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In a recent paper here, Benbow, Zonderman, and Stanley (1983) report that the 
coefficient of regression of offspring IQ on parental IQ is much lower among the 
gifted than in the population at large. Thus, Benbow, Stanley, Kirk, and Zonderman 
conclude in a second paper, the gifted resemble their parents less than do people in 
general. In this paper, I show that this result is an artifact of the particular estimator of 
the regression coefficient employed by Benbow, Zonderman, and Stanley. The least- 
squares estimator, which they employ, is severely biased downward, if the sample on 
the dependent variable is restricted to the upper tail of the distribution, and this is 
precisely the nature of Benbow et al. 's sample. That is to say, in a bivariate normal 
distribution with constant regression coefficient, samples restricted to values of the 
dependent variable (here, child's IQ) above a certain value will always produce a 
lower regression coefficient than unrestricted samples drawn from the entire but same 
distribution. I introduce an unbiased estimator that can be calculated from the sample 
statistics reported in the Benbow, Zonderman, and Stanley article and find that the 
coefficient of regression of gifted child's IQ on parental IQ is, in fact, higher than the 
regression coefficients reported in the literature for unrestricted samples. That is, 
Benbow et al.'s data suggest that the gifted in fact resemble their parents more than do 
persons in general. 

In their study of  cogni t ive  abilit ies in famil ies  of  ex t remely  gifted children,  

Benbow, Zonderman ,  and Stanley (1983) es t imate  the famil ial i ty of  these cog-  

nitive abilities by calculat ing the regress ion o f  offspring on parents. They report 

" m e d i a n  values for the father,  mother ,  and mid-parent  regression coe f f i c i en t s "  

o f .  17, .09, a n d .  11, respec t ive ly ,  and note that " t he se  are considerably lower  

than [regression coeff icients]  reported for populat ions  selected without  regard to 

abi l i ty"  (p. 157), which are in the .42 to .60 range,  according to Benbow,  

Zonderman,  and Stanley (p. 158). M y  purpose here is to sound a note of  caution 

on these part icular  results o f  Benbow,  Zonderman ,  and Stanley.  I will  report  the 

results of  a monte-car lo  exper iment  which show that the particular es t imator  o f  

the regression coeff ic ient  emp loyed  by Benbow,  Zonderman,  and Stanley is 

* I am indebted to Ralph Ginsberg for bringing to my attention the central papers on regression in 
selected samples. It goes without saying that he bears no responsibility whatsoever for the contents of 
this paper. 

Correspon~tence and requests for reprints should be sent to the author at the address listed above. 
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biased downward from the population regression coefficient (an analytical dem- 
onstration of this fact may be found in Goldberger, 1981). I will also present 
three other estimators which are unbiased and which are easily calculated from 
Benbow, Zonderman, and Stanley's data. One of these estimators, in fact, can be 
calculated from information given in their paper, and when this is done, a much 
higher regression coefficient or estimate of familiality is obtained--higher, in 
fact, than the regression coefficients reported for unrestricted samples. Thus, it is 
improper to conclude, as Benbow, Stanley, Kirk, and Zonderman (1983) do, that 
gifted children resemble "their parents to a lesser extent than less able children 
resemble their parents" (p. 151). The data presented by Benbow, Zonderman, 
and Stanley suggest exactly the opposite: Gifted children resemble their parents 
more than less able children resemble their parents. 

Assume that IQs of parent and child have, for the national population as a 
whole, a bivariate normal distribution with known means and variances. For 
convenience and without loss of generality, we can assume these IQs to be scaled 
so that their means are both zero, their standard deviations are both unity, and 
their coefficient of correlation (and, since their standard deviations are equal, 
their coefficient of regression) is p. As Benbow, Zonderman, and Stanley note 
(p. 158), this last parameter, for nationally representative samples, tends to vary 
around 0.5. If we denote the IQ of parent as X and the IQ of child as Y, then 

Y = pX +%/1 - 13 2 U (l) 

where U is a standard normal random variable with mean 0 and standard devia- 
tion 1 and is independent of X. Conversely, 

X = pY + %/1 - p 2 V  (2) 

where, again, V is a standard normal random variable and is independent of Y. 
Both (1) and (2) follow from the properties of the bivariate standard normal 
distribution; (1) holds regardless of restrictions of range on X, and (2) holds 
regardless of restrictions of range on Y. 

Benbow et al., in effect, restrict their sample from the national bivariate 
parent-child distribution of IQs to the range, Y > a, where a is a high positive 
number, and seek to estimate the parameter, p, from this restricted sample. To 
facilitate discussion of this problem, let tx) be the mean of X, when Y > a, or 
E(X I Y > a), and tx~. be the mean of Y, also when Y > a, or E(Y [ Y > a). Several 
"method-of-moments" estimators of P are suggested by the expression (2). For 
example, if we multiply both sides of (2) by Y and take expectations of both 
sides, we obtain 

E(XY) = E(pY 2) + Nf 1 - 13 2 E(VY) 
= pE(y2), (3) 
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since E(VY) = 0. Hence 

E(XY)  
p = E(yz ) (4) 

(4) suggests the following easily calculated estimator of p, 

N 

Z XiYi 
i = 1  

151 = N , ( 5 )  

Z 
i = l  

where X i, Yi, i = 1 . . . . .  N, are random pairs of IQs from the national bivariate 
normal distribution of parent and child IQs, under the restriction that Yi > a, i = 
1 . . . . .  N .  

A second estimator of p is suggested by the following. If we take expectations 
of both sides of (2) (again under the restriction that Y > a), we get 

E(X) = pE(Y) + %/ 1 - p 2  E(V) 
= pE(Y). 

(6) 

Solving for p, we obtain, 

E ( X ) _  IXx.. (7) 
P -  E(Y) p~y 

This suggests, as a second, again easily calculated, estimator of p, 

N 

i = 1  

Yi 
i = 1  

(8 )  

N N 

where ~" = ~ X i / N  and Y = ~ Yi/N, again for a random sample drawn from 
i = 1  i = l  

a national population of parent and child IQs, but restricted to the range, Yi > a, i 
= 1  . . . . .  N. 
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A third expression for P is 

E ( X Y )  - w;cvq. 
P = E(y2) _ ~ ; 2  (9) 

This follows from (2) and (6). That is, remembering that E(YV) = 0, we have 

E(Y 2) -- p~v 2 E(Y 2) Ixr E - ~ -  ~ P" 

(9) suggests the estimator, 

N 

i~l 
153 = N (10)  

Yi 2 - N~2 
i = l  

(l 0), in fact, is the standard least-square estimator of the coefficient of regression 
of X on Y. In sum, for a random sample of pairs of values, X i, Y~, from a standard 
bivariate normal distribution but restricted to that part of the distribution such 
that Yi > a, the method of moments suggests three easily calculated estimators, 
(5), (8), and (10), as summarized in Table 1. Benbow, Zonderman, and Stanley 
employ yet another estimator, 

N 

E XiYi - -  N)(Y 
i=l 

0 4  = N ' (11)  

Z X 2 - N.~" 
i=1 

which is the least-squares estimator of the coefficient of regression of Y on X, 
given that Y > a. 

I have been unable to derive the sampling distributions and parameters of any 
of these four estimators nor have I been able to find their expressions in the 
statistical literature, though Goldberger (198 l) provides a good general analyt- 
ical treatment of the estimation of regression coefficients from restricted sam- 
ples. However, it is relatively easy to perform a monte-carlo experiment, which, 
in my view, provides us with a quite good picture of the relative efficiencies and 
biases of these estimators. The specific monte-carlo experiment performed was 
the following: pairs of X and Y are drawn from a standard bivariate normal 
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TABLE 1 
Monte-Carlo Derived M and SDs of 4 Estimators of the Regression 

Coefficient in a Restricted Sample from a Bivariate Normal Distribution 

19 

Regression Computed Computed 
Coefficient M of SD of 

p Estimator 15 Estimator Estimator 

E XiY  i 
.5 E y2 .505 .034 

E X/ 
.5 .506 .034 

E Y/ 

~, X iY  i - N X Y  
.5 E y2 _ Ny2 .478 .462 

.5 ~] X2 _ N~ 2 .061 .071 

distribution with p = 0.5 until N = 50 pairs are generated such that Yi > -2 .0 ,  i = 

1 . . . . .  50. 15~, 152, 153, and 154 a r e  then calculated f rom the 50 pairs o f  numbers  
so generated.  The  exper iment  is pe r fo rmed  50 t imes,  and the means  and standard 

deviat ions o f  the 50 151, 152, 153, and 154 SO generated are then computed.  The 
results o f  one part icular  real izat ion o f  this exper iment  are presented in Table  1. 

The s imple B A S I C  program used to implement  (on an IBM PC) the monte  carlo 

exper iment  jus t  descr ibed may  be obtained f rom the author upon request.  

Table  1 demonstra tes  two major  points about  these estimators.  The  first is that 

the est imator  emp loyed  by Benbow,  Zonderman ,  and Stanley has a very signifi- 

cant downward  bias, mathemat ica l  p roof  o f  which,  again, may  be found in 

Goldberger  (1981). Clear ly ,  comput ing  a least squares est imate o f  the coeff ic ient  

of  regression o f  ch i ld ' s  IQ on parent ' s  IQ for a random sample  restricted to those 

pairs o f  IQs where  the ch i ld ' s  IQ exceeds  some high posi t ive  value will  g ive  us 

an est imate o f  the famil ial i ty  o f  this trait which is too low. t By contrast,  the least- 

lBenbow, Zonderman, and Stanley (1983, p. 158) argue that the closeness of the standara 
deviations of parental and children's IQs in their data shows that restriction of range cannot be 
causing their unusually low regression coefficient. But a low regression coefficient can be due to 
either a low ratio (below one) in the standard deviations of children's and parental 1Qs or a low 
coefficient of correlation between children's and parental IQs, or to both, and restriction of range 
biases downward both this ratio and this correlation coefficient. So a ratio of standard deviations near 
unity is not sufficient evidence that restriction of range has not caused a downwardly biased regres- 
sion coefficient. The correlation coefficient must also be shown not to be biased downward. There is 
the further question of why the standard deviations of parental and child IQs should be so similar in 
the first place. A random sample restricted to one tail of a bivariate normal distribution, should 
produce a much lower standard deviation for the restricted than for the unrestricted variable, as long 
as the variances for the unrestricted populations are equal, as they should be here. 
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squares estimator of the coefficient of regression of parent's IQ on child's IQ, for 
a sample again restricted to those pairs of IQs where the child's IQ exceeds some 
high positive value, gives us an unbiased estimate of the familiality of this trait, 
as measured by the regression coefficient, p (on this same point, see Vogler & 
De Fries, 1983, and Lord & Novick, 1968), but one with a quite high sampling 
variance (see also Reed & Rich, 1982, p. 542), particularly when compared to 
the estimators, 151 and 152, which appear also to be unbiased. The standard 
deviations of 151 and 152 are virtually identical and are estimated here to be 
approximately one tenth of the standard deviation of 153- 

Benbow, Zonderman, and Stanley (1983, pp. 158-159) present sufficient 
information to allow us to estimate 152. The mean IQ of the parents in their 
sample was about 150 (for both mothers and fathers), whereas the mean IQ of 
their children was 165. In standardized terms and under the assumption that the 
unrestricted populational means are, for both parents and children, 100, and the 
standard deviations, 15, we have Y = (165 - 100)/15 = 4½, ~" = (150 - 
100)/15 = 3½, and 152 = X / Y  = .77. This is much higher than Benbow, Zonder- 
man, and Stanley own estimate of p and should be much closer to the actual 
value of this parameter. Note also that it is substantially higher than the " .42 
to .60 range" found for unselected populations (Benbow, Zonderman, and 
Stanley 1983, p. 158). Thus, the available evidence suggests that exceptional 
children resemble their parents more than less able children resemble their par- 
ents, contrary to the statement by Benbow, Stanley, Kirk, and Zonderman 
(1983, p. 151). 

McAskie and Clarke (1976) have also presented familiality estimates from a 
highly restricted sample, namely, that of Terman and Oden where the parents are 
the highly restricted group (X > 2.5, approximately). In this case, 154 provides an 
unbiased estimator of p, but one which is highly inefficient when compared to 
the ratio, Y/~', which McAskie and Clarke (1976, pp. 264-266) also report. 
According to their data, P /~  is .64, whereas 154 = .09. Again, as with the 
Benbow, Zonderman, and Stanley results, the former is almost certainly closer to 
the true value of p, though the low value of 154 is in this case explained not by 
downward bias (as it is in the case of Benbow, Zonderma.n, and Stanley) but 
rather by the large sampling variation inherent in the least-squares estimator. 

The results which I have presented here lack analytical rigor. However, they 
should serve to convince the reader that the least-squares estimator of the regres- 
sion coefficient in a sample restricted to one tail of the bivariate normal distribu- 
tion is a poor estimator of that coefficient and that better estimators exist when 
the unrestricted populational means and variances are known, as they should be 
to a good approximation in most IQ studies. If the so-called dependent variable, 
Y, is the one that is restricted, then the least-squares estimator will give us an 
estimate of the regression coefficient which is severely biased downward. If the 
so-called independent variable, X, is restricted, then the least-squares estimator 
is unbiased but highly inefficient. These results are based on a monte-carlo 
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experiment which anyone with access to a personal computer can perform. It 
would be much preferred, of course, to have analytical expressions for the means 
and variances of the four estimators of the regression coefficient presented here 
and much preferred still to have an analytical expression for the maximum 
likelihood (asymptotically minimum variance unbiased) estimator of p for re- 
stricted samples, an estimator that would seem to be provided by the so-called 
Tobit model (Amemiya, 1984; Maddala, 1983) and that could be calculated from 
Benbow, Zonderman, and Stanley's data, though not from the statistics present- 
ed in their paper. I would hope that this paper might stimulate those with greater 
analytical gifts than my own to treat this problem with the rigor it deserves. In the 
absence of such a treatment, the results here presented should at least convince 
workers in this field that some care should be exercised in the estimation of 
familiality from restricted samples. On the basis of the available statistical liter- 
ature as well as of the monte-carlo results presented here, one can say with some 
confidence that least squares estimation of the regression coefficient in a re- 
stricted sample is generally inappropriate and always subject to large sampling 
variation. 
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