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The Nurture of Nature and the Nature of Nurture: How 

Genes and Investments Interact in the Formation of Skills†

By Mikkel Aagaard Houmark, Victor Ronda, and Michael Rosholm*

This paper studies the interplay between genetics and family invest-
ments in the process of skill formation. We model and estimate the 
joint evolution of skills and parental investments throughout early 
childhood. We document three genetic mechanisms: the direct effect 
of child genes on skills, the indirect effect of child genes via paren-
tal investments, and family genetic influences captured by parental 
genes. We show that genetic effects are dynamic, increase over time, 
and operate via environmental channels. Our paper highlights the 
value of integrating biological and social perspectives into a single 
unified framework. (JEL I24, I26, J12, J13, J24)

It is widely recognized that individuals have different abilities, that differences in 

individuals’ abilities surface early in life, and that early differences in abilities explain 

variation in socioeconomic outcomes later in life (see, e.g., Cunha, Heckman, and 

Navarro 2005; Heckman and Mosso 2014). It is also well understood that inequality 

in family resources translates into inequality in children’s outcomes and that early 

skills are partly determined by the genotype realized at conception (Polderman et al. 

2015; Plomin and von Stumm 2018; Silventoinen et al. 2020; Cesarini and Visscher 

2017; Branigan, McCallum, and Freese 2013). This substantial body of work docu-

ments the relative importance of genetics and family resources for skill formation. 

However, the two are often treated as separate factors, where the higher importance 

of one implies a lesser role of the other. Such a framework tends to overlook how 

genes and family resources are closely interrelated during skill formation.
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We incorporate genetics into a model of skill formation during early childhood 

(ages zero to seven  years) and document how the interplay between genes and fam-

ily resources arises from two mechanisms. First, we show that parents respond to 

their children’s genotype by investing more in children with higher genetic fac-

tors. We call this the nurture of nature effect. Second, we show that parents who 

themselves have higher genetic factors also invest more resources in their children. 

Analogously, this mechanism reflects the nature of nurture, which we proceed by 

calling family genetic associations for clarity. By incorporating these two mecha-

nisms into an economic model, we formalize ideas in the genetics literature going 

back to at least Plomin, DeFries, and Loehlin (1977). The formal treatment of genet-

ics in an economic model of skill formation allows us to understand better the role 

of genes in the skill formation process and to learn what is missed from excluding 

genes from such models.

The empirical estimation relies on detailed genetic and survey data from a lon-

gitudinal British dataset, the Avon Longitudinal Study of Parents and Children 

(ALSPAC)(Boyd et  al. 2012; Fraser et  al. 2012). We observe detailed molecu-

lar genetic data from the child participants and both of their parents. We identify 

genetic influences using multiple polygenic indexes related to educational attain-

ment and cognitive performance. Variations of these indexes are widely used in the 

literature and have been shown to predict a wide range of economic and social out-

comes, including early childhood skills (Belsky et al. 2016), school achievement 

(Ward et al. 2014), educational attainment (Rietveld et al. 2013; Domingue et al. 

2015; Okbay et al. 2016; Lee et al. 2018; Ronda et al. 2022), as well as earnings 

and wealth (Papageorge and Thom 2019; Belsky et al. 2018; Barth, Papageorge, 

and Thom 2020).
A particular challenge in this literature is identifying the independent effect of an 

individual’s genes from that of her family. To overcome this challenge, we explic-

itly control for parental genes in the model. Conditional on parental genes, varia-

tion in children’s genes is random, allowing us to identify the independent effect of 

the child’s genes on skill formation. This is important. Although genes are fixed at 

conception and thus  predetermined, they are not exogenous. Rather, they are deter-

mined entirely by parental genes, which also affect the environment in which the 

child grows up and forms its skills (see, e.g., Kong et al. 2018; Young et al. 2018). 
Thus, any observed association between genes and  socioeconomic outcomes may be 

partially driven by the individual’s childhood environment. One common solution 

to this challenge is to control for observable differences in family environment as in 

Barth, Papageorge, and Thom (2020) and Papageorge and Thom (2019). Another 

is to exploit random genetic variation across siblings as in Ronda et al. (2022). Our 

approach allows us to directly control for the influence of parental genes on chil-

dren’s skills, whether or not this works through observable aspects of the family 

environment. In addition, our approach allows us to document the importance of 

family genetic influences captured by parental genes, which is of interest on its own.

Another challenge is measurement error. Because child skills, parental invest-

ments, and the underlying genetic factors are all latent variables that are imper-

fectly measured, correlations of observed proxies only provide a biased signal of 

the underlying relationship that we are interested in. To identify genetic influences 

on skill formation, we, therefore, incorporate genetics into a dynamic latent factor 
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model, as in Cunha and Heckman (2008). As far as we are aware, we are the first 

to do so. The model allows us to control for measurement error and identify the 

genetic factor, latent skills, and investments. In addition, it allows us to decom-

pose the different genetic mechanisms and compare genetic influences across 

child ages. We rely on multiple measures of skills and investments collected by 

the ALSPAC and standard latent factor model assumptions to identify the underly-

ing skills and investments in each period. We extend the traditional model to also 

control for measurement error in genetic factors and identify the underlying latent 

genetic factor.

Our approach allows us to gain additional insights into the process of skill for-

mation. We find that genetic influences accumulate over time and gradually increase 

over the early childhood period. Genetic influences on initial skills are small, but by 

ages six to seven, a one standard deviation increase in the child’s genetic factor leads 

to almost a 0.2 standard deviation increase in skills. This pattern is consistent with 

earlier findings on the increasing importance of genes over the life-span (Bouchard 

2013;  Tucker-Drob, Briley, and Harden 2013;  Tucker-Drob and Briley 2014; Belsky 

et al. 2016). Unlike previous work, our approach allows us to rule out several poten-

tial sources of bias, including confounding from the environment and differences in 

measurement error over time, and, at the same time, to gain additional insight into 

why this pattern appears. We find that the increase is due to two main mechanisms. 

First, conditional on their current stock of skills and parental investments, genetics 

make some children better able to retain and acquire new skills, the direct effect of 

genes. Second, parents reinforce initial genetic differences by investing more in 

children with higher genetic factors and higher stock of skills, the nurture of nature 

effect.1 We show that the second mechanism is more important at early ages, and the 

first is more important at later ages.

We also document a strong association between parents’ genes and children’s 

skills. This association captures the effect of family genetics and unobserved envi-

ronmental factors correlated with parental genes on the environment experienced 

by the child. These influences explain between  40 and 82 percent of the association 

between the child’s genetic factor and her skills. We show that these genetic influ-

ences are completely mediated by parental educational attainment. This suggests 

that controlling for parental education may be enough to capture the family back-

ground in analyses of child development that have access to a child’s genetic data 

but not their parents’.

Another key contribution of our paper is documenting what child development 

models that ignore genetic influences miss. First, we show that neglecting genes 

leads to an overestimation of the returns to parental investment, although add-

ing parental controls eliminates most of this bias. Second, we identify signifi-

cant heterogeneity in the returns to investments across the child’s genetics that 

1 In addition to this  gene-by-environment correlation, child genes could also influence skill formation by what 
is called  gene-by-environment interactions, referring to genetic differences in sensitivity to the environment. A 
number of recent studies in economics have shown that such genetic differences are quite important for educational 
attainment, health, and labor market outcomes (see, e.g., Barcellos, Carvalho, and Turley 2018; Papageorge and 
Thom 2019; Barth, Papageorge, and Thom 2020; Ronda et al. 2022). In our context, this interaction could come 
about in many different ways. For example, it could come about if genes changed the returns to parental investments 
in skill formation. In online Appendix D, we consider this possibility. However, we do not find support in the data 
for these interactions being important during early skill formation.
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is not  captured by models that ignore genes. This heterogeneity is only partially 

 captured by observable family characteristics. Third, the genetic heterogeneity that 

is captured in models without genes is misattributed to observable  nongenetic fac-

tors, such as family income, that do not reflect the underlying causal mechanism. 

This exercise highlights the importance of incorporating genes into models of  

skill formation.

We thus contribute to the literature on genetics and skill formation by studying 

genetic effects in an integrated framework, allowing us to consider multiple poten-

tial mechanisms simultaneously and learn more about how each works. While it is 

well-known that parental genes matter for children’s development beyond the genes 

transmitted to the children (Kong et al. 2018; Ronda et al. 2022; Wertz et al. 2020), 
we show directly that parental genes affect how much parents invest in their chil-

dren. And while others have investigated whether parental investments tend to be 

reinforcing or compensating with respect to early childhood skills or birth endow-

ments (with some conflicting findings; see, e.g., Hsin 2012; Grätz and Torche 2016; 

Nicoletti and  Tonei 2020), we relate such behavior directly to the child’s genes, 

which are not influenced by later investments.2 Our approach allows us to simulta-

neously identify the influence of genes via the nurture of nature and family genetics 

channels and show that both are important. Moreover, we show the importance of 

considering genetic influences for the identification of structural parameters in mod-

els of child development. Otherwise, genetic influences and genetic heterogeneity 

will be misattributed to  nongenetic factors.

The paper is organized as follows. In Section I, we outline the theoretical frame-

work describing the various channels through which genes influence skill accumu-

lation. In Section II, we introduce the ALSPAC dataset, discuss our measures of the 

genetic factor, and conduct a preliminary descriptive analysis. In Section  III, we 

describe our empirical model, including the measurement system used to identify 

the genetic factor, latent skills, and investments, along with the estimation proce-

dure. Section IV presents our main results. In Section V, we study mechanisms and 

highlight the implications of our findings for our understanding of the skill forma-

tion process. Section VI offers brief concluding remarks, discusses the limitations 

of our work, and makes suggestions for future research.

I. Conceptual Framework

We incorporate genetics into a model of early skill formation in the spirit of 

Cunha and Heckman (2007, 2008). The model allows us to identify different chan-

nels through which the child and parental genetics influence the process of skill 

formation. The model considers a family with a single child and two parents. Thus, 

for simplicity, we abstract from the influence of siblings.3 We model the evolution 

2 In a descriptive analysis, Breinholt and  Conley (2020) document that parental investments are positively 
related to children’s polygenic index for educational attainment.  Sanz-de Galdeano and Terskaya (2019) also inves-
tigate whether parental investments are compensating or reinforcing but do so by comparing siblings in a static 
framework. We go a step further by incorporating the genetics of both children and parents into a structural model 
to quantify the different mechanisms of genetic influence and how they develop over time.

3 The conceptual model could quite easily be extended to consider families with several children, but data lim-
itations prevent us from learning much empirically by doing so. It would be interesting for future research to utilize 
genetic information on families with multiple children.
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of skills from birth ( t = 0 ) until the end of the child’s early development in period  

T . Skills are complex traits jointly determined by the child’s genetic makeup and 

interactions and experiences determined by parents, which we refer to as parental 

investments.

We highlight three main mechanisms relating genes to skills. First, genes can 

have a direct effect on skills, capturing individual heterogeneity in learning ability. 

Second, the child’s genes may influence skill formation via its effect on parental 

investments. We call this mechanism the nurture of nature effect. It may capture 

the fact that children with different genetic makeup are more likely to induce par-

ents to invest more in them, e.g., by enjoying being read stories or enjoying cog-

nitively stimulating play. Alternatively, it may also capture parental compensating 

or reinforcing responses to initial endowments, which are genetically determined. 

Third, the investment decision will also depend on parental genotype. We refer to 

this mechanism as family genetic associations.4 It captures genetic differences in the 

quantity and quality of parental interactions with their children.

We describe the three mechanisms in more detail in the following sections. We 

start by describing what we mean by genetic endowments and how such endow-

ments are inherited from parents to children in Section IA. In Section IB, we for-

mally describe how children’s skills evolve as a function of parental investments and 

genetic factors. In Section IC, we describe how parental investments are determined. 

Lastly, in Section  ID, we summarize the three main mechanisms through which 

genes can influence the process of skill formation.

A. The Genotype

The child’s genotype is realized at conception and remains fixed throughout her 

life. The genotype is described as a vector of individual base pairs, the fundamen-

tal structure of the DNA. DNA consists of two sets of 23 chromosomes each, one 

inherited from the mother and one from the father. Each set of chromosomes con-

tains approximately 3 billion nucleotide base pairs located at specific addresses in 

the genome. The bases are adenine (A), thymine (T), guanine (G), and cytosine 

(C). The majority of the base pairs are invariant across the entire human population. 

A typical genome differs from the reference human genome at only  4–5 million 

of these addresses (1000 Genomes Project Consortium 2015).5 Most of this varia-

tion consists of single base pair changes called single nucleotide polymorphisms or 

SNPs for short.6 Genotypes can then be described as a vector of SNPs.7

4 For a play of words, we call this the nature of nurture in the title of the paper. This is also sometimes called 
genetic nurture (see, e.g., Kong et al. 2018). More generally, this is an example of passive  gene-environment cor-
relation where an association comes about between the child’s genes and the environment that the child is exposed 
to, independently of the genes that the child inherits (see Plomin, DeFries, and Loehlin 1977 for an early discussion 
of the term).

5 The reference human genome is defined as “an accepted representation of the human genome sequence that 
is used by researchers as a standard for comparison to DNA sequences generated in their studies” (https://www.
genome.gov/genetics-glossary/Human-Genome-Reference-Sequence).

6 The remaining variation, not captured by SNPs, consists of rare single  base pair variants ( rare-variants), inser-
tion or deletion of a sequence of  base pairs (indels), and larger variations affecting multiple bases (structural vari-
ants). See 1000 Genomes Project Consortium (2015) for an overview of the variation in the human genome.

7 The vector of SNPs is a proxy for genotypes, which is commonly used in the literature due to data availability. 
SNPs are correlated with (and hence pick up some of the)  non-SNP genetic variation.
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Formally, let   g  i    be the genotype of individual  i ; hence,   g  i    is a vector of nucleotide 

base pairs:

(1)   g  i   =  { g i1  , …,  g iS  }  ,

where   g is    is the base pair variant for individual  i  at position  s , and  S  is the total num-

ber of SNPs.

While there are four different nucleotide base pairs, the vast majority of SNPs 

in the human genome are  biallelic, meaning that only two types of base pairs are 

observed at that location. Therefore, we can summarize the variation in a specific 

SNP using three values   {0, 1, 2}  . These values correspond to the number of minor 

(less common) alleles present at the base pair. Formally,

(2)   g is   ∈  {0, 1, 2}  .

For example, imagine that at  base pair  s , the common variant is guanine (G), and 

individual  i  inherited the guanine (G) variant from her mother and the less common 

cytosine (C) variant from her father.8 Individual  i  has one minor allele (C) at posi-

tion  s , and we would say that the genotype of individual  i  at position  s  has a value of 

1 (  g is   = 1 ). Alternatively, if individual  i  had inherited the cytosine (C) variant from 

both parents, its genotype at position  s  would have a value of 2 (  g is   = 2 ). Similarly, 

if individual  i  had inherited the common guanine (G) variant from both parents, its 

genotype would have the value 0 (  g is   = 0 ).
The child’s genotype is randomly determined from the parental genotypes, where 

in expectation, for each base pair  s , we have that

(3)  E [ g is  ]  = 0.5  g  is  
   f
   + 0.5  g  is  

  m  ,

where   g  is  
   f
    (  g  is  

  m  ) is the minor allele frequency for the child’s father (mother) at posi-

tion  s . In expectation, the child’s number of minor alleles will be an average of the 

number of minor alleles in the parental genotypes. For example, if both parents have 

zero minor alleles (  g  is  
   f
   =  g  is  

  m  = 0 ), the process is deterministic since the child has 

no minor alleles to inherit and   g is   = 0 . Similarly, if both parents have two minor 

alleles (  g  is  
   f
   =  g  is  

  m  = 2 ), then   g is   = 2 . The randomness of the process comes into 

play when one or both parents have exactly one minor variant. For example, in case 

the father has zero minor alleles and the mother has one (  g  is  
   f
   = 0  and   g  is  

  m  = 1 ), 
the child will inherit one or zero maternal alleles with equal probability, so   g is   = 1  

or   g is   = 0  and  E [ g is  ]  = 0.5 . The likelihood that the child will inherit one allele or 

another, when both are present, is random by nature. This process creates a truly 

natural experiment that potentially allows for the identification of the causal effect 

of genes on a variety of outcomes.9

8 Here, we disregard the fact that variants are  base pairs and consider only one of the DNA strands and one of 
the bases. This is commonly done in the literature for simplicity since one base in the pair can be directly inferred 
from the other.

9 The law of independent assortment implies that genetic inheritance occurs independently for each  base pair   
g is   . In practice, however, some DNA sequences are more often inherited together. In particular, because the genetic 
reshuffling happens at random locations on the chromosome, genetic markers that are physically near to each other 



391HOUMARK  ET AL.: GENETICS, INVESTMENTS, AND SKILLSVOL. 114 NO. 2

Most  socioeconomic outcomes (e.g., educational attainment, intelligence, per-

sonality, earnings, etc.)—as well as most other outcomes (e.g., height, BMI, several 

psychiatric disorders)—are highly polygenic, meaning that they are influenced by a 

large number of SNPs. Such polygenicity is analyzed in  genome-wide association 

studies (GWAS). For example, Lee et al. (2018) show that at least 1,271 indepen-

dent SNPs significantly influence educational attainment. For these outcomes, we 

are not interested in the effect of a particular variant but instead in the combined 

effect of all genotyped SNPs. The combined effect can be captured by the genetic 

factor

(4)   G i   =  f g   ( g  i  )  ,

where   G i    is the genetic factor for skill formation and   f g    is an unknown function that 

combines the individual variants into the index. In Section IIIB, we show how we 

can identify the genetic factor using multiple independent measures called poly-

genic indexes.

This part of the model highlights some important concepts. First, genotypes 

are multidimensional, comprising millions of individual genetic variants that vary 

across the human population. Second, the child’s genotype is not exogenous but 

determined by a random draw from the parental genotypes. The inheritance process 

induces a correlation between the child’s and her parents’ genotypes. Third, the ran-

domness in the inheritance process allows for the identification of the effect of the 

child’s genes that is independent of its parents. Finally, the association between the 

genome and an outcome of interest can be summarized in a genetic factor. We revisit 

these points throughout the paper.

B. Technology of Skill Formation

Skill Endowments:  The child is born in period 0 with a set of initial skill endow-

ments. We assume that skills may be described by a  unidimensional measure (e.g., 

cognitive ability). We acknowledge that skills are  multidimensional in nature and 

other (e.g.,  noncognitive) skills may also matter, but we prefer to restrict attention 

to a single dimension to focus instead on the different channels through which genes 

may influence the skill formation process. The model may be extended to include 

multiple skills as in Cunha, Heckman, and Schennach (2010). Let   θ i 0    be the skill 

endowment of child  i  at birth. We allow the initial skill endowment to be influenced 

by investments  in utero   U i   , including maternal health behaviors, such as smoking, 

drinking, and taking nutritional supplements.

We extend the traditional model and allow both the child’s genetic factor (  G i   ) and 

parental genetic factors (  G  i  
 m   and   G  i  

   f 
  ) to influence the child’s development  in utero: 

It is possible, for the same level of the mother’s health behaviors, for some children 

to be more able to extract nutrients and other resources from their mother. Similarly, 

some mothers may biologically provide a better environment for fetal growth.

on the same chromosome are less likely to be separated—a tendency known as genetic linkage. Further, even 
without genetic linkage, some alleles may be more likely to appear together. Such “linkage disequilibrium” can be 
caused by various factors, for example, assortative mating and population stratification.
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Formally, the child’s initial skill endowment may be described by

(5)   θ i 0   =  f    0  
θ
   ( U i  ,  G i  ,  G  i  

 m ,  G  i  
   f 
 )  ,

where   f    0  
θ
    is a function describing how genes interact with the environment  in utero 

in determining the child’s initial skills.

We assume a  log-linear specification for initial skills, so that

(6)  ln  θ i 0   =  α 1    G i   +  α 2    G  i  
 m  +  α 3    G  i  

   f
  +  α x    X i 0   +  ϵ i 0   ,

where   ε i 0    is an i.i.d., mean zero, and normally distributed shock to early skills and   
X i 0    is a vector of individual controls, both capturing differences in  in utero invest-

ments (  U i   ). The   α 1   ,   α 2   , and   α 3    parameters capture the effect of the child’s genetic 

factor on her initial stock of skills (i.e., effects during development  in utero) and the 

association between her parents’ genetic factors and the child’s initial skills. These 

effects correspond to the direct effect on initial skills and the family genetic associ-

ations with initial skills.10

Skill Formation:  Skills develop over time in response to external inputs. As in 

Cunha, Heckman, and Schennach (2010), the child’s skills in period  t + 1 ,   θ it+1   , 
are determined by its current skills,   θ it   , and parental investments   I it   . In addition, we 

allow the child’s genetic factor,   G i   , and the parents’ genetic factors,   G  i  
 m   and   G  i  

   f
  , to 

enter the production function of skills.

The model allows for some children to be better at learning on their own and 

improving their own skills.   G i    captures this individual heterogeneity by influencing 

skill acquisition conditional on parental investments   I it    and the current stock of skills   
θ it   . Similarly, for a given level of  parent-child interaction, some parents may be bet-

ter able to improve their children’s skills than others. This heterogeneity is captured 

by the direct association with parental genes,   G  i  
 m   and   G  i  

   f
  , in the technology of skill 

formation.

Formally, at each developmental stage  t , let   θ it    denote the child’s skill stock. The 

technology of production of skills at stage  t  is

(7)   θ it+1   =  f    t  
θ  ( θ it  ,  I it  ,  G i  ,  G  i  

 m ,  G  i  
   f
 ,  X it  )  

for  t = 1, 2, …, T .   f    t  
θ   is a function that describes how genes interact with parental 

investments in determining the child’s accumulation of skills.

We assume a translog technology specification in the form

(8)  ln  θ it+1   = ln  A t   +  δ 1,t   ln  θ it   +  δ 2,t   ln  I it   +  δ 3,t   ln  θ it   × ln  I it   

  +  δ 4,t    G i   +  δ 5,t    G  i  
 m  +  δ 6,t    G  i  

   f
  +  γ x,t    X it   +  ϵ it   ,

10 In practice, skills are not observable right at birth. We measure initial skills when the child is one year old. 
Hence, the genetic influences on initial skills include influences during the first year of life.
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where  ln  A t    is the total factor productivity (TFP) parameter at period  t  and   ϵ it    is a 

stochastic technology shock, which we assume is i.i.d. across individuals and time 

periods and is normally distributed with mean zero and variance   σ  ϵ  
2  .

Genes influence skill accumulation via a variety of mechanisms. The child’s 

genes can have a direct effect on skill accumulation, as captured by   δ 4,t   . The direct 

effect captures genetic heterogeneity in children’s ability to accumulate skills, irre-

spective of parental investments. These can change over time. The child’s genes may 

also have indirect effects on skill accumulation via early skills and investments (  δ 1,t    
and   δ 2,t   ). Lastly, family genetics may also matter for children’s skill accumulation 

beyond the effects via investments (  δ 5,t    and   δ 6,t   ). These can capture a variety of 

familial influences, including the idea that some parents might be more successful at 

increasing their children’s skills irrespective of the amount of interaction they have 

with their children. This can potentially capture genetic heterogeneity in the quality 

of parenting.

The model captures the idea that genetic influences may change in the course 

of the life cycle. This is motivated by Belsky et al. (2016), who demonstrate that 

genetic associations with academic ability increase from age 3 to age 13 years. 

Similarly, it is well documented that the heritability of IQ increases with age, a 

phenomenon known as the Wilson Effect (Bouchard 2013). In addition, the model 

captures the idea that returns to genetic factors may be different for individuals 

growing up in different environments as described in Papageorge and Thom (2019) 
and Ronda et al. (2022).

C. Investment Policy Function

In the model, parents invest in their children either due to altruism, paternalistic 

interest in having  well-educated children, or some other motivation. Such invest-

ments may work either through direct interactions or through environmental changes 

(e.g., sending the child to swimming classes). Importantly, we allow the parental 

investment decision to depend on both the child’s and the parents’ genetic factors.

The investment policy function is modeled as follows:

(9)   I it   =  f    t  
 I  ( θ it  ,  G i  ,  G  i  

 m ,  G  i  
   f
 ,  X it  )  

for  t = 0, 1, 2, …, T .   f    t  
 I   is a function that describes how genes and the child’s stock 

of skills influence parental investments.

The empirical specification for the investment policy function is

(10)  ln  I it   =  γ 1,t   ln  θ it   +  γ 2,t    G i   +  γ 3,t    G  i  
 m  +  γ 4,t    G  i  

   f
  +  γ x,t    X it   +  η it   ,

where   η it    are i.i.d., mean zero, and normally distributed shocks. The investment pol-

icy function above is a  reduced-form approximation of the parental behavior and fol-

lows previous work by Attanasio, Meghir, and Nix (2015); Agostinelli and Wiswall 

(2020); and Attanasio et al. (2020).11

11 Parental investment choices depend on parental preferences for child quality, parental budget constraints, 
and parents’ beliefs about both the child’s current skills and the technology parameters. All of these components 
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The model allows us to decompose the association between the child’s genes and 

parental investments into three distinct components. First, parents make investment 

decisions in response to the child’s existing stock of skills (  γ 1,t   ), which in turn is 

partially determined by the child’s genetics. Second, different children might elicit 

different responses from their parents because of preferences and behavior not cap-

tured by current skills (e.g., enjoying being read stories), and these can also be par-

tially determined by the child’s genetics (  γ 2,t   ). These two channels together capture 

the nurture of nature effect, as they describe how parental investments respond to the 

child’s genetic makeup. Lastly, different parents face different constraints and have 

different preferences for investments, which might also be genetically determined  

(  γ 3,t    and   γ 4,t   ). This is another channel capturing the family genetic associations.

D. Genetic Mechanisms

The model highlights the idea that genes influence complex traits through a vari-

ety of mechanisms. We focus on three main mechanisms: the direct effect, the nur-

ture of nature effect, and the family genetic associations.12 We describe each in 

detail below.

The Direct Effect:  First, we have the direct effect of children’s genes on skill 

accumulation. The direct effect captures genetic heterogeneity in children’s ability 

to retain new concepts, absorb information, and learn from their environment. It 

captures the idea that, for any given level of parental investments, some children 

may be better at taking advantage of their environment to improve their skills. The 

model captures this mechanism in two ways:   α 1    and   δ 4,t   , where the first parameter 

describes the effect of a child’s genes on early skills and the second its effect on skill 

accumulation.

The Nurture of Nature Effect:  A second way that genes may influence skill accu-

mulation is via parental investments. We call this mechanism the nurture of nature 

effect. It captures how individuals, in general, interact with their own environments 

and how the parents respond to and invest in the child based on its genetic makeup. 

Such interactions may come about through two interactions, often called reactive 

and active  genotype-environment correlation (Plomin, DeFries, and Loehlin 1977). 
First, in the reactive type, parents react to the child’s existing stock of skills when 

deciding how to allocate resources within the family. The child’s existing stock 

of skills may influence the price of investing in children, as in Becker and Tomes 

could be influenced by parents’ genetic factors. In principle, we could identify the separate genetic influences on 
investment choices using a structural model. However, a structural specification would either require detailed data 
on parental beliefs or assume that parents know the true production function, which goes against recent evidence 
(see, e.g., Cunha, Elo, and Culhane 2013; Boneva and Rauh 2018). Moreover, our current specification is consistent 
with multiple structural models of parental investments (see Attanasio, Meghir, and Nix 2015).

12 In addition to the three mechanisms we focus on here, genes can also influence skill formation by what is 
often called  gene-by-environment interactions. The conceptual model allows for these interactions. For example, 
 gene-by-environment interactions could come about if genes changed the returns to parental investments in skill 

formation, captured by   ∂    2   f    t  
θ  ( g  i  ,   θ 

–
   it  ,  I it  ,   g –    i  

  m ,   g –    i  
   f 
 ) /∂   g  i   ∂  I it    in the model. In our preferred empirical specification, we do 

not consider such interactions. In online Appendix D, we consider this possibility and find little support in the data 
for these interactions being important during early skill formation.
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(1976). In addition, in  multiple-child families, parents might respond to one of 

the children’s stock of skills due to aversion to inequality in children’s outcomes 

(Behrman, Pollak, and Taubman 1982). Second, in the active type of interaction, dif-

ferent children might elicit different responses from their parents due to preferences 

and behavior not captured by current skills (e.g., enjoying being read stories), which 

are partially determined by the child’s genetics. We cannot separately identify the 

two types of interaction and instead, refer to the overall mechanism as the nurture 

of nature effect. In the model, this effect is then captured in two ways:   γ 2,t    and   γ 1,t   , 
where the first parameter describes how parents’ investment decisions depend on the 

child’s genetic factor and the second how it depends on the child’s stock of skills.

Family Genetic Associations:  Lastly, parental genes may be associated with the 

environment in which the child develops her skills. For the play of words, we also 

refer to it as nature of nurture in the title. Empirically, however, parental genes can 

capture a variety of environmental effects. For example, grandparents’ genes may 

also affect child development directly (insofar as grandparents help raise the child) 
or indirectly through the parents. Since we don’t observe grandparents’ genes, 

parental genes will capture these effects. Thus, family genetic associations reflect 

the combined genetic effects of previous generations captured by parental genes. In 

addition, this channel may also reflect other social mechanisms, including assorta-

tive mating and population stratification effects that are correlated with the family 

genetic makeup. Since we cannot causally identify the specific mechanism behind 

these interactions, we loosely refer to this mechanism broadly as family genetic 

associations.

There are a variety of ways that parental genes enter the model. First, parental 

genes may be related to skill formation directly via the quality of parental interac-

tions  in utero (  α 2    and   α 3   ). In addition, parental genes may be associated with the 

quantity of investments in the child’s skill formation (  γ 3,t    and   γ 4,t   ). Lastly, parental 

genes may be related to skill formation directly via the quality of  parent-child inter-

actions during the child’s development (  δ 5,t    and   δ 6,t   ).
A better understanding of the different ways genes affect skill formation, either 

directly, via parental investments (nurture of nature), or via family genetic influ-

ences (nature of nurture), can help us better understand heterogeneity in environ-

mental effects and thereby enable us to design policies directly aimed at decreasing 

the effects of various types of disadvantage. For instance, the existence of a positive 

nurture of nature effect would imply that parents invest more in genetically advan-

taged children. This would mean that environmental and genetic differences interact 

to enlarge existing inequalities in skills. It would also mean that the existing genetic 

effects may increase the value of policies aimed at reducing inequality in parental 

investments. We come back to this point in Section V, where we discuss the relative 

importance of the different mechanisms and the implications of our findings.

II. Data

In this section, we introduce the ALSPAC dataset and the key variables used in 

our analysis. We also present some reduced-form results on the relationship between 

child genes, parental genes, child skills, and family investments.
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A. ALSPAC

To investigate the relationship between genetics and the development of child 

skills and family investments during childhood, we need a comprehensive data-

set. For our purpose, the Avon Longitudinal Study of Parents and Children (Boyd 

et al. 2012; Fraser et al. 2012) provides a compelling resource. ALSPAC is a British 

birth cohort study initially composed of 14,541 women recruited during pregnancy 

between April 1991 and December 1992, resulting in 14,062 live births. Data were 

collected by epidemiologic researchers from the University of Bristol to aid the 

study of the environmental and genetic factors affecting human health and develop-

ment (Boyd et al. 2012; Fraser et al. 2012).13

Questionnaires were sent to the primary caregiver (usually the mother) at regular 

intervals, starting before the child’s birth.14 The caregiver responds to questions 

about the child’s development and behavior as well as parenting, activities, and the 

home environment. We focus on the first seven years of the child’s life, as this allows 

us to follow the child’s development through a set of similar measures.

One attractive feature of the ALSPAC is the large set of child developmental data. 

Another crucial feature for our study is the availability of genetic information. DNA 

samples have been collected and genotyped for many of the mothers and children 

as well as some of the fathers. The maternal and child biological samples consist of 

blood samples repeatedly collected as part of routine prenatal care and  follow-up at 

clinics. Paternal samples started being collected only recently, and thus, only a few 

of the fathers have been genotyped.15

Our main sample includes families where the child and either of its parents were 

genotyped. We excluded individuals of  non-European ancestry and those with miss-

ing information on many skill and investment measures. We describe the sample 

selection procedure in more detail in online Appendix A. The resulting sample 

includes 4,510 children from the original sample of 14,062 children.

Measures of Skills and Investments.—From the wide range of questions put to 

the mother, we selected the subset of questions most closely related to child skill 

development and family investments in the child. Measurements of child skills were 

obtained from the “milestones” and “abilities and disabilities” sections of the pri-

mary caregiver questionnaires. In these sections, the primary caregiver was given a 

list of things children gradually learn to do as they get older and asked to indicate 

whether the child (i) “Can do it well” or “Does it often,” (ii) “Can do it but not very 

well” or “Has done it once or twice,” or (iii) “Has not yet done it.” We selected a 

subset of the measures that relate to children’s ability to process new information 

and perform various tasks and their capacity to learn abstract concepts such as lan-

guage. The selected measures are displayed in Table 1.

13 The study website contains details of all the data that are available through a fully searchable data dictionary 
and variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-data/. Ethical approval for this study was 
obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

14 Informed consent for the use of data collected via questionnaires and clinics was obtained from participants 
following the recommendations of the ALSPAC Ethics and Law Committee at the time.

15 Consent for biological samples was collected in accordance with the Human Tissue Act 2004.
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Similarly, we obtained the measurements of family investments from the “you 

and your child” sections from the primary caregiver questionnaires. We selected a 

subset of measures capturing aspects of the family environment relating to behavior 

and activities involving the child and her parents. For such activities, we strove to 

achieve a balance between the parents by selecting several measurements relating 

specifically to both the mother and the father (in addition to a number of neutral 

measurements). For these measurements, the primary caregiver indicates whether 

the parent does certain activities with the child (e.g., “Frequency child goes to the 

library”) and at which frequency: (i) “Nearly every day,” (ii) “ 2–5 times per week,” 

(iii) “Once per week,” (iv) “Once per month,” (v) “A few times per year,” or (vi) 
“Never.” The selected measures are displayed in Table 2.

B. Measures of the Genetic Factor

We rely on recent advances in molecular genetics to construct different mea-

sures of the genetic factor. We measure the genetic factor using multiple polygenic 

indexes (PGI). Polygenic indexes are a linear combination of the SNP count vari-

ables weighted by the strength of association with the outcome of interest, educa-

tional attainment and cognitive performance in our case. The weights are derived 

from large, external  genome-wide association studies.

Table 1—Measures of Child Skills

Period 0 1 2 3 4 5
Measure Age  0–2  2–3  3–4  4–5  5–6  6–7

1 Can build tower of 8 bricks X X X
2 Plays cards (or board games) X X X X X
3 Plays  peek-a-boo X
4 Can focus eyes on small object X
5 Can build tower of 4 bricks X
6 Freq. names things X
7 Combines two different words X
8 Can copy vertical line with pencil X
9 Can copy and draw a circle X X
10 Uses plurals X X
11 Uses possessives X X
12 Adds -ing to words X X
13 Adds -ed to words X X
14 Can copy and draw a plus sign/cross X
15 Can copy and draw a square X X
16 Can write their name X
17 Can write any numbers X
18 Knows at least 10 letters X
19 Can read simple words X
20 Can read a story with <10 words per page X
21 Can count up to 20 X
22 Can read a story with >10 words per page X X X
23 Can count up to 100 X X X
24 Can play any board games X X X

Notes: This table reports the individual measures of child skills. An X indicates that the measure is available in that 
period and is used in the estimation.
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Formally, a PGI for a particular outcome,  w  ( pg i   i  
w  ), is constructed as a best lin-

ear predictor. It is a linear combination of the SNP count variables weighted by the 

strength of association between each SNP and the outcome of interest:

(11)  pg i   i  
w  =   ∑ 

s=1

  
S

     β  s  
 w   g is   ,

where   g is    is individual  i ’s SNP count at location  s  and   β  s  
 w   is the GWAS weight for 

variant  s  and outcome  w . We provide more information on the construction of these 

indexes and the literature on polygenic indexes in online Appendix B.

We construct three polygenic indexes based on different samples and outcomes 

separately for children, their mothers, and their fathers. In Section IIIB, we show 

how three different indexes enable us to correct for measurement error in the under-

lying genetic factor. We construct two polygenic indexes of educational attainment 

(EA). The first is based on the GWAS conducted using 23andMe participants, and 

the second is based on the GWAS sample in Lee et al. (2018) excluding 23andMe 

participants. For our purpose, the difference between the EA PGI (23andMe) and 

the EA PGI (w.o. 23andMe) is not important, except that they are based on two 

different  nonoverlapping samples. We supplement these with the GWAS for cog-

nitive performance also based on the GWAS sample in Lee et al. (2018) exclud-

ing 23andMe participants. 16 We impute missing parental genotypes when possible 

before constructing the indexes. This is done using the method outlined in Young 

16 We use the publicly available summary statistics at the SSGAC website, which includes the summary statis-
tics of all  meta-analyses of all discovery cohorts except 23andMe, as well as private summary statistics provided 
to us by 23andMe directly.

Table 2—Measures of Investments

Period 0 1 2 3 4

Measure Age  0–2  2–3  3–4  4–5  5–6

1 Freq. goes to places of interest X X X X X
2 Freq. goes to library X X X X X
3 Freq. mum reads to child X X X X X
4 Freq. partner sings to child X X X X X
5 Freq. child taken to park X X X
6 Freq. mum shows child picture books X X
7 Freq. partner shows child picture books X X
8 Freq. partner plays with toys with child X X
9 Freq. partner reads to child X X X X
10 Freq. goes to swimming pool or sports area X X
11 Freq. goes to special classes or clubs X X

Notes: This table reports the individual measures of child investments. An X indicates that the measure is available 
in that period and is used in the estimation.
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et al. (2020), which infers a missing parental genotype from a  parent-offspring pair 

with observed genotypes.17,18

Polygenic indexes have several appealing features but some important limita-

tions. It is appealing that we can measure the genetic factor at the individual level. 

It is also appealing that we can construct multiple and independent measures of the 

genetic factor. Another appealing feature is that we can directly compare children’s 

genetic factors to that of their parents. We can exploit the natural experiment created 

by the inheritance process to estimate the effect of the child’s PGI that is indepen-

dent of her parents’ PGI.

However, the PGI has two important limitations. First, it measures the genetic 

potential for educational attainment and cognition, which means that the index does 

not capture genetic variation unrelated to these two traits. This may be a problem if 

genes unrelated to cognitive performance and educational attainment also influence 

children’s skill formation. For example, altruistic parents may invest more in their 

children, and at the same time, the genetic propensity for altruism might not be well 

captured by these indexes. That said, given that the polygenic index is constructed 

as the best linear predictor of cognitive performance and educational attainment in 

 cross-sectional data (i.e., not controlling for parental genotypes), it should partially 

capture any genetically influenced characteristics of parents that promote skills in 

their children. Second, polygenic indexes are estimated with error. We can accu-

rately measure the SNPs, but the weights (  β  j  
 w  s in equation (11)) are always mea-

sured with some error. This is due to the estimation process. An increase in sample 

sizes and improved quality control in the original GWAS can improve the estimation 

error. Our approach corrects for this error under some reasonable assumptions. We 

detail our method and assumptions in Section III.

C. Summary Statistics

We present summary statistics for the main variables used in our study in online 

Appendix A. As explained above, we restrict our sample to families for whom 

genetic information is available for full trios—child, mother, and father—after 

imputing missing genotypes. Imputing missing genotypes has two advantages. First, 

it increases statistical power by substantially increasing the estimation sample size. 

Second, it helps with issues of sample selection. The missingness in parental geno-

type is not random since both parents had to be present in the household and willing 

to participate in the genetic sample collection for their genotype to be observed. This 

restriction induces a strong positive selection on the genetic factor, especially for 

the father (who is usually the missing parent). We show this in Table A2 in online 

Appendix A. Imputing the missing parental genotype makes our main sample much 

17 The method exploits known patterns of genetic inheritance to infer the genotype of the missing parent. For 
each SNP, one allele on the missing parental genotype can be inferred exactly unless both the child and the observed 
parent are heterozygous (have exactly one minor allele). For example, suppose for some SNP, the mother has two 
minor alleles (say, CC), and the child has only one minor allele (say, GC). The major allele (G) must have been 
inherited from the father. The other paternal allele is not known exactly but is known in expectation. It can be 
imputed using the information on the allele frequencies at different SNPs from individuals from a similar ancestry 
group.

18 In online Appendix C, we show that linear estimators using imputed paternal polygenic scores are consistent 
both in the simple OLS case and with an IV estimator, as the one used in this paper.
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more similar to the full sample (before applying the other sample selection criteria). 
However, it remains significantly different with regard to the polygenic indexes and 

birth order. It is not surprising that some positive selection remains because another 

restriction comes from whether parents fill out sufficiently many of the items in the 

questionnaire. But importantly, we reduce the extent of this selection through the 

imputation method.

The child’s genotype is randomly determined from the SNPs of the mother and 

the father. The inheritance process can be thought of as a large series of coin tosses. 

For that reason, the possible values the child’s genetic factor can take vary consid-

erably. The child’s genetic factor can be significantly different from the parental 

indexes. Since there is substantial variation in how strongly each SNP is associated 

with skill formation, some children will be lucky and inherit the important genes 

from both the mother and the father, even to the point that the child’s genetic factor 

may be higher than that of both its mother and father. Naturally, the reverse may 

also be true.

This point is illustrated in Figures 1 and 2. Figure 1 plots the distributions of 

the child educational attainment polygenic index and how it relates to parental (the 

average of maternal and paternal) PGI.19 For each decile of parental PGI, we plot 

the density of polygenic indexes of the children of those parents. The figure illus-

trates the randomness of genetic inheritance. Although parents with a high PGI 

19 For the exercises in this section, we rely on the polygenic index for educational attainment constructed from 
the results in Lee et al. (2018) excluding 23andMe participants. Results are similar when relying on the other two 
polygenic indexes.

Figure 1. Distribution of Children’s EA PGI by Parental EA PGI Decile

Notes: This figure plots the density of the standardized EA PGI of the child, separately for each decile of the paren-
tal EA PGI. The figure highlights the dependence between the child’s and its parents’ genetic potential for educa-
tion. It also highlights the variation in the child’s potential for education even after conditioning on the parents’ 
potential. There is an overlap in the distribution of genetic potential for education across all parental PGI deciles.
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 naturally tend to have children with a high PGI, the different decile groups overlap 

extensively, even between children of parents in the top and bottom deciles of the 

PGI distribution. Figure 2 offers a stylized example of how that can happen. We 

demonstrate graphically how the child’s DNA is inherited from the mother (the 

green variants) and from the father (the red variants). Using only seven SNPs, we 

also show how the child’s genetic factor can be below that of both parents.

D. Preliminary Evidence

While the above shows the substantial variation in children’s indexes even after 

accounting for their parents’ genetic variation, strong dependence remains between 

the two, and controlling for this dependence is important when trying to understand 

the effect of genes on skills and investments. To make this point, we present prelimi-

nary reduced-form results where we test for the association between the child’s PGI, 

without correcting for measurement error and using a crude measure of skills and 

investments before and after we control for the parental PGI. We construct the crude 

measures of skills and investments by averaging the standardized set of measures 

available at each age.

This exercise is also helpful as it clarifies the variation in the data that iden-

tifies the genetic mechanisms estimated using the structural model. A correlation 

between the child’s PGI and the child’s skills would suggest that genes matter for 

skill development. This could reflect any of the three mechanisms we have described 

in our framework (the direct effect of genes, the nurture of nature effect, and fam-

ily genetic associations). If an association then remains between the child’s PGI 

and skills after controlling for parental genes, this would reflect an actual effect of 

the child’s genes (which are random conditional on parental genes), either through 

the direct channel or the nurture of nature channel. Similarly, if the child’s PGI is 

associated with parental investments, this could be indicative of either the nurture 

of nature effect or of family genetic associations (given that investments also affect 

skill accumulation). If we regress parental investments on both the child’s and the 

Figure 2. Family Genetic Data

Notes: Using a stylized example, this figure depicts how maternal and paternal DNA is transmitted to the child 
and how the child’s polygenic index might differ from that of its parents. The child’s DNA is composed of variants 
inherited at random from the mother (in green) and from the father (in red). The randomness in the inherited pro-
cess allows for significant variation in the variants that are inherited by the child and in the child’s polygenic index.
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parents’ PGI, a larger association between the child’s PGI and investments would 

suggest that the nurture of nature channel is more important, while a larger associ-

ation between parental PGI and investments would suggest that the family genetic 

associations are more important.

The results of these reduced-form analyses are shown in Tables 3 and 4. Panel 

A of Table 3 demonstrates that the child’s EA PGI is positively associated with her 

skills across childhood, starting at ages zero to two years and lasting until ages six 

to seven  years. Moreover, the association tends to increase over time and triples in 

size from ages zero to two years to ages six to seven  years. However, because each 

time period uses a different combination of skill measures and because a repeated 

measure may not be equally precise in different periods, this association could be 

an artifact of the limitations of this  reduced-form approach. Furthermore, these pre-

liminary associations capture a combination of all three mechanisms described in 

Section ID. Our main empirical model, described in the next section, solves both of 

these concerns.

In panel A of Table 4, we relate the child’s EA PGI and parental investments across 

the child’s development. We document a strong and roughly  age-invariant associ-

ation between the child’s genetics and investments across the entire age span from 

zero to seven  years. These results provide preliminary evidence of the importance 

of genes for parental investment, one of the key findings in this paper. However, this 

association captures both nurture of nature effects and family genetic associations.

In panel B of both tables, we control for maternal and paternal PGI. Controlling 

for the parents’ PGI reduces the association between the child’s EA PGI and skills 

substantially. We document an even larger reduction when looking at the associ-

ation between the child’s EA PGI and parental investments. These results are a 

Table 3—EA PGI and Skills by Age

Ages [ 0–2] [ 2–3] [ 3–4] [ 4–5] [ 5–6] [ 6–7] [Pooled]

Panel A
Child’s PGS 0.029 0.041 0.067 0.121 0.132 0.091 0.080

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.010)

  R   2  0.001 0.002 0.004 0.015 0.016 0.008 0.006
Observations 4,510 4,510 4,510 4,510 4,510 4,510 27,060

Panel B
Child’s PGS 0.015 0.007 −0.013 0.071 0.076 0.050 0.034

(0.028) (0.027) (0.027) (0.027) (0.027) (0.028) (0.018)

Mother’s PGS 0.032 0.037 0.069 0.055 0.057 0.041 0.049

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.013)

Father’s PGS −0.006 0.019 0.061 0.028 0.034 0.027 0.027

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.015)

  R   2  0.006 0.066 0.047 0.039 0.035 0.019 0.032
Observations 4,510 4,510 4,510 4,510 4,510 4,510 27,060

Notes: This table reports parameter estimates from regressions used to link the polygenic index for educational 
attainment to children’s skills across childhood. To test the effect of the EA PGI, we regress at each age the skill 
measure on the polygenic index, controlling for sex and the first 15 principal components of the genetic matrix. In 
panel B, we add the parental polygenic index to the regressions. Skills have been standardized as described in the 
data section, with missing values set equal to the median for that measure, allowing for a maximum of ten such 
imputations per summary index. The polygenic indexes were constructed using the summary statistics in Lee et al. 
(2018) without the 23andMe information with the imputed parental genotypes. Standard errors are reported in 
parentheses. In the pooled specification, standard errors are clustered at the individual level.
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strong indication of the presence and importance of family genetic influences on 

children’s development and emphasize the need to control for parental genes in 

our main empirical analysis. While informative, these initial findings have several 

unattractive features that are improved in the empirical model we present in the 

next section. These estimates are significantly attenuated due to measurement error, 

which can be different across time periods. For this reason, the crude measures of 

skills and investments do not allow us to compare genetic influences over time or 

separately identify the three mechanisms described in Section  ID. The empirical 

approach described in the next section addresses these concerns.

III. Empirical Model: Identification and Estimation

In this section, we discuss how we take the empirical model to the data. We 

also explain the empirical challenges we face and the estimation procedure. We 

described our model in detail in Section  I. The model involves estimating three 

dynamic equations. The child’s initial skills (equation (6)), the technology of skill 

formation (equation (8)), and the investment policy function (equation (10)). The 

key challenge is that there are many latent and unobserved factors in the model. 

We do not observe skills and investments directly but proxies of these latent fac-

tors that change over time. We also do not observe the genetic factor of children 

and their parents and instead only observe the constructed polygenic indexes. We 

rely on multiple measures of skills, investments, and genetic factors in a dynamic 

measurement system to identify all these unobserved latent factors. We follow the 

estimation approach detailed in Agostinelli and Wiswall (2020) to recover all struc-

tural parameters.

Table 4—EA PGI and Investments by Age

Ages [ 0–2] [ 2–3] [ 3–4] [ 4–5] [ 5–6] [ 6–7] [Pooled]

Panel A
Child’s PGS 0.120 0.156 0.128 0.146 0.140 0.161 0.142

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.011)

  R   2  0.015 0.025 0.016 0.022 0.020 0.025 0.020
Observations 4,510 4,510 4,510 4,510 4,510 4,510 27,060

Panel B
Child’s PGS 0.063 0.043 0.051 0.008 0.003 0.024 0.032

(0.028) (0.027) (0.028) (0.027) (0.027) (0.027) (0.021)

Mother’s PGS 0.056 0.130 0.069 0.132 0.104 0.133 0.104

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.016)

Father’s PGS 0.038 0.059 0.058 0.094 0.116 0.093 0.076

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.017)

  R   2  0.021 0.039 0.019 0.043 0.039 0.041 0.034
Observations 4,510 4,510 4,510 4,510 4,510 4,510 27,060

Notes: This table reports parameter estimates from regressions used to link the polygenic index for educational 
attainment to family investments across childhood. To test the effect of the EA PGI, we regress at each age the 
investments measure on the polygenic index, controlling for sex and the first 15 principal components of the genetic 
matrix. In panel B, we add the parental polygenic index to the regressions. The investment outcomes have been stan-
dardized as described in the data section, with missing values set equal to the median for that measure, allowing for 
a maximum of ten such imputations per summary index. The polygenic indexes were constructed using the sum-
mary statistics in Lee et al. (2018) without the 23andMe information with the imputed parental genotypes. Standard 
errors are reported in parentheses. In the pooled specification, standard errors are clustered at the individual level.
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A. Identification of Latent Skills and Investments

We observe multiple measures of children’s skills and parental investments in 

each period. These measures are imperfect proxies of underlying skills and invest-

ments. In this section, we describe how the multiple measures may be used to iden-

tify these underlying latent variables and how we can track the evolution of skills 

and investments dynamically. We formalize the measurement error system in a fac-

tor analytic approach as in Cunha and Heckman (2008) and Cunha, Heckman, and 

Schennach (2010).
Formally, in each period  t , we observe  J  measurements of the child’s skills and  

K  measurements of parental investments. Let   m  ijt  
θ
    denote the  j th measurement of 

child  i ’s skill at period  t , and let   m  ikt  
 I    denote the  k th measurement of child  i ’s parental 

investment at period  t . Following Attanasio, Meghir, and Nix (2015) and Agostinelli 

and Wiswall (2020), we assume a  linear-log relationship between each measure-

ment, the latent child skills   θ it   , and latent parental investments   I it   :

(12)   m  ijt  
θ
   =  μ  jt  

θ
   +  λ  jt  

θ
   · ln  θ it   +  ν  ijt  

 θ
   ,

(13)   m  ikt  
 I   =  μ  kt  

I   +  λ  kt  
 I   · ln  I it   +  ν  ikt  

 I   ,

where   λ  jt  
θ
    and   λ  kt  

 I    are the factor loading for skill measurement  j  and investment 

measurement  k  and   ν  ijt  
 θ
    and   ν  ikt  

 I    are i.i.d. measurement errors.20 As in Agostinelli 

and Wiswall (2020), we make no further assumptions on the distribution of the 

measurement errors.

Identifying Assumptions.—We array the measurement errors for skills   ν  jt  
 θ   in a 

vector   ν   θ   and the measurement errors for investments   ν  kt  
 I    in a vector   ν     I   and assume 

that

(14)   ν  jt  
 θ  ⫫  ν   j ′  t  

 θ
  , ∀ j ≠  j ′  , 

(15)   ν  jt  
 θ  ⫫  ν  j t ′    

 θ
  , ∀ t ≠  t ′  , 

(16)   ν  kt  
 I   ⫫  ν   k ′  t  

 I  , ∀ k ≠  k ′  , 

(17)   ν  kt  
 I   ⫫  ν  k t ′    

 I  , ∀ t ≠  t ′  , 

(18)   ν   θ  ⫫  ν     I . 

The assumptions in equations (14) to (18) maintain that the measurement errors 

are independent of each other and independent across time. These assumptions 

imply that conditional on latent skills and investments, the residual information 

20 This assumption says that conditional on latent skills and investments, the measurement error in the skill and 
investment measures is independent across measures and developmental periods. It also means that conditional on 
the latent skills and investments, the measurement errors are independent of child and parental genes. That means 
we assume that genes influence the latent skills and investments and not the measures themselves, which is consis-
tent with our model.
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in the measurements is uninformative about the process of skill formation. While 

this is a standard assumption in the literature, it can be strong in certain contexts. 

For example, it can fail if one of the measurements captures information on addi-

tional skills not captured in  θ  but important for the development process. Similarly, 

it would fail if there are additional dimensions of parental investments not captured 

by  I  but relevant for some of the measurements.

Identification of the measurement system and the latent skills and investments 

requires further restrictions. Without further normalization, neither location nor scale 

of the latent skills and investments can be identified. Agostinelli and Wiswall (2020) 
discuss the implications of different normalizing assumptions. In particular, they show 

that the production function can be estimated without further restrictions only if a 

particular measurement (or a combination of several overlapping measurements) is 

available at all periods for both skills and investments, the measurement thus being 

 age-invariant. That way, the location and scale of the latent skills or investments at any 

period can be identified relative to the  age-invariant measurement.

We are fortunate to have several such measures for investments in our data. 

Table 2 lists all the measures we use to identify the latent investments at the different 

periods. We have four measures that are asked at all periods: “Frequency the child 

goes to places of interest,” “Frequency the child goes to a library,” “Frequency the 

mother reads to the child,” and the “Frequency the mum’s partner sings to the child.” 

In our benchmark specification, we chose the “Frequency the child goes to places 

of interest” as our  age-invariant measure, denoted by  k = 1 . Results are similar 

when we use one of the other three measures. We make the following normalizing 

assumption on the  age-invariant measure of investments:

(19)   m  i1t  
 I   = 0 + 1 · ln  I it   +  ν  i1t  

 I   for t ∈  {0, 1, 2, 3, 4}  .

Unfortunately, we do not have a measure that is asked at all periods for the latent 

skill. Our measures of skills capture different child development achievements, such 

as being able to use plurals or read simple words. These achievements are age spe-

cific since most children are able to complete some of the tasks after a certain age, 

and few young children can complete other tasks. For this reason, no question is 

put to the child in all six periods. Identification is then obtained from two separate 

measures that are asked at many but not all periods (see Table 1). The survey asks 

whether the child “Can build a tower of 8 bricks” in periods 0, 1, and 2. Similarly, 

the survey asks the mother if the child “Can play card games (or board games)” in 

periods 1, 2, 3, 4, and 5. Since the two measures overlap at some periods and cover 

all periods together, we use them to identify the location and scale of the latent skills 

across periods. Other combinations are possible and do not alter our main findings. 

Formally, letting the measure “Can build a tower of 8 bricks” be described by  j = 1  

and “Can play card games (or board games)” by  j = 2 , we make the following 

normalizing assumption on the two measures:

(20)   m  i1t  
θ
   = 0 + 1 · ln  θ it   +  ν  i1t  

 θ
   for t ∈  {0, 1, 2}  ,

(21)   m  i 2t  
θ
   =  μ 21   +  λ 21   · ln  θ it   +  ν  i 2t  

 θ
   for t ∈  {1, 2, 3, 4, 5}  ,
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where   μ 21    and   λ 21    are identified in period 1 using the normalization on the first mea-

sure. We describe how these are estimated in the next section.

Estimation of the Measurement System.—Given the assumptions in equations 

(14) to (18) and the normalization restrictions, we can estimate all parameters of the 

measurement system for latent skills and investments and the means and distribution 

of the latent variables. The parameters of the measurement system include the factor 

loadings (  λ  jt  
θ
    and   λ  kt  

 I   ), the measurement means (  μ  jt  
θ
    and   μ  kt  

I   ), and the variance of the 

measurement errors (  σ  jt,θ  
2    and   σ  kt,I  

2   ). These parameters can be estimated directly from 

ratios of the covariance between different measurements, from the measurement 

means, and from the measurement variance.

Consider three measurements of latent investments in period 1 (  m  11  
 I   ,   m  21  

 I   , and  

  m  31  
 I   ). Recall that we assume   λ  11  

 I   = 1  and that the measurement errors are indepen-

dent (equation (16)), so we can write the covariance between each pair of measure-

ments as

  cov ( m  11  
 I  ,  m  21  

 I  )  = 1 ·  λ  21  
I   · var (ln  I 1  )  ,

  cov ( m  11  
 I  ,  m  31  

 I  )  = 1 ·  λ  31  
I   · var (ln  I 1  )  ,

  cov ( m  21  
 I  ,  m  31  

 I  )  =  λ  21  
I   ·  λ  31  

I   · var (ln  I 1  )  .

As first shown in Carneiro, Hansen, and Heckman (2003), we can use these three 

identities to identify the three unknowns (  λ  21  
I   ,   λ  31  

I   , and  var (ln  I 1  )  ). To see this, note 

that

  var (ln  I 1  )  =   
cov ( m  11  

 I  ,  m  21  
 I  )  · cov ( m  11  

 I  ,  m  31  
 I  ) 
   ______________________  

cov ( m  21  
 I  ,  m  31  

 I  ) 
   ,

   λ  21  
I   =   

cov ( m  21  
 I  ,  m  31  

 I  ) 
  ___________  

cov ( m  11  
 I  ,  m  31  

 I  ) 
   ,

   λ  31  
I   =   

cov ( m  21  
 I  ,  m  31  

 I  ) 
  ___________  

cov ( m  11  
 I  ,  m  21  

 I  ) 
   .

We can extend this procedure to include additional measurements beyond the first 

three. When the model is  overidentified, we take the means of different combina-

tions of measurements as our estimates. The procedure can be applied to all periods 

to identify all factor loadings (  λ  kt  
 I   ). The factor loadings for the latent skills can be 

identified in a similar manner, with the additional step that we must first estimate   λ 21    
before estimating the factor loadings in the later periods.

Once the variance of the latent variable ( var (ln  I t  )   and  var (ln  θ t  )  ) and the fac-

tor loadings are identified, we can also identify the mean of the latent variables  

( E [ln  I t  ]   and  E [ln  θ t  ]  ) and then the measurement means (  μ  kt  
I    and   μ  jt  

θ
   ). To see this, note 

that since we assume   μ  1t  
I   = 0 , we have that

  E [ln  I t  ]  = E [ m  1t  
 I  ]  .
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Similarly, we have that

   μ  kt  
I   = E [ m  kt  

 I  ]  −  λ  kt  
 I   · E [ln  I t  ]  .

The estimation procedure for the latent skill is similar but with the additional step 

that we need to set   μ  2t  
θ
   =  μ  21  

θ
   , which can be identified in period 1 from the assump-

tion that   μ  11  
θ
   = 0 .

Lastly, once all other parameters are identified, we can identify the variance of the 

measurement errors (  σ  jt,θ  
2    and   σ  kt,I  

2   ) from each measurement variance. These follow 

from the following identity:

   σ  kt,I  
2   = var ( m  kt  

 I  )  −   ( λ  kt  
 I  )    

2
  · var (ln  I t  )  ,

   σ  jt,θ  
2   = var ( m  jt  

θ
  )  −   ( λ  jt  

θ
  )    

2
  · var (ln  θ t  )  .

Signal to Variance Ratio.—The information relative to measurement error con-

tained in each of the measures is described by the signal to variance ratio. It mea-

sures the fraction of the variance in a given measure that is explained by the latent 

factor. Formally, for the  j th measure of child’s skill in period  t , the ratio is defined as

(22)   s  jt  
θ
   =   

  ( λ  jt  
θ
  )    

2
  × var (ln  θ t  ) 

   _____________________   
  ( λ  jt  

θ
  )    

2
  × var (ln  θ t  )  + var ( ν  jt   θ ) 

   .

We report the signal to variance ratio for each skill measure at each period in 

Table A5 and for each investment measure at each period in Table A6, both in online 

Appendix A. The degree of measurement error varies substantially, both across mea-

sures and over time. In particular, we see that the first period is characterized by low 

signal to variance ratios for all items. This shows how measures of skills at early ages 

are poor proxies of children’s underlying skills. It also highlights the importance of 

accounting for measurement error in a formal skill formation model. Without this 

approach, the estimates of the parameters in the structural model would be biased.

B. Identifying the Genetic Factor

A similar logic can be applied to identify the genetic factor of children and their 

parents. To do so, we need to first assume that the latent genetic factor is a linear 

combination of individual  i ’s SNPs. At first, this seems like a very strong assumption. 

However, there is much empirical and theoretical evidence that most genetic vari-

ance for polygenic phenotypes can be explained by the additive (linear) component 

(see, for example, the discussion in Hill, Goddard, and Visscher 2008). Formally, let   
g ij    correspond to the  j th SNP of individual  i , measuring the number of minor alleles 

at the  j th location of individual  i ’s genome, and  J  be the number of relevant SNPs in 

the genome. We can then write the underlying genetic factor of individual  i  as

(23)   G i   =   ∑ 
j=1

  
J

     β j    g ij   ,
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where   β j    corresponds to the direct effect of SNP  j .

The key identification issue is that   G i    and the corresponding weights   β j    are unob-

served. However, we do observe measures of   G i    corresponding to the polygenic 

indexes. Under classical measurement error assumptions, we can use the latent fac-

tor model to identify   G i    as we did with skills and investments. Formally, let  pg i   i  
k   

be a polygenic index for a trait related to   G i    and    β ˆ      j  
k   be the estimated weight from a 

GWAS. We assume that

(24)  pg i   i  
k  =   ∑ 

j=1

  
J

      β ˆ      j  
k   g ij   

(25)  =  λ  k  
G    ∑ 

j=1

  
J

     β j    g ij   +   ∑ 
j=1

  
J

     η  j  
 k   g ij   

(26)  =  λ  k  
G   G i   +  ζ    i  

k  ,

where under the linearity assumption, we can decompose the PGI into the genetic 

factor and a measurement error component   ζ    i  
k  =  ∑ j=1  

J     η  j  
 k   g ij   , which aggregates the 

estimation error for the coefficient of association across SNPs.

Identification of the genetic factor relies on the assumption that the measurement 

error is independent across PGIs. That is, it relies on the assumption that

(27)   ζ    i  
k  ⫫  ζ    i  

 k ′   , ∀ k ≠  k  ′   .

This assumption is plausible for PGIs constructed from independent GWAS with 

no sample overlap if we assume that   η  j  
 k   captures mainly estimation error in the 

GWAS. However, this assumption would not hold if the   β j   s are systematically mis-

estimated, for example, due to not correctly controlling for population stratification 

in the GWAS. In this case, the bias for each SNP would be similar across GWAS, 

and assumption (27) would fail. As a general rule, any bias in the original GWAS 

will carry over to downstream analyses and cannot be addressed  ex post using stan-

dard measurement error methods. This highlights the importance of a proper GWAS 

design for any downstream analyses. Since there are only two large independent 

GWAS of educational attainment, we rely on a PGI constructed from the cognition 

GWAS as our third measure of the genetic factor. Suppose we again assume that   
η  j  

 k   captures only the estimation error in the GWAS. In that case, it is also plausible 

that assumption (27) will hold for PGIs constructed using two distinct, but related, 

outcomes since there will be overlap in the genetic signal from the two outcomes, 

but the estimation error will be independent across the two estimates.

The availability of three polygenic indexes that satisfy assumption (27) is suffi-

cient to identify   G i   . To see that, without loss of generality, assume that  var ( G i  )  = 1  

and  E [ G i  ]  = 0 . Then the   λ  k  
G   can be identified by the covariances between the three 

indexes:

(28)  cov (pg i   i  
1 , pg i   i  

2 )  =  λ  1  
G   λ  2  

G  var ( G 1  )  + cov ( ζ   i  1 ,  ζ    i  2 )  

(29)  =  λ  1  
G   λ  2  

G  .
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So

(30)   λ  1  
G  =   

cov (pg i   i  
1 , pg i   i  

2 )  × cov (pg i   i  
1 , pg i   i  

3 ) 
   _________________________   

cov (pg i   i  
2 , pg i   i  

3 ) 
   .

Signal to Variance Ratio.—We report the signal to variance ratio for the genetic 

factor of children and their parents in Table A7 in online Appendix A. The EA PGI 

computed using the summary statistics from Lee et al. (2018) without the 23andMe 

data shows the strongest signal, followed by the EA PGI computed using the 

23andMe GWAS summary statistics, and the cognitive PGI. The pattern is similar 

for each of the family members.

Note that the genetic factor identified by this approach captures genes that share a 

common signal across the different polygenic indexes. In our case, this means that we 

can identify the genetic factor for cognitive skills relating to educational attainment.

C. Estimating the Technology of Skill Formation and the Investment Policy 

Function

Once the parameters of the measurement system are identified, we can estimate 

the remaining parameters in the technology of skill formation (equation (8)), the 

investment function (equation (10)), and in the early skills function (equation (6)). 
To do so, we again follow Agostinelli and Wiswall (2020) and construct “residual” 

measures of skills and investments. The residual measures can be used in a regres-

sion framework to identify the remaining parameters in the model. Formally, for 

each measure of latent skills, investments, and genetic factor, we construct “residual 

measures” by subtracting the estimated measurement mean and dividing by the esti-

mated factor loading, such that

(31)    m ̃    ijt  
θ   =   

 m  ijt  
θ
   −  μ  jt  

θ
  
 _ 

 λ  jt  
θ
  
   = ln  θ it   +   

 ν  ijt  
 θ
  
 _ 

 λ  jt  
θ
  
   ,

(32)    m ̃    ikt  
 I   =   

 m  ikt  
 I   −  μ  kt  

I  
 _ 

 λ  kt  
 I  
   = ln  I it   +   

 ν  ikt  
 I  
 _ 

 λ  kt  
 I  
   ,

(33)    pgi ̃     i  
k  =   

pg i   i  
k 
 _ 

 λ  k  
G 
   =  G i   +   

 ζ    i  
k 
 _ 

 λ  k  
G 
   . 

We use these residual measures to estimate the remaining parameters. For exam-

ple, to estimate the investment policy function (equation (10)), we can use the  k th 

residual measurement for the latent investment, the  j th residual measurement for the 

latent skill, and the  k th residual genetic factor for the latent genetic factor instead of 

the true unobserved latent variables.21

21 In practice, we can use all possible combinations of investments and skill measurements to estimate the model 
parameters. There are many possible ways to use this large amount of measures. In our preferred specification, our 
parameters are averages of all possible combinations of measures for each period.



410 THE AMERICAN ECONOMIC REVIEW FEBRUARY 2024

(34)    m ̃    ikt  
 I   =  γ 1,t     m ̃    ijt  

θ   +  γ 2,t     pgi  ̃    i  
k  +  γ 3,t     pgi  ̃    i  

k,m  +  γ 4,t     pgi  ̃    i  
k, f

  +  γ x,t    X  it  
I   +   η it   ̃   ,

where    η it   ̃   =  η it   +  ν  ikt  
 I  / λ  kt  

 I   −  γ 1,t   ( ν  ijt   θ
  / λ  jt  

θ
  )  −  γ 2,t   ( ζ    i  k / λ  k  

G )  −  γ 3,t   ( ζ    i  k,m / λ  k  
G,m )  −  γ 4,t   

×  ( ζ    i  
k, f

 / λ  k  
G, f 

 )  .

Estimation of equation (34) by OLS would yield inconsistent estimates of the  γ  
coefficients because the residual measures are correlated with their measurement 

errors, which are included in the residual term    η it   ̃   . A common solution in the liter-

ature, which we follow here, is to use an instrumental variables estimator with the 

vector of excluded measurements   [ m  i j ′  t  
θ
  ]   as instruments for    m ̃    ijt  

θ    and   [pg i   i  
 k ′   ]   as instru-

ments for    pgi ̃     i  
k  . This instrumental variables strategy yields consistent estimators of 

the  γ  coefficients. A similar approach is used to estimate the parameters of the tech-

nology of skill formation (equation (8)) and early skills function (equation (6)). 
Since this is an innovation, we also prove the consistency of our IV estimator when 

using imputed parental polygenic indexes. We show the proof in online Appendix C.

The key identifying assumption is that all shocks and measurement errors are 

independent of each other and across time. Formally, we array the skill formation 

shocks   ϵ t    in a vector  ϵ , the investment shocks   η t    in a vector  η , and assume that

(35)   ϵ t   ⫫  ϵ  t ′    , ∀ t ≠  t ′  , 

(36)   η t   ⫫  η  t ′    , ∀ t ≠  t ′  , 

(37)  ϵ ⫫ η, 

(38)   (ϵ, η)  ⫫  ( ν   θ   ν     I , ζ) . 

Assumptions (35) and (36) maintain the independence of the shocks over time, 

and (37) maintains the independence between shocks to investments and skills. This 

means that we treat shocks and innovations to the investment policy function as 

exogenous. This is a potentially strong assumption that is commonly made in the 

literature (see, e.g., Agostinelli and Wiswall 2020). Relaxing this assumption is pos-

sible if instruments are available, as in Attanasio et al. (2020). Common instruments 

are price variations across regions and across time. Unfortunately, our sample was 

born in the same year and region, making it difficult for the same strategy to be 

implemented. In addition, we need to assume that the measurement errors are inde-

pendent of the shocks to investments and skills (assumption (38)). This assumption 

means that conditional on the latent investments (  I it   ), skills (  θ it   ), and genetic factors 

(  G i   ,   G  i  
 m  ,   G  i  

   f 
  ), the remaining information on the measurements is unrelated to the 

process of skill formation.

There are other important assumptions in how we specify our model. In particu-

lar, it is worth highlighting that we assume that the relationship between  log-latent 

investments and skills and the measures of those latent variables is linear and homo-

geneous across families (equation (13)). This assumption could be violated in a 

variety of ways. One such violation could happen if a given  parent-child interaction 

does not reflect the underlying latent investment in the same way across different 

families. Say, for example, that for high-PGI parents, taking their child to a “place 
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of interest” is a strong signal of investment in child skill formation, whereas for low-

PGI parents, going to a “place of interest” is a less strong signal of investment, per-

haps because the different families go to different places. In this scenario,   λ  k  
 I    would 

be different for different families, which is a violation of our model. Unfortunately, 

we cannot test for this type of violation, and allowing for heterogeneity in   λ  k  
 I    would 

significantly complicate our estimation and identification strategies.

D. Inference

We rely on a bootstrap procedure for inference. We  resample the individuals from 

our initial sample at random with replacement and  redo all estimation steps to obtain 

new model parameters under each new bootstrap sample. The entire procedure is 

replicated 1,000 times. Using the bootstrap procedure, we compute the 95 percent 

confidence intervals that are reported in the paper. The procedure takes into account 

the estimation error at all the steps. Similarly, when comparing estimates from dif-

ferent models, as in Section VC, we do the comparison for each bootstrap sample to 

compute the 95 percent confidence intervals.

IV. Estimation Results

We present the parameter estimates from the model. We first discuss the estimates 

for the initial skills function (Section IVA). This is followed by the estimates for the 

technology of skill formation (Section IVB). Next, we discuss how parental invest-

ments are determined (Section IVC). In the following sections, we use empirical 

simulations to describe the patterns captured by our model. We first show that the 

effect of genes increases during early childhood and then how the growth of skills is 

different across the genetic spectrum (Section IVD).

A. Genetic Influences on Initial Skills

We present the parameter estimates of equation (6) in the first column of Table 5. 

We document small and insignificant effects of the child’s genes on its initial skills. 

This means that any documented genetic effects on later skills cannot be explained 

by the effect of genes on initial skill endowments. We also document positive and 

significant associations with maternal genes but not with paternal genes for the 

child’s initial skill endowments. These endowments are measured at ages zero to 

two  years, and they are therefore affected by conditions  in utero as well as by very 

early investments after birth. We interpret the association with maternal genes as 

possibly being driven by more favorable  in utero and birth conditions influencing 

early child development.

B. Genetic Influences on the Technology of Skill Formation

The estimated parameters of the technology of skill formation (equation (8)) are 

presented in the second to sixth columns of Table 5. The parameter on  ln  θ it    is the 

 self-productivity parameter, which has the interpretation of an elasticity, capturing 

the influence of past skills on current skills. The parameter on  ln  I it    captures the 
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returns to investments. The complementarity between skills and investments is cap-

tured by the parameter on  ln  θ it   × ln  I it   . All three parameters vary significantly across 

periods and tend to increase over time. Our estimates for the later periods of develop-

ment are similar to those documented in Agostinelli and Wiswall (2020), including the 

negative interaction (substitutability) between skills and investments. Agostinelli and 

Wiswall (2020) use a similar translog specification and focus on children aged  five to 

six years onward, making our estimates at the same ages and using a similar specifica-

tion comparable. In online Appendix D.2, we also estimate a full translog model that 

allows for interactions between all the terms. However, as this specification does not 

significantly change any of our findings, and most of the additional interaction terms 

are insignificant, we prefer the more restrictive model as our main specification.

We extend the traditional model to allow genetic effects to influence skill forma-

tion. We find that both children’s and their parents’ genes matter for the children’s 

skill development. The direct effect on child skills is negligible in the initial peri-

ods of development but increases significantly starting at age four. The effect of 

the child’s own genetic factor captures the ability to acquire new skills, given the 

current stock of skills and parental investments (the direct effect in Section  ID). 
Even after allowing parental genes to affect investments, parental genes still have a 

 nonnegligible association with skill formation that is not captured by investments. 

We interpret these as capturing the quality of the family environment that can be 

explained by family genetics. It could include, for example, genetic influences on 

the quality of parenting. These influences accumulate over time. In Section IVD, we 

provide more insights into the importance of genes by analyzing the importance of 

the cumulative genetic mechanisms in explaining skill formation over time as well 

as variation in skill formation across individuals.

Table 5—Technology of Skill Formation

Ages  0–2 Ages  2–3 Ages  3–4 Ages  4–5 Ages  5–6 Ages  6–7

(1) (2) (3) (4) (5) (6)

  G i   0.002 0.001 0.001 0.030 0.022 0.008

[−0.015, 0.019] [−0.008, 0.008] [−0.016, 0.017] [0.014, 0.046] [0.008, 0.036] [−0.001, 0.017]

  G  i  
 m  0.012 0.003 0.005 0.011 0.011 0.001

[−0.001, 0.024] [−0.002, 0.009] [−0.005, 0.017] [−0.000, 0.023] [0.001, 0.021] [−0.005, 0.008]

  G  i  
   f
  0.004 0.004 0.015 0.003 0.006 0.003

[−0.010, 0.019] [−0.002, 0.011] [0.003, 0.029] [−0.009, 0.016] [−0.006, 0.018] [−0.004, 0.011]

 ln  θ it   0.224 1.844 0.583 1.009 1.988

[0.088, 0.351] [1.214, 2.724] [0.340, 0.829] [0.565, 1.486] [1.175, 2.819]

 ln  I it   0.098 0.696 0.329 0.931 2.122

[0.051, 0.140] [0.386, 1.100] [0.127, 0.542] [0.390, 1.525] [1.107, 3.233]

 ln  θ it   × ln  I it   −0.005 −0.216 −0.056 −0.184 −0.552

[−0.031, 0.024] [−0.366, −0.101] [−0.122, 0.010] [−0.345, −0.028] [−0.855, −0.263]

 ln A 1.409 1.818 −2.375 0.936 −0.808 −3.939

[1.391, 1.428] [1.604, 2.038] [−4.855, −0.652] [0.187, 1.706] [−2.525, 0.736] [−7.011, −1.051]

 E [ln  θ it+1  ]  1.433 2.599 3.034 3.278 3.428 3.505

 var (ln  θ it+1  )  0.033 0.031 0.061 0.090 0.090 0.034

Notes: This table reports the parameter estimates for the initial skill function (equation (6)) in the first column and 
the parameter estimates for the technology of skill formation (equation (8)) at different child ages in columns  2–6. 
We report the associated 95 percent bootstrap confidence intervals in brackets.
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C. Genetic Influences on Parental Investments

The estimated parameters for the investment policy function (equation (10)) are 

presented in Table 6. The most interesting results are those relating to genes and 

their interpretation. The impact of the child’s genes on parental investments is the 

direct nurture of nature effect, reflecting how parents respond to their children’s 

genetics conditional on their current stocks of skills. This effect is large and signifi-

cant in the first period but then decreases gradually in magnitude over time. Children 

with higher genetic factors behave in ways that elicit their parents to spend more 

time with them, even after conditioning on their cognitive skill levels.

However, we also find that the child’s genes indirectly influence parental invest-

ments through the stock of skills. We find that parents reinforce initial skill dif-

ferences and invest more in  high-skilled children. The reinforcing behavior is an 

indirect form of the nurture of nature effect since the stock of skills is, in part, 

determined by the child’s genetics. Hence, children with a higher genetic factor 

will tend to have a higher stock of skills, leading parents to invest more in their skill 

development. This reinforcing behavior is also stronger earlier in life.

We also document a large association between parental genetic factors and paren-

tal investments. This association captures a variety of family genetic influences on 

the environment experienced by the child. The association is significant in all peri-

ods, and it is stronger for maternal genes than for paternal genes, in particular until 

around the age of four. In Section VB, we show that most of these influences are 

mediated through parental education.

D. Genetic Influences across Early Ages

To make better sense of the magnitude and importance of the genetic influences, 

we graphically depict the relationship between the child’s genetic factor and the 

child’s predicted skills at different ages. To do so, we simulate the evolution of skills 

and investments 1,000 times for each individual using the model parameters. We 

Table 6—Investment Policy Function

Ages  0–2 Ages  2–3 Ages  3–4 Ages  4–5 Ages  5–6

(1) (2) (3) (4) (5)

  G i   0.026 0.022 0.012 −0.002 −0.001
[0.006, 0.045] [−0.005, 0.049] [−0.002, 0.026] [−0.008, 0.005] [−0.007, 0.005]

  G  i  
 m  0.038 0.079 0.030 0.019 0.013

[0.023, 0.054] [0.058, 0.100] [0.020, 0.041] [0.013, 0.025] [0.008, 0.018]

  G  i  
   f
  0.022 0.036 0.019 0.015 0.016

[0.004, 0.039] [0.013, 0.058] [0.007, 0.031] [0.009, 0.021] [0.009, 0.021]

 ln  θ it   0.339 0.719 0.182 0.091 0.107

[0.268, 0.405] [0.597, 0.862] [0.134, 0.230] [0.067, 0.115] [0.076, 0.133]

Constant 4.144 2.650 3.005 2.493 2.416

[4.047, 4.248] [2.269, 2.976] [2.846, 3.159] [2.402, 2.582] [2.314, 2.537]

 E [ln  I it  ]  4.643 4.528 3.557 2.809 2.796

 var (ln  I it  )  0.112 0.182 0.058 0.010 0.007

Notes: This table reports the parameter estimates for the investment policy function (equation (10)) at different 
child ages in columns  1–5. We report the associated 95 percent bootstrap confidence intervals in brackets.
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then standardize the stock of skills at each period for ease of comparison. The results 

are shown in Figure 3.

Panel A of Figure 3 shows the effect of the child’s own genetic factor on the stan-

dardized stock of skills at different ages conditional on parental genes, which are held 

fixed. Two important results are evident; first, the effects are relatively large, with a 

one standard deviation increase in the genetic factor leading to about a 0.18 standard 

deviation increase in the stock of skills at ages six to seven  years. Second, the effect of 

genes accumulates over time. Before age four, the same increase in the genetic factor 

leads to a negligible increase in the stock of skills. This is consistent with Belsky et al. 

(2016), who find that the association between EA PGI and cognitive ability increases 

from age 3 to age 11, and with earlier twin and adoption studies showing an increasing 

heritability of IQ with age (Bouchard 2013;  Tucker-Drob, Briley, and Harden 2013). 
Our contribution is that the dynamic factor model allows us to control for differences 

in measurement error across periods, thereby allowing us to rule out that this pattern 

is simply an artifact of skills being less precisely measured at earlier ages. In addition, 

our approach also allows us to control for measurement error in the genetic factors. 

In online Appendix D.1, we show that not performing this correction would make us 

underestimate the effects of child genetics.

It is not only child genes that influence skill formation; parental genes are also 

associated with skill formation. Panels B and C of Figure 3 show the relationship 

between the maternal and paternal genetic factors and the child’s stock of skills 

by age. Once again, the associations are relatively large. One standard deviation 

increase in the maternal genetic factor is related to a 0.12 increase in the child’s 

stock of skills at ages six to seven. For fathers, the association is slightly smaller, at 

0.08. We also observe an increasing importance of parental genes by age, although 

the increase is less clear than that for the child’s own genes.

V. Mechanisms and Implications

The model also allows us to better understand genetic mechanisms and what is 

gained from including genetics in models of skill formation. We demonstrate this with 

three different counterfactual simulations. First, to illustrate the importance of the 

different genetic mechanisms, we simulate what happens to the link between child 

genes, investments, and the distribution of skills when we remove nurture of nature 

effects and family genetic associations. Second, to better understand the role of family 

genetic influences, we  reestimate our model with different family controls (  X it   ) that 

may mediate the influence of parental genes on skill formation. Third, to better under-

stand what is gained from including genetics in models of skill formation, we compare 

our baseline model to the same model without the child and parental genes. We then 

compare the estimated effect and genetic heterogeneity of parental investments in both 

models. This exercise helps us understand what is missed and quantifies the possible 

biases from neglecting genetics in traditional models of skill formation.

A. Mechanism Decomposition

We perform the first simulations to illustrate the relative contribution of the 

nurture of nature and family genetic associations. We assess how the relationship 



415HOUMARK  ET AL.: GENETICS, INVESTMENTS, AND SKILLSVOL. 114 NO. 2

between genes, investments, and the distribution of skills change in counterfactual 

worlds where the two mechanisms do not exist.

Our main findings show that parental behavior is reinforcing, as parents invest 

more in children with higher genetic factors (the nurture of nature effect). However, 

this pattern may be different in other contexts, as suggested by the literature on 

whether parents reinforce or compensate for initial differences in skills (see, e.g., 

Hsin 2012; Grätz and Torche 2016; Nicoletti and Tonei 2020). In one specification, 

we, therefore, simulate the distribution of investments and skills in a counterfactual 

world with no nurture of nature, i.e., where parental investments are independent of 

child endowments.

Our main findings also show a significant influence of parental genes on skill 

formation, which captures family genetic influences. While this pattern is likely 

to hold across most contexts, there is at least one particular case where this link is 

eliminated, namely when children are adopted or placed in  out-of-home care. In 

another specification, we, therefore, simulate the link between genes, investments, 

and skills in a counterfactual world with no family genetic influences, i.e., where 

parental genes only matter by being transmitted to the child.

Figure 3. Associations between Genetic Factors and Latent Skills across Child Development

Notes: These figures plot the relationship between the child’s and its parents’ genetic factors and the child’s latent 
skill at different ages. Using the estimated model parameters, we simulate the expected latent skill at different ages 
when we separately increase the child’s, the mother’s, and the father’s genetic factors while keeping the remain-
ing indexes constant. This figure highlights how the associations between skills and both parental and child genes 
increase over time.
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Panels A and B of Figure 4 plot the standardized simulated latent investments 

at ages  zero to two and five to six years under the different specifications as a 

function of the child’s genetic factor. The blue line corresponds to the predicted 

association between the child’s genetic factor and latent investments from our 

empirical model. It is not a causal effect, as it captures all three mechanisms, 

including family genetic associations. The figures show that children with higher 

genetic factors receive higher levels of parental investments in earlier and later 

periods. The predicted associations are large; each  one point increase in the stan-

dard deviation of the genetic factor is associated with a 0.2 to 0.3 standard devia-

tion increase in parental investments. Controlling for family genetic associations 

significantly decreases the overall association, as shown by the red line. As shown 

in panel B of Table  7, between 57 and 90 percent of the association between 

the genetic factor and parental investments is explained by parental genes. The 

importance of family genetic associations is larger at later stages of develop-

ment. The remaining association is due to the nurture of nature channel, as shown 

by the change from the red to the yellow line in panels A and B of Figure  4. 

We thus show that both mechanisms contribute to the observed inequality in  

investments.

Panels C and D of Figure  4 present the corresponding relationship between 

the child’s genetic factor and standardized latent skills at ages two to three  and 

six to seven years under the different scenarios. Again, the blue line depicts the 

predicted association from our empirical model, and we see that the predicted 

skill gradient is substantial. Next, we illustrate to what extent the inequality in 

skills can be explained by the inequality due to family genetic associations. The 

red line illustrates the relationship between the child’s genetic factor and skills in 

the counterfactual world without the influence of parental genes. Eliminating the 

association between parental genes and investments and skills reduces the asso-

ciation between the child’s genetic factor and skills by between 41 to 82 percent, 

as shown in panel A of Table 7. In contrast to investments, the influence of family 

genetics on skills is stronger in earlier developmental periods. The yellow line in 

panels C and D of Figure 4 depicts the predicted relationship between the child’s 

genetic factor and skills when we further control for the nurture of nature effect. 

Doing so, we see a significant decrease in the effect of genes in earlier periods of 

about 18 percent but a small decrease in later periods of only about 3 percent. The 

remaining relationship is due to direct genetic effects. These are more important 

at later stages of development, accounting for up to 56 percent of the association 

between the genetic factor and skills.

This exercise serves two purposes. First, it gives a sense of the relative impor-

tance of the different channels of genetic influence. We see that family genetic 

influences and the nurture of nature both contribute to the gradient between 

child genes and parental investments, and child skills. Family genetic associa-

tions are relatively more important earlier on for skills and later on for paren-

tal investments. Second, the simulations illustrate a more general point, namely 

that genetic effects are not independent of investments or the environment 

in general. Rather, genes and  investments interact, and the reason that we see 

large genetic inequalities is partly that parents respond to (and reinforce) such 

inequalities.
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B. Decomposing Family Genetic Associations

In our second set of simulations, we aim to understand the mechanisms by which 

family genetics influence children’s skill formation. To do so, we  reestimate our 

model using different sets of control variables in   X it   . In our baseline model,   X it    
includes only information about the child’s sex. We  reestimate our model, adding 

different observed family variables to   X it    one by one. The full set of controls also 

includes dummies for different parental education levels, dummies for parental 

occupational groups, and information on family size and family income.

Figure 4. Mechanisms Decomposition

Notes: This figure illustrates the importance of the different genetic channels for the relationship between the child’s 
genetic factor and latent child skills and parental investments in the first and last periods. We first plot the observed 
relationship (baseline). Using the estimated model parameters, we then simulate expected latent skills/investments 
when we exogenously increase the child’s genetic factor while holding the mother’s and father’s genetic factor con-
stant (no family genetic associations). We then additionally shut down the link between child genes and investments 
(no nurture of nature), and, for latent skills, the link between child genes and skills (no direct effects).
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This is of interest for three reasons. First, a better understanding of the mechanisms 

of transmission is key if one decides to design policies to decrease genetic influences 

on skills. Second, understanding what observed factors account for family genetic 

influences can help researchers perform similar types of analyses in datasets where 

parental genes are not observed. Lastly, this acts as a validation exercise to our identi-

fication strategy. We assume that variation in the child’s genetic factor is random con-

ditional on the parents’ genetic factors. If this is true, we should expect the estimated 

effect of the child’s genetic factor to be unchanged, even though parental genetic influ-

ences are expected to change once we add different family controls to the model.

We summarize the results from this exercise in Figure 5 and present the estimated 

coefficients in online Appendix D.3. The figure plots the estimated relationship between 

the child’s and her parents’ genetic factors and her skills at ages six to seven. The baseline 

model (in blue) shows the estimated relationships for each of the three genetic factors 

while keeping the remaining indexes constant as in Figure 3. We then allow maternal 

education to enter the control set (  X it   ) and plot the estimated relationships in red. The 

effect of the child’s genetic factor remains unchanged, but the associations between the 

maternal and paternal genetic factors and child skills decrease substantially. We further 

control for paternal education and plot the estimated relationships in yellow. Again, 

the effect of the child’s genetic factor is unchanged, but now the lines for the parental 

genetic factors are flat. Controlling for the education of both parents completely medi-

ates the association between parental genes and child skills. Including additional family 

controls only changes the relationship between genes and skills marginally.

This exercise shows that the estimated family genetic associations mainly oper-

ate via the association between parental genes and parental educational attainment. 

Other factors seem unimportant once we control for parental education. This exer-

cise also shows that controlling for parental education, as is commonly done in 

the literature when parental genes are not available, seems to be a valid approach. 

Lastly, the fact that the child’s genetic effects are unchanged as we vary the control 

set (  X it   ) validates our identification strategy.

C. Ignoring Genes in Models of Skill Formation.

In this last set of simulations, we want to understand better the consequences of 

not including genetic data in models of skill formation. To do so, we  reestimate the 

Table 7—Mechanisms Decomposition by Age

Ages  0–2 Ages  2–3 Ages  3–4 Ages  4–5 Ages  5–6 Ages  6–7

Panel A. Child’s skills
Direct effects 18.09% 6.94% 4.83% 51.76% 55.82% 55.44%
Nurture of nature 0.00% 18.08% 13.33% 7.50% 2.90% 2.72%
Family genetic associations 81.91% 74.98% 81.84% 40.75% 41.28% 41.84%

Panel B. Parental investments
Nurture of nature 42.86% 27.90% 37.14% 9.88% 18.74%
Family genetic associations 57.14% 72.10% 62.86% 90.12% 81.26%

Notes: This table decomposes the association between the child’s polygenic index for educational attainment and 
child’s skills (in panel A) and parental investments (in panel B) by the three mechanisms for the different develop-
mental periods.
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model without any genetic factors. We do this both for the baseline model (without 

controls) and the model from Section VB with the full set of parental controls. We 

present the full set of estimates in online Appendix D.4 (Tables  D14–D17).
To compare the models, we focus on the estimate of the returns to investments. 

The sensitivity of skills with respect to investments is a key parameter in the skill 

formation literature (Cunha and Heckman 2007). Cunha and Heckman (2008) illus-

trate differences in sensitivity across different skills and periods by simulating the 

effect of an exogenous increase of 10 percent in investments. We follow their simu-

lation exercise to understand whether omitting genes from models of skill formation 

can lead to bias in the estimates of the sensitivity of parental investments.22

22 While we follow the simulation approach in Cunha and Heckman (2008), our estimates and goals are not 
directly comparable. First, while we are interested in understanding the consequence of omitting genes from our 
model, they are interested in understanding which periods are sensitive for investments in cognitive and  noncognitive 
skills. Second, the estimates themselves are not directly comparable since they anchor the returns to skills to adult 
outcomes, which we cannot do because of a lack of data availability.

Figure 5. Parental Controls

Notes: These figures compare how the relationship between the child’s and its parents’ genetic factors and the 
child’s latent skill at ages six to seven  changes once different family controls are added to our estimation model. 
The baseline set of controls   X it    includes only the child’s sex. We add different family controls one by one to the 
analysis. The full set of controls includes dummies for different parental education levels, dummies for parental 
occupational groups, and information on family size and family income. For each set of controls, we  reestimate the 
model, and using the estimated model parameters, we simulate the expected latent skill at different ages when we 
separately increase the child’s and the parental genetic factor while keeping the other constant. This figure high-
lights how parental education explains the majority of the family genetic associations but does not explain the effect 
via the child’s genes.
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The results are reported in Table 8. In panel A, we compare the model without 

controls, while in panel B, we compare the model with the full set of controls. In the 

model without controls, we see that a permanent increase in investments of 10 per-

cent leads to a 3.86 percent increase in average skills at ages  6–7. In comparison, the 

corresponding estimate without genes is 4.23 percent. The estimated returns using the 

model without genes are significantly overestimated in all periods by up to 10 percent. 

However, when adding the full set of controls, the estimates become more similar, and 

the model without genes only overestimates the returns to investments by up to 2 per-

cent. Hence, this again shows the importance of detailed family controls to minimize 

the bias in standard models of skill formation when genetic data are unavailable.

Another important question in the literature is whether the returns to investments 

differ across individuals and whether some relevant child or family characteristic 

can capture it. This heterogeneity is important in describing how inequality in skills 

is generated. For example, Agostinelli and Wiswall (2020) estimate heterogeneity in 

the returns to investments by household income and show that the returns to invest-

ments are highest for children from  low-income families. Such estimates are import-

ant for assessing how different policies will affect the distribution of skills and the 

overall degree of inequality in the population. An additional advantage of our model 

is that we can estimate the heterogeneous returns to investments across the child’s 

genetic factor. While observable characteristics such as household income capture 

many different correlated factors, we can causally attribute the heterogeneity to the 

genetic factor because variation in the child’s genetics is random after conditioning 

on parental genetic factors.

Figure 6 shows how returns to investments are heterogeneous across children’s 

genetics. The blue line plots the percentage change in skills resulting from the per-

manent investment increase as a function of the child’s genetic factor. Returns to 

Table 8—Effect of a 10 Percent Increase in Investments

Ages  2–3 Ages  3–4 Ages  4–5 Ages  5–6 Ages  6–7

Panel A. Without controls
Baseline model 0.92% 2.19% 2.47% 4.48% 3.86%

[0.75 , 1.07] [1.77 , 2.70] [2.03 , 2.99] [3.62 , 5.71] [3.12 , 5.01]

Model without genes 0.93% 2.27% 2.66% 4.93% 4.23%

[0.76 , 1.08] [1.84 , 2.81] [2.21 , 3.23] [4.01 , 6.25] [3.41 , 5.47]

Percentage difference 1.25 3.79 7.74 10.03 9.38

[0.35 , 2.53] [2.07 , 6.77] [5.70 , 10.97] [7.14 , 13.52] [6.16 , 13.20]

Panel B. With controls
Baseline model 0.80% 1.47% 1.44% 2.79% 2.37%

[0.65 , 0.94] [1.16 , 1.85] [1.13, 1.79] [2.09 , 3.77] [1.78, 3.18]

Model without genes 0.80% 1.47% 1.47% 2.85% 2.42%

[0.65 , 0.94] [1.15 , 1.86] [1.14 , 1.82] [2.15 , 3.86] [1.82 , 3.23]

Percentage difference 0.03 0.27 1.61 2.19 2.09

[−0.37 , 0.55] [−0.83 , 1.29] [0.24 , 3.33] [0.50 , 4.21] [0.19 , 4.34]

Notes: This table compares the effects of a 10 percent increase in investments on latent child skills at different peri-
ods, implied by the baseline model and the model without genes. The last row shows in percentages how much the 
model without genes overestimates the returns to investments. We report the associated 95 percent bootstrap con-
fidence intervals in brackets.
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investments are heterogeneous across children’s genetics, and children with lower 

genetic factors face the highest returns to investments. This finding is particularly 

interesting given the fact that parents in our sample tend to invest more in the  high–

genetic factor children, even though the returns are lower for them. However, if 

investments were to increase proportionally for all children—for example, through 

social policy—the distribution of skills would become more equal. This suggests 

that there is no  trade-off between equity and efficiency with respect to investments 

in children’s skills at early ages.

Again, we can demonstrate what happens when we omit genes from the model. The 

red line in Figure 6 plots the observed correlation between the returns to investments 

and the child’s genetic factor using the parameter estimates from the model without 

genes. There are two main points to highlight. First, the fact that this line is not flat 

indicates that the genetic heterogeneity is misattributed to environmental variables 

included in the model (e.g., parental income) that are correlated with the (unobserved) 
genetic factor. Second, the fact that the red line is flatter than the blue line shows that a 

significant part of the heterogeneity in the returns to investments is missed when genes 

are omitted from child development models. That is, omitting genes from models of 

child development will underestimate the heterogeneity in the returns to investments 

and misattribute genetic heterogeneity to environmental variables.

VI. Discussion and Conclusion

To better understand the interplay between genetics and family resources for 

skill formation and its relevance for policy, we incorporated genetic factors into a 

Figure 6. Returns to Investments by   G i   

Notes: This figure plots the returns to investments implied by the baseline model and the model without genes 
across the child’s genetic factor. For the baseline model, the dotted blue line illustrates the average effect, while 
the solid blue line illustrates the actual effect, which is heterogeneous across the child’s genetic factor. The red line 
shows how this effect is  misestimated by the model without genes.
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dynamic model of skill formation. We modeled and estimated the joint evolution 

of skills and parental investments throughout early childhood (ages zero to seven 

years). We observed both child and parental genotypes, allowing us to estimate the 

independent effect of the child’s genes on skill formation and to estimate the asso-

ciation between family genetics and child development. Furthermore, by incorpo-

rating (child and parent) genetics into a formal model, we were able to evaluate the 

mechanisms through which genes influence skill formation and describe what is 

missed from excluding genes from models of skill formation.

Using the model, we document the importance of both parental and child genes 

for child development. We show that the effect of genes increases over the child’s 

early life course and that a large fraction of these effects operate via parental invest-

ments. Genes directly influence the accumulation of skills; conditional on their cur-

rent stock of skills and parental investments, genetics make some children better able 

to retain and acquire new skills (the direct effect). In addition, we show that genes 

indirectly influence investments, as parents reinforce genetic differences by invest-

ing more in children with higher skills (the nurture of nature effect). We also find 

that family genetic influences matter and that these influences are mediated through 

parental education. The impact of genes on parental investments is especially sig-

nificant, as it implies an interplay between genetic and environmental effects. These 

findings illustrate that nature and nurture jointly influence children’s skill develop-

ment, a finding that highlights the importance of integrating biological and social 

perspectives into a single framework. We also demonstrate the importance of con-

sidering genetic influences for the identification of structural parameters in models 

of child development. We show that both the average return to investments and the 

heterogeneity in these returns will be misestimated when genes are ignored in skill 

formation models since genetic influences will be either completely missed or mis-

attributed to  nongenetic factors.

A limitation of our work is that genetic factors are measured using polygenic 

indexes for educational attainment and cognition. It is possible that genes unrelated 

to these outcomes nevertheless also influence children’s early life skill formation. 

For example, genetic variation related to mental health and altruism may potentially 

be unrelated to education but might influence how parents interact with their chil-

dren. If this is true, we are missing the parts of the genetic contribution to skill for-

mation that work through such alternative channels. Another limitation of our work 

is that we only observe children’s cognitive skills. It is possible that the mechanisms 

for the formation of other child skills are different. It is also possible that some of 

our estimated genetic mechanisms can be explained by the effect of the child’s genes 

on early  socioemotional skills. Future work should explore these other dimensions.

Lastly, it is important to recognize that our findings may not generalize to other 

contexts and other groups of individuals. In particular, our sample is restricted to 

individuals of European ancestry. This issue is common to the broader genetics lit-

erature since the majority of polygenic indexes are constructed from GWAS per-

formed in Europeans, and their transferability to other populations depends on many 

factors (see Martin et al. 2017 for a discussion of the transferability issues of GWAS 

results and Mostafavi et al. 2020 for an empirical comparison of PGIs across eth-

nic groups). This also illustrates a problem of inequity in research, where the only 

individuals being studied are those of European ancestry. This opens the possibility 
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that other ancestry groups will not benefit from the advances in genetics research 

(see the discussion in Martin et al. 2019). While the key insights from our research 

apply to all ancestry groups, we cannot test for any differences in the role of genetics 

across groups until we have solved the transferability issue. We hope future work 

will address these issues and lead to a more inclusive research agenda.
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