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Preface

This book is devoted to Hilbert’s 21st problem (the Riemann-Hilbert problem)
which belongs to the theory of linear systems of ordinary differential equations in
the complex domain. The problem concerns the existence of a Fuchsian system
with prescribed singularities and monodromy. Hilbert was convinced that such a
system always exists. However, this turned out to be a rare case of a wrong forecast
made by him. In 1989 the second author (A.B.) discovered a counterexample, thus
obtaining a negative solution to Hilbert’s 21st problem.!

After we recognized that some “data” (singularities and monodromy) can be obtai-
ned from a Fuchsian system and some others cannot, we are enforced to change our
point of view. To make the terminology more precise, we shall call the following
problem the Riemann-Hilbert problem for such and such data: does there exist a
Fuchsian system having these singularities and monodromy? The contemporary
version of the 21st Hilbert problem is to find conditions implying a positive or
negative solution to the Riemann-Hilbert problem.

In this book we consider only (the contemporary version of) the classical 21st
Hilbert’s problem and only mention (of course, with due references) various modi-
fications, generalizations and related problems. We mention all known results on the
classical problem, both positive and negative, and prove some of them. We simply
do not have enough place to prove all of them, but the samples we explain in detail
include the most important cases and seem to provide a good feeling of the whole
picture.

The problem under consideration is of global character, but in order to study it
one needs some local theory (a theory describing the behavior of solutions near
a singular point). There is a well-known local theory which goes back to Fuchs
and Poincaré and can be found in such textbooks as those by Coddington-Levinson
[CoLe], or Hartman [Ha](we need only a simpler part of this theory dealing with the
so-called regular singularities). For our purposes this theory has to be supplemented
by a new local theory due to Levelt. Our book contains the exposition of both
theories inasmuch as we need them.

In 1908 Plemelj obtained a positive solution to the problem similar to Hilbert’s

In the preface we dwell on the history only inasmuch as it helps us to describe the content of the
book. Introductory chapter contains more remarks on the history (which was somewhat fanciful), but
complete description of the history was not our goal.
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21st problem in its original form, but concerning the so-called regular systems
instead of Fuchsian ones. This was a remarkable achievement, although it does not
mean a solution to Hilbert’s 21st problem, because the class of regular systems
is broader than the class of Fuchsian systems. However, his theorem is useful
even if one is interested only in Fuchsian systems — almost all positive results on
Hilbert’s 21st problem are obtained in the following way: one takes a regular system
provided by Plemelj and tries to modify it so that it becomes Fuchsian with the same
singularities and monodromy. In reality, not only the statement of Plemelj’s theorem
is used, but sometimes also some details from its proof — the very proof we give
here. This proof is different from Plemelj’s original proof, but goes back to Rohrl
(1957) [R&] and takes into account some improvements invented later. An essential
“ingredient” of this proof is the use of the Birkhoff-Grothendieck theorem about
the complex analytic vector bundles over the Riemann sphere. We give (with minor
modifications) the elementary proof of the latter theorem developed recently by
J.Leiterer [Lei]. This makes our exposition self-contained, modulo more or less
standard background.

Here follows some information on this background. The reader must be acquainted
with standard (“basic”) courses on linear algebra (including Jordan normal form of
matrices), ordinary differential equations (we need general properties of solutions
to linear systems), and the theory of functions of the complex variable. Usually in
the basic course of the latter more attention is paid to the “single-valued” functions
than to “multivalued” ones, whereas “multivalued” functions are important for
our purposes. However, we need not a “deep general theory” of such functions
(whatever that means), but rather a good “feeling” of such things as branching of
elementary functions, analytic continuation, “complete” analytic function, Riemann
surface. Usually this is included in a basic course (although often — in a formal way)
and of course can be found in many textbooks. One must know what the universal
covering surface and the deck transformations are. We shall use two functions of
matrices ~— exponential and logarithm. Although the theory of ordinary differential
equations in the complex domain is rather extensive, we need only a few facts of
it. It may happen that the reader’s knowledge of ordinary differential equations is
restricted to the real domain only. We hope that several remarks in the introductory
chapter will help such a reader to adopt to a complex point of view. At the beginning
our exposition is detailed, later it becomes more succinct — we hope that by that
time the reader gets some practice in this field and becomes more mature.

This book includes without big changes the preprint “An introduction to Hilbert’s
21st problem” [An], published by the first author (D.A.) in 1991. This preprint
contained: the general introduction (which is extended here); the description of the
local theory (which we reproduce here with minor changes); the first counterexample
to Hilbert’s 21st problem (the exposition in the preprint is somewhat improved
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compared to the original exposition given by the second author); proofs of the
theorems of Plemelj and Birkhoff-Grothendieck. The first author wrote also the
section on the Bessel equation. All other text was written by the second author. Of
course, we planned and discussed it together.

The above mentioned preprint was written during the visit of the first author to
the Inst. of Math. and Appl., Penn State Univ. and City Univ. of New York. In
this preprint the first author already expressed his thanks to a number of persons
who helped him at his work on this preprint and the entire faculty and staff of the
IMA, PSU and CUNY for their hospitality. Big part of this book was written in
Moscow where we both work at the Steklov Math. Inst., and the second author
finished the work on this book during his visit to Max-Planck-Institut fiir Math. and
to the University of Nice. He would like to thank the staff of MPIM and UN for
hospitality and excellent working conditions. He is very grateful to V.A.Golubeva
and A.V.Chernavskii , who introduced him to the theory of Fuchsian equations and
the Riemann-Hilbert problem.

D.V.Anosov
A.A.Bolibruch
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1 Introduction

1.1 Educational notes

When dealing with the system of ODE in a complex domain

dy] ) 1 P y —

E—f(.r,y,...,y), j=1,...,p (1.1.1)
one assumes that f7 are holomorphic (i.e. single-valued analytic) in some domain
G and asks for analytic solution y'(z),...,y?(x). The local existence theorem
(for brevity, we include here uniqueness and analytic dependence on initial data and
parameters (if there are any)) looks like the corresponding theorem in a real domain.
The most well-known proof of the latter is obtained by rewriting the system as a
system of integral equations which is solved using iterations. A careful analysis of
this proof reveals that it works in a complex domain as well. (We work in a small
disk on the z-plane containing the initial value z, of the independent variable.
Integration is performed along linear segments connecting z, to the “current” z.
These integrals are estimated literally in the same way as in the real case). At
some points it even becomes simpler. If a sequence of analytic functions converges
uniformly in a domain on the z-plane, then its limit is an analytic function. In fact,
one does not even need to assume a priori that the convergence is uniform; but in
our case the proof of the convergence is based on the estimates which imply the
uniform convergence in a sufficiently small disk. (For brevity, we say “function”
instead of “a system of p functions”; one can also have in mind “a vector function”).
So (1.1.1) has an analytic solution. Now, as regards to the uniqueness, it is easy to
see (differentiating (1.1.1)) that two solutions having the same initial data must have
the same derivatives of all orders. Being analytic, they must coincide. As regards
to the dependence on initial data and parameters, we have an uniformly convergent
sequence of functions holomorphic with respect to z, these data and parameters, so
the limit is also holomorphic with respect to them (we again refer to the analyticity
of the limit functions, only this time we deal with a function of several complex
variables). Compare this easy argument with the situation in the real domain. In the
latter case the un iform convergence does not imply any smoothness of the limit
function. As regards to its dependence in , smoothness follows immediately from
the integral equation, so this is also easy, but as regards to the dependence on the
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initial data -and parameters, one needs some extra considerations. (It is true that
one can avoid them by using a simplest version of the implicit function theorem in
Banach spaces, but it is not so popular).

Another way to prove the local existence (etc.) theorem in the complex-analytic
case is provided by majorants. This is an “essentially complex-analytic "’ method
of a broad value (its applications by no means reduce to this theorem or even to
the entire theory of DE). But as regards to the theorem under consideration, it does
not give more than the “integral equations plus iterations” method which may well
happen to be more familiar to the reader.

Being analytic in some disk, solutions to (1.1.1) can be continued analytically. By
the well-known “principle of preservation of analytic identities under the analytic
continuation”, the “‘continued” y!,...,y? remains to be a solution to (1.1.1), if
(z,y',...,yP) does not leave the domain G during the process of continuation.
One must have in mind that it may happen that the solution admits the process
of analytic continuation during which (z,4!,...,y?) leaves G; then the elements
of function thus obtained need not be solutions, as it may happen that the right
hand side of (1.1.1) does not admit an analytic continuations for such values of
(z,y',...,y"). It may happen also that after leaving G our (z,y",...,y?) will
return later to GG; then we get a new element of an analytic function for which one
can ask whether it will be a solution to (1.1.1). There are no reasons why it must
be — it may be and it may not be. And if it will be a solution, it may be so that this
solution will be different from which we started and cannot be connected to this
solution via a process of analytic continuation inside G.

In the theory of real ODE there is another process of continuation — continuation of a
local solution to (1.1.1) which leads to the solution to (1.1.1) defined on the “maximal
interval of existence”. This process has nothing to do with the analyticity, but is
specific to differential equations (one “glues together” appropriate local solutions).
Clearly the same “glueing” process can be defined in the complex domain; of course
this time it may well lead to a multivalued analytic function. It leads to the same
result as the analytic continuation, proviso we do not leave G. Indeed, we already
said that all elements of analytic function obtained by the analytic continuation of a
local solution inside G are solutions; if two of them are “immediate” continuation
of each other, they take the same values at some z, so that they are “glued” during
the second process; and if the two local solutions have the same values at some poit
z, then they are elements of the same analytic function.

Although theoretically we have a process of analytic continuation, in general one
scarcely can say much about the “domain” (to be more precize, Riemann surface)
where a given local solution can be continued. But for the linear systems the situation
is simple.
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Consider first the system

dy _
dr

where the matrix A(z) (i.e. its elements) is (are) holomorphic in the closed disk

A(x)y, y=(y',...,y")", (t means transposition) (1.1.2)

D= {z; |z —a|] <r}

(i.e. A is holomorphic in a somewhat bigger open disk). It turns out that any solution
y(z) to (1.1.2) is holomorphic in D.

Indeed, letm = max,¢p |A(z)|. Asinreal domain, write the corresponding integral
equation and prove that it has a solution in the whole D. The related estimates for
successive approximations

Yo(x) = const, y1(z) = ?/0+/ A(t)yodt, ..., yn(x) = yo+/ A()yn-1(t)dt, ...

are as follows:

mtz —a|®
92(2) ~ v (@] < ol T m g

It is a good training exercise to elaborate another proof, also well-known in the
real domain, by glueing together appropriate local solutions, — this idea is called
“continuation up to the boundary of the domain”. This domain is not D, but D
times some big ball in C? and the essential point is that as far as y is defined on the
linear segment joining a and z,

ly(z)| < lyole™=1,

so that the local solutions we are glueing never become “too big”.

This allows, first, to show that a solution with arbitrary y(a) is defined in the whole
D. We claim also that one can prescribe the value of y at any other point of D and
the corresponding solution again will be defined and holomorphic in the whole D.
This follows from what we already proved about solutions with prescribed y(a).
Take a fundamental system of such solutions and, considering them as columns
of Cauchy matrix Y (x), write arbitrary solution as Y (x)c with some constant
vector ¢. And now a solution with prescribed value w at the point » in D will be
y(z) = Y(z)Y "1 (b)u. All this is quite similar to what is well-known in the real
domain.

Consider now system (1.1.2) assuming A is holomorphic in

S:=C\{ay,...,an}.
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Its solutions can be continued along any path in S. Indeed, this path can be covered
by a finite number of overlapping disks; and in each of them we have a linear
holomorphic system. Thus, we have to “glue” a finite number of local solutions,
each being defined in some disk.

Different solutions to different systems with fixed singularities a,, ..., a, and even
different solutions to one system can branch in different ways. But all of them can
be lifted to the universal covering surface S of S. For this reason we shall always
consider them as holomorphic functions on S (although some of them may well
have “a less branching” Riemann surface).

1.2 Introduction

1. Hilbert’s 21st problem concerns a certain class of linear ODE’s in the complex
domain. Let the system

d
d—g = Ay, y=| : (1.2.1)
yp
have singularities a,, . .., a,; thatis, A(z) is holomorphic in S := C\{ai,...,a,}

(where C is the Riemann sphere). The system is called Fuchsian at a; (and a; is a
Fuchsian singularity of the system) if A(z) has a pole there of order at most one.
The system is Fuchsian if it is Fuchsian at all a;. Let all a; # oo. Then

A(x)=i . B; + B(z),

Tr —a;

=1
where B is holomorphic on C. We want this system to have no singularity at co.
First of all let us see when it is Fuchsian at co. Rewrite the system in terms of a new
independent variable ¢t = 1/x. An easy computation shows that

dy 1< Bi 1 1
2 = - =y = ==B(-).
7t (D1(t) — D2(t))y, where D, r ; I=a1) D, 7 (t)
The matrix function D; has a first order pole (or no singularity at all) at ¢ = 0.
Thus, the system is Fuchsian at ¢ = 0 if and only if ; B(}) has a pole of the first
order there. This implies that B(co) = 0, and since B is holomorphic on C, B = 0
everywhere. Hence systems which are Fuchsian on C are just the systems (1.2.1)

with A having the form
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LIS |
Alz) =) — a.B,. (1.2.2)

i=1

Such a system has no singularities at oo if and only if the residue of D; at¢t = 0 is
zero, that is

> B;=0. (1.2.3)

Instead of the vector equation (1.2.1), one considers the matrix equation

aYy
e A(z)Y, Yisa(px p) matrix. (1.2.4)
The columns of Y are p vectors — some solutions yy, . . . , y, to (1.2.1). We shall deal

only with the case when they constitute a fundamental system of solutions, i.e., they
are lineary independent. This means just the invertibility of Y,i.e. Y € GL(p, C).

Let p : S — S be the universal covering surface for S. Usually we denote points
in S by z and points in p~'z C S by . Solutions y and Y are holomorphic
functions on S, so it is better to write y(Z), Y (Z) instead of y(z), Y (x). Let A be
the group of deck transformations of the covering p : S — S, and let 7,7 € A.
Evidently, if y,Y are solutions to (1.2.1), (1.2.4), thensoare yoo,Y oo. I[f Y
is invertible, then so is Y o 0. However, an invertible solution to (1.2.4) can be
obtained from another invertible solution just by multiplying the latter on the right
by some constant matrix. Thus

Y = (Y oo)x(o), (1.2.5)

where ¥ : A — GL(p,C) is the so-called monodromy representation. It is really a
representation, that is,

x(o7) = x()x(). (1.2.6)
Indeed, Yor =[Yoo)x(o)]or=(YooorT)Xx(0o),s0

Y =Y or)x(r) = (Yooor)x(o)x(r) =[Y o (e7)Ix(o)x(7),

but Y = [Y o (o7)]x(oT), so we get (1.2.6). This explains why one prefers (1.2.5)
to
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Yoo=Yx(o), (1.2.7)

which at a first glance may seem more natural. If we choose (1.2.7), then instead
of (1.2.6) we get x(o7) = x(7)x(0), i.e. x is a so-called anti-representation. It is
more convenient to deal with representations.

Instead of Y = (y1,...,y,) one can start from another fundamental system of

solutions to (1.2.1), i.e. from another invertible solution Y of the matrix ODE
(1.2.4). Then

Y=YC (1.2.8)

with some constant C' € GL(p,C). Instead of (1.2.5) we get Y = (Y o 0)x(0)
with some x : A — GL(p,C). So

YC =(YCoo)x(o) = (Y oo)Cx(0).
ButY = (Y oo)x(o), thus (Y o 0)x(0)C = (Y o 0)Cx(0c). Hence

(o) = C*x(0)C, (1.2.9)

where C is the same for all o. We see that to a system (1.2.1) there corresponds
a class of mutually conjugate representations A — G L(p,C). We shall call this
class simply monodromy. For any representation x; belonging to this class there
exists an invertible matrix solution Y] to (1.2.4) such that Y; = (Y o o)x:1 (o). (If
x1 = C7xC,take Y, = YO).

Consider the space of all solutions y = y(Z) to (1.2.1). This is a p-dimensional
vector space X.Fory € X,0 € Aleto*y :=yoo~l,ie, (cy)(Z) = y(c~'%).
Clearly o*y is also a solution to (1.2.1), so we obtain a map o* : X — X which is
an invertible linear transformation. This defines a map

A—GL(X), o—o".

It is easy to check that (o7)* = ¢*77, i.e., this map is a homomorphism. (If we
defined o* as o*y := y o 7, then o — ¢* would be an anti-homomorphism). After
choosing a basis yi,...,y, in X, we can identify X and GL(X) with the more
concrete objects C? and GL(p,C). This basis defines a map

§—GL(p,C), &~ Y(Z)= (). yp(2))
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(y; are the columns of the matrix Y). Clearly Y (Z) is a solution to the matrix
equation (1.2.4) and (6*y;,...,0"y,) = Y o ¢~ 1. It follows that the monodromy
matrix x (o) is just the matrix describing the linear map o* : X — X with respect
to the basis y1,...,y, in X.

2. Hilbert’s 21st problem is stated as follows ([Hil]): Prove that there always exists
a Fuchsian system with given singularities and a given monodromy. Hilbert himself
said “prove”, but it would be more careful to say “inquire whether...” This is a
distinctly formulated problem which has to be answered “yes” or "no” (whereas
some of Hilbert’s problems are formulated not so distinctly, e.g.: “develop the
calculus of variations along such and such lines”).

Literally, Hilbert said “equation”, not ’system”. (For equations one also has a notion
of Fuchsian equations, see (1.2.12). The monodromy for the pth order linear ODE
is just the same as for the pth order system describing the behavior of the vectors
(y, %, ey %;%), where y satisfies the equation). Does one have to understand
this as “a system of equations” (as we often do in conversations and even in the titles
of textbooks)? We think that the answer is “yes”, because it was already known
at the time that for equations the same problem has a negative answer. It is very
easy to verify that a Fuchsian equation of pth order with singularities a;,...,a,
contains fewer parameters than the set of classes of conjugate representations A —
G L(p, C). (This goes back to Poincaré [Poi]), who calculated the difference between
these two numbers of parameters, see Chapter 7). So in general it is impossible to
construct a Fuchsian equation without an appearance of additional singularities. But
the clear and accurate statement of Hilbert’s 21st problem does not allow such a
possibility.

In mathematical literature Hilbert’s 21st problem is often called the Riemann-
Hilbert problem, although Riemann never spoke exactly of something like it. This
was well-known: Klein in his “Lectures on the development of the mathematics in
19th century” [K1] said that “Riemann speaks in such a careless way as if existence
of functions y,,...,y, (having the given singularities and monodromy) is self-
evident and one has only to study their properties”. However, Hilbert mentioned
that “presumably Riemann was thinking on this problem”, and Rohrl [R6] made
a final step in this mythological direction and distinctly attributed Hilbert’s 21st
problem to Riemann. As well as the majority of the mathematicians who have dealt
with the problem we prefer to say that the Riemann-Hilbert problem (Hilbert’s 21st
problem) is close to the sphere of Riemann’s ideas and it has arisen in the course of
research stimulated by him.

For a number of years people thought that Hilbert’s 21st problem was completely
solved by Plemelj [P1] in 1908. Only recently it was realized that there was a gap
in his proof (for the first time this was observed by T.Kohn [Koh] and V.I.Amold,
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Yu.S. II'yashenko [Arll]). It turned out that Plemelj obtained a positive answer to a
problem similar to Hilbert’s 21st problem but concerning so-called regular systems
instead of Fuchsian ones. Here is the definition of them.

Let (1.2.1) be asystem with singularities a,, . . ., a,. It is called regular at a; (and a;
is a regular singularity for this system), if any of its solutions has at most polynomial
growth as z — a;. ("Polynomial” means “polynomial in 1/|z — a;|”). This has to
be stated more carefully, as it is clear that if y branches logarithmically near a;, then
one can get any growth of y as x tends to a; along an appropriate spiral: each turn
gives a constant “’increase” to . One must demand that z — a; in an "honest” way,
remaining inside some sector ¥ having vertex at a;. Here is the precise definition:
for any such sector 3, for any "covering” sector ¥ on S and for any solution vy,
the restriction y|i has at most polynomial growth as x — a; remaining in . It is
sufficient to demand this for only p linearly independent solutions, or equivalently,
for an invertible matrix solution Y to (1.2.4). In view of (1.2.5) one needs only take

several sectors &, C S such that D (Uih) is a disk centered at a,. It follows that

there exists A € R such that for any £, ¥ and y as before,

V@) gasz—a (pi=zex ief). (1.2.10)
|z — a4*

The system is called regular if it is regular at all a;. Any Fuchsian system is regular
(see [Ha] Hartman'’s textbook on ODE'’s for a very short proof due to G. Birkhoff),
but a regular system need not be Fuchsian (Plemelj was able to find systems in a
broader class than required by Hilbert).

Of course, misunderstandings are common for human’s activity, but it is not so
common that a misunderstanding in mathematics retains for more than 70 years.
Perhaps this is explained by the following circumstances. First, the notions of
“Fuchsianity” and “regularity” are defined in some way also for the pth order scalar
linear ODE in the complex domain. In this case these notions, being different in
appearance, turn out to be equivalent. This is not the case for the systems — it is
well-known and trivial that for them the two notions under consideration are really
different. But now the second circumstance appears: locally it is easy to modify a
regular system so that one gets a Fuchsian system with the same singular point and
monodromy. Perhaps all this supports the unconcious feeling that also globally one
can modify the regular system so that one gets a Fuchsian system with the same
singularities and monodromy. Now we know that this feeling is wrong, although it
is easy to pass to a Fuchsian system with the same monodromy if we admit the extra
singularities. (The latter are called apparent singularities, although they are true
singularities in the sense that they are poles of the coefficients. They are apparent
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only in the sense that the solutions do not branch there). However, this feeling is not
entirely deceptive: as we already mentioned, almost all positive results to Hilbert’s
21st problem for Fuchsian systems are obtained by perfoming some appropriate
modification of a regular system provided by the Plemelj theorem.

Although Hilbert spoke of Fuchsian systems, one may ask whether he could have
in mind regular ones. Here again arises the problem of interpretations etc. which we
consider as a difficult one. But if he could have this in mind, it means that there was
some ambiguity with the term “Fuchsian” at that time. Then one should consider
Hilbert’s 21st problem as consisting of two parts — one for Fuchsian, another for
regular systems. Whether it is justified historically or not, such a point of view on
this problem is quite reasonable as really there are two problems.

Some particular cases of Hilbert’s 21st problem were more or less solved (always
positively) before Plemelj (some of them — even before Hilbert published his list of
23 problems). References are given in Hilbert’s text [Hil] devoted to these problems
and in Rohrl’s paper [R6]; also Klein refers to Hilb’s (not Hilbert’s) article in the
German Math. Encycl. However, nowadays one must check whether these results
concerned Fuchsian or regular systems and whether they were proved at all; this
explaines why we said “more or less”. Hilbert himself published a paper [Hi2].
Klein refers to Hilbert’s solution of the problem in the general case, but Rohrl
attributes to him only the positive solution for the case of two equations and any
number of singularities. At any case, Hilbert’s paper has a reputation of involved
etc. and it seems that after Plemelj published a much more lucid paper nobody was
interested in the careful analysis of Hilbert’s arguments.

Plemelj used the theory of singular integral equations which he developed especially
for this purpose. (Perhaps this was the first success both in developing and applying
this theory). In 1957 Rohrl ([R6]) published another approach to the same problem
using some arguments from the theory of Riemann surfaces and the algebraic
geometry. There are some improvements of his approach. Primarily they go back to
Deligne [Del] !; also several remarks are due to [Bo4] and [An]. Taking into account
all this improvements, Rohrl’s approach can be considered as an elementary one,
with an essential exception: one has to use a nontrivial theorem due to Birkhoff and
Grothendieck (or another statement which is perhaps one slightly weaker; both will
be stated below). Birkhoff proved this theorem using singular integral equations,
while Grothendieck used algebraic geometry; so it may seem that the reduction of
our problem to this theorem only moves more difficult arguments to another place.

'He considered an analogous problem for a system of Pfaffian differential equations with several
independent variables. This made a more geometric point of view more or less unavoidable. But the
same point of view turns out to be useful in our case. (Of course here it becomes simpler. E.g., we
need not mention Deligne’s "flat connections” explicitly, although the “branching cross section” Z
below is a simple manifestation of the same idea).
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But now there exists a short and elementary proof of the Birkhoff-Grothendieck’s
theorem. It was published by Leiterer [Lei].

The goal of the third Chapter of our book is to give a complete proof of Plemelj’s
theorem, following Rohrl’s approach, using the improvements mentioned above
and including a slightly modified version of the proof of Birkhoff-Grothendieck’s
theorem sketched by Leiterer. In our opinion, both the reduction of the problem
to this theorem and the proof of the latter use nontrivial ideas (although they
are elementary); however, there is a difference in style between this two parts of
the argument. First part looks like “abstract nonsense”, so it is almost trivial in
appearance (but it is quite nontrivial that this can be made trivial!). The second part
seems to be nontrivial both in appearance and in essence.

In 1989 it was found an unexpected negative solution to Hilbert’s 21st problem in
[Bol], [Bo2]. It is explained in Chapter 2. This result changes our point of view on
these questions and increases the value of various partial positive results, such as
the following:

1. (Plemelj, [P1)). Fix b € S and let ay, . .., a, be loops at b such that o; ”goes
around” a; without "going around” any a; # a;. (Such a system of loops
is not uniquely determined — see the dashed line in the figure, but anyone of
them will do). If at least one of the matrices x(), ..., x(@n) is semisimple
(diagonalizable), then the answer is positive.

2. (Lappo-Danilevskii, [LD]. 1920-s). If all x(«;) are sufficiently close to the
identity matrix I, then the answer is positive.
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3. (Dekkers, [Dek], 1979). In the case p = 2 the answer is positive (independently
ofn).?

4. (Kostov, [Kol], [Ko2], Bolibruch, [Bo5], [Bo6]). If the representation x is
irreducible, then the answer is positive.

5. (Bolibruch, [Bo2]). If p = 3 then there is a complete answer whether the
problem has a positive or negative solution for a given x. (See Chapter 6 of
the present book).

It is worth mentioning once more that the proofs of several positive results about the
Hilbert 21st problem for Fuchsian systems begin by referring to Plemelj’s theorem
on regular systems; after this one modifies the regular system provided by this
theorem in order to obtain a Fuchsian system with the same a;, X.

The goal of the second Chapter of this book is to explain the first negative result.
Not only does it provide an answer to Hilbert’s 21st problem but also serves as an
introduction to other results.

The first negative result concerns the case p = 3,n = 4. (It is the first case when
the known positive results do not apply — and now we understand why).

It was found out that this “counterexample” has the following property: if one
perturbs the singular points a; then the answer to Hilbert’s 21st problem with the
same monodromy can become positive ([Bo2]). Thus, in the “counterexample” the
monodromy must be somehow tied to the singular points. In the theory of ODE’s
it does not seem unnatural to tie these things by means of a differential equation.
Indeed, this is the case for the “first counterexample”.

Some later in [Bo4] there were obtained new series of representations, that give a
negative solution to Hilbert’s 21st problem and are already stable under perturbati-
ons of singular points. These series and some other new results concerning Hilbert’s
21st problem are presented in Chapter 5.

3. In Chapter 7 we consider a connection between Fuchsian systems and Fuchsian
equations on the Riemann sphere. Equation

y(p) + ql(l')y(p_l) + R qp(:r)y = 0 (1.2.1 l)

is called Fuchsian at a point a, if its coefficients ¢;(z), ..., ¢,(x) are holomorphic
in some punctured neighborhood of this point and

%Lappo-Danilevskii and Dekkers did not pretend to solve the Riemann-Hilbert problem (that time
there was the opinion that this problem was solved by Plemelj), but the results formulated above
follow immediately from their results.
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Gy =&, (1.2.12)
(z - a)
where 71 (), ..., r,(x) are functions holomorphic at a. All solutions of a Fuchsian

system have at most a polynomial growth at a;, so the Fuchsian point is regular.
This has to be made more precise in the same way as for the systems. It tuns out that
(1.2.11) is regular at the point o if and only if the system describing the behavior of

the vector (y*, ... ,y?) = (y, %, ey Z;—:’%), i.e., the system
dy 2
— = 1
dx Y
dy?
dL = (1.2.13)
T
d.y.p. ............
—— = @)y .. =@,
dx

is regular at a. It is well-known that (1.2.11) is regular at x = a if and only if it is
Fuchsian at x = a (see [Hal).

For the systems the analogous statement is not valid. Equation

d’y 1dy 1

2L 2L =0

dx? + z dy + 227
is Fuchsian at x = 0, hence the corresponding system (1.2.13) is regular there, but
one of its coefficients has a pole of the 2nd order.

Nevertheless there are ways to transform (1.2.11) to a system Fuchsian at a. For
this purpose we can replace transformation (1.2.13) by the following one:

y=z
dy 2

— a2 = 1.2.14
— .(ﬁ_.i.y ......
(z~-a) ldxp*l = 2P,

Under such a transformation we get
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, dz! )

T-a)gy =
dz?

(x —a) = = z2+23 (1.2.15)
dz? »_ % p—(k-1) k

(- a)'&; = (p-1)2"-> (2-0a) Gp—k+1(T) 2"

k=1

Due to (1.2.12), (1.2.15) we obtain that the vector 2z satisfies the system (1.2.1) with
the matrix

0 1 0 0 0
1 0 1 1 0 - 0
Az) = - 0 0 2 1 ... 0 ,
x .. CEEI - .. .. .. ...
_Tp _Tp—l DR e DR (p — 1) — Tl

thus the system is Fuchsian at a.

Equation (1.2.11) is called Fuchsian (on the whole Riemann sphere) if all ¢;(x) are
holomorphic on S = C\ {a,,...,a,} and (1.2.11) is Fuchsian at points a, .. . , a,.

In Chapter 7 we prove that any Fuchsian equation (1.2.11) can be transformed to a
Fuchsian linear system with the same singular points and a monodromy group on
the whole Riemann sphere without appearance of new singularities.

Here we also estimate the number of so-called "apparent” singularities of a Fuchsian
linear differential equation of p-th order. (These singularities appear under attempts
to construct a Fuchsian linear differential equation of the p-th order with a given
monodromy ).

4. There are different modifications and generalizations of the classical Riemann-
Hilbert problem. The analogous problem over Riemann surfaces were considered
by Rohrl [R6] (see also [Fo]). Some modifications of the problem over the Riemann
sphere were considered by G.Birkhoff [Bi] and II’yashenko [ArIl].

Rohrl’s and Deligne’s papers [Del] gave rise to the setting and investigation of the
multidimentional Riemann-Hilbert problem in [Ge], [Gol], [Lek], [Su], [Ki], [Hai].

Hilbert’s 21st problem and its analogous have many applications in various areas
of mathematics and physics, which are not discussed in our book. Information on
these subjects can be found in [Ka], [SIM], [Go2].
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2  Counterexample to Hilbert’s 21st problem

2.1 The first counterexample

Consider the system (1.2.1) with

1 0) . (0 60)
z 0)l+—fo -1 1]+ @
0 —z /) S+ \ o _;

0

]

]

2 . 0 -3 -3
a4 )l+——|0 -1 1].
1 3= \o -1 1

It is singular at ag = 0, a; = —1, a; = 1, a3 = 3. Later (in Section 2.4) we
will check that there is no singularity at co. The points a;, a3, a; are Fuchsian
singularities, however a, is not Fuchsian, but a pole of order 2. Thus, the system is
not Fuchsian, but we shall see that it is regular.

Our system has some monodromy. We shall prove the following assertion. There
exists no Fuchsian system with the same singularities and monodromy. (This state-
ment will be referred to as the ”Assertion”.) In this example the monodromy is
given implicitly. Here are some comments on this fact.

The Assertion is very sensitive to the given data (a; and x) — one type of sensitivity
was described in the penultimate paragraph of item 2 of Section 1.2 (sensitivity
to a;), another is evident from Plemelj’s positive result (1) above. This second
type of sensitivity does not depend on p. The first type does depend on p (at least
sometimes): for p = 4,n > 3 the second author was able to find (explicitly) a
monodromy which cannot occur in a Fuchsian system whatever the a)s are (see
Chapter 5).

Now about the method of proof of the Assertion. The matrix (2.1.1) has the form
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Az) = B(z) 2.1.2)
0
where
1 1 1 1 1
012(33):;3 I+1_;-——%;a13($):x—l_a:—-%; (2.1.3)
171 0 1 -1 1
_! _r 2.1.4
Bo=2(o 2t ) *imen( o) @14
+ 1 < -1 -1 >+ 1 < -1 1 )
-\ 1 1)73@-O\-11)
For the system (1.2.1), (2.1.2)
dy'* 2 3
i a2 (z)y* + as(z)y”, (2.1.5)
T
where y? and y° satisfy the system
dy 2
— =B(z)y, yeC (2.1.6)
dr

with B as in (2.1.4). When studying this system in its own right, we shall write
y*,y? instead of y2, 3. (This will not be much of an inconvenience.) Clearly the
properties of (2.1.6), (2.1.4) are important for the study of (1.2.1), (2.1.1), so Section
2.3 will be devoted to them.

Assume that our Assertion is false, i.e., there exists a Fuchsian system

& _ Clz)y, yeC .1.7)
dx

with the same singularities and monodromy as (1.2.1), (2.1.1). The latter already
indicates some similarity of these systems. In Section 2.4 we shall transform (2.1.7)
in order to increase this similarity. Afterwards, we shall be able to pick out” from
the modified ”"C-system” a second order Fuchsian quotient system
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d,

& Fz)w,veC (2.1.8)
dz

having the same singularities and monodromy as (2.1.6), (2.1.4) and satisfying some

extra conditions. The investigation theorem in Section 2.3 will show that such a

system cannot exist.

We shall rephrase the very end of previous paragraph. Consider the ”problem”:
[P]”Does there exist a second order Fuchsian system having the same singularities
and monodromy as (2.1.6), (2.1.4)?” [P] is trivially ”yes”: we need not even appeal
to Dekkers ((3) above), as (2.1.6), (2.1.4) is itself Fuchsian. However, if we impose
some additional requirements on the system we are looking for, the answer may
be ”no”. Earlier we said essentially that the falseness of the Assertion implies a
positive answer to the problem [P+ some extra requirement]. Thus, we see that
a negative answer to Hilbert’s 21st problem for p = 3 depends upon a negative
answer to a related problem for p = 2. Perhaps this auxialiary problem in its own
right seems somewhat unnatural, at least less natural, but that does not matter (and
depends more on the experience than on the taste).

Just to state the auxialiary problem one needs a new local theory to supplement the
well-known theory which goes back to Poincaré and can be found in such textbooks
as those by [CoLe] or [Ha]. (Needless to say one needs the new theory in order to
investigate the auxialiary problem and its relationship to the Assertion.) This new
theory is due to Levelt (1961) [Le]. Section 2.2 is devoted to it.

2.2 Local theory

First we recall the old theory. We shall consider the system (1.2.1) near an isolated
singular point, say 0. Let U be a small disk with center 0, U* = U \ 0, p : U+ —-U*
be the universal covering of U*. A(x) is holomorphic in U*, solutions y (to (1.2.1))
and Y (to(1.2.4)) are holomorphic in U~

The group of deck transformations A is now an infinite cyclic group generated by
a deck transformation o which corresponds to one trip around 0 counterclockwise.
Clearly In Z is a holomorphic function in U* and In(c%) = InZ + 27i. Let G =
x(c~1) so that

Y(c%) = Y(3)G 2.2.1)

(which is similar to (1.2.7) — for a cyclic group we do not bother with the difference
between representations and anti-representations, so there are no objections to
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(1.2.7)). Let E = 3= In G (logarithm in the sense of the matrix theory), so that if
N are eigenvalues of G and p’ of E, then y = ;- 1In M. Denote p’ = Rey’ and
normalize the choice of In demanding that

0<p <1 (2.2.2)
(this is not necessary for the Poincaré arguments, but we shall use it later). Introduce

the function £ := efnZ (holomorphic on C/'*)-’

(O'i')E — eE(ln2':+27ri) — :iEG

Then (cf. (2.2.1))

Y(oz)(c2) F =Y(@)GG 27 =Y(2)z7F.

Hence, Y (£)z~% can be considered as a single-valued holomorphic function on
U*; denote it by Z(z). We arrive at Poincaré result claiming that any (invertible)
solution Y to (1.2.4) can be represented as follows:

Y (%) = Z(z)iE, (2.2.3)

where Z is holomorphic on U*. Recall that G in (2.2.1) (and hence F here) depends
onY;forY = Y C one must replace G by G = C~!GC (Cf. (1.2.8),(1.2.9)).

Now we turn to Levelt’s theory. It concerns only regular systems. For a scalar
or vector function holomorphic on U* and having only polynomial growth when
x — 0 (cf. (1.2.10) and the discussion preceding it) define

e(y): = [SUP{)W%(TA—)—*OaS:r—»ooH =

= max{kEZ;V/\<k Zl/if\)—»Oasx—»o} (2.2.4)

»(0) = c0.

(Here . . .] denotes the entire part. As regards to the statements of the type ... — 0
as x — 07, they are subject to the same provisos as before). For example:

w(i—m:z) :80(:/1—5) -1
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Evidently,
yl
ify=| : |, thenp(y) = minyp(y’) (2.2.5)
yp
also
p(yoo) =e(y). (2.2.6)
Indeed, our
WHI) Oasz — 07 (2.2.7)
||

means that whenever X, ¥ are as in the text preceding (1.2.10),

(1) @ e
———— = 0asz -0, z€ X, 2 €L, pTt=ur.
||

But this is equivalent to

(woo)lo'E) (2)

L —»Oasz—»O,zEE,iea_li,p:izx,
T

since we can replace & € o' S in the latter formula by 0=1%, & € £ (still pZ = z),
and then in the numerators in both formulas we shall have the same function

L -C -y =ylco™'2),z €3, pi =1

As T runs over all sectors covering ¥, so does o~'%. Hence (2.2.7) is equivalent to

»(yo0)(T)

iz —Q0asxz — 0"

(quotes indicating the same provisos as in (2.2.7)), and the set of A in (2.2.4) is the
same fory and y o 0.)

Solutions y to (1.2.1) (recall that they are some vector functions on U *) constitute
a vector space X isomorphic to C?. Restricted to X, ¢ is amap ¢ : X — Z having
the following properties:
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p(Ay) = @(y), if A € C\O;  9(0) = 005 (22.8)
©(y1 +y2) = min(p(y1), p(y2)), with equality if p(y1) # ¢(y2).
In algebraic terminology this can be expressed by the words: ¢ is a nonarchimedian

normalization on X over the trivial normalization on C”. The appearance of the
root “norm” is explained as follows. If we define

[1Alll = 1 when A € C\ 0, [||0]]| =0,
lylll = a=*¥ for y € X (using a fixed @ > 1),

then ||| - ||| satisfies the standard properties of the norms:

1Al AT Nyl
My +2elll < Wl + -l

(Moreover: ||y; + 2|l < min(|[[y:]ll, lly2]l1), with equality when [[ys ||| # [ly2[ll-
Of course this is not standard, but a peculiar property due to the nonarchimedian
character of ¢). However, when dealing with nonarchimedian norms, people usually
work with such functions as ¢, without appealing to ||| - |||.

Another example of a normalization on a finite dimensional vector space X is given
by the Lyapunov characteristic numbers (exponents). In this case, X is the space of
solutions z(t) to a lipefxr system & = A(t)a.v on [0, co) with appropriate restrictions
on A. The characteristic number of z € X is

X(&) = T I 2(0)], X(0) 1= ~co.

Then ¢ = —x has the properties (2.2.8). In contrast to Levelts’s case, this ¢ takes its
values in RU oo. Properties of x are well-known, and it is more or less well-known
that many of them are due to the fact that ¢ = —x satisfies (2.2.8). (Of course one
does not go from x to ¢ = —, but just rewrites (2.2.8) in terms of x. Incidentally,
Lyapunov himself defined x as the negative of the definition given above). Due to
Levelt further we shall use term valuation for .

In any case, one can prove that ¢ defines a filtration of X (a strictly increasing
sequence of vector subspaces)
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0=X’cX'cX?’c.--cX'=X (2.2.9)

such that ¢ is constant on X7 \ X7~! and if ¢/ = p(X? \ X77!) then ¢! > ¥? >
oo > " Let k; := dim X7 — dim X7~!. We say that ¢ takes the value ¢’ with
the multiplicity k;, or that ¢’ has multiplicity k;. We shall use also the notation

SOI = = k - 111)11
Sﬂkl+l — S0k1+lcz ¢2
(pkl+"'+kl.—l+l = ... = (pk1+"'+k"—1+k" = ’(j)h.
Note that
P> > (2.2.10)

There exists a basis yi,...,y, in X such that ¢(y;) = 7. We take k, linearly
independent vectors in X!, then add to this collection k, vectors in X?* which are
linearly independent mod X', and so on.

Until now we have used only (2.2.8). Recall now that our y’s are solutions to (1.2.1)
- some vector functions on U* where the deck transformation o acts. If y is a
solution to (1.2.1), then y o ¢ is also a solution (again defined on U*"), so we get a
linear transformation’

c": X=X o'y=yoo.

It preserves the filtration (2.2.9) (cf. (2.2.6). Consider the induced transformation
o; on the jth factorspace and take a basis ¥y, . .. §,; in this space that o7 has an
upper-triangular(say, Jordan) matrix representation in this basis. Each 7,; is some
coset y;; + X7~! where y,; is any representative of this coset. Take the following
basis in X:

Yty - -y Yk 1 Y125 - - -y Yka2y - - -y Y1k - - <y Ykph-

In Chapter 1 we defined o*y slightly differently, o* = y 0 o ~*. As we mentioned already, in the
local situation one has cyclic group of deck transformations and needs not bother with the difference
between representations and anti-representations. The matrix G in (2.2.1) is just the matrix describing
o™ with respect to the basis whose vectors are columns of Y.
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Denote these vectors (in this order) by v;,...,y,. Such a choice of basis is a
particular case of the choice considered in the previous paragraph. We conclude
that ¢(y;) = ¢’ and ¢* has an upper-triangular representation in this basis. To
check the latter, argue as follows: if y; = yim, 1 <1 <k, 1 <m < h, then

!
o5 0im € Z(qum in X™/Xxm!

q=1

and in X

!
oty; = 0" Yim € Z(cqu + X" =

m—1 k, 7

= Z(Cyl + Cyqer = Z(C'z s

l
q=1 r=1 q=1 s=1

We shall call such a basis a Levelt’s basis or a Levelt’s fundamental system of
solutions to (1.2.1) (although Levelt himself used another name). It is clear from
the construction that it is not unique, i.e., there is some freedom in choosing it, but in
general only some bases are Levelt’s bases. (Note that a Levelt’s basis, by definition,
is an ordered system of vectors; in general the same vectors taken in another order
will not constitute a Levelt’s basis). A matrix Y = (yi,...,¥,) whose columns
constitute a Levelt’s basis we shall call a Levelt’s matrix or a Levelt’s (matrix)
solution (to (1.2.4)). Now we shall explain that for a Levelt’s matrix Poincaré
representation (2.2.3) can be improved.

Let us note first if one uses some basis (y1,...,y,) in X (not necessarily a Levelt’s
basis), the matrix representation of o* in this basis is just given by the monodromy
matrix G related to Y = (yi,...,y,) according to (2.2.1). Indeed, what does it
mean that some matrix, say H, is the matrix representation of ¢* in the basis
(y1,...,vp)? This means the following. Take a vector z having coordinates ( =
(¢',...,C¢P) in this basis. Then oz has coordinates H( (writing ¢ as a column
vector). Now z = ;’:1 ¢’y;, which can also be written as z = Y'(. Clearly,
o'z =30 ((y;00) = (Yoo)¢ = YG(.But this means that 0" z has coordinates
G( in the basis (y1,...,¥p), i.€., G is actually the matrix representation discussed.

We conclude that if (y,,...,y,) is a Levelt’s basis then G is an upper-triangular
matrix. Hence, soare E and et? (t € C), 2% = e/ #Z Note that X (t) := ' satisfies
the system of ordinary differential equations % = E X having constant and upper-
triangular coefficient matrix, with X (0) = I (the identity matrix). Writing X (t) =
(z1(t)), it follows easily that z;;(¢) = e*’* (recall that »/ are the eigenvalues of E)
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and each z ; (t) with 7 < k is a sum of products of some polynomials in ¢ and some
exponential functions eh't (whereas zj; = 0 for 7 > k). Denote the coefficients of
ZF by ay;(z). Then

o(ag;) >0 (2.2.11)
(here we use (2.2.2)),

(%) = . (2.2.12)
Now
J
y;(8) = o (%) 2k (=) (2.2.13)
k=1

(cf. (2.2.3)) and ¢(y;) = ¢’. All the z, are holomorphic in U* and have at most
a pole at 0 (so we may speak about ¢(2;)). Thus z, = z¥*)w,(x) with some
wy, holomorphic in U and such that w,(0) # 0. The case z, = 0 is excluded here
because the 2 are columns of the matrix Z which is nondegenerate, since Y is
nondegenerate. It follows from (2.2.11) that

p(ak;zk) > p(zk). (2.2.14)

Indeed, if A < ¢(z), then A + & < (z;) for some € > 0, and

QjZe %k
|$|/\ - (|$|fouc]) (W> 3

where both factors tend to 0 as z — 0 (with the usual provisos). We see that

{)\; ‘T’;li‘“ —~0asz — 0} S (A < p(z))

which implies p(oy;2z) > p(zx) (cf. (2.2.4)).

Moreover,

p(aj;2;) = ¢(z5). (2.2.15)

In view of (2.2.14), we need only prove that
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(aj;z;) < o(z;).

()

We have

‘ajjzjl _ | aui—14e
|z|ezi)+1=e -

Ife > Oissufficiently small, then p’ —1+¢ < 0, and the first factor |z# ~1+¢| — oo,
while the second tends to |w;(0)| # 0, as z — 0. Thus
sup {/\; CIZJ;’ — 0, asx — 0} <o(z)+1—k¢,
and ¢(a;;z;), i.e., the integer part of this sup, is < ¢(z;).
We claim that
o(25) 2 wly;) = . (22.16)

Asy, = a2, (cf. (2.2.13)), this is already proved for j = 1 (cf. (2.2.15)); we even
have

o(z1) = p(y) = ¢ (2.2.17)

We proceed by induction. Assume that

o' =) < lz1),..., 9 = (Y1) < e(z5-1). (22.18)
Rewrite (2.2.13) as

1—1

Y; = Q525 + Z A2k (2219)

k=1

Assume, for contradiction, that ¢’ > ¢(z;). Then for the second summand (X) in
(2.2.19) we have
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Jj—1
7 (Z akak) > min{p(ax;z;);k=1,...,5 -1} >

k=1
> min{p(z);k=1,...,5 =1} >min{*;k=1,...,j -1} =
= ¢ 207 > 0(z) = p(ay;z).

(We use (2.2.8), (2.2.14), (2.2.18), (2.2.10), our assumption and (2.2.15)). Now in
(2.2.19) we have two summands («;;z; and £) and

plaj;2;) < (3.

According to (2.2.8)

o(y;) = plaj;z;) = o(z;)
(we use (2.2.15) again), which contradicts to our assumption.

As z; is holomorphic and # 0 on U* and as it has at most a pole at 0, (2.2.16) allows
us to write

zi(z) = %7 v;(x), (2.2.20)

where v;(z) is holomorphic on U. Thus

Z(z) = (21(2), ..., 2p(x)) = (vi(T), ..., v,(z))2® = V(x)z?,

where V. = (vy,...,v,) is holomorphic in U, and ® is the diagonal matrix
diag(e', ..., P). This is the improvement of (2.2.3) for Levelt’s solution to (1.2.4):
Y (%) = V(z)z®#E. (2.2.21)

Here V is holomorphic in U, diag(¢*) and E is upper-triangular. The following
rephrasement of (2.2.21) is also useful:

Y1y s Yp) = (v1,. .., 0,)x*FE. (2.2.22)

Because of the diagonal form of & (hence z*) and the upper triangular form of F
(hence z£), (2.2.22) can be “truncated” at any “’coordinate”: for any [ € {1,...,p}
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(Y1, y) = (vl,...,v,)xq)'irE’. (2.2.23)

iy

E = (ezj)i,j':l,...,pv then £ = (ei])i,jzl,...,l-

Levelt in his paper used another basis. Here is the description of it. Let us consider
a decomposition

XzXl@...@Xs

of the space X into the direct sum of root subspaces X; corresponding to different
eigenvalues )’ of G. Let us choose Levelt’s basis in each X;. A basis of X obtained
by joining of these bases is called a strongly Levelt’s basis.

Any strongly Levelt’s basis (y1, - . ., y,) takes all values 1’ with their multiplicities
I‘Cj.

Indeed, otherwise there were a linear combinationw = Y7_, ¢;y; with the following
property:
p(w) > minp(c;y:)-

Add all terms belonging to the same root space in the above sum and rewrite it as
follows:

w=w, + -+ ws,

where w; € X, w; # 0. Note that min ¢(w) = min, p(c;y;) < w(w) (this follows
from the fact that o(3 p;y;) = min,(p;y;) for any Levelt’s basis {y;} of X;; and
the last equality, in turn, follows from the construction of a Levelt’s basis).

Let s, be the number such that

(o = Nid)* X, =0

and let p(w;) = min; ¢(w,). Then p(w;) < ¢(w). Denote by P(c*) the polyno-
mial

Pie")= [] (¢"—Xid)*.

Then
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P(c*)w = P(o")w; # 0.

But according to (2.2.6) we have

o(w) < p(P(c")w) = o(P(o")w;) = ¢(w;)

(in the latter equality we use also the invertibility of the restriction of P(c*) on
X ), which contradicts the inequality ¢(w;) < p(w).

So we have proved that any strongly Levelt’s basis takes all values v* with their
multiplicities. As a result we obtain the following statement.

Lemma 2.2.1 Any Levelt's basis can be obtained from some strongly Levelt’s basis
with help of some shuffle of its parts containing in the corresponding root subspaces
and consequent upper-triangular transformation.

If (1.2.1) has an isolated singular point at a; and we consider the system in the
neighborhood U; of a;, denote U = U, \ a; and use the universal covering U: —
U;. Introducing for a moment a new independent variable x — a;, we can translate
to a neighborhood U of 0 as above. However, one must pay some attention to the
translation of 0{‘: we cannot write something like Z —a; without special explanation,
as Z is not a number. It would be more convenient to move in another direction:
from 0 to a;. The composition

U*—»U*—fU-* I—x—zx+a; (2.2.24)

makes U* a universal covering surface for U;. This does not establish an isomor-
phism U* — U* in a unique way, since it can always be changed via a deck transfor-
mation. But we may decide that from now on U * is just U* considered as a covering
surface for U} according to (2.2.24). Thus £ and Z + a, (Z € Uz +a; € U )
denote essentially the same “abstract” point, but considered "over x € U*” or "over
r+a; € U}”. Similarly, zand £ — a; with £ € U;, I—a; € U* denote essentially
the same “abstract” point, but considered "over x € U;” or over z — a; € U™".
This clarifies the meaning of such symbols as In(Z — a;) and (% — a;)%".

Now we can write

V(%) = Vi(z)(z — ) (& - a)® (€U, z=pzelU). (2.2.25)
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Here V; is holomorphic in U;, whereas @, and E; play the same role for the singular
point a; that  and E played for 0.

Return to the singularity at 0. The numbers 8* := ©* + u* (where, as before,
p*¥ = Reu*, u* are the eigenvalues of E and 0 < p* < 1) are called exponents of
the regular system (1.2.1) at the singular point 0. One may inquire whether they are
uniquely determined, as there is generally some freedom in the choice of the order
in which the p* appear. If

kit...+kjai+1 _ kit...+kj<1+k; wj
3

14 =@

the numbers 27ip*, where

ki 4o 4k +1<EkE<k +...+k_ +kj;, (2.2.26)

are just the logarithms of the eigenvalues of ¢ in X7 /X7~!. So their collection”
(with multiplicities) is uniquely determined, but the order in which they appear
can be changed. However, to all such pu* we add one and the same 7. Thus the
"collection” of 3* is uniquely determined, but there is generally some freedom in the
choice of ordering. One can provide an ordering such that the sequence Re* never
increases. For groups of k corresponding to different 7 as in (2.2.26) this ordering is
chosen independently. (If j < [, k satisfies (2.2.26) and m satisfies (2.2.26) with 7
replaced by [, then * = 7 > ¢™ +1 = ' + 1, s0 Re3* > Re™ independently
of the values of p* and p™). Let ,,, . . ., y;, be the distinct eigenvalues of o having
multiplicities n?, . .. ,n?. Then the basis g, k as in (2.2.26), in which o; has an
upper triangular matrix representation, can be chosen in such a way that first we take
n] generalized eigenvectors corresponding to ,, , then nj generalized eigenvectors
corresponding to u,,, etc. So if we order y;, in such a way that the sequence ple
never increases, we achieve that Re3* > ReB**!. After this is done (which means
some additional restrictions to the Levelt’s basis), the upper triangular form of E
and the diagonal form of ® in (2.2.22) imply that Re3* is just the sup A in (2.2.4)
for y = y,. In this sense these numbers provide a more exact characterization of the
growth of the y; than the ©* do. Using the Re3* we neglect only polynomials in
In Z, while using the ©* we neglect also fractional powers of . However, we shall
not use the G* in this role; we shall use them in a different way.

We shall often deal with the matrix

L(z):=®+2*Ex~". (2.2.27)
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Clearly, it is holomorphic in U*; let us check that it is holomorphic in all of U,
i.e., that the limit L(0) := lim,_,q L(z) exists. Essentially this means the existence
of limz® Ex~%. Clearly the (i, j)th coefficient of the latter is z¥e;;x7%, where
(ei;) = E. Now e;; = 0, when ¢ > 7, and ¢; > ©;, when 7 < j; hence

0, when 1 < 7;
limz*e;z7% =4 e;, when i<j and ¢, =¢,;
0, when i<j;and ¢; > ;.

Not only we have proven the existence of the limit, but we also have some infor-
mation about the structure of L: this matrix is obtained by picking the diagonal
blocks out of the matrix ® + E. Here the block structure of ® + E is just the
structure corresponding to the filtration (2.2.9) and the construction of the Levelt’s
basis. Using the previous notation, the (7, s) block is a k, X k, matrix. The diagonal
elements of L(0) are 47 and the trace

trL(0) = tr® + trE. (2.2.28)

Theorem 2.2.1 (Levelt, [Le]) The regular system (1.2.1) is Fuchsian (at 0) if and
only if V(0) (cf.(2.2.21)) is invertible.?

Proof. Let us begin at "if” part (this is easier and, by the way, provides a useful for-
mula). (1.2.4) implies that A(z) = Y'Y ~! (where dot denotes differentiation). Take
Levelt’s Y and use (2.2.21), bearing in mind that (z*) = 1®z® and analogously
for ZZ. We get

. . 1 1 1, .
Y =Vz®zE + ~Vor®if + ~Vz®Eif = Z(2V 4+ VL)z*z%.
z x x

ButY~! = (zE)~1(z®)"'V~1, s0

2F R.Gantmacher in his well-known book [Ga] has a theorem which contains the essential part
of the theorem 1 (chapter XIV, §10, Theorem 2. We warn the reader of this book about a difference
in terminology: Gantmacher calls a system regular at point a if, in our terms, it is Fuchsian there.
Gantmacher has no special term for the system which we call regular). His theorem asserts that if
the system (1.2.1) is Fuchsian at O then (1.2.4) has a solution of the form (2.2.21) with V(0) =
identity matrix and ® is diagonalizable with integer eigenvalues (while E is “responsible” for the
monodromy). However, he does not use the Levelt’s valuation ¢ and does not characterize Levelt’s
fundamental system of solutions in terms of this valuation.



2.2 Local theory 29

. 1 .
A=YY ! = ;(xV + VL)V, (2.2.29)

All matrices on the right hand side are holomorphic in U (here we use the invertibility
of V'(0))). So A indeed has (no more than) a pole of first order at 0.

We turn to the “only if” part. We already know that v;(0) # 0; cf. (2.2.17) and
(2.2.20) (Having in mind also that z; and v, are single-valued, thus representable
by some Laurent and Taylor series). This is true even for regular systems. Now let
(1.2.1) be Fuchsian, i.e.,

A(x) = iC(x), (2.2.30)

where C is holomorphic in U. In view of (2.2.29), CV = xV + VL. Passing to the
limit as z — 0 yields

C(0)V(0) = V(0)L(0). (2.2.31)

This implies L(0)KerV (0) C KerV(0). Indeed, if V(0)z = 0, then V(0)L(0)z =
= C(0)V(0)z = 0. It follows that

#LOKerV (0) C KerV(0). (2.2.32)
Now assume that ¢ € KerV'(0), ¢ # 0. Consider the solution y = Y'(&)c to (1.2.1).

Let p(y) = ¥™. We shall prove that ¢(y) > ™, which is a contradiction. As

y=Y(&)e=V(z)2®ifc=

=V (2)£*Oc + V(z) (.r@:iE - :EL(O)) c,

it is sufficient to prove that

o (V(2)350c) >y, (2.233)

0 (V(x) (x%f’ - :i“‘”) c) > ™. (2.2.34)

It follows from ¢ € Ker V/(0) and (2.2.31) that V (0)z%(®¢ = 0. Now it is clear that
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V(z)z" ¢ = (V(0) 4+ O(z))7L ¢ = O(z)z4 ¢, (2.2.35)

Repeat once more that L(0) is obtained form ®+ E by picking only diagonal blocks.
It is assumed that we use the block structure corresponding to the filtration (2.2.9)
and the choice of the Levelt’s basis. The "size” of the i-th block is k;, and I; is the
identity matrix of order ;, the i-th (diagonal) block of L(0) is ¥*I; + E,;, where
E;; is the corresponding block of E. Thus #£(% consists of the diagonal blocks

iﬂl"l.-{-E.‘ — jw‘jEﬁ )
<1
Letc = C(’)" » ¢m # 0, be the corresponding representation of ¢. Then
;
¢ = (:r'z’li:E”cl, . ,:E"’m:iE"""cm,O, . ,O) .

But for the coefficients of Z% (2.2.11) holds. So ¢ (z£(¢) > ¢™. Now using
(2.2.35) we obtain (2.2.33).

We turn to (2.2.34). Since V(z) is holomorphic at z = ¢,
") (V(m) (:z(b:i:E — :EL(O)) c) > ((xq’:iE - iL(O)) c) ,
and it is sufficient to prove that
0 ((x%E - 5;“‘”) c) >y, (2.2.36)

x®Z% has the following block structure

zwl (i'E)u mw: (jE)lz e xwl (i'E)lh
225F = 0 ¥ (2F), o , (2.2.37)

0 0 cee gVt (ZE),,
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Clearly (z%),; = &F+, as E is upper-triangular. Indeed, if A and B are of such type
then (AB);; = A;; B;;. It follows that for any polynomial p

p(E)i: = p(Ey),

and then the same is true for any "function of matrix” f(E). (Essentially it is not
the upper triangular form of E which is used here, but only the fact that all blocks
below the diagonal blocks are zeroes: E;; = 0 for ¢ > j). So the diagonal blocks

in (2.2.37) are the same as in £%(©), and z®ZE — (% consists of the following
blocks:
(z*2" - FO) = 0fori>j,
ij
(z*2" - o) V' (2%),, fori < j.
ij
When we act by this matrix on ¢, we get a column vector z = (z1,..., Zm_1,
0,...,0) with

m
3 ~
z; = Z+ z¥ (zE)ijcj.
=1

j=it1

Ifm =1 wegetz =0 ¢(2) =00 > ¢™ If m > 1, here figure only
¥, ..., z¥""". Again referring to (2.2.11), we conclude that ¢(z) > ™! > ¢™.
In any case we arrive at (2.2.34). The theorem is proved.

The following useful statement is the direct corollary of formula (2.2.29).

Corollary 2.2.1 Let a solution Y () (not necessary a Levelt’s one) to (1.2.4) have a
factorization of form (2.2.21) with some matrix ® with integer coefficients. Let V' (x)
be holomorphically invertible at x = 0 and let L(x) from (2.2.27) be holomorphic.
Then system (1.2.4) is Fuchsian at x = 0.

At first glance, Levelt’s theory may seem to be "nonconstructive” — at any rate, less
constructive than a more computational classical approach, where we substitute
series into the system and try to extract useful information from the relations
thus obtained. Nonetheless, Levelt’s theory provides some “explicit” information,
and rather quickly. Consider the Fuchsian system (1.2.1), (2.2.30). Since V'(0) is
invertible, it follows from (2.2.31) that the matrices C(0) and L(0) are similar.
Thus the numbers 3’ are just the eigenvalues of C(0). Knowing them, one can
find Re(¢? + p?) = ¢? + p?, ¢? = [Re #’] (integer part), p’ and p’. Also, L(0)
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has the same Jordan normal form as C(0) (although in a different basis which
remains unknown). It is easy to see that then the same is valid for ® + E (but the
corresponding basis may be different from the previous two). However, this need not
define the Jordan normal form of E as the following example shows. (We shall meet

this example again in Section 2.3). Letp =2, ¢! =1, ¢* = -1, E = ( g 8 )
1 € . 1 2 1 0
Then & + F = 0 -1 ) and since @' # ¢?, L(0) = 0 -1 ) Now

0
follows that L(0) has the same form in some basis, but it remains uncertain whether
e = 0 or e # 0 - any version leads to our L(0).

assume that we are given a system (1.2.1), (2.2.30) with C(0) = ( L _01 ) It

Let us also mention that (cf. (2.2.28))

P
> B =tr(® + E) = tr L(0) = tr C(0). (2.2.38)
1=1

Another important theorem by Levelt is of a more global character. Consider a
system (1.2.1) which is regular on C with singularities a, ..., a,. Near any a; we
apply the previous theory (using a local parameter = — a; or 1/ if a; = o0) and
obtain the corresponding matrices and numbers. Now they depend on ¢, so we write

®,, E;, Li(0), ul, p, 2, B1. (2.2.39)

It is worth mentioning that at the moment no global considerations are needed
yet — near a; one works in a small circular neighborhood U;. (If a; = oo, U, is
properly a circular neighborhood in terms of the variable ¢t = 1/z; in terms of z it
is the complement to a large disk containing all other singularities). The only global
remark at the moment is that in every U; we use the orientation induced by the
standard orientation of C, and the deck transformation ¢; of the universal covering
U — U} = U*\ a, corresponds to one turn around a; in a positive direction. (That
is, counterclockwise for finite a;. With regard to the singular point at oo, if there is
such a singular point, the positive direction of a trip around it is to be understood in
a sense that is positive (counterclockwise) in terms of the local parameter t = 1/z.
In terms of the initial variable x, this means a turn along a sufficiently large circle
(surrounding all other singularities) in the negative direction, i.e., clockwise).

Theorem 2.2.2 (Levelt, [Le]) For any regular system ZL j ﬂf < 0. Equality holds
if and only if the system is Fuchsian.
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The proof of Theorem 2.2.2 is easy. We may assume that the singularities ay, . .., an
are different from oo (this can be achieved always by a suitable change of the
independent variable).

Let Y be a fundamental matrix to (1.2.1), then for the matrix differential form
w = A(z)dz we have

trw = dlndetY. (2.2.40)

Since for arbitrary 7 : Y(&) = Y (£)S,, where det S; # 0 and Y(Z) is a Levelt’s
fundamental matrix in a neighborhood U}, we obtain from (2.2.25) and (2.2.38):

p .
res,,dlndetY = Z B! + by, (2.2.41)
j=1

where b; = det V;(a;) > 0.

By the theorem on the sum of residues, applied to the form tr w from (2.2.40)

MBI +> bi=0,
1,7 i=1

thus 3, . B < 0and i B! = 0if and only if b = --- = b, = 0. But the
latter equalities imply det V;(a;) # 0 for all a;. Theorem 2.2.2 follows now from
Theorem 2.2.1.

In this argument there was no need to enter into the relationship between the local
description of the solutions provided by Levelt’s theory and their global behavior.
However, this will be necessary further on, and we shall finish this section by
discussing this subject, as the coordination of the local and global points of view at
all.

In the local theory one uses such functions as In(z—a;) or (z—a;)? = exp(BIn(z—
a;)), where B is some matrix. These are multivalued functions of x, and one must
consider them on the appropriate Riemann surface. In the local theory we remain
near a; and so we use only a part of this surface. All we need is the universal
covering p; : f/'i* — U, for U} which are as above. Solution of (1.2.1) and (1.2.4)
are correctly defined there as well as the functions mentioned above.
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In the global theory things are different — we consider our solution on S, while
In(z — a;) has another Riemann surface T} covering C\ {a; }. Of course we shall use
In(z —a;) only when we analyze the behavior of our solutions near a;. However, this
does not make things completely local in the following respect: we must remember
that many “branches” of our solutions near a; are obtained via continuaticns along
paths which are not completely contained in U;" and are not homotopic to the path
from U}.

So let us consider this situation in more detail. Now S and p : § — S will be as in
the very beginning of Section 2.2, while U;, U and p; : 0{‘ — U will play the
same role for a;, that U, U* and U* — U* play for the singular point 0. If . > 2,
then p~'U; is much larger than U;. (This corresponds to the fact that Y'(Z) can
be analytically continued not only along paths lying in U}, but also along paths
going around other singular points a;, and this may provide new “elements” of the
multivalued function Y). Namely, p~'U; is disconnected and each of its connected
components is isomorphic to Ui* as a covering space over U;". So we can identify
one of this components with (7,-*, but, of course, after we have done this we must
distinguish between Ui* and the other components. In order to fix somehow this
identification (or just to describe it in a more concrete way), let us choose points
b€ S, u; € U and some paths i, ..., 8, connecting btou,,...,u,. EachZ € Ui‘
can be interpreted as a class of mutually homotopic paths {~} in U; beginning at u;
and ending at x = p,;Z (here the homotopy is the homotopy with the fixed ends).
Analogously, each point of S also can be interpreted as some class {6} of mutually
homotopic paths on S beginning at b and all having the same end point. (It is
precisely this interpretation that allows one to define a left action of 7, (S, b) on S
and thus establish the isomorphism

m(S,b) = A. (2.2.42)

For {6} as before and ¢ € 7,(S, b) define {e}{6} = {€6}). Then we can define a
map U; — S by {y} — {B;7}. Any other connected component of p~*(U;") can
be obtained as 7U;" with some 7 € A (which is by no means unique, see below).

Let o; be a loop (a closed path) in U} beginning and ending at u; and making
one turn around a; in the positive direction. It defines a deck transformation o;:
U; — U; (which we have already used): 0,{7} = {a;y}. This formula does
not define a transformation of S, because instead of v we must use paths § in S
beginning at b while a; ends at a different point u;. The closest meaningful analog
is {6} — {Bic; 37" 6}. For {6} = {Bi7} it gives {6} — {Biayy}, so this is really
an extension of o; to all of S. In this way we can consider o; ~(and other deck
transformations o* of U;) as deck transformations of the whole S. Solutions y to
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(1.2.1) or Y to (1.2.4) which where considered in the local theory “near a;” (thus
defined only on U ) can be extended (analytically) over the whole S, thus becoming
a global solution. Conversely, any global solution y or ¥ (defined on S) can be
restricted to U * and this y | U rorY | U * is an object of the local theory. However,
this does not mean the same as to say: "y or Y considered as a multivalued function
of z for x € U?” because (generally) y, ¥ have near a; other branches as well.
With this precaution in mind we can say that there exists an isomorphism

X, — X, (2.2.43)

where the elements of X are local solutions to (1.2.1) defined on Ui" (previously we
considered only the singularity and denoted this space by X), while the elements
of X are global solutions to (1.2.1) defined on S. (This isomorphism depends upon
our identification of 0; with a component of p‘lUl", i.e. on ;). Filtration and
valuation in X; depends on i, so we write ¢,(y), X] (cf. the use of 7 in (2.2.39)).
The isomorphism (2.2.43) allows one to consider ¢; as a valuation of X and X 7 as
filtration of X (but there they somewhat depend on our choice of the ldentlﬁcatxon of
Ul* with acomponent of p~!(U;"), i.e. on §;. It may well happen that after continuing
a local solution y (initially defined on Uz ) along a path going around another a;
one obtains a new local solution having another order of growth as z — a;. Note
that ¢; is invariant under o;, but it need not be invariant with respect to all of A).
Levelt’s basis of X, gives us (due to (2.2.43)) a fundamental system Y of global
solutions, but generally only Y | U* is a Levelt’s basis® and has a representation
(2.2.25). For the point £ of another connected component TU; of p~}(U}) we have

Y(3) =Y (r'3) x () = V(e)e - a)® (7 —a) " x (1Y) . (2.2.44)

Clearly 7 and 70¥, k € Z, define the same connected component of p~'(U;) :
TU; = TU’“U* since o; U* U* Thus there is some ambiguity when we speak
about 7 defining a certain component (The only ambiguity which is possible
here is the ambiguity with 7 and 7o¥: if 70U} = TlU then 7, = 7of with
some mteger k. See Chapter 3). Hence there is also some ambiguity in the fac-
tors (77! — al) , X (T7'). However, there is no ambiguity in the product: i if
I =73y =T1%1, Tg € Uz I, € Ui*,then

3Formally, the notion of being a Levelt’s basis is defined only for a system of p vector functions
defined on U7 . However, if £ € p~*(U]") \ U, we can take a germ of Y at & and consider this germ
as a germ of a matrix-valued function at z = p&. This function admits an analytic continuation in
U7, and the resulting complete multivalued function can be considered as a function Y1 on U;r. 1f
Y | U7 is a Levelt’s basis, even though Y1 need not be such a basis.
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(Zo — a:)Prx (r7h) = (&, - ;)" x ().

We postpone the proof of this fact till Chapter 3, where it is essential. Now temporary
we shall be more careless. We simply select for any connected component of p~tU;
a 7 such that this component equals to 7U, and define on this component

In(z —a;):=In(r7'% — a;) .

Then instead of (2.2.44) we can write "in a more classical style”

Y (%) = V(z)(z —a)* (@0 — @)% x (r71). (2.2.45)

Note that on Ui*

In(o;Z — a;) = In(Z — a;) + 271, (2.2.46)

which is the well-known classical fact. But whether (2.2.46) holds forall & € p~'U;
depends on the choice of our 7’s. We shall not discuss this, as (2.2.46) is used in
the Chapter 3 only forz € U;.

2.3 The second order system

We are going to study the system (2.1.6) with B as in (2.1.4). Computation shows
that for this system the condition analogous to (1.2.3) is fulfilled. So the only
singularities are those which, so to say, manifest themselves explicitly in (2.1.4),
ie.a; =0,a, = —1, a3 = 1, ay = 1/2. The situation with a5, as, a4 is easy. The
corresponding B; are

1/ -1 1 1/ -1 -1 1/-11

(1) s ) 3( 5 1) @3.1)
Clearly they are degenerate and their traces are 0, so the characteristic equation
A2 — M tr B; + det B; = 0 reduces to A\*> = 0. Hence these matrices are nilpotent
and, of course, they are of rank 1, as any nonzero degenerate (2x2)-matrix. It
follows that the block structure of L;(0) is as follows: all of L;(0) is one diagonal

block. This implies that ®; + F; = L;(0), indeed there are no blocks to annihilate
when passing from ®; + E; to L;(0). Consequently,
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Note also that ®; = 0 (: = 2,3,4) and we need not write the factors % in
the corresponding representation (2.2.44) or (2.2.45) near a,, a3, a4. The filtration
(2.2.9) reduces to the trivial one: 0 C X; = X and the condition ¢(y;) = ¢’
imposes no restriction on the choice of y;. The only restriction which remains is

that £; in this basis has the form ( 8 e[; > However, for any fundamental system

of solution Y near a; we have a representation

Y(i) = Vi(x)(& - a,))B, 2 € Uy (2.3.3)

with some E; nilpotent of rank 1, V; holomorphic on a small circular neighborhood
U; of a; and det V;(0) # 0. Indeed, let Y; be a Levelt’s fundamental system of
solutions. Then Y = Y,C with some constant invertible C. This implies that

Y = Vi(E - a,)"C = V,.CCT'(& - a,)" C = (ViC)(& - a) 5.
Clearly V,C and C~! E;C have the properties just described. Finally, in p~! (U )\ U

Y(E) =Vi(z) (r i -a) " x (v, if 3 € U7, (2.3.4)
where one can replace 7~!& — a; by & — a, for appropriate 7.

Neara; = 0 the situation is alittle less trivial. L, (0) is similarto B, = ( 0 0 )

SO

Ol=1p=-1,u=p=0(=12);8 =1,8=-1 (2.3.5)

But this is exactly the example discussed in Section 2.2, so the Jordan canonical
form of E; remains unknown. In order to find it we shall consider the second order

terms in C(z) := zB(x) and V().

Rewrite (2.1.4) as follows:

1 1 L L
B(z) = (;_6(17‘{*1) -2(:[;—1) —3(1'_1/2>)(I)+

1 1 1
(6(Jc+ 1) 2z-1) 3(xz- 1/2)) ¥,
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where & = ( (1) _?1 > v = ( _01 (1] ) (The notation & is in accordance

with the notation used in Section 2.2: it is the same & = ®; which described the
valuation at a; = 0, cf. (2.3.5)). Expanding the fractions at z = 0, we get

Clx)=(1+z+25%)0 - 2*V +... (2.3.6)

Since E; must be upper triangular and p] = 0, we write E;, = ( g 8 ) We shall

use the following formulas which are easily verified:

0 2
)@:(_26 0 ) 2.3.7)

( 0 ?3 >E1 ( a(;I /3(11 > = < 8 aﬁo—le ) =af7'E;,  (2338)

z?E 2" = 2°E,. (2.3.9)

—
o
N
o
o
N——
—_
I
KH
VR
o 8
Q, o
N——
|
VR
o
Q o

(The first formula is a commutator of matrices and the last follows from (2.3.8) with
a=z,=xz"").Hence L,(z) = ®+z?F, (cf.(2.2.27)). Since V; is holomorphic
in U, write

Vi=) z"W,. (2.3.10)
n=0

Substitute these L and V', as well as C from (2.3.6), into the formulazV = CV-VL
(which is equivalent to (2.2.29); in our case A has to be replaced by B and so C by
(2.3.6)) and compare the coefficients of z°, z!, 2. This gives

0 =[@, Wy 2.3.11)
(which we already know: it is (2.2.31) with our V;(0) = W, C(0) = L,(0) = ®);

W, = [, W] + dWy; (2.3.12)
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MW, = (B, Wa] + OW, + (20 — U)W, — W,E,. (2.3.13)

Let Wy = ( CCL Z ) Then (2.3.7) and (2.3.11) yield b = 0, ¢ = 0. As we know,

there is some freedom in the choice of Levelt’s basis. In any case, if (y;, y2) is asuch
a basis, then (c,y;, coy2) is also a Levelt’s basis. (Indeed, ¢, (c;y;) = ¢1(y;) for
¢; # 0, and if the matrix representation of o7 in the first basis was upper triangular,
it will remain so with respect to the second basis). The question whether e = 0
or e # 0 is equivalent to the question whether o* is the identity transformation
or not; this does not depend on the basis. So replace y; by iyl and y, by %yg;
denote these new solutions to (2.1.6) by y; again, that is take a new Levelt’s matrix

a”! 0
Y( 0 4! )

If Y satisfies (2.2.21), then

( a 0 )¢< a”! 0 )
a 0 4(/a?t 0O _ 0 d 0 d*' ) _ e
Here(Od)x<0 d_l)—x = z*, bec-
L a 0Y\.g (at 0 od1E
ause ® is diagonal, and 0 d Tt 0 4! = z° 1 (cf. (2.3.9)).
Thus for the new Levelt’s matrix (which we shall denote by Y again) we have
-1
(2.2.21) with V replaced by V; < ao d(fl ) (denoted by V) again), E replaced
by ad~!E; (denoted by F, = < g 8
new V; we still have (2.3.10) with new Wy = V(0) = I.

Substitute this W into (2.3.12). Then

> again) and & = &, unchanged. But for

Let W) = ( (Cz 2 ) Then the elements of the second diagonal in the left hand

side of (2.3.12) are (b, c), while in the right hand side (2b, —2c) (cf.(2.3.7)). Thus
b=c=0,[® W,]=0and (2.3.14) reduces to W, = &.
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Substitute these W, and W, into (2.3.13). Then

2W, = [®,W,] + ®* +28 - ¥ — E,.
Consider the (1,2) elements of the left and right hand sides, i.e. the elements
occurring in the upper right corner there. Let W, = ( b ) This gives the
equation 2b = 2b — 1 — e. Consequently, e = —1 # 0.
We see that E), like the other E;, is a nilpotent matrix of rank 1 (and that E; =
( 0 - (1) ) forour Y, i.e. Levelt’s Y normalized by the requirement V;(0) = I).

0
We also see that

24 ...
1+ az” + ) (2.3.15)

Vi(z) = ( Bri4-r 14
since the second diagonal in W, and W is (0, 0).

Knowing ®,, E; and V;, we can compute the lowest terms in the Levelt’s represen-
tation for Y'(Z), £ € U} which we shall use in the next section. We have

1
etEl =I+tE1+§(tE1)2+=I+tE17
~ nzg- T 1 —1n~
ajEl:el ElZI'*‘lﬂ.’E‘El'—_(O 11:)
Thus,
. 14--- a;1;2+... T 0 1 —-Inz _
Y(I)_(ﬂl'z-f'"' 1+4+--- ><0 z‘l><0 1 )—
_ T+ —zlnZ+azr+...
—(ﬂzf*+--- AN ).(2.3.16)

Let us define (see [Bo2]) the Fuchsian weight of a Fuchsian second order system
(2.1.6) with singularities a,,...,a, as

n

ey =D (¢} —¢2).

=1
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For our B (defined by (2.1.4)) v(p) = 2 (cf.(2.3.2) and (2.3.5)).

This notion is quite “constructive”, as we know how to compute ’ for a given Fuch-
sian system. The next definition will not be so constructive. For given "Hilbert data”
({a:} and a representation x : A — GL(2,C), more precisely, a class {C~'xC}
of mutually conjugate representations) consider min -y py over all Fuchsian systems
2 = Dz having singularities a; and monodromy x (more precisely, {C~'xC}).
Let us denote this min vy(p) by v, and call it the Fuchsian weight of representation
X (without mentioning the a; explicitly. However, since A is the group of deck
transformations of the covering S — S, where S = C\ {ai, ... ,a,}, one can say
that any A is always related to some a; and so we "have them in mind” when we
mention A, hence when we mention ).

Lemma 2.3.1 If a; are the singularities of B in (2.1.4) and x is the monodromy of
(2.1.6) with this B, then y, = 2.

So the problem

’realize the above - mentioned a; and x by a
Fuchsian system y = Dy satisfying the additional (2.3.17)
requirement y(py < 2”

cannot be done. It is precisely the auxiliary problem mentioned in Section 2.1.

Assume that (2.3.17) can be done. For the corresponding system y = Dy we shall
denote the numbers mentioned in (2.2.39) by u! (D), p(D), (D), 5 (D). Four
our x the matrices G; = x(o') are Jordan unipotent. Hence, E; = 510G,
are nilpotent of rank 1 and their eigenvalues p?(D) = 0. Thus, p?(D) = 0 and
Bl(D) = ¢l(D).Letk := i, o}(D), 1 := Xt 9*(D). Then ypy = k — L. Itis
clearthatk,! € Zandk > [ (all ! (D) > ¢?(D)). But, according to Theorem 2.2.2,

k+1=3 ¢/(D)=3 pI(D)=0.
2¥) 1,j

It follows that k = —I, ypy = 2k, and if 0 < Yoy < 2,thenk = 0,1 =0,
Yp) = 0. Soall i (D) = p}(D).

We see that for a fixed a; all solutions to y = Dy have the same growth at a;
(neglecting fractional powers and In-s). But for different a; the growth may be
different. Now we shall modify our system so that the new system will have the
same singularities and monodromy, but the valuation will become the same at all
singular points (and of course, still for all of its solutions).
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Let m; := ¢}(D) = ¢?(D). Introduce a new dependent variable z = fy, where
f= H?:l (z — a;)~™:. Evidently,

i=fi+fy=(D+f/f) fy=Fz (23.18)
where F = D+ (lnf)I =D - ¥, 2. 1f D = ¥i_, 72-D;, then F =
S ?-'ITE’ where F; = D; — m;I, so the system (2.3.18) is Fuchsian. It satisfies

the condition analogous to (1.2.3): i, F; = 0. Indeed, 3%, D; = 0, since
y = Dy has no singularity at 0o, and 3;_, m; = k = 0. Clearly z = Fz has the
desired properties (for any of its solutions z we have ¢;(z) = ¢;(y) — m; = 0).
This means that for any matrix solution Z to Z = F'Z one has

Z(z) = Wi(z)&-a)®, zel7, (2.3.19)
Z(z) = Wiz)(r 'z -a)Px(z), zer'U;

(cf. the discussion of (2.3.3), (2.3.4)). Of course, E; and x(7~!) depend somehow
on Z. Let Y be a Levelt’s fundamental system of solutions to (2.1.6) satisfying
the additional requirement V;(0) = I. Let x be the corresponding monodromy
representation (defined by this Y via (2.1.5)). Take a solution Z to Z=FZ having
the same monodromy x. In p~!(Uy;), p~(U;), p~(U{) (2.3.4) holds, whereas in
p~H(UY)

Y(z) = Vi(z)z®(+ ') EBrx (v, if z € TU!.

Consider Y Z 1. It has the following properties:

Y Z~! is holomorphic in S (2.3.20)

YZl'oo=(Yoo)(Zoa) ' =YxHo)x(0)Z ' =YZ 7}, (2.3.21)

YZ7' = Vi(2)a*Wi(2)™, if & € p(U) (23.22)

YZ7' = V()W (x)7}, if 2 € p~Y(U}), 5 > 2. (2.3.23)
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Note that in (2.3.22) the other factors cancel; (2.3.20) and (2.3.21) imply that Y Z~!
is a holomorphic function on S. More precisely (Y Z~!)(z) is the same for all
z € p~Hz),so z — (YZ71)(Z) is a well-defined holomorphic function on S.
The property (2.3.23) together with W;(0) # 0 (see Theorem 2.2.1) show that it is
holomorphic in U U U; U Uy. And in U; we have (cf. (2.3.15))

YZ7 + Vi(2)s® W (z) =
= ( 0@1) 0O(z*) ) ( :g ?1 ) - (a holomorphic matrix) =

- (0@ o).

* *

It follows that the first row of Y Z ~1 is holomorphic in Uy, so it is holomorphic in
all of C, thus a constant. Being O(z) in Uy, it must be identically 0. This contradicts
the fact that Y Z~! is invertible away from the singularities.

2.4 The third order system

We are going to study the system (1.2.1) with A as in (2.1.2). It is equivalent to the
system (2.1.6) with B as in (2.1.4) (the dependent variables in these systems now
have numbers 2 and 3) together with the equation (2.1.5). Let us check that (1.2.1)
has no singular point at co. This is already known for the quotient system (2.1.6),
so we need only to rewrite (2.1.5) in terms of the independent variable ¢t = 1/x. We

get

dy 1 1 1

Ty (a12 (‘t‘) y* +ags (?) yg) .
It is easily checked that ra;z (1), @13 (1) have no pole at t = 0.
The singular points a; = —1, a3 = 1, a4 = 1/2 are Fuchsian. Near these points
A(z) = Bi(z)/(z — a;) for some B;(x) holomorphic in U;. So the corresponding
L,(0) are similar to B;(0), which in this case are

1 0 6 0 1 0 0 2 1 0 -3 -3
5 0 -1 14, 3 0 -1 -1, 3 0 -1 1].
0 -1 1 0 1 1 0 -1 1
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Under the transformation y — B;(0)y variables y2, y3 are transformed (indepen-
dently of y') via (2.3.1). Hence under the transformation y — B?(0)y they become
0. Acting by B;(0) once more, we obtain y! = 0, as the new y' is some linear
combination of the previous y?, y*. Thus all B3(0) = 0, i.e., B;(0) is nilpotent. At
the same time it is clear that the determinant of the second order block lying in the
upper right corer of B;(0)

is non-zero. So the B;(0) are of rank 2, and the L;(0) are also nilpotent matrices of
rank 2. Each L;(0) consists of one diagonal block, consequently, ®; + E; = L;(0).
This implies that ®; = 0. Thus

¢!} =0, E; is nilpotent of rank 2, (2.4.1)

Now consider the more complicated singular point 0. If %* and y> have only
polynomial growths as z — 0, then so does the right hand side of (2.1.5), and y*
(being the integral of the latter) also grows at most polynomially. This proves that
0 is a regular singularity of (1.2.1).

Now we claim that one can obtain a Levelt’s basis for (1.2.1) at the point O in
1

2
the following way. Firstly, take y; = ( 0 ) Secondly, let 7, = ( z% ), Y3 =
0 2

2
( y?, ) be a Levelt’s basis for (2.1.6) (with B as in (2.1.4) and V(0) = I. We have

3
increased the numbers of these vectors, by one, as with the numbers of coordinates).

Starting from these y?, we complete the construction of the full solutions y2, y3 to
(1.2.1) just using (2.1.5):

Yy = /(amyg + a3y3)dz,

y; = /(al2y§ + a13y3)dx

(regardless of the constants of integration). From (2.1.3) and (2.3.16) we have
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a2ys + ai3ys = %(m + )+ (hol.)(z + -+ +) + (hol.)(Bz® + - - ) =

1
= — + hol.
z
where ”hol.” means holomorphic. (Since ¥, does not "branch” near 0, i.e., 00, =
iJ2, the omitted terms here are not only of higher order, but they are also series in
integral powers of x). Hence

ys =1In& + f, where f is holomorphic in U; and ¢(f) > 0. (24.2)
So
A+ ulnZ + hol.
Ay + pyr = hol.
hol.

Clearly for all (A, u) # (0,0)

oAyt +pyy) = (A +plni+ f)=0

(the constant and logarithm terms can never cancel). For the other coordinates ¢ > 0
(in fact, > 0). Thus we have found a two-dimensional subspace X| = Cy, & Cy,
in X, such that (X} \ 0) = 0.

With regard to ys, it turns out that ¢(y;) = —1. Indeed, a,3(0) = —3,

2 3 _
a12Y3 + a13Y3 =

= <%+hol.> (—:cln:f:+az-+—~-~)+<—-12-+-~-> (é-i—) =

1 1
yé=—§ln25+<a—§>m5g+--~,

Clearly o(y}) =0, p(y3) = 0, ¢(y3) = —1, and the minimum of these is —1.

This completes the determination of the filtration (2.2.9) and the numbers ¢j: as
X! @ Cy; = X the filtration (2.2.9) in our case is

0=X"C X{ Cc X?=X,,



46 2 Counterexample to Hilbert’s 21st problem

and p; = ¢t =0, ¢} = —1.

Now let us inquire about E. Clearly o7y, = y; 00, = ¥, and (2.4.2) and Jlooy =
y? imply that o}y, = y; 0 01 = ya + 271y, . More generally, consider y, o o for any
o € A.Clearly Inoo = In+x; (67!) where X, is some representation A — 27iZ
(the latter group being additive). It follows from (2.4.2) that y,00 = x (071) ¥, +vs.
Of course y, o 0 = y,. Now, writing Y in a somewhat condensed form

Y=<1 % 35)
0 § ¥

(the entries of the second row are column vectors with 2 entries), we have

- 1 yloo yloo

1) _ — 2 Y3 -

Yx (o )—YOO'-—<O G0 9300)—
a
b
c

1 x;(c!
=<1yé yé) 0“(1)
0 g? 273 0 0

for some a, b, c. This implies
o o 1 9
(3/2;?]3)00 = (3/2,’!/3) ( 0 ¢ ) .
But we know that
(J2,73) 0 & = (F2, Fs)X(071),

where X is a monodromy representation A — GL(2,C) which corresponds to the
fundamental system of solutions (72, 73) to (2.1.6). Hence replacing o~ by o we

get

x(o) = (é x1(9) <o) *> (2.4.3)

In the particular case o = o, we see that Y o o; = Y G, where

1 2m *
Gi= 0 1 =2m |.
0 0 1
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(x1 (o7") = 2mi follows directly from the definition of x;, and

$(01) = " = [ 1 omiE, = ( b ) ,

where E, is the matrix which was denoted by E, in Section 2.3). It follows, firstly,
that E| = 5 In G| is a nilpotent matrix. This implies that E} = 0 and E is of the

0 0 x
foom| 0 0 0 |,so
0 00

B = [ 4 o9miE, + (

0 1 =«
El - 0 O —1 y
0 0 0

Collecting together the properties of our system at 0:

o O O
o o O

O O ¥
N—

Now we see, secondly, that

so E; has rank 2.

o1 = 90? =0, <P? = —1, E; = is nilpotent of rank 2, (2.4.4)
pl=0,p1=08=¢ (=12,3).

It is important that linear transformations ¢} (¢ = 1,2,3,4) in X have the same
eigenspace. It is the 1-dimensional vector space (’a line”) Cy, =

1

=C < 0 ) . Indeed, for each o the eigenspace is 1-dimensional, as o] has a matrix
0

representation e2"*Z: in some basis (which may depend on 7) and E; is nilpotent

of rank 2. But 0}y, = y, © 0; = ¥y, so y; belongs to all of these 1-dimensional

subspaces; hence they all coincide with Cy; .
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At last we are in a position to prove the Assertion made in Section 2.1. Assume
that 2z = C'z is a Fuchsian system having the same singularities and monodromy as
(1.2.1). Let X be the space of its solutions. Let Y = (yi,y2,y3) be an invertible
matrix solution to (1.2.4) and let x be the corresponding monodromy representation.
The matrix system Z = CZ has an invertible solution with the same monodromy
representation; let Z = (2, 2, 23) be this solution. Define the linear map § : X —
X insuch a way that  ; = 2;,1 = 1,2, 3. It is angsomorphism commuting with
the right action of A on these spaces (the action is (y,0) — y oo, (2,0) — z00).
Indeed, any vector y € X can be written as Y7, where 7 is some column (!, 7%, n®).
Then § maps y to z = Zp,and yoo = Ynoo = (Y oo)p = Yx!(o)n into
ZxNom=(Zoo)p=2Znoo=zoo0.

1
It follows that z;, = 6 ( 0 ) is a common eigenvector of oy, 03, 03, 03, i.€,
0
z1 o 0; = z;. This means that the vector z; is a single-valued holomorphic vector
function on S. Having only polynomial growth near singular points a;, it is a
meromorphic vector function on C. If it were a scalar meromorphic function, then
we would have 35, ;(y1) = 0 ("the sum of the orders of the zeros equals the
sum of the orders of the poles”). But for a meromorphic vector function one can
only state that 3°7_, ¢;(y) < 0. Indeed,

4

>_eiy) =D min{pi(y’), j =1,2,3}.

i=1

But for any k, min{p;(y?), j = 1,2,3} < ¢;(y*), so

4 4
> ¢i(y) < min {Z min @;(y*), k = 1,2,3} =0.
1=1 i=1

At the same time, o;z; = 2; implies that z; is the first vector of some Levelt’s
basis at a;. So ¢;(z;) is the maximum value taken by ¢, i.e., ¢;(21) = ¢; (C). Let
k=0, 0H0), 1 := i, 03(C), m := Ti_, 93(C). We have just seen that
k < 0.Butk > I (since all 9}(C) > ¢*(C)),l > mand k +1+ m = 0. It follows
that k = 0, [ = 0, m = 0. Furthermore, ¢} (C) = p?(C) = ¢3(C) for all i.

The next step is analogous to the step made in Section 2.3. Let n; = ¢l(C).
Introduce a new dependent variable w = fz, f = [[+_,(z — a;)™™. We arrive at
the Fuchsian system @& = Dw having the same singularities and monodromy as
(1.2.1) and possessing the property thatall o} = 0. Now w, = fz, is asingle-valued
function holomorphic on C. Hence w; =const. There exists an invertible matrix M
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1

such that w; = M ( 0 ) . Introduce a new dependent variable u = M~ 'w. If w
0

satisfies w = Dw, u satisfies the system

%= M"T'DMu (2.4.5)

which is still Fuchsian with singularities a; and monodromy . (The monodromy

describes how w; o o can be represented as a linear combination of wy, w,, ws;

but then the same is valid for u; = M ~'w;). Of course ! (M~'DM) = 0, i.e.,

wi(u) = 0 for any solution u # 0 to (2.4.5). The system (2.4.5) has a solution
1

u =M"1tu = ( 0 ) , hence the first column of M ~!DM is 0 and

0
0 =
M_IDZVI=(O F)

0

for some matrix F'(z). Let us consider the system

v=Fv, veC® (2.4.6)

which, of course is Fuchsian with singularities a,, ..., as. We know that

(w1, Uz, u3) 0 0 = (1, uz,uz)x (077)

where x (o~!) has the form (2.4.3). Let

up ug
Uz = - ) Uz = = )
Us U3

where the %; themselves are 2-columns. They are solutions to (2.4.6) and are clearly
independent, since the matrix

1 ul 1
(ul,u2,U3)=<0 ﬁ2 u3)

would otherwise be degenerate.

We conclude from (2.4.3) that
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(g, @3) © 0 = (&g, Ts)X (071) -

In other words, (4., %3) is a fundamental system of solutions to (2.4.6) and the
corresponding monodromy is the same as for the system (2.1.6).

Our final step is to prove that the Fuchsian weight

YF)y =0 <y (2.4.7)

which contradicts to the Lemma from Section 2.3. Any solution v to (2.4.6) can
be considered as a ’subcolumn” of some vector function « which is a solution to

(2.4.5). So v = < Z; )

@i(v) = min(p;(u?), p;(v*)) >
> min(p;(u'), @i(u?), () = @i(u) =0

All the ¢! (F) are ;(v) for some v, hence

all p!(F) > 0. (2.4.8)

The system (2.4.6) has the same monodromy as (2.1.6), so all the pw(F) =0,
pl(F) =0, B](F) = ¢](F). Theorem 2.2.2 implies that 3_, . ¢!(F) = 0. Accor-
ding to (2.4.8), this may happen only if all ! (F) = 0. Then we get (2.4.7):
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3  The Plemelj theorem

3.1 A weak version of Plemelj’s theorem

Some ideas which are essential for the proof of Plemelj’s theorem manifest them-
selves clearly during the proof of the following weaker theorem: for any a4, ..., a,
and x there exists a system (1.2.1) which is holomorphic on S and has monodromy
representation . (It is not claimed here that the system is regular).

Assume we have constructed a holomorphic matrix-valued function ¥ : S —
G L(p,C) satisfying (1.2.5). Then we are through. Indeed, take

A:= (dY(Z)/dx)Y "} (z). 3.1.1)
Clearly (1.2.5) implies

dY (oz)/dz = (dY (&)/dz)x (¢7"),

and A(cZ) = A(Z). Thus A can be considered as a (single-valued) holomorphic
function on S and Y is a nondegenerate matrix solution to (1.2.4) with this A.
So this system really has a solution (namely, Y') with the demanded “branching”
property (1.2.5).

In order to get Y we shall have to consider a somewhat different object — a “’bran-
ching cross-section” Z of some principal bundle P — S with the standard fibre
GL(p,C); this Z will have the same branching property as Y. First we shall des-
cribe this principal bundle P as well as the corresponding vector bundle E' with the
standard fibre C?.

The universal covering p : S — S can be considered as a principal bundle over S
with the standard fibre A (the group of deck transformations). This has been already
explained in detail in Steenrod’s classical book ([St]) and is well-known.

The only point here which needs some explanation is the following. We have a left
action of A on S:

AxS—S (0,%) oi,
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whereas for the principal bundles it is standard to have a right action of the structural
group (= standard fibre) on the total space. Of course we can simply denote o by
Zo which essentially means that the former product o7 in A will now be denoted as
To. But this would lead to another inconsistency — inconsistency with the standard
construction of S using classes of paths in S which also leads quite naturally to the
identification of A with the fundamental group of S. (Multiplication in the latter
group is defined according to the generally accepted agreement for the multiplication
of paths — the product af3 of the paths o, 3 : [0,1] — S is defined if and only if
a(1) = B(0); in this case, when ¢ runs through [0, 1], (a8)(t) first runs along o and
then along 3). Thus there are sufficiently good reasons to regard the action of A on
S as a left action. However, with any left action

AxS—8 (0,Z) v oz,
one can associate a right action
SxA—-S ($,0)—%-0

just defining it by a formula Z - o = ¢~'Z. It is really a right action:

Z-(o7)=(o7)”

Having this right action in mind, we can consider p : S — S as a principal bundle
with the structural group A. :

Linear representation x : A — GL(p,C) defines a left action of A in C? and
GL(p,C). (On GL(p,C) we set (0,Y) — x(o)Y using the multiplication of
matrices). Now we can construct the bundles F, P which are the bundles associated
to S with the standard fibres C?, GL(p, C) and with the above mentioned action of
A in these standard fibres. We recall that they can be obtained as follows:

E=8xC/~, P=SxGL(p,C)/ ~, (3.1.2)

where for

(&) ~ (@ o,x (07 y) = (7' Ex (07 y),

in other words,

(,y) ~ (0Z, x(2)y)- (3.1.3)
Analogously for P
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(z,Y) ~ (0z,x(0)Y). (3.1.9)
Denote projections £ — S, P — S by pg, pp.

Although this is not absolutely necessary, we recall that there exists also a “coordinate-
wise” description of E, P which sometimes seems to be more “pictorial” (ho-

wever, the “real work” is done in terms of (3.1.2), (3.1.3), (3.1.4)). S is co-

vered by small neighborhoods V. Over V, in S there exists a local cross-section

Zo : Vo — p~Y(V,) which allows to define "local coordinates” over V,: if

z € p~Y(V,), pZ = z, then T = £Z,(x) with some (uniquely determined) £ € A,

and we could set &, (Z) = (z, £). However, in order to be consistent in treating S as

a space with the right A-action, we shall set ®,(Z) = (z,£~!). These coordinates

are equivariant with respect to the right action of A : ®,(Z0) = (z,£0).

If for some bundle we have (using the same notation)

TEVaNVs @4(3)=(z,8), Ps(Z)=(z,7),

then there arises a coordinate transformation g,5(x):

£ = gap(T)n-

(This means that Z,(z) = gapZs(z).) For p : S — S these gqs(z) are locally
constant (in z), and we may even assume that they are constant (e.g., this will
happen if all V, N V}; are connected). For the associated bundles E, P we have local

coordinates
<I>f : pEI(Va) -V, xC?, @5 :p;’(VQ) -V, xGL(p,C)

which are defined as follows in terms of (3.1.2)-(3.1.4) and Z,. Any point of
p5 (V) or pp'(V,) is a class of equivalence containing just one element of the

form

(Za(z),y) or (Za(2),Y),
where y € C?, Y € GL(p,C). Then

(Df((ja(z)’y)) = (:C7y)w @5((.%&(1‘),)/)) =Y

({ ) means the corresponding class of equivalence). For E the coordinate transfor-
mations are linear transformations x (gas), and for P they are left shifts of G L(p, C)
on x (gagp)- These transformations and shifts are constant (in V, N Vj).
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This special structure in our bundles (they are bundles with the discrete structural
group) allows one to speak “locally” (say, over V,,) about the "horizontal” cross-
sections V, — P (and V,, — E as well, but we need only the former). Namely,
such are the local sections Z : V,, — P for which p,®%(Z(z)) =const, where p,
is the standard projection

D2 Va X GL(paC) - GL(pa(C)v (J"vY) — Y.

If we have such a Z over V, and V, NV # 0, we can define a "horizontal
continuation” of this section over Vj. Let p,®F(Z) = Y'; we define forall z € Vj

Z(x) = ((I)g)—l (m,x (g;é) Y) .

It is clear that this process can be continued, like the process of analytic continuation
of the holomorphic function. However, generally it also gives us a “multivalued
section” Z which can be considered as a single-valued map Z : S — P (having
the property that ppZ = p).

Instead of a more careful elaborating this pictorial idea, we shall define a required
map Z : S — P using (3.1.2), (3.1.4). We simply set Z(z) = ((£,I)), where I is
the identity matrix of p-th order. Then

oY, (.15

Thus our Z really has the same branching properties which are required from Y.

Now let us enlarge the structural group of E, P from x(A) to GL(p,C). This
means that we consider P as a principal G L(p, C)-bundle and E as a vector bundle
associated to it. In terms of (3.1.2)—(3.1.4) the right action of GL(p, C) on P arises
from the action of this group on the corresponding direct product, so that the element
Z € GL(p,C) acts as follows:

(z,Y)Z = ((z,YZ)).

This definition is correct, since in S x GL(p, C)

(6zZ,x(0)Y) — (02,x(0)Y Z) ~ (2,Y Z).
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An element of p5'(z), z € S, can be interpreted as a basis Y = (yi,...,¥,) in the
vector space E(x) := pg'(z). By the way, the parametrization of E(z) provided
by such a basis can be expressed in the following way: Y can be interpreted as a
map

P
Y:C - E(x), Yz= Zylzi

=1

(the latter is consistent with the record of Y as a “row” (y;,...,¥,) and Z as a
column with entries z;). Note that the charts (pz'(V,), ®Z) in E, (pp'(Va), ®F)
in P introduce the complex-analytic structure in the total spaces of these bund-
les and that the bundles E, P are holomorphic with respect to this structure. Of
course S also has the standard complex-analytic structure defined by the charts
(p~*(Va),plp~*(V,)). In terms of these charts in S and the above mentioned charts
in P the map Z : S — P has the local representation z — (x,const). Hence it is
holomorphic.

We shall see in a moment that our bundles F, P (endowed with the structure of
complex analytic vector, resp. principal bundle) are holomorphically equivalent to
the direct products S x C?, S x GL(p, C). Then there exists a ("true”) holomorphic
cross-section W : S — P. Any element of pp'(z) can be obtained from W (z)
by multiplying it to the right by some matrix; in particular, Z(Z) = W (x)Y (2),
where Y : § — GL(p,C) is holomorphic. Clearly (3.1.5) implies that Y (&) =
Y (0z)x(co), and we are through. S is homotopically equivalent (via an evident
contraction) to a finite one-dimensional complex. The only topological obstruction
for a real vector bundle over such a complex (and hence over S) to be nontrivial
(nonequivalent to the direct product) can be its nonorientability. But any complex
linear automorphism C? — CP considered as a map R*» — R?” has a positive
determinant. So any complex vector bundle over S is trivial as a real vector bundle.
Finally, S is a Stein manifold, and thus the topological triviality of E implies its
holomorphic triviality, which means also the holomorphic triviality of P (see for
details [Fo]).

The idea of this section is essentially the following. Let F = S x C, Q =
S x GL(p,C). They are bundles over S with projections pr,po which are the
standard projections on the first factor. Of course these bundles are trivial, but the
systems (1.2.1), (1.2.4) allow one to define in F', Q) the nontrivial structure of bundles
with the discrete transformation group A (or x(A)) and the same projections. (In
the book [St] there is a section devoted to bundles with such a structure). We shall
note three characteristic features of this structure (in particular, any of them defines
this structure).
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1) Considered with such a structure, these bundles must be associated with the
principal A-bundle S — S; and indeed, the corresponding identifications

F=5xC/~, Q=58xGL(pC)/ ~,

are given by the maps

(Z,y) » Y(2)y, (2,Y)—Y(2)Y,
where Y (Z) is a fixed nondegenerate solution of (1.2.4) satisfying (1.2.5).

2) One can also describe this structure in terms of suitable local coordinates in
F, Q. Cover S by neighborhoods V, such that (1.2.1), (1.2.4) have single-valued
solutions there. Let Y, (z) be any of the single-valued branches of Y in V. Local
coordinates ®%, 9 over V,, are obtained by inverting the parametrizations

Vo x C° — ppl(V,), VaxGL(p,C) — pal(Va)
(z,y) = Ya(2)y, (2,Y)— Yo(x)Y.

3) Finally, one can also define a continuation of solutions of (1.2.1), (1.2.4) along
any path -y : [0, 1] — S, this continuation is uniquely defined by its initial value. In
terms of ®F, % itisa"lift’ w: [0,1] — F,U : [0,1] = @, (pru = pU =)
which starts at a given point over y(0) and is "locally horizontal” in a sense that
p2®X (u(t)) =const, p,®@(U(t)) =const, while ¢ runs over an interval .J such that
v(J) C V,. Having all this in mind, we try to "reconstruct” F, Q without knowing
Y (Z). We first construct some abstract” bundles E, P having the structure of the
same type and then identify them with S x C?, S x GL(p,C) using the general
arguments from the previous paragraph. (When we speak about the existence of
the cross-section W : S — P, it is just another way to speak about such an
identification). Thus our “branching cross-section” Z(Z) becomes the required
Y ().

3.2 Proof of Plemelj’s theorem

The defect of the simple arguments of the previous section is that they cannot
guarantee that Y has (at most) polynomial growth near a and so (as we have already
warned) they cannot guarantee that the corresponding system is regular. This is
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because the general reference to the theory of Stein manifolds is the last paragraph
of the proof (the paragraph preceding “The idea of this section. ..”) provides no
information on W except its existence. In this section we shall use a much more
special theory which will enable us to control the behavior of some W near a; (at
the present moment we do not even know what this means). In regards to Z, it is a
rather concrete object and so it is easy to control its growth near a; (if we are able
at all to prescribe an exact meaning to these words). Then it will follow that the
growth of Y can be only polynomial, so that the system (1.2.1) with A from (3.1.1)
is regular.

Perhaps the simplest situation which allows us to speak about the “growth of W
near a;” is when E, P are parts of bigger bundles G, R over the whole C with
projections pg, pr. Then a; is contained in some small coordinate neighborhood U
(to make things more definite let U; be open disks centered at a; and let the sizes
of these U; be the same and such that they do not intersect each other. We shall
not consider the case a; = co, because our goal is the Plemelj’s theorem and it is
sufficient to prove it assuming that all a; # 00). Over U, we have a local coordinates

7 pzH(U,) = U x C°, F . pp*(Us) — U, x GL(p,C).

W (z) is defined for all z € U} := U; \ {a;} and we can speak about the growth
of p,®R(W(z)) when x — a; (here p, is again the standard projection on the
second factor). We shall come into this situation by glueing E,P with U; x C?,
U; x GL(p,C) in an appropriate "fibrewise” way. This glueing will be defined by
some maps

wf pgt(U) = U x €, wf : p3'(U}) = U x GL(p, C), (3.2.1)

which will preserve both the projection on U;* and the structure (of the vector space
or of the right G L(p, C)-space) in the fibres.

Maps (3.2.1) will be defined in several steps.
Let again G, := x(o]'), E; := 7= In G, (with eigenvalues satisfying (2.2.2)).
Define
fi: U x A= GL(p,C) fi(F,0) = (& —a)Bx(c™").
Then

fi(0fz,007%) = fi(Z,0). (3.2.2)



58 3 The Plemelj theorem

Really, it follows from (2.2.46) that

E;In(0f% — a;) = E;In(Z — a;) + 2mikE;,
(oFz — ai)E" = (& — a;)™ exp 2mikE; = (% — ;)% GF,
(02— a) ™ x ((007%) ™) = (& — a) % G¥x (}) x (071) = (& — @) Brx (oY) .

(3.2.2) allows one to define

9::p~'(U;) = GL(p,C)

as follows: if £ € p~'(U?), then T = oy, Ty € U ; take g;(Z) = fi(Zo,0).
We must check that this definition is correct, i.e., the result does not depend upon

a concrete representation of T as oI, J;O € U *.Letox, =%, %, € U *. Then

&, = ofz, for some integer k and 010¥%, = oy, o0* = 0,0, = g0;F; now

(3.2.2) implies that fi(&:,01) = fi(Z,0).
Note that if £ € p~'(U}), = 09, & € U}, then

9:(7%) = gi(T0do) = (To — a;) " x ((ro)71) =
=@ - a)®x () x () =g@)x (7Y,

thus (slightly changing the letters)

gi(0%) = gi(Z)x (7).

The next step is to define

YE p7HUN) x CP - U x CP,

1

¥ pH(U7) x GL(p,C) — U; x GL(p,C)
as

P (%,y) = (z,0:(2)y), P (&Y)=(z,0(2)Y),

where x = pZ. If (Z,y) ~ (£1,%,) (in the same sense as in the Section 3.1), i.e., if
T = o,y = x(0)y with some o € A, then vZ(Z,y) = vE(Z,,y):
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V(&L y) = ¥F (0%, x(0)y) = (z,9:(0F)x(0)y) =
= (2,9:(2)x (67") x(0)y) = (z,9:(2)y) = ¥ (&, ).

Analogously,

Wl (o, x(0)Y) = ¢](&,Y),

ie., if (£,Y) ~ (Z,,Y}) then ¥F(Z,Y) = ¢F(Z,,Y}). In other words, ¢Z, ¢F
map the whole equivalence class into the same point. Thus we get maps (3.2.1).

These maps provide us with the corresponding glueings and so we get the bundles
G, R with projections pg, pr, natural inclusions

g FE—-G, ip:P—R

and identifications

pe'(U) = U, xC, pp'(Ui) = U, x GL(p,0).
Having the latter in mind, we can say that the restrictions

iglps (U) = wE, iplpp'(U}) = wF.

Points

a=(z,y) eU;xC CqG, A=(z,Y)eU;xGL(p,C)CR

have local coordinates ¢ (a), ®(A) which are just the same points (z,y), (X,Y).
But if we consider points

a € pg (U7), A€pp (U))
as the points of pz'(U;), pg'(U;), then the local coordinates ®F, ®F of these
points,— or, if you want, of the points iga, i, A4, — are wf(a), w] (4).

Now we are able to check that Z(z), i.e. p,®F(Z(Z)), really has at most polynomial
growth when x — a;. Fix a sector ¥ C U; with the vertex a. In terms of the polar

coordinates (r, ) with the origin at a,,

S={z=a;+re¥;0<r <e o1 <p < o).
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Let¥ C S be any sector covering X. It is contained in some connected component
of p~1(U;). Let this component be cU;. Then ¢~ ¥ is a sector covering T and lying
in U?. Denote by  the only point in p~'z N ¢~ (we shall write z = p~'z N L)
and let £, = o' = p~lz N ¢~ 'S. This , is a single-valued function of z € X.
Denoting the unit element of A by €5, we have

Ono~'%

Inre” =In7 + 19 + 2mik

with some fixed k. Thus

p:®7(ipZ(2)) = exp(E; Int) exp(ivE;)Gix(07").

G*x(o™") does not depend on z; the norm of exp(ipE;) is uniformly bounded as
well as the norm of the inverse matrix, because ¢; < ¢ < .. The only factor
which can be unbounded is exp(E; In7) = rZ:. This is the matrix function which
is well-known in linear algebra; we need not enter into details about it. Clearly its
growth can be at most polynomial.

Now we shall discuss the situation with W . Essentially we need to know that there
exists a meromorphic cross-section of the bundle R — C. Indeed, multiplying
such a cross-section by a suitable rational function, we can get a new meromorphic
cross-section W such that all its singularities will be among {ai,...,a,}. So W|S
is a “true” holomorphic cross-section of the bundle P — .S; thus we obtain a
holomorphic map Y : § — GL(p, C) such that Z(z) = W (pz)Y () forall Z € S.
Forz € p~'(U})

Y(2) = (p:@R(ipW(2)))” (0:2R(pZ(2) (z = pi),

and as W is meromorphic, the first factor grows at most polynomially. We have
already seen that the same is true for the second factor; hence it is true also for Y.
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Let W be a holomorphic cross-section of R in aneighborhood of a;, then p; ® 2 (i p W ()
is holomorphically invertible at a,. Since p,®%(ipZ(2)) =

= (Zo(2) = @) P x(07") = Xx(07")(Zo(2) — a;) % with E} = x~'(¢7) Esx(071),

we can apply to Y'(Z) the statement of Corollary 2.2.1 (with V(z) = (p,®F(ip
W(z))) *x(c™1),® = I). Thus if W is a holomorphic cross-section of R, then
the corresponding system with the solution Y (%) is Fuchsian.

But in general case the bundle R is not holomorphically trivial, therefore a global
holomorphic cross-section W does not exist.

The existence of meromorphic cross-sections is proved in algebraic geometry in
a much more general setting than the case which we need (R — C). In our case
it is a consequence of the Birkhoff-Grothendieck theorem. This theorem in its
geometric form claims that every complex holomorphic vector bundle G over Cis a
direct (Whitney) sum of linear (i.e., one-dimensional) complex holomorphic vector
bundles

where for each integer j the linear bundle O(j) can be obtained as follows. Take
direct products

CxC, (C\{0o})xC
and glue them over C \ {0} using the following equivalence: point (z,y) € C x C
is equivalent to the point

(z,27y) € (C\ {0}) x C.

It follows that G has the following transformation function g o describing the
change of some coordinates corresponding to the coordinate neighborhoods Vy = C,
Voo = C\ {0}:

xh 0

goo.O(x) =

0 zr

Clearly this implies the existence of meromorphic cross-sections to R. Take a cross-
section over V;, which in terms of the corresponding local coordinates is z — (z, I).
Then its coordinate expression over V,,, is given by the same matrix g, o(x) which
is the rational function of z (and of z = 1/z which is the natural coordinate in V).
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Moreover obviously this cross-section is holomorphic outside the point co. If one
wants to obtain a holomorphic outside a point a; cross-section he must start from
the cross-section x — (z, G;), where

(z —a;)™ 0
Gi(z) =

0 (x —a;)™r

Obviously this cross-section is holomorphic at co, since its coordinate expression
over V, is given by the matrix g, o(2)G; = (z,I + O(1)) at co. So due to the
above statement we have the following result, which for the first time also was
obtained by Plemelj:

Theorem 3.2.1 For each a; there always exists a regular system (1.2.1) with given
singular points a,, . . ., a, and given monodromy, which is Fuchsian outside of a;.

The last step of the proof of Plemelj’s result (see (1) in Section 1.2) is given in
[ArI]]. Here~it is. Let the matrix G; have a diagonal form in the basis of columns of
Y(z), £ € U;. Consider factorization (2.2.3) for the matrix Y (Z):

Y () = Zi(z)(Z — a)) ™.

By Sauvage’s lemma there exists a holomorphically invertible outside of a; matrix
I'(x) such that

[(z)Zi(z) = Vi(x)(z - a))*,

where V(z) is holomorphically invertible at a;, ® = diag(y*). (One can easily
prove this lemma combining Birkhoff-Grothendieck’s theorem with our Lemma
4.1.3. There is also an elementary direct proof avoiding use of this theorem; see,
e.g., [Ha]). Introduce a new dependent variable ¢ = I'y. Evidently,

dt dr

—=(—-T""4T4 1“*1) t. 3.2.4

e < I + T A(x) ( )
Therefore the new system is still Fuchsian outside of a;. Since L = ®+2*F,;-z~% =
® + E; (F; is a diagonal matrix), L is holomorphic and from Corollary 2.2.1 we
obtain that this system is Fuchsian at the point a; too. This completes the proof of
Plemelj’s result.
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The algebraic-geometrical proof of the Birkhoff-Grothendieck theorem begins with
the proof of the existence of meromorphic cross-sections to the vector bundle
G — C (this is perhaps the most important part of the proof) and involves the
analysis of the properties of such cross-sections. Although this is not the same as
the existence of meromorphic cross-sections to R, these things seem to be quite
close to each other; and although it is only the existence of a meromorphic cross-
section for the bundle R which we need, this is perhaps only slightly weaker than
the Birkhoff-Grothendieck theorem. Beside this, the latter provides some additional
information which may be useful, although until now there was not much use for
this information.

We shall mention one case in which the additional information provided by the
Birkhoff-Grothendieck theorem plays some role. This is the case p = 2. Applying
to the monodromy x : A — G L(p, C) the construction of Sections 3.1, 3.2, we get
some bundle G. According to the Birkhoff-Grothendieck theorem

G=00) ®0()

with some j;, jo. The number j; + j, is the well-known topological invariant of
the bundle G (Chern number). Having the sum, it is naturally to pay attention to
the difference. In [Bo2] it was found out that |j, — j»| coincides with the “Fuchsian
weight” v,. This statement will be proved in Chapter 6.

3.3 Proof of the Birkhoff-Grothendieck theorem

This theorem has two forms — geometric (which is due to Grothendieck and which
was already formulated in Section 3.2) and analytic (which is due to Birkhoff). In
order to formulate the latter let us introduce the following notation:

K = K(r,R) := {z;r < |z| < R},

D= D(R):= {aila] S R}, C=C(r):={ai]a| > r} U {0},
H(K),H(D),H(C) := {continuous functions K — C, D — C,
C — C which are holomorphic in Int K, Int D, Int C'}

(Int means the interior),
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V(K),V(D),V(C) := {vector functions with the same properties,
i.e., whose components lie in
H(K),H(D),H(C)},

M(K),M(D),M(C) := the corresponding (p, p)-matrix functions,
MI(K),MI(D),MI(C) := {matrix functions from M(K), M(D), M(C)
which are invertible (everywhere inK, D, C)},
Hy(C),My(C) := {functions f € H(C), M(C) such that
f(o0) =0}

Note that H,V, M, Hy, M, are the Banach spaces with the usual C-norm.

The analytic version claims: Let A € MI(K). Then there exists U € MI(C),
W € MI(D) such that everywhere in K

x]l 0
A=U W =Uz'W, J := diag(j.), 1 >+ 2 J»
0 xlr
(3.3.D)
with some integers ji,. .., Jp.

The analytic version is equivalent to the geometric one — both claim that after a
suitable change of the local coordinates over D and C'the transformation fuaction of
arbitrary holomorphic vector bundle G — C becomes the transformation function
for the bundle (3.2.3).

Note that the standard procedure of expanding the function from H(K) into the
sum of the Taylor and Laurent series provides a decomposition f = g + h with
g € H(D), h € Hy(C) and the corresponding projections P : H(K) — H(D),
Q : H(K) — Hy(C) are bounded linear operators. (Former P, Q will not be used
any more, as well as former E, F). Perhaps it is worth while to explain why g has
the required continuity properties near the circle |x| = R and h- near the circle
|z| = r, as the construction of g, h involves some integrals along the circle lz| = p,
r < p < R, and the corresponding estimates do not “work™ up to the circles
bounding K. But this construction implies the continuity (and even analyticity) of
h near the circle |x| = R and of g near the circle |z| = r. It remains to use the
identities

g=f-h, h=f-g
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and the continuity of f. A slightly more detailed elaboration of the same idea proves
the boundedness of P, Q.

Evidently we have an analogous decomposition for elements of M (K). The corre-
sponding projection M (K) — M,(C) also shall be denoted by Q.

Let us prove our theorem for A € M(K) having the form A = I + B with
sufficiently small B ("small” in sense of the norm in M (K)). (Note that such A is
always invertible). We shall see that in this case in (3.3.1) there will be no diagonal
matrix =7 (i.e., all j; = 0).

It is sufficient to prove the existence of X € M (C) such that it is small (in M;(C))
and

Q(A(I + X)) = 0. (3.3.2)

Indeed, this means that U := A(I 4+ X) € M (D). Clearly this matrix is invertible
(as A and I + X are — the latter is invertible because X is small), so we have
A=UW,where W := (I + X)~! € MI(C).

In(33.2)QactsonI + B+ X + BX.ButQI =0, QX = X (we are looking for
X in My(C)). So we have to find X such that

X +QB+QBX =0. (3.3.3)

Denote the operator

Mo(C) — My(C), X — QBX

by T'. This operator is small (in sense of the usual norm), as B is small and Q@ is
bounded. Hence operator E + T, where E is the identity in My(C), is invertible.
But (3.3.3) means that (£ + T)X = —-QB.

An analogous argument proves that in the same case we have also A = WU
with some (new) W € MI(C), U € MI(D). Instead of referring to the “same
argument” one can apply the statement just proved to A~! (which is clearly also
closetoI).If A~' = UW withU € MI(D),W € MI(C),then A=W~U"! €
MI(D),W-lte MI(C).

Next statement is that any A € M I(K) can be represented in the form

A=UFV (3.3.4)
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where U € MI(D), W € MI(C) and F is a rational matrix function of x
which is invertible in K. This means that a holomorphic vector bundle over C is
holomorphically equivalent to the bundle having purely algebraic description. Of
course there exist much more general theorems asserting the equivalence of analytic
and algebraic objects. But our statement admits an easy and elementary proof
which, by the way, gives some additional information: there exists a representation
(3.3.4) having the properties mentioned above and such that all poles of F lie in
(C\ D) U {0}. We could do well without this information, but as we get it “at no
extra cost’”’, we shall use it.

We shall use the following fact: any function f € H(K') can be approximated
uniformly in K by a rational function having poles only in 0,c0. This would
be quite clear if f € H(r,,R;) with 7y < 7, R, > R, — then we can simply
truncate the corresponding Taylor and Laurent series and this provides an uniform
approximation in K. For f € H(K) letus write f = g+h,g € H(D),h € Hy(C).
Consider u(z) = g(z/(1 + ¢)), v(z) = h((1 + ¢)z). For sufficiently small ¢ both
¢ —u and h — v can be made arbitrarily small in K. And now we can approximate u
by a polynomial in 1/z and v by a polynomial in 1/z, these approximations being
uniform in D, resp. C.

The same applies to the matrix functions from M (). Now let A € MI(K) and
B be a rational matrix function of x approximating A. Taking a sufficiently close
approximation we can make not only A — B, but also AB™* — [ and B™'A — I as
small in K as we want.

For some B this difference becomes so small that we can apply our previous
result. We get B~'A = W, U, with some W, € MI(C), U, € MI(D). Thus
A = BW,U,. Now apply the same argument to BW, (which clearly belongs
to MI(K)). For some rational H the difference BW,H~! — I is small whereas
H € MI(K) and the only poles of H can be 0,00. Then BW,;H~! can be
represented as

BW\H™ ' =W,U,, W, e MI(C), U,e MI(D).

Consequently,

U,=W;'BW,H | (3.3.5)

A = szUzHUl = WQFUl, F = U2H (336)
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Not only does U, € MI(D), but U is also a rational matrix function with all its
poles outside of D. Indeed, in (3.3.5) W' € MI(C), W, € MI(C), B and H
are rational, so U, is meromorphic in IntC. But at the same time U, € M (D).
Thus U, is meromorphic on the whole C, i.e., rational. Now in (3.3.6) F = U,H
is rational and of course U H € MI(K), as UyH = W, ' AU,, where all three
factors belong to M I(K'). But we know also that U, € MI(D) and the only pole
of H lying in D can be 0. This proves our additional remark about poles of F.

All these steps were of a preliminary character. They guarantee that it is sufficient
to prove the theorem for the rational matrix function A = F € MI(K) and even
for the case when all poles of F lie in (C\ D) U {0}. Indeed, if in K our original
A= W,FU, and F = W)z’ U, with J =diag(j;), j; integers, then

A = (LVI LVQ).LJ(UzUl)

is the required representation for A.

Now the essential part of the proof begins. We want to find U, W such that F' =
Wx’U in K (plus the usual conditions about U, W). In other words,

FU ' =Wz’
. (337
If U~! and W have columns d;(z), respectively c;(z) :

Ul (z) = (di(x),...,dp(x)), W(z) = (cr(z),...,cp(x)), then (3.3.7) means
that for each ¢

F(z)c;(z) = 2 di(z) forall z € K.

This makes it reasonable to consider triples (j,c,d) such that j is an integer,
ceV(C),d e V(D) and

F(z)c(z) = 2’d(z) forall x € K. (3.3.8)

Besides this, the columns c;(x) of the invertible matrix W () must be all # 0. This
makes it reasonable to impose the additional requirement ¢(oo) # 0.

This justifies the following definition. Let y € C? \ {0}. An admissible triple for y

is a triple (j, ¢, d) such that j is an integer, ¢ € V(C), d € V(D), c¢(c0) = y and
(3.3.8) holds. In such a triple not only ¢ € V(C), but also the formula
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c(z) = F~Y(z)r d(x)

provides a meromorphic extension of ¢ in C \ C'. Thus c is rational in z. For the
same reason d is also rational in z.

Let us check that for any y € CP \ {0} there exists an admissible triple. Write F' as

F(z) = P(z)/2"q(x)

where 3 is a nonnegative integer, P is a matrix-valued polynomial in z (let its
degree be o) and q is a usual (scalar) polynomial in z with the leading coefficient 1
and with the zeroes which are nonzero poles of F' (with the same multiplicity). All
zeroes of ¢ lie outside of D. Thus

is arational vector function of z having no poles in D, and (-3, y, d) is an admissible
triple for y.

For any triple (j, c, d) which is admissible for some y

j<a-p (3.3.9)

Indeed, rewrite (3.3.8) as

P(z)c(z) = 27 q(z)d(x).

Here the left hand side has no pole in C\ D. Hence ¢(z)d(x) has no pole there. But
neither d(x) nor ¢(z) has poles in D. Thus g(z)d(x) has no pole in C, i.e., this is a
polynomial g(x), say, of degree 1. When £ — oo

2%(Pa + o(1))(y + (1)) = 2777+ (g + o(1)),

where P,, g; are leading terms of P, g. It follows that § + j + [ — a < 0 and this
implies (3.3.9).

Letus call (§, ¢, d) a maximal admissible triple fory = CP\ {0} if it is an admissible
triple for y and if for any other admissible triple (i, a, b) for y one has ¢ < j. Any
y € C? \ {0} has maximal admissible triples. This follows from the fact that j’s
appearing in the admissible triples are bounded from above according to (3.3.9).
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If (j, c,d) is a maximal admissible triple for y, then ¢ has no zeroes in C and d has
no zeroes in D. In order to prove this consider three cases.

a). d(a) =0,a € K,orc(a) =0,a € K. As F is invertible in K, it follows from
(3.3.7) that in this case both ¢ and d have zero at a. So

c(a) = (z —a)f(z), d(a)=(z—a)h(z),
where f € V(C),g € V(D). Alsog :=zf = zc/(z —a) € V(C) and g(z) — vy,
when z — o0. But

Fg=Frc/(x —a) = &'*'d/(x — a) = &/ *'h.
We see that (j + 1, g, h) is an admissible triple for y, although j + 1 > 5.

b). d(a) = 0, a € D\ K =IntD(r). Then d = (z — a)g, g € V(D), and if
fi:=2zc/(zx—a),then f € V(C)and f(c0) =y.But Ff = 27*'g,s0 (j + 1, f, 9)
is an admissible triple for y. This contradicts to the maximality of (j, ¢, d).

). c(a) =0,a € C\ D (a # oo because c(o0) =y # 0). Thenc = (z — a)f,
feV(C)andifg:=xf/(x—a),h:=g/(x —a), theng € V(C), h € V(D),
Fg = z7*!h, which contradicts to the maximality of (j, c, d).

Define ¢ : C° — Z as following: ¢(0) = oo, and if y # 0, then ¢(y) is the
integer j appearing in the maximal admissible triple (j, ¢, d) for y. This ¢ has the
same properties (2.2.8) as Levelt’s @ used in Chapter 2. We need only to check the

property

e(y1 +y2) 2 min(p(y1),(y2))- (3.3.10
Properties occurring in the first line of (2.2.8) are evident, and the last property in
the second line (referring to the case ¢(y;) # ¢(y.)) follows from (3.3.10) and
©(y) = p(—vy). Indeed, let (3.3.10) be already proven and let (y;) < ¢(ys). Then
min(2(y1), 9(y2)) = ¢(y1)- So o(y1) < @(y1 + y2)- But

() = (1 +y2) — y2) > min(p(y, + ¥2), (y2)),

and the latter min must be ©(y; + y.), as it cannot happen that p(y;) > ¢(y2). So
e(y1) < @(y1 + y2) < @(y1), which implies p(y1) = @(y1 + v2).

Let us prove (3.3.10). In the case when one of the vectors y,, ¥z, ¥ + y2 is O it is
trivial , so we may assume that all they are # 0. Let p(y,) = j < ¢(y2) = k and let
(J,c,d), (k, f, g) be the maximal admissible triples for y,, y,. Then c+ f € V(C),
(c+ f)(0) =y + Yy, d+ z¥7g € V(D), and in K
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Flc+ f)=2d+z*g =27 (d+2*7g).

Thus p(y, + y2) > j = min(j, k).

As in Section 2.2, there exists a filtration

0=E,CE,C---CE,=C

such that ¢ is constant on E; \ E;_; and if ¥/ = @(E; \ E;_;1) then ¢° := o0 >
P! > .- > 9P We say again that o takes the value 37 with the multiplicity
k; := dim E; — dim E;_,, and introduce the same ¢* as in Section 2.2 — each ¢’
is some ¥, there are k; ¢*’s equal to 97 and @' > --- > ¢P. There exists a basis
Y1,---,Yp in CP such that o(y;) = ¢".

Let (¢, c;, d;) be the maximal admissible triple for ;. It turns out that forany z € C
vectors c;(z) are linearly independent and for any x € D vectors d;(x) are linearly
independent. This follows from the fact that any nontrivial linear combination of
c; is a ¢ appearing in some maximal admissible triple, and any nontrivial linear
combination of d; is a d appearing in some maximal admissible triple. Here is the
proof of this fact. Consider

c(z) = Z{/\zci(x)§i €I},

where I C {1,...,p} is nonempty and \; # 0 for all ¢ € I. Denote

¥ := min{y*;i € I}

(this ¥ equals to one of our ¥, say, to ¥°),

J:={i€I;p =} (Jisnonempty),
d(z) ==Y {Mz* Vdi(z);i € I},
y :=c(co) = Z{)\ici(oo)§i €l}= Z{)‘iyi;i €I}.
Then c € V(C), d € V(D) (because ' — ¢ > 0 forall : € I),

Fc=z"Fd,
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y # 0 (because y; is a basis and .J is nonempty) and (%, ¢, d) is an admissible triple
for y. It is even the maximal admissible triple for y, which means that ¢ (y) = .
Indeed,

@(y) > min{p(y;);i € I} =9,

but if o(y) > ¢ = 9°, then y € E,_;, although our choice of the basis y;,...,y,
is such that {y;:7 € J} are linearly independent modulo E_,.

Finally consider

d(z) == > {\di(z);i € I},

where I C {1,...,p} is nonempty and A; # 0 for all ; € I. Denote

Y = min{p*;i € I}

(this 9 is equal to one of Y7, say, to %),

J:={ie€l;¢'=vy} (Jisnonempty),
c(z) = Z {Nz¥ "% (z);i €T}

Then ¢ € V(C) (because ¥ — ¢ < 0forall: € I),d € V(D),

Fc=2z%d.

Also y := c(c0) makes sense and y := Y {\;y;;¢ € J} # 0, (because y; is a basis
and J is nonempty). So (¢, ¢, d) is an admissible triple for y. It is even the maximal
admissible triple for y, which means that ¢(y) = 1. Indeed

@(y) > min{p(y;);1 € I} =,

but if p(y) > ¥ = 9¥°, then y € E,_;, although our choice of the basis y;,...,¥,
is such that {y;;7 € J} are linearly independent modulo E;_;.

After this we can take U~ := (d,,...,d,), W := (c1,...,¢p), and this provides
(3.3.7) with all the required properties of U, W.

The complete version of the Birkhoff-Grothendieck theorem contains a uniqueness
condition for the numbers j;, . . ., j,. This means that the following statement holds:
Let a matrix A € MI(K) have two different decompositions
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A=Uz?W, i=1,2 (3.3.11)
of the form (3.3.1). Then J, = J,.

Denote by ji,..., j; coefficients of the corresponding matrix J;. It follows from
(3.3.11) that

U U, = o2 WoW ™ (3.3.12)

therefore the matrices U; 'U; and W, W, ™! can be analytically continued in C \
{{0} U {oo}} and their continuations (which we denoted by the same symbols) are
holomorphically invertible there. So we have that coefficients (uxm ) of U; U, are
holomorphic outside of 0 and may be presented at x = 0 as follows:

Upm(T) = LI Wi (T), (3.3.13)
where (wy.,) are coefficients of W, W'

Assume that .J, # J;. Without loss of generality we may assume that jZ = j; for
k < land j? > j} for some ! < p. Since the functions wy,(z) are holomorphic at
0, from (3.3.13) in this case we obtain u;,(0) =0fork =1,...,m=1,...,p.
Since uym(x) is holomorphic outside of z = 0 we conclude that u,, (z) = 0 for

k=1,...,l;m=1,...,p. Therefore the matrix U, 'U, has the form
* 0 0
0 --- 0
U2_1U1 - .. . — l
* *
l
l
and we have det U; U, (x) = 0 (since its rows with numbers 1,. ..,/ are linearly

dependent) that contradicts the condition U;'U; € MI(C). This contradiction
means that our assumption is false, i.e., J; = Js.



3.4 Some other known results 73

3.4 Some other known results

Using Levelt’s factorization (2.2.25) we can easily prove that for p = 2 Hilbert’s
21st problem has a positive solution independently on n. (Recall that this result
follows from [Dek], but Dekkers did not use Levelt’s factorization, so from our
point of view his proof was more complicated, than the proof we are presenting
here).

Indeed, let p = 2 and let Y () be a fundamental matrix to some regular system
(1.2.1) with the given monodromy x. By Plemelj’s result we may assume that the
system is Fuchsian at a,, . .., a,. Due to Plemelj’s theorem it is sufficient to prove
the statement only for nondiagonalizable monodromy matrices x(oy), ..., x(04)-

Consider factorizations (2.2.25) for all ¢ = 1,2,...,n. By Theorem 2.2.1 the
matrices V,(az),...,Vy(a,) are nondegenerate. Let the matrix Vi(x) have the
form

1 V12
ci(z —a))* cy(x —ap)

mu)=< h>ﬂ+0ﬂn,k1>mh20.64u

(The first column of the matrix V;(a,) is always nonzero (see Section 2.2), so by
transformation (3.2.4) with a suitable I' = S we can obtain the matrix Y = SY
with V; = SV] of the form (3.4.1)).

By v}, denote elements of the matrices V;(z) and by s denote the sum of exponents
of the system over all ay, ..., a,. From Theorem 2.2.2 we have
s <0. 3.4.2)

Let ¢; # 0, !; > 0 in (3.4.1). Transform our system to the system with the
fundamental matrix Y’ = T'Y, where

) [ —
F = ‘31(1"11)‘“‘1 .

The matrix I'; is holomorphically invertible off a,, therefore Y’ has a factorization
(2.2.25) with V! =T - V; and with the same ®; fori = 2,...,n. Ata; we get

rmu)=<‘“x“my ‘ﬁw‘aﬁ"h+“2)a+ou» £>0.

alz —ap)® ez —ar)h
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If t < k; transform Y’ to Y = LY’ by

o1 e
27V 1

After finite steps of such transformations we obtain the system with a fundamental
matrix Y'!(z) such that the following conditions hold:

and so on.

i) the system is Fuchsian at a,, ..., a, with the same exponents at these points,

ii) the matrix V}! from factorization (2.2.25) has the form:

_ [ clz=a)" -&(z - a) R 4 g,

Ifll < ]Cl, then

(% 4 %)
Vi=(hol)(z —a) O b=k ki > 1 — k.

bl

If 11 Z kl, then

( ki 0 >
V! = (hol.)(z — a;) 0 0 , ky>0.
In both cases from (2.2.25) we get

Y} = (hol.)(z — a1)* (30 — 1) ®'x (071),

where @1 is the matrix of valuations for the new system. But

t'f"p,l Z t7‘<I’1+k1 +(ll —kl) =t7'¢1+l]_ > tT@l

or (tr ] > tr®, + k; > tr ®;). Thus due to i) we obtain that the sum s’ of
exponents of the new system is greater than s:
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s<s' <0. (3.4.4)

If s' = 0, then by Theorem 2.2.2 this system is already Fuchsian at all points. If
s’ < 0and ¢; # 0 in formula (3.4.1) for this system, then we may again apply the
same procedure and so on until we get § = 0 or ¢; = 0 in some step.

Letin (3.4.2) ¢; = 0. Then by (2.2.25)

~ Y Y12
Yi(z) = 3.45

1( ) < 0 Yas ) ( )
inU *. By the theorem on uniqueness for analytic functions we have y,, = 0 for all

Y11
0

« [ Y _ yn Y12
(%)= () e ()
but of course 0 o o; = 0, therefore A, = 0 (in opposite case we would have the
impossible identity 5, = 0, which contradicts the inequality det Y (z) # 0). Thus

inthe case ¢, = 0 the representation Y is reducible. Therefore we can simultaneously
transform x(o;) to the form

# € S. But this means that the vector ( ) is a common eigenvector for all o7.

Indeed,

Al *) :
o) = . 1, t=1,...,n
@ =% x

Since by assumption all x(c;) are nondiagonalizable, we get A} = \; for all @.
Thus, [x(o:), x(o;)] = 0 and we obtain that y is the commutative representation.

Consider the matrix

Y (@) = (z - a))™* [[(z = a)®, (3.4.6)
=1
where E; is from (2.2.2), p = Y., pt;- The system with this fundamental matrix
has the form

dy

dz

(___El —pl ) R 2 I (3.4.7)

T —a 5 L a;
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and it satisfies equality (1.2.3).

Indeed, we have [, x(o;) = I, therefore

1 n n n
Q;r—i-ln<l—[x(0i)>=ZEi=uI, p=3 p el
=1 =1 1=1

Thus we get a Fuchsian system with the given x too.

Remark 3.4.1 Formula(3.4.6) provides a positive answer on Hilbert's 21st problem
for a commutative representation x independently of p.
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4  Irreducible representations

4.1 Technical preface

In this subsection we present some technical statements which will be used below.

The way of the solution of Hilbert’s 21st problem for an irreducible representation
consists in improving of a regular system with help of suitable transformations of a
depending variable

2 =T()y. (4.1.1)

Under this transformation system (1.2.1) is transformed to the following one:

dz )
— = A (z)2
d:l: (I) )
where

Al(z) = %F“l +TAT L, (4.1.2)

If the matrix I is holomorphically invertible at some point b, then the matrix A'(z)
has the same type of singularity at b as A(x). (If A is holomorphic at b, so does
A"). Taking T'(z) to be holomorphically invertible off a; , we can try to improve the
type of singularity of (1.2.1) at a, without changing for the worse at other points.
For this purpose we need the following statements.

Lemma 4.1.1 Suppose that the matrix W (x) of the size (p—1, 1) is holomorphic, and
the matrixY () of the size (1, 1) is holomorphically invertible in the neighborhood U;
of the point a;. For any integer-valued diagonal matrix C' = diag(c, ..., c,), there
exists a matrix-function T'(z), meromorphic on C and holomorphically invertible
off the point a;, such that

['(z)(z - a;,)¢ < ;;/((z)) ) = (z - ai)Cl < V)I//((Ix)) ) , (4.1.3)

where C' = a'iag(cl,...,c,,c;H,...,c'p), clj > min(cy,...,q), j =1+1,...,p,
W'(x) is a matrix holomorphic in U,
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Proof. We shall apply the following procedure to the rows ¢,,,,m > [ of the matrix

e (Wi )

If t,, = 0, then we stop the procedure (i.e. t,, is not changed at all). Otherwise
tm = (x — a;)* wn(x), where w,,(a;) # 0. If k,, > min(c,,...,¢), then stop
the procedure. If k,, < min(cy,...,¢), then do the following. Since the rows
yi(a;), ..., y(a;) of the matrix Y (a;) are linearly independent, we have wn,(a;) =
— 23:1 d;y;(a;). Hence , the row vector

th(z) =di(z—a;)™ " t(x)+ ...+ di(x — a;) " t(x) + tn(z) (4.1.4)
has the form ¢! (z) = (z — a;)*» w! (z), where either w! (z) = 0 or wl (a;) #
0, cl. > cpn Ifwl(z)=0orwl(a;) #0, c, > min(cy,...,¢) , then we
stop the procedure. If ¢! < min(c,...,q) and w} (a;) # 0, then w} (a;) =
- Z;zl d; y;(a;) and we again can consider the corresponding polynomial

£2,(x) = di(z — @) (x) + ...+ df (z — a,)™ 7 ty(z) + th(z)
and so on.

In all cases after a finite number of steps, we get % (z) = (z — ai)c:.. w, (), where
c,, > min(cy, ..., ¢;) with holomorphic w., (z). We consider the polynomials
1

QT =dj(x —a;,) " +dj(z - @) L+ &z - a;) T4

in ——. By construction,
T—a,

l
S QP (@) + tw(x) = (z = @)™ wy(), m=1+1,...,p.

J=1

One should substitute

1
0
. . 0
riz)=| . _ (4.1.5)
Q! A
Q7 Q 0 1

for the matrix I'(x) in (4.1.3). This concludes the proof of the lemma.

The following corollary of the lemma will be used in Section 5.
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Corollary 4.1.1 Under the assumptions of Lemma 4.1.1 there exists a matrix T'(x)
such that, for any row w,, (x) of the matrix W' (z) in (4.1.3), one of the following
additional conditions hold:

(a) wp,(x) = 0;

(b) w’m,(ai) = - Zf:l djryjr(a’i) ’ Where Hf:l d]r # O and min(cjl’ st 7Cjk) =

1

de < Cm.

Proof. If for row w,, (z) the inequality ¢; > c, holds, then we apply again
procedure (4.1.4), etc. , until we get either (a) or (b); after that we construct the
corresponding Q7" from (4.1.5).

Remark 4.1.1 It follows from the form (4.1.5), (4.1.4) of T'(x) that for any holo-
morphic at a; matrix Z(zx) of the size (p,m) the matrix

[(z)(z — a;)¢ Z(z)

is still holomorphic at a;.

Lemma 4.1.2 Let a matrix U(x) be holomorphic at a; and let all the principal
minors of U(a;) be nonzero. Then for any integer-valued diagonal matrix C =
diag(cy, ..., cp) with the condition ¢, > ... > c, there exist a holomorphically
invertible off a; matrix I'(x) and a holomorphically invertible in U; matrix V(z) ,
such that

[(z)(z — ;)¢ U(z) = V(z)(z — a,)C. (4.1.6)

Proof. Rewrite the matrix (x — a,;)¢ U(z) as follows:
(x—a)° U(z) = (z — a,)°" U(z)(z — a;)’ 4.1.7)

and apply Lemma 4.1.1 to the matrix

c=cman (35) = (i ) 1=

where U'(x) is formed by the intersections of the rows and columns of U(zx) with
the numbers 1,...,{, w,(x) isthe vector function (w1, ..., Upp—1), U(z) = (us;).

By Lemma 4.1.1 there exists a matrix I'; (x) of form (4.1.5) (with [ = p — 1), such
that

FI(JI)(JI _ ai)C—c,,I ( yr-1 (CL') ) - (l‘ _ ai)Cl ( U;T(li?) ) , (4.1.8)

wp(l')
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where C; = diag(ci — ¢y, ..., Cp—1 — Cp, ), Cp > Cp1 — Cp. Therefore
Ur-! _ _ Ur-! -
(z - a)° ( D) = @ —agertemment [ U (o 2 g yemimer,
w, w,

It follows from (4.1.7) and the latter formula that the following factorization holds:
c c [ U D
Ty (z)(z~a,)U(z) = (z—a;) (=17 ( w. | Zl) (z—a;)™", (4.1.9)
2

where W, is a matrix of the size (2,p — 2), W,, Z; are holomorphic at a;,
Dl = diag(cp_l,. <3y Cp—1, Cp).

Let apply Lemma 4.1.1 to the matrices

By Lemma 4.1.1 there exists I';(x) and so on.

As a result after p — 1 steps we obtain a matrix I'(x) = ',y - ... - Iy, such that
(4.1.6) holds with some holomorphic matrix V().

Since
det V(a;) = lim detT'(z) det U(a;) = det U(a;) # 0,

T—a;

we obtain that V() is holomorphically invertible at a,. (Here we used form (4.1.5)
of each I';(z), which implies det I';(z) = 1).

Lemma 4.1.3 Let a matrix U(x) be holomorphically invertible at a;. Then for any
integer-valued diagonal matrix C = diag(cy, . .. , c,) there exist a holomorphically
invertible off a; matrix T'(z) and a holomorphically invertible at a; matrix V(x),
such that

[(z)(z — a,)°U(z) = V(z)(z — a;)?, (4.1.10)

where D = diag(d,, ... ,d,) is obtained by some permutation of diagonal elements
of the matrix C.

Moreover, if for some T'(x) having the same properties as before formula (4.1.10)
holds with appropriate diagonal matrix D, then the following inequalities :

> dP. 4.1.11)

hold for the elements ¢! = max(cy,...,c,), d' = max(di,...,d,), c? =
min(c,...,¢,), dp =min(dy,...,d,)
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Proof. First let the diagonal elements of C' be nonincreasing. With help of some
constant nondegenerated matrix S we transpose the columns of the matrix U (z) so
that all principal minors of the new matrix U’ = U S are not equal to zero. (S is the
matrix of a linear transformation which interchanges vectors of the standard basis
of C?. Note that the conjugation via this matrix transforms a diagonal matrix into a
diagonal one). Applying Lemma 4.1.2 to U, we obtain

[(z)(z — a;))°U (z) = V' (2)(z — a;)°,
therefore ,

D(z)(z — a;)°U(x) = T(z)(z — a;)°U (2)S™! = V' (z)(z ~ 0;)° S~ =
=V'(2)S Yz — )% = V(z)(z - ;).

If the elements cy, ..., c, are not ordered, then there exists a constant matrix s,
such that (§')~'CS" = C', where C' = diag(cy,...,c,) and cy,...,c, already
form a nonincreasing sequence. For the matrix (z — a1)cl S~'U(z) consider the
corresponding matrix I' (z) . In this case one can take the matrix I’ = I S~ for
the matrices C and U(z) in (4.1.10).

Let us prove the second statement of the lemma. Assume that for some I'(z) from
(4.1.10) there exists D with d”? > c?. Let d? = d;, c? = ¢,, for some [,m. It
follows from (4.1.10) that

[(z) =V(z)(z — a;)°U ™ (z)(z — a;)C. 4.1.12)

The element w,,, of the matrix (z — a;)°U~" (z — a;)~C has the form u,, =
Usm (T — ;)% ", where u,pn, is holomorphic. Therefore, the m-th column +,, of
the matrix ['(z) has the form 7,, = v,(z — a;)%~°™ with holomorphic column
vector v,,(z). Since by the assumption d”? > c?, one has that all elements of ~,,
are holomorphic at a; and vanish there. Then, ,, is holomorphic on the Riemann
sphere off a; . By Liouville’s theorem we obtain +,, = 0, which contradicts the
holomorphic invertibility of I'(x) outside of a;.

The proof of the first inequality in (4.1.11) are similar to the proof of the second
one. Instead of (4.1.12) one must consider the formula

Iz)=(z - a;)° Uz)(z — a;)"P V7,

and instead of the column <y, one must consider the row ¢ of I'~!(x), where
d! = d, for some t.
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4.2 Solution for an irreducible representation

All counterexamples to Hilbert’s 21st problem are constructed for reducible repre-
sentations. But how does the algebraic property of reducibility appear in analytic
theory of ODE? The partial answer on this question is presented in the following
lemmas.

Lemma 4.2.1 If for some component y;(&) of any nonzero function y(Z) from the
space X of solutions of a system (1.2.1) with monodromy x the identity

y;(Z) =0

holds, then the representation x is reducible.

Proof. We consider a basis (e;(Z),...,e,(Z)) of X, such that
e (%) = y(&), el(@) =...=€l(2) =0,
and the functions e{H(i), ...,€el(&) are linearly independent. It is obvious that /

must satisfy the inequality 1 < [ < p. Let m < l and ¢ € A. Let us consider

o*(em) = 2P, Aie;. Since, by construction, e/ () = 0 for 1 < m < [, it follows
that

(c*el )(Z) =€l (67'3)=0= ij el () .

i=l+1
Since €], ,(%),... ,€l(Z) are linearly independent, we have Ay = ... = A, =
0. This means that the subspace X; C X generated by e,(Z),...,e/(Z) is the

common invariant subspace for the monodromy operators, and so the monodromy
representation x for the system (1.2.1) is reducible.

Corollary 4.2.1 For any basis y,, . . ., y, of the space of solutions to system (1.2.1)
with an irreducible monodromy and for any j the j-components yi,..., yz{ are
linearly independent.

Proof. Letciyl + ...+ ¢yl = 0forsome cy, ..., ¢y, |ei] + ... + |c,| # 0. Then
the solution c;y; + ... + ¢,¥y, has a zero j-component. Therefore, from Lemma
4.2.1 we have that the monodromy of the system is reducible , that contradicts the
assumption of the corollary.

The goal of this subsection consists in proving the following statement.
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Theorem 4.2.1 Any irreducible representation  can be realized as the monodromy
representation of some Fuchsian system.

Proof. Consider a regular system (1.2.1) with the given monodromy x, which is
Fuchsian outside of the singular point a,. (The existence of such a system is proved
in Section 3.2). For a Levelt’s fundamental matrix Y (Z) of the system we have the
following factorization:

V(&) = Vi(z)(z — a))? (& — ay)®, £ €Uy
(see (2.2.25)) with holomorphic V;(z) and upper-triangular E,.

Rewrite this factorization as follows:
Y(#) =V, (z)(z —a)? (& -a)®, 4.2.1)

where B = diag(by,...,b,), bi—bi.y > ¢ >0, i =1,...,p—1, Vl is
meromorphic at a,.

Since V; (z) is holomorphically invertible in U} = U, \ {a;}, we obtain from
Birkhoff-Grothendieck’s theorem (see Section 3.2) that there exist a holomorphi-
cally invertible off a; matrix I';(z) and a holomorphically invertible in U; matrix
U(z), such that

Ty (2)V|(z) = (z — a,)° Ulx), (4.2.2)
where C'is an integer-valued diagonal matrix C' = diag(cy,...,¢p), ¢1 2> ... 2 ¢p.

Indeed, we may regard V; (z) as the transition function of some vector bundle on
C with the coordinate neighborhoods C \ {a,} and U, . Formula (4.2.2) means
that this bundle is holomorphically equivalent to a bundle with transition function
(z — a,)¢, and this is exactly the statement of Birkhoff-Grothendieck’s theorem
(see 3.2.3).

By Lemma 4.1.3 there exists a holomorphically invertible off a; matrix ['(z), such
that

(z)(z - a)’ Uz) =V(z)(z —ay)?, (4.2.3)

where D is obtained by a permutation of diagonal elements of C, and V(z) is
holomorphically invertible at a;.

Introduce a new dependent variable z = I'(z)[';(z)y. From (4.2.1) - (4.2.3) it
follows that for the fundamental matrix Z(Z) = I'T,Y(Z) of the new system the
following factorization holds:

Z(z) =V(z)(z — a))P*8 (2 — ay)P" . 4.2.4)
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If for elements cy, .. ., c, of the matrices C' and D the condition
ca—c <o 4.2.5)

were fulfilled, then the diagonal elements of the matrix D + B would form a
nonincreasing sequence and by Corollary 2.2.1 we would obtain that the new
system were Fuchsian at a; too. Indeed, in this case

(z —a,)?*B E\(z — a,)" P8

would be holomorphic at a; (see the formula below (2.2.27)) and we could apply
Corollary 2.2.1.

So all we need for proving of the theorem is the following statement.

Proposition 4.2.1 Let a regular system (1.2.1) with an irreducible monodromy be
Fuchsian outside of the singular point a,. Then for any matrix B from factorization
(4.2.1) of the fundamental matrix Y (Z) of this system the inequality

L -2 -1

Z(Cl -¢) < (TL—MJ (4.2.6)
i=1 2

is satisfied , where the numbers c; are from factorization (4.2.2) , and the matrix

Vi (z) is from (4.2.1).

Indeed, if (4.2.6) holds true, then

cl—cpsg(ﬁ*ci)f(j—:z);;(f—:—lly

so one can take ¢ = > (n — 2)p(p — 1) in (4.2.5).

1
2
Proof. The differential 1-form trw = dlndet Y () is a single-valued meromorphic
form on C (see (2.2.40). Since system (1.2.1) is Fuchsian at the points a,,...,a,
and by virtue of factorization (2.2.45), the residues of the form at the indicated

points are
res, trw = tr®;, +trk; , 1=2,...,n. 4.2.7)

Since det I'; (z) = const # 0 in (4.2.2) (indeed, by (4.2.2) this function is mero-
morphic at a,, because (V})~! is meromorphic and U is holomorphic there, and
this function is holomorphic and does not vanish anywhere on C\ {a, }; thus, it can
not have neither zero nor pole at a,, therefore by Liouville’s theorem it is nonzero
constant), the residue of the form trw at the pont a; is
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res,, trw = trC + trB + trE) (4.2.8)

by virtue of (4.2.1), (4.2.2). According to the theorem on the sum of residues, we
found from (4.2.7), (4.2.8) that

trC+ttB+ Y td, + ) k=0, (4.2.9)

1=2 i=1

Let us consider the first row (v, . .., y,) of the matrix 'y (z)Y (Z), where 'y (Z) is
that appearing in (4.2.2). It follows from (2.2.45), (4.2.1), (4.2.2) that

Y1y yp) = (ul,... ul)(z —a)" (£ -a)5 S, i=2,...,n, (42.10)

('_Ijl,.. . ,yp) = ('Ul,.. . ,'Up)(.'l: - al)B+C1[ (.’i‘ d al)El ,

where (u}, ..., u})is the first row of the holomorphic matrix I'y (z) Vi(z), (v, .., vp)
is the first row of the holomorphic matrix V' (x). (In general, the matrix I'; Y is not
a Levelt’s fundamental matrix in Ui‘, but of course, I'; Y can be transformed to it
by multiplying on a suitable .S;).

Let us consider a matrix T'(Z) whose jth row ¢’ is

. n , j-1
t = (H(z—-ai)]‘l) ‘27,_%, 4.2.11)

i=1
where y(z) denotes the row y = (y1,...,Yp)-

Since by the hypothesis the representation y of the monodromy of system (1.2.1) is
irreducible, the analytic functions y, ..., ¥y, are linearly independent (see Corollary
4.2.1,applied to (1.2.1) with the fundamental matrix I', Y'), therefore the determinant
det T'(z) is not identically zero on C. Its singular points are a;, . . . , a, and the point
00. Possibly, there are complementary points by, ..., by, atwhich det T(&) vanishes.
Note that the points co and by, ..., bn, are points without ramification for det T'(Z),
since the monodromy of the matrix 7'(Z) coincides with that of the original system
(1.2.1).

Let us consider the form v = d In det 7(Z) and find its residues. According to what
was indicated above,

d]-=res,;j7 >0, j=1,...,m. (4.2.12)

Let us check that (4.2.10) , (4.2.11) imply that the matrix T'(Z) admits of the
factorization

’

T(E)=U,(z)(z —a)* (F—a)® S, i=2,...,n (4.2.13)
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in the neighborhood U}, where U, () is a matrix holomorphic at a;.

Since

j “ j-1 j—1dj—1 Y
o= | I @-a) (z — a;) el

=1,l#1
it is sufficient to show that
A=ty ut

[ o . ¢, ro— . E; .
dzi-t ~ (z —a;)i"! (&~ a)™ (- a)™ S,

where u' is a row vector holomorphic at a;.

We shall prove this statement by induction. For j = 1 itis equivalent to factorization
(4.2.10). Suppose that this statement is true for j = k. We have

dy _ d <(——£—k-:(x—a,)¢‘ (3 — ag)® Si) _

dzF ~ dz T —a;)
- ——|e- 1k~ Dt (@ + (o - a)®
=G oo T = a)— ut + ut (P, ;

Ei(z — a)""))(z — a)™ (£ - a)® S,

Since the expression in square brackets is holomorphic at the point a;, the statement
is true for 7 = k. This completes the proof.

In the similar way we can prove that the factorization
T(z) =V (z)(x - a,))?*" (- a))® S, (4.2.14)

with the holomorphic matrix V' (z) holds true in the neighborhood of the point a; .
In this case, instead of the holomorphy of the matrix (z — a;)® E;(z — a;)~%, we
must use that of the matrix (z — a,)B*<! E\(z — a;)~2~<! which follows from
the fact that B + ¢, [ is a diagonal matrix with nonincreasing diagonal elements
b +c, j=1,...,pand E| is an upper-triangular matrix.

From (4.2.13) we get
res,, vy =8;+trd®, +trk;, 1 =2,...,m, (4.2.15)
where s; > 0,7 > 1 is the order of zero of det Ui' (z) at a; and from (4.2.14) we get
res,, ¥y = 81 + trB + pc; + triy

with s; > 0, where s, is the order of zero of det 1% (z) at a,.
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It remains to find the residue of the form + at the point co. We denote by W (x) the

matrix (m—?{—) and by R(() the matrix (—&CT%), t,7 =1,...,p, where {( = %
Since the functions ¥, ..., y, are analytic at the point co, the same is true for all
R(¢). Since

dj—ly 1 J i _di-ly

—_— = S

dri-t — p20-1) Z_; kix dCi—N (4.2.16)

where kJ = (—1)’~1, it follows that
), (4.2.17)

where, in turn, T5(z) = (v,,) is a lower-triangular matrix with elements v,; =
K "
1, vj; = zz7=7» and therefore

p j
det W(z) = det R( ) (4.2.18)
2(] 1)

j=1

Since, according to (4.2.11), we have T(z) = T3(z)W (&),

[3(z) = diag (I,H - a;) H(:c—ai)p“l)
i=1
from (4.2.18) we find that
det T(z) = z¥(=22(=1 . det R(() - h((),
where |h(0)| = 1. Consequently,

(n=2)p(p-1) ' (4.2.19)

reSe vy = — 5 +d,

where d' is the order of the zero of the function det R(¢) for¢ = 0.

According to the theorem on the sum of residues for the form « and from (4.2.12),
(4.2.15), (4.2.19) we find that

n n _ 2 - 1
per +trB+ ) tr®; + Y tEi+d = ("—Lg(p—) : (4.2.20)
=2 i=1
whered = Y70 d; + S0 s, +d; > 0.

Subtracting (4.2.9) from (4.2.20) and discarding d > 0, we get the required inequa-
lity (4.2.6).
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Remark 4.2.1 The only place in the proof where we used the irreducibility of the
representation X is the statement concerning the linear independence of the elements
Y1, - - Yp Of the first row of the matrix Ty (z)Y (Z).

An independent proof of Theorem 4.2.1 was obtained by V.Kostov [Kol], [Ko2].

The inequality (4.2.6) has some geometric sense, which will be explained below.
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5  Miscellaneous topics

5.1 Vector bundles and Hilbert’s 21st problem

An answer to Hilbert’s 21st problem can be expressed in terms of holomorphic
sections of some vector bundles over C.

Let us again consider the bundles E, P, constructed in Section 3.2. Let G; =
x(67), Ei = 3=1InG; (see Section 3.2). With help of a constant matrix S;
transform F; to an upper-triangular form E? = S7'E;S;. Consider a matrix

Ai :diag(/\l""a)‘p)v /\1. € Zv /\1 Z Z )\p'
Denote by A’ the collection (A, ..., \,) and call it admissible.

Let us replace the glueing functions wf, wf from (3.2.1) by w&, w?, as follows.
Replace f; from (3.2.2) by the following one:

fri(&,0) = Si(z = a)™ (& - 0.)™ ST x(c7") (.11
and replace g;(Z) by g, (&) = fx:(Zo, ) (see the notation of (3.2.1)).

Let us do such a procedure for al_l a,...,0,. As a result we obtain bundles
G*and R*, A= ()\',...,A")on C.

Remark 5.1.1 In general such extensions of the original vector bundles depend not
only on a collection of X but also on a choice of matrices S;. But we shall not mark
this fact in notation of extensions (having it in mind).

Theorem 5.1.1 A representation x can be realized as the monodromy representation
of some Fuchsian system if and only if there exists an admissible collection A\ =
(A, ..., A™) such that the corresponding principal bundle R* (and the associated
vector bundle G*) is holomorphically trivial.(Cf. [Bo2], [Bo5]).

Proof. The proof immediately follows from the Levelt theorem (Theorem 2.2.1).
Indeed, let R* with some admissible A = (A!,..., A™) (which means that each \*
is admissible) be holomorphically trivial. Denote by W (z) a holomorphic section
of the bundle. Consider again the "multivalued" section Z(Z) from (3.1.5) and the
corresponding matrix function Y : S — GL(p; C), where



90 5 Miscellaneous topics

Z(z) = W(p(2))Y (2). (5.1.2)

It was proved in Section 3.1 that Y (%) was the fundamental matrix for system

(1.2.1) with the given monodromy and singular points. In local coordinates @f‘A
(<I>1-RA corresponds to w¥; , cf. Section 3.2), we have

Y (%) = (0% (5pW (2)) " (0287 (i Z(3)), (z = pi) (5.1.3)

(ip : P — Risanalogous toip : P — R from Section 3.2; we do not mark in the
notation that now i p depends on A and {.S; }), where the first factor is holomorphic at
a; and by the construction the second factor has the next form forz = o,z € U;":
O (ipZ(2)) = wh(2(2)) = wh(< 3,1 >) =

= Whi(< 0F0, I >) = Wh (< Fo,x(07") >) = (2, 9 (Fo)x(07)) =
= (z,Si(z — ;)™ (%o — a;) ' ST x(07Y)), (5.1.4)

p2®F (ipZ(2)) = Si(z — a;)™ (Zo — @) ST x(0™Y).
(Cf. the similar calculation in Section 3.2).

Therefore the fundamental matrix Y'(Z) = Y(&)S,; of the system has the following
formin U}:

Y'(£) = Vi(z)(z — a)™ (F - a,)F, (5.1.5)

where V;(z) = (p®% (i,W ())~1S, is a matrix holomorphically invertible at
a;, A is the integer-valued diagonal matrix with nonincreasing diagonal elements
and E? is upper-triangular. Again by formula below (2.2.27) it follows that the
matrix (z — a;) E?(z — a;) ™+ is holomorphic at a;. Therefore by Corollary 2.2.1
we get that system (1.2.1) is Fuchsian at a;. So if some bundle R* is holomorphically
trivial, then the corresponding representation x can be realized as the monodromy
representation of some Fuchsian system.

Now let us assume that for the representation x the problem has a positive solution.
Consider a fundamental matrix Y (Z) of Fuchsian system (1.2.1) with the given ¥.
Let Y;(Z) be a Levelt’s fundamental matrix for the system. Then Y;(Z) = Y (Z)S;
for some S;. Consider the admissible collection A\* = (Af,...,\,) with \; =
¢!, where ®; = diag(¢!,...,¢?) is from factorization (2.2.25) for the matrix
Y;(Z). Extend the bundle P at a; by (5.1.1) with A; = &; and with S; =
Y ~1(z)Y;(Z). In the similar way extend this bundle at other singular points. As
aresult we get the bundle R* with A = (A\!,...,A"™).
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The section W (x) of the bundle R*, defined by (5.1.2) is holomorphic at each a;.
Indeed, by (5.1.1) and (5.1.2.) we have

pa®% (ipW (2)) = (p2®F (ip Z(£)))Y ~1(&) =

o}

= Si(x — a)™ (Fo — ai)® S7 X (0™ (Vil@) (@ ~ @) (& — a;) BV

ST (07T = SVile) T & = oo, & € U]

and this matrix is holomorphically invertible at a;. (A point £ has not to lie in (:fi*,
therefore the factor y(o~!) appears here, cf. Section 2.2. Computing Y !, we take
into account that the monodromy for Y; is S7'S)).

So W (z) is holomorphic throughout all C and we get that the bundle R is holo-
morphically trivial.

As we marked above (cf. Section 1.2) instead of a holomorphic section of P (and
instead of Grauert’s theorem on Stein manifolds) one can deal with a holomorphic
connection V in E and P. As it is well known, for F and P such a connection
always exists (cf. e.g. [At]) and has the given monodromy.

The extension R° of P with A = (0,...,0), described in Section 3.2 is called the
canonical extension (this extension does not depend on the choice of S;). At first
this extension was considered by Nastold in [Na]. In the case of n variables it was
described in [Del]. This extension provides at most logarithmic singularities for
the connection V at the points a;. Above, using Levelt’s theorem, we described all
extensions possessing such a property.

As we were informed by P.Deligne, all such extensions (in the case of several
complex variables) in terms of a so-called splittable filtration were described in
[EsVi].

Let us consider the vector bundle G*, associated with R*. By Birkhoff-Grothendieck’s
decomposition (3.2.3) we have

Gr=0()d--80(c), 2, >c). (5.1.6)

<3

We shall say that the number

1) =Y - ).

is the weight of the bundle G*.

The following statement is an easy corollary of the previous theorem.
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Proposition 5.1.1 A representation x can be realized as the monodromy represen-
tation of some Fuchsian system if and only if there exists an admissible collection
A = (A, ..., A") such that the weight () of the corresponding vector bundle G*
is equal to zero.

Proof. If there exists a Fuchsian system with the given monodromy x and singular

points ay, ..., a,, then by Theorem 5.1.1 the corresponding vector bundle G* is
holomorphically trivial. Therefore ¢} = --- = c) = 0 in its decomposition (5.1.6).
Thus, v(A) = 0 for this bundle.

If for some admissible collection A = (A!,..., A™) the number () equals zero
for a vector bundle G*, then ¢} = --- = ¢, = c in (5.1.4) for its decomposition

into line bundles. Consider the bundle Ri, where

A= 00), M=\ 4¢..., 0 +c).
Let us prove that this bundle is holomorphically trivial.

Let W (x) be a meromorphic section of R*, holomorphic off a,, such that
P2 (ipW (@) = V(@) (2 ~ @)™

with a holomorphically invertible V'(z) in a neighborhood U, of the point a;. Such
a section always exists. Indeed, under conditions of the proposition there exist
V(x) and V (z), such that V (z) is holomorphically invertible in C \ {a,}, V(z) is
holomorphically invertible in U; and

V(z)(z = a)*V7H(z) = goor(2).

(This statement is equivalent to the Birkhoff-Grothendieck theorenl). Now one can
take the section W (z) , whose coordinate description is as follows: V' (z) in C\ {a; }
and V(z)(z — a;)~°! in coordinates <I>{2A in U;.

Consider again the bundle R*. From (5.1.3) and the fact that a scalar matrix com-
mutes with other matrices we obtain

p2®F (ipW) = (z — 1) p,®F (ipW)

(here left ip is P — P, right ip is P — P*). Therefore p,®% (ipW (z)) = V(x)
and we get that the same section W (x), regarded as the section of the bundle R is
already holomorphic over whole C. Thus, R* (and G*) is holomorphically trivial .
Hence, the statement follows from Theorem 5.1.1.

Consider all extensions G* for all admissible A and consider weights y(A).
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We say that the number 7,,,(x) = sup, () is the maximal Fuchsian weight of the
representation .

Splitting type (cy, . . ., ¢,) of the bundle G* and its weight can be expressed in terms
of Levelt’s factorization of the corresponding regular system (1.2.1). Consider a
section W (z) of R such that the following conditions hold:

i) W(z) is holomorphic off a,;

i) p @7 (W (2)) = V(2)(@ = 1),

where C' = diag(cy,...,c,). (The existence of such a section was proved in the
second part of Proposition 5.1.1). Then the fundamental matrix Y (Z) of the corre-
sponding system (1.2.1) has the form

Y(2) = (z - @)V Hz)Si(z — a1)M (&0 — @) ST x (07 (5.1.7)

forz € p~}(U}), & =0y, 0 €A.

This system is Fuchsian at a,,...,a, with the matrices of valuations &, =
A, ..., ®, = A,. And its nonfuchsian part (x — a, )¢ defines the splitting type of
G*.

From this point of view the first part of the proof of Theorem 4.2.1 (until Proposition
4.2.1) is closed to the following statement.

Theorem 5.1.2 [f the maximal Fuchsian weight of the representation x is bounded,
then x can be realized as the monodromy representation of some Fuchsian system.

Proof. We may assume that a; = 0 and E, is upper-triangular. Consider R* with
A= (A0,...,0), At = (by,...,b,), Si = I and apply Birkhoff-Grothendieck’s
theorem to the transition function ¢,; (we use coordinates @f‘* over neighborhood
U, of a; = 0 and some coordinates which we do not specify in U,, = C). We
get goo1r = Voz®V). Denote by W the section C \ {0} — R* having coordinates
Vs over Uy its coordinates over U, are Vl“lx‘c. Write our standard "branching
cross-section" Z as Z = WY. An easy computation reveals that Y = z¢V 855
in U{. Applying Lemma 4.1.3 to V; we get a I such that Tz¢V; = VzP, T is
holomorphically invertible outside of a;, V' is holomorphically invertible in U; and
D is adiagonal matrix whose coefficients are c; up to order. Thus 'Y = VB+PzE
is the solution to a system which is Fuchsian at a, if the diagonal coefficients of
B+ D are in a nonincreasing order. Finiteness of v,,()) guarantees that this will be
the case for appropriate B. Also Z = (W' ~!)(T'Y) and WTI' ! is the cross-section
which is holomorphically invertible outside of a;, so the corresponding system will
be Fuchsian at a,, . .., a,. Clearly 'Y has the same monodromy as Y, i.e. as Z.
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Mark here that inequality (4.2.5) in the proof of Theorem 4.2.1 is exactly the
corollary of the condition of finiteness for the maximal Fuchsian weight of x. And
Proposition 4.2.1 is equivalent to the following one.

Proposition 5.1.2 The maximal Fuchsian weight y,,(x) of an irreducible represen-
tation is bounded as follows:

(n—2)p(p —1)
Ym(X) < n—:,p—.

So, the positive answer to Hilbert’s 21st problem for an irreducible representation
is just the corollary of two latter geometric statements.

5.2 Reducibility and regular systems

In what follows we shall need some properties of system (1.2.1) connected with the
reducibility of its monodromy representation .

Lemma 5.2.1 If the matrix A of system (1.2.1) satisfies the condition
a; =0, 1=1+1,...,p; 7=1,...,1; [ <p, (5.2.1)

then the monodromy representation x for the system (1.2.1) is reducible.

Proof. Let us consider the system

df ,

zi; - A fv

where A’ = (ai;) for 1 < 4,5 < I If f is a solution of the latter system, then the
column vectory = (f,0,...,0) is a solution of the original system (1.2.1). Lemma

5.2.1 follows now from Lemma 4.2.1.

Lemma 5.2.2 Let the monodromy representation x for the system (1.2.1) with re-
gular singular points ay,...,a, be reducible and let X, be a common invariant
subspace for the monodromy operators in the space of solutions of the system. Then
the sum 3, of the exponents of X, over all the points a,,...,a, is an integer and
satisfies the inequality

=32 B <0. (5.2.2)
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Proof. Let us choose a basis ¥y, ...,y in X, and let us consider the fundamental
matrix Y (£) constructed by extending this basis. We denote by Y (£) a matrix
consisting of the elements of a base minor of the (p x 1)- matrix (y, (Z), ...,y (%)) at
& € Sie. nondegenerate [-th order minor of the latter matrix). Then det Y (&) #
0. Note here that the monodromy for Y’ can be described via multiplication on the
right by the left upper (I x I)-block x; of x. The space X generated by the columns
of Y'(%) is the space of solutions to a system of form (1.2.1) with the coefficient

matrix A" = %(Y')‘l. The set of singular points of the system consists of
a,...,a, and of additional apparent singularities a’nH, ...,a.. The latter set of
singularities contains points such that det Y (£) = 0 for & € p~'(a;). We remark
that if det Y (%) = 0 for some & € p~'(a}), then by (1.2.7) det Y' (&) = 0 for
all T € p‘l(a;). These singularities are called apparent, because they are not

ramification points for solutions of the system.

It follows from this remark that the number of additional singular points is finite,
because otherwise the set {p~'(a,,,;)} has a point of accumulation Z, € S, or the
set {a,.;} has one of the points a; (j = 1,...,n) as a point of accumulation. In the
first case the uniqueness theorem for analytic functions applied to det Y’ (%) yields
det Y'(&) = 0, which contradicts the condition det Y’(&,) # 0. In the second case
det Y'(&£) has a monodromy described by the multiplier det y, (o) and grows at
most polynomially when z tends to a;. Thus

z — det Y'(Z)(det x'(0)) ™"

is a single valued analytic function, which has at most a pole at a; and is not
identically zero. Its zeroes also cannot accumulate to a;.

The exponents [}fm of the space X' at the points a'n+i coincide with the valua-
tions @7, ,, which in turn are non-negative, since Y (%) is analytic at the points
{p—l(a’n+i)}:
Brvi = &0 20, (5:2.3)
The valuations ¢ for X' are connected with the valuations ? for X, at the points
ai, - .., a, by the inequalities
?l = oY) 2 ily;) = @l (5.2.4)

which follow from Definition 2.2.4 of the valuations and the fact that the column
vector y;(&) of the matrix Y’ (Z) can be obtained from the vector-valued function
y;(Z) by crossing out some of its components.

From Theorem 2.2.2 and inequalities (5.2.3) and (5.2.4) we obtain
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l n l T

ST HYYE Y Y =s<0

=1 j=1 =1 j=1 1=n+1 j=1

where 3, is the sum of exponents of X .

Theorem 5.2.1 Suppose that a representation x is reducible. Let x, be a subrepre-
sentation of dimension | of the representation . There exists a system (1.2.1) with
the given monodromy x and regular singular points a,, ..., a, which is Fuchsian
at all points, with the exception of possibly one, such that its fundamental matrix
Y (&) has the form

Y (&) = ( 1(;1 77 ) (5.2.5)

where the matrix function T"(Z) has the size (1,1) and is invariant under the action
of the monodromy x, (cf. [Bo5]).

Proof. We consider system (1.2.1) with the given monodromy x, which is Fuchsian
at the points a,, . . . , a,, and with a regular singular point a;. (The existence of such
a system was proved in Section 3.2).

Let Y (Z) be a fundamental matrix of the space X of solutions of this system such
that its first [ columns form a Levelt’s basis of the /-dimensional subspace X; C X
which is invariant under the action of the monodromy ;. Then

Y(z) = (Ti(2)]%). (5.2.6)

Due to the beginning of the proof of Theorem 4.2.1 (up the end of Formula (4.2.2))
we may assume that T;(Z) has the form:

Ti(E) = (x — a))° Vi) (z — a)M(E — a)) B, € U7, (5.2.7)

where A! is the matrix of valuations of the subspace X;; Ei = ;=1Inx;(o1) .
rankV'!(a,) = L.

Let Y; be the matrix formed by ! rows of the matrix 7;(Z), with determinant not
identically equal to zero. The space X , generated by the columns of the matrix
Y; is the space of solutions of a system of form (1.2.1) with the coefficient matrix

A, = 284Y™! . This system has monodromy x; and singular points a;, ... ,a, ,as
well as, possibly, apparent singular points a,,...,a,. These are the points where

det Y;(Z) = 0 (see the previous lemma). Hence the sum s of exponents of the
space X at these points is nonnegative

1

s 20. (5.2.8)
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For the sum s~ of exponents of the space X " at the points a,, ..., a,, we have

"

s > s, (5.2.9)

where s, is the sum of exponents of the space X, (cf. (5.2.4)).

By the theorem on the sum of residues applied to the form tr4,dz, we get in the
same manner as in Theorem 2.2.2

sc+s +s =0, (5.2.10)

where s, is the sum of diagonal elements of the matrix C, which occur in the rows
with the same numbers as the rows of Y}. From this, taking into consideration (5.2.8)
and (5.2.9), we have

s < =8 (5.2.11)

With no loss of generality, one can assume that Y] is formed by the first rows of the
matrix T;(Z). (If this is not the case, we rearrange the rows of the matrix T}, which
corresponds to passing from the matrix T} to ST}, where det S # 0.) Denote by V}!
the matrix formed by the rows of V! with the numbers 1,...,[. The matrix

(x - ax)CVl(j)

from (5.2.7) has the form required in Lemma 4.1.1 (with Y (z) replaced by V}').
By Corollary 4.1.1 there is a matrix ['(x) such that either for all rows of the matrix
w’ (z) from (4.1.3) condition (a) holds , or for some row wlm condition (b) is valid.
In the latter case, interchanging the rows with numbers j, and [ + m of the matrix

—a)C Vi(z)
(.’L‘ 1) ( Wl(.’L‘) )7

[ Vi)
(z - ) < Wf(z) )
with det V}(a;) # 0.

Under such a transformation the matrix 7)(z) transforms to the following one:

we obtain the matrix

THE) = T(2)Ti(&) = (z — a) Vi(z)(z — a))M (3 — a))BL, 2 € U7, (5.2.12)

By condition (b) of Corollary 4.1.1 we have s., > s., where s., is the sum of the
first [ diagonal elements of C;. Moreover, since det I'(z) # 0 for z # a,, we get
sz > s, for the space generated by the columns of T} . From (5.2.10) and the latter
inequalities we obtain
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$c < 8o, < =8, < —s). (5.2.13)

If for some row of the matrix W' (z) condition (b) holds, then we apply the
procedure of Lemma 4.1.1 and Corollary 4.1.1, etc. It follows from (5.2.13) that,
after a finite number of steps, we will get the matrix

Lo(z)(z - al)cvt(x)’
which satisfies condition (a) of Corollary 4.1.1.

Passing from Y (Z) of (5.2.6) to Y (&) = [y(z)Y (&), we get the matrix of form
(5.2.5). Since det ['y(z) # 0 for = # ay, it follows that Y (&) is still the fundamental
matrix of a system which is Fuchsian at the points a,, ..., a,. The point a, is its
regular singular point, and there are no other singular points for the system.

Corollary 5.2.1 Let all monodromy matrices G; = x(o,), i = 1,...,n can be
simultaneously reduced to the form
Gil
0 |G} *
G, = ' ,t=1,...,n, (5.2.14)
0 |Gy
where the collection G, ... , G is irreducible for all j = 1,...,k. Then there

exists a regular system (1.2.1) (with the given x) with a fundamental matrix Y (%)
such that the system is Fuchsian off the point a, and Y (Z) has the form (5.2.14)
(with replacing G? by Y?(Z)).

Proof. Denote by x; the subrepresentation of x, defined by the collection

Gl
0 IG_? *

xi(o) =

0 |G}

By Theorem 5.2.1 there exists a system with the given monodromy, whose funda-
mental matrix Y (Z) has the form

. Yi(E) =«
Y(‘”)=< 0 17(5:))’
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where Y'! (&) is a fundamental matrix of a system with the monodromy x;. Then the
matrix Y (Z) is the fundamental matrix of a system (1.2.1) with the representation
x/X1. Apply to Y (&) Theorem 5.2.1 and so on. By k steps we shall get the matrix
Y’ () that we need.

Remark 5.2.1 The analogous statement for a Fuchsian system is false (see Examp-
les 5.5.1 and 5.5.2).

The following statement is the corollary of Lemma 4.1.1.
Theorem 5.2.2 Let a Fuchsian system (1.2.1) have a reducible monodromy x and

let X, be an invariant under all monodromy operators subspace of the space X
of solutions to system (1.2.1). Let the sum s, of exponents of the space X, over all

singular points a,, . . . , a,, be equal to zero. Then there exists a constant nonsingular
matrix S such that the matrix A of the Fuchsian system
& 4w (5.2.15)
— =A(z)z 5.2
dx ’

obtained from (1.2.1) by changing z = Sy of depending variable y has the form
(5.2.1).

Proof. Consider a fundamental matrix Y (&) of (1.2.1) such that its first [ columns
form the basis in X. Then by (5.2.6)

Y(z) = (Ti(z)]+).

For the corresponding matrix Y; from the proof of Theorem 5.2.1 and for the space
X', from (5.2.8)—(5.2.10) and from the condition s; = 0 we obtain

'

! !
ss=s =s =0.

(Since (1.2.1) is Fuchsian, we have C' = 0 in (5.2.7)). The matrix V!(z)has the

form
()

in our case and det V}'(a,) # 0, since the corresponding system with the funda-
mental matrix

Y = V(@) (e~ a)"i(E ~a)B, €T
is Fuchsian (it follows from the condition s* = 0 and Theorem 2.2.2.). From latter

inequality in Lemma 4.1.1 it follows that there exists a constant matrix I'(z) = S
(see (4.1.5)), such that
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W(al) _ Vzl((h)
s( ey )= ("), (.2.16)
but this means that
1
SV’(m) =(r - al)c ( I/‘g’((i)) ) , (5.2.17)

where C' = diag(0,...,0,c141,...,¢p) Withe; >0, j=1+1,...,p.

Let for some m the row w, (z) of the matrix W'(z) satisfy condition (b) of
Corollary 4.1.1, then interchanging the rows with the numbers j; and [ + m of the
matrix SV*(z), we obtain the matrix

Vi@
(‘r—al)c ( VVIH(.T) )

with det V}!(a;) # 0 (see the corresponding part of the proof of Theorem 5.2.1). As
in Theorem 5.2.1 (below formula (5.2.11)) we get s, > s, = 0,buts,, < —s; =0,
which contradicts the previous inequality. This means that for all m the matrix
W'(z) satisfies condition (a) of Corollary 4.1.1. Hence w' (z) = 0in (5.2.17),
therefore the fundamental matrix SY () = Z(z) of system (5.2.15) has the form

Z(i):l<5*ll:>

and thus, A’ (z) has the required form (5.2.1).

Proposition 5.2.1 Let a Fuchsian system (1.2.1) have a reducible monodromy
and let each monodromy matrix G; can be reduced to the Jordan normal form,
consisting of only one block. Then for valuations ¢} and exponents ﬁf of the system
the following inequalities hold:

Pl ?, = =p i=1,...,n (5.2.18)

Proof. Consider a common invariant for all monodromy operators subspace X, of
X.

Let y1(Zo), - - -, Yp(Zo) be a Jordan basis for X|., that is in g, ..., y, the matrix
x (o) has a Jordan normal form
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pi 1
0
Gi = 0
1
pi

consisting of only one block. Then the unique filtration of the length p of the space
X|g-, which is invariant under ¢ is the following one:

0cX,C--CX,=X,

where X is generated by vy, ..., yx. Each other filtration can be obtained from
this one by uniting of some X’l, . ,X’k. Thus we get, that X, = X’, for Levelt’s
filtration (2.2.9) and therefore y;(Zo), . .., y,(Zo) is a Levelt’s basis in (:/i* for the
system. Hence the following inequalities hold:

Q> >l

!
¢}+...+¢gz;(¢}+---+wf), (5.2.19)

(Bl 4+ 4B = (B! + -+ ) 2,

l

p
where ©¥ = ¢;(yx). (Under the conditions of the proposition, the left hand side of
the latter inequality is real).

Note that 37, ..., 8! are the exponents of the space X, at a;. Summarizing the left
hand side of the latter inequality over all i = 1,...,n, we get
[
s ——s52>0, (5.2.20)
p

where s; is the sum of exponents of the space X, and s is the sum of exponents of
system (1.2.1). By Theorem 2.2.2 s = 0 and by Lemma 5.2.2 s, < 0, therefore by
(5.2.20) s, = 0.

From the last equality it follows that (5.2.18) holds. Indeed, if just one of inequalities
in (5.2.19) were strict, then by (5.2.20) we would have s, — és > 0, s; > 0, which
contradicts the equality s; = 0.

As an immediate corollary of Theorem 5.2.2 and the latter proposition we get the
following statement.

Corollary 5.2.2 Let the monodromy x of Fuchsian system (1.2.1) be reducible and
let each monodromy matrix x(o;) can be transformed to a Jordan normal form,
consisting of only one block. Then there exists a constant nonsingular matrix S such
that system (5.2.15), obtained from (1.2.1) by changing z = Sy has form (5.2.1).
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5.3 New series of counterexamples

The following statement gives a necessary and sufficient conditions for a represen-
tation of some special class to be the representation of some Fuchsian system.

Theorem 5.3.1 Let x be a reducible representation with subrepresentation x,, and
let each monodromy matrix x(o;),i = 1,...,n, can be reduced to a Jordan normal
form, consisting of only one block. Then Hilbert’s 21st problem for the given x has
a positive solution if and only if the following condition holds:

i)y, =0,

or equivalently

i) 7y, (0) = 7, (0), with x2 = x/x1.

where v, (0) denotes the weight of the canonical extension G° for the bundle E |
constructed by x (see Section 5.1)(cf. [Bo3]).

Proof. Let the problem for a given x have a positive solution. Then by Corollary
5.2.2 there exists Fuchsian system (1.2.1) with the monodromy x and with the
matrix A of the form

_ [ A
A_< . Az)’ (5.3.1)

where A,, A, are the matrices of systems with the corresponding monodromies
X1, Xz respectively. By Proposition 5.2.1 we have that all the valuations ;5] for all
J are equal one together for the both constructed systems. Denote @7 by ¢;.

Let Y be an arbitrary element of the set {x, Y1, Y2 }. Denote by Y (&) a fundamental
matrix for the corresponding system of form (1.2.1). By the transformation Y () =
[(z)Y (), where

n

I(z) = ﬁ($ —a,)"" (z al)z"ﬂ@‘l (532)

our system is transformed to the Fuchsian system with the same singular points and
with the valuations

@l =0, ¢} = ¢y, foralli=2,...,nand forall j. (5.3.3)

Indeed, the transformation I'(z) has singularities only at a,, .. ., a,, since it is equal
to I + o(1) at co. For a Levelt’s fundamental matrix Y;(Z) from (2.2.45) we have

®, = 1, so for the corresponding matrix Y;(Z) = ['(z)Y;(Z) we get
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Y,(#) = T(@)Y(&) = T1(2)V (2)(&0 — a:) B x(07"), (5.3.4)

where T = oy, Ty € 0[“, o € Aand

n

Ii(z)=(x- al)ELe @il H (z — a],)—v’:,f

J=2,5#1

is holomorphically invertible at a;. Therefore the new system is Fuchsian at
as,...,0a, and has zero-valuations there. In the similar way one can obtain the
second equality in (5.3.3).

As well as in Theorem 5.1.1 we get that the section W (&), defined by (5.1.2), is the
holomorphic section of the bundle R* with A = (A!,... A"),

A= (p1,...,1), A2 =--- = A" = 0. In the similar way as in Proposition 5.1.1
and in (5.1.7) we conclude that the bundle G° has the splitting type c¢; = ¢, for all
7, therefore v(0) = 0.

Let for a given x condition i) holds. Then by Proposition 5.1.1 the representation x
can be realized as the monodromy representation of some Fuchsian system.

Let for the given x; and y. condition ii) holds. Then the splitting type of the
corresponding bundle G?“ is as follows : ¢; = - -+ = ¢, = ¢ (for dim x; = !) and
the splitting type of G}, is equal to the nextone: ¢; = -+ =¢,_; =c.

Indeed, for the first Chern numbers of these bundles we have

n J
ZtrE{ = ZC" =jc, j=ULp-1,
1=1

=1

where E} = - 1n x(0y), EF! = 5 In x2(0;) are the Jordan blocks with the
eigenvalues p;, 0 < Rep; < 1. Thus we get

n n

je=3Q_p) = p (5.3.5)

=1 =1

therefore c is the same for G, and GY,. Consider the bundles R}, R}, R}, where
A= (A0...,0), A' = (c,...,c). By Proposition 5.1.1 under condition ii) we
have that R;l, Rfm are holomorphically trivial. Consider holomorphic sections of
these bundles and the corresponding fundamental matrices Y;(Z) and Y>(Z) from
(5.1.2) (for the bundles R;(\l , R}, respectively). Let W (Z) be a meromorphic section
of R; such that W(z) is holomorphic off a, . And let Y'(Z) be the corresponding
fundamental matrix from (5.1.2). Then system (1.2.1) with the fundamental matrix
Y (%) is Fuchsian at a,, .. .,a,. By Theorem 5.2.1 we may assume that the matrix

Y (Z) has already form (5.2.5):
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v@=(7 ).

where T, T? have the monodromy x; and x, respectively.

Denote by I';(z) the following matrices:
Ti(z) = Yi(E)(T'()) ™", i=1,2. (5.3.6)

The matrix [';(z) is single-valued, since Y; (Z) and T"(Z) have the same monodromy
and T[;(z) is holomorphically invertible outside of a,. Indeed, by the construction
Y;(Z) and T%(%) have the form (5.1.7) (with replacing V by V; and V*) with
C =0, A, = 0 and with the same S;, x(c~!). Therefore I';(z) = (V;"")V'is
holomorphically invertible at a;, 7 # 1.

By the matrix
(T 0
=" r,)

transform our system to the system with the following fundamental matrix: Y'(Z) =
['(z)Y (z). This system is still Fuchsian at a,, ..., a, and its fundamental matrix
has the next form:

=y _ [ Yi(Z) * _
r@ =1y ) -
( e >(’3 @)@ -a)® (53.7)

in U{, where by construction V; and V; are holomorphically invertible, W (z) is
just meromorphic at a;.

Let W(z) = (z —a,)*W'(z), where k < 0 and W’(z) is holomorphic at a,. Then
using Lemma 4.1.1, we get that there exists a matrix I''(z) of form (4.1.5), such

that
v@(w )= (w )

with holomorphic W". Consider the matrix S such that

‘/2 B w" . R
S(W”)_< v, )andF—SFS . Then

()= (5 Y mr (5)-(%)



5.3 New series of counterexamples 105

By [ transform our system with the fundamental matrix Y”'(Z) to the system with the
fundamental matrix Y () = I'Y’(&). This system is still Fuchsian at a,,...,a,
and it has a factorization of form (5.3.7) with replacing

(7w ) e (o W)

And the latter matrix is already holomorphically invertible at a;. Thus, our system
is Fuchsian at a, too.

How to calculate the number +, (0) by the given representation x? In some cases
(for example for p = 2) it is possible to do, if the corresponding regular system with
the same monodromy is done (see the counterexample of Section 2 and Section 6).
In general, it is a difficult problem. But to obtain counterexamples one does not
need the exact value of 7, (0). It is sufficient to know that -y, (0) > 0. The following
statement provides a simple necessary condition for -, (0) to be equal zero.

Corollary 5.3.1 Let a representation x satisfy all conditions of Theorem 5.3.1 (in-
cluding either i) or ii)). Then for eigenvalues p; of the matrices E; = 5 1n(x(0;))
the number

p= Z pi (5.3.8)
=1
is integer.

Proof. The proof immediately follows from (5.3.5), since c is integer.

Example 5.3.1 Consider the matrices

1 100 3 1 1 -1
0110 -4 -1 1 2
G1*0011’G2‘0031’
00 0 1 0 0 -4 -1
-1 0 2 -1
Gy = 4 -1 0 1

0 0 -1
0 0 -4 -1

and any set a.,, ay, a3. The representation x with the singular points a., as, a3 and
with the monodromy matrices x(o;) = G;, 1 = 1,2, 3 can not be realized as the
monodromy representation of any Fuchsian system.
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Proof. Note that G, - G, - G3- = I, the matrix G, can be transformed to G'; and the
matrix G can be transformed to a Jordan block with the eigenvalue —1. Indeed,
for the matrix G2 we have

1100 30 -1 1

1 o110 _1] -6 3 -11

Sy G2y = 0 011 ’52‘3 00 30

0 0 0 1 00 -6 3

and for the matrix G3 we get

-1 1 0 0 0 8 0 1
. _ -1 1 0 _11 32 -8 0 0
S5 G35 = 0 0 -1 1 ’53‘2 0 0 0 -2
0 0 -1 0 0 -8 -4

The representation has a two-dimensional subrepresentation x; with monodromy
matrices G}, which are obtained by the intersections of the first two columns and
rows of G;. Thus, the conditions of Theorem 5.3.1 are fulfilled.

By the definition of E; one has p; = p; = 0, p3 = 5 In(—1) = 1, therefore the

number p = py + p2 + p3 = % is noninteger. By Corollary 5.3.1 we obtain that
can not be realized as the monodromy representation of any Fuchsian system.

Consider now the next example of a negative solution of Hilbert’s 21st problem.
From this example it follows that a triangulability of a representation does not
ensure a positive answer to the problem.

Example 5.3.2 Consider any set of points a,as,a3,a4 and the representation,
presented by the matrices G; = x(0;), which equal to the following ones (in order
of their appearance):

1 0 1 00 10 1 0 1 1 -1 1 0
0 -1 -1 00 10 0 -1 1 1 -1 -1 0
0 0 1 1 2 2 1 o 0 -1 -1 1 0 O
0 0 011 1O0¢{,{0 0 O 1 1 o 11,
0 0 0 0 1 11 o o 0 0 -1 1 -1
0 0 000 -1 0 0o 0 0 0 0 -1 0
0 0 000 01 6 0 0 0 0 ©O 1
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1 0 1 0 -1 1 1 1 0 1 -11 00
0 -1 -1 1 0 1 0 0 -1 1 -21 00
0 0 1 1 -1 2 1 0 0 -1 10 00
0 o 0 -1 1 -2 -11},f0 0 0 -11 10
0 0 0 0 -1 1 1 0o 0 0 01 -11
0 0 0 0 0 -1 0 0 0 0 00 -1 0
0 0o 0 0 o0 O 1 0 0 0 00 01

This representation can not be realized as the monodromy representation of any
Fuchsian system.

Proof. Suppose the contrary. Let Y (Z) be a fundamental matrix of a space X of
solutions to Fuchsian system (1.2.1) with the given monodromy. Then the subspaces
X, 1 £ 1 < p, generated by the first [ columns y,, ...,y of the matrix Y () are
invariant under the monodromy action. Each matrix G; can be transformed to a
Jordan normal form, consisting of two Jordan blocks with eigenvalues 1 and —1,
respectively. Denote vectors of Jordan bases for blocks with eigenvalue 1 by e; and
for blocks with eigenvalue —1 by f;. Using only upper-triangular transformations,
one can transform each matrix G; to the form, obtained by the shuffle of these two
Jordan blocks. One can obtain this form by replacing by zero all numbers being
above the diagonal except for the underlined numbers. The correspoding bases for
G; are as follows:

1 1 1 1 1 1 1
61,f1,€2,€3,€4,f2,€5, fO['Gl,
2 2 2 .2 2 2 .2
e fiif2en f5 £, €3, for Gy,
3 3 3 3 3 3 3
elaf1762af27f3af4a63a fOI'G;},

e?aff?f;afgvegvffvegv fOl' G4-

Note that any vector et,i = 1,2,3,4, generates the subspace X;, vectors el, f}
generate the subspace X, and so on. Denote by aj the valuation @i(e;) of the vector
e; and by b} the valuation ¢;(f}). As it follows from the proof of Proposition 5.2.1
the following inequalities:

a; > - >ag, by > by, (5.3.9)

a/iZ...Zag, b122b3’1:172,3

hold. It follows from Lemma 5.2.2 that s; < 0, where s; denotes the sum of
exponents of X;. Using Theorem 2.2.2, (5.3.9) and (5.2.2), one can obtain

0=s7=s6+a3+aj+a)+a3 <sg+s <0,
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therefore ss = 0 and s; = aj + a3 + a3 + a3} = 0. It follows from this equality and
(5.3.9) that

al =---=a} =a* forsomea’,i =1,2,3,4.

One can analogously prove that
b= =by=0b,i=1234ands, =» b +2=0.
i=1

The condition of Theorem 2.2.2 has in this case the form

0 =s; =5a" +3a® + 3a® + 3a* + 20" + 1 + 4b% +
24+ 4 =24+ 4b* +2 = 2a' — 2b! — 1, (5.3.10)

since s; = s, = 0. But it follows from (5.3.10) that 2a' — 2b' = 1 for integers
a! and b, which is impossible. This contradiction means that the given x can not
be realized as the monodromy representation of any Fuchsian system.

5.4 The cases of positive solvability

We present here some sufficient conditions for a reducible representation x to be
the monodromy representation of some Fuchsian system. 70. p.114; 6 row below:
replace " for valuations..." by 71. p.114; delete 5 and 4-th rows below.

The first of all we need the following statement.

Lemma 5.4.1 Suppose that the matrix G; = x(o;) of an irreducible representation
X has the following form:

G, 0
G; = < 0 G ) , (5.4.1)

where G has the size (t,t), 0 < t < p. For any integers d, and d,, there exists a
Fuchsian system (1.2.1) with the monodromy X such that its valuations cpf satisfy
the following conditions:

i)<p§=d1, j#i, k=1,...,p;
)b <dy, k=1,...,t;
i) p* >dy, m=t+1,...,p.
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Proof. Without loss of generality we may assume that 7 = 1. Let us modify the
proof of Theorem 4.2.1 as follows. Consider a regular system (1.2.1) with the
given monodromy Y, which is Fuchsian off the singular point a; and has valuations
<p§, satisfying condition i) of the lemma for j # 1. (To obtain such a system it
is sufficient to consider a meromorphic, holomorphic off a; section W (x) of the
bundle R*, where A = (\',...,A"), M = (dy,...,d,), j = 2,...,n;such a
system always exists, see Sections 5.2 and 3.2). Moreover, let the matrix x (o)
have the form (5.4.1) in the basis of the columns of Y (Z). (Otherwise transform
the matrix Y (Z) to Y(Z)S, where S~'x(o)S has the form (5.4.1)). Then from the
assumption of the lemma it follows that the upper-triangular matrix E) in (4.2.1)
has the block form

1
E, = diag(E}, E}), where E] = 3 InGY.
;

We replace the matrix B in (4.2.1) by B' = diag(b, . . ., b,), where all the numbers

by, - .-, b, satisfy the following conditions:
-1)(n-2
b, < dy — (p—1)(n )’
2
- 1)*(n -2
b, > dy + np + QL%@—), (5.4.2)

p
Zb; = —pdl(n - 1)1
i=1 .

2 ;
P (p“IQ)(”°2), =1, t—1,t+1,.
Let us consider the system with the fundamental matrix Z(Z), constructed in Theo-
rem 4.2.1. Since ® = D + B’ has the block form ® = diag(®’, ®"), where t
diagonal elements of the matrix &' and p — t elements of the matrix ®" are in
the nonincreasing order (according to the latter inequality of (5.4.2) and Theorem
4.2.1), the form of E, implies that the matrix function

..,p—1.

bj - bj+1 >

(l‘ - al)QEl(l' — al)_q)
is holomorphic at a;. Thus, from Corollary 2.2.1 we get that this system is Fuchsian
at the point a;.
From the third condition of (5.4.2), together with the condition

n p
S 3s=0

i=1 j=1
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for the constructed system (cf. Theorem 2.2.2) and the fact that 0 < Repf <1 we

get
—np < trC <0, (5.4.3)

where C' is from (4.2.2). Indeed,

=Pd1(n—1)+zn:2p:p{+tr(D+B’)+ pl =

i=2 j=1 Jj=1

3

p .
= ZZp{ +trC + pdy(n — 1) + trB’,

=1 j=1

since trC' = trD by (4.2.3). The inequalities (5.4.3) follow now from the inequality
n 14 )
0<> > pl <pn,
i=1 j=1
(which in turn follows from 0 < Rep{ < 1) and from the third equality in (5.4.2):

p
trB’' = Zb; = —pd,(n - 1).
Jj=1

From (4.2.6) and (5.4.3) we get

(n=2)p(p—1)
2

’

ap—trC <

)

(n—2)p(p—1) +aC < (n—=2)p(p—1)
— T

ap < 5
o < -(3—_-—2)2(”—_1). (5.4.4)

From (5.4.4) and the condition of nonincreasing for ¢,, . .., c, it follows that

-2)(p—-1)?
Cl+"‘+cp—-1501(l)“1)§(_n_——)'ép_—')—-

Therefore from the left hand side inequality in (5.4.3) we get
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¢, > —np — %p;lf-. (5.4.5)

Since for all j < ¢ and for all [ by (5.4.4) , (5.4.5) and by the first condition in
(5.4.2) we have

b+ ¢ < b+ <dy,

we obtain that the first ¢ diagonal elements of ¢ do not exceed d,. In the similar
way for all > ¢ and for all [ by the second condition in (5.4.2) we get

b+ > b, + ¢, > da,
therefore the last p — ¢ diagonal elements of ® are less than d,. So we get conditions

ii) and iii) for the fundamental matrix Z(&).

Theorem 5.4.1 Let all matrices x(o;) of the monodromy representation x can be
simultaneously transformed to the following form:

G} *
- i :
G, ( G ) , (5.4.6)
where the size of each G} is (,1). Let the collection of the matrices G, ...,G},

define the representation x;, t = 1,2 and let the representation X, can be realized
as the monodromy representation of some Fuchsian system. If x, is irreducible and
for some i the matrix G; has the form (5.4.1) with t < |, then the monodromy x
also can be realized as the monodromy representation of some Fuchsian system.

Proof. Without loss of generality we can assume that ¢ = 1. The proof of the
theorem is similar to the proof of the sufficiency of condition ii) for Theorem 5.3.1.

Consider a fundamental matrix Y3(Z) of a Fuchsian system with the monodromy
X2, such that x,(o;) = G? in the basis of the columns of Y (). Let

_ max ¢l =d;, max ¢} =d, 5.4.7)
1=2,...,n;5=1,...,p—! 1=1,...,p=1

for the valuations of the system. Consider the corresponding fundamental matrix

Y1 (Z) of the Fuchsian system , constructed in the previous lemma, with the mon-

odromy x,; and with d; and d, from (5.4.7). Let x,(o;) = G} in the basis of the

columns of Y; ().

As in Theorem 5.3.1, let Y(Z) be a fundamental matrix of a regular system with
the monodromy x with Fuchsian singular points a,, ..., a,. In addition, let Y (Z)
have the form
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. T %
Y(z) = ( 0 T ) , (5.4.8)
where 7" and T have the monodromy matrices G}, G3, j =1,...,n, respec-
tively.

Consider the matrices I'; from the formula above (5.3.7) and the new fundamental
matrix Y'(z) = I['(z)Y(Z) with

(T, 0
P‘(O Fz>‘

For the corresponding Levelt’s matrix Y/ (%) = Y;(Z)S;, ¢ # 1 we have factoriza-

tion (2.2.45) with the holomorphic matrix V (z) and with ®; = diag(d,, ..., d;, ¢},...

From (5.4.7) it follows that the diagonal elements of ®; form a nonincreasing se-
quence. Therefore by Corollary 2.2.1 we get that system (1.2.1) with the fundamental
matrix Y'(Z) is Fuchsian at a; for ¢ > 1.

In Uy the matrix Y;(z) has the form

Yi(3) = ( V‘(()“) 3:((;’)) ) (x — ) (% — ay) . (5.4.9)

By the second condition in (5.4.7) and condition iii) of Lemma 5.4.1 we obtain that
for diagonal elements @] of @, the following inequalities hold:

1 t+1 >

o1 > > b ottt > >,

Since the matrix E, has the same block form as G, from (5.4.1), we get that the
matrix

Lz)=®; + (x — a))" Ey(z — a))™™

is holomorphic at a;. Indeed, L(z) also has a block form and a holomorphy of such
blocks follows from the formula below (2.2.27).

In the similar way as in Theorem 5.3.1, by f‘(z) transform our system to the system
with the fundamental matrix Y (z) = I'Y’(&), which has a holomorphic factor

( Vl w
0 W

in the corresponding factorization (2.2.45). By Corollary 2.2.1 the constructed
system is Fuchsian at a;.
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Remark 5.4.1 The statement of the theorem does not depend on a disposition of the
irreducible representation x, in (5.4.6). If we assume that the collection G3, ..., G*
defines the irreducible representation of the dimension | and the size of G'; from
(5.4.1) is greater than p — | — 1, then we shall obtain the same result for x as in the
theorem (under assumption that x; can be realized as the monodromy representation
of some Fuchsian system).

The proof is just the same as in the theorem with one difference. We must replace
(5.4.7) by
min lcp{ =d;, min lcp{ =d,. (5.4.10)
p—

1=2,...,n;7=1,..., 7=1,...,p—

Corollary 5.4.1 Let all matrices x(o;) of a monodromy representation x can be
simultaneously transformed to the form (5.4.6), where the size of each G; is (1,1).

Let for some 1
G! 0
6= (% e )

If the both representations Xy, X with matrices x;(0;) = G, © = 1,2 can be
realized as the monodromy representations of some Fuchsian systems, then the
same is also true for the representation .

Proof. The proof is a simplified version of the proof of Theorem 5.4.1. One should
make the following changes: drop all conditions related to d; set t = I = dim x;;
choose a Fuchsian system with the monodromy Yx; so that its valuations <p§ for
j # i satisfy the condition <p§ > dy;, k =1,...,L The last condition is easily
satisfied by means of the transformation

Y\(z) = (H(-’E - aﬂ") (z = a,)"" "V vy (2)

i

withd = d; +1 —minjz;e=1,., <p§. (Note that the matrix of this transformation is
holomorphic at co).

The following statement is the direct corollary of Theorem 5.4.1 and Corollary
5.4.1.

Theorem 5.4.2 Let all matrices x(o;) can be simultaneously transformed to form
(5.2.14), where each collection G2, . .., G2, forms the irreducible representation X;-
If for each j there exists i such that the matrix G; with help of an upper-triangular
matrix S? can be transformed to the form G', = 51 G;(S?)~*, where
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(Gi) *

K
I
|
|

g I
0 (GI) |
I (5.4.11)
| (G *

0 |
| 0 (G¥)

then the representation x can be realized as the monodromy representation of some
Fuchsian system.

Below, in Section 5.5 we present some other new sufficient conditions for the
positive solvability of Hilbert’s 21st problem .

5.5 On regular systems

The negative solution of Hilbert’s 21st problem means that, as distinct from a local
situation, the class of Fuchsian systems and the class of systems with regular singular
points are not meromorphically equivalent globally throughout the Riemann sphere.
In other words, there are systems (1.2.1) with regular singular points ay, . . ., a, that
cannot be reduced to a Fuchsian system by any change

z=C(z)y (5.5.1)

of the unknown vector function y by means of the matrix I'(z) meromorphic on C,
which is holomorphically invertible outside of the points a4, ..., an.

But each regular system occurs to be a subsystem (quotient system) of some regular
system, which is already meromorphically equivalent to a Fuchsian one.

This statement is equivalent to the following one.

Theorem 5.5.1 Any representation x is a subrepresentation (quotient representa-
tion) of some representation for which Hilbert’s 21 st problem has a positive solution.

To prove this theorem we need some new special condition for a positive solvability
of the problem.
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Proposition 5.5.1 Let the monodromy matrices x(o;) of the representation x can
be simultaneously transformed to the following form

G} *
e
G = — ,I=1,...,n. (5.5.2)
0 Gl
where for all j = 1,... m the collection of the matrices Gi,... , G2 is irreducible

and the size of G7 is (kj, k;). If all subrepresentations of x are indecomposable and
for some t the matrix G; has a block form

G 0
G; = ( 0 G ), (5.5.3)

where the size | of the matrix G does not exceed k,, then Hilbert's 21st problem for
the representation x has a positive solution.

Proof. Denote by x; the subrepresentation, formed by intersections of the first
ky + -+ + k; rows and columns of the matrices G;. Without loss of generality, we
can take it that the matrix G; has the required form (5.5.3) and that it is upper-
triangular.

Let us consider a system with regular singular points a4, . .., a,, which is Fuchsian
at the points a, ..., a,, and a fundamental matrix Y (Z) for the space of solutions
of this system of form (5.5.2) (with replacing G7 by the corresponding Y7), in
the basis of whose columns the matrix x(o;) has form (5.5.3). (The existence of a
system with such a matrix Y'(Z) is proved in Corollary 5.2.1). Suppose that

Y (%) = Vi(z)(% — a,)® (5.5.4)

in U{ , then the matrix V) (x), meromorphic at the point a; also has form (5.5.2)
with replacing G¥ by V}¥. Denote by r the order of the zero (the pole with the sign

minus ) of the function det V;(z) at the point a; and by r, the order of the zero (the

pole with the sign minus) of the function %%.

Letd,, d,, d3, by,..., b, be integers for which the following inequalities are satis-
fied:

dy > b >...> b,

by > ... > by, > dy,

by — b1 >ds, j#L
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r—=1Id; — (p— by >0,
(n=2)p—ki)(p—k —1)

1~ (p—ki)dy + < 0. (5.5.5)

2
We represent the matrix Y () from (5.5.4) in form (4.2.1)
Y(2) = V/(2)(z - a1)®(& ~ @)™, (5.5.6)

where B = diag(by,...,b,), b, from (5.5.5). Let us consider the corresponding
matrix I'; (z) and factorization (4.2.2) for the matrix V}(z):

[ (z)V{(z) = (z — a,)° V() (5.5.7)

with a holomorphically invertible at a; matrix V(z) and C' = diag(cy, ..., ¢;),
o> >,

Lemma 5.5.1 Inequality (4.2.6) is satisfied under the conditions of Proposition
5.5.1 for the elements of the matrix C from (5.5.7).

Proof. We shall prove the lemma by induction with respect to the number m of
blocks in (5.5.2). For m = 1 the lemma follows from Proposition 4.2.1. Suppose
that the statement has been proved for m = t. Let us prove it form = ¢ + 1.

It follows from (5.5.6) and (5.5.7) that }"%_, ¢; = r — ¥_7_, b;, and therefore, by
virtue of (5.5.5),

1 1 : 2
a2 —ZciZ - (T—Zbi— Z bi) 2
p =1 p =1 i=l+1
1
> ;(r —ldy = (p=1b4y) > 0. (5.5.8)
Let us consider the first row (y1,...,y,) of the matrix 'y (2)Y (&).

Lemma 5.5.2 The element y,(Z) of the first row of the matrix I'y(x)Y (Z) is not
identically zero.

Proof. We suppose that y; () = 0.Then y3(z) = ... = y, (€) = 0 as well by virtue
of the irreducibility of the subrepresentation x; (see Lemma4.2.1). Since the matrix
Y (Z) has form (5.5.2), the last identity means that the first k; elements in the first
row v of the matrix I'; (x) are zero. Since all the elements of I'; are holomorphic
outside of the point a, , it follows that y = (0,...,0,7v, ..., Yp—k, ), Where there
are two possibilities: a)y; = s #0, se&€ Cforacertainj, 1<j<p-£k;b)
all nonzero +; have poles at 0.
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Consider the case a). Let us consider a matrix
R MNeov S Yok
['(z) = r-t 0 0 ,
0 0 JIpFi—i

(where I' is the identity matrix of the size [) and a matrix Y’(Z) we obtain from
Y (Z) by deleting the first k; rows and columns. We denote by V', B’ and E|
the matrices obtained after we delete the first k, rows and columns of the matrices
V!, B and E, respectively. We find from (5.5.7) that

A ~

I'(2)V/(z) = V(z), (5.5.9)

where the first row 9(z) of the matrix V(z) has the form 9(z) =
(r —a;)v(z), wv(x)isarow vector holomorphic at the point a;.

In U; the matrix Y’(Z) has the factorization of form (5.5.6):
Y(&) = V/(z)(z — a1)® (& — a1) . (5.5.10)

We consider a respective matrix I''(z) and the factorization of form (5.5.7) with
matrices C' and V'(z):

I'(z) V/(z) = (z — a;)° V(). (5.5.11)

According to the induction assumption

p—k1
Sy —d) < (n_Q)(p_kg)(p—k‘ -1 (5.5.12)

i=1
On the other hand, by virtue of the second inequality in (5.5.5)

p—k1
Y= = (bpypr+ ..+ by) <711 — (p— ki), (5.5.13)

i=1

where 7, is the order of the zero of the function {24 = det V/ at the point a,.
1

Adding inequalities (5.5.12) and (5.5.13) together and taking the last inequality in
(5.5.5) into account, we have (p — k;)c; < 0, whence

¢, <0. (5.5.14)

Let us consider a matrix

Z(z) = (@)Y (&)(I"(2)Y'(2)) "
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On one hand, the matrix Z(z) is meromorphic and holomorphically invertible
outside off the point a;. On the other hand, for the first row z,(z) of this matrix in
the neighborhood of the point a; from (5.5.10), (5.5.9) and (5.5.11) we obtain

zi(z) = (z - al)cl_civ(x)(vl(x))—l,

where v(z) is a row holomorphic at the point a,. From the fact that v(x) is holo-
morphic and from inequalities (5.5.8) and (5.5.14) we get z;(a;) = 0. Since the
row z;(z) is holomorphic throughout the Riemann sphere outside of a,, it follows,
according to Liouville’s theorem, that z,(xz) = 0, and this contradicts the holo-
morphic invertibility of the matrix Z(z) outside of the point a,. Thus, y,(Z) is not
identically equal to zero.

Consider the case b). From Lemma 4.1.1 it follows that there exists a meromorphic
matrix W of the form
I' 0
(o w )

which is holomorphically invertible outside of 0 and such that the first row ' of
[, W has the form, required in the item a). (More precisely this fact follows from
the lemma, applied to I't, where ¢ means transposition. In this case one must take
—ck, +: €qual to the order of pole of v; at zero, = 1,Y = x1+i+; with maximal
Ck,+j- The procedure of Lemma 4.1.1 decreases the pole of +;. Iterating this process,
as a result we obtain a matrix W, of the required form and such that W'} has the
first column which contains either only holomorphic elements at zero or only zero
elements excepting one, say +,,. But in the latter case v,, cannot have a pole at zero
too, because in opposite case this function would have a zero at some z’ and it would
be det(Wy(z')I (z') = 0, which contradicts the equality detI';(z) = const # 0.
Let W = W{. This completes the proof). The proof of the lemma in the case b)
repeats now the proof of the item a) with replacing v by 7/, Y (z) by WY (%),
and V; by W1V,

As it follows from Remark 4.2.1 all we need for completeness of the proof of Lemma
5.5.1 is the linear independence of the functions ¥, ..., Yy, The corresponding
proof is presented in Lemma 5.5.3. The only thing that we else have to verify is the
holomorphy of (z — a;) 2 E\(z — a;)~2. But since the matrix E; = 3= In x(07) is
of the block form (5.5.3), we have to verify this condition for each block separately.
And we can carry out the verification, with due account of the first two inequalities

in (5.5.5), in the same way as we did in Proposition 4.2.1.

Lemma 5.5.3 Suppose that the first element y,(x) of arow yu, . .. , Yy, of the matrix
Y (Z) is nonzero. If any subrepresentation of representation x of the monodromy
of system (1.2.1) is indecomposable then the functions y, . .., Yy, are linearly inde-
pendent.
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Proof. Denote by X the space of solutions for the system. Let X be the subspace of
X, generated by the first k; +- - - +k; columns of Y. Let us assume that the statement
of the lemma is false. Then there is an upper-triangular nonsingular matrix S such
that the elements with indices j € J of the row vector (z1,...,x,) = (Y1,...,Y)S
are linearly independent and the elements with indices j € {1,...,p}\J = J° are
identically zero. Let us consider a linear subspace X° of the vector functions that
is generated by the columns ¢} of the matrix Y'S, j € J°.

For arbitrary monodromy operator o* we have
14
ot (t) =D Aty (5.5.15)
=1

where ¢’ € X°. We get from (5.5.15) that

P
0=(zj00)= Z/\,xl = Z/\,x,,
=1

for the row of the matrix Y (Z)S being considered, whence, by virtue of the linear
independence of the elements x;, | € J, we have A, = 0, [ € J. Therefore, the
right hand side of (5.5.15) is a linear combination of the elements of the space X°.
In other words, X is an invariant subspace for all monodromy operators.

By the hypothesis, X° does not contain the first column of the matrix Y (z), and
therefore X; ¢ X°, and this means that X; N X° = 0 since otherwise y, would
be reducible. Suppose that s is the first number for which X, N X° # 0, and then
X,_1NX° = (@ and, since the quotient representation x / x s is irreducible, we find
that all columns of the matrix Y'S with numbers k, +. .. k,_; +1, ...,k +&, belong
to X°,i.e. X;NX°isaninvariant subspace for x, and x, = X,_1®Xs/Xs—1,and this
contradicts the assumption concerning the irreducibility of the subrepresentation x;
of the representation x. Lemma 5.5.3 is proved.

Let us return to the proof of Proposition 5.5.1. According to Lemma 5.5.1, there
is a matrix I'(z), meromorphic and holomorphically invertible outside of the point
ai, such that

[(2)Y(&) = (z—a)V(z)(x - a))?(E — a1)", (5.5.16)

where C = diag(cy,...,¢p), €1 > ... > cp, the numbers c; satisfy inequality
(4.2.6), V(z) is holomorphically invertible, B is a diagonal integral matrix whose
elements satisfy the first three inequalities in (5.5.5). We choose a number d; in
(5.5.5) such that

(n—2)p(p—1)

d —_—
3 > 2
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The final part of the proof of Proposition 5.5.1 is exactly the same as of Theorem
4.2.1. There is only one difference. In our case the corresponding matrix D + B from
(4.2.4) has a block form. These blocks correspond the blocks of E; and diagonal
elements ot each block form a nonincreasing sequence. Therefore, the matrix

L=D+B+ (.'L' b al)D+BE1(1‘ - al)'D'B

is holomorphic at a; and we also can use Corollary 2.2.1.

Proposition 5.5.2 Suppose that all quotient representations of a representation
X are indecomposable. If the monodromy matrices of this representation can be
simultaneously reduced to form (5.5.2) so that the matrix x(c;) has form (5.5.3) for
a certain i, where the size of the matrix G does not exceed k.,, then Hilbert’s 21st
problem for the representation x has a positive solution.

Proof. As well, as in Proposition 5.5.1, we again suppose that ¢ = 1, and again
consider a system with regular singular points a4, ..., a,, Fuchsian at the points
as,...,an,and a fundamental matrix Y'(Z) of the space of solutions of this system
of form (5.5.2) in the basis of whose columns the matrix x(o;) is upper-triangular
and has form (5.5.3). Let us consider factorization (5.5.4) for this matrix.

Letd,, ds, &, by, ..., b, be integers for which the equalities

bi=d —k(t-1), t=1,...,]
bj=dy+s(p—j), j=l+1,...,p, (5.5.17)
Kk >0,

hold true, where [ is the size of the matrix G}, > p— k..

Let us represent the matrix Y (£)) from (5.5.4) in form (5.5.6), where B =
diag(by,...,b,), b, from (5.5.17). We consider the corresponding matrix I'; ()
and factorization (5.5.7) for the matrix V/(z). We denote by (y,...,¥,) the first
row of the matrix I' Y and, as we did in Lemma 5.5.3, consider an upper-triangular
nonsingular matrix S such that the elements with indices j € J of the row vector
(z1,...52p) = (Y1,-..,Yp) S are linearly independent and the elements with indi-
ces j € J° = {1,...,p}\J are identically zero. As in Lemma 5.5.3, we can use
the irreducibility of the representation x,\x;s—; to prove that J = J,, U... U Jpy,,
where J,,,, is the set of numbers of columns of some block G¢ in (5.5.2). The mon-
odromy matrices of the fundamental matrix I'(z)Y (Z) are the same as of Y (),
and therefore we find from the form of the row z = (zy, ..., z,) that the elements
with numbers (k, s) of the matrices G}, = S™' G, S, where k € J, s € J° are zero.
Indeed, for s € J° we get
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0 = (:Cs o Ui) = xs(gi_lj) = ngsmky
keJ
whence, by virtue of the linear independence of z;, k € J, we get g,s =0, k€
J, s € J for elements of G'.

Wedenoteby U], B', V', H], ®the matrices obtained as a result of the deleting of
the rows and columns with the numbers from J° of the matrices V; (x —a,)? S (z -
a;)"B, B, V, G, ®, respectively.

Note that the numbers of columns of the last block of G* from (5.5.2) are not
contained in J?, since otherwise the quotient representation x/x,_1, where G? is
the last block, the numbers of whose columns enter into ./ would be decomposable.
Therefore, the matrix S has the form

S = ( *g IE ) (5.5.18)

where S is an upper-triangular matrix. From this and from (5.5.17) we find that the
matrix (z — a;)2 S (z ~ a;)~% is holomorphic at a; and

det((x —ay)B S(x —a;)™8) = det S # 0. Consequently, V' is a holomorphically
invertible matrix.

The row (z;,,...,z;), 1; € J, ¢ = |J|, is analytic outside of the points

ay,...,a, and has monodromy Hj,..., H, and factorizations of form (4.2.10)
with replacing y; by z;, ®; by ®;, Bby B', E;by E, = ;- InH|, S;=1.

Applying the procedure used in Proposition 4.2.1 to this row, we get an equality of
form (4.2.20):

qcy +ij+ZZgO{+

Jj€J =2 jeJ

= ; -2 -1
D) DY R Gl \C ) )g(q ), (5.5.19)
i=2 jeJ
where pl,  pl > 0 are diagonal elements of the matrix E;, d > 0. We denote by
d the sum of all positive numbers from ¢!, i =1,...,n, j=1,...,p; then
Yiea 2 es @1 < d, and it follows from (5.5.19) that

per < (i:ﬂg(p;l) -5, (5.5.20)

Relation (4.2.9) holds true for the form w = dY - Y =1, Subtracting it from (5.5.20),
we get
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p

Z(C1 —Ci) S ]<+ibl —Sij,
=1

=1

(5.5.21)
J€J
where K is a constant independent of B.

Let us evaluate the difference D = 3 ,_, b; — 237, b;. From the fact that the
numbers from p — [ + 1 to p are contained in J and from (5.5.17) we have

l

. P

JE{1,...,1}nJ q

1
<Y obi-
=1

LS

_ p
> ob -1 > by,

j=l-qu+1 7 ;5%

where ¢; = |{1,...,{} N J|. Using (5.5.17) again, we obtain after simple calcula-
tions

<=0 —gyan-py +aB2 0 52

Indeed, by (5.5.17) we have

I(1-1) : (2l-q —1)q
; bi = ldl — K 9 ) "‘Z b] = (]1d1 - K/——-—%——-——l-,
1= Jj=l—q1+1

3 b = (p—l)dy + s 2 0@ =1

j=l+1 2 ,
therefore,
D<id - =V _Pny  pQ@l-g- Do
2 q q 2
9=, sp-qe-0F=l=D _, o
q 2
where
-q)p—-1
M= Py -d®-D,
q
No_ =D mpQ-g-Da r@-9p-HE-1-1)

2 q 2

q 2 '
Since ¢ = p — | + ¢, it follows that
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(19—(13](1)~l)(d1 —dy)

M =

and

N= -;—q[—qlu—1)+p(z+<p—q>—1>(1—<p—q))—(p—q)(p—zxp—l—1)1 =

= %["1’(1 —D+pl?~(p~~-l+(p-q)-@-ap-Dp-1-1)] =
- %[(l (=gl +p)+ (=) —p(p—q) +p—(p 1) +p—1) =
= N(’%g—)[F—l—p2+pq+p~p2+2pz—12+p—11 = ————K(I’Q_ D 12(p—1)(1-p)+pq] =
1 g

(p—q)(p—~1xs(l-p) + &(p — q)p
q 2

Adding M and N, we get (5.5.22). Suppose now that

k>p-|K|

We choose d, and d; such that the number D in (5.5.22) does not exceed 0. (If
q = p,then D = 0 and if ¢ < p, then M‘)qﬂ"—’l > "p;l > 0 and we must choose
d; < d, such that

£p*(p—q)
B> 2(p=1) )
Now (5.5.21) yields
P K
a—c¢ <Y (a—a)<IK|< > (5.5.23)
=1

The last part of the proof of the proposition completely repeats the corresponding
part of Theorem 4.2.1. We have only to verify that the elements b, of the matrix
D + B satisfy the following conditions

B> 2 b, by, > 2 (5.5.24)

to use the block form (5.5.3) of the matrix E}, and to use Corollary 2.2.1. But the
inequalities (5.5.24) follow from (5.5.17) and (5.5.23).
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Proof of Theorem 5.5.1. It is sufficient to show that every representation x is a
subrepresentation (quotient representation) of some representation which satisfies
the conditions of Proposition 5.5.2 (Proposition 5.5.1).

Let us prove the second statement (the first statement can be proved by analogy).

Suppose that representation x of form (5.5.2) has decomposable subrepresentations
Xsgrrror Xspy 51 <...<8,, 1T>1 Lets=s,.

We take it that the matrices G2 and G§ have been reduced to the Jordan normal
form by means of the matrices R* and R* (to make this assumption, it is sufficient
to pass to the matrices G’i = R™' G, R, where R has form (5.5.2) (with replacing
G] by R7) with R* = I, k #2,s). Lett, = g,, t3 = g},,where G§ = (g5;),
Gi = (Q?J)

Let us consider representation x of size p + 1 with matrices
s _ [t 0 , o t 10...0)
G1—<0 Gl)’ G?‘(o G, )

,ts ti..ty , (1 0 .

G3—(0 G, ),Gi-—<0 G, ) 1> 3,
where ti; = — =015, t1 =, Gs = (4y)-
This representation already has r — 1 decomposable subrepresentations and the
matrices G have form (5.5.3) which satisfy the conditions of Proposition 5.5.1.
Repeating the described procedure, after r — 1 steps we shall get the representation
X satisfying the conditions of Proposition 5.5.1 whose quoticnt representation is the
original representation x.

If representation y does not have decomposable subrepresentations (or r = 1) and
the number m of blocks in (5.5.2) exceeds unity, then, in the general case, we have
to carry out once the procedure described above all the same (say, for s = 2, s;) in
order to obtain the matrix G, of form (5.5.3). It suffices to reduce only the matrix
G to the Jordan normal form.

Corollary 5.5.1 The size of the representation we have constructed does not exceed
the number p +m — 1, where m is the number of irreducible blocks in factorization
(5.5.2) for the monodromy matrices of the original representation .

From Theorem 5.5.2 and Corollary 5.5.1 we obtain the following statement.
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Theorem 5.5.2 Any system (1.2.1) with regular singular points is a subsystem (quo-
tient system) of some system , which is meromorphically equivalent to a Fuchsian
system with the same singular points. The size of the latter system does not exceed
the number p + m — 1, where p is the size of the original system, and m is the
number of blocks in decomposition (5.5.2) for the monodromy representation x of
the system (1.2.1).

Example 5.5.1 Let us consider the following system with regular singular points
0, -1,1, &
b b ’r2°

000 0 06 00
dy _[foo1 o)1 1fo0 60| 1
dx 0 0z O |Jz2 6100 -1 1 Jz+1
00 0 —z 00 -1 1
00 0 0 0 -3 0 0
1o 21 1 1fo 0 -3 -3 1|
2100 -1 -1 |zZ173l0 o0 -1 1 |z=-T}|Y
0 0 1 0 0 -1 1
(5.5.25)

Its quotient system resulting after the deletion of the first rows and columns of
the matrices of coefficients in (5.5.25) is not meromorphically equivalent to any
Fuchsian system, since for the monodromy representation of this quotient system
Hilbert'’s 215t problem has a negative solution (see Section 2.4). As to system (5.5.25)
itself, we can use a change z = I'y(z) I' (x)y with matrices

1 0 0 O "1 0 0 0
-L 100 01 -+ ¢
= 3z — T
[i(z) 5010 | D@ 00 10
0 0 0 1 0 0 0 1
to reduce it to the Fuchsian system
1 0 3 0 -2 6 -6 0
dz —% -1 =2 0 1 1 2 9 3 1 1
—_— = _+_ 3
dx 0 0 1 0 lz 6 0 0 -1 1 |zxz+1
0 0 0 -1 0 0 -1 1
0 0 0 0 -2 -3 -6 0
1 0 0 3 1 1 % 2 3 -5 1
+§ 0 0 -1 - $-1+§ 0 0 -1 1 z—% “
0 0 0 0 -1 1
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Since any system of two equations with n regular singular points and any system of
three equations with three regular singular points are meromorphically equivalent
to Fuchsian systems (see Dekkers’s result in Section 3.4 and Chapter 6), Example
5.5.1 is minimal in this sense (with respect to the number of equations in the system
and the number of singular points).

Remark 5.5.1 System (5.5.25) is also the first (with respect to the number of equa-
tions and singular points ) example of a Fuchsian system which cannot be reduced
by any meromorphic change to a Fuchsian system with the same singular points the
matrices of whose coefficients have the same character of reducibility (5.5.2) as its
monodromy matrices.

Indeed, the matrices of system (5.5.26) have the form (5.5.2) withm = 2, k; =
2, ky = 2 and as it was shown, they could not be reduced to form (5.5.2) withm = 3
blocks of the sizes k;, = 1, k; = 1, k3 = 2 respectively. But the monodromy
matrices of (5.5.26) have exactly the latter character of reducibility (it follows from
the fact that this character of reducibility have the matrices of system (5.5.25)).

The first example of such a type was presented in Proposition 2.2 in [Bo4] (for the
monodromy representation of dimension p = 7).

Example 5.5.2 Let us consider matrices

11000 3 01 1 -1 0
01100 -4 -1 1 2 0
Gi={o0oo0111]|, Gy=| 0 0o 3 1 0],
00011 0 0 -4 -1 -1
0000 1 0o 0 0 0 1
-1 0 2 -1 0
4 -1 0 10
Gi= 0o 0 -1 00 (5.5.27)
0 0 0 1 0
0 0 0 0 1

and an arbitrary collection of points a;, az, as. Representation x with matrices
G', G}, G satisfies the conditions of Proposition 5.5.2 (G has form (5.5.3)), and
therefore Hilbert’s 21st problem has a positive solution for it. At the same time,
the subrepresentation of size 4 of this representation with matrices G ;, formed by
intersections of the first four rows and columns of the former matrices G, G3, G4
cannot be the monodromy representation of any Fuchsian system (see Example
5.3.1)
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As it was proved by Plemelj (see Section 3.2) each representation y can be realized
as the monodromy representation of some regular system (1.2.1), which is Fuchsian
at all singular points a4, ..., a, except one of them (say a;). How to estimate the
order of the pole of system (1.2.1) at a,? The simple estimate is presented in the
following proposition.

Proposition 5.5.3 For arbitrary representation x there exists a regular system
(1.2.1) Fuchsian off the point a, such that the order of the pole of (1.2.1) at a, does
not exceed the number

(n —2)p(p - 2)

d=
2

+pn+ 1.

Proof. Let x_be of form (5.5.2). Consider a regular system (1.2.1) Fuchsian off a,
with a fundamental matrix Y'(Z) of the form (5.5.2) (see Corollary 5.2.1):

Yt *
Y(%) = - (5.5.28)
0 haa
with zero valuations at the points ay, ..., a,.
By Lemma 4.1.3 it follows that for suitable ['*(z) we have in U}
I'(z)YY(3) = Vi(z)(z - a,) P (& — a1) 51, (5.5.29)
where by Proposition 4.2.1:

ki v
Y (- dl) < (n = 2)’“2"('” D) (5.5.30)

1=1

Here d? = max;-,,_,(d?), D, =diag(dl,...,d"), k; is the size of Y. As well
as in (5.4.3) of Lemma 5.4.1 we have

— kin < tcDy, (5.5.31)

t['Di S 0.
Adding (5.5.30) with the last inequality, we get

(n - 2)k1(k1 — 1)
2 )

kud] <
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d) < (n=2k 1) 2)2(19" - (5.5.32)

Transform our system to the system with the fundamental matrix Y'(zZ) =
=I'(z)Y (%), where

0 I
Then from (5.5.29) we obtain in ﬁl*
-V—ll WI‘ZI W13| 0

2 23
v@=| 0 & B (@—a)P(z—a)®,  (5533)

0 1%
where V1, ..., V™ are holomorphically invertible at a,, W are just meromorphic

there, D = diag(D,, ..., D), and

E} *
E, = .
0 ET
In the same way as in Theorem 5.3.1 we can transform our system by I';5(z) to the
system with holomorphic matrix W2 (see the part of the proof of Theorem 5.3.1
below (5.4.8)). By the next step we can get the holomorphy of W2 and W23 and so

on. As aresult we obtain the system with a fundamental matrix of the form (5.5.33)
with holomorphic W¥ for all 7, 5.

It follows from (2.2.29) that the order of the pole of the constructed system is equal
to r + 1, where 7 is the order of the pole of

(z—a,)PE\(x—a,)~ P, where D = diag(D,,...,D,,), E, = diag(E}, ..., E").
B ut 7 + 1 does not exceed the number

d = maxd} — mind] +1 < Z(maxd{ —d)+1=
17] 17] kl l’]

= & -5 uD,; +1. 5.5.34
pmaxd] ;r + (5.5.34)

From (5.5.32) it follows that
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; - -2
p-maxd) < 222PRZD) (5.5.35)
1“]
since max k; <p— 1.
Summarizing (5.5.31) over all ¢ , adding the result with (5.5.34), and taking into
account (5.5.35) we get

i< (n—=2)p(p —2)

1.
2 +pn+

The exact estimate for the case p = 3 is presented in [Bo2] (see also Chapter 6).

5.6 On codimension of ‘“nonfuchsian’ representations

How to estimate the codimension of representations, which can not be realized as
the monodromy representations of Fuchsian systems? (We call them "nonfuchsian"
in this section).

Leta,,...,a, be fixed. The moduli space R of all irreducible representations x of
dimension p with the singular points a4, ..., a, depends on
N, =p*(n-2)+1 (5.6.1)

parameters. Indeed, from the equality G, - - - G, = I it follows that a representation
X is determined by n — 1 matrices G, ..., G,_;; they give p?(n — 1) parameters.
Since the representation x is determined up to conjugations G, = S™'G;S,1 =
1,...,n — 1 and since the equalities S{'G;S; = S;'G;S,,i = 1,...,n imply
$;S51 = A, A € C* (Schur’s lemma), then we obtain that the number of parame-
ters must be decreased by p? — 1. Thus,

N,=p*(n-1)-(p*=1) =p*(n-2) + 1.

Reducible representations lie in the boundary of R and form a stratification of the
boundary. Nonfuchsian representations lie among these strata.

Consider a representation x of form (5.5.2) with m = 2

Gl «
and consider the subrepresentation x,, defined by the collection G1,...,GL. Let

dim x; =l and [ < 2. Each matrix G; has [(p — [) zeros, therefore we obtain
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N =llp-0n-1) (5.6.3)
additional conditions for such a .

If Hilbert’s 21st problem for a representation x of form (5.6.2) has a negative
solution, then from Theorem 5.4.1 we get the following statement (which was
observed by V.Kostov)

Lemma 5.6.1 Letky, . .. , k, be sizes of Jordan blocks J1, . . ., J, ina Jordan normal
form for G}. If the representation x can not be realized as the monodromy repre-
sentation of any Fuchsian system, then for each J; there exists the corresponding
Jordan block J; of the size m, in a Jordan normal form for G?, which is adjoint to
J, and does not adjoint to other blocks.

Proof. With help of a transformation
_( S =
s=(% 5 )
transform each matrix G}, G? to a Jordan normal form, such that each Jordan block

J;| of G} would be adjoint at most to one block J; of G;. If we obtain some block
in G2, which is not adjoint to blocks of G ,then there exists a matrix

ST *
[ 1
s=(% )
such that (S")~'G,S’ has form (5.5.3) and we are under assumptions of Theorem
5.4.1. Thus x can be realized as the monodromy representation of some Fuchsian
system, but this contradicts the assumption of the lemma. Hence, all blocks of G/
are adjoint to the corresponding blocks of G'.. In the similar way one can prove that

for each block of G/, there exists a block of G/, which is adjoint to the first one. The
lemma is proved.

By Lemma 5.6.1 we have

k1+"'+kt:lv

my+-+m=p-L.

The existence of a Jordan block of the size k; + m; in G; admits k; + m; — 1
additional conditions (coincidence of k; + m; — 1 eigenvalues of G; ) . Thus, we
have IV, additional conditions:

N2=((kl+m1_1)+...+(kt+mt—1))n—t=(p—t)n-—t, (564)



5.6 On codimension of “nonfuchsian” representations 131

where t < [. This formula needs the following explanation. Eigenvalues of the
corresponding blocks in Gy, . . ., G- do not determine uniquely an eigenvalue of
the corresponding block in G, but by the equality G, - -- G, = I they determine
it up to V1, where r = k, + m, for the corresponding q. For example, if [ =

landt = 1 foralli = 1,...,n, then each G; has only one eigenvalue p; = i
where G; = (g¢,). From G --- G, = I we have that gf;, = (gt ---grr ") tis
determined uniquely by g1, . - - .97~ But for eigenvalue 4, of the G2 (if we know

that it has only one eigenvalue) we obtain only p, = g1} *+/1. Indeed,

n-1 -1
(un)P~" = det G = (Z det Gf) = (1)
i=1

and we get the previous formula. Since the number of possible values for eigenvalue
Lr is finite, we have that this does not influence on the codimension. Therefore, for
G,, we obtain only p — 2 (not p — 1) additional conditions, which are the conditions
for G2 to have only one eigenvalue.

Thus, in general case ( when t > 1) we have to subtract ¢ in the right hand side of
(5.6.4).

If | = 1, then by Theorem 5.3.1 we have to add one more condition, that is
v(x/x1) > 0. (For I = 1 the number p from (5.3.8) is integer, therefore this
condition can not be satisfied automatically). In general, this condition can be
expressed in terms of the corresponding Fuchsian system with the monodromy
x/x:. It is algebraic equation on coefficients of the system (see Chapter 6) and
therefore with help of the holomorphic map from the set of Fuchsian systems into
R (which assign to each system its monodromy) we obtain one analytic condition.

And at last we must add some number r conditions, which arise from the fact that
the collection Gy, . .., G, is determined up to conjugations. Thus, for codimension
d we get (since [ > t):

Ad> N, + Ny +r+68=lp-Dn-1)+(p-thn—t+r+6 2

(+D)(p-Dn-1)+@p-0)-l+r+8 >2(p-1)(n-1)+p—1+7, (565)
since the quadratic polynomial (I + 1)(p — I)(n — 1) — 2l in [, regarded in [1, 2],
has a minimum at [ = 1. (Here 6 is the Kronecker index). Thus,

d>2(p-1)(n-1)+p-1 (5.6.6)

Let us show that for nonfuchsian representations of form (5.5.2) with m = 2 and
| = 1 this estimate is exact. For this purpose it is sufficient to prove that r = 0 in
(5.6.5), since d = 2(p — 1)(n — 1) + p — 1 + 7 in this case.
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Since a centralizer S of one Jordan block has the form

a B . Bpo
S = ’ . (5.6.7)
- B
0 «a

(see [Ga)]), then from

SG/CS_I —_—Gk, k=1,...,n

we obtain that S has the form (5.6.7) with some 3, , ..., 8,—;. From the irreducibility
of the collection G2,. .., G2 we get, that
a *
5= ( 0 alIr! ) !
therefore §; = --- = B,_, = 0. Since there exists i such that g}, # 0, 1 <t <p

for the elements g;t of G; (it follows from irreducibility of x/x;), we obtain from
the equality SG; = GS, that 8,_; = 0. Thus, S = aJ, as in irreducible case, and
we get r = 0 in (5.6.6).

We investigated here only the case of a reducibility of the type m = 2 in (5.5.2).
But it is obvious, that for sufficiently large p and n the codimension of nonfuchsian
representations with m > 2 is larger than (5.6.6), since the number of zeros in
(5.5.2) increases as & - p - m for some k. So we get the following statement.

Theorem 5.6.1 For sufficiently large p and n the exact codimension for the main
stratum of nonfuchsian representations in the moduli space of all representations is
equal to

d=2(p-1)(n-1)+p—-1=(p-1)2n-1).

Questions concerning a stratification of nonfuchsian representations and their codi-
mension in (GL(p, C))"~! are also considered in [Ko1], [Ko2].
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6 Thecasep=3

For the case p = 3 there is a complete description of all representations, which
cannot be realized as the monodromy representations of Fuchsian systems.

6.1 The complete answer for p = 3

It occurs that Theorem 5.3.1 gives all counterexamples to Hilbert’s 21st problem
forp = 3.

Theorem 6.1.1 Hilbert’s 21st problem for a representation X of dimension p = 3
has a negative solution if and only if the following three conditions hold:

a) the representation x is reducible;

b) each matrix x(o;) can be reduced to a Jordan normal form, consisting of only
one block;

c) the corresponding two-dimensional subrepresentation or quotient representation
Xz is irreducible ' and the weight v,,(0) of the canonical extension G° for X, is
greater than zero.

Proof. By Theorem 4.2.1, Theorem 5.3.1 and Plemelj’s result (cf. Section 3.2) it
follows that all we need is to prove a positive solvability of the problem for reducible

representations, possessing the following property: for a given x there exists ¢ such
that the Jordan normal form of the matrix x(c¢;) consists of two Jordan blocks. For
such a representation there are two possibilities :

1) x 1s upper-triangular;
ii) x is not upper-triangular.

Let us consider the case i). In this case all x(o;) can be simultaneously transformed
to the form

'the condition of irreducibility follows from others, but it is convenient to have it for concrete
verifications
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I *
Gi=| 0 u Lji=1,...,n 6.1.1)
0 0 4

Let for some j = ¢ two of the numbers ,uf are different. If
1 2 3 2 3 1
Pi = i F g OF py = puy #
then with help of an upper-triangular matrix S we can transform the matrix G to

the form

i _g1gg_ (G 0
G=scs=( G ). @12
where the size | of G} equals two in the first case (u} = p? # pd)and ! =1
in the second one. In the both cases we are under assumptions of Corollary 5.1,
since due to Dekkers each two-dimensional representation can be realized as the
monodromy representation of some Fuchsian system ( cf. Section 3.4). Therefore
the representation  also can be realized by a Fuchsian system.

Let now for some ¢ u; = p? # pi. We may consider only the case u; =
u? forall ; = 1,...,n, since otherwise we are under condition of the previous
situation ( for some j). By an upper-triangular matrix S transform G; to the matrix

pi 01
Gl=5'GS=| 0 pu2 0 |. (6.1.3)
0 0 u

Consider a fundamental matrix Y'(#) of the form

y' *
Y(:b):( 0y ) (6.1.4)

to regular system (1.2.1) with the given monodromy Y such that the system is
Fuchsian outside of a; and has zero-valuations there ( the existence of such a
system is proved in Corollary 5.2.1). Moreover, let G, has form (6.1.3) in the basis
of the columns of Y (z) in U?. Then for " and 33 in each U; we have

y(2) = vl (2)(& - a)™, t#1,

v (2) = vl(2)(@ - )" (& - )",
where j = 1,3, v] is holomorphically invertible for all j, ¢, exp(2mip,) = pur =
3
Hi.
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By the theorem on the sum of residues, applied to the form d Iny?(Z) we get

Yoo+l =) pi+el=0,
j=1

Jj=1

therefore @} = 2. Thus, in U; for the matrix Y () we have the following factori-
zation (2.2.25):

e; 0 0 pi 0 ¢
ol w2 et 0 ¢ 0 0 p? O
1 1
Y(i):( 0 v 23)(x-a,-) 0 0 ¢ /(zqp\ 0 0 A/,

v w

0 0
(6.1.5)

since G; has form (6.1.3) in the basis of the columns of Y (). Here v!,v?,v® are
holomorphically invertible at a;; w'?, w'?, w?? are meromorphic there.

With help of the procedure of Lemma 4.1.1 we can obtain the holomorphy of w*!,
Indeed, if

w?= —% w',
(z —ap)n
then we can decrease the order of the pole with help of the transformation Y'(Z) =
[ (x)Y(Z), where

a9
(z~a1)"1v%(a1)
0 0 1

This transformation does not change the element v'. After finite number of such
transformations we shall obtain the holomorphy of w!'2. Then, we shall do the
similar procedure with w?3, w'3, using v3 and a transformation of the form

1 0 Q=)
0 0 1

which do not change elements v!, w2, v2.
b ]

Thus, there exists ['(z) such that Y (&) = ['(z)Y (&) has form (6.1.5) with holo-
morphic w** for all k,[. It means that the corresponding system is Fuchsian at a,,

since
e; 00 e 0 0
( 0 ¢ 0 ) b0 ¢ ‘( 0 ¢ 0 )
(z — a;) 0 0 ¢ ((; 2 0) - 0 0 ¢
i % (z - a)
0 0 pj
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is holomorphic at a; and we are under assumptions of Corollary 2.2.1.

The case u} = p? = p?, ¢ =1,...,n is a simplified version of the previous one
(because ¢} = ¢? in (6.1.5)).

Let us consider the case ii). In this case all x(o;) can be simultaneously transformed

to the form
G}«

G; = < 0] G2 ) , (6.1.6)
where both the collections of the matrices {G}} and {G?} form irreducible re-
presentations. Consider the matrix G;, whose Jordan normal form consists of two
blocks. Then the one-dimensional block of this matrix belongs to some G?, j = 1,2
and is not ajoint to other block. This means that the condition of Lemma 5.6.1 is not
fulfilled, therefore this representation can be realized as the monodromy represen-
tation of some Fuchsian system. (In the case i) the situation differed from this one,
because a two-dimensional collection of the corresponding matrices was reducible
and we could not apply Lemma 5.6.1).

6.2 Fuchsian weight of a representation

It is not difficult problem to verify conditions a), b) of Theorem 6.1.1 for a given Y.
But how to calculate the number 7, (0)? In this section we present a partial answer
on this question.

Consider a Fuchsian system of two equations

dy . B®

= = 6.2.1

dx <l};‘ T — a,) y ( )
with a monodromy x and valuations {¢?}, i = 1,...,n, j = 1,2. Recall (cf.

Section 2.3), that the number
70 =3 Iet -
is called the Fuchsian weight of the system and the number
Y(X) = min s

(over all Fuchsian systems (6.2.1) with the given x) is called the Fuchsian weight
of the representation x.

The main purpose of this section is to prove the following statement
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Theorem 6.2.1 The weight of the canonical extension G° for a two dimensional
representation x coincides with its Fuchsian weight:

To prove the theorem the first of all we need the following proposition.

Proposition 6.2.1 For each Fuchsian system (6.2.1) with Fuchsian weight yp there
exists a Fuchsian system %ii = By with the same monodromy x and there exists an
index 1,1 < | < n, such that the following conditions hold:

PP =@t =0,i=1,...,n,i#],
ii) 75 = @} — & < s

for valuations <,5{ and for Fuchsian weight v z0f the new system.

Proof. For each ¢ we consider factorization (2.2.25) for system (6.2.1):

Yi(Z) = Vi(x)(z - a))* (2 - a)®, 2 € U},

(6.2.2)

where V;(z) = (vi,,), ®: = diag(y!,¢?),

mt
E=( % 5); e=0ifpl #0
[ O pf ’ — Yy pi pi'
We denote by J the set of indices such that
@; > ¢, i€
If this set is empty or J = {l} for some [, then we transform our system by the
transformation Y'(Z) = I'(z)Y (&), where

1

I(z) = f] ("”"“‘)w I (6.2.3)

ity T T Qi

As a result we obtain a system, satisfying the condition of the proposition. Indeed,
['(z) ~ I + o(1) at oo and

Yi(2) = Vi(o)(x — a)* (& - a)™, (6.2.4)
since I'(x) is the scalar matrix.

If J = 0, we can choose any index .
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Suppose that J contains ¢, m, . . .. To prove the lemma, we only need to show that by
substituting Y = 'Y one can always reduce the number of elements of J without
increasing the Fuchsian weight of the system.

We pass from Y to Y’ = V,7!(a;)Y, which we denote again by Y. Now we have
Vi(a;) =1 (6.2.5)

in factorization (6.2.2) for Y;. By the matrix

T—a,, 0
Fl(x)=< 1 )

transformY toY’ = I', Y. It follows from the form of T', (z) V; () that the valuations
@7 for Y/ are connected with the valuations ¢! for Y; by the following relations:

Pr =l -1, ¢ =¢f,

Al=@l -G =A, 1, (6.2.6)

where A; = ¢! — 2.

We consider the matrix V,,(z) in factorization (6.2.2) for Y. The remaining part of
the proof breaks up into two cases:

a) vii(am) # 0;
b) vJ} (an) = 0.

First we consider case a). In this case the factorization has the form

Yr:v,(j;) — < (1: - am)vn (x - am)vg > (JI _ am)d’"‘(af: _ am)E'" -

* v;’;
_ ( o (z— 0;:1)”12 ) (z - am)*bi,. (& — am)Em, 6.2.7)
Wa) Va2

10

where<1>m=<1>m+<0 0

> , W, iS meromorphic at a,,

(it may have a pole of the first order there). Let wy; = ¢/(z — a,)+hol.. We can
again apply the procedure of Lemma 4.1.1 to obtain holomorphy of w,,. For this
purpose it is sufficient to transform our system by the matrix

1 0
[y(z) = ( _— 1 )
(I—am)v?;(am)
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to a Fuchsian system with the fundamental matrix Y"'(Z) = I';(z)Y"(Z) and with
valuations 7. These valuations satisfy the following equalities:

=+l g =k, Al =An+l (628)

Let us consider case b). In this case v[%(a.,) # 0 (otherwise det V,,,(an) = 0). In
the similar way as in (6.2.7) we obtain

—_ S S m "
Y!(&) = ( (z—am)iit ) (2 = )™ (% — am)®, where
* Wao

0 0

cbm:q’"”“(o 1

) , Wy has (in general) a pole at a,,.

Let wyy = ¢/(z — a, )+ hol., then by the transformation Y = T;(x)Y” with

3= ( _1__ (1) ) (6.2.9)

(z—am)973(am)

we get holomorphy of w,,. The system with the fundamental matrix Y is still
Fuchsian and its valuations ! satisfy the relations

oL =, P =9 +1, Al =A, -1 (6.2.10)

It follows from (6.2.6)—(6.2.10) that both in case a) and in case b) we have

n

S(@h - ¢k) <s, Al=A-1 (6.2.11)

=1
forY"”

If AY > 0and A, > 0, we repeat the above procedure once again. It follows from
(6.2.11) that after no more than A; = @} — ? steps we shall obtain a fundamental
matrix Y = ['(z)Y such that (6.2.11) holds and either Ai =0orA,, = 0. This
means that the number of elements of J has decreased. We find from (6.2.6)—
(6.2.11) that Y is the fundamental matrix of a Fuchsian system (6.2.1), whose
Fuchsian weight does not exceed 7p.

Consider a Fuchsian system with a fundamental matrix Y (Z) such that for the
corresponding Levelt’s fundamental matrices of the system factorizations (6.2.4)
hold true. Let V;(z) from (6.2.2) have the form

1 c(z —a)™

Vi(z) = ( osa U1 ) (1+ 0(1). 6.2.12)

(To obtain such the condition it is sufficient to transform Y (Z) into Y () =
Vi (@)Y (2)).
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Lemma 6.2.1 Ifin (6.2.12) c # 0, m < g, theny, < 7¥p.

Proof. 1. 1f m < 1vg, then

Yi(z) = V/(z)(z — )% (@ — a))®,

where V! (z) = ( S((;:a‘ft));m (x_‘;l)_m )(1+o(1)), ) = <I>1+< e T?L )

Note that ¢} —m > ? + m in this case, therefore the diagonal elements of @} are
in nonincreasing order.

By Lemma 4.1.1 for the second column ((9},, 95,))? of V] there exists a polynomial

Q of degree m in —— such that for

(z—ap)

1 0 R
= ( Q1 ) the column I'(%},, 75, )"

is holomorphic at a;. Since 9}, = (z — a;)™(1 + o(1)), we have that I'V} is
holomorphic at a, and

det TV} - (z — a))% = det T det V' - (z — a,)'% =

detV/ - (z - a,)tm’ =detV, - (z — al)m”,
since detI' = 1, tr®; = tr®,. Therefore, det V'(a;) # 0. Thus the system with
the fundamental matrix Y’ = I'Y is Fuchsian. It has form (6.2.4) and its Fuchsian
weight yg satisfies the following relations:
Ypr =B — 2m < ¥p.
Thus

Ix S Y < V.

2. To investigate the case %’yg < m < g we need the following lemma.

Lemma 6.2.2 Let a Fuchsian system (6.2.1) be reduced to (6.2.4), (6.2.12) and let
vg > 0. If all monodromy matrices G; are non-diagonalizable, then there is an
i # [ such that the value at a; of the element v}, (z) of the matrix Vi(z) in (6.2.4)
is non-zero:

v}, (a;) # 0. (6.2.13)

%¢ means transposition here
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Proof. By assumption, it follows that all matrices E; in (6.2.4) have the form of
Jordan blocks. Recall here that by (2.2.31)

B? = V;(a;)L;(a;)V; (ay), (6.2.14)

J

where L]-(x) = (I)J.(x) + (.’L‘ _ a]_)q’jE]_(x _ aj)——tb,-.

Suppose that vi,(a;) = 0fori = 1,...,n, ¢ # l. Then we find from (6.2.14) and
(6.2.4) that

B' =Vi(a:))EV;  (a,) = ( /il 2 ) .

Since yg > 0, it follows from (6.2.14) that B' = diag(4}, 87). Indeed,

o Bl (x_.a)w?—wz (B0
war=m ()= (F 2)

Consequently, we find from Theorem 2.2.2 (the sum of exponents equals zero)) that

n

Yoop+Bi= Y p+B=0

i=1,i%l i=1,isl

andso 8} = B2.Since p} = p?, we have ¢ = ¢?, which contradicts the assumption
that yg > 0.

Let us return to the second part of Lemma 6.2.2. Let now %73 < m < 7yg. There
are two possibilities for E; in (6.2.4):

a) £ is a diagonal matrix,
b) E, is a Jordan block.

In case a) repeat the procedure of the item 1 for Y;(Z), and at the end permute the
columns of Y'. As a result we obtain a system with factorization (6.2.4), where
E] is a diagonal (as it was before the permutation) and ®; = diag(3}, ¢?), where
ol = ! +m, @ = p} — m. Since

@ — @ =@ — @ +2m =2m —yp >0,

we still have a Levelt’s factorization in (71*, therefore the system with the funda-
mental matrix Y’ is Fuchsian at ¢, and

vp = 2m — g < 2vp ~ B < V8-

Thus, v, < 5.
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Let us consider case b). If E; is a diagonal matrix for some ¢ # [, then exchanging
the columns of Y;(Z) if necessary we find that (6.2.13) holds true for V;(xz) from
(6.2.4). By virtue of Lemma 6.2.2, if E; is a Jordan block for any j # [, then there
is also an 7 # [ such that (6.2.13) holds.

Transform the fundamental matrix Y (Z) of our system to Y'(Z) = [';(z)Y (Z) by

Li(z) = ( ()" 0 ) .
1

0
Under this transformation the matrix Y)'(Z) = I'; (z)Y;(Z) has the form
Y/(@) = Vi(@)(z - a)* (& - )™,

where C' = diag(2m — 7p,0), V/(z) is holomorphically invertible at a;, and its
first row has the form

((ar = a:)*™7, (z — @) "™)(1 +o(1)), ¢ # 0.

The valuation ] for Y, satisfy the following equalities: 3} = ¢! —(2m—vp) and @? =
©?. Let us note that ¢} — @7 = 2(yp — m). Thus, applying the procedure of the
item 1 to Y’, we obtain Y” = I';, Y’ and the corresponding system with valuations

&7 such that

@ = @i (6.2.15)
This procedure does not change the form
(6i1($ - ai)Qm—’m’ ﬁ;z(x - az)zm—’yu)? f‘il(ai) # 0
of the first row of the matrix I, V/'. Therefore,

Y/ (%) = To(x)T1 (2)Y;(2) = V' (2)(z - a.)?(Z — ai)®,

whee D = (2 = 75,0), V) = ( Jh{z) P ),

0, (a;) # 0, %, U5, are holomorphic at a;, 0%,(a;) # 0, W}, in general has a pole
at most of the order (2m — ~yp).

Applying to the first column of V;” the procedure of item 1, we obtain a Fuchsian
system with a fundamental matrix Y°(£) = [';Y"(Z) and with valuations ¢?, which
satisfy the following conditions:

ol=¢?=0,t=1,...,n, t#I, t #1,
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i — ¢} =2m—7s.

Since by (6.2.15) ¢} = ¢f, we obtain vy = 2m — yg < g for this system,
therefore

Tx <7B.

Return to the proof of Theorem 6.2.1. By Proposition 6.2.1 there exists a Fuchsian
system (6.2.1) such that for its valuations the following equalities hold:

Soiz(p?:o,lzl,,n,l#l,

O — Yl =78 =Y

By a constant matrix .S transform this system to a system such that the matrix V()
from factorization (6.2.4) for a fundamental matrix of this system has form (6.2.12).
Then by Lemma 6.2.2 either ¢ = 0 or m > ¢} — ¢?. But in both these cases we
have

Yi(#) = Vi(z — a)™(E - )™ = (z — a)* V(3 — a)) ™, (6.2.16)
where V] is still holomorphically invertible at a,. Indeed, for elements %, of this
matrix we have

e T Y
Uy, = Vi, Uy = v (T — )X,

Uy = Vigy Big = Vio(T — @) ™™ = c(z — @)™ (1 + o(1))
and under the assumption (¢ = 0 or m > =, 9}, is still holomorphic at q;.

Due to Section 5.1 Y'(Z) determines a meromorphic section of the canonical exten-
sion R? for the representation y such that the section is holomorphically invertible
off a;. And (6.2.16) means that the collection of diagonal elements of ®, presents
the splitting type of G°. Thus,

7(0) = Yx -

Theorem 6.2.2 Any representation x of dimension p = 3 with any points a,, as, a3
can be realized as the monodromy representation of some Fuchsian system.

Proof. Due to Theorem 6.1.1 we can reduce our observation to a reducible represen-
tation x of dimension p = 3 such that each of the matrices G; can be reduced to a
Jordan block and the corresponding two-dimensional subrepresentation or quotient
representation x is irreducible. Since x is reducible, it follows that for the corre-
sponding one-dimensional subrepresentation or quotient representation the number
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is integer. Indeed, let G4, ..., G, have the form

A
*
G(g *>°rG"=(0 0 ox )

In both these cases we get A; - - - A, = 1 and therefore r = p; + - - - + p, is integer.
Consider a Fuchsian system with the monodromy x.. By Theorem 2.2.2, applied to
this system we obtain

n n

ST(pi+ @} + D (pi+ 7)) =0, therefore Y (¢} + @7) = —2r,
=1

i=1 =1

n

and e = 331~ 1) = 20— 23 5
i=1

=1
for Fuchsian weight v of the system. The latter equality means that this weight is

an even number. Thus, +,, is even too. Hence, by Proposition 4.2.1 and Theorem
6.2.1 we have

Tx2 = 7(0) <1,

therefore «y,, = 0. Thus, by Theorem 6.2.1 the representation x can be realized as
the monodromy representation of some Fuchsian system.

6.3 Properties of Fuchsian weight

In this section we continue the investigation of Fuchsian weight.

Proposition 6.3.1 For any representation x of dimension p = 2, the inequalities

hold, and the parity of yg and 7y, coincides withthatof 3, trE;. If x is a commuta-
tive representation that cannot be decomposed into a direct sum of one-dimensional
representations, then 7y, = 0.
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Proof. The first part of the proposition follows from the definitions of g and v,
and the fact that by Theorem 2.2.2

0= (B +8) =D tE+> ol +3 ¢,
=1 =1 =1 =1

n n n
Z‘pzl' +Z‘P? = —ZtrEi, and so
1=1 i=1

i=1

e =3 (P} —@}) ==Y uE —2) ¢l
=1 1=1 1=1

If x is a commutative representation that cannot be decomposed into a direct sum
of one-dimensional representations, then the matrices G; can be simultaneously
reduced to the form
Ai *
(55 )

Indeed, since x is commutative, we have that x is reducible. Thus, all x(o;) can be

reduced to the form
AL
6= (5 5 )

where p; # 0, A} = A? for some 7. (Otherwise one of them can be reduced to a
diagonal matrix with different eigenvalues. Since G; commute it follows that all of
them are such matrices and therefore x is decomposable). Thus, from commutativity
of v we get A; = )\? for all j). Therefore,

Y(2) = (z - a) P2 TG - an)® (6.3.2)
i=1

is the fundamental matrix for a Fuchsian system (6.2.1) with the given monodromy
and with weight 0. Thus v, = 0.

To calculate Fuchsian weight of a representation we need first of all the procedure
for calculating the number m in (6.2.12) for factorization (6.2.4). For the concrete
examples this procedure was presented in Chapters 2,3. Here we present slightly
different way.

Lemma 6.3.1 Let (1.2.1) be a Fuchsian system reduced to form (6.2.4), (6.2.12).
Then the matrix A of the system can be written as
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— e(m = Bl + )z — )" + ez — a0
s(k + B} = B3)(x — @)+~ e
(6.3.3)
(14 0(1))
in a neighborhood of a,, where ¢ is defined in (6.2.2).
Proof. We find from (6.2.12) that
-1 _ 1 —c(z —a))™
V= ( yemays T ) o),

avi alz —a)*  com(z —a)™!
dr < sk(x — a;)F! 6(z — ap)* ) (1+0(1)),
where t; > 0and ¢, > 0. Formula (6.3.3) follows now from (2.2.29). Recall that
in our case this formula has the form
dV, V
A= _[.V;‘l + Tt
r —q

dr
and it yields (6.2.14).

(@ + (z — @)Y E\(z — a)" )V, ! (6.3.4)

Lemma 6.3.2 Suppose that an element a,, of the matrix A of a Fuchsian system
(1.2.1) has a decomposition of the form
1

G = T (6.3.5)

in a neighborhood of a,. Then the elements b;q of the matrices B in (6.2.1) are
connected with the numbers c' by the following relations:

S b, ==, =1, (6.3.6)

A - B = B

i=lipl T TG

Expanding the right hand side of this formula into series in ——, we get (6.3.5).

r—ay
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Proposition 6.3.2 Fuchsian weight -y, of any representation x satisfies the inequa-
lity v, < n — 1. If x is an irreducible representation, then

Y <n—2.
Proof. The last inequality follows from Theorem 6.2.1 and Proposition 4.2.1. Indeed,

T =(0) < 5(n=Dplp - 1) =n -2

Let x be reducible. Assume that v, > n — 2. Then, according to Lemma 6.2.1,
m > n — 1, where m is the number from (6.2.12). In this case it follows from
Lemma 6.3.1 that the element a;, of the matrix A of the system can be written as
a2 = o((x —a;)™?) in a neighborhood of q,. It also follows from (6.2.14), (1.2.3),
and the condition v, > 0 that b}, = 0 and

biy+ -+ b, =0.

Therefore, we find from Lemma 6.3.2 that the numbers b}, for i # [ satisfy the
system of n — 1 equations (6.3.6)

n _ 1
by =0, r=0,...,n—2,
i:§¢l 12( --—CL[)T

whose determinant is the Vandermonde determinant of the numbers
1 1 1 1

. ey 3

) ).
a1 —a; Q4 — Q an — Q

PRpPLEERE
and so it is non-zero. Thus, bj, = 0 fori = 1,. .., n. Consequently, all the matrices
B* of (6.2.1) have the lower-triangular form,and we find that

by = p; + @1, by =P +0F, bly = pl, by, = pF, i #£ L (6.3.7)

Since (1.2.3) implies that 37, p! + ¢ = 0 forj = 1,2, and (2.2.2) implies that
0 <ReY’,pl <n—1forj =1,2, it follows from the last two equalities that
@l — ¢} < n—1, which in conjunction with the assumption that y, > n — 2 yields
the equality v, =n - 1.

Since the matrices B* have the lower-triangular form, it follows that the represen-
tation x is reducible in the case in question. So, we get another proof of inequality
Y < n — 2 for irreducible representations.
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Proposition 6.3.3 For any points a,,...,a, and any number vy that satisfies the
inequalities

0<y<n—-2, (6.3.8)

there is an irreducible representation X such that vy, = <y and the monodromy
matrices x(o;) are non-diagonalizable.

Proof. Suppose, that a; = 0 and oo is not among the points in D. (We can always
make sure that this is the case by applying a linear fractional transformation of the
Riemann sphere.)

1. First, we shall prove the proposition in the case of an even y = 2+'. Let us consider

the following two systems of equations for unknown d,, ...,d, and c,, ..., c,:
1
> di— =6, (6.3.9)
= i
and
n 1 )
Y = =276 00, (6.3.10)
=2 i
wherer =0,1...,nand §;; = { 0, Z.#].’
' 1, 1=3.

Since the determinants of (6.3.9) and (6.3.10) do not vanish, there is a j such that
d; # 0, d being the solution of (6.3.9). But any solution c of (6.3.10) has the form
c = 2%t with t; # 0 for7 = 2,...,n. Thus, we can choose the values of the roots

Vdit;sothat s = 3", \/d;t; # 0. Letus set z = —y/(2s) = —v'/s. Then
n B 3 _1 L,
; d;c; =28 = 5 = v,

and so the matrices

Bl=(7l O,),Bl’:(*’dici d ) (6.3.11)

—c;  —Vdic

satisfy (1.2.3).

Let us consider a Fuchsian system (6.2.1) with matrices (6.3.11). From (6.2.14) and
the fact that diagonal elements of L;(a;) are 5] we get

Bl=pl=¢l=0,i#1, j=12 (6.3.12)
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/

Bi=¢1=7, Bi=¢l=—y

for the exponents of the system. Indeed, the matrices B?, 7 # 1 have only zero
eigenvalues, therefore we get the first equality in (6.3.12). The second equality in
(6.3.12) follows from the form of the matrix B! in (6.3.11).

Let us consider factorization (6.2.2) at a; = 0:
Yi(2) = Vi(z)z® 2P, £ e U}, (6.3.13)

It follows from (6.3.12) that
"0 0
(Dlz(?) —7’)’E1=(0

From (6.3.11) and (6.2.14) we find that

(3 2 )=-no (7} 2 )wo.

) . (6.3.14)

o

and so
Consider the matrix

Factorization (6.3.13) holds true for the matrix with the same ®,, with

(0 ¢ _un
E“(o 0)’5‘%22

and with V}(z) of form (6.2.11). Denote again Y by Y;. From (6.3.9) and Lemma
6.3.2 for the matrix A of the constructed system (1.2.1), (6.2.1), (6.3.11) we get

a; ="+ o(zh). (6.3.15)

It follows from (6.3.15) and Lemma 6.3.1 that the number m for V) (z) in (6.3.11)
satisfies the inequality m > ~. From this inequality, Theorem 6.2.1 and Lemma
6.2.2 we find that v = 7, = +y for the constructed system.

It remains to prove that the monodromy matrices G, ..., G, of the constructed
system are non-diagonalizable and the monodromy representation of the system is
irreducible.
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By virtue of the definition of E; to prove that G,...,G, are non-diagonalizable
it is sufficient to show that so are E, ..., E,. It follows from (6.2.14) and (6.3.12)
that for i # 1 the matrices L; in (6.2.14) coincide with E;. Thus, by virtue of
(6.2.14) the matrices E; are non-diagonalizable since the matrices B* in (6.3.11)
are non-diagonalizable for i # 1.

We claim that E is also non-diagonalizable. We observe that in (6.3.3) if ¢ # 0,
then m = v, and the expression c(m — ] + B7) vanishes by virtue of (6.3.12) and
so does this expression for ¢ = 0. Therefore, if m > +, then the element a;, in
(6.3.3) is of the form

a1z = ez~ + o272 7).
Comparing the last equality with (6.3.15) and using the equality v = v, = 7,
which was proved earlier, we find that ¢ = 1 and & = sy /u;; # 0, which means
that E is a non-diagonalizable matrix.

However, if the monodromy representation of the constructed system (6.2.1),
(6.3.11) were reducible, then the fact that Gy, . . . , G, are non-diagonalizable would
imply that the representation is commutative. In this case we would find from Pro-
position 6.3.1 that y, = 0, contrary to the equality 7, = vy > 0 already proved.

2. We consider the case when v = 24" + 1 is odd. In this case the proof can be
carried out exactly as in the case of even ~ but with the matrices B; in (6.3.11),

replaced by
_f —n+2+4" 0
Bl"‘( 0 _n+1_,yll>7

Vdic, + 3273 d; .
B‘L_ ( —C; _\/dici+§% ’ Z;él,

with @, replaced by

o - " + 244" 0
1 = 0 —n+ 1— ,Y// I
and with the exponents in (6.3.12) replaced by
, . 2n -3
I=pl =22 i1, j=1,2,
IB’L pl 2n — 27 i 76 ) .]

Bi=p1=-n+2+7", F=pl=-n+1-19"
Remark 6.3.1 Since Y] in (6.3.13) has the form (6.2.4), (6.2.12), it follows that

1(101) =75 e1(yta) 20, ©1(y31) > 7', @1(y3s) = =7

for the elements y;; of Y.
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The system (2.1.4) of Chapter 2 is the example of a system, satisfying the conditions
of Proposition 6.3.3 forn =4, p=3, 7= 2.

6.4 Instability of Fuchsian weight

In this section we use the following notation: S, for the space C \ {ai,...,an} ,
S, for a universal covering of S, , and A, for the corresponding group of deck
transformations . We also equip by index a the generators o} € A, and the ways
B2, ..., 3%, which take part in identification (2.2.42).

We denote by F, agroup with n generators i, , . . . , h,, satisfying the identity relation
hy - ...-h, = e and we denote by x, the isomorphism
Kot Ay — F, 6.4.1)

such that k,(c?) = h,.

Any representation x can be written in the form x = X' o £,, where
x' : F, — GL(p,C) (6.4.2)

is a representation of the group F,. In what follows we shall denote x by x(a),
where a = (ay,...,a,).

The proof of the following statement is straightforward.

Lemma 6.4.1 If for two sequences of points a = (ay, . ..,a,) and b = (bry.-ybn)
there is a linear fractional transformation v : C — C such that

r(ag) = by, 7(B8) =07, i=1,...,n,

then Yy(a) = Yx(b)-

Theorem 6.4.1 Let the Fuchsian weight v, (a) of a representation x(a) with non-
diagonalizable monodromy matrices x'(h1), . .., X'(hn) be greater than one. Then
there are an € > 0 and an index | such that the inequality

Yx(a) < Vx(a) =1

holds for any sequence of points a' = (a1,...,a1-1,a + b, 41, - - ,Qy) With
0<|t] <e.
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Proof. Let us consider a Fuchsian system (6.2.1), reduced to form (6.2.4), (6.2.12)
with the monodromy x and with Fuchsian weight v = ,(,). It follows from Lemma
6.2.2 that in (6.2.12) either ¢ # 0 and m > v or ¢ = 0. We use a linear fractional
map to transform q, into 0 and oo into co. We denote the resulting sequence again
by ai,...,an.

We consider the isomonodromic deformation

dy _|(B'(H) < B :
2= [( +Zx—ai>] y (6.4.3)

T—t i=2

of the constructed system, where

{ 4810 = L [Bi(t), B\(¢)],

dt

B0y = B, v, Bi(t) = 0, 649

and ¢ varies over a small neighborhood of 0. For sufficiently small ¢ (6.4.3) has the
same monodromy as the original system (6.2.1) (see [Sch]).

Let the matrix ®, in (6.2.4) has the form &, = diag(b+v,,b—"2), where v, +72 =
YN = [1;—1] ([x] means "integer part of z" ).

From (6.2.12) and (6.2.14) we get

1 _ b+"}’1 0 )
po=("" 20, )

Hence, it follows from (6.4.4) that

dB*(0) 1 ( 0 —vbi, )
b3, 0

dt a,
and

bi, + o(t) bi, — Lbiyt + o(t) ) 6.4.5)

B(t) = ( by + Lbit+o(t) b+ ot)

From this and again from (6.4.4) we have

=~ b+m +o(t) o(t) )
B'(t)=-) Bt =< 6.4.6
(t) ; (t) o(1) b+ o(t) (6.4.6)
since, by Lemmas 6.3.1, 6.3.2 and Proposition 6.3.2, the equality

Zé%:hém,h#o,rzo,...,fyj57571-—2 (6.4.7)
: a,
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holds.

Factorization (6.2.4) for system (6.4.3) in Ut* is of the form
}/l(jvt) = Vl(x)t)(l‘ - t)q)l (j - t)El
It follows from (6.2.14) that V;(¢,¢)B'(0) = B(¢)Vi(t,t). Thus, as in the proof
of Proposition 6.3.3 we may assume that
{14zt +o0(t) o(t)
it,t) = < o(1) 1+ zot + o(t)

We shall reduce the system (6.4.3) to the form (6.2.4), (6.2.12). With this end in
view we pass from its fundamental matrix ¥ to Y’ = V~=!(¢,¢)Y. The matrices of
coefficients of the new system have the form

" ) b + Y 0
1 —
po= ("3 ,0, )
Bi(t) = V7'(t,t)B'(Vi(t,t) = | (6.4.8)
* bl — (71 — 22)bi,t - ’Y%f‘t +o(t)
* *
From (6.4.8) and (6.4.5) we get
n [)i
d A =o(t), 0<r<y-2,
i W

n

l.)i
Z 71—21 = —vyht + o(t)

=2 1

for elements b, of the matrices B".

Thus, according to Lemma 6.3.1, we find that for any sufficiently small £, ¢}2, #

0 in formula (6.3.5) for the matrix A of the new system in a neighborhood of
z = t. Hence, using (6.3.3) and the equality 75 = ~, we find that ¢ # 0 and
m < v —1in(6.3.3), (6.2.12) for the new system. From Lemma 6.2.2 we deduce
that yy(a) < Yx(a)- Proposition 6.3.1 implies that the parity of v, (,) is the same as
that of -y, (a'). Therefore, vy(a') < Yx(a) — 1, where @’ = (a; + ¢,aq,...,a,) and ¢
is sufficiently small. To complete the proof of the theorem, we only need to apply
the transformation inverse to the transformation introduced at the beginning of the
proof and use Lemma 6.4.1.

Remark 6.4.1 Due to Theorem 6.2.1 the instability of the Fuchsian weight of a
representation is equivalent to the unstability of a vector bundle on the Riemann
sphere with splitting type (c1,c3),¢1 — ¢g > 2. It is well known (see [Boj]), that
under "small" analytic transformation each such a bundle is transformed to a
bundle with splitting type (c{,c,),c; — ch < 1.
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6.5 The theorem of realization

Theorem 6.1.1 gives the complete answer to Hilbert’s 21st problem in dimension
p = 3. The counterexample of Chapter 2 shows that this problem really has a
negative solution (in general) for p = 3. The following statement provides an
existence of a negative solution for all given ay,...,a,, n >3, p > 3.

Theorem 6.5.1 For any n > 3, any sequence of points a,, .. .,a,, and any p > 3,
there is a representation x for which there are no Fuchsian systems that realize the
representation.

Proof. 1. First we shall prove the theorem for p = 3, for which it is sufficient to
construct a representation Y, that satisfies the conditions of Theorem 6.1.1.

Let us consider the system (6.2.1), (6.3.11). Since the number n of points is greater
than three, there are row vectors b,, ..., b, of two components such that b; # 0 for
7=2,...,n,and

> b;=0, rankB’ =2, j=2,...,n, (6.5.1)
=2
where we set
. 0z 0 ) 0 b
B'=10 ,B'=1 0 , 1> 1. 6.5.2)
0 B! 0 B,

Here B* are the matrices given by (6.3.11), and 4" = 7, /2, where 7, is the Fuchsian
weight of the monodromy representation x of (6.2.1), (6.3.11) and v, > 0.

Let us consider the system (6.2.1), (6.5.2). By virtue of (6.5.1), the system has
no a singularity at co. We claim that the monodromy representation of the system
satisfies the conditions of Theorem 6.1.1.

It follows from the construction of this system that conditions a) and c) of Theorem
6.1.1 are satisfied. Indeed, condition c) is fulfilled by the construction from Propo-
sition 6.3.3. Reducibility of x follows from the fact that the column vector (1, 0, 0)
is the solution of the system and from Lemma 4.2.1.

Each matrix BY, i # 1, has single eigenvalue 0 and has rank two, therefore it can
be transformed to one Jordan block. As in Proposition 6.3.3 by (6.3.12) we get that
the same is true for the matrices E; and for G; = exp(2mi E;).
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Consider system (6.2.1), (6.5.2) in Ul*. Let Y)(Z) be the fundamental matrix of
(6.2.1), (6.3.11) given by (6.3.13). Then

1 yi2 s
Y=120 (6.5.3)
0 Y)

is the fundamental matrix for the considered system. Substituting Y () into this
system, we get

% =27 "y + T, I_;ai(bizyn + bi3y32),
(6.5.4)

% =27y + T, I__la_,(bizyzs + bi3y33)
Since it follows from Remark 6.3.1 that

©1(y22) =7, 01(y23) 20, @1(y3s) = =75 ©1(ys2) > 7',

where ¢, (f) is the valuation of f at a; = 0, we find from (6.5.4) that

d dy '
o <_y__> ~ -1, o (_J_s> =y -1 (6.5.5)
dx dx

So we get that a; = 0 is a regular singular point for our system.

The matrix E; in factorization (2.2.45) of Y (z) has the form

0 o
E, = ( 0 0 1 ) . (6.5.6)
0 0 0

If the equality o = 0 were satisfied, ZZ* would be of the form

1 0 fBInZ
iBr=1 01 InZ
00 1

and y,. in (6.5.3) would be a single-valued meromorphic function in a neighborhood
of a; = 0. But then ¢, (%) would be non-negative if y,2(Z) were holomorphic
and it would be less than —1 if y;5(Z) had a pole at a; = 0. We have obtained
a contradiction with the first equality in (6.5.5). This means that o # 0 in (6.5.6)
and E; can be reduced to a Jordan block. Therefore, G; has the same property.
Condition b) of Theorem 6.1.1 is satisfied.

Thus, Hilbert’s 21st problem for the monodromy representation x of system (6.2.1),
(6.5.2) has a negative solution.
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2. Let p be greater than three. Denote by G, ..., G, the monodromy matrices of

the system, constructed above. We may assume that

1 =
GIZ(O ),iZI,...,Tl
0 G

110
Go=( 011 ).
0 01

Consider a representation x of dimension p > 3 with the monodromy matrices

and

1 1 0 0
x(o;) = 1 1 ,1=1,....,n—-1,
1 1 0 0
0 G;
1 (-n+1) 0 0
1 (-n+1)
Xx(on) = 1 (-n+1) a; a2 |>
1 1 0
0 1 1
0 0 0 1

where a;, a, are chosen in the following way. The product G of the matrices

x(o;),t # n is equal to

1 (n=1) 0 . .0
1 (n-1)
G = 1 (n—l) B B
-1 0
0 1 -1
0 0 0 1

We choose a; = —n+ 1 — By, ay = =B, — B,. Thus, we have that

n

[Ix(e) =1

i=1
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and each x(o;) can be transformed to Jordan normal form consisting of only
one block with eigenvalue 1. Therefore, we are under assumptions of Theorem
5.3.1. Thus, Hilbert’s 21st problem for the monodromy representation with the
singular points a,, . .., a, and with the monodromy matrices x(o,),. .., x(c,) has
a negative solution.

It follows from Theorem 6.2.2 that the counterexample of Chapter 2 is the minimal
possible (with respect to p and n).

From Theorem 6.4.1 and Theorem 6.1.1 it also follows that all counterexamples to
Hilbert’s 21st problem in dimension p = 3 are unstable in the following sense. If one
slightly perturbs the singular points a,,...,a, without changing the monodromy
matrices x(o;), ..., x(o,), then the answer to Hilbert’s 21st problem can become
positive. Indeed, by Theorem 6.4.1 under some slight move of the singular points
we obtain 7,y = 0 or () = 1. Since by the proof of Theorem 6.2.2 7,(q) is
even, we get ,(,) = 0. Thus, by Theorem 6.1.1 the representation 7, (. can be
realized as the monodromy representation of some Fuchsian system. More precisely,
in terms of Section 6.4 the following statement holds.

Theorem 6.5.2 For any sequence of points a = (a,, ..., a,), any representation x
of dimension p = 3, and any € > 0, there is a sequence of points a' = (a},...,a})
such that |a’; — a;| < € and Hilbert’s 21st problem for x(a') has a positive solution.

This theorem means that there is no a sequence of (3, 3)-matrices G, ..., G, with
the condition G, -. . .-G, = I such that Hilbert’s 21st problem for the representation
x(a) has a negative solution for all sequences of points a = (a,,...,a.).

The following statement is a straightforward corollary of constructions of Theorem
6.5.1.

Corollary 6.5.1 Let a representation x of dimension p = 3 satisfy conditions a),
b), c) of Theorem 6.1.1. Then there is a system (1.2.1) with the monodromy x and
with regular singular points a,, . . . , a, that is Fuchsian at all the points except one,
where the order of the pole of the matrix of coefficients is equal to vy, + 1, and
there are no such systems with a pole of order less than vy,, + 1.

From Proposition 6.3.2 and previous corollary we obtain the following result.

Corollary 6.5.2 For any representation X of dimension p = 3 there is a system
(1.2.1) with regular singular points a,,...,a, and with monodromy x that is
Fuchsian at all the points except perhaps one, where the order of the pole of the
matrix of coefficients does not exceed [%], where [z] is the integer part of .
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7  Fuchsian equations

7.1 The number of apparent singularities

In introduction we claimed that for p > 1 a Fuchsian equation of pth order with
singularities a,, ..., a, contains fewer parameters than the set of classes of conju-
gate representations Y : A — GL(p,C). This set depends on N, = p*(n —2) +1
parameters (cf. (5.6.1)). Let us calculate the number of parameters for a Fuchsian
equation of the pth order with n singular points a,, ..., a,.

We may assume that for all 7, a; # oo. Then by (1.2.12) we obtain

pi(z)
z—a) - (z—a,)

qi(x)z( , 1=1,...,n, (7.1.1)
where p;(x) are analytic in C. We must inquire when equation (1.2.11), (7.1.1)
has no singularity at co. In order to do so we must rewrite (7.1.1) in terms of the
new independent variable { = % It follows from (4.2.16) that under this change
equation (1.2.11) is transformed to the following one:

dry  _ dPl -
o Qg By =0,
where
N pa(z) 2PV ( 1 1 )
(() = . 1.2
3:(¢) (2 —ay) - (z —ay)t \22(-1 +0($2(i_1)) (7.1.2)

From the condition of holomorphy for ¢;(¢) at ¢ = 0 we get that p;(z) has at most
a pole of the order n; at x = oo and

n; < (n+2)i — 2p, (7.1.3)

therefore it is a polynomial in z of degree n;. Since any polynomial of degree n;
contains n; + 1 parameters (which are the coefficients of the polynomial), we obtain
that any Fuchsian equation (1.2.11) on C with n singular points depends on

nt20ple+l) o, (=200 pn

P
(
Ne=) (ni+1)=———— -2’ 4 p= "+
2 2 2 2
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parameters.

The difference d° between N, and N, is equal to

(n—2)p(p—1)

0 — —_ =
d" =N, - N, 5

+1-p (7.1.4)

This difference is greater than 0 foralln > 3,p > 1 (orn = 3,p > 2), therefore in
general a construction of a Fuchsian equation with a given monodromy is possible
only in the case of an appearance of additional so-called apparent singularities.
(Recall that these singularities are called apparent, because they are not ramification
points for solutions of a equation. Let us estimate the number of such singularities
. Consider a vector bundle G*, constructed by a representation x and by some
admissible set (A!,..., \") (cf. Section 5.1).

Theorem 7.1.1 For any irreducible representation x and admissible set A there
exists a Fuchsian equation (1.2.11) with the given monodromy, which has a number
m of additional apparent singular points, satisfying the following inequality

< (= 2P = 1)
- 2

4

— (A +1-1, (7.1.5)

where () is the weight of G* , | is a number of terms c; in decomposition (5.1.6),
which are equal to c¢,. ([Bo3].)

Proof. The proof consists in a small modification of the proof of Proposition 4.2.1.
Consider a meromorphic holomorphically invertible off a; section of the bundle
R* and consider the corresponding fundamental matrix Y (&) from (5.1.2), con-
structed by the section. Let ¢; = -+ = ¢; # ¢4, in factorizations (4.2.1), (4.2.2)
for the matrix Y (Z) = I',Y(Z) with B = diag()},... ,A3). Then there exists a

nondegenerate matrix
S0
5= ( 0 It >

such that the first row of the matrix S(z — a,)“V(x) has the form

(07"')0)t11"’)tp—l+1)
-1
at a,. Denote by y,,...,y, the first row of the matrix SY (&). Then, for this

row factorizations (4.2.10) hold with replacing B + ¢, by B + ¢,I + F, where
F =diag(1,...,1,0,...,0). Thus, we also may replace B+ c,I by B+ ¢, I+ F.
N——r

-1
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By the same way as in the proof of Proposition 4.2.1 , we get

(n—2)p(p —1) (7.16)

p01+l—1+trB+Ztr¢)i+ZtrEi+d= 5

1=2 =1

instead of (4.2.20). Subtracting (4.2.9) from (7.1.6), we obtain

d:ij(al—c,,)ﬂ—l:%l—). (7.1.7)

=1

Consider the equation

Y oo Y

1 dy  dus dyp

dz dz U dz
= . . : =0 7.1.8)

w(z) : : e : (

&’y d’y "y,

dzr  der  '°° Tdg?
This equation is Fuchsian at the points ay, . . ., a, and has the given monodromy. Its
additional singularities are the points b,, .. ., b,,, which are zeroes of the Wronskian

W (&). Obviously, these points and the orders d; of zeroes of W (&) coincide with
that for det 7"(£) from (4.2.12).

Since by the formula below (4.2.20)

d=Y d;+s,
=1
where d;,...,d,, are the orders of the zeroes for W (%) at bi,...,b, and since

s > 0, we have that m < d. Thus, from (7.1.7) we get (7.1.5).

Remark 7.1.1 Formula (7.1.5) improves the estimate
< =2)p(p-1)
- 2

which follows from the corresponding inequality in [Oht], obtained there for any

compact Riemann surface (under the assumption that one of the monodromy matri-
ces is semisimple). In the case ¢, — c, < 1 both the estimates coincide.

+1—pa

Example 7.1.1 Consider system (1.2.1), (2.1.4) . Since the weight v(0) of the ca-
nonical extension G°, constructed by the monodromy x of the system, is equal to
two (see Section 2.3 and Theorem 6.2.1), we have y(0) = 0,l =1, and m = 0 in
(7.1.5). Thus, the monodromy representation of this system can be realized as the
monodromy representation of some Fuchsian equation (1.2.11) with the singular
points ay, . .., a, without additional singularities.
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7.2 Fuchsian equations and systems

The main result of the part is formulated as follows

Theorem 7.2.1 For any Fuchsian equation (1.2.11) on the Riemann sphere there
always exists a Fuchsian system with the same singular points and the same mon-
odromy.

Proof. In order to prove the theorem we need to extend some constructions from
local theory of Fuchsian systems on Fuchsian equations.

The concepts of a Levelt’s filtration and of a Levelt’s basis for equations are the

same as for systems. If y;, ..., y, is aLevelt’s basis in U{‘ for (1.2.11), then instead
of (2.2.25) we have the factorization
Y1y ¥p) = (V1y- .., 0p) (T — ai)q"'(i —a)E (7.2.1)

with holomorphic v; and with v;(a;) # 0.

Lemma 7.2.1 If in factorization (7.2.1) for a Levelt’s basis y., . ..,y, the equality
vj(a;) = 0 holds, then

Proof. From the fact that E; is upper-triangular it follows that
(yla e 7?/1) = (vh cee ,’Uj)(.’E - ai)q’z (‘i‘ - ai)E']) (722)

where @7 = diag(y},...,¢!), E! is formed by intersections of the first j rows and
columns of F;. Therefore,

(=) (@~ 0o

v v, . .
_ < 1 L, >($—ai)¢1_‘p“(i—ai)E‘J~
T —a; T —a

If v;(a;) = 0,0]7" > ¢, then all -, =1,...,J are holomorphic at a; and the

elements of &7 — ¢! I are nonnegative. Thus, from the definition of valuations we
get the inequality

wi(y;) > Pl +1
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which contradicts the choice of the basis ¥, . . ., y,. Therefore, el™t =l

The exponents 3}, ..., 3 are the roots of the indical equation

AA=1)---A=p+1)+XA-1)---A=p+2)ri(a;)) + -+

+MA=1) - A=p+j+1rj(a;)+ - +71p(a;) =0 (7.2.3)
for equation (1.2.11).

Indeed, let yy,...,y, be a strongly Levelt’s basis (see Section 2.2) and let for a
given 3 we have that either j = 1 or ¢!~' > 7. Then by (7.2.1) we obtain

y; = (- a,-)B{vj(:v)(l + o((& — a,)'/? I’z - a;)),

where v;(z) is holomorphic at a;. Substituting y; in (1.2.11) and multiplying the
result by (£ — a;)%, for x = a; we get equality (7.2.3) with A = B

Inversely, if g is a root of (7.2.3), then there exists a solution of (1.2.11) of the form
y = (& — a;)*h(x) with holomorphic h(z), h(a;) # 0. It follows from (7.2.1), that
Ao is an exponent 3} for some j (see [In] for details).

Lemma 7.2.2 Let the function h(x) be holomorphic in the neighborhood U, of the

point a; and h(a;) # 0. System (1.2.1), constructed from equation (1.2.11) by means

of the substitution

Py
dzi-1’

is Fuchsian at the point a, and its exponents ,B,j at that point coincide with those of

equation (1.2.11).

(@) = ((z — a)h(z))’~ (7.2.4)

Proof. A straightforward computation shows that the matrix A of the system (1.2.1)
constructed by means of the substitution (7.2.4) from equation (1.2.11), (1.2.12)

has the following form: A = =B, where B =
0 L 0 0
0 =t 0 0
i—1)((z—a1)h) ‘ 1 ‘ :
0 e —_— - x 0
—Tphp_l - Ce . .. —Tzh _ (Tl"(Pﬁl)}{(ﬁz—az)hL

therefore the constructed system is Fuchsian at the point a;.
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By (7.2.4) and the definition of valuations it follows that
0i(f7) 2 @iy,
thus, for any solution f of the constructed system we have
ei(f) = wily) = &1,

since f! = y. Let y;,...,y, be a Levelt’s basis in (~]i* for (1.2.11). The latter
equalities mean that the basis fy, ..., f,, constructed from y,,...,y, by (7.2.4) is
a Levelt’s basis for the system. Thus, exponents of the system coincide with that of
equation.

Consider again the proof of Proposition 4.2.1 and apply it to the row y;,...,y,,
where y1,. .., y, isaLevelt’s basis for Fuchsian equation (1.2.11). Since Wronskian
of these functions has no additional zeroes or poles, we have that d; = 0in (4.2.12)
and d' = 0 in (4.2.19). From the fact that the constructed system is Fuchsian at q,
we get that det V/(a;) # 0, therefore s; = 0 in (4.2.15). Thus d = 0 in (4.2.20) and

of course ¢; = 0, B = 0 (we started from y,, ...,y, with ¢, = 0 and with any B).
So, from (4.2.20) we get the classical Fuchsian relation

& -2 -1

Sy g = nz2ee-l) (7.29)

i=1 j=1
for Fuchsian equation (1.2.11) on the Riemann sphere.

Consider factorization (2.2.25) for system (1.2.1), constructed from (1.2.11) by
(7.2.4). Denoting by T}(Z) the corresponding Levelt’s matrix, we obtain

T(%) = Vi(z)(z — )" (& — a))™, £ €U} (7.2.6)

Lemma 7.2.3 All principal minors of the matrix V/(x) in factorization (7.2.6) for
the fundamental matrix T)(Z) are different from zero at the point a,.

Proof. Consider the first components vy, . . . , ¥, of the first ¢ columns of the matrix
T;. The analytic functions y, (%), ..., y;(Z) are linearly independent, and the space
X that they span is invariant under the action of the monodromy operator o} (this
follows from the upper-triangularity of the matrix E; in decomposition (7.2.6)).
Therefore, X, is the space of solutions of some equation (7.1.8) that is Fuchsian
in U;. From the uniqueness theorem for the Wronskian W;(Z) of the functions
Y1,.--,¥; it follows that the number of additional apparent singularities of this
equation in U, is finite. Let O, C U, be such that O, does not contain those points.
Now the assertion of the lemma follows from the fact that the :th principal minor
of the matrix Vj(z) in question coincides with the determinant det V}*(x) of the
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matrix V*(z) figuring in decomposition (7.2.6) for the fundamental matrix 7"(%),
constructed from the functions y, (), . . ., ¥;(Z) by means of the substitution (7.2.4),
and , by Lemma (7.2.2) this last determinant does not vanish at the point a;.

Proof of Theorem 7.2.1. With no loss of generality one can assume that a; = 0 and
oo is not a singular point of equation (1.2.11) (this can be always achieved by a
suitable conformal mapping of the Riemann sphere). Use substitution (4.2.11)

. n ) 7!
= (H(x - ai)f“> dxj_'?f (7.2.7)

=1

to pass from Fuchsian equation (1.2.11) to system (1.2.1). By Lemma 7.2.2 we have
that this system is Fuchsian at the points a,,...,a,, and its additional apparent
singular point oo is a regular singular point. The fundamental matrix 7'(zZ) of the
space of solutions of the system admits a decomposition

1

T(&) = Da@)D ()R(2), (7.2.8)

where R(%) is from (4.2.17), [,y =Ty in (4.2.17), Ty (z) = (v;,),

=19 =0,j#L, v =k 1<i <y, (7.2.9)
and
. 1 i 1 & p—1
I, = diag(1, peos H(x —a),..., x—za—_—l—)III(x —a)’)

=1 =1
(such a factorization follows from (4.2.16)).

Denote by I';(z), I'4(x) the matrices

F:}(l) = diag(l,x—(mz)’ o ,l.—(n—2)(p_1)),

Ty(z) = 2"~y (z) = z°, (7.2.10)
where C' = diag((n — 2)(p — 1),...,0), and denote by I's(x) the matrix
Fs(.’L‘) = Fgr\grlr;lr‘;l.

From form (7.2.9) of the matrix I'; (x)~in particular, from its lower-triangularity—it
follows that I's(z) is a lower-triangular matrix that is holomorphically invertible
off the points a; = 0 and oo and such that the elements on its principal diagonal
are nonzero constant numbers (equal to the numbers kj from (4.2.16)). Hence, the
same holds true for the matrix T';*.
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Lemma 7.2.4 There exists a lower-triangular matrix T(z), meromorphic on C
and holomorphically invertible off the point o, = 0, such that the matrix I'7(z) =
Ls(x)T5! (x) is holomorphically invertible off the point co and is lower-triangular
with all elements on the principal diagonal equal to 1.

Proof.LetT5 ' (z) = (v;:), S = diag(m1, - - - Vpp)- The matrix 1% (z) = S~'T'5 ()
has unit principal diagonal and is meromorphic at the point 0. Each element fy?i
of I' has the form vJ,(z) = Qg'(1/z) + h%;(z), where Q§'(1/x) is a polynomial
and the function h?i(x) is holomorphic at zero. Consequently, the elements in the
(p — 1)st and pth column of the matrix ['L = T2~ - T', where

1 0
et =
0 -t 1

are holomorphic at zero. The remaining elements ’y;i of this matrix are also of the
form 7} (z) = Q1'(1/z) + h;(z). For the matrix I'; = I272.T1, where

1 0

g’ = 1 ,
- 10
0 -QP* 0 1
already the (p — 2)th and (p — 1)st columns are holomorphic, and so on. Iterating the
procedure whose first two steps were just described, after p — 2 steps we obtain the
sought-for matrices 'y = (Hf;zl Fg) S'and I'7(x) = T¢(z)l's " (x). The lemma
is proved.

The matrix I';(x)[4(z) can be written in the form
[7(2)l4(z) = Ty(z)Ts(2), (7.2.11)

where I'g(z) = ;' (z)I'7(x)T4(x) is a lower-triangular matrix that is holomorphi-
cally invertible off the point co, meromorphic at co, and with the elements on the
principal diagonal equal to 1.

Next, let us pass from the system (1.2.1), constructed by means of substitution
(7.2.7) with the fundamental matrix T to the system (1.2.1) with the fundamental

matrix
T' = T4(z)Tg(x)z= ("D,
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Lemma 7.2.5 The system (1.2.1) with the fundamental matrix T' is Fuchsian at the

points ay, . .., an, and has a; = 0 as a regular singular point and oo as a point of
holomorphy.
Proof. That the constructed system is Fuchsian at the points a,, . . . , a,, follows from

the fact that det(I's(a;)T's(a;)) - a ™ ?®~) % 0 and from holomorphy of T', s at
a;. From relations (7.2.9) and (7.2.9)-(7.2.11) we obtain

[, Tez™"D0-T(3) = ;03T (%) = Tel; 'T3T(2) =

1
FGF;}FQFl—IF;lF;ngT(j) = FGF:}FQR(T)
z
Since the matrices I's(z), I's(z) - T'y(x) are holomorphically invertible at co and

R(1/z) is holomorphically invertible at the points p~*(co) of the universal covering
S, we get that oo is not singular for the constructed system. The lemma is proved.

Factorization (7.2.6) for 7" at the point a; = 0 is connected with a similar factori-
zation for T as follows

T'(%) = [4(2) V2 (x)z®1 251, (7.2.12)

where V(z) = Tg(x)Vi(z), ®] = &, — (n — 2)(p — 1)[. Since the matrix ['s(z)
is lower-triangular and holomorphically invertible at zero, Lemma 7.2.3 guarantees
that all principal minors of the matrix V,°(z) are different from zero at a; = 0.
Next, it follows from the form of the matrix ®/ that valuations ¢J of T" at zero are
connected with the corresponding valuations ¢’ of T by the relations

G2el-n=-2G-1), j=1,..,p (7.2.13)

By Lemma 4.1.2 there exists a meromorphic on C holomorphically invertible off
a; = 0 matrix I'(x) such that

[(z)T4(z)V2(x) 21 25 = Vy(z)z®1+C 5™ (7.2.14)
1

with C from (7.2.10) and with det V;(0) # 0. Consider the system with the funda-
mental matrix T'(£) = ['(z)T"'(z). This system is already Fuchsian at all the points
ap,...,an. The theorem is proved.

Let us again denote by 37 the exponents of the constructed system. From (7.2.13),
(7.2.14) and (7.2.10) we obtain
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Corollary 7.2.1 The exponents B! of the original Fuchsian equation (1.2.11) and
the exponents (3] of the Fuchsian system (1.2.1), constructed according to Theorem
7.2.1 are connected by the equalities

B=p-m-2G-1), Bl =5, (7.2.15)
i#1, 7=1,...,p.
From Theorem 7.2.1 we also get the following sequence of statements.

Corollary 7.2.2 The solutions of the original Fuchsian equation (1.2.11) coincide
with the first components of the system (1.2.1) constructed in Theorem 7.2.1.

Proof immediately follows from the forms of transformation (7.2.7) and of the
transformations used in the theorem .

Proposition 7.2.1 Suppose the representation x is reducible and each monodromy
matrix G; = x(o;) can be reduced to a Jordan block. Then there is no Fuchsian
equation (1.2.11) without additional apparent singular points, the monodromy of
which coincides with x.

Proof. Let such a Fuchsian equation exist. Then by Theorem 7.2.1 and Corollary
7.2.1 there exists a Fuchsian system with the same monodromy and with valuations
@t ..., 7, such that ¢! > ?. But this inequality contradicts the statement of
Proposition 5.2.1. Thus, such an equation does not exist.

Proposition 7.2.1 can be directly deduced from Fuchsian relation (7.2.5) as follows.

If the matrix x(o;) can be reduced to one Jordan block, then by the properties (2.2.6)
and (2.2.8) of valuations one has

P> > P (7.2.16)

for a Fuchsian equation at a,. Indeed, the Jordan basis ey, . .., e, is also the Levelt
basis in this case (cf. the proof of Proposition 5.2.1). And we obtain that

0! = @i(e;) = pi(ate;) = pile; +e;—1) > min{e?, pi(e;-1)},

therefore by (2.2.8): wi(e;_) = ¢! > ol
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If x is reducible, then for some [, 1 <[ < p, [ independent solutions vy, ...,y of
the equation generate Fuchsian equation (7.1.8) (with p = [). Since for each singular
point a; : (y1,...,y) = C(el,...,e}), where e, ..., e} are the first [ elements of
the corresponding Jordan basis at a;, we get that the exponents 37 of the equation at
a,...,a, coincide of that for the original equation. The constructed equation may
have additional apparent singularities b, ..., b,,, where @i = ¢x(y;) > 0. Thus,
by (7.1.8) we get

n m |
, , =-2)Ii(l -1
IR D) W P it LU NPT
i=1 j=1 k=1j=1
Let us show that
1
- (l-1
S @ > mil — 1) (7.2.18)
j=1 2
forall £ = 1,...,m. Consider a basis y;,...,y; in the space of solutions for the

constructed equation such that
yi(2) = (z = b)) hi(2), ..., 0u(Z) = (z - be) T (E), (7.2.19)

where h;(Z), j = 1,...,l are holomorphic at p~'(by); t > 0. Obviously, such
a basis always exists and can be constructed by induction. Indeed, if y;(Z) =
(x = bk)"h;(Z), j = 1,2, then a suitable linear combination y; = sy, + 2y has
the form (z — by )"*' hy(Z), and so on. Thus, we get from (7.2.19) that @, (y,) > j—1,
which implies (7.2.18).

Subtracting (7.2.18) from (7.2.17), we obtain

i Eﬂzj < W (7.2.20)

i=1 j=1

But from inequalities ¢* > ?, 1 <t <[, | < j < p it follows the inequality

n 1
Bty a<

1 =1 i=1 j=1

n
1=

(n=2t-1) _(n-2p(-1) (n=2pp-1)
2 2 2 ’
which contradicts Fuchsian relation (7.2.5).

<P
1
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Theorem 7.2.2 An irreducible monodromy representation x can be realized as the
monodromy representation of some Fuchsian equation (1.2.11) without additional

apparent singularities if and only if the maximal Fuchsian weight of x is equal to
(n—=2)p(p—1 .

2

Proof. If v,,(x) = L’—‘—g)—”i”——ﬂ , then from (7.1.5), applied to v,,(x) we get m = 0
for the number of apparem smgularmes of the Fuchsian equation, constructed in
Theorem 7.1.1.

Let such an equation exist and let 37 , ¢? be its exponents and valuations respectively.
Consider the bundle G* with A = (A!,... A™), where

N=(p5 - #5), 7=2,...,p,

But from (7.2.12) and (7.2.10) it follows that
GP=0((n-2)p-1))d0(n-2)(p-2)) & - & O(0). (7.2.21)

(See Section 5.2 for details.) Thus,

() =p(n —2)(p in_g z(f_‘___‘?_)_é_’@;ll.

ij=1
Due to (7.1.5) we again obtain

(n—=2)p(p—1)
5

7m(X) =

7.3 Examples

In what follows many calculations and other intermediate steps are left to the reader
as exercises.

1. Consider the case p = 2,n = 1. The only Fuchsian equation (1.2.11) with at
most one singularity a; = 0 is
d’y 2dy

TSt oo =0 (1.3.1)
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(As we see, it really has a pole; so there are no Fuchsian equations (1.2.11) which
have no singularities at all). Its solutions are y = ¢; + ¢, /z; they do not branch. But
S = C\ {0} is simply connected, S = S and A = {identity}. So the monodromy
must be trivial, and it is realizable by (7.3.1).

If n = 2, it is convenient to choose singular points a; = 0, a; = oco. (This can
be achieved using an appropriate conformal map of C). All Fuchsian equations
(1.2.11) of the second order with these singularities are

2
Ty ody by g (7.3.2)
T

dz? zdz

with arbitrary constants a, b. This is well known Euler’s equation; it can be solved
easily. Introducing a new independent variable ¢ = In z we get

d’y dy
Eﬁ+(a_1)—&?+by—0'

If the indical equation
M4+(@a-DA+b=0 (7.3.3)

has two different roots A,, A, then solutions to (7.3.2) are y = ¢,z + cpz*2. If
(7.3.3) has a double root \, then solutions to (7.3.2) are y = caztnz + cpzt. Sis
the "ring" C\ {0}, A = m,(S) = Z = {o*}, and we want to realize just the one
matrix G = x(0). Take y, = 2™,y = 2’ ory, = z*Inx,y, = = for the basis
in the space of solutions. Then for the deck transformation o corresponding to one
turn around the origin in the positive direction we obtain the monodromy matrices

2mid, 2mwiA 2mie

0 2miA
x(o) = ( "o e ) or x(o) = ( % 2mih ) (1.3.4)

€

Clearly any matrix G is conjugate to one of the matrices (7.3.4). So in this case
Hilbert’s problem for equations has a positive solution.

The case p = 2,n = 3 (the case of the Riemann equation) is the unique nontrivial
case for which the difference d° from (7.1.4) is equal to zero.

Proposition 7.3.1 Each irreducible representation x withn = 3,p = 2 can be rea-
lized as the monodromy representation of some Riemann equation. Representations
which are conjugate to representations of the following form:

x(01)=</}; i‘l >,x(oz)=<A02 ;22)
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1
—
x(73) = ( R ) (73.5)
Mz
where cic; # 0, ¢z = ——A(Lf\ﬂl%*)“zﬂ # 0 cannot be realized as the monodromy

representations of any Riemann equations.

Proof. 1t follows from Theorem 7.1.1 that m = 0 in (7.1.5), therefore each irre-
ducible representation is realizable by a Riemann equation. From Theorem 7.2.2 it
follows that each representation of form (7.3.5) is not realizable in this way.

The complete answer for a Riemann equation is presented in [KS]. It is proved there
that all two-dimensional representations with three singular points can be realized
as monodromy representations of Riemann equations except representations which
are conjugated to representations of form (7.3.5) and of the next form:

= A0 = 0 = 2 fe
Gl:(O1 /\2)7(;2:(%1 u2>aG3=GzlGll,
with A; # Ag, gy # fi2, Aipin # Aapia.

The constructions of Theorem 7.2.1, applied to the hypergeometric equation

d’y y-(at+B+lzdy  af

dz? z(l - 1) dr z(1 -x)

y=20 (7.3.6)

lead to the Fuchsian system

2= ((cs 5)2+(0 vmtaan )727)7

(In this section, dealing simultaneously with vectors and scalars, we use arrows to
indicate vectors).

2. Now as an illustration to local theory, presented in Section 2.2 we shall apply the
local theory to one of the most well-known equations of the mathematical physics
— Bessel’s equation.

Let us first recall some basic facts about the equation

d’y | plz)dy | q(x)
AT 3 Sl A U A Sl PR 7.3.7
dz + T dzx + T2 y=0 ( )

with p, ¢ holomorphic in some disk with the center at 0. This equation has a Fuchsian
singularity at 0. The indical equation to (7.3.7) at 0 is as follows:

AN = 1) + p(0)A + ¢(0) =0. (1.3.8)
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A short (but formal) way to derive (7.3.8) — or, rather, to remember it — is to replace
in (7.3.7) p(z) and q(z) by their values at x = 0. The equation thus obtained
is Euler’s equation (7.3.2) with a = p(0), b = ¢(0). And (7.3.8) coincides with
(7.3.3). Later we shall arrive to (7.3.8) in a less formal way tieing it with our
previous considerations.

Let A;, A2 be roots of (7.3.8), such that Re); > Re),.

The corresponding Fuchsian system (at the moment "Fuchsianity" means Fuchsia-
nity at 0) is a system for an unknown vector

(v
y_<f”3¥>'

This system has the following form:

aj 1., (0 1
23000 C@=( g 1 b ) 039
A characteristic equation for C(0) is just (7.3.8).

Let Y(Z) = (4.(£), 72(Z)) be a Levelt’s fundamental system of solutions and let

Y(£) =V(z)z®zf = (ﬁl(m),ﬁz(x))m( %1 932 )x< /6 :2 ) (7.3.10)

be its factorization of form (7.2.1). (Recall that E is upper triangular, e can be
0 in one cases and # 0 in other. We know that matrices C'(0), L(0),® + E are
similar. Thus, \; = ¢7 + u7 which provides the better motivation for (7.3.8) from
the point of view of our theory than the arguments presented above: (7.3.8) allows
to determine ¢’ and 7. Namely, let A\; = ; + iv;. As 0 < Repd < 1, we get
@’ = [B;], &’ = {B,} + iv;, where [z], and {z} denote the entire and nonentire
parts of the number x respectively. (Cf. 2.2.2). It follows from (7.3.10) that

71(2) = 2" &' 5, (z),
while the corresponding expression for §, may contain a logarithm (if e # 0). Taking
into account what we know about Levelt’s valuations, we obtain the following
conclusion:

i) equation (7.3.7) always has a solution of the form 1 f(z), where f is holomor-
phic in some disk with the center at 0, and f(0) # 0. (If there were f(0) = 0, then
it would follow that (2 f(x)) > ).

In addition to it we shall prove the following statement:
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ii) if A; — A, is not integer, then (7.3.7) has also a solution of the form z*2¢(z),
where g(z) has the same properties as f.

Consider the first case : ' = ¢?%. Then Levelt’s filtration reduces to the following
trivial one:

{0} =X°Cc X'=X,

i.e. all nontrivial solutions have the same Levelt’s valuation. So all we need to
obtain a Levelt’s basis is to choose ¥, 7, such that the monodromy matrix G (which
describes the map ¢* in terms of the basis ¥, 7>) would be upper-triangular. But
in the case under consideration G can be transformed into diagonal form. Indeed,
since

pt—p? =t =@+ pl —p® = = Ay,

we have that u' — 42 is not integer. Thus, eigenvalues e*™*’ | j = 1, 2 of the matrix
G are different. This implies that e = 0 in (7.3.10) and 75(Z) =

= ¥’ 7*"G,(x), consequently (7.3.7) has the second solution of the desired form
and this solution is linearly independent of the first one.

Consider now the case o' > 2. Levelt’s filtration has the form
{(0}=X"CcX'cX’=X, dimX'=1.

A vector 3/, belonging to X! is defined in essentially unique way (up to a multiplier)
and there is a freedom in the choice of ¥, from X2\ X!. For any choice of such 7,
we obtain an upper-triangular G and E. Indeed, since A\; — Ay = ! — p? + pu! — p?
is noninteger and 7 are integer, it follows that u! ~ 42 is noninteger number, so that
eigenvalues of G are different and G has two linearly independent eigenvectors.
We know that 7, is one of them, thus we can take ¥, to be another eigenvector.

We obtained i) and ii) as immediate consequences of Levelt’s theory, but classically
they were proved in another way (and long before Levelt). Classical proofs can be
found in many textbooks, e.g. [Ha], [CoLe], [Tr]. Tricomi considers only the case
of 2nd order Fuchsian ODE (which we need in this section), whereas other two
books contain a more complicated treatment of Fuchsian systems of any order.

3. Now we turn to Bessel’s equation

d*y ldy v?

— 4+ -—=+(1-—=)y=0 7.3.11

dw2+a:dz+( mz)y ( )
(v is a parameter). Its solutions are called Bessel’s functions (so to say, in a broad
sense). There are special solutions which have special names. One of them is also

called Bessel’s function (so to say, in the narrow sense).
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Equation (7.3.11) has a regular singular point x = 0 and irregular singular point
z = oo. The indical equation at z = 0 is as follows:

A - =0. (7.3.12)

According to general theory , one can consider solutions to (7.3.11) as functions on
S, which is an universal covering surface for S = C \ {0,00} = C\ {0}. Thus, it
would be more correct to write y(Z£), as we do in numerous cases. However, in this
section we make a concession to classical treatments and write y(z), when dealing
with the Bessel functions.

We shall study a behavior of solutions to (7.3.11) near x = 0. Thus, our approach
is local. But since there are no other singularities in C, our results will be not so
local. Formulas we shall write will be valid in the whole C

(to be precise, in S) and the functions appearing there will be either entire functions
or meromorphic functions having only pole at x = 0 up to multipliers like £* and
up to change of independent variable like something with the square root z = 2/t
. (Of course, this is the simplest part of the theory of Bessel’s functions. Another
part concerns their behavior at co. Also, there are approaches to this theory based
not on equation (7.3.11), but on the integral representations for these functions and
on the theory of group representations).

Formula (7.3.12) prompts the change y = x“z of an unknown function. One gets
the following equation for z:

d*z + 1+2vdz
dz? z dx

and the corresponding indical equation at the point 0:

+2=0, (7.3.13)

AA + 2v) = 0. (7.3.14)

Applying i) and ii), we obtain the following three cases:

1) if 2v is not integer, then (7.3.13) has solutions of the next forms: f(z) and
2v .

z*g(z);

2)if 2v € Z and v > 0, then (7.3.13) has a solution of the form f(x);

3)if 2v € Z and v < 0, then (7.3.13) has a solution of the form z2/*! f(z).

Above, f and g are entire, because 0 is the unique singular point of the differential
equation (7.3.13) in C.

Now pay attention to the parity properties of the coefficients of (7.3.13) : a coefficient
at j—; is odd and other coefficients are even. First of all we shall try to use this fact

in the most "naive", "immediate" way; later we shall use it more effectively.
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Immediate conclusions concern the existence of even entire solutions. Parity of
coefficients implies that if z(x) is a solution to (7.3.13), then
y(z) := z(—z) is also a solution. Thus,

f@)+ f(-2) (7.3.15)
in the first two cases and

1‘2lulf(1?) + (—z)zl"lf(—l‘) (7.3.16)

in the third case also are solutions. They are entire and even. Solution (7.3.15) is
nontrivial, because f(0) # 0. Solution (7.3.16) could be identically equal to zero
only if z2“ f(z) were odd. Since f(0) # 0, this would imply that 2|v| were odd.
Thus, in the case, when 2v is a negative integer odd number it remains uncertain
whether (7.3.13) has an entire even solution.

Later we shall see that a more clever use of the parity of the coefficients of (7.3.13)
provides a positive answer to the last question. And in fact, we shall see a more im-
portant thing: in the case , when 2v is a negative integer odd number (independently
of the sign of v), (7.3.13) has solutions of the same form as in the case 1) (so one
of them again is of the form f(z) with entire even function f, f(0) # 0), whereas
in the case v € Z equation (7.3.13) has a logarithmically branching solution ( and
as we already know, it also has an entire even solution of the form f(z) for v = 0
and z?I! f () for v < 0). The arguments below from the very beginning assure that
f, g are even (so the primitive arguments above with (7.3.15), (7.3.16) are needless
in reality).

4. Return to equation (7.3.7) and assume that p and ¢ are even functions (of course,
holomorphic in some neighborhood of 0). Introduce a new independent variable
t such that z = 2+/t. ( The multiplier 2 is not essential, simply it is convenient
for calculations). Dealing with (7.3.7), we shall return to "less classical" notation,
where S is replaced by S, x is replaced by Z etc. When we write = 2/, this
means that we have a two-sheeted covering S — £ =C\ {0}, z € S, t € . Of
course, this 3 is the same Riemann surface as .S, but when we consider a covering
S — S, it seems to be more convenient in our case to distinguish these two copies
of S. The only nontrivial deck transformation for S — ¥ is the following one :
¢ : x — —z. An even function on S is the function such that it can be obtamed
as a lifting of some function on . By virtue of the composition S — § — %, §
becomes the universal covering of ; when considered in such a role, S w1ll be
denoted by . In terms of ¢ we obtain the equation

L1 +p(2\/f)y N q(2\/f)y

2t 4t2

=0, (7.3.17)
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where a derivation with respect to ¢ is denoted by dot. Since p and g are even, the
numerators in (7.3.17) are holomorphic functions in ¢ in some neighborhood of 0.
Thus, (7.3.17) is of the same type as (7.3.7). When dealing with y(z(t)), we again
write y(t), which can be considered as a kind of quite common freedom of speech.
But if we want to be precise, we must remember that solutions to (7.3.7), (7.3.17)
are not single-valued functions in z, t; they are functions on S = £ (on some part
of § = £, which is a covering of some punctured neighborhood of 0 in ¥). And
even from the most formal point of view there is no harm in writing y(f) instead
of y(),~as S = ¥, & and ¢ may well be the different notation to the same point
(which covers points z € Sand t = ’T € X). (So some freedom of speech is not in
writing (t) instead of y(z(t)), but in writing y(z) instead of y(Z)!).

If A\;, X, are solutions to the indical equation for the original equation (7.3.7), then
the solutions to the indical equation for (7.3.17) are \; /2, A2/2. This is clear even
without wring out the latter indical equation, just in view of the formal way of

obtaining the indical equation, because the former z* (in reality, z*) now becomes
M2,

Now, if A\;/2 — \;/2 is noninteger, then i) assures that (7.3.17) has two linearly
independent solutions of the form

2f (), t2%g,(2)

with f;, g; holomorphic at 0 and f,(0) # 0, g,(0) # 0. Thus, the parity properties
of p, q allow somewhat to strengthen i) and ii):

iii) if A, — A, is not integer, then (7.3.7) has solutions of the form ' f(z), £**g(z),
where f, g are even and f(0) # 0, g(0) # 0.

Of course, these f, g are entire if, in addition to our assumptions, p and ¢ are entire
functions.

5. Applying these considerations to (7.3.13), we come to the equation

1+Vé+%z=0 (1.3.18)

Z+

with the indical equation A(\ + v) = 0. If v is noninteger, then (7.3.18) has an
entire solution, corresponding to A = 0 and also a solution of the form ¢t~"- (entire
function), corresponding to A = —v. If v € Zand v > 0, then (7.3.18) has an entire
solution, corresponding to A = 0. If v € Z and v < 0, then (7.3.18) has a solution
of the form

t™" - (entire function), (7.3.19)

which is also an entire function. However, the previous entire functions do not
vanish at t = 0; and (7.3.19) equals zero at ¢t = 0.
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Letz = 327, c,t™ be an entire solution. Substituting this into (7.3.18), one obtains
the recurrent relations

nn+v)ec,+c1 =0, n=1,2,... (7.3.20)

Ifv=-Il,1€Z,1 >0,then it follows thatn +v = 0 forn = [, so ¢,_; = 0.
Then, (7.3.20) implies that ¢, = 0 for all n < (. In this case we can start from
arbitrary ¢; and then define ¢, for n > [, using (7.3.20). For other v we can start
from arbitrary ¢, and then define ¢, for all n > [. A particular choice of ¢; or
¢o means a kind of "normalization”. "Standard" ways of "normalization” in the
theory of differential equations are related either to the Cauchy matrix, which is
the identity matrix at some prescribed point or to orthogonality. In these cases one
performs "normalization” having in mind some exact criterion. But for the special
functions "normalization" often means a more simple form of their coefficients or
some formulas,—a criterion , which scarcely can be formalized. In the theory of
Bessel’s functions the following "normalization” is used:

—1)
ifreZ, v<0, v=-[ then¢g = __—l') ;
) 1 ) )
otherwise ¢g = ————, where I is Euler’s gamma-function.
F(v+1)
Then one obtains the following series:
(="
F( t". 7.3.21

;F(n+1)F(n+u+1) (7.3.21)

(If v = -1, then the first [ coefficients have infinite denominator, so this series starts

! .
from %Lt’. It is remarkable that in this "exceptional” case one manages to write
the same formula as in the "typical" case).

We shall use later that the map
CxC—C, (v,t)— F,(t) (7.3.22)

is holomorphic. This is proved as follows. It is well known that 1/T°(s) is an entire
function in s. Thus,

i e
T+ 1)T(n+1+v)

is an entire function in (¢,v). It is sufficient to prove that for any r > 0 the
convergence fi(t,v) — F,(t) is uniform with respect to |t|, |v| < r. Fixj > r.
Let M be such that
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1

———— | < M forall ith [v| <.
‘F(j+1+1/) < M forall v with [v| < 7

Then for |v| < r and integer n > j we have
In+v|>Re(n+v)>2n—12>2n—-j2>1,

1 1
, = <M.
‘I‘(n+1+u) (n+tv) G+l+LG+1+v) =

Thus, if m > 1 > 0and |t|, |v| < 7, then

|[fi4m(t,v) = fim(t,v)| =

jt+m Jj+m
_1 ntn n
Z I'(n+ i r ! +1+ sM Z ; r’
n=j+I+1 (n )L (n v) n=gtl+l TV

which proves the uniform convergence.

Returning to (7.3.11), one gets a special solution to (7.3.11), which is called Bessel’s
function (in the narrow sense), it is also called Bessel’s functions of the first kind
and is defined as follows:

J,(z) = t“"*F,(t) = (z/2)" F,(z*/4). (7.3.23)

Usually one deals directly with this function. However, from the local point of view
we explain here F, seems to be somewhat more convenient: it never branches,
series (7.3.21) is slightly simpler than the corresponding expression for .J,. (But we
do not claim that F,, is more convenient for all purposes).

Notation F, is used in the book [GM]. These authors attribute this function to
G.Greenhill. Tricomi in [Tr] also uses this function, but he denotes it by E, (¢).

In (7.3.11) we can replace v by —v without any change. We never used any condition
on v like fixing its sign or sign of Rev. Thus, J_,(z) is a solution to (7.3.11) as
well as J,(x). If v is not integer, then

J_,(z)=z" (f‘—("iu—"rl) +.. ) ,

Ju(a:)=x"<-2u—r—(i—_+_—1—)+...>,

where dots denote the convergent power series in x (in fact, in z?) without free
term. Clearly, J,(z) and J_,(z) are linearly independent; so we found two linearly
independent solutions to (7.3.11). In different terms we can say that
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are solutions to (7.3.13), and
t2J,(2Vt) = F,(t), t™/*J_,(2Vt) = t™"F,(t)
are solutions to (7.3.18). If v is noninteger, then

1 ™"

)+, t—uF_,,(t) = m

E )= Fv+1

are linearly independent solutions to (7.3.18).

Let us summarize what we proved for noninteger v. We may assume that Rev > 0,
because (7.3.7) contains only v%. Then (J,,J_,) is Levelt’s fundamental system
of solutions to (7.3.11). The related matrices £ and ¢ are diagonal and if v =
B+, B,v € R, then o' = [[], p' = {B} + 17, ¢* = =[] — 1 for noninteger
B and ¢* = —[f] for B8 € Z (in the present case this happens only when v # 0),
p? =1— {8} — iy for noninteger 3, and p* = —ivy for 3 € Z.

The essential new information we got comparatively to item 3 is that the case
v =k+1/2, k € Zis not exceptional as far as concerns the existence of solutions
of the special type we discussed. By the way, it is exceptional in another sense: in
this case Bessel’s function can be expressed by means of elementary ones.

If v = —1/2, (7.3.13) becomes %—“;— z = 0. This equation has a fundamental
system of solutions cos x, sin z. It turns out that
Py = Fy(%), Ry = ZRy(D)
-1 =4r-4 47 3 9 3 47

up to a multiplier are just these functions: some computation with help of (7.3.21)
and well known properties of I' shows that

sin x.

) =

1 2
) = —\/_7—1' Cos T, F%( ﬁx
And (7.3.23) gives elementary expression for Jz1 .. In order to see that other Ji 112

also have elementary expressions, one can use the recurrent relation

2
Jpsr +Joy = =27, (1.3.24)
T

IE2 I2
vy T

which can be proved as follows. First, a calculation using (7.3.21), shows that
F,(t) = —F,41(t). Thus, it follows from (7.3.18) that
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1+v 1
F,_,+2 - "’TFL,+1 + E‘F,, = 0.

After we replace v by v — 1, the latter relation becomes equivalent to (7.3.24).

6. Let now v € Z. In this case we usually write n instead of v. We can assume that
n > 0. We have

s )J t

Z L@+ 1 G-n+1)

j=n

_ ( 1)n+mtn+m
Z «L(n+m+1)['(m+1)

= (=1)""Fu ().

After we proved this for n > 0, it is easy to see that the formula
F_,(t) = (-1)"t"F,(t) (7.3.25)

is valid for all n € Z. Thus, t™"F_,(t) = (—1)"F,(¢) is the same solution to
(7.3.18) as F,(t) up to sign. In terms of .J,, (7.3.25) means

J_n(z) = (~1)"J,(2). (7.3.26)

Later we shall construct a solution to (7.3.18) (with v = n) which branches logarith-
mically: it would follow that the only solutions which do not branch logarithmically
are multiples of F,. But it is instructive to give a direct proof of the latter fact using
only "general consideration”.

Roots of the indical equation for (7.3.18) are \; =0, A, = —n,s0 p' = 0,
©* = —n, p’ = 0. Writing a Fuchsian system (7.3.9) for (7.3.18), we find that

0(0).—.<8 _1n)

Recall that in (7.3.10) ® + FE is similar to C(0).

If n = 0, then C(0) is the Jordan block of the second order, = 0 and therefore
E is similar to such a block. Thus, e can not be equal to 0, and the second solution
from the Levelt’s fundamental system branches logarithmically.

If n > 0, then the argument must be somewhat more subtle , because C(0) is
diagonalizable and the fact that
0 0
(o »)+E
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is similar to it does not provide enough information. Assume that (7.3.18) has a
single-valued solution z, which is linearly independent of F,. Its valuation must be
p(z) = =n.Thus, 2 = 22| ¢;t’, c_, # 0,ie. 2 = t""w with entire w. Then w

must be a solution to (7.3.18) with n replaced by —n, i.e. solution to

m+1§ﬁw+%w=u (1.3.27)
This can be easily checked immediately, but in reality we already know this. Indeed,
if z is the solution to (7.3.18) (with v replacing by n), then z(x?/4) = z "y(z),
where y is a solution to (7.3.11). Thus, y = const - z~"w; const is of no importance.
We see that the passage from y to w is the same change of dependent variable as
the change y = z"z, which we considered in item 3, only with —n instead of n.
(Remember that in (7.3.11) one can replace v by —v). Thus, w satisfies (7.3.13)
with n being replaced by —n, i.e.

d?z 4 1—2nd_z
dx? r dz

and then, as we know, in terms of the independent variable ¢, w is a solution to
(7.3.27), the latter being (7.3.18) with v being replaced by —n.

+2=0, (7.3.28)

Initem 5 we tried to find a power series which is a solution to (7.3.18) and found out
that in the case v = —[, [ € Z, [ > 0 the only solution is const-F_;. For (7.3.27)
this means that the only solution to it, which is holomorphic in some neighborhood
of 0 is a multiple to F,; its first term is c,t™ and not the ¢y. In terms of (7.3.28) this
means that this equation has no solutions of the form

z=2""(co+ cux* +caxt +--), ¢ #0,

where the term in the brackets is an even function which is holomorphic in some
neighborhood of 0. We want to prove a somewhat more general statement: (7.3.28)
has no solution of the form

z2=2 (o + T+ cex® + 3z + ), co # 0.

Assume that there exists such a solution. Then z(—z) is also the solution (because
in (7.3.28) the coefficient at z is odd and other coefficients are even), and so the
even function

2(z) + 2(=x) = 7(2¢p + 2¢22% + 2c4z* + - -)
would also be a solution, which is contradictory.

If in (7.3.10) there were e = 0, then £ would be equal to 0, because we know that
w = 0.
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Thus, (7.3.13) would have a Levelt’s fundamental system of solutions, which would
be single-valued on S. (Conversely, if there were two linearly independent single-
valued solutions on S, then o* would be an identity map of X, thus in any basis
there would be E = 0). In Levelt’s basis the second solution would be of the form
z72(co + 1T + -+ +), ¢ # 0. But (7.3.13) does not have such a solution. So,

0 e .
E—<0 O)Wltheaéo.

Returning to the beginning of item 2, we obtain in the corresponding(7.3.10)

<n 0 ) (0 e)
(Fi,i2) = (B, Gp)eN 0~ g\ 0 0/

" 0 1 elnz 1 2mer
=V("’)<0 x‘”)(O 1 >’G=<0 1 )

By changing 7, one can make e any given number except 0. Prescribing this
number defines g, up to a summand from Cy; . A standard choice of ¥, is provided
by a special kind of the second solution to (7.3.11) - the so-called Neumann-Veber
function (or Bessel’s function of the second kind). It is usually denoted by N, or Y,,;
we shall use the first notation.

N, is defined for all v, not only integers. First, we shall give its definition for
noninteger v:

N, := ! (Ju(x)cosv — J_,(x)). (7.3.29)

sin v

Clearly, it is solution to (7.3.11). Replace v by —v in (7.3.27) and consider the two
relations thus obtained as a system of 2 linear algebraic equations which allows
"unknowns" J_,, N_, in terms of J,, IV,. As a result we get

J_, =J,cosmv — N,sinmv, N_, = J,sinwmv + N, cosmv. (7.3.30)

This is easy to remember, because it looks like a rotation in X. However, it is not a
theorem, but rather a matter of definition ~having two independent vectors .J, and
J_,, we define new vectors NV, N_, in such a way that (7.3.30) holds.

It turns out that for any integer n and = # 0 there exists lim,_,, N, (z), which is
taken as definition for V, (). In virtue of analyticity of J, with respect to v (when
x # 0) we can use L’Hopitale’s rule, which gives

170 0

Nn = ; 8—VJII - (_1) Ej"]—u n . (7331)
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Convergence in N, — N, is uniform with respect to any compact K C S. Thus,
N, is a solution to (7.3.11) (with v = n).

Similarly to (7.3.26),
N_,(z) = (-1)"N,(z).

This follows directly from (7.3.31)-one does not even use (7.3.26). (Whereas the
proof of (7.3.26) is more "susbstantional"—one uses a precise form of the power
series for F, ). So for an integer v (when there is a special need in V,) it is sufficient
to consider only N},

Now our goal is to present N,, n € Z, n > 0, in a form A(lnz)J,(z) +
meromorphic function and to compute this A. In particular, we shall show that
A # 0. Thus, N, is really solution to (7.3.11), which is linearly independent of J,,.

Apparently it is again better to work in terms of (7.3.18) and its solutions. Since
each solution to (7.3.11) is equal to some solution to (7.3.18), multiplied by ¢~*/2
(recall that z = 2+/1), we shall define Z,(¢) in such a way that

N, (x) = (z/2)"E,(*/4) = t"/°E, (1),
i.e. for noninteger v we have

() = ——(F, () cos v — t=YF_ (t)).

sin Ty

(Notation =, is by no means common. We introduce it only for a minute. We
intentionally use a letter which is "free" in this area so that our use of it can not lead
to misanderstanding). It’s clear that

(-1~ [ _wOF, _LOF, ot _
T (=1) Ov f ov Fo o |,cn

Ea(t) =

1 [OF,(t) IF_,(t) 1
— | ZZv\T _ (_q\np—n o v\ ___n—n_n —1t.
e T Vi O S
By virtue of (7.3.25), the underlined term equals F,(¢). Remember that (7.3.22) is
holomorphic. Thus, the square bracket is equal to some Y ;o _ a;t’. Now Int =
2lnz —21n2, so

j=—-n

N,(z) = (1;/2 Z bz’ + lnx)J (z). (7.3.32)

j=-n

Usually one writes this in a slightly different form:
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No(z) = %(m(m) +O)Jn(z) + i ¢;2, (7.3.33)

j=—n

where C is the Euler’s constant. When passing from (7.3.32) to (7.3.33), one adds
2(C —1n2)J,(z) to 2InzJ,(z) and subtracts the same term from Y52 | b;z7.

Explicit formulas for c; are known, but they are more complicated than in (7.3.21)
and we shall not write them.

Logarithmic term makes clear that IV, is linearly independent of J,,. Then, as we
know, there must be ©(V,) = —n. Thus, forn > 0 b_, in (7.3.32) and c_, in
(7.3.33) are not equal to zero. The monodromy is clear from (7.3.33):

N,(c%) = %(ln(afv) —In2 4+ C)J,(z) + i bz’ = No(Z) + 4iJ,(z),

1 4 0 2
G’(O 1)’E‘(0 0)'

There is a generally accepted agreement that Bessel’a functions of the first kind are
just the J, described above. As regards to Bessel’s functions of the second kind, at
least 2 linear combinations of our NV, and J, are used as well (besides, there is a
version of IV, which differs from our IV, by a multiplier depending on v). Primarly
this is a matter of hystorical accidence, but also up to some extent this seems to be
related to the fact that usually the first vector of Levelt’s basis is uniquely defined
up to a multiplier, whereas there is more freedom in the choice of the second vector.
(Of course, there can be also reasons of the different nature,—e.g., functions J, +iN,
have simpler asymptotic at infinity).
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