-estimation of ju, or 

to some other statistical analysis that employs prior probabilities. 
Even though the confidence interval symmetric around « serves its intended 

function, we have considerable reservations about the overlap technique. 
The overlap technique applies only where « is set equal to zero. It treats ,A 
and ,.A as if they were independent, where in most of the testing that yields 
plotted profiles, the two are linked. A further objection is that the plotting 
of bands suggests to the less sophisticated interpreter that one has formed a 
useful confidence interval for each ,u, considered by itself. 

Regression estimates of change scores and their use 

Because of the widespread interest in the measurement of change or gain, 
we shall focus on that problem in this section, relying heavily on the earlier 
presentation of Cronbach and Furby (1970) and often quoting or para- 
phrasing it. The paper places particular emphasis on the estimation of uy 
by regression methods, but it also argues that it is usually less appropriate to 
fixate on the difference score in this manner than to emphasize the estimated 
universe score on the posttest. We shall return to that theme. It is also to be 
noted that every technical statement to be made regarding change scores 
applies to any difference between two variables or two distinguishable classes 
of variables. Many investigators have felt, for reasons good or bad, that 
their substantive questions required a measure of gain in ability or shift in 
attitude. ‘“‘“Raw change’’ or “raw gain’’ scores formed by subtracting pretest 
scores from posttest scores lead to fallacious conclusions, primarily because 
such scores are systematically related to any random error of measurement.
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Although the unsuitability of such scores has long been discussed, they are 
still employed, even by some otherwise sophisticated investigators. 

Just why gains or differences are thought to be worth estimating can 
perhaps be inferred from the studies where estimates of some sort have been 
made in the past. The following aims may be noted: 

1. To provide an indicator of deviant development, as a basis for identify- 
ing individuals to be given special treatment or to be studied clinically. 
2. To provide a measure of growth rate or learning rate that is to be 
predicted, as a way of answering the question, What kinds of persons 
grow (learn) fastest? Here, the change measure is a criterion variable 
in a correlational study. 
3. To provide a dependent variable in an experiment on instruction, 
persuasion, therapy, or some other attempt to change behavior or beliefs. 

4. To provide an indicator of a construct that is thought to have significance 
in a certain theoretical network. The indicator may be used as an inde- 
pendent variable, covariate, dependent variable, etc. An example is the 
interference score needed on the Stroop Color—Form Test. 

Selecting individuals on the basis of gain or difference scores. Many who 

calculate difference scores are interested in making decisions about in- 
dividuals—identifying underachievers for clinical attention or fast learners 
for special opportunities, for example. One can scarcely defend selecting 
such individuals on the basis of a raw-gain or raw-difference score of the 

type aX p;- 
It is reasonable to estimate ,u, by regression methods. It was suggested 

by Lord, McNemar, and others that ,/i, be expressed as a function of the 
two observed scores ,X and ,X. A multiple-regression estimator can be 
formed as was done earlier in this chapter for the Wechsler Performance 
score and for the DAT scores. We would take linkage into account; this 

possibility was not considered by earlier writers on this kind of estimation.” 
It may be noted that one can form the regression estimate in two ways. A 
direct estimate can be made of ,u,, or one can form separate estimates of 
i/4y and 4, and subtract the first from the second. The two procedures will 
give identical results. 

Our broader multivariate conception leads us to bring predictors other 
than ,X and ,X into the picture. The statement of the problem as “the 
measurement of gain” or of “residual gain”’ implies a special affinity between 

2 Where subjects have experienced different treatments between time 1 and time 2, the 
equations ought to be determined from the correlations for each treatment group con- 
sidered separately. There is no necessary reason for p(,X,.X) or p*(.X. olt,) to be the same 

under both treatments.
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,X and ,X, the pretest and posttest, respectively. The two are seen as “‘the 
same variable’’ in some sense, but behavior is multivariate in nature and so is 

change. 
Even when ,X and 2X are determined by the same operation, they often 

do not represent the same psychological processes. At different stages of 
practice or development, different processes contribute to performance of a 
task. Nor is this merely a matter of increased complexity; some processes 
drop out, some remain but contribute nothing to individual differences 
within an age group, some are replaced by qualitatively different processes. 
Purely empirical studies of changes in the operationally defined variable 
may be justified; to assess such changes, even when one cannot describe 
them qualitatively, may be practically important. But one must not fall into 
the trap of assuming that the changes are in a particular psychological 

attribute. 
Instead of confining attention to two specific variables, we consider two 

classes of variables. Assume that some point of time or some time interval is 
selected as defining the onset of treatment and the termination of treatment. 
All measures the investigator collects regarding the person’s status before 
that time are pretest measures, considered collectively as a vector of observed 
scores ,X. All measures following treatment are considered together as a 
set of ,,X. The measures may be test scores, but they may be school marks, 
demographic indicators, or other information (e.g., enrolled in honors 
section of algebra, or went to college). Division of the time continuum to 
form two classes of variables does not directly allow the study of change as a 
process extended over time, but successive cuts can be used to extend the 

model. 
We find a conditional notation helpful. The symbol 2/1, | .X, for example, 

refers to a regression estimate of the universe score on v, from the observed 
score ,X; the following refer to particular multiple-regression estimates: 
ofly | 1X, 2X OF oft» |X. The logic developed earlier in the chapter leads us to 
recommend, then, that a person who wishes to estimate ,u, proceed to set 
up a variance-covariance matrix for all the observed scores and the universe 
scores ,4, and .4,. The computational procedures vreviously demonstrated 
may then be used to form ,f,| X, ,X and of, | 1X, 1X. The difference 
between these is the desired estimate of “true change.” It would be slightly 
more direct to form jf» | 1X, yX, but the two separate scores are likely to 

be worth examining. In any procedure of this sort, one must recognize the 

role sampling errors play in the determination of regression weights, and 

probably should employ a reduced-rank procedure to minimize capitalization 

on chance. 
A simple example will perhaps clarify why such a procedure has advan- 

tages. Suppose one wishes to teach recognition of the letters of the alphabet
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to kindergartners. A direct pretest on the alphabet might serve as v,, and a 
posttest as v,. Consider as an auxiliary pretest a good individual test of 
general ability; call this v3. Now the set ,X consists of ,X and ,X. The quantity 

v, may be a useful test for identifying those few children who have indeed 
mastered most of the alphabet, but for children who have only hazy knowl- 
edge of a few letters, a simple test with one trial per letter will be quite 
unreliable, especially when attention and work habits are as poorly developed 
as they are at the start of kindergarten. The correlation of v, with ,u, seems 
likely to be appreciable. We suggest that the best estimate of true knowledge 
of the alphabet at the beginning of the training is the regression equation 
that combines v,, v2, and v3 with whatever weights the data justify. It seems 
unlikely that there will be a large enough correlation between v, and ,u, 
to produce an appreciable weight for v, in the regression equation; but 
calculating the weight allows for the possibility that v, adds useful infor- 
mation. We also propose that .u, be estimated from v,, v,, and v3, where 

these are the only facts at hand; again, the data will tell whether v, and v, 
add appreciably to the accuracy of the estimate. To extend the example 
just a bit further: we would look with favor on employing a report on 
parents’ education as a further predictor variable v,. Among children with 
the same observed score on the unreliable alphabet test, it seems quite likely 
that those whose parents are more educated have given them more experience 
with the alphabet and that if tested more thoroughly they would earn better 
scores than those with less-educated parents. However, this is only a working 
hypothesis; if parents’ education does not improve the estimate, it will be 
assigned no weight in the end. 

Having described a logical approach to the estimate of the universe score 
aly, we must still question whether there is any purpose in such a measure. 
We see no practical reason for selecting high gainers and low gainers for 
clinical study or for using the gain score as a basis for decisions about the 
individuals. For most decisions, 2“, is more pertinent than ,u,. A case can 
be made for estimating some type of “‘residual gain’’ measure. Persons who 
have gained less than others who started at the same level often should be 
made the subject of clinical study or singled out for some special treatment. 
The residual gain, however, is indistinguishable from the posttest score with 
pretest information partialled out. Thus ,X +X = .X°,X, and guy* wp = 
ofp * 1f4p. SO we Shall speak of an adjusted posttest score, not of residual gain. 

The observed adjusted posttest score is .X-,X or 2X5; — 0(:X,2X) Xp; 

o*(,X). But this score is fallible, and one might suspect it of being biased in 

the same sense as the observed difference score is. Actually, as is demon- 
strated by Cronbach and Furby, when one estimates the universe score 
ofp * 1, from ,X and 2X jointly, the estimate is proportional to the observed 

partial variate. Consequently, if one relies entirely on the v, and v, data, he
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identifies the same persons as having unexpectedly high or low universe 
scores on the posttest when he interprets the observed residual gain as when 
he forms a regression estimate of the residual gain in universe score. If, 
however, auxiliary predictors can be used in estimating the universe score 
on the partial variate, the regression estimate will select different persons as 
having exceptional posttest universe scores. 

The focus on 24,° 4, 1S Open to question. One really wishes to know 
which persons profited less from the treatment than others having similar 
initial status. Pretest status is multivariate, and it appears that one ought 
to identify persons having exceptional performance on the basis of oy -° ; Mo. 
This takes into account all relevant aptitudes rather than just the pretest that 
is the operational counterpart of the posttest ,¥X. 

To estimate ou ° ;4, requires a complicated algorithm whose stages follow: 

1. Estimate all variances and covariances among the ,u, and 2p. 

2. Identify by regression analysis the weights w,, such that »u@_ = > Wy ftp 
best predicts ,u,. The w, are unstandardized regression weights. °*! 
3. Calculate o(,,p,24,) and o7(,,u,). By definition, ofp * tp = ollbn* ula = 

hy — Owl p 2) wl] O* (why). 
4. Calculate all variances and covariances among and between the ,X 
and the ,,X, and estimate their covariances with 945° wp. 

5. From these, calculate a regression equation for estimating My ° wl» 
from the ,X and ,,X jointly. 

The reader setting up a computational procedure should note these points: 

Oop’ y) = °0(,X 5y/X) 

Owl p2ly) > 

O"( wf ») vel 

Linked covariances of observed scores are required at stage 4. Reduced-rank 
methods should usually be employed in the regression analyses. 

Posttest status as well as pretest status is multivariate. One could estimate 
an individual’s adjusted posttest universe score on every variable in II, just 

as we did for vz. This vector of scores, however, would not provide an 

obvious basis for selecting cases for special treatment. If one wishes to 
select cases on the basis of unexpectedly high or low posttest status, taking 
all posttest variables into account, it appears that he has to define a particu- 
larly significant composite ,,“, of the variables in II. The calculations 
suggested above with respect to .4, can be carried out with respect to yp. 

O( 4X sally ° wltp) = * 0( 4X 2X) —_ Wy O( 4X 5yX) 

Criteria in correlational studies. Correlational studies are often intended to 
investigate a question such as this: What pretest attributes distinguish persons
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who profit most from the treatment? This asks about the correlation of each 
variable in I with the posttest or, perhaps, with a gain score. For inquiries 
such as this, one should not calculate gain scores, nor should one form a 
regression estimate of such a score. One cannot obtain the correct correlation 
of any universe score with another variable by correlating the estimated 
universe score with that other variable. 

The most expeditious way to investigate correlational questions is to work 
from a variance—-covariance matrix. One determines the variances of ,u, and 
9/4, and their covariances with each other and with each observed variable in 
I. The covariance of any variable with ,u, (if that is the ‘‘criterion’” of 

interest) equals its covariance with »4, minus its covariance with ,u,. (Note 

that an estimate of variance for a universe score is not the variance of 
estimated universe scores; similarly for a covariance.) Dividing covariances 
by the appropriate standard deviations gives a complete set of predictor 
intercorrelations, and a set of correlations of the predictors with ,u,. If a 

question is asked about correlations of the adjusted posttest (i.e., the residual 
gain), one forms its variance and covariances and proceeds similarly. 

Gains as a consequence of treatments. Investigators often think of an 
experiment as testing whether a treatment produces gains, but a proper 
analysis of the separate pretest and posttest scores themselves serves at least 
as well as any treatment of gain scores (Engelhart, 1967). 

Where an experiment has been performed on cases allocated randomly 
into two or more treatment groups, there is no need to use a measure of 
change as a dependent variable and no virtue in using it.? In testing the null 
hypothesis that two treatments have the same effect, the essential question is 
whether posttest scores ,X vary from group to group. Consequently, .X is 
an entirely suitable dependent variable. 

Analysis of covariance takes variation in ,X into account. [If p(,X,.X) < 

0.4, blocking on ,X is probably to be preferred, according to Elashoff, 1969.] 
The adjustment estimates the scores ,X expected under the null hypothesis 
and then expresses each observed ,X as a deviation from the estimate. It is 
desirable to base the adjustment, not on ,X, but on whatever linear function 

of ,X best predicts ,X within groups. 
Where within-treatment regressions differ in slope, the effect of the 

treatment depends on the level of pretest variables. The most meaningful 
scientific report consists of regression functions describing the relation of 
ofp to the uy. These can be computed for each treatment group with the aid 
of the within-group covariance matrix for universe scores. 

In the one-group experiment, if only v, and v, are measured, gains scores give the same 
result as analysis of the paired pretest and posttest scores.
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Lord (1960) proposed that universe scores on the pretest be estimated and 
that these be used as a covariate instead of the observed scores. The Lord 
procedure would not alter one’s conclusions when the groups have been 
formed at random and when all information from which the universe scores 
might be estimated is taken into the set of covariates. In a quasi-experiment, 
however, where treatment groups are not formed at random, no analysis is 
satisfactory. To be sure, Lord’s technique can be applied, and augmented by 
using data other than ,X to estimate ,u,. Since publication of the Cronbach-— 

Furby paper, however, new issues have arisen. The covariance adjustment, 
we find, may overestimate or underestimate the difference in population 
means on posttest, depending on what variable is selected as covariate. Bias 
is likely regardless of what one does to improve the estimate of scores on 
the covariate. We cannot digress to examine these unsettled problems. 
Perhaps the last word will be Lord’s statement made in 1967: “There simply 
is no logical or statistical procedure that can be counted on to make proper 
allowances for uncontrolled preexisting differences between groups.” 

The findings of such a study can be summarized by calculating within- 
group regression functions relating ,4, to the ,u,, using the covariance 
matrix for universe scores. What cannot be done is to interpret the difference 
in means, adjusted or unadjusted, as a treatment effect. 

Differences and gain scores as constructs, One of the most common uses 

of difference scores is to operationalize a concept: For example, self-satis- 
faction is sometimes defined as the difference between the rating of self and 
ideal-self on an esteem scale. One might likewise think of a gain score as 
reflecting “learning ability’? on a certain task. Operational definitions will 
often take the form of linear combinations of operations. 

But there is little a priori basis for pinning one’s faith on 4, — ,Mp as 
distinct from the more general ,u, — a,,. Just what weight to assign the 
“correcting”’ variable is an empirical and theoretical question. To arbitrarily 
confine interest to ,4, (which means that a is fixed at 1.00) is to rule out 

possible discoveries. This argues, then, for discovering what function of 245 
and ,u, has the strongest relationships with variables that theory suggests 
should connect with the construct. The statement applies equally to the 
defining of additive composites such as the Wechsler FS score. 

The claim that an index has validity as a measure of some construct carries 
a considerable burden of proof. There is little reason to believe and much 
empirical reason to disbelieve the contention that some arbitrarily weighted 
function of two variables will properly define a construct. More often, the 
profitable strategy is to use the two variables separately in the analysis to 
allow for complex relationships.
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EXERCISES 

E.1. Given: p(,X,.X) = 0.50; p?(X,o4,) = 0.70. 

a. If .X¥ were taken as the sole predictor of .4,, what would be the value of 
2.44 9 

P (s4y,2p) , 

b. What would be the value of p?(s/,,24,) if both v, and v, were used as predictors? 
(Use Figure 10.1.) 

c. What would be the value if p?(,X,.u,) were 0.90? 

E.2. The following matrix (Bouchard, 1968) gives correlations between scales of 
two instruments, an adjective checklist and a self-rating schedule for three at- 
tributes: Dominance, Endurance, and Order. The within-scale correlations are 

indicated as linked. Test-retest coefficients from a second sample are given in the 
diagonal. Using Figure 10.1, judge as well as you can whether any combination of 
two scores is likely to estimate one of the six universe scores well enough to make 
P*(siipsatty) exceed p?(4X,%/4) by 0.05 or more? 

Adjective checklist Self-rating schedule 
    

Do End Ord Do End Ord 

  

Adjective checklist 
Do 0.76 *0.48 °0.26 0.51 0.31 0.02 

End 0.74 *0.88 0.17 0.46 0.42 

Ord 0.63 0.09 0.44 0.50 

Self-rating schedule 

Do 0.76 °0.18 *0.04 

End 0.67 *0.54 

Ord 0.81 

  

E.3. The following data come from a study by Costin (1968). Scores were obtained 
before and after a psychology course. Treat data on the assumption of independent 
sampling of conditions. Entries in the diagonal are internal-consistency coefficients. 

  

  

Correlation 

Standard 

Test deviation 1 2 3 4 

v,:Principles test (pretest) 4.2 0.52 0.25 0.28 0.18 
ve: Principles test (posttest) 6.6 0.25 0.78 0.36 0.51 

vz: Misconceptions test (pretest) 5.0 0.28 0.36 O57 0.42 

v,: Misconceptions test (posttest) 4.4 0.18 0.51 0.42 0.65 

SCAT (with arbitrary s.d.) 5.0 0.42 0.38 0.27 0.34 
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a. Calculate the coefficient of generalizability for the difference between v, and v2 
observed scores. What is the universe of generalization? (Hint: In problems such as 
this series, first form the variance—covariance matrix.) 

b. What is the correlation of the raw-gain score .X — ,X with eu,? with yup? 

c. What combination of these five (or fewer) variables gives the best available 

estimate of ,“,? (If a computer is not available, make a reasonable inference as to 
which variables would enter a regression equation; do not calculate weights.) 
d. What is the correlation of each variable with gu,(= ofp — 1!p)? 

e. What combination of ,X and 2X gives the best estimate of guy? 

f. What combination of five (or fewer) variables gives the best available estimate 

of aly? 

E.4. The data given in Table 10.E.1 report correlations for subtests within the 
same administration of the test. For the sake of this example, assume that the 

covariance arises entirely from the person component (i.e., linkage is negligible). 

TABLE 10.E.1. Intercorrelations within Form A, and Estimated Alternate-Form 

Retest Correlations for Subtests of the Metropolitan Readiness Test (Test Manual, 

1966, pp. 12, 14) 

  

Correlation with 

  

  

Standard 

Subtest Mean deviation 1 2 3 4 5 6 

1. Word Meaning 8.67 3.1 0.70 0.49 043 046 0.55 0.39 

2. Listening 8.89 2.8 0.50 0.42 0.40 0.50 0.36 

3. Matching 7.49 4.0 0.79 0.53 0.60 0.49 

4. Alphabet 9.39 4.7 0.85 0.64 0.45 
5. Numbers 12.02 4.7 0.81 0.53 

6. Copying 6.82 3.9 0.82 

  

For intercorrelations, means, and standard deviations, N = 12,225. Diagonal 

entries are correlations with Form B given a few days later (NV = 278); these have 

been adjusted to allow for the fact that the standard deviation in the retest sample 

was smaller for most subtests than the standard deviation for the sample giving 

intercorrelations. 

a. What is the coefficient of generalizability (over items and occasions within a 

week) of the total score (formed by adding the subtest raw scores)? Hint: First form 

the variance—covariance matrix. 

b. Which subtest contributes most to the universe-score variance for the total score? 

c. When regression equations were formed for estimating the universe scores for
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the first three subtests, the standardized regression weights were as follows: 

Subtest to which weight* 
is assigned 

Universe score   

  

predicted 1 2 3 4 5 6p (gboraltp) P(g XsuMo) 

Word meaning 0.6 O01 — — 02 — 0.78 0.71 

Listening 03 04 01 — 02 — 0.75 0.50 

Matching —- — 07 — O1 — 0.83 0.81 

Does this indicate that regression weighting would be useful where the subtest 
scores are to be used to diagnose the child’s specific weaknesses ? 
d. The raw-score regression equations for Word Meaning and Listening take this 
form (when very small terms are ignored): 

vy = 0.52(,X) + 0.14(.X) + 0.09(,X) + 1.85 

ofp = 0.194,.X) + 0.25(.X) + 0.06(,X) + 0.10(,X) + 3.36 

Consider the following three persons, all of whom are well below the mean and 
therefore would be candidates for diagnostic interpretation. Is the impression given 
in each case by the unregressed scores for variables 1 and 2 similar to the impression 

given by the regression estimates ? (The means for the two variables are near 9, and 
the raw score standard deviations near 3; see Table 10.E.1.) 

Raw score on subtest 

  

Person 1 2 3 5 

  

] 6 3 4.5 4.5 
2 45 45 45 4.5 
3 3 6 4.5 4.5 

E.5. Table 10.E.2 gives data for subtests of the Analysis of Learning Potential 
(two forms, given a short time apart; these data supplied by Harcourt, Brace, and 
Jovanovich, Inc.). Examine the following (haphazardly selected) pairs of subtests to 
answer the question: Is there appreciable linkage between subtests administered at 
the same time? 
a. 2, 9 Figure Series, with 3, 10 Number Fluency. 

b. 2, 9 Figure Series, with 5, 12 Number Series. 

c. 4, 11 General Information, with 7, 14 Story Sequence. 

E.6. A “reading composite” is made up of subtests 4, 6, and 7, which presumably 
are most related to aptitude for reading instruction. The observed score is the sum of 
standard scores on the three subtests. 

4 Weights less than 0.10 are not given, although these terms were allowed to affect the 
multiple correlation.
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a. Calculate a coefficient of generalizability to the universe score defined by various 
forms of the test (all with the same subtests) and by various occasions within a week 
Or SO. 
b. The authors apply Kuder-Richardson formula 20 (internal-consistency of items) 
to each subtest. They use a traditional formula for the reliability of an equally- 
weighted composite score, to obtain a coefficient for the reading test of 0.91. The 
formula is 

(2ryy + UT yy)/(Ny + Uryy) 

where n, is the number of subtests, r,, is a subtest reliability coefficient, and the r,,. 

are intercorrelations of subtests within the battery. Why is the coefficient obtained in 
a above more valuable to the test user? 

c. One might generalize over the universe of subtests of which 4, 6, and 7 may be 
regarded as a sample. What would be the coefficient of generalizability, taking sets 
of random subtests, and occasions, as randomly sampled ? 

E.7. What is the regression equation for estimating the universe score on the 
reading composite from the standardized observed scores on subtests 4, 6, and 7 
together? Assume subtests fixed, but let forms of each subtest, and occasions, vary 
in the universe. How much is gained from using multiple predictors in place of the 
observed score on the reading composite? 

There are several ways to carry out the required calculations. It is suggested that 
one set up a symmetric matrix of within-battery correlations for the three subtests. 
For example, fill cell 4, 6 with the average of the correlations of 4A with 6A and 4B 
with 6B. Set up also a symmetric between-battery matrix, by averaging, for example, 
the correlation of 4A and 6B with that of 4B and 6A. The entries in this matrix are 
also covariances of the subtest universe scores, and covariances of the subtest 

observed scores with the subtest universe scores. The sum of this matrix is the 
variance of the subtest universe score. Summing the three entries in a row gives the 
covariance of the subtest observed score with the reading-composite universe score. 

Answers 

A.l. a. 0.70 
b. About 0.74. 
c. Negligibly different from 0.90. 

A.2. No other score correlates highly enough to produce such an improvement for 
adjective checklist (ACL) Dominance (where an intercorrelation of about 
0.65 is required, according to the figure). Similarly, no combination improves the 
estimate for self-rating schedule (SRS) Dominance by the amount desired. 

If the data are taken at face value, it would appear that combining adjective 
checklist End and Ord would make p? for estimating gpg“, close to 1.00. One is 
suspicious of the data, however, because the retest correlation comes from a 

different sample than the within-scale correlations. Moreover, the presence of 
linkage means that a conclusion would have to be based on (10.5) rather than (10.4);
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Figure 10.1 is based on the latter. More complete analysis comparing correlations 
with occasion common to correlations with occasion different would provide the 
basis for constructing and evaluating a two-variable estimator of pyaHo- 

Similar arguments apply to the adjective checklist Ord scale (estimated from 

ACL Ord and SRS Ord, and also from ACL End if linkage is not too great) and the 

Self-rating Schedule End scale (estimated from SRS End plus ACL End, plus 

perhaps SRS Ord). 

A.3. Variance-covariance matrix, extended 

1X oX 3X aX SCAT ,u gH al 
  

1x 17.64 693 5.88 3.33 882 9.16 693 —2.23 

oX 6.93 43.56 7.56 9.42 12.54 6.93 33.98 27.05 
3X 5.88 7.56 25.00 9.24 6.75 5.88 7.56 1.68 
aX 3.33 9.42 924 17.64 748 3.33 9.42 6.09 

SCAT 8.82 12.54 6.75 7.48 25.00 8.82 12.54 3.72 

a. o%(;p) = 9.16, o%(op) = 33.98, 6(p,2p) = 6.93 
Using (10.11), 

  

9.16 + 33.98 — 2(6.93) 29.28 _ 

17.64 + 43.56 — 2(6.93) 47.34 — 

b. G(X — 1Xselp) = 6(X,ol4y) _ 6(, Xo) = 33.98 — 6.93 = 27.05 

6(oX — Xnhp) = —2.23 

PaX aby) = 0.62 

The raw gain score then depends very heavily on the posttest but has almost no 

relation to the universe score on the pretest. The reason for this is the comparatively 

large universe-score variance for vp. 

c. The three best predictors give this equation: 

wap = 0.39 X + 0.09 .X + 0.18 SCAT. R = 0.796. 

p? goes from 0.52 to 0.63. (The standardized regression weights are 0.55, 0.15, and 

0.31.) Very small weights could be added for the two other variables, but these add 

negligibly to the prediction. 
d. o%(gu,) = 29.28 (from a). o(g4,) = 5.41. 

Correlations are: for ,X, = —0.10; 2X, 0.76; 3X, 0.06; ,X, 0.26; SCAT, 0.14. 

€. alip = 0.69(.X) — 0.40(,X), R = 0.816; p* goes from 0.58 to 0.67. (The standard- 

ized weights are 0.84 and —0.31.) 
f. A five-variable equation is 

alip = 0.71(.X) — 0.34G,X) — 0.17X) — 0.12GX) — 0.04(SCAT). 

R = 0.839.
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A three-variable equation gives R = 0.834. (p? rises from 0.58 to 0.70). Perhaps 

the most interesting aspect of that equation is that the standardized regression 
weights are nearly equal for ,X and 3X. Le., the Misconceptions pretest estimates 
gain in Principles as well as does the Principles pretest. The equation in terms of 
standard scores is 

afty = 0.89(,Z) — 0.27(,Z) — 0.19(4Z). 

A.4. a. 

Universe Observed 

score score 
variance variance 

Sum off-diagonal entries in Table 10.E.3 220.88 220.88 
Sum diagonal entries in parentheses 72.43 
Sum diagonal entries not in parentheses 92.84 

Totals 293.31 313.72 

Coefficient of generalizability = 293.3/313.7 = 0.935 

b. Subtest 4 (whose entries into the numerator have the largest total). 

c. The increase in the accuracy of generalization is tiny for the Matching universe 
score. The increase for Word Meaning cuts the error variance by one-fourth, and 
might be sufficient to repay the effort of weighting. The weighting cuts in half the 
error variance in the estimate of the Listening score, and is clearly profitable. 

The Listening equation places considerable weight on variables other than 
Listening (v,) because p?(,X,ou,) is low. 

TABLE 10.E.3. Variance-Covariance Matrix* (Based on Table 10.E.1) 

  

  

1 2 3 4 5 6 

1 9.61 4.25 5.33 6.70 8.01 4.71 
(6.73) 

2 4.25 7.84 4.70 5.26 6.58 3.93 
(3.92) 

3 5.33 4.70 16.00 9.96 11.28 7.64 
(12.64) 

4 6.70 5.26 9.96 22.09 14.13 8.25 
(18.78) 

5 8.01 6.58 11.28 14.13 22.09 9.71 

(17.89) 
6 4.71 3.93 7.64 8.25 9.71 15.21 

(12.47) 

  

a Parenthetical entries are estimated universe-score variances.
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d. We arrive at these estimates: 

Observed score Regression estimate 
  

  

Person V1 Vo v; Vs 

1 6 3 5.7 6.0 

2 4.5 4.5 5.2 6.1 

3 3 6 3.6 6.2 

There is, then, a considerable change in the profile shape for Person 1. The very low 

observed score on v, is regressed toward the mean and the false impression that 2, 

is less than ,u, for Person 1 is erased. Likewise, the profile shape for Person 2 

changes, though not greatly. 

A.5. a. Within-battery (linked) correlations are 0.51 and 0.42. Independently ad- 

ministered, the subtests correlate 0.43 and 0.36. Linkage raises correlations within 

the battery by about 0.07. 

b. Linked: 0.68, 0.68. Independent: 0.57, 0.55. About 0.12 of the linked correlation 

is attributable to person-occasion linkage. 

c. Linked: 0.46, 0.38. Independent: 0.40, 0.34. Linkage for this pair is weaker (0.05). 

A.6. a. For each form-occasion combination there is a within-form matrix of 

correlations of subtests 4, 6, and 7, with 1.00 in the diagonal. The sum of the matrix 

is the observed-score variance for the reading composite; the average for the two 

forms, 5.51, is the estimate of expected observed-score variance. 

There is also a between-battery matrix of subtest correlations for 4 with 4, 4 with 

6, etc. These nine correlations add to 4.38, which estimates the universe-score vari- 

ance. 
The ratio 4.38/5.51 or 0.795 is the coefficient of generalizability. 

b. The analysis by the Kuder-Richardson method allows person-occasion and 

person-subtest-occasion variance to enter the estimate of universe-score variance. 

But an interpreter of an aptitude test of this sort is almost invariably interested in 

generalizing over occasions of testing, at least within a limited time period. Con- 

sequently, our analysis considers a more pertinent universe; because this universe is 

broader, the coefficient drops. 

Another answer, which amounts to the same thing, is that we use independent, 

rather than linked, correlations in the numerator of our formula. 

As a matter of fact, the test manual follows its report on the Kuder—Richardson 

coefficient with a directly calculated correlation between reading composites on two 

forms on two occasions, speaking of this as “‘the most rigorous measure of test 

precision.” The value of 0.80 agrees with our coefficient of 0.795. There is probably 

no legitimate argument for calculating and reporting the Kuder-Richardson 

reliability. 

c. The estimated observed-score variance is the same asin a:5.51. The universe-score 

variance now has to be estimated as nine times the average of the °p,X,X) 

between unlike subtests. This is 3.81 and the coefficient is 0.691.
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A.7. A larger correlation matrix is presented here than is necessary for the 
question posed. 

  

  

Subtest observed scores (linked) Reading-composite 
universe scores 

Subtests Subtests 

1 2 3 4 5 6 7 fixed random 

1 1.00 0.27 0.32 0.47 0.32 0.59 0.28 0.61 . 0.66 

2 1.00 0.47 0.40 0.68 0.34 0.53 0.54 0.58 

3 1.00 0.40 0.55 0.41 0.40 0.53 0.57 

4 1.00 0.46 0.49 0.42 0.70 0.65 

5 1.00 0.45 0.51 0.61 0.66 

6 1.00 0.34 0.74 0.62 

7 1.00 0.65 0.54   
Standardized regression weights® were calculated with three predictors and seven 
predictors: 

  

Predictor 4 6 7 1 2 3 5 P?(hns, Hp) 

Fixed subtests in a 0.46 0.35 0.80 

the universe 0.27 0.35 0.29 0.14 0.08 0.04 0.06 0.82 
Random subtests in eo 0.36 0.28 0.64 

the universe 0.21 0.10 0.11 0.35 0.21 0.12 0.14 0.81 

The answer to the question posed is that regression weighting of the three subtests, 

where the universe is defined by the three fixed subtests, has very small effect, 
raising p(wiHy,w,) from only 0.795 to 0.798. Allowing the four other subtests to 
take on weights does not make an appreciable difference. 

The universe score defined by an indefinitely large number of tasks like General 
Information, 4, Word Meaning, 6, and Story Sequence, 7 is much less 

well predicted by the three-variable weighted composite (p? = 0.64; compared to 
0.62 for prediction from the unweighted observed score). Not only do the additional 
predictors raise the coefficient markedly with the broader universe (to 0.81), but two 

of the predictors with highest loadings are outside the original composite! To besure, 
these precise loadings would not be replicated in another sample. 

This is an unusually striking example of the possibility of using auxiliary pre- 
dictors for a universe score. However it suggests that the distinction between tests in 
the universe for the reading composite, and other tests, was ill-conceived, and that 4, 

6, and 7 do not represent a particularly distinctive variable. In fact, the reading 

composite score originated out of the test developers’ hope that they could form 
diagnostically useful “‘reading’” and “arithmetic”? composites. Selected subtests 

5 These weights do not take into account o(,,u,), which is arbitrarily taken as 1.00.
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were combined on the basis of correlations with subsequent achievement tests, and 
it was concluded that 4, 6, and 7 were most relevant to reading. Further work 

showed that the two diagnostic composites do not differentiate well enough to be 
profitably used side by side. The reading composite is recommended for use when 
prediction of only reading performance is desired, in which case 4, 6, and 7 are to be 
administered by themselves, as a short form. 

A question of considerable interest, which cannot be answered from the data 
treated here, is whether the universe score defined by fixed subtests, or the universe 

score defined by random subtests, is more informative about subsequent achieve- 
ment in reading. This amounts to asking whether the specific factor in such a subtest 
as Story Sequence makes a valid contribution to prediction or is a source of error. 

While the broader universe score (where subtests are regarded as random) is 
considerably harder to predict than the narrow one when the observed score or 
the three-variable weighted composite are used as predictors, when seven 
variables are used it is as easy to predict as the narrower universe score with 

subtests fixed.



CHAPTER I] 

Contributions and 

Controversies— 

a Summing Up 

A statistician complains, in a recent book review, that “students so frequently 
come away from the literature with the feeling that no unresolved problems 
exist. Philosophy, controversy, and the true complexity of issues tend to be 
left out. Intelligent discussion can reveal the exciting problems, and un- 
certainties, and the wide range of opinions and approaches in a field.” 
(Elashoff, 1970, p. 104). This chapter is dedicated to making sure that such a 
complaint is not made about the present book. 

For the reader who has lost his bearings amid the twists and branches of 
our argument, and for the reader whose habit is to turn first to a technical 
book’s concluding chapter, we start with a summary of the highlights of the 
system and of the more striking implications of the argument. The second 
section of the chapter treats the technical limitations of the system and 
points toward work remaining to be done. We then move to a more funda- 
mental level of criticism and interpretation, discussing pertinent challenges 
that have been offered and the connection between generalizability theory 
and the theory of test validity. Finally, we evaluate the approach. 

A. The Model and Its Implications 

In principle, an investigator could make numerous observations of a person’s 
performance with respect to any variable. These observations are equivalent 
in that the investigator would take each of them as a sample of the same 
kind of information—they fit the same operational definition. This does not 
imply that the observations are statistically equivalent. Our theory is closely 

350
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related to what Lord and Novick report as theory for “imperfectly parallel 

measurements.” 
The investigator would like to know the person’s universe score, the mean 

over the whole set of admissible observations. Practically, he is limited to 
making an inference from a sample of observations. Very likely he should 
make a regression estimate of the universe score, instead of taking the 
observed score as the estimate (p. 102 ff.). While this proposal is to be found 
in virtually all major works on test theory, it has been given little theoretical 
attention and has rarely been carried over into practical test interpretation. 

Multiple-regression methods are applicable; mysteriously, treatises on 

classical test theory have failed to develop this possibility. Instead of inferring 

the universe score on a variable from observations on that variable alone, 
information on additional observed variables can and probably should be 
used (p. 312 ff.). The universe score on the Wechsler Performance Scale, for 
example, is better estimated from a weighted combination of the observed 

Verbal and Performance scores than from the Performance score alone. A 

still better estimate can be made by weighting subtests separately. A few 
persons working along classical lines have previously suggested this kind of 
multiple-regression estimate, but only for the limited purpose of measuring 

““change.”’ 
This work also has touched on the measurement of change. We conclude 

that data collected prior to and following a treatment can be profitably 
analyzed in quite untraditional ways. To estimate a ““change score,’’ however, 
is rarely appropriate (p. 334 ff.). 

Any universe score may be estimated from a multiple-regression equation 
when relevant data supplementary to the observed score are available. The 
procedure is a simple application of the algorithm for predicting a criterion 
from a best linear combination of predictors. Because the criterion here is a 
universe score, its correlations with the observed scores that serve as pre- 
dictors have to be estimated rather than directly calculated from data. Under 
strictly classical assumptions, estimation is quite easy, but we find it necessary 
to add a distinction between linked and independent observations. The strict 
independence assumed in classical theory rarely holds when several scores 

are collected in the same setting (p. 268 ff.). 
The multivariate estimation of a single universe score obviously extends 

to the estimation of a whole profile. A profile of estimated universe scores is 
likely to differ in shape from that for the observed scores, and gives a different 
impression of the person. In general, such estimated profiles will be flatter 
as differences arising from errors of observation tend to be suppressed. One 
can go further, reorganizing and simplifying profiles so that only the more 
generalizable information is reported (p. 323 ff.). 

The “true score’’ concept has served to conceal ambiguities. With regard
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specifically to a composite score, for example, the true or universe score can 
be defined in conflicting ways. Perhaps the investigator is really interested in 
the expected value of the Wechsler Full Scale score, over all measurements 
of the person that might be made. This expected value is interchangeable 
with the sum of the Verbal and Performance universe scores. The variance of 
Verbal universe scores is greater than that of Performance universe scores, 
however, and consequently the sum of the two gives heavier weight to 
individual differences in Verbal abilities. A better score might be a composite 
that gives about equal weight to Verbal and Performance components. How 
to define a universe score to represent a construct adequately raises questions 
for which measurement theory has no answers. This is just one of the many 
hidden cracks beneath the much travelled surface of established test theory. 

We classify conditions of observation with respect to facets; for example, 
test forms, observers, and occasions. This does much to sharpen the definition 
of the universe of generalization and brings to attention the importance of 
the universe definition. Investigators often choose procedures for evaluating 
reliability that implicitly define a universe narrower than their substantive 
theory calls for. When they do so, they underestimate the “‘error’’ of measure- 
ment, that is, the error of generalization. 

A given observation belongs to a number of universes of generalization. 
The investigator has to make conscious decisions about his choice of universe: 
about which facets shall be considered sources of “‘wanted”’ information and 
which contribute to “error.’’ The observed score generalizes well to some 
universe scores and poorly to others. Classical theory is unable to deal 
formally with the fact that a given score can be generalized in various ways 
(over forms, over days, over scorers, etc). Our model requires the investigator 
to make an explicit choice of universe. The system then generates a plan for 
data collection and analysis that is properly matched to the universe chosen. 

The facet model lends itself naturally to analysis of variance and to 
estimation of the magnitude of score components. While one-facet analysis 
of variance was brought into test theory before 1940, multifacet techniques 
have been largely neglected. In a complex study, components of variance and 
covariance are easier to work with than correlations, and make fuller use 
of the data. They readily separate one kind of variation from another, and 
this separation casts considerable light on the nature of effects that are lumped 
together in typical reliability coefficients. 

Correlations between universe scores are undoubtedly significant for 
substantive theory and for practical applications of tests. The multifacet 
model brings to the surface ambiguities in the common correction for 
attenuation. Because any score belongs to several universes, “the universe- 
score correlation’’ between it and another variable can be defined in many 
ways. Each of the “corrected” correlations has its own substantive meaning
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(p. 290 ff.) Persons employing the traditional correction formula have not 
infrequently interpreted the result incorrectly. Indeed, at times they have 
made wholly unsound applications, in effect using conflicting definitions of 
“error” in evaluating the numerator and the denominator of the formula. 
Our argument from components of covariance is more straightforward, less 
subject to mishandling, and more likely to be correctly interpreted. 

The statistical concepts of traditional reliability theory reappear in our 
system, but with altered interpretations and emphases. Least altered, perhaps, 
is the concept of true-score variance, which is seen here as a universe-score 
variance. This, we argue, is a property not of the measure and the population 
alone, but of the chosen universe of generalization as well. For each universe 
within which the procedure fits, there is a different universe-score variance. 
Such distinctions as that between coefficients of scorer agreement and 
parallel-form coefficients (which were a verbal supplement to classical 
reliability theory rather than part of the model) are directly imbedded in the 
model for generalizability theory. 

Observed-score variance is a property of the measuring procedure and 
the population (as classical theory recognizes), and also of the experimental 
design by which the procedure is applied. This variance will be larger, for 
example, when a different judge rates each subject than when the judge is 
constant over subjects. This increase occurs whenever each observer has his 
own constant error; classical theory assumes equivalence of observer means, 
and cannot acknowledge such sources of variance. Abandoning equivalence 
assumptions makes it necessary for the generalizability study to estimate an 
expected observed variance. This is the average to be expected when a 
design is applied many times to samples of persons from the same population. 
Not knowing what test forms, occasions, or judges will be selected when the 
procedure is applied, the person analyzing the generalizability data can do 
no better than report an average value for the procedures encompassed by 
the stated design (p. 90 ff.) 

The coefficient of generalizability is the ratio of universe-score variance 
to expected observed-score variance. This is, approximately, the average of 
the values that would be obtained if the ratio of universe-score variance to 
actual observed-score variance were known for each application of the design. 
The ratio, which we denote by &p?, is an intraclass correlation (pp. 75, 
80, and 97 ff.). Such correlations have appeared in various guises in earlier 
psychometric writings: Rulon’s split-half formula, Horst’s formula for 
reliability with multiple observations, Kuder—Richardson formulas 20 and 
21, and the Hoyt—Cronbach alpha coefficient. All are intraclass correlations 
for one or another design. Each of these is now identified as a specific case 
within a general structure. We have shown how to obtain a far wider variety 
of coefficients, with different numerical values and distinctive meanings.
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Traditional studies of test reliability have had limited aims. The generaliz- 
ability study has more flexible purposes. Traditional studies assume that the 
design of a measuring procedure has been fixed, with the possible exception of 
the number of items, and that one wants a numerical index of the precision 
of the device. The report gives a reliability coefficient and a standard error 
of measurement. Beyond this, one may, if he chooses, form a regression 
equation for estimating true score from observed score. The generalizability 
study is best carried out in the preliminary phase of instrument development. 
The developer will thereby gain a general understanding of the causes likely 
to create discrepancies among observations. Such disturbing influences can 
be brought under control either by modifying the operations performed 
(e.g., preparing clearer rules for scoring), or by drawing a larger sample of 
whatever conditions are particularly serious sources of discrepancy. 

Deciding upon test length with the aid of the Spearman-—Brown formula 
is an illustration of the kind of pilot work we recommend. Our methods go 
far beyond that technique, extending to all kinds of observations that yield 
numerical scores, and to all the variable aspects of the procedure. Altering 
the number of observations to be made is only one of the options open to the 
investigator. Where the universe is multifaceted, many different designs can 
be applied to select the conditions for the observations from which future 
decisions will be made. 

The G (generalizability) study is distinguished from the D (decision) 
study. One chooses the design for the D study in the light of its purposes, the 
costs of collecting information, and the information the G study provides 
regarding generalizability from any of the possible designs. That is, a G 
study carried out according to one design—perhaps a rather elaborate one— 
indicates the effectiveness of a whole panorama of alternative designs among 
which the investigator can choose. What design produces the best results will 
vary with the decision intended. Where the observations are to produce a 
group mean, for instance, an item-sampling design may be best. Where 
individuals are to be compared, crossing certain facets with persons will 
usually be advisable. Where the study is to yield an absolute score that 
permits a decision about the person without reference to norms or to the 
performance of competitors, very “‘weak’’ designs with joint sampling of 
conditions from various facets are advantageous. Also one will design a 
testing procedure differently, depending on whether he wishes to generalize 
over subtest tasks, over days, or both. 

When the oversimplifications of classical theory are abandoned, the 
concepts of error variance and standard error are seen to be ambiguous. 
There is an error 6 that has the property that its variance [the “group specific 
error variance’ of Lord and Novick (1968, p. 178)] is the difference between 
observed-score variance and universe-score variance. The “generic” error of
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Lord and Novick, our A, equals the difference between universe score and 

observed score. In classical theory, these errors are identical, but with 
weaker assumptions o7(A) > o7(6). Once the components of variance have 

been determined, either of these variances can be estimated for various 

designs that may be employed in the future (p. 84 ff.). 
The standard error o(6) can properly be applied to determine whether one 

of two persons tested under the same conditions has a significantly higher 
universe score than the other (p. 93 ff.). That is, it is relevant where a 
decision depends on a ranking (and where there is no basis for making the 
decision save the observed score). We conclude that the time-honored 

standard error of measurement is of rather limited importance. 
The index o(A) indicates how far measures are likely to depart from their 

“true’’ values; i.e., from the person’s universe score. It gives an indication 
of the precision of the measuring procedure (p. 84 ff.). When we take 
multiple facets into account instead of regarding error as undifferentiated, 
we frequently find that errors are larger than conventional analyses suggest. 
For example, when taped interviews of patients are rated on the Spitzer— 
Burdock Mental Status Schedule, the standard error is 6.5, if one considers 

only the person-rater interaction as a source of error. When the component 
for rater main effects is considered in the error also, the standard error rises 

to 8.3. In general, multifacet G studies encourage increased caution in 
generalizing and encourage more elaborate designs for collecting data, so as 
to reduce error of generalization. 

Closely related to o(A) is the standard error for a group mean, useful in 
evaluating the generalizability of an experimental result. Unlike the usual 
standard error of a mean, our index takes sampling of conditions as well as 
sampling of persons into account (p. 96). The index o(A) also plays a 
part in sequential testing, where one seeks to determine which persons have 
universe scores above (or below) a certain standard, and is willing to test 
borderline cases further until a confident decision can be reached about each 
one. Still another use of o(A) is in testing the significance of differences 

within a profile, but the rationale and computing procedure are more 
complicated than older theory has recognized (p. 332 f.). 

One important use of the standard error of measurement has been to 
“establish a confidence interval’’ for the person’s “‘true’’ score. The con- 
fidence-interval procedure for locating a population mean is a sound one, and 
the interval reached via generalizability theory, which recognizes sampling 
of conditions, is a distinct improvement on the conventional procedure that 
recognizes only the sampling of persons. Applied to scores of individuals, 
the interval-estimation procedure is almost inevitably misleading. We 
concur in the recent warnings of Lord and Novick, and point out additional 
reasons for distrusting the procedure. The intervals stated for the universe
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score are frequently incorrect among persons whose observed scores are far 
from the group mean. 

When one wants to move from general statements about the overall 
adequacy of a design for collecting data, toward statements about each 
individual’s universe score, the regression technique for estimating the 
universe score is probably advisable. But the nonequivalence of conditions 
entertained in generalizability theory makes it impossible to estimate param- 
eters for the genuine regression equation. When conditions are not equiva- 
lent, and conditions are crossed with persons in the D study, there is (in 
theory) a regression equation for the particular conditions used. The param- 
eters of the equation will vary with the set of conditions. Our methods 
yield an estimation equation that is an approximation to the regression 
equation for typical conditions. The investigator runs some risk in applying 
that equation when conditions are not equivalent, especially when the 

number of conditions in the D study is small. Those conditions may be 
atypical, so that the genuine regression equation is not close to the estimation 
equation. 

Associated with the genuine regression estimate is an error «. This error 
will, on the average, be less than the error 6. The value of o(e) is a rough 
indication of the precision with which our estimation procedure estimates 
universe scores, but various logical and statistical problems prevent exact 
interpretation of it. 

The foregoing is only a superficial summary, but perhaps enough has been 
said to make clear why we regard generalizability theory as powerful. The 
work is far from finished—if finishing so open-ended an exploration is 
indeed possible. Theoretical problems remain. Illustrative studies in great 
profusion are needed, because every new application clarifies our thinking 
and may bring new puzzles to attention. There is need for study of the 
sampling errors of the statistics obtained from G studies. Above all, there is 
need for open discussion of the system. Apart from whatever technical 
criticisms may be warranted, our proposals for change in the design, analysis, 
and interpretation of tests have to be debated in the light of professional 
values and purposes. Debate will clarify whether testers do indeed wish, for 
example, to generalize over verbal tasks when they interpret a Verbal IQ, 
and whether they do wish to reduce batteries to differential information that 
can be generalized. Our presentation has brought issues such as these into 
the open. The community of test users now has to decide what detailed 
version of the model best fits scientific and practical requirements. 

B. Technical Limitations of Generalizability Theory 

Any mathematical model is vulnerable to criticism. Being an idealization, 
it leaves out of account some aspects of the real world. Occasionally, the
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model may even be flatly contradictory to plain observation. To appreciate a 
model for what it can do, one must be thoroughly sensitive to its limitations. 
Criticism directed to this end supports the development and proper use of the 

model. 

“‘Weakness’’ in the model 

We have attempted to work with a model far less restrictive than the classical 
theory. Classical theory embodies what we would call a universe of obser- 
vations on a subject, but regards those observations as indistinguishable. If 
scores are obtained by observing each person in a population, every such 
collection will, according to classical theory, have the same mean and 
standard deviation; pairing of two such collections will always yield the same 
correlation. Writers have weakened this model by one or another isolated 
amendment, but nothing like an alternative system has hitherto been put 
forth. 

We started boldly, placing no restriction upon the universe. The assump- 
tion that conditions of observation are identifiable and classifiable is a 
nominal one; the argument applies when the identification is arbitrary. 

The one central assumption made is that conditions are randomly sampled 
when data are collected. This assumption is shared with Lord’s work on 
randomly parallel, stratified-parallel, and item-parallel tests. The merits of 
the sampling assumption will be argued below. 

From this beginning it follows that a collection of scores will have different 
statistical properties depending on the experimental design proposed. A 
design in which sampling of conditions is carried out separately for each 
person will yield score collections that fully conform to the classical require- 
ments even when the universe itself is substantively and statistically hetero- 
geneous.! With crossed designs, however, the model allows for varying 
means, varying standard deviations for observed score, varying correlations 
among observations, and varying correlations of observations with the 
universe score. 

As is usual with a highly generalized weak model, it can be strengthened 
by adding assumptions and so brought into line with many simpler models. If 
one retains every aspect of our formulation, but reduces the number of facets 
to one (or assumes that all facets are confounded in the design), the model 
becomes identical to Lord’s for “random parallel’’ tests (1955; see Lord & 
Novick, 1968, p. 234 ff.). If one imposes the further assumption that con- 
ditions are single-factored [i.e., that o?(y,,) defined in (5.9) is zero] one has 

1 This statement must be qualified in one respect. Even if conditions of facet i are fully 
equivalent, and conditions of facet j are fully equivalent, when a design such as (i x j):p 
is used two collections of scores obtained with the same / within the person (and different 
j) will correlate to a greater degree than scores with different i and 7 within the person.



358 Contributions and Controversies—a Summing Up 

““congeneric tests’ (their p. 217). One can retain the multifacet feature and 
impose strict assumptions of single-factoredness or equivalence of conditions 
on each facet and arrive at a valuable intermediate model that copes with 
distinctions among kinds of measurement error. Finally, one can impose the 
full classical assumptions; classical true-score theory is the extreme simple 
case of generalizability theory. 

It may be worthwhile to comment on the relation between this general 
model and the distinction between systematic and random error that physical 
scientists and engineers typically make. Systematic errors arise from particular 
conditions of observation (e.g., personal constants of observers, idiosyncrasies 
of individual machines, departures of temperature from a standard value). 
These can be assessed and brought under control by mechanical adjustment 
or calibration. What is left over is considered to be random fluctuation. We 

deal in one way with systematic error when we treat a condition as fixed. 
If the WISC scale as it now exists is to be used in all observations of IQ, 
any idiosyncrasy in its content or standardization can be disregarded so long 
as one limits his generalizations to WISC IQs. The standardization procedure 
is intended to remove such systematic “‘error’’ as arises from the selection of 
harder or easier items; it is a calibration process. Many score components 
that can be regarded as systematic error if we know what specific conditions 
will be employed in the D study become random sources of variation when 
we anticipate D studies for which the conditions have not yet been specified. 
The constant error of a rater is, from a philosophical point of view, syste- 
matic; from a practical point of view, if a procedure will be carried out by 
an observer of a certain kind who has not yet been selected, his constant error 
must be regarded as a random error. Because it enters into the observations 
of many persons, however, we do not assume that the errors of observing 
those persons are independent. 

Indefiniteness of results. It was possible to derive a great many conclusions 
within our weak model. The conclusions all have a certain indefiniteness, in 

that they refer to expected values and never to particular values. The classical 
theory can say, after a suitable generalizability study, “If you apply any 
one of these parallel tests to a large sample from this same population, 96% 
[for example] of observed-score variance will arise from the universe score.”’ 

Ordinarily the conclusion from generalizability theory must be: “‘Over all 
investigations with tests drawn from this universe and applied to samples 
from this population, the variance arising from the universe score will be 
96% of the average observed-score variance.”’ Similarly, our estimated value 
of o(A) applies over all observations that might be formed from the universe, 
but does not ordinarily apply to the set for any particular person or the set for 
any particular study.
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The weakness of these conclusions means that any reasoning from a 

generalizability study must be most tentative. Having a correlation between 

Form A of Test 1 and Form Q of Test 2, we sometimes want to estimate the 

correlation of universe scores 4, and ,u,. For this purpose we need 

POX p 41h) 

but the only available estimate is an average correlation of various forms of 

Test 1 with ,u,; similarly for Test 2. Unless we introduce the strong assump- 

tion that coefficients of generalizability are equal for all forms of Test 1, and 

equal for all forms of Test 2, the estimate is a very loose one. Classical 

theory makes that strong assumption and arrives at what appears to be a 

much tighter conclusion: that the correlation of the two universe scores is a 

certain number. This number may be the same number that we report from 

the same data—though this depends on how the generalizability study and 

the correlational study were carried out. The difference between the two 

conclusions is less in the way the information is handled than in the statements 

we allow ourselves to make at the end. Classical theory, by denying the 

existence of certain kinds of variation, brings hypothetical “information”’ 

into the solution of the problem. If generalizability theory were to accept 

the same hypothetical values [e.g., °o?(:pi,.pg) = o7(:pi) = o*(epg) = 9] it 

could arrive at the same strong statements. The fact that we have not specified 

several zero values a priori leads us to look for empirical information on them, 

and this information often leads us to doubt one or all of the suggested zero 
values. The assertion we make about our calculated value is not so strong as 
the one classical theory makes about its zero values. The values are subject 
to considerable uncertainty, and we fall back on an average value or an 

indefinite statement. 
The issue was discussed helpfully in the famous “bridge”? metaphor of 

Cornfield and Tukey (1956, pp. 912-913): 

In almost any practical situation where analytical statistics is applied, 
the inference from the observations to the real conclusion has two parts, 
only the first of which is statistical. A genetic experiment on Drosophila 
will usually involve flies of a certain race of a certain species. The statistically 
based conclusions cannot extend beyond this race, yet the geneticist will 
usually, and often wisely, extend the conclusion to (a) the whole species, 
(b) all Drosophila, or (c) a larger group of insects. This wider extension 
may be implicit or explicit, but it is almost always present. If we take the 
simile of the bridge crossing a river by way of an island, there is a statistical 
span from the near bank to the island, and a subject-matter span from the 
island to the far bank. Both are important. 

By modifying the observation program and the corresponding analysis 
of the data, the island may be moved nearer to or farther from the distant
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bank, and the statistical span may be made stronger or weaker. In doing 
this it is easy to forget the second span, which usually can only be 
strengthened by improving the science or art on which it depends. Yet 
a balanced understanding of, and choice among, the statistical possibilities 
requires constant attention to the second span. It may often be worth while 
to move the island nearer to the distant bank, at the cost of weakening the 
statistical span—particularly when the subject-matter span is weak. 

In an experiment where a population of C columns was specified, and a 
sample of c columns was randomly selected, it is clearly possible to make 
analyses where 

(1) the c columns are regarded as a sample of c out of C, or 
(2) the c columns are regarded as fixed. 

The question about these analyses is not their validity but their wisdom. 
Both analyses will have the same mean, and will estimate the effects of 
rows identically. Both analyses will have the same mean squares, but will 
estimate the accuracy of their estimated effects differently. The analyses will 
differ in the length of their inferences; both will be equally strong statisti- 
cally. Usually it will be best to make analysis (1) where the inference is more 
general. Only if this analysis is entirely unrevealing on one or more points 
of interest are we likely to be wise in making analysis (2), whose limited 
inferences may be somewhat revealing. 

But what if it is unreasonable to regard c columns as any sort of a fair 
sample from a population of C columns with C > c. We can (at least 
formally and numerically) carry out an analysis with, say, C = oo. What 
is the logical position of such an analysis? It would seem to be much as 
follows: We cannot point to a specific population from which the c 
columns were a random sample, yet the final conclusion is certainly not 
to just these c columns. We are likely to be better off to move the island 
to the far side by introducing an unspecified population of columns “like 
those observed”’ and making the inference to the mean of this population. 
This will lengthen the statistical span at the price of leaving the location of 
the far end vague. Unless there is a known, fixed number of reasonably 

possible columns, this lengthening and blurring is likely to be worth while. 

In an extensive discussion of samples, universes, and hypothesis formulation 
in psychology, de Groot (1969, pp. 182-197) develops much this same 
position. 

One would like to estimate, for example, the specific coefficient for an 
identifiable condition. Thus, for Test A of p. 359 one would like to estimate 

p2(1Xp4:1/4y) More specifically than we do when we employ E p,X pitty): 
If we could do this, we would have retained the weaker, more defensible
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model and yet would have a very firm final statement to make. Indeed, where 
we have developed our theory in terms of the expected value of p?(X,;,u5) 
Lord and Novick are inclined to favor estimation of the coefficient for a 
particular condition i and they present a formula for this (their p. 210). As 
we have virtually ignored such possibilities in this report, a word of explan- 
ation is in order. 

If a G study employs condition i* along with at least two other conditions 
randomly selected from the universe, it is possible in theory to estimate the 

coefficient of generalizability for the specific condition i* (p. 101). Such 
estimates were indeed made by Burt in a study of graders of essays as early 
as 1936. Our attempts to apply this kind of formula have been discouraging. 
When there is enough variation among the coefficients for different conditions 
to make the specific estimate important, any one coefficient can be estimated 
accurately only by employing a large number of conditions in the G study. 
This effort can be justified when one or more of those particular conditions 
will again be used in D studies. This rarely seems to be the case, except for 
well-standardized tests, and these are so nearly equivalent that it is un- 
necessary to estimate specific coefficients. We have mentioned (p. 102) the 
proposal to apply item-sampling designs to estimate the coefficient. Those 
methods may prove to be > practically useful. 

The “‘weak”’ Ep p? and o?(A) appear likely to serve well enough for gross 
evaluation of a technique and for planning the design of a D study. When 
one tries to reach a conclusion about a particular person’s universe score, 
this weakness becomes distressing. Where a regression estimate of uw, is to 
be made, as we have recommended, one would very much like to have a 

specific regression formula for the conditions that in the D study are 
crossed with persons. It is not too difficult to correct for variations in the 
mean observed score, but there is no way, at present, to allow for the vari- 
ation in slope, from condition to condition, that our model anticipates. 

Because of the difficulties of estimation, our discussion has abandoned the 
attempt to retain the full flexibility of the model in developing linear esti- 

mators. We have written as if the estimation equation based on &p? or 

Eo(X ) were the genuine regression equation for whatever condition is used. 
To have pursued the implications of the weaker model by qualifying all our 
statements about “, and the associated error would have made an already 
complex and novel argument much too confusing. 

The multivariate argument has been simplified even more drastically, by 
assuming full equivalence and eventually restricting attention to one-facet 
universes and crossed designs. This extreme simplification seemed to be 
necessary for an initial presentation of the model. Most of the argument 
would hold if the argument were developed from the more elaborate weak
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model. In multivariate regression estimates, the equivalence assumption 
becomes crucial. 

We have some confidence that the estimation equation based on an 
average coefficient of generalizability will give better information about the 
universe score than the alternatives so far known. Nevertheless, it should be 

remembered that this method of generalization brings in hazards of unknown 
magnitude. 

Need for extensive data. In principle, a weak model can reach conclusions 
just as strong and just as precise as those from a strong model. The stronger 
model assumes the values of certain parameters that have to be estimated in 
the weak model. The weak model leaves more questions to resolve, and the 
investigator has to collect more data to reach equally firm conclusions. 
Often, the weak model demands far more data than it is practicable to obtain. 

Components of variance and covariance estimated from limited data are 
subject to considerable sampling error. This is not to argue that one should 
fall back upon a stronger model. The estimates reached from the stronger 
model have a smaller error only so long as the strong assumptions are satisfied. 
Staying within the stronger model, the investigator can make no test of its 
added assumptions. 

Investigation of sampling errors in generalizability studies is much needed. 
The literature on sampling errors to date has limited itself severely, usually 
to one-facet studies and quite often to homogeneous universes. In this 
report we have barely touched on sampling errors. References to pertinent 
statistical sampling theory are given in Chapter 2. The literature is quite 
limited in its applicability but it is growing fast. 

We reported one empirical study previously (p. 180), a reorganization of 
some Endler-Hunt data from successive samples. In that study there was 
reasonable consistency among estimates of components from various 
samples. Two other studies of the same general character were reported by 
Burdock, et al. (1963). Components of variance for ward observers applying a 
behavior rating scale to patients, and components for residual, were estimated 
in six institutions. There was remarkable agreement of results from four 
institutions even though data were obtained from only two to four raters. 
Conversely, the components dropped markedly (the residual component 
being cut about in half) at the two remaining institutions. Burdock attributes 
this at least in part to superior training of observers in those settings. A 
study with an instrument employed in rating interviews gave rather similar 
findings, with samples of three to five raters per study. The estimated inter- 
action component was quite consistent from one study to another. In both 
studies, the component for raters (which is sampled n, times rather than n,n, 
times) was much more vulnerable to sampling errors. 

Much can be done with Monte Carlo methods, in which the parameters



Technical Limitations of Generalizability 363 

for a universe and population are specified and the computer is asked to 
generate sample data. For a certain G-study design, one sample after another 
is formed and analyzed; this indicates how widely estimates of (for example) 
é p* vary, and how they relate to the value that ideally should have been 
obtained. One can ultimately draw conclusions about the effect of changing 
Ny, N;, N;, etc. on the goodness of estimates with various kinds of design. 
In an earlier phase of our work, we carried out a number of one-facet studies 
of this type (Cronbach & Azuma, 1962; Cronbach, Ikeda, & Avner, 1964; 

Cronbach, Schénemann, & McKie, 1965). We have not recapitulated them, 

because they do not contribute much information on multifacet designs. 
They do, however, illustrate a powerful and flexible technique. Research is 
required to learn what number of conditions need to be drawn to make G 
studies of various types dependable. No simple and general answer is to be 
expected, because the desirable n,, for example, will depend on the magnitude 
of o?(pi) and other parameters. 

We would not be surprised to learn that G studies of customary size—for 
instance, 40-100 subjects, 2 forms, 2 occasions—are insufficiently accurate. 

If so, this is not a limitation of generalizability theory. Rather, it would 

demonstrate the power of generalizability theory to bring to light the in- 
adequacies of studies carried out under traditional models that deliberately 
oversimplify. 

The steady-state requirement 

The model assumes that the person’s universe score, the interactions uy,~, 
and other components “exist.” Presumably, p stands ready to give certain 
performances when the measuring procedure is applied to him. Because we 
do not control all conditions, and we do not control the fluctuations of the 

person’s mood and physiological state, a residual e,,,; comes into the obser- 
vation also. While it is not assumed that p is completely stable during the 
period to which the universe definition applies, it is taken for granted that 
p’s characteristics fluctuate around a typical value. That is, p is regarded as 
being in a steady state such that the e,,, fluctuate irregularly around zero. 

Sometimes the universe is defined to cover a short time span, the admissible 
observations being thought of as nearly simultaneous. The model, in effect, 
assumes that the expected score under any condition is the same, no matter 
where in the series of observations within the time span that condition is 
placed. 

Something similar is implied when the time span is longer and time 
intervals are considered as samples. It is mathematically sound to define the 
universe score as the average over the time span, and to use randomly 
selected moments for observation. The model is satisfactory as long as there 
is no regular trend in performance. If there is a trend, however, systematic
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sampling of occasions spaced regularly over the time span will not fit our 
random-model arguments. 

The whole concept of a universe score is of dubious value if the universe 
stretches over a period when the person’s status is changing regularly and 
appreciably. An average height in inches, over the period when a boy goes 
from age 12 to age 15, can be determined—but that value would not be of 
much interest. An average height within the month after his twelfth birthday 
is a useful construct (for example, as a dependent variable in a study of 
nutrition, where it is impractical to test every boy on his exact birthday). 
Fven though the growth trend continues during the month, the change is 
not enough to be disturbing. 

Because our model treats conditions within a facet as unordered, it will 

not deal adequately with the stability of scores that are subject to trends, or 
to order effects arising from the measurement process. This is a limitation 
common to all reliability theory. A large contribution will be made by the 
development of a model for treating ordered facets. For many variables, 
adjacent scores agree more closely than scores that are further separated. 
Some kind of growth or decay function will be needed, in place of the present 
universe score, to describe a process that is strongly time-dependent. A 
development along these lines will amplify, not replace, our model. 

Other topics for further work 

At a number of places we have restricted our development. The matters 
neglected will no doubt be important to some users. There should be syste- 
matic attention to certain of the neglected problems; it will be more profitable 
to work out ad hoc solutions for others to fit a particular application than to 
seek a broad theory. A summary of neglected areas follows: 

I. Our formal developments have been restricted to universes in which 
facets are crossed with each other and with persons. We have, however, 
encountered cases where one facet is nested within another in the universe. 
While we were able to cope with these, no general formulation covering this 
extension was offered. 

Moreover, we have given no consideration to universes where all the 
admissible conditions are nested within the person. That is, the universe of 
generalization may be unique to the individual, covering his behavior 
settings or his friends, etc. Personality theory now has a strong concern for 
the person’s interaction with and interpretation of his environment; this is 
notable in Mischel’s work (1968), derived in part from G. A. Kelly. To 
pursue measurement in this vein appears to require different questions for 
(or about) each individual, and a personalized universe of generalization. 
Generalizability theory should, nevertheless, be readily adaptable to such 
measuring procedures.
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2. The random-sampling model derived from Cornfield and Tukey yields 
much information not available by other procedures. Maxwell (1968) is 

critical of the application of estimation of variance components in the usual 
i X p internal-consistency study because he anticipates that residual com- 
ponents will tend to be correlated. He uses a simplified model that omits the 
“cell effect’? u,,~, and defines an e,; equal to Xp; — Myp~ — Wy~ + b. 
Then, he points out correctly, 

é Opi Cn 7) = 0( Xp; — Uy — By + My Xpy — My — By + LU) # 0. 
D p 

We acknowledge the existence of such a covariance, positive or negative, 

but place weight on the fact that its expected value over pairs of conditions is 
zero. Maxwell argues that the presence of the covariance in the sample data 

tends to give too great a o( p), but he appears to assume that the covariance 
will be positive. Further study of the criticism is needed. 

3. We have given little attention to the sort of facet that includes only a 
limited number of conditions. The methods for dealing with fixed facets, or 

facets with N finite and greater than n, follow along lines mentioned briefly 
in our earlier chapters. 

4. Attention has been restricted to designs where the number of conditions 
n, (or n,n;, Or n;, etc.) is the same for all persons, but there will be studies 

where one has more data for some persons than others. There are also 
designs where the number of j nested within i varies from i to i’, etc. For the 
sake of simplicity, in this book we have “‘squared off”’ all designs, discarding 
observations if necessary. However, in principle one can estimate &0?(X), 
etc. for irregular designs. 

Earlier papers (Cronbach, et al., 1963; Rajaratnam, et al., 1965) have 

examined certain one-facet designs, discussing stratified tests where strata are 
assigned different numbers of items. Such a stratified test can now be handled 
as a special type of composite to which the theory of Chapter 9 applies. 
This theory can cope with multifacet studies of stratified tests where the 
number of items varies from stratum to stratum. 

Another type of design that we have virtually neglected is the blocked 
design where, for example, randomly assembled items are organized into 
two or more forms (see pp. 39 and 217). No doubt there are circumstances 
where this design will be a superior design for a G study. 

5. The possibility of carrying out economical G studies by various forms 
of item sampling needs to be explored. Knapp (1968) has shown that with 
n, = ca. 400 one can obtain good estimates of &p* and &o7(X) for ani X p 
design using a balanced incomplete-block design in which each person takes 
only seven items. Multifacet G studies pose more stringent requirements, 
but it is often easier to replicate a study with additional persons than to
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increase the number of observations n,n;. Lord and Novick indicate that 
item-sampling designs are capable of evaluating the specific parameters 
[is — BM, p?(Xp;i,f4p), etc. for a condition i* that will be used in the D study. 
(See p. 10 ff. Condition i* must be included in the G study.) This proposal 
urgently requires development; if successful, it would in many studies 
provide additional data and yield stronger conclusions. 

6. It has been recommended that observed scores be regressed toward 
subpopulation means. While the logical justification for this is clear, the 
worth of such estimates depends on both the size of the differences among 
subpopulation means and the size of the subsamples. This is a variant of 
the shrinkage problem in multiple regression. Studies are needed to make 
clear how small a subgroup it is wise to treat separately. 

7. Where the D-study sample has an observed-score variance different 
from that in the G-study sample, we face a “restriction of range’’ problem 

more complex than the classical one. We have adopted the classical assump- 

tion that only the variance component for persons has changed. Alternative 
assumptions could perhaps be defended; the topic merits further attention. 

8. Bayesian statistical theory needs to be exploited systematically. It 
appears likely that developments now available in the statistical literature 
could, in some problems, profitably replace the methods of estimating 
variance components that Chapter 2 relies on. Also, whereas we obtain all 
estimates from the G study, one could, by Bayesian methods, take into 
account the additional information offered by the D study to reach final 
conclusions about the generalizability of the D data. 

Traditional analytic procedures are most dependable when conditions are 
close to equivalence, or the number of conditions in the G study is large. 
But generalizability theory has been especially concerned with nonequivalent 
conditions, and to sample several facets extensively is rarely practical in a G 
study. Bayesian statistics offer some hope of dealing with the cases that 
present the greatest difficulty for traditional methods (Novick, 1971). 

C. Defining Universes 

The central concept of generalizability theory is that the observation is a 
sample from a universe, or, more formally, that any condition is sampled 
from a universe of conditions. This in itself is probably not likely to be 
disputed, but arguments do arise regarding the way universes are defined and 
about the appropriateness of the formal sampling model. Two preliminary 
comments may help to avoid minor objections. 

First, while the mathematics assumes strict random sampling, this does 
not necessarily mean blind and planless sampling. The model explicitly takes 
into account the cross-classification of observations in the universe with
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respect to forms, testers, and other facets. A model referring to random 

sampling of conditions is considerably more sophisticated than a model 
that considers a true score plus an error drawn from an undifferentiated 
distribution of random errors. Second, our model can deal with systematic 
samples. Therefore, one can classify test items with respect to content (or 
any other aspect), and can call for random sampling of items within these 
strata. This plan can be accommodated entirely within the mathematics of 
random sampling. 

Operational definition as a requirement 

The theory we have presented employs the mathematical model of probability 
theory. There is an aggregation from which samples are drawn. From the 
sample, inferences are made about the aggregation. Critics have often 
pointed out the hazards of inferences of this sort even in traditional appli- 
cations of statistical method. A common practice is to observe a group of 
persons who are conveniently available to the investigator and then to 
generalize to a population of persons “like these.’’ Such an expression is 
indeed loose; moreover, it is used to mask the fact that the investigator intends 
to generalize over all persons in a certain age range, but realizes that such an 
unqualified generalization would be criticized. Scientists have found it 
better to apply statistical inference to samples obtained haphazardly than to 
refuse to use information from those samples or to take the sample data as 
purely descriptive and relevant only to the sample in hand (or at most to 
other samples assembled in the same locality by the same haphazard process). 
The justification for applying sampling theory to studies where the sampling 
does not conform to the model is essentially that quoted above from Cornfield 
and Tukey. 

No doubt a reference to “the population of persons like these’’ is based on 
much clearer thinking than a reference “‘to the universe of tasks like these.”’ 
(See critical remarks, p. 376 ff.). We have suggested, for example, that the 
interpreter of a Wechsler Verbal IQ probably generalizes, at least implicitly, 
to a domain of verbal tasks of which Wechsler’s six subtests are representative. 
While this does indeed seem to be the way test interpreters think, the “domain 
of verbal tasks’’ is an unexamined, crude notion. Loose inference will 

undoubtedly continue to be made, with or without help from generalizability 
theory. It appears less profitable to discuss the iniquities of loose inference 
than to ask what rigorous inference regarding universes of conditions would 
be like. As the possibility of rigor becomes clearer, it will be increasingly 
possible to formulate statements and investigations that permit better 
inference. 

The probability model requires that the elements in the population be 
discrete, as are balls in an urn. In behavioral observation there are exceptional
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situations where the conditions of a facet are distinct from each other in the 
same way that each person in a population is separate from the next. There is, 
for example, the universe of addition problems. The problem 15 + 6 is 
clearly a different problem from 24 + 7. Small quibbles arise, e.g., about 

15 
whether to distinguish 15 + 6 from 6 + 15 and from 6, but defining rules 

to cover these cases are not hard to prepare. Where raters constitute one 
facet of an observation, there is no more difficulty in distinguishing one rater 
from another than there is in any application of inference to samples of 
persons. 

Where conditions blend into one another, elements are difficult to define. 

One may speak of sampling items on, for instance, the physical geography 
of North America, from a universe of such items. But what separates one 
item from another is far from obvious. “What river runs from Cairo to 
Memphis ?’’ Is this item different from “What river runs from Cairo to New 
Orleans?” As the content of instruction becomes more theoretical (e.g., “‘the 
conservation of matter’’), it is even less obvious what constitutes an element. 

Often the elements to be observed are more-or-less arbitrary segments cut 
out of a continuous stream. This is true, for example, when we try to sample 
behavior so as to learn whether a person is “typically’’ outgoing. This does 
not prove to be a very troublesome problem. It is necessary to impose some 
arbitrary divisions, but this is a familiar practice in “‘area’’ sampling for 
opinion polling, and in time sampling of continuous processes. The fact that 
different items may measure “the same’’ content is not ordinarily trouble- 
some. However, if the overlapping versions of the same content amount to a 
sizeable fraction of the universe, simple random sampling without replace- 
ment may not be an adequate analogue to the test-construction process. 

The essential requirement for reasonable application of sampling theory is 
that the universe be defined clearly enough that one can recognize elements 
belonging to it. This is a requirement of operational definition (de Groot, 
1969, pp. 170, 240). A semantically and logically adequate definition will 
enable the consumer of research to consider possible candidates for member- 
ship in the universe, to judge whether the candidate is indeed included by the 
definition, and to reach the same conclusion as other interpreters of the 
definition. 

Some writers on scientific method seem to regard an operational definition 
as somehow describing one unique and unvarying operation, but it is better 
to regard it as defining a class of equipment and rules for action. Often the 
members of the class are very nearly identical and will give measures that are 
indiscriminable from one another. Even so, to say that measures are in- 
discriminably different is not to say that they, or the pieces of equipment 
themselves, are identical. In the early stages of development of a measuring
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technique there may be considerable variation between successive applications 
of the same procedure, either because the pieces of equipment differ in 
unidentified ways, or because the investigator has not yet learned what 
ambient variables need to be controlled. To define operationally is only to 
state clearly the identifying characteristics of the measurement procedure; it 
is not necessary that the procedure be accurate. Kaplan (1964, pp. 40-41) 
criticizes the strict operationism that does not allow the definition to be a 
class description. 

What justifies the assumption that the operation I perform is the same 
as the one you carry out? The operationist principle is that different opera- 
tions define different concepts. Without the assumption, therefore, no two 
scientists could ever understand any scientific idea in the same way, and 
mutual criticism or corroboration would become impossible. The difficulty 
arises even for a single scientist: each performance of the operations is 
different in some respects from any other. Unless these differences are 
dismissed as irrelevant, it is impossible to replicate even one’s own experi- 
ments. As Gustav Bergmann has pointed out an extreme operationist 
would presumably refuse ‘to “generalize” from one instance of an 
experiment to the next if the apparatus had in the meantime been moved 
to another corner of the room.’ 

Nash (1957, p. 242) makes it clear that what is to be controlled (i.e., 

explicitly represented in the definition) is a matter of judgment and an 
expression of the current state of substantive knowledge. 

[The investigator] “will expend most of his time and effort in attempts 
to achieve the effective duplication of just those conditions that, in the light 
of the conceptual scheme or working hypothesis that has suggested the 
experiment to him, appear to be capable of significantly affecting the 
results. He will be able to spare little or no effort to secure the duplication 
of those factors that appear to be irrelevant to the outcome of the experi- 
ment. Thus it is seen that the whole design will inevitably depend on the 
conceptual outlook of the experimenter. Long delays may ensue whenever 
this outlook encourages the investigator to regard as ‘trivial,’ and to leave 
uncontrolled, some factor that may actually be capable of contributing 
to the production of anomalous and misleading experimental results.”’ 

To specify a universe of conditions will be easy in some studies and 
difficult in others. It should not be difficult, for example, to specify the 

universe of examiners over which one proposes to generalize, by indicating 
the amount of training expected and, if relevant, their age, sex, color, or 

other demographic identification. Apart from a few cases with marginal 
training, different referees should agree very well in deciding which examiners
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are and are not within the universe. It will be noted that this is not a universe 
all of whose members can be listed in a roster; it is most unlikely that anyone 
knows who all the qualified persons are. Hence, while the universe of generali- 
zation is well defined, a genuine random sample cannot be drawn. 

How would one investigate whether a universe is “‘clearly characterized ?”’ 
Essentially, by presenting various judges with the universe definition and a 
broad aggregation of conditions from a facet. If the facet of examiners is 
under discussion, one would present, say, 200-word descriptions of each of 
50 persons who might be asked to give the test, and require the judge to 
indicate which ones fit the universe definition. The examiners who are 
described should include many who were not employed in the G study, 
and a reasonable number who fall outside the universe. The better the 
definition, the more nearly the judges will select the same examiners as 
admissible. If the universe is defined only as a universe “‘of examiners like 
these”’ (i.e., like the two or three examiners used in a certain G study) we 

expect it to fail the clarity-of-description test. 

Homogeneity, heterogeneity, and stratification 

One has a choice between making the universe definition very restrictive, so 
that relatively few conditions of a given kind qualify, or of leaving the bounds 
open. There is nothing in generalizability theory itself, for example, that 
restricts the universe of admissible Wechsler testers to persons trained in the 
traditional manner, who have administered a certain number of tests under 

supervision. If one wants to define the universe of generalization to include 
any person who has read the WAIS manual, a study can easily be set up to 
determine how well results obtained by one such person are likely to agree 
with the mean result over all such persons. If one wants to restrict the 
universe to persons who hold the Diploma in School Psychology, that too is 
an adequately explicit definition. (To investigate how well the two universe 
scores agree is a useful investigation of a different kind.) 

This point requires considerable emphasis because it is so easily mis- 
conceived. Generalizability theory is an abstract model that generates 
procedures for testing a working hypothesis or claim. The investigator sets 
forth a universe definition. He carries out a study with two or more exemplars 
of the definition. He learns how well he can generalize, on the average, from 
the observed score given by any one exemplar to the universe score. The 
machinery will work whether the elements of the universe are identical in all 
discernible respects or are manifestly diverse. The one requirement is that 
the universe be clearly characterized. If that is not the case, the statement 
about generalizability is essentially meaningless. For a test it is necessary to 
specify the kinds of items to be admitted to the universe; the universe might, 
for example, be limited to completion (constructed-response) items. There
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may be a variety of editorial rules. For a science test one might direct that 
questions be made as easy to read as possible, by using simple vocabulary 
and short sentences. Per contra, one might direct that the technical ter- 
minology and conventions adopted in the Chemical Bond Approach to high- 
school chemistry be used. 

The definition should encompass the instructions to the subject and other 
administrative procedures, and the rules to be followed by observers or 
scorers. These aspects of the description refer to the testing operations; most 
of them have the effect of fixing some aspect of the procedure. It remains 
possible to generalize over collections of items fitting the definition, and 
over such aspects of the testing procedure as are not pinned down by the 
operational definition. That is to say, a class of tests is defined, over which 
one will ordinarily generalize. Class membership is identified not just by item 
content and form but by the procedural rules as well. 

Essentially the same is to be said about other types of instruments. Con- 
sider a rating scale to be used to evaluate drug effects in psychiatric patients. 
It is necessary to define a concept such as state of excitement, very likely by 
providing descriptions of behavior at different points on the scale. These 
“anchors”’ tell the observer what to look for, and guide him in recording 
what he observes. The experimental plan has to tell what period of time and 
what range of behavior settings the universe encompasses. The observer 
needs to know whether to attend to the typical intensity of the symptom or 
the level of its most extreme manifestation during the period. The class of 
admissible observations is thus defined by the scales printed on the blank and 
by the whole set of instructions that guide the observing operation (Gleser, 
1968). 
Whether it is wise or unwise to restrict a universe to uniform elements is a 

question to which we shall return. It may be beneficial, however, to indicate 
what might be taken into account by a person who wants to achieve a high 
degree of equivalence of observations. The question is most often raised in 
discussing the construction of tests made up of items. The test constructor will 
attain a higher degree of equivalence among tests if he considers the universe 
of admissible items to be subdivided into strata, each of which is itself a 

universe. The stratum may be defined in terms of the topical coverage of the 
items, or it may be further restricted by imposing a constraint on item 
difficulty. 

The procedures by which the test is assembled from the universe must be 
specified as part of the universe definition. If there are strata, there will be 
distribution rules to indicate (at least approximately) how many items will 
be taken from each stratum. For further discussion of specifications for test 
construction, see Cronbach, 1971. 

When a universe is loosely specified, the elements admitted are likely to be
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diverse in character. Even a rubric that is rather narrowly defined may 
prove to be heterogeneous. Consider use of -ir verb forms in French as an 
example; narrow though this task is, recognition and production of the 
correct graphic forms perhaps develops faster or slower than proficiency with 
spoken forms. 

The more heterogeneous the universe, the larger is the sample of obser- 
vations required to estimate the universe score with a desired degree of 
accuracy. For example, we may want to determine what impression a pros- 
pective teacher makes on pupils. It is reasonable for the universe to include 
pupils with various backgrounds, abilities, and attitudes. The fact that the 
teacher will make a favorable impression on some and an unfavorable one on 
others is a fact of life. For an accurate estimate of the universe score, the 
investigator will have to obtain a suitably large and representative sample of 
pupils. Narrowly specified universes can be examined with smaller samples. 

Specificity reduces the scientific and practical significance of the universe. 
Practical decisions typically call for a score that refers to a broad range of 
content or situations. This would be true in a professional qualifying examin- 
ation, in an examination used for gross evaluation of the effectiveness of 
instruction in French, or in a measure used as a criterion for a selection 

decision. 
The scientist may use constructs defined in terms of narrow operations, or 

constructs defined more broadly. If homogeneity were the only criterion, 
one would reduce the broad construct “‘self-esteem’’ to constructs as specific 
as “favorable self-report on questions having to do with proficiency in 
physical games, worded so that a YES response expresses a favorable view 
of the self.’’ There is a stage in research where it is necessary to measure so 
specifically, to learn how large the interaction components involving activity 
and form of question may be. For research on the antecedents and conse- 
quents of self-esteem, however, one would certainly move to a larger universe 
of generalization. Activity and form of question could remain as stratifying 
variables within the universe. 

To sample within a narrow universe just because one can then generalize 
accurately from a small sample is often to ask the wrong question. In the 
context of drug evaluation, for example, patients are interviewed and their 
adjustment judged (Gleser, 1968). The investigator has enough resources to 
assign two raters to each patient in his D study. A traditionally trained 
investigator wanting to get “reliable”? scores might conduct two reliability 
studies. In one study two interviewers would separately examine the same 
patient. If components for persons, person X occasion, and person x rater 
were 2.60, 0.80, and 0.60, for example, the correlation of scores for these 

interviews would be 0.65, and the “‘reliability’’ for the two scores together 
would be 0.79. In the second study, a single interview would be rated by two
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persons, one making his judgments from an observation room. In this study 

the person-occasion interaction would not contribute to error variance 

though it would enter the observed-score variance. The “reliability” of a 

single score would be 0.85, and that for two raters would appear to be 0.92. 

This might encourage the investigator to use the available rater hours to 

obtain two scores for a single interview on the patient, because such data 

‘are reliable.’’ But the coefficient of 0.92 indicates degree of generalizability 

to a universe with the interview fixed. To generalize over raters and interviews, 

rater time is best used to cover twice as many interviews, with one rating of 

each. Narrowing the universe often increases the coefficient of generalizability 

at the expense of validity. Lehmann’s words (1960) are pertinent: 

The reliability of a method is not of necessity positively related to its 

validity. In fact, in the behavioral sciences we sometimes find a negative 

correlation between validity and reliability, as the validity of certain results 

often decreases when we try to control all experimental and environmental 

factors to such an extent that the test-retest reliability is raised to a 

maximum. 

As any field comes to be better understood the definition of what is to be 

measured evolves (Kuhn, 1961). Certain facets of the measuring procedure 

are found to have an influence on scores and other facets not. Then the 

definition can be liberalized by removing the constraint imposed on conditions 

of the noninfluential facet. (Jokes aside, who puts the thermometer in the 

patient’s mouth does not affect the reading, and the “examiner” facet can in 

this instance be left unrestricted.) Among the influential facets, some are 

considered to be nuisance variables and they are brought under control, 

perhaps by fixing one condition of such a facet. Fixing conditions is the usual 

way of handling test instructions, time limits, and many other procedural 

details. The condition fixed upon is, of course, the one regarded as likely to 

maximize validity. (Temperature will not be taken just after the patient 

drinks hot coffee.) With respect to other influential facets, one will find it 

necessary to form subclassifications or strata, and to substitute a stratified 

sampling plan for the original random sampling of conditions. 

Universes in instrument design: concrete examples 

The notion that test constructors lay out a series of test specifications and 

write items to conform to them has been criticized as hypothetical and 

unrealistic, but a number of investigators have actually constructed tests 

from explicit universe specifications. 

Measures of interpersonal perception. Brunswik’s (1947) emphasis on 

systematic design, coupled with his interest in perception of persons, led to
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research on person perception that has used sampling concepts in various 
ways. Palmer (1960a, b) quite explicitly laid out a universe for test con- 
struction. He wished to assess the subject’s knowledge about other persons 
with whom he had the opportunity to interact. He set forth the following 
preliminary specification: 

The domain of interpersonal knowledge may be thought of as being 
defined by all possible questions which might be asked about another 
person. The following incomplete list of general categories will indicate the 
kinds of personal data which may provide suitable questions: personal 
habits and personal qualities; food, drink, and smoking; travel; hobbies, 

recreations, and leisure; organizations, clubs, and teams; education; 

skills and knowledge; medical, dental, optometric, and related infor- 

mation; personal property; financial affairs; job and career; family, 
marriage, and courtship. Many questions can be developed within each 
category. Conservatively estimated, 5,000 to 10,000 questions can be 
developed without repetition of the same content. 

Palmer’s omission of more subjective and affective items is deliberate. He 
discusses the weighting among categories. There is a fairly elaborate list of 
specifications for drafting questions within each of the rubrics. (Information 
on the outcome of Palmer’s effort is not available.) 

Content somewhat similar to that catalogued by Palmer was defined in a 
more empirical manner by Belson (1956). He was planning a questionnaire 
on interests of the adult population, as affected by television viewing. As a 
base for selecting questionnaire items he carried out some 3000 interviews of 
persons in various kinds of neighborhoods to learn the full range of interests 
that might be relevant. In Belson’s view, the final list of topics from which 
questionnaire items were selected was far more representative of “interests in 
general’’ than a list that might have been set down a priori by the research 
worker. An a priori definition is required, of course, to fix the question posed 
to the interviewee; but this question can be less restrictive than a formal 
definition of the universe of topics would otherwise be. 

The “David’’ test of Soskin (1954) was in a sense a face-valid test of 
interpersonal understanding. It was to be used to test the clinician’s ability 
to draw correct inferences from tests, observation of filmed expressive 
behavior, or other information on a subject. Soskin studied David’s life 
history thoroughly. Incidents from it were converted into test items, by 
describing a conflict situation and listing plausible courses of action. The 
question put to the clinician (who had been given a file of information on 
David) was, “Which course of action do you think David chose?’ The 
correspondence between the judgment and the historical record of what 
David actually had done thus became a measure of the clinician’s skill in
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interpreting whatever sort of data he had been handed. All the episodes in 
David’s life history were potential test items. It is possible that Soskin chose 
episodes of a relatively dramatic character (and conceivably atypical ones); 
but strict representativeness could have been assured. A psychologist using 
the test might generalize from the score over items about David to the 
universe of items about David. Or he might generalize over a universe of 
target persons on whom a test could be prepared. One might also think of 
the information presented to the clinician as a sample from a universe 
of information. Studies could be designed to appraise the amount of variance 
arising from each such facet: target person, information, test items, etc. 
The series of studies would go far to make clear what the instrument measures 
and what influences performance. 

Achievement tests. An example of a quite different sort is provided by 
Hively, Patterson, and Page (1968), who faced the task of measuring achieve- 

ment in “basic calculation” among Job Corps trainees. It was important to 
have many tests. These men often claim to have mastered a unit of instruction 
prematurely, and have to be tested more than once. To design a family of 
tests on subtraction, the domain was subdivided into such categories as 

“basic subtraction fact, minuend > 10,” “borrow across zero,”’ and “equation 

with missing subtrahend.”’ An example for the last category is42-—-_ = 
25, or, in general, A — = B. A set of formal rules for generating items 
was prepared. For this third category, it was specified that A be a two-digit 
number, that B be a one- or two-digit number, and that B < A. Something 

like 5000 distinct exercises can be formed by randomly sampling digits for 
the first and second positions of A and B. 

One randomly generated item of each type went into a test. The 27-item 
subtraction tests so constructed have a coefficient of generalizability of 0.880 
(generalizing over forms and occasions, and assuming that test forms and 
occasions differ from person to person). Even though difficulty of items was 
not directly equated, the tests came close to equivalence. 

This kind of test construction has been discussed by Hively in other 
unpublished reports, and also by Osburn (1968) and Bormuth (1970). 

Osburn thinks of outlining topics and subtopics in relatively complex subject 
matter. At the third or fourth level in this hierarchy, each entry refers to a 
kind of problem. A list of many concrete instances of the problem is prepared. 
In an example Osburn gives, the problem requires calculation of prob- 
abilities. Osburn draws one of several statements of problem-in-context (for 
example, a sentence on market research) and draws numbers from a list to 
particularize the data to be interpreted; an item has been constructed. 
(Bormuth’s approach is similar but makes use of linguistic transformations 
to generate items.) Osburn apparently visualizes outlining a chapter or more
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of text, drawing categories, subcategories, and item types within subcategories 
by a sampling plan, and then generating automatically the particular problem 
to be solved. Each kind of problem could be represented by a predetermined 
number of items, or one could sample from the list of problems. Formally, 
this is a choice between regarding strata as fixed or as random. 

One may not be able to speak of Osburn’s tests as “representing”’ the 
universe of content, because the number of subcategories and concrete kinds 
of items is a somewhat arbitrary function of the material and the tester’s 
ingenuity. But, having once mapped the universe of content, one can assign 
whatever weights seem reasonable at the category level or the subcategory 
level. This defines a universe of admissible tests that can be constructed as 
required. Osburn suggests that such testing is feasible in mathematics, 
statistics, and, possibly, engineering and physical science. 

D. Some Questions Raised by Critics 

Papers by Tryon and Lord introduced the theme of constructing tests by 
sampling into mathematical test theory in the 1950’s, though Tryon’s 
mathematical argument had a concealed assumption of strict equivalence. 
We began to report on our emerging views in 1960. Criticisms of these 
previous papers merit attention here, though we like to think that the theory 
as it now stands overcomes the objections expressed. 

R. L. Thorndike found the notion of a universe “puzzling and somewhat 
confusing.”’ 

As soon as we try to conceptualize a test score as a sample from some 
universe, we are brought face to face with the very knotty problem of 
defining the universe from which we are sampling. But I suppose this very 
difficulty may be in one sense a blessing. The experimental data-gathering 
phase of estimating reliability has always implied a universe to which 
these data corresponded . . . . Perhaps one of the advantages of the sampling 
formulation is that it makes us more explicitly aware of the need to define 
the universe .... 
When we are dealing with the typical aptitude or achievement test, ... 

the conception of the universe from which we have drawn a sample 
becomes... fuzzy.... Some of the recent discussions seem to imply a 
random sampling of tests from some rather loosely and broadly defined 
domain—the domain of scholastic achievement tests, or the domain of 

reading-comprehension tests, or the domain of personal adjustment in- 
ventories. Clearly, these are very vague and ill-defined domains .... 

... Cronbach [and his coworkers offer]... the single term “generaliz- 
ability’’ to cover the whole gamut of relationships from those within the
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most restricted universe of near-exact replications to those extending over 
the most general and broadly defined domain, and develops a common 
statistical framework which he applies to the whole gamut. Recognition 
that the same pattern of statistical analysis can be used whether one is 
dealing with the little central core, or with all the layers of the whole 
onion, may be useful. On the other hand, we may perhaps question whether 
this approach helps to clarify our meaning of “reliability”? as a distinctive 

concept. 
A third context in which the random sampling notion has been applied 

to the conceptualization of reliability has been the context of the single test 
item.... 

... But here, again, we encounter certain difficulties. These center on the 

one hand upon the definition of the universe and on the other upon the 
notion of randomness in sampling. In the first place, there are very definite 
constraints upon the items which make up our operational, as opposed to a 
purely hypothetical, universe. If we take the domain of vocabulary items as 
our example, .... First, there is typically a constraint upon the format of 
the item—most often to a five-choice multiple-choice form. Second, there 
are constraints imposed by editorial policy—exemplified by the decision to 
exclude proper names or specialized technical terms, or by a requirement 
that the options call for gross rather than fine discriminations of shade of 
meaning. Third, there are the constraints that arise out of the particular 
idiosyncrasies of the item writers: their tendency to favor particular types 
of words, or particular tricks of distracter construction. Finally, there are 

the constraints imposed by the item selection procedures .... Thus, the 
universe is considerably restricted, is hard to define, and the sampling 
from it is hardly to be considered random. 

Presumably we could elaborate and delimit more fully the definition of 
the universe of items. Certainly, we could replace the concept of random 
sampling with one of stratified sampling, and indeed Cronbach has 
proposed that the sampling concept be extended to one of stratified 

sampling. But we may find that a really adequate definition of the universe 
from which we have sampled will become so involved as to be meaningless. 
We will almost certainly find that in proportion as we provide detailed 

specifications for stratification of our universe of items, and carry out our 

sampling within such strata, we are once again getting very close to a bill 

of particulars for equivalent tests.... Frequently a test is fairly sharply 

stratified—by difficulty level, by area of content, by intellectual process. 

When this is true, correlation estimates based on random sampling concepts 

may seriously underestimate those that would be obtained between two 

parallel forms of the test, and consequently the precision with which a 

given test represents the stratified universe. [Thorndike, 1967, pp. 288-289].
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Rozeboom (1966) is an even more sympathetic critic; indeed, his dis- 
cussion of reliability might well be ours, restated in a more rigorous style. 

... the definition of a particular testing procedure X may be considered 
to determine a specific probability distribution over potential scores on X 
for each individual p to whom a test is applicable, while the X-score, if 
any, actually received by p is a sampling of this distribution. 

Now, to define a testing procedure is partially to identify the causally 
relevant circumstances which are operative... , and hence to ask what 
score would a particular individual p receive on test X if p were to be tested 
by X is to speculate about what could be deduced from the laws governing 
such situations given exhaustive information about what p is like, but 

only so much information about test circumstances as is included in the 

definition of the test. [Rozeboom, 1966, p. 383; notation altered.] 

As Rozeboom develops the basic notions of reliability theory, he apologizes 
for the “mysterious” nature of the hypothetical true score. It enters “‘only 

because we have attempted openly to confront—not to solve, but at least to 
make our discomfiture explicit—certain fundamental conceptual problems 
of test theory which lie unrecognizably smothered in the more ornate 
flourishes of most traditional accounts of reliability.” (p. 391). A brief 

characterization of classical theory is followed by a characterization of the 
random-sampling model. 
Rozeboom sees it as “rather powerful mathematically ....’’ “Mathe- 

matical potency is something which can be achieved only at the expense of 
postulational risk, however, and how legitimate the sampling assumptions 
are in any given application is always questionable. Further limitations of 
this approach are its failure to provide a satisfactory definition for the 
reliability of noncomposite tests or single items, and the difficulties which 
arise in attempting to specify the domain.” (p. 393). 

The critical argument emerges in full force under the heading of “content 
validity,’ with which Rozeboom properly identifies much of our model. 
Space does not permit full representation of Rozeboom’s logic or his elo- 
quence, but his spirit of discontent can be communicated. He thinks of the 

universe score as a composite criterion variable: 

... a fundamental but outstandingly neglected prerequisite for judging a 
test’s content validity is specification of just what the composite criterion 
is. The composition of the test itself does little to clarify this, for there are 
an unlimited number of potential composite criteria whose components 
are simultaneously sampled by the test.... [An illustration follows.] 
Moreover, it takes much more than a few commonplace phrases... to
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specify the domain with any useful precision, and definitions of composites 
which determine. . . exactly what variables do or do not fall within their 
scope virtually never occur in practice.”’ (pp. 198-199). 

Rozeboom goes on to further examples and into a technical argument 
whose burden is essentially that a universe score cannot be estimated unless 
the elements in the universe are positively, if not uniformly, intercorrelated. 
His critique—which we have been able to represent only by much-too-short 
excerpts—ends on the note that an attempt to appraise performance on a 
universe from a sample “‘is in actuality being surreptitiously construed to 
measure a theoretical variable hypothesized to unify the composite’s domain. 
Hence consideration of content validity ineluctably feeds into the problems 
of construct validity.” (p. 205). As Rozeboom goes on, he clarifies that he 
thinks well of construct interpretations, and of construct validation as a 
scientific rationale. 

We turn next to Loevinger, who is also noted for her advocacy of construct 
validation of tests. Her Presidential address to psychologists concerned with 
measurement (Loevinger, 1965) objects to applying the row-and-column 
symmetry of analysis of variance to persons-and-tests. 

A person retains recognizable identity through slight superficial changes, 
while a test may not. We are always clear whether we are confronted by 
one person or two people. People do not, in front of one, shade off into 
one another imperceptibly. Tests, on the other hand, may differ in minor 
ways whose significance is doubtful. [p. 145.] 

My objection to all psychometric developments that assume random 
sampling of items or tests is in the first instance that they grossly mis- 
represent the actual case, which is almost invariably expert selection rather 
than random sampling. But there is also implied in my argument a subtler 
and deeper point. The term population implies that in principle it is 
possible to catalogue or display or index all possible members... . Tests 
and items are not that sort of thing. There is no meaning to talking about 
populations of tests or items. No system is conceivable by which an index 
of all possible tests could be drawn up; there is no generating principle. 
[p. 147.] 

To be sure, science has often advanced by breaking out of old meanings 
and opening new possibilities .... Obviously, population has also been 
progressively redefined .... Perhaps what it now means is a class of 
objects or events, usually hypothetical, that can be randomly sampled... . 
Thus the burden of definition is shifted to the term random... . Crucial 
points for me are the difference between random and expert selection and 
that sampled objects should maintain a continuing identity. [pp. 153-154.]
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We concur with the critics that if one claims that his observations represent 
a universe he ought to define the universe clearly. His readers should agree 
that the conditions appearing in his G study fit within the universe and that 
they are reasonably distributed over its whole range, not confined to some 
narrow subuniverse. The critics see possible conflict between generalizability 
and construct validity, yet we agree with them that it is well to measure any 
one concept by operations that are phenomenally diverse (Campbell & 
Fiske, 1959; Cronbach & Meehl, 1955). We cannot satisfy those critics who 

insist that statistics derived from the random-sampling model may be 
applied only to data collected by random sampling. On this point, we have 
already aligned ourselves with Cornfield and Tukey. 

Much of the doubt expressed regarding the reference to universes appar- 
ently relates to the idea of random sampling of items from an aggregation of 
rather diverse content. While this theme was dominant in many early papers, 
the concept of stratification of item content was present even in the papers of 
the 1950’s and is now far more prominent. Stratification does not loom large 
in the mathematics of generalizability theory, because random sampling 
within a stratum is still random sampling from a universe of items. The 
investigator proposes to assemble data from fixed strata into a composite 
observation, using predetermined weights. Accordingly, the stratified test can 
be examined with the aid of “univariate” generalizability theory, treating 
items as nested within fixed strata in the universe, or one can apply multi- 
variate generalizability theory, considering each stratum as defining a new 
variable. The objections critics have made regarding random sampling seem 
not to apply, or to apply with very little force, to sampling from the universe 

of stratified tests. 
A proposal to sample items from a broad domain at random is generally 

but not always a sign that one’s understanding is crude. That is, one is 
employing a crude construct, and will willingly move on to purer variables 
when possible. But even when theory is highly refined one will use relatively 
global constructs where they are adequate for a proposed inquiry. In many 
studies of nutrition, for example, it may be sufficient to speak of intake “of 
fats,’ rather than to record separately the “‘saturated fats’ and “‘unsaturated 
fats’? or to move to several still finer constructs such as “‘olein,”’ “‘lanolin,”’ 

etc. Purified constructs, even when available, are not used in every scientific 

conclusion where they might apply. After one learns what is aggregated in 
his global construct, he still retains it—especially in applied measurement 

and research. 
That generalizability theory blurs the distinction between reliability and 

validity distresses Thorndike and Rozeboom. We, on the other hand, feel 
that generalizability theory—even though it is a development of the concept 
of reliability—clarifies both content and construct validation. It is important
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to pursue this issue. A paper by Campbell and Tyler (1957) seems pertinent. 
At that date they were writing without reference to our theory, but they 
were concerned with reliability over observers and occasions, not merely 
over test forms. 

A given scientific construct has multiple operational specifications. If, 
as sampled, these operational specifications concur, the construct and the 
sampled measurement techniques have validity. Constructs for which 
diverse operational specifications persistently fail to agree are in the long 
run modified or abandoned. In the physical sciences, . . . methodologically 
independent operational specifications of the same construct may agree 
on the order of .99... over a population of instances.... 

Construct validity thus becomes the correlation among two or more 
independent measures as conceptually identical in their referents as 
possible. But the distinction between reliability and validity is still a very 
important one to retain. Insofar as the measures share the same apparatus 
or the same approach, they tend to share correlated error variance, or 
common variance due to features of the apparatus which are irrelevant to 
the construct in question.... Reliability is epitomized by the corre- 
lation of two specifications of a construct through maximally similar 
approaches. Construct validity is epitomized by the correlation between 
two or more specifications of a construct maximally different in apparatus 
or method. [p. 91.] 

Our position differs little from the position all the critics mentioned accept. 
The operational definition of an indicator or a body of content to be sampled 
defines a universe. Generalizability analysis indicates how closely different 
realizations of the definition correspond to each other and to the universe 
score. The more definitively the developer of a measuring procedure describes 
the universe he has in mind, the greater the degree of generalizability he 
can hope to attain with a sample of practicable size. The question remains 
whether he has defined a universe particularly worthwhile investigating. To 
answer this, one asks for convergence of diverse indicators. One does not 
move far toward construct validation until he has established convergence of 
indicators of different kinds, each representing its own universe of admissible 
operations (Cronbach, 1971). 

A universe can encompass diverse situations. Recall our suggestion that 
the subtests of the Wechsler Verbal Scale represent a larger domain of verbal 
tasks. One who wishes to restrict his interpretation to the fixed subtest tasks, 
singly or together, may do so. It is arguable whether it is more parsimonious 
to attribute properties of the data to the features of the several subtests or to 
assume that their unique features can be neglected and that “‘verbal ability”’ 
is a suitable interpretative construct. A critic may object to random sampling,
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and propose to define verbal ability in terms of subcategories from which 
tasks could be systematically sampled. This would seem to be a forward step, 
as generally occurs in the evolution of constructs. Similarly, a critic might 
propose to replace the universe score (which is something like a centroid 
factor of the subtests), with a factor defined by some other dimension in the 
same space. This too is acceptable within generalizability theory. 

Because of the latitude allowed for universe definition, Ross and Lumsden 

(1968) consider generalizability theory to have “abandoned” the problem of 
reliability. They want to consider tests that “measure an attribute,’’ in that 
the observed score is a monotone function of a latent unidimensional score 
plus a random error. As they point out, our readiness to investigate any 
operationally defined universe means that we deal with many a universe that 
does not, for them, appear to fit an acceptable theoretical construct. Ross 
and Lumsden directly pursue the problem of inferring values of the latent 
variable as a nonlinear function of the observed variable. They see this as a 
more interesting problem than the one we have addressed: “The outcome of 
the attempt to set up true score as an ideal is, in point of fact, the position 
reached by Cronbach, et al., which attributes to the test as many true scores 
as universes which may be found for it. In brief, then, while true score may 
suffice as a conceptual tool with which to examine the exterior properties of a 
test (its relations to other tests and criteria) it will not suffice for examining 
the intrinsic and singular interior properties of the test.’” Such faint damns 
appear to us as praise, and we cheerfully assent to the characterization. 

We do see generalizability analysis as having some value for theory. 
Generalizability analysis indicates which facets contribute strong main 
effects or strong interactions with persons. Suppose, for example, it is found 
that in peer ratings there is a substantial subject-rater interaction component; 
then one may generalize to a universe of undifferentiated raters, but must 
employ many raters to obtain adequate generalizability. However, the finding 
should impel the investigator to ask what rater characteristics contribute to 
the interaction. This would lead him to subuniverses representing types of 
raters. Whether he reassembles the types by some stratified sampling plan is 
less important than the fact that the study has increased his understanding of 
social perception. 

We see research as gradually improving the specification and mapping of 
the universe of interest. As a construct becomes better understood, it becomes 

possible to define the admissible observations so that they will be highly 
comparable. Stratified sampling plans and various types of calibration or 
correction serve just this purpose. When the investigator’s generalizability 
study shows that he is successfully controlling a large number of unwanted 
influences, that in itself is partial evidence of validity. A score can, alter- 

natively, have a high degree of generalizability without having a high degree
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of validity, either because the universe has been narrowed without scientific 

or practical justification, or because a very large sample of conditions has 
been drawn. 

EK. Evaluation of Generalizability Theory 

Applied testing and social policy 

A mathematical model is socially neutral, even though the flight of cannon- 
balls was Galileo’s starting point. Any discussion of social values in a 
technical monograph would have been considered out of place two decades 
ago, but times have changed. Today it is obvious that even to publish a 
report dealing with behavioral measurement is to express a conviction that 
measurement can be socially beneficial. For writers to pretend that they 
have no views about the application of the devices they describe is disingenuous 
and patronizing of the reader. Worse, it is self-destructive, because the 
writer who conceals his social views leaves himself open to the critic who 
may impute a malign policy to him. Discussion of policy is imperative in the 
present monograph since the technical devices we suggest may have re- 
gressive social consequences if applied thoughtlessly. 

Testing of all kinds has been under heavy attack in recent years. A good 
part of the criticism has been well motivated and well informed. Since the 
critics have made many points testers must take seriously, it is foolish to 
envision a return to the status quo ante. New values are in the ascendancy, 
and political, educational, and business institutions are being reshaped. The 

victories that progressive social critics win over the old system will have to 
be celebrated with some sacrificial victims, and among the casualties will be 
some uses of tests. Because of minority-group objections some American 
school boards have greatly curtailed the administration of general mental 
tests. In a more violent confrontation abroad, the Japanese New Left threw 
over an innovative and liberalizing program of college aptitude tests, but one 
that symbolized the Establishment to them. 

Much of the attack of tests represents an egalitarian doctrine. Equality of 
opportunity, dignity, and justice is to be promoted by every possible means. 
But to insist that equality requires identity and that there is in fact no differ- 
ence among persons is to deny reality. One can make tests taboo, if they 
embarrass one’s doctrine by continually making unwelcome differences 
evident; but to do so is only to force decisions of employers, teachers, 
physicians, and policy makers back onto biased, inaccurate impressions. 

Social planning, evaluation of social programs, and planning treatments 
for individuals require information. Some of the information is of the 
generalized sort that comes from scientific research, and some is local and
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personalized. The better the information of either type, the sounder the 
planning and the greater the social benefit. The social order that is evolving 
will have as much need for social and behavioral measurement as did that 
of the 1940’s, though it probably will ask different questions. Already, the 
educational romantics are beginning to ask how they can collect evidence to 
evaluate their neo-Summerhills. Computer-aided instruction in reading seems 
to be particularly beneficial to children coming from poor, non-reading 
families—and it makes intensive use of week-by-week measurement. If the 
much-talked-of tuition vouchers come into being, so that each family can 
pick and choose among schools for its children, the very diversity of op- 
portunity will make the parent an avid consumer of facts about the results 
schools achieve. Such diversification of education must also renew interest in 
differential aptitudes. 

Application of generalizability theory should operate ultimately to increase 
the accuracy of test interpretations. It will make interpretation more cautious 
as the inadequate generalizability of a procedure becomes recognized, and it 
will encourage the development of procedures more suitable for generalized 
interpretation. Item-sampling designs in evaluation, for example, make it far 
more practical to collect evidence on diverse outcomes of a course. With 
such data one can recognize when an innovative program is truly producing 
effects qualitatively different from those of a traditional course. Equally, such 
data enable one to detect undesirable side effects. The reorganization of 
aptitude and interest profiles in terms of estimated universe scores will 
suppress some pseudoinformation, and so make guidance more intelligent. 
Moreover, it will lead to a redistribution of effort, because some instruments 

now invest much effort in measuring a verbal-educational core of ability 
that is already reasonably well estimated by ordinary school records. Once 
multivariate estimation of universe scores makes this redundancy clear, 

effort will be redirected to the study of other educationally significant 
outcomes. 

Almost all the uses of tests that are now attracting increasing interest 
demand absolute, content-referenced, or criterion-referenced measurement. 

It is the level of the graduates’ performance, and not their standings relative 
to each other, that one requires to evaluate early childhood education. It is 
absolute measurement that one uses to prescribe next week’s instructional 
activities in computer-based instruction, and in testing to see if a standard is 
met. Any effort to facilitate the learner’s self-evaluation should emphasize an 
absolute multidimensional report on his performance. In another area, there 
is a role for instruments that report interest profiles in absolute terms 
(Cronbach, 1970, pp. 486-488). The emphasis in generalizability theory is 
on the universe score itself and not on the comparisons of individuals 
stressed by classical test theory.
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Point estimates of universe scores are pertinent to either absolute or 
comparative decisions. Such estimates are higher than observed scores for 
some persons and lower for others. If subgroups are used, the fact that the 
person moves toward the mean of his own demographic group can have 
dramatic consequences. Persons with the same observed score will obtain 
different universe-score estimates, the higher estimates going to persons 
whose group has the higher mean. 

Scores of blacks and whites are likely to be differentially affected. Similarly, 
children whose parents have little education are likely to do worse than 
children of educated parents. Regressing scores will lower the apparent 
standing of any child in the former group whose observed score is unusually 
high for that group. To be sure, regression will also tend to bring down the 
very high scores among the children of educated parents, and to bring up 
scores in the lower end of the distribution for children of undereducated 
parents. Accordingly, on the average, regressing scores does not alter the 
group difference. But it does alter the apparent standings of children from 
different backgrounds in that region of the scale where their scores are most 
likely to overlap, and where they are most likely to be compared with each 
other. 

Although regressing scores would have unfavorable consequences for 
children or adults who are above-average members of disadvantaged groups, 
it is not a distortion of the available evidence. The statistical logic is clear: 
if exhaustive measurement of each individual were carried out, there would 

be the same kind of rearrangement of ranks, and the same kind of reduction 
in the overlap of the groups. If thorough measurement is to be regarded as 
biased because it reports a difference that exists, then the only procedure that 
could be called unbiased is a completely inaccurate measurement; scores 
determined wholly by chance exhibit no group difference. We cannot defend 
a measurement procedure that knowingly conceals a difference. The re- 
gression procedure gives as accurate a report as we can give. 

There is something repugnant about a correction procedure that seems to 
penalize a person by virtue of his color or his parents’ education. The feeling 
is a consequence of the view that high scores are beneficial to the individual. 
Scores should not be used in such a way that attaining a high score in itself 
confers benefits. If we were to look on the score not as a measure of merit 
but as a measure of need, then the more accurate (but lower) regressed score 
would be conferring a benefit on the individual from the disadvantaged 
group. If the person with the greater need is to have the greater educational 
resources expended on him, full disclosure of his present educational deficit 
would be to his advantage. 

In personnel decisions, it is not of central importance to estimate the 
universe score on a predictor variable. The real question is what outcome is
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to be expected, if the person is accepted and assigned to a job, or accepted 
for a particular instructional program. The decision rule ought to be estab- 
lished on the basis of the joint distribution of test score and criterion score 
within each group, the cutting score being located so that the persons at the 
cutting score have an acceptable probability of reaching satisfactory criterion 
performance. The cutting score is likely to be different in the various groups. 
The rule can be expressed in terms of the observed score or in terms of the 
estimated universe score, but if properly determined, the two rules will 
select the same members of the group, and hence it is pointless to regress the 
observed score toward the group mean. 

The justifiability of the regression procedure will vary from context to 
context. Because a serious attempt to apply this technique has never been 
made, despite its long years of good standing in test theory, regressed scores 
are likely to be misunderstood even by professional test users. A period of 
exploratory use of both regressed and unregressed scores side by side may be 
the best way to arrive at a sensible policy. 

The task of measurement theory is to improve the quality of information. 
Score information alone does not necessarily dictate what action should be 
taken. Even if, after all pertinent statistical corrections are made, the infor- 

mation about two persons is the same save for their group membership, it 
may be appropriate to treat them differently. Such a strategy may involve 
“‘bias,’”’ but we see no objection to bias so long as it is open and based on 
thoughtful policy. Preferential hiring, quotas, and other devices intended to 
redress social balance ought to be open and explicit, where they can be 
recognized for what they are. To use poor estimates of scores in place of 
better estimates as a covert way of accomplishing social balance seems 
unlikely to prove benign in the long run. 

Scientific implications 

Generalizability theory is both familiar and exotic. Its basic ideas have been 
well known to behavioral scientists at least since Fisherian analysis of 
variance came into prominence late in the 1940’s. Even though the appli- 
cations of these ideas to measurement theory have with rare exceptions been 
limited to simplified cases, many of those applications are well known and 
embody most of the concepts with which this monograph deals. However, 
in the attempt to build a relatively comprehensive system, with assumptions 
somewhat more realistic than those of previous developments, we have 
constructed a maze of argument in which one can easily lose himself, and 
which is very difficult to see as a whole. Complicated as our argument is, it 
by no means goes into all the matters that will ultimately have a place in the 
theory.
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A large part of our development is a restatement of classical theory in 
more general terms, displaying how the argument would look if derived 
from weaker assumptions. In the end, we are often forced back upon some 
of the classical simplifications in order to reach one or another conclusion. 
Fortunately, the reader who wishes to use traditional formulas and tra- 
ditional language may do so because classical theory remains, as a special 
case, entirely consistent with our model. We do not expect the words “re- 
liability,”’ “‘true score,”’ and “‘standard error of measurement” to disappear 
from the tester’s vocabulary. But the reader who has grasped the perspective 
of generalizability theory will thereafter see those concepts in a different way. 
He will recognize that error and true score can be defined in almost innumer- 
able ways. He will recognize that any sentence that refers to “the’’ reliability 
coefficient is simplistic, and almost certainly wrong. Even if he carries out 
only single-facet, single-variable studies of instruments, applying the most 
conventional of formulas, generalizability theory should induce him to 
formulate his question more thoughtfully before proceeding to collect data. 

In the course of what once set out to be a simple free-style retelling of a 
familiar plot, we found the familiar topics taking on a most unfamiliar 
aspect. The “true IQ”’ is a hero-figure as well known to us as the Lone 
Ranger; we try to tell about it and suddenly realize that not even Wechsler 
himself knows what the “‘true Full Scale IQ” might mean. The correction 
for attenuation, we find, takes on as many identities as the Old Man of the 
Sea. The regression estimate of the universe score has always been in the cast 
of the psychometrician’s ritual, but has never been given lines to speak; in 
the present theory it finds itself thrust to the center of the stage, as fraught 
as Hamlet with grand messages and grander uncertainties. The legend of the 
confidence interval, which once flowed so smoothly from the tongue, has to be 
cut from the plot as implausible. Surely the story of reliability theory will 
never again have its old meaning for our readers. 

Generalizability theory offers endless possibilities for elaborate studies to 
be carried out in the course of instrument development. To exploit the full 
possibilities of these investigations, the investigator will have to develop his 
own skill through experience. Even though we have tried to present methods 
in cookbook form, virtually never does one of our illustrative studies prove 
to be a routine application. Every measuring device has its idiosyncrasies 
that must be considered in designing the study and in reflecting on the data. 
Analysis of variance components is much like factor analysis in this respect; 
how one designs his study, what decisions he makes at various points in the 
analysis, and what psychological background he brings to the interpretation 
do much to determine what he will get out of the inquiry. Cookbook pro- 
cedures can be offered, but sophisticated inquirers will depart from them in 

almost every application.



388 Contributions and Controversies—a Summing Up 

Generalizability information offers welcome possibilities for improving 
instruments, possibilities that could not be attained through a simpler 
formulation. First, there is the possibility of identifying the conditions 
largely responsible for inconsistency from one observation to another. This 
both explains the character of what is measured and allows one to reduce 
the inconsistency by taking a better sample. Second, there is the power of 
multifacet design to adapt one’s procedure for data collection to suit his 
purpose. Instead of attempting to create an instrument that will “have high 
reliability’’ forever after, he adjusts the crossing and nesting of facets, the 
extent of sampling, etc., to fit the decisions for which he will use the scores. 

Item sampling is just one of the variants on this theme. Third, the use of 
approximate regression estimates seems to promise more accurate conclusions 
than would be drawn by alternative methods. This is a fortiori the case when 
a profile or a composite score is to be interpreted. 

Our theoretical ideas have changed during the long period in which we have 
been trying to put them into a coherent form. The statements offered here 
differ, in emphasis and sometimes in content, from our formulation of three 
or more years ago. Often it has seemed as if the theory were imposing itself 
upon us. Certainly we never “set out to solve’? many of the problems this 
monograph deals with; rather, the solution and the problem tumbled 
simultaneously out of the machinery. We have found some of our reasoning 
incorrect, usually because we were unwittingly employing old habits of 
thought to interpret elements of the new model. It is possible that inconsist- 
encies remain in the present argument. Even if everything we say now stands 
up under criticism, generalizability theory will change as measurement spe- 
cialists begin to apply it and sense possibilities that have not called themselves 
to our attention. 

Today’s reader, coming to a fully elaborated generalizability theory for 
the first time, no doubt finds it forbidding. As measurement specialists 
become accustomed to its language and its ways of treating data, this strange- 
ness will pass. As the theory is put in different words by successive writers, 
it will be rounded into smoother form. As it becomes better integrated with 
other recent developments in error theory, and with the validation theory of 
which it is a part, it will become inseparable from the measurement theory 
of the next generation. 

EXERCISES 

E.1. Tuddenham obtained ratings of adolescents, given by two raters each of 
whom studied a different file of background material on the subjects. In a later study 
Kagan and Moss also obtained ratings of adolescents; their various raters all 
worked from the same files of material. Kagan and Moss regarded their technique as
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superior because they obtained higher reliability coefficients (rater agreement) than 

Tuddenham. 

a. Use the language of generalizability to discuss the choice between techniques. 

b. Comment on the remark of Honzik (1965) that the Tuddenham technique is 

‘“‘more akin to a validity coefficient.” 

E.2. Illustrate, with respect to a simple test of typing speed to be used in an em- 

ployment office, the following: 
a. A vague universe definition. 
b. A clear universe definition where the universe is broadly inclusive. 

c. A clear definition of a narrow universe. 

E.3. Show that rifle marksmanship can be defined in terms of broad or narrow 

universes. For what purposes is it useful to make the universe extremely narrow? 

E.4. A reading test, used to advise students whether or not they should consider 
taking a remedial reading course, presents selections of about 200 words from 
college texts and asks four questions on each selection to test comprehension. 
a. Should the universe of generalization be defined as: i. selections from the whole 
range of college textbooks and questions on these selections, or ii. as the universe of 
questions that might be asked about the selections in the test? 

b. Assuming that an internal-consistency G study is conducted, how does the 

answer to a affect the procedure or analysis? 
c. Assuming that a parallel-form G study is conducted, how does the answer to 

a affect the procedure or analysis? 

d. What arguments can be offered for and against compiling separate tests for 

commerce majors, science majors, and humanities majors? (Confine your attention 

to considerations of generalizability and validity.) 

e. Suppose that there is a single test for all fields. It is found that means of students 

in different majors vary considerably. Is it fair to use the point-estimation technique, 

regressing to the mean of students entering that field and reporting estimated 

universe scores rather than observed scores? 

E.5. The following statement is made by R. B. Cattell (Cattell, Eber, & Tatsuoka, 

1970, p. 32), who measures such personality traits as humility or conservatism by 

assembling a number of items that represent rather different aspects of the trait into 

a score. 

If one wishes to create high homogeneities (and call them reliabilities!) as some 

test handbooks do, it is easily possible to do so by multiplying the writing of very 

similar items. But any broad and important personality trait has to be assessed 

across a wide variety of areas and forms of expression. Furthermore, even from a 

purely psychometric point of view, the highest multiple-R validity is obtained by 

finding items that correlate consistently with the factor, but trivially with one 

another. 

Comment on the passage from the standpoint of generalizability theory. Can 

Cattell’s ideas be expressed in terms of this theory, or is there a contradiction?
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E.6. Where there is an excellent indicator of a construct, one often carries out a 

concurrent validation study to evaluate a substitute (usually a cheaper) indicator. 
Accordingly a household thermometer may be checked against a well-calibrated 
thermocouple. In such a study, the latter is referred to as the criterion. Defend or 

criticize the statement: “‘A universe score may be regarded as a criterion score, as 
that term is used in concurrent validation.” 

E.7. Consider the following passage. Is it true that to maximize validity one may be 
required to reduce the generalizability from observed score to the universe score of 
interest ? 

[With regard to reliability and validity :] in order to maximize one, you may be 
required to reduce the other... . When one is developing a test it is natural to 

retain those items which correlate highly ... with the total score. This has the 
effect of making the test more homogeneous and more reliable. 

However, it is almost always the case that the criterion behavior, which is to be 
correlated with the test scores, is not a homogeneous, single-factor behavior . . .. 
To measure these skills, one needs to retain such diverse items in the predictor 

test. By retaining such items, the reliability will undoubtedly be reduced.” 
[Dick & Haggerty, 1971, p. 137.] 

E.8. “For the test interpreter, the universe of generalization is a construct.” 
Which of the following comments best amplifies and defends this statement ? 
a. The universe consists of observations that have not been made. 
b. The universe is hypothetical; its elements could not all be listed, even by 
exhaustive effort. 

c. The universe definition reflects someone’s working hypothesis that sentences 
embodying that concept will provide a useful description of reality. 
d. The universe definition implies a theoretical assertion that all observations in the 
universe measure the same thing; that is, all are influenced by the same actions or 

characteristics of the subject. 

E.9. Nunnally (1971, Chapters 5 & 6) identifies generalizability with both reli- 
ability and validity. Any construct, he says, has to be identified by the theorist with a 
specified ‘domain of observables.”” One would verify the adequacy of the concept by 
demonstrating that the several observables, each of which is determined by a 

distinct kind of measurement, perform similarly. For the construct of ‘‘fear,’’ one 

would check whether, under given conditions, persons’ scores on the several 

measures correlate. Also, one would determine if the mean scores on the measures 

show similar trends when the level of threat is manipulated experimentally. 
Is Nunnally’s view (much abbreviated here) consistent with our concept of 

generalizability ? 

Answers 

A.1. a. Tuddenham used a G-study design (r,f) x p in which raters r and files f 
were confounded. His coefficient treats both sources of error together, and in- 
vestigates the adequacy of generalization over the universe of raters and that of files
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of material. Kagan and Moss held files constant. That is, their design could be 
described as r x p with files as a hidden facet; or as r x f x p with ny = 1. Their 
analysis gives information only on the r and pr components of variance within the 
file, and, in effect, investigates how well one can generalize over raters when the 

files are of the type used in their study. The more limited universe of generalization is 
sufficient to account for the greater size of their coefficient. A more complex design, 
with at least two raters for each file, and with more than one file per subject, would 

be needed to arrive at any comparison of the two rating methods. 
b. It makes sense to use the term validity rather than generalizability for the 
Tuddenham study if the two files of material on the subject are of different kinds; 
for example, one representing psychological tests and one representing notes by an 
observer who visited the school. If the two files are regarded as reasonably similar in 
character (e.g., each set includes a sample of test data and a sample of reports from 
acquaintances), the term generalizability seems more natural. Perhaps the easiest 
way to make this discrimination is to ask: If there were three sets of files, would it 
make sense to consider the three intercorrelations separately because the sets are so 
distinctive in character, or would a single intraclass correlation for the three files 

give the pertinent information? It is in the latter case that generalization over the 

universe of further files is a plausible idea. 

A.2. a. Samples of English text to be typed. 
b. Measures of speed in typing material of the kind assigned to typists in office 
typing pools, using one of the common office machines, with performances that 
involve more than two errors per hundred words not being counted. (This of course 

could be specified still more precisely.) 
c. Measures of speed in typing outgoing letters in the wholesale grocery business, 
using an IBM Model Q typewriter. (Error control to be added as in 5b. One 
might think of stratifying to produce sets reflecting different kinds of correspond- 

ence.) 

A.3. The basic purpose of training may be to prepare the rifleman to hit the sorts of 
targets he will encounter in the field, where lighting conditions, terrain, and target 
motion vary. This is a broad universe. A narrow definition would specify one kind of 
target, one distance, a modest range of lighting conditions, and one position of fire. 

It probably would specify the model of rifle to be used. The narrow definition 
would generally be preferred in any comparative assessment, for example, an 
experiment comparing two training techniques, comparing two models of rifle sight 
or testing the effect of lack of sleep on steadiness. Also, for a competition in 
marksmanship (though a stratified universe including more than one narrowly 

specified condition would usually be preferred). 

For these purposes there is likely to be some merit in selecting whatever particular 
conditions are most favorable to markmanship, and fixing them. But the broader 

universe would be preferred when training is being evaluated, because one wants to 

forecast the overall operational efficiency of graduates in the field, where conditions 

require adaptability. In general, the greater the stress on realism in the decisions to 

be made, the less satisfactory a narrow universe will be
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A.4. a. It is hard to see any basis for preferring ii as the universe. 
b. Selections should be taken as the unit of analysis, or the analysis should treat the 
data as having a (questions:selections) x persons design. One could also split-score 
the test by dividing selections into alternate halves. Person-selection interaction 
must be treated as one of the sources of error. 
c. The two forms must use different selections, not different questions on the same 

set of selections. 
d. If one assumes that students in these fields read such different books that 
comprehension will vary considerably depending on the kind of book used in the 
test, separate forms are advisable. The universe seemingly ought to be the books 
students are likely to have to read, and students in different majors overlap con- 
siderably in the courses they are expected to take. This argues against separate tests. 
Even if there were little overlap, it might reasonably be argued that comprehension 
of texts is a general skill that generalizes over categories of subject matter. 
e. By the rationale of this chapter, regressing toward group means is fair. The mean 
Square error of generalization is reduced, and the student who by luck earns a score 

well above the mean for his group is not given false encouragement. It would be 
well, of course, to interpret the score with relation to expectancy tables determined 
for the separate groups; if that is done and all persons take a single test, regression 
is unnecessary. 

A.5. Generalizability theory recognizes a coefficient obtained from ani x p design 
as information about generalizability over randomly sampled items. If an investiga- 
tor uses a different procedure for assembling items into a test, it is possible to apply 
that procedure to two or more items and to form separate tests; that investigator 
clearly wants to generalize over tests formed in that manner, not over randomly 
generated tests. Where Cattell is using something akin to a multiple-regression 
procedure to decide what items to retain, the two forms for the G study would have 
to be formed by applying the method to two separate but randomly parallel item 

pools. Generalizability theory is neutral with respect to the question as to whether 
an instrument should measure a broadly defined trait; the machinery can be adapted 
to Cattell’s purposes and also to the purposes of a person theorizing about a very 
narrow trait that coincides with a homogeneous universe of items. 

A.6. The statement is acceptable only if the universe represents what the in- 
vestigator truly desires to measure. If he is interpreting his result as a measure of 
“temperature,” the universe score for thermocouples is a good approximate 
criterion. To be sure, it is an unobserved and unobservable criterion, and it is not a 

perfect criterion, because there are still better (and more expensive) laboratory 

devices to measure temperature. The universe score for the rather questionable 
household thermometers, which may be biased in various ways, is definitely not 
regarded as a criterion. In general, it appears that to call the universe score a 
criterion is inadvisable. 

A.7. This passage is sound, within the limits of traditional ways of talking about 
internal-consistency coefficients as representing “the reliability.”” This passage is in 
accord with Cattell’s view (E.5), but more traditionally worded. The coefficient
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of generalizability for a test that is deliberately constructed to cover a broad 
universe (whether the construction plan is stratified or not), ought to refer to that 
universe, not to the universe of tests from which low-correlating items have been 
culled. To be sure, a heterogeneous test of length 7, will ordinarily correlate less with 

the universe score for tests randomly parallel to it than a homogeneous test of length 
n, with the universe score for a set of such homogeneous tests. But these twonumbers 
answer different questions, and no meaningful comparison can be made. (The 

comparison is only a shade less absurd than asking “Did it rain more than it was 
windy, last night ?’’) This is precisely the issue raised in E.1 above. 

A.8. A construct is a term that (together with other constructs) describes how a 
person “‘construes” a phenomenon. It is a part of his theory (which may be elaborate 
or vague). He uses it because he finds that he can make statements that summarize 
his experience and help in analyzing new events. Accordingly, E.8.c is closest to the 
heart of the meaning, and it is true that universes are chosen for this reason. 

Choices E.8.a and E.8.b are irrelevant. Under certain circumstances, a construct 

is a grouping of events or phenomena that have already been observed. (“‘The 
French Revolution” is a construct, though not a scientific one. So is ‘the gross 

national product in 1932.’’) 

Comment E.8.d may or may not be largely true. If the construct is something like 
‘Jones’ reputation among the American public,” one does not expect homogeneity 
of cause or description, yet this may be a most useful construct for the behavioral 
scientist. Even with a strictly scientific construct, it is understood that we are 
dealing with an abstraction, not a “thing.” Consider “blood sugar level’’ as 
measured by any standard procedure. Clearly, despite the purity of the concept, the 
phenomena it reflects in different persons and at different times are quite diverse. 

A.9. We tend to restrict the term generalizability to the case where the operations 
are phenomenally similar. With regard to “‘fear’’ we would not speak of generalizing 
over a universe that embraces measures of skin conductivity, self-report, heart rate, 
and observers’ ratings of disorganization. But we would willingly consider a universe 
of measures of skin conductivity taken simultaneously at different places on the 
body—though, in line with Nunnally’s logic, we would have to revise that working 

construct if we found that different parts of the body respond differently to ex- 
perimental stress. We do not use the term generalizability as broadly as Nunnally, 

but the disagreement is merely terminological.
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Proof regarding covariance components 

Each expression in (8.1) and (8.2) is a special case of what might be 

written as: 

E0(X pi5,X pit s+) = o*(Up~) + O(Upi™ Ll pit™) + O(Ups~ sft ™) 

+ O (Mai soit ™) + O(Cpigs€ nit s+) 

where i+ may be interpreted as either i or i’, and jt as either j or j’. 
Each of the four possible interpretations gives rise to either (8.1) or (8.2), 
because components of covariance for i with i’ or j with j’ vanish in 
the expectation, and a covariance of like components is a variance. The 
following is a proof for the case where i+ is interpreted as i’ and j+ is 
interpreted as /. 

(1) € CUXp:X pis) = co C6(X5i; — Mis Xpe3 — Mes) 
tFe 9 tFet JD 

(2) X pig = + (Myp~) + (ar) + (4m) 

+ (Up) + (Up) + (U3) + (Unig) 

(3) fgg = + (~) + ~~) + (as) 

(4) X nig — Mis = (Uy™) + (yim) + (Hai) + Gnis™,2)
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Similarly for Xp;; — [y;- 

(3) (Xpi5 — Mas MX pirg — Mars) 

= (Uy~) (Uy) + (Myer) + (gi) + Gore 2)] 

+ (Uy ~~) + pe) + Mim) + Goiri:2)1 

+ (Uys~) (a) + (Uy) + (Up) + (My €)] 

+ (My) ™) + (Mp) + Haim) + Hor 2)1 

(6) E(Uy~)(Ho~) = o(p); é (My j~)Has™) = ¢ (Uyy~) = o°(pj) 

All remaining expected products in (5) reduce to zero. 

(7) CX 4:5,Xpi5) = o'(p) + o°(pj) 
i Fi’ 

Two examples of the argument regarding reduction of products to zero should 
suffice : 

(8) E (Uy~)(Upe™) = El(My~) * €Upe~)] = é [My~ 0] = 0 

(9) EE (Uyi~)(Upv™) = | 6G4%~) ° C On| = 0 
p i,t’
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Index 

Alpha coefficient, 82, 121, 183, 353; 

see also Intraclass correlation 

Analysis of variance, models, 8, 115, 359 f. 
procedure, 42-43, 45-46 

Anxiety; see Inventory of Anxiousness 

Aphasic patients; see Porch Index 

Attenuation, correction for, 5, 287-308, 

352, 359 

multivariate extension, 325 ff. 

Battery reliability, 121, 344; see also 

Composite score 

Bayesian statistics, 57, 128, 136, 153 ff. 

Bias in decisions, 106, 385 f. 

Causal inference, 292 ff. 

Change; see Difference scores, Gains 

Child-parent interaction, 109, 185 

Classical theory of reliability, related to 

generalizability theory, 9 ff., 75, 80, 

93, 100, 136, 143, 231 f., 244, 288, 

350-364, 386 ff. 

Coefficient of generalizability, 17, 75, 80, 

82, 97 ff., 119 ff., 353 

for a specific condition, 101, 359-361, 366 

Components of covariance, defined, 267 

estimation of, 275-283 

in universe of admissible 

observations, 266 f. 

in universe of linked observations, 271 ff. 

Components of observed score, 26, 28, 

203, 235, 238, 266 f. 

as a function of design, 39-41 

Components of variance, confounded, 

37-42, 45 ff.; see also Experimental 

designs, nested 

defined, 27 f., 44 

estimation of, 5, 42-63, 210, 222, 

234, 365 f. 

Components of variance (continued) 

estimation of, with nonuniform n, 

208, 365 

inadvisability of significance testing, 

192, 224 

in finite universe, 58 ff. 

negative values, 57 
sampling error of estimates, 49 ff., 

312, 362 f. 

Composite score, 121, 263, 265, 

283-287, 327-339 

Condition(s), 19, 34 

discreteness of, 368, 379 

Confidence band, graphic, 95, 134 

Confidence interval, 16, 75, 80, 

127-137, 355 

for difference between persons, 93 ff. 

for group mean, 96, 130 f., 133 

Construct interpretations, 330, 339, 

370 ff., 379-382 

Content-referenced interpretation, 149, 

378, 384 

Correlation between distinct variables; see 

Attenuation, Multivariate theory 

Correlational analysis of G data, 231-258, 278 

Correlations in G data, three types, 233 

Covariance, analysis of, 152, 339 

Covariance, components of; see Components 

of covariance 

Covariances, used to estimate components of 

variance, 233 ff., 244 ff., 247 ff. 

used to estimate components of 

covariance, 278 

Criterion-referenced interpretation, 148, 384 
Crossed designs, 35; see also Experimental 

designs 

Decision, absolute, 14, 384 

comparative, 15, 95 

407



408 Index 

Decision (D) study, contrasted with 

G study, 16 ff., 354 

Definition; see Operational definition; 

also, terms defined 

Difference, two persons on single variable, 

15, 93 ff. 

single person on two variables, 14, 258, 

263, 330-339 
Differential Aptitude Tests, 317-322 

Equivalence assumptions, 9, 311, 357 ff. 

consequences of violation, 100 ff., 

136, 140 ff. 

Error, 24 ff., 354 ff. 

4, 24, 75 ff., 84 ff., 115-119, 284; see 

also Confidence interval 

4, for a specific person, 85 
5, 24, 75-76, 79 ff., 93 ff., 119 

e, 25, 75, 78, 80, 83, 106 f., 150 ff. 

E, 75 

Error, sources of, 5 ff., 232 ff. 

Expected mean product, 276-280 
Expected mean square, 43 ff. 

Experimental design, choice of, for 

D study, 95, 170, 173, 183 f., 197, 

202, 214, 219 f., 256 f., 354 

for G study, 256 f., 273 f. 

Experimental designs, 34 ff., 90-92 
crossed (i X p, 1X] X p, etc.), 35-40, 

42-45, 60, 66, 91, 99, 115 ff., 

163-184, 190 ff., 239 

nested (i:p, i:j:p, etc.), 35-42, 74-78, 

92, 100, 195 ff. 

(j:1) X p, Design V A, 36, 42, 61, 

92,119 

i X (j:p), Design V B, 38 ff., 47 f., 61, 89, 

92,117 f., 177 f., 189-193, 220 

j:(@ X p), Design IV A, 38, 40 ff., 49, 61, 

65, 92, 119, 217 ff. 

(i X j):p, Design IV B, 38, 40 ff., 89, 92 

k X (i:j:p), 198 ff. 

(i:7) X (k:p), 203-215, 221 ff. 

five-facet designs (Wechsler scale), 239 ff. 

see also One-facet studies 

Experimental designs for correlational 

studies, 237 ff. 

Experimental designs for multivariate 

studies, 268 ff., 273-280 

Experimental designs with divided 

samples, 106, 274 f. 

Facet, 2, 19, 34 

hidden, 113, 122 ff., 277, 289 f. 

numerical examples, 171 f., 183, 191; see 

also One-facet studies 

nested within another facet, 63, 203, 

221, 364 

nested within the person, 121, 364 

with fixed condition(s), 21, 29, 58 ff., 

113-124, 191 f. 

Factor analysis, facet approaches, 10, 

13, 184 

Finite universe, 9 

Fixed conditions; see Facet with fixed 

condition(s) 

Form of test, as a facet; see also Items, 

as a source of error, Stratified sampling 

Hunter Science Aptitude Test, 299 

Wechsler Scales, 280 ff., 296 ff. 

Gain scores, 330-339 

Generalizability, 15 

Generalizability (G) study, contrasted with 

D study, 16 ff. 

Generalizability study, reporting of, 18, 

108, 175 

Generalizability theory, evaluation, 

356-366, 376-388 

historical development, 5 ff. 

summary, 350 ff. 

Grading; see Scoring, Rating 

Homogeneity of conditions in the 

universe, 370 ff., 379 ff. 

Independence assumptions, 265, 272 

Independent sampling in multivariate 

studies, 269 

Interviewer, as a source of error, 36, 

355, 362, 372 

Intraclass correlation, 11, 17, 75, 83, 97, 

100, 353; see also One-facet studies 

Item sampling, 215-221, 365; see also 

Experimental design (especially with 

i nested) 

Items, as a source of error, Belgard et al. 

(test on lessons), 203-215 

NLSMaA stratified achievement test, 

221-225 

NLSMA study of test means, 215-221 

Porch Index of Communicative 

Ability, 166-178



Items (continued) 

S-R Inventory of Anxiousness, 178-184 

tests sampled from explicit item pools, 

221-225, 373 ff. 
Thematic Apperception Test, 294 f. 

Wechsler Scales, 234 ff., 296 ff. 

Jackknife procedure, 54 ff., 70-72 
Joint sampling, 37, 268 ff. 

Kuder-Richardson formulas, 11, 353 

Length of a test, 4, 17, 121, 171; see also 

Number of conditions 

Linked observations, 268 ff., 331 ff. 

Mean of group, estimation of, 96, 141 f., 

219 ff., 224 f., 355 

Mean product, mean square; see Expected 

mean product, Expected mean square 

Mixed model, 8, 59; see also Facet with 

fixed condition(s) 

Models for the analysis of variance, 8, 115 

Monte Carlo studies, 50-51 

Multiple regression estimate, of difference 

score, 335 ff. 

of universe score, 313 ff., 327 ff. 

Multitrait-multimethod matrix, 233, 291 

Multivariate theory, 2, 263-339 

Nested designs, 35; see also Experimental 

designs 

Number of conditions in D study, 42, 74, 

89, 92, 171, 182 ff., 274, 292 

Observation procedures and schedules; see 

also Ratings 

Goodwin study of pupil conduct, 194-203 
Medley-Mitzel study of classrooms, 

189-193 

Observed score, as estimate of universe 

score, 23-24 

variance expected, 75, 90 ff., 90-92, 119, 

286, 353 

Occasions, as a facet, 6, 22, 235 ff., 363 f. 

Goodwin observations of pupil 

behavior, 194-203 

Hunter Science Aptitude Test, 299 f. 

Medley-Mitzel observations of classrooms, 

190-193 

Porch Index of Communicative 

Ability, 176 ff. 
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Occasions (continued) 

Wechsler Scales, 235 ff., 296 ff. 
One-facet study, components of 

variance, 37 

designs and analysis, 35, 37 

interpretation 74-86 

model for score components, 26 f., 44 

multivariate, 275 ff. 

numerical examples, 163-168, 203-209 

Operational definition, 367 ff. 

Point estimate of universe score, 23, 75, 80, 

83, 102 ff., 137-157, 313 ff. 

for composite or difference, 284, 

327 ff., 335 ff. 

Population, 9 

Porch Index of Communicative Ability, 

43 f., 99, 161-178 

Prediction of criteria, 148, 290 

Profile of universe scores, 265, 270, 

309-325 

reorganization of, 323 f. 

Random sampling assumption, 10, 21, 

357, 376-380 

Ratings, 12, 17, 21, 26, 35, 66, 77, 362 

Regression estimate of universe score; see 

Multiple-regression estimate, Point 

estimate, Subpopulations 

Reliability, 15; see also Classical theory 

Restriction of range; see Subpopulations 

S-R Inventory of Anxiousness, 178-185 

Sampling error in results from G study, 

49 ff., 312 ff., 362 

empirical demonstration, 179, 362 

Scale for reporting scores, 23-25, 134, 

146 ff., 257, 311 

Scoring, as a source of error, 8, 11, 36, 43 f. 

Gross Geometric Forms Test, 303 

Hunter Science Aptitude Test, 299 

Leler (mother-child interaction), 109 

Porch Index of Communicative Ability, 

163 ff., 168 ff. 

Thematic Apperception Test, 294 

Social policy and test use, 383 ff. 

Spearman-Brown formula, 77, 83, 171 

Split-half analysis, 234 ff. 

Standards, as bases for decisions, 14, 135 

Stanford-Binet Scale, 236, 256 

Steady-state assumption, 22, 363 f.
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Stratified sampling of test items, 10, 121f., 

221-225, 365, 370 ff., 376 ff. 
Subpopulations, estimates of 

generalizability, 99 

separate regression equations, 105 f., 

150 ff., 385 
Subtests, as a facet, 235 ff., 281 ff., 296 ff. 

as variables entering a composite, 121 

Sums of products, 275 ff. 

Teachers, studies of, Belgard et al. (learning 

by pupils), 46, 87, 203-215 

Medley and Mitzel (classroom 

observation), 189-193 

Thematic Apperception Test, 294 

Time limit, as condition, 22 

True score, 19 

generic, 29 

specific, 29, 42 

Two-facet study, designs and analysis for 

one variable, 36 ff.; see also 

Experimental designs 

designs and analysis for two 

variables, 278 ff. 

interpretation of D studies, 86-107 

model for score components, 26, 28 

Universe, 9, 18-23 

criticisms of concept, 376 ff. 

Universe (continued) 

ecological, 63 f., 121, 269 

of admissible observations, 20, 265 ff. 

of generalization, 20, 114, 235 ff., 300 

of linked observations, 270 ff. 

requirements of definition, 366-383 

with a fixed facet, 21, 29, 58 ff., 

113-124, 191 ff. 
with a nested facet, 63 

Universe-defined tests, 373 ff. 

Universe score, 18; see also Attenuation, 

Point estimate 

for composite variable, 265, 327 ff. 
Universe-score variance, 75, 80, 119, 120, 

123, 284 

Validity in relation to generalizability, 373, 

379 ff.; see also Attenuation, 

Construct interpretations, Content 

validation, Prediction of criteria 

Variance-covariance matrices, 266 f., 272 ff. 

Weakness of model for generalizability 

theory, 357 ff. 

Wechsler scales, 234-258, 263, 280-283, 

296-298, 304, 314 f. 
conceptualization of Full Scale universe 

score, 328 ff.


