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Genetic association studies assess correlations between
genetic variants and trait differences on a population
scale. On the genetic side, until recently there were rela-
tively few (100s to 10,000s) DNA variants available to
study, but advances in the past two years alone have
identified nearly two million such polymorphisms1,2.
On the trait side, the phenotypes assessed in association
studies include disease status, such as osteoporosis, asth-
ma or diabetes; continuously varying measures, such as
bone density, bronchial responsiveness or glucose levels;
and response to environmental stimuli, such as drug
efficacy or side effect. This breadth of genetic informa-
tion and depth of phenotypic measure holds consider-
able promise for identifying genotype–disease correla-
tions, and is one of the main thrusts of the drive towards
personalized medicine3.

Unfortunately, the literature is teeming with reports of
associations that either cannot be replicated or for which
corroboration by linkage has been impossible to find4–6.
Explanations for this lack of reproducibility are well-
rehearsed, and typically include poor study design, incor-
rect assumptions about the underlying genetic architec-
ture and simple overinterpretation of data. The common
errors encountered in association studies of complex dis-
eases are summarized in BOX 1. Despite these known limi-
tations, the power of association analysis to detect genetic
contributions to complex disease can be much greater
than that of linkage studies7. The opportunity to use this

power of association strategies has led to efforts to devel-
op association methodologies that attenuate some of the
most widely perceived limitations of the approach.

The requirement for linkage disequilibrium map-
ping and association methodologies in common disease
has arisen because of the recognized limitations of exist-
ing linkage strategies in these disorders8. Although pow-
erful for detecting genetic loci in single gene disorders,
linkage analysis of common, multifactorial diseases has
been limited by the lack of clear genetic segregation of
any DNA variants in multigenerational family material,
and by the modest contribution to disease made by
individual genetic variants. Even where linkage has been
identified reproducibly, it has seldomly led to the resolu-
tion of linkage regions to less than a few megabases in
most common diseases6. A strategy for refining this
linkage information, and for searching for genetic vari-
ants of small effect, is therefore essential, and association
studies are seen to address this need9–11. Despite their
recognized limitations, association studies represent an
essential step in advancing the field to the definition of
disease-mediating genetic variants.

Recently, Risch7 reviewed the statistical framework of
association studies, comparing the statistical power to
detect multifactorial genetic effects in linkage and asso-
ciation designs. His POWER calculations highlighted some
advantages of the association design over the linkage
strategy in terms of sample size. Still, there are a number
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Assessing the association between DNA variants and disease has been used widely to identify
regions of the genome and candidate genes that contribute to disease. However, there are
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POWER

The probability of correctly
rejecting the null hypothesis
when it is truly false. For
association studies, the power
can be considered as the
probability of correctly
detecting a genuine association.
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individual DNA variants in regions of strong and
extreme LD.

Ironically, the HLA work also indirectly led to consid-
erable scepticism about association studies that persists
unabated today. Because the HLA variants were the first
to be widely available, association studies of a broad
spectrum of phenotypes were undertaken, occasionally
in the absence of careful study design, assessments of sta-
tistical power or reasoned hypotheses of HLA involve-
ment. An inevitable consequence of this HLA overexpo-
sure was a large number of unreplicable findings27.

For several reasons, there is great enthusiasm at pre-
sent about the promise of association studies for uncov-
ering the genetic components of complex disease: dense
single-nucleotide polymorphism (SNP) maps across
the genome1,2; elegant, high-throughput genotyping
technologies28; simultaneous comparison of groups of
loci; statistical measures for assessing genome-wide sig-
nificance; and the phenotypic insight that might accom-
pany comparative genomic studies among different
human subgroups. Although these areas are indeed
exciting, complex trait studies must be careful to avoid
recreating the outcomes of the ‘blind’ association strate-
gy used 20 years ago with HLA. This requires careful
attention to the sample collected and to the study design
employed, which are probably the most crucial elements
of any association study.

Sampling strategies for association studies
The case–control study has been the most widely
applied strategy of association studies for characterizing
the genetic contributions to disease. The advantages of
this approach are that cases are readily obtained and can
be efficiently genotyped and compared with control
populations. Despite its ease, however, this approach has
been the most prone to identifying DNA variants that
prove to be ‘spuriously associated’ with disease. As in the
case of HLA, the spurious nature of the association is
usually defined by the failure to replicate the original
association data in subsequent studies, and by the
inability to provide evidence for genetic linkage10. A par-
ticular difficulty with this methodology is the choice of
control populations, which are often, by necessity, retro-
spectively defined; that is, identified, matched and ascer-
tained after collection of the disease group.

The selection of controls is crucial because any sys-
tematic allele frequency differences between cases and
controls can appear as disease association, even if they
only reflect the results of evolutionary or migratory his-
tory, gender differences, mating practices or other inde-
pendent processes. When allele frequency differences
are coupled with differences in disease frequency (as is
the aim of case–control studies), the resulting evidence
for association might be statistically highly significant,
but unrelated to the actual influence of the allele under
investigation. From the perspective of a disease gene,
such studies are spurious in that the association is due
to the structure of the population studied rather than to
LD (BOX 3). Linkage studies of such DNA variants would
not detect significant results, because no familial segre-
gation would be apparent in the population subgroups.

of potential pitfalls and limitations of association stud-
ies6, many of which depend on the particular design,
study aims and analytical framework adopted12. Here
we review some of the most commonly used association
designs and applications, and discuss some of their limi-
tations and possible solutions.

Linkage disequilibrium
Genetic variants and trait scores can become associated
by several mechanisms6; that of greatest present interest
is linkage disequilibrium (LD), also known as gametic
phase disequilibrium or allelic association (BOX 2). The
history of LD dates back to 1909, to the original observa-
tions of Weinberg, who documented that alleles at two
adjacent loci asymptotically approach random associa-
tion in a population (reviewed in REF. 13). The presence of
LD between alleles mainly reflects the recombination
history in the population of that haplotype. Therefore,
recently acquired mutations, or those in founder or iso-
lated populations with limited chromosome diversity,
are likely to show extensive LD that might extend over
long distances14–18. However, as a result of a number of
contributing factors, including regional variability in
recombination patterns, GENETIC DRIFT, mutation age, eth-
nic diversity and recent POPULATION ADMIXTURE, local chro-
mosomal composition and the pattern of mating within
a population, patterns of LD can vary significantly with-
in and between different populations19–25.

Perhaps the first formal use of LD mapping was in
1947 by Fisher26, who used it to establish the order of
loci on the basis of allele frequencies for the blood anti-
gen, rhesus factor. The strategy was later applied widely
in the major histocompatability complex region on
chromosome 6 when serologically defined protein
polymorphisms in the human leucocyte antigen (HLA)
system were identified. These studies led to the associa-
tion of the HLA region with a range of immunological-
ly mediated diseases and, more recently, infectious dis-
eases. The association studies were facilitated by the
extensive LD that exists in this region over distances of
greater than 3 cM. Many of the rules currently applied
to association strategies arose from characterization of
the HLA with serological tools, before the advent of
robust DNA-based genotyping. Work in the HLA
region demonstrated the power of association studies
to define areas contributing to disease, but also the dif-
ficulty that can arise in attempting to clarify the role of

GENETIC DRIFT

The random fluctuation in allele
frequencies as genes are
transmitted from one
generation to the next.

POPULATION ADMIXTURE

A population in which multiple
subgroups are included.
Admixture often refers to
intermarriage/reproduction
from different groups of
individuals, but most simply is
used to denote a population of
subgroups having different
allele frequencies (see
population stratification).

Box 1 | Common errors in association studies

• Small sample size

• Subgroup analysis and multiple testing

• Random error

• Poorly matched control group

• Failure to attempt study replication

• Failure to detect linkage disequilibrium with 
adjacent loci

• Overinterpreting results and positive publication bias

• Unwarranted ‘candidate gene’ declaration after
identifying association in arbitrary genetic region
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cases to emerge before association studies can proceed.
It has the additional advantage that prospective collec-
tion of environmental information can be achieved.
Given that most studies to date have not incorporated
environmental effects, nor the likely influence of geno-
type–environment interactions, this will be of increas-
ing importance for the analysis of common disease29.

These study designs require significant numbers of
cases to be adequately powered to study disease genetics.
Because of the modest effects likely to be contributed by
disease genes, the presence of LOCUS HETEROGENEITY, the
tendency to analyse subgroups of the patient population
and the characterization of allele frequencies at markers
distant and with uncertain linkage disequilibrium from
the functional variants, it is easy to understand why
such studies have historically yielded ambiguous
results8. These studies often incorporated 100 or fewer
cases and a similar number of controls, and it is now
thought to be likely that such studies are possible only if
done with much larger patient samples30,31. Indeed,
studies involving up to thousands of individuals have
provided accurate estimates of risk associated with par-
ticular alleles32–34. Of course, particular attention must
be paid to sample sizes when more than one variable is
studied simultaneously, such as multiple imperfectly
correlated traits, intergenic interactions (epistasis) or
gene–environment interactions. Such studies require
even larger patient populations to ensure that individual
subgroups retain adequate power to detect significant
associations with narrow confidence intervals.

The crude definition of most diseases being studied
using this methodology will inevitably progress towards
a refinement of disease definition once more is known
about the molecular basis of disease subtypes. This will
lead to opportunities to limit association studies to sub-
groups defined by specific phenotypes not previously
recognized to be significant, on the basis of the presence
of particular alleles at certain loci, or of epigenetic fac-
tors such as parent-of-origin affects. These opportuni-
ties create an iteratively developing knowledge of genet-
ic associations, in which weak associations are improved
by establishing hypotheses on the basis of subgroups
and then testing new cohorts. This approach will be
necessary, given the extent of locus heterogeneity for
many common diseases, but might be statistically haz-
ardous unless considered carefully with regard to study
design and data analysis.

Repeated subgroup analysis is a valid route to gener-
ate hypotheses, but these hypotheses must be subse-
quently tested in additional patient populations. A com-
mon error in association studies is to analyse the patient
population repeatedly using different clinical pheno-
types or genotypically defined subgroups. This repeated
testing might be implicit, with subgroups considered
and abandoned because of a lack of significance.
Multiple testing generates subgroups that are small, pro-
viding less robust results, and also creates a substantial
risk of associations being described by chance (statistical
Type I error). Such analysis might be necessary given the
crude phenotypic definition of disease. Ultimately, this
will drive the need for large patient populations to test

Control ascertainment can be improved by using a
PROSPECTIVE COHORT study. This requires a substantial col-
lection of individuals to be selected before the onset of
disease and to be matched with individuals followed
under the same experimental protocol. In this way, there
is no bias for the selection of a control population. This
approach, however, requires significantly more
resources and patience to allow sufficient numbers of

Box 2 | Linkage versus association 

At a fundamental level,
genetic association and
linkage analysis rely on
similar principles and
assumptions87. Both rely
on the co-inheritance of
adjacent DNA variants,
with linkage capitalizing
on this by identifying
haplotypes that are
inherited intact over
several generations
(such as in families or
pedigrees of known
ancestry), and
association relying on
the retention of adjacent
DNA variants over
many generations (in
historic ancestries).
Thus, association
studies can be regarded
as very large linkage
studies of unobserved,
hypothetical pedigrees.
In growing populations,
such as humans,
recombination is the
primary force that
eliminates linkage and
association over
generations88. When a
functional mutation
occurs (‘m’ in the figure)
— perhaps one that
contributes to disease
— it does so on a

haplotype of other pre-existing DNA variants. Because linkage focuses only on recent,
usually observable ancestry, in whom there have been relatively few opportunities for
recombination to occur, disease gene regions that are identified by linkage will often
be large, and can encompass hundreds or even thousands of possible genes across
many megabases of DNA (figure panel a). By contrast, association studies draw from
historic recombination so disease-associated regions are (theoretically) extremely
small in outbred random mating populations89, encompassing only one gene or gene
fragment (figure panel b). Through subsequent generations, as the disease mutation is
transmitted, recombination will cause it to be separated from the specific alleles of its
original haplotype. Particular DNA variants can remain together on ancestral
haplotypes for many generations. This type of non-random association of alleles is
known as linkage disequilibrium. It is linkage disequilibrium that provides the genetic
basis for most association strategies.
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PROSPECTIVE COHORT

Longitudinal study of individuals
initially assessed for exposure to
certain risk factors and then
followed over time to evaluate
the progression towards specific
outcomes (often disease).
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infarctions and 733 controls, suggested that the ACE
locus had a role in the risk of particular subgroups to
cardiovascular disease35. Confidence intervals for this
initial study were large. Subsequent studies often
involved even fewer patients, and those published
seemed to produce variable results. The positive nature
of many of these smaller studies might have reflected
publication bias towards positive results. When the
hypothesis was tested in a very large case–control study
(4,629 cases and 5,934 controls), the evidence of an
association between ACE and an increased risk of car-
diovascular disease was much diminished (RISK RATIO 1.1,
confidence interval 1.00–1.21)33. This example demon-
strates that, for modest genetic effects and where geno-
typic subgroups are being identified, sample sizes
involving 1,000 to 10,000s of individuals might be
required to generate robust data. An additional example
of this outcome has been recently reported for late-
onset diabetes34. This principle, if applied widely, would
considerably reduce the number of unreplicated results
obtained using association methodology.

Technically, case–control studies have one main
advantage. DNA samples from cases and controls can be
pooled and genotyped together to determine differences
in allele frequency. This methodology, pioneered in the
HLA system36 and recently extended in many con-
texts30,37–40, should provide a powerful mechanism for
testing efficiently large numbers of alleles across cases
and controls. Pooling in complex diseases requires very
high accuracy, however, because genuine differences in
allele frequencies between cases and controls might be
quite small. It is not yet clear that the measurement of
signal intensity for each allele within pooled DNA sam-
ples can reach the necessary tolerance levels for these
studies, as even small levels of experimental error in
pooling assays (1–2%) might be too high for such appli-
cations. Moreover, pooling does not lend itself to direct
haplotype assessment, which is likely to be essential for
complex trait mapping.

What is the optimal control population?
Family-based controls. Nearly all human genetic associa-
tion methods developed in the past decade have focused
on the need to account for population stratification. To
reduce the effect of population stratification on associa-
tion studies, various approaches have been developed
that use controls selected from the families of affected
probands. Falk and Rubinstein41 were among the earliest
developers of this methodology, and used it to construct
the haplotype relative risk test. They classified parental
alleles into those transmitted to affected children and
those not transmitted. By using those alleles not trans-
mitted as controls, they were able to evaluate the risk of
disease arising from particular allelic markers.

At present, the most popular extension of this
approach, known as the transmission disequilibrium
test (TDT42–44), focuses only on heterozygous parental
genotypes, thereby providing a joint test of linkage and
association that eliminates the effects of stratification
when applied to single probands and parents. Various
further extensions have been developed for multiallelic

and validate hypotheses sequentially in different popu-
lations. Sample sizes of a thousand or more will not
prove to be excessive for these sorts of iterative studies.

The merits of large sample sizes have recently been
shown in studies on the role of polymorphisms around
the angiotensin-converting enzyme (ACE) locus and its
contribution to the risk of cardiovascular disease. Early
publications on this disease association in the ECTIM
(Étude Cas-Temoin de l’Infarctus du Myocarde) study,
which involved 610 men who survived myocardial

Box 3 | Population stratification  

Fear of false-positive
outcomes arising from
POPULATION STRATIFICATION

has virtually dictated the
progress in human
association study design
and analysis methodology
over the past decade. In
large part, complex disease
association studies have
moved from the traditional
case–control model to
family-based controls, in
which alleles that are not
transmitted from parents
serve as proxies for control
samples. Recently, however,
some investigators have
begun to explore the use of
unlinked genetic markers to
detect stratification and
even correct for it when it is

present90–94. At the core of these methods is the idea that population substructure,
operationally defined by differences in allele frequencies between subsets of a given
sample, should be detectable by evaluating allele frequency patterns at a number of
anonymous markers. This information can then be used to alter the interpretation or
analysis of the candidate gene(s) of interest.

The top graph illustrates the balance between the false-positive rate at a candidate
locus and the rate of detecting stratification using anonymous unlinked markers
(single nucleotide polymorphisms (SNPs)). Two hundred cases and two hundred
controls were simulated with allele frequencies at a candidate locus differing by a
prescribed amount (shown on the x axis), and 40 unlinked markers were simulated on
the basis of these frequencies under the model of Bacanu et al.94. The y axis indicates
the probability (Pr) of detecting evidence for population stratification at the 95%
significance level. Clearly, TYPE I ERROR at the candidate locus (an apparent difference in
allele frequencies between cases and controls) increases rapidly as the allele frequency
difference widens (blue line); however, the ability to detect stratification increases even
faster (red line). At first glance, this could lead one to question the ongoing concerns
about stratification: genotyping 40–100 markers in available samples is not a difficult
endeavour. Nevertheless, consideration of the overall false-positive rate (that is, a false-
positive outcome at a candidate locus without detecting stratification using additional
markers90), suggests that substantial inflation of Type I error can still occur (bottom
graph, green line). In the hypothetical study shown in the figure, a nominal false-
positive rate of 5% is inflated by a factor of two. Moreover, the maximal inflation occurs
when the cases and controls show only small differences in allele frequency.
Unfortunately, these small differences might reflect precisely the magnitude of effect we
seek to detect at complex disease loci. Actual inflation levels can be better or worse than
this, depending on the nominal significance rate adopted, the sample size studied and
the number and spacing of background markers genotyped. Thus, population
stratification might yet remain a thorn in the side of complex trait association studies.
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LOCUS HETEROGENEITY

The appearance of
phenotypically similar
characteristics resulting from
mutations at different genetic
loci. Differences in effect size or
in replication between studies
and samples are often ascribed
to different loci leading to the
same disease.
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history, would provide less disease heterogeneity and
larger regions of linkage disequilibrium, facilitating
association strategies. Sardinia, Finland and Iceland
have all been selected for large studies that are based
around such ‘founder effects’. Interestingly, evidence for
more extensive patterns of linkage disequilibrium has
been difficult to demonstrate when tested objectively in
these populations compared with more outbred popu-
lations16–18. Whether there is disease heterogeneity in
these latter populations remains uncertain.

Applications of association methodology
Regional linkage disequilibrium mapping. One applica-
tion of association methodology has been to try to iden-
tify the precise disease-causing DNA variant(s) in a
region that is known to be linked and associated with a
disease. Within a targeted region, two association strate-
gies are common: a positional candidate approach, in
which specific genes or variants are examined on the
basis of proposed relationships with the phenotype; and
a positional cloning approach, in which markers are
selected for evaluation purely on the basis of their prox-
imity to one another on a chromosome. In either case,
for common diseases these regions are often localized by
replicated linkage data, which typically refine the initial
region down to 1–10 cM. Within such a region, the
identification of a causative DNA variant might prove to
be a challenging task.

Such strategies were originally applied to identify
genes involved in fully penetrant gene disorders, such as
cystic fibrosis and Huntington disease, in which haplo-
types in linkage disequilibrium within a region of link-
age allowed disease genes to be identified61–64. This has
proved to be more difficult to achieve in complex traits
and has relied on the characterization of large numbers
of polymorphisms within a region — a task requiring
extensive sequencing and the development of genotyp-
ing assays. By examining allelic variants across a region
of known linkage, it should be possible to see variations
in the strength of associations between these markers
and a phenotype or disease, enabling the trait-associated
locus and causative or susceptibility mutation to be
mapped65–68. Conventional case–control strategies can
be applied in these circumstances, as can TDT
approaches. The application of haplotypes to this analy-
sis can provide stronger evidence of a region being asso-
ciated with the disease phenotype than can the use of
individual markers69.

These studies are most often limited by poor under-
standing of the patterns of linkage disequilibrium with-
in large regions of linkage and by the limited number of
polymorphisms that are available within such regions.
For example, it has been widely assumed that linkage
disequilibrium declines as markers become more dis-
tant from disease polymorphisms. This proves to be a
significant oversimplification of the real situation.
Consistent with the complex evolutionary history of
any set of haplotypes, islands of linkage disequilibrium
can be separated by regions where little linkage disequi-
librium exists. A marker with strong disease association
surrounded by markers with no association cannot be

markers45, multiple siblings in a family46, missing
parental data47,48 and quantitative traits49–52. This test has
been popularized by applications to many diseases, but
perhaps most often in positional cloning attempts in
juvenile onset diabetes42,53–58. A detailed mathematical
review of the TDT has recently been presented59.

An unfortunate side effect of the TDT is that it effec-
tively throws away some genotype information, owing to
its reliance on heterozygous parents. This creates a loss of
statistical power to detect genuine allelic association. In its
original form, the TDT also requires parental genotypes,
which are not easily accessible for late-onset disorders.
Consequently, although more robust in the presence of
population stratification, the family-based methodolo-
gies can be more difficult or even impossible to imple-
ment, and might require significantly more patients and
family collections than case–control studies60.

Matched control populations. If family-based selection
is not practical (for example, in pharmacogenetics
applications, some late-onset diseases or large prospec-
tive cohorts), then selecting an appropriate control pop-
ulation is essential to enable the optimal design of
case–control studies. Ideally, a control sample should
reflect the ethnic and genetic composition of the case
sample. For this reason, ‘off-the-shelf ’ control samples
used for a range of disease association studies are likely
to prove inappropriate, as controls should be carefully
matched with the disease sample. This matching can be
notoriously difficult to achieve, however, and several dif-
ferent control populations might have to be used in any
given study. Prospective studies can provide more
robust control populations but are substantially more
costly because of their necessary scale.

Another approach for selecting a control population
is to collect several control populations reflecting the
various substructures that might exist in the case popu-
lation. Such a control set might include populations that
are both geographically dispersed and ethnically defined
to establish the range of allele frequencies that might be
encountered at a single locus. Such a control panel
might also provide age-related allele frequencies, as the
population structure will vary with age as a result of his-
torical patterns of migration, mating, selection and
other forces. This enables allele frequencies from the
defined case population to be tested against a matched
control panel, as well as evaluated against a range of
allele frequencies from subpopulations that might bias
the outcome. Any distortion of allele frequency in the
case groups that lies outside the range of control fre-
quencies would reflect apparently real effects.

Ethnic diversity leading to population stratification
can bear significantly on the power of an association
study. The evolutionary history of haplotypes and link-
age disequilibrium patterns will vary significantly in dif-
ferent ethnic populations. Disease populations that con-
tain an ethnic predominance must be matched to
appropriate controls. It has been argued that the choice
of particular ethnic groups might also facilitate associa-
tion studies as these might arise from limited numbers
of founders and, owing to a relatively short evolutionary

POPULATION STRATIFICATION

The presence of multiple
subgroups with different allele
frequencies within a
population. The different
underlying allele frequencies in
sampled subgroups might be
independent of the disease
within each group, and they can
lead to erroneous conclusions
of linkage disequilibrium or
disease relevance.

TYPE I ERROR

The probability of rejecting the
null hypothesis when it is true.
For association studies, Type I
errors are manifest as false-
positive reports of
phenotype–genotype
correlation.

RISK RATIO 

A measure of association effect
reflecting the probability of
disease in people with a
particular allele or genotype
versus the probability of disease
in those who do not have the
particular genotype.
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Given strong evidence for LD, it can still prove difficult
or impossible to identify causative mutations in disease
genes themselves. This can be further complicated by
the clustering of loci that share similar functions within
a single genomic region of strong LD, as is seen in the
HLA region.

One approach to breaking down such regions of
linkage disequilibrium is to characterize the disease phe-
notype in diverse populations that might share substan-
tially different ancestries for the genomic region of
interest. Such ‘transracial mapping’ has allowed the dis-
section of strongly conserved regions with extensive
linkage disequilibrium, and is likely to prove even more
useful as linkage-disequilibrium mapping becomes used
more widely74,75. This is essentially a domain of compar-
ative genomics, but in which comparisons within
species form the basis of interest. Whatever the regional
association strategy adopted, definitive evidence of a
role for a mutation or gene will require functional stud-
ies of the polymorphisms, as aetiological effects cannot
be proved from association alone.

Whole-genome association. In the 1970s and early
1980s, the availability of DNA-based polymorphisms
led to the application of LD to the hunt for causative
genes in diseases such as cystic fibrosis and Huntington
disease. Later in the 1980s, the possibility existed to use
sets of restriction fragment length polymorphisms to
provide LD maps of regions of the genome or eventual-
ly to obtain association data across the whole genome.
Limitations imposed by marker numbers, typing effi-
ciencies and extent of LD prevented this from being
applied systematically, but, with more recent marker
development and improvement in typing technology,
such approaches now seem more realistic. The availabil-
ity of large sets of SNPs throughout the genome will
permit LD mapping to be an increasingly important
component for regional and whole-genome association
strategies in mapping the genes of human disease.

With the recent compilation of the draft human
genome sequence, genome-wide studies of association
will soon be a reality. Because of the nature of genetic
resolution in outbred families described above, linkage
studies do not benefit directly from the genome
sequence, other than in the provision of a broader array
of informative genetic markers that can be tailored to
the properties of a particular family collection.
Association studies, however, are likely to benefit greatly
from the genome sequence data11 or at least from the
follow-on identification of sequence variants76.
Sequencing the human genome might alter the course
(again) of the positional cloning paradigm, as genome-
wide association studies are likely to define new candi-
date genes that require some form of verification.
Linkage studies of the candidate region would provide
compelling evidence for genuine LD.

Regardless of the role of linkage to complement
genome-wide association studies, all of the potential
problems with association studies outlined above
remain crucial, and, indeed, will be magnified according
to the density of the scan employed24,77,78. Given a high

interpreted as being a disease-mediating variant, as
more distant markers in linkage disequilibrium might
exist outside those where no association occurs13,19,68,70,71.
In this case, the burden of aetiological allele identifica-
tion could require assessment of many or all polymor-
phisms in a region, with inferences drawn using the rel-
ative strength and pattern of association observed.

Even when convincing evidence is obtained, the
problems associated with very tight linkage disequilibri-
um in regions that have been identified as being both
linked and associated with disease are often understated.
Thus, in contrast to intermittent, weak evidence for
association, an alternative problem is that many alleles
in a gene or genes might be strongly associated16, there-
by precluding resolution of individual effects. This
problem is exemplified in associations between circulat-
ing levels of ACE and variants in the ACE gene, in which
a number of alleles exhibit strong, almost uniform, LD
with the phenotype69,72,73. Such problems can reduce the
value of isolated populations, despite strong linkage dis-
equilibrium across predominant ancestral haplotypes.

Box 4 | Multiple testing in association studies  

The increasing numbers of
association scans implies
that many thousands of
statistical comparisons will
be conducted on the same
patient samples. In
addition, many more
association tests might be
conducted in follow-up to
the initial findings. Clearly,
the classic nominal

significance-threshold framework is inappropriate for such studies; if k is the nominal
significance rate for one marker and m independent markers are tested, then false-
positive results will be obtained at a frequency of 1 – (1 – k)m. For example, if k = 0.05
and as few as 100 markers are tested for association, there is a greater than 99% chance
that one or more of the markers will appear significantly related to disease. This is
obviously an unacceptable rate. The most appropriate mechanism for preventing such
erroneous conclusions has been a matter of debate10,95, and although the details of this
issue might seem to be of an esoteric statistical nature, it is important to realize that
inappropriate correction for multiple testing inevitably leads to undesirable outcomes:
either increased false-positive levels (owing to a weak correction), or decreased
statistical power to detect effects (owing to an overly stringent correction).

In the figure, ten highly associated markers in a published dataset were evaluated for
association with randomly assigned cases and controls (founders in the study of
Keavney et al.69). The graph shows the probability (Pr) of the detection of a Type I error
plotted against the numbers of markers tested. Each of the markers was successively
tested for significance and the number of test statistics exceeding the k = 0.05 threshold
were tabulated. The expected increase in false-positive rate, assuming that the markers
are entirely independent, is shown as a red line. The actual increase in false-positive
rate is shown as a blue line. Clearly there is an increase in false positives, but it is not
nearly as high as predicted under an independence model. Bonferroni correction (a
popular correction that assumes independent markers) of these data would markedly
overcorrect for the inflated false-positive rate and thereby throw away valid
information in the sample.

It is unlikely that any single statistical model can account for the variability in LD
across the genome. Consequently, the most prudent method might be one involving
permutations of each individual dataset. These can be computationally time
consuming, but at least should provide an accurate view of extreme events in the
context of the genomic background.
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account for much of the apparent unreliability of this
strategy. Attempts to reduce the effects of population
stratification will have no effect on this type of error.
Consequently, methodological development, which at
present focuses on family designs to reduce stratification
detection, should be refocused on issues such as multiple
testing, multi-locus association, background linkage dis-
equilibrium levels and large-scale study design.

A further source of study error involves the relatively
small effect of many of the genetic factors that contribute
to disease. As with many environmental risks, relative
risks arising from genetic variation might be small. Such
small effects might also be exacerbated by locus hetero-
geneity in disease studies, although this is often used as
an excuse to explain marginally significant or non-
replicable results. By undertaking association studies
with modest sample sizes, association studies that reach
publication tend to overestimate the size of the genetic
effect. These small studies are prone to random error
and often provide wide confidence intervals for any sig-
nificant conclusions33. Coupled with frequent post-hoc
subgroup analysis of heterogeneity, as popularized in the
linkage domain67,79 to separate linked and unlinked sam-
ples at specific marker loci, it is clear why this approach
can lead to unreproducible or spurious outcomes.

Much can be learned from the experience of the epi-
demiology community, which has been applying this
methodology over many years in its attempts to under-
stand the relationship between environment and disease,
particularly where the effects are small and the disease is
heterogeneous80. These lessons are widely applicable to
genetic association studies and are widely encompassed
in the unified field of genetic epidemiology81,82.

Despite the concern over false-positive findings, a
lack of detecting genuine effects might be more com-
monplace and therefore more important, owing to sev-
eral confounding limitations. One such limitation is the
variability in LD throughout the genome. Markers in a
region might show variable patterns of LD, reflecting
their history and selection83. Consequently, markers
close to a functional DNA variant might show less or
more LD than markers further away; it is currently not
possible to predict which will be strongest with another
adjacent functional variant84. As a result, associations
with some markers might not be identified in a region
containing a disease-mediating DNA variant, whereas
associations at adjacent markers are convincingly
detected. This can lead to inconsistencies between stud-
ies. Even where a marker in LD is used, the LD is seldom
complete, diluting the genetic effect being assayed.
Characterization of background levels of LD, including
correlations with genomic features such as G+C levels,
repetitive elements, predicted or known recombination
hotspots, and many others85, would be of great use in
this regard.

An additional limitation concerns interpretation.
Given the relative paucity of current understanding of
the mechanisms of action of complex trait loci, a plausi-
ble biological argument can be constructed for virtually
any associated allele. In the absence of other informa-
tion, for example linkage evidence, association replica-

density of markers, many sampling concerns shift from
statistical power to the inflation of false-positive rates
caused by testing very large numbers of markers. The
markers available for study will almost always outnum-
ber the actual size of the sample examined: more than
1.5 million markers are already available in the public
domain1,2, but few human sample collections match this
size. This situation of many data points and few obser-
vations highlights the need to develop methods that
take into account the interdependence of genomic data.
This problem resembles that recently faced by biologists
working on microarray expression data. Development
of such methods, coupled with realistic calculations of
false-positive rates for highly correlated genomic data,
are vital for the success of genome-wide association
studies (BOX 4).

Limitations of association strategies 
Despite the potential for improving our ability to detect
disease genes, the inconsistency of association data is
still a strong feature of this approach. The reasons
underlying this problem need careful consideration
before the technique is applied more widely.

The most common explanation for ‘spurious’ associ-
ation (that is, association without linkage) is population
stratification. Despite this commonly being used as an
explanation for non-replicable associations there are few
actual examples to support this assumption7, suggesting
that this problem has been overemphasized in genetic
studies and that other factors are likely to be more
important. For example, the importance of overinter-
preting marginal findings and of publication bias has
been underemphasized. There have been large numbers
of association studies conducted that, coupled with a
possible publication bias for positive results, might

Box 5 | Proposed guidelines for association studies

• Replication of allelic association should be common practice. Such replication 
should eliminate the need for subgroup analysis in at least one association
population. Linkage data and functional assays provide supportive and desirable
evidence for valid association.

• Optimal control population selection should limit the impact of population
substructures. Where possible, several control populations should be used and
individually selected to maximize similarity to the disease population. In general,
prospective studies provide better controls than case–control studies.

• Strategies that use family-based controls and identify linkage and association can be
valuable, but are inefficient in their use of available information. Positive outcomes
provide meaningful data, but a lack of statistical significance is meaningless.

• The power of a study is influenced by a host of factors, such as the effect size, local
patterns of LD, allele frequency differences between marker and trait loci, and allelic
and genetic heterogeneity. Sample sizes should be chosen to assume suboptimal
conditions, such as weak effects, rare alleles and incomplete LD.

• Multiple testing, either with multiple markers or independent phenotypes, will
produce false positives under nominal significance thresholds. All tests considered 
or conducted should be reported in association results, even if nonsignificant.
The multiple-testing effect will be exacerbated by publication bias.

• Selection of controls sets the range of the allele frequencies in a population,
particularly those related to ethnic diversity. Consideration of different 
sampling panels might help refine regions of LD and provide insight into LD 
patterns and history.

© 2001 Macmillan Magazines Ltd



98 |  FEBRUARY 2001 | VOLUME 2  www.nature.com/reviews/genetics

R E V I E W S

very large numbers of SNPs1,2, recent engineering
advancements are yielding high-throughout genotyping
technologies28, and population-based case–control or
prospective cohorts are being initiated86. All of this will
yield vast amounts of association data, ranging from
whole-genome association studies to large sets of candi-
date gene association or local LD mapping data. The
primary challenges will be to appreciate the complexity
and subtlety of multifactorial trait loci, to develop and
apply study design and analysis methods that increase
the likelihood of detecting real effects while minimizing
statistical false positives, and to recognize the limitations
inherent in any single study design or application. When
properly applied and interpreted, it is likely that associa-
tion will continue to provide an essential component of
the expanding arsenal needed to dissect and character-
ize the genetic basis of common disease.

tion or functional assays, such arguments are extremely
difficult or impossible to prove or disprove. This is par-
ticularly difficult when the allele or gene becomes a ‘can-
didate’ after association with disease is initially detected.
This difficulty places strong demands on the framework
of statistical inference used to characterize the initial
association. It also emphasizes the need for further
understanding of the background levels of LD. At pre-
sent, it is essentially impossible to consider the veracity
of a new report of complex disease association in the
light of past knowledge because so few ‘real’ associations
are known.

A further complexity arises if many mutations in a
gene can create the same phenotype. Each such variant
will have its own genetic ancestral heritage, with differ-
ent ancestral haplotypes and non-random allelic associ-
ation. Such effects could substantially reduce the power
to detect an association between a phenotype and any
specific allele4,6.

All these limitations have created problems in estab-
lishing robust criteria for undertaking association stud-
ies. Nevertheless, a few simple guidelines might help
(BOX 5), as association strategies will inevitably com-
mand more attention in the next few years.

The human genome project is providing access to
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