

Other Books by Frank Herbert

THE DUNESERIES

Dune

Dune Messiah

Children of Dune

The Illustrated Dune

THE BOOK OF FRANK HERBERT

DESTINATION: VOID

THE DOSADI EXPERIMENT

THE EYES OF HEISENBERG

THE GOD MAKERS

THE GREEN BRAIN

THE HEAVEN MAKERS

HELLSTROM §S HIVE

THE SANTAROGA BARRIER

SOUL CATCHER

UNDER PRESSURE

(also published as THE DRAGON IN THE SEA)

WHIPPING STAR

THE WORLDS OF FRANK HERBERT

with Bill Ransom

THE JESUS INCIDENT

NEW YORK

Copyright © 1980 by Frank Herbert and Max Barnard

All rights reserved

including the right of reproduction

in whole or in part in any form

published by Simon and Schuster

A Division of Gulf & Western Corporation

Simon & Schuster Building

Rockefeller Center

1230 Avenue of the Americas

New York, New York 10020

SIMON AND SCHUSTERandcolophonare trademarks of Simon & Schuster

Manufactured in the United States of America

Library of Congress Cataloging in Publication Data

Herbert, Frank.

Without me you’re nothing.

1. Microcomputers. 2. Minicomputers. I. Barnard,

Max, joint author. II. Title.

QA76.5.H46 001.64.04 80-22315

ISBN 0-671-41287-6

The GRAPHIC COMPUTER SYSTEM AND KEYBOARD(appearing herein as

PROGRAMAP)thatis described in this book is the subject of one or moreclaims of

a patent application now pending in the U.S. Patent & Trademark Office.

Grateful acknowledgmentis hereby given to the following companies for usage‘of

materials from their catalogs and manuals in this book:

Apple Computer, Inc.

Atari, Inc.

Cromemco, Incorporated

Heuristics, Inc.

Micropolis Corporation

North Star Computers, Inc.

Vector Graphic, Inc.

Contents

PRECEDE 1]
Ts WHAT'S HAPPENING 13
2 YOU CAN DO WONDERFULTHINGS 17

3

=

MEET YOUR NEW MACHINE 27
4 INTELLIGENCE 40

3 WHAT’S YOUR NAME, FUNNY MACHINE? 43

6 INSIDE INFORMATION 47
7 HISTORY WITHOUT HYSTERIA 55

8

=

THE GADGET WORLD 64
9

=

THELOGICAL CRUTCH 68

10 LETS GET ORGANIZED 76
TT THE ROLLS ROYCE 82

12 THE COMPUTER TWO-STEP 89

13

=

BUYER’S GUIDE| %

GUT QUESTIONS 100
GETTING TO KNOW YOU 104
DESIGNED FOR EACH OTHER 105

SMALL INVESTMENT—BIG RETURN

PROGRAM FORTHE PLAYERS

FINDING IT A HOME

USES

14 COMPUTERS ARE NOT ORACLES

15 BUYER’S GUIDEII

WARES

WELCOME HOME

16 SOLOING

17s REVIEW TIME

18

=

COMPUTERTALK SPOKEN HERE

19 LET'S TALK ABOUT PROGRAMMING

20 ‘TELLING IT WHO'S BOSS

21 ABASIC VOCABULARY

22 GETTING DOWN TO BASIC

23 ASTRUCTURE FOR PEOPLE

24 PROGRAMAP

25° ~=WRITING UPASTORM

26 «PS

APPENDIX A

THE BIOMACHINE

APPENDIX B

COMPUTERS ARE NOT PEOPLE

APPENDIX C

PROGRAMAPDICTIONARY

APPENDIX D

COMPUTER MAGAZINES

APPENDIX E

MICROCOMPUTER ACCESSORIES AND

MANUFACTURERS

107

109

115

116

118

126

126

13]

133

139

142

148

15]

163

168

175

179

197

204

206

210

215

222

224

APPENDIX F

CAR MAINTENANCE PROGRAMAP

APPENDIX G

CAR MAINTENANCE PROGRAM

APPENDIX H

MORTGAGEHILL

APPENDIX |

MORTGAGE PAYMENT PROGRAM

APPENDIX J

GLOSSARY

229

262

278

287

291

List ofIllustrations

The Apple II computer 27
The Atari 400 computer 28
Your personal computer 29
Vertical view of computer 48
48K RAM board 50
Component board 112
L’Oceane All 177

Precede
You have in your handsa book that can change yourlife, that can help
you organize those dull routines most of us dread, a book that can save
you days of time every year while it converts drudgery into fun—all of
that and much, much more.

This is a book about computers. By the time you havefinishedit, you
should know how to use your own computer. You will find it rewarding
and fun if for nothing else then for the freedom it gives you from tedious
and boringjobs.

To help you learn how to use your own computer, we have developed
a new approach to programming based on a newkindofflow chart that we
call PROGRAMAP.Itis rooted in plain English andin easily understood
graphic symbols that are no more difficult to learn than road signs. The
shape of the symboltells you immediately where somethingis being done.
The picture in the telltale shape gives you a specific direction. We see the
PROGRAMAPsystem as a new computer language, but that does not
belongin this primer. For this book we have held ourselves to a four-stage
presentation:

1. A discussion of what’s happening and about to happen with
computers—whyit’s urgent that you develop theseskills.

2. An introduction to your new machine with simple explanations of
how a computer works.

3. A Buyer’s Guide—howto get a computeryouwill like.
4. Step-by-step instructions for soloing with your own computer—

using it for yourself.

Weare not saying you cangain this skill without any investment of
time and effort. Quite the contrary. In fact, a general rule about comput-
ers is that there is no time saving up front. It takes just as long, for
example, to put your checking account into a computerasit takes to put
the information into a handwritten ledger. It’s at the other end where you
get the marvelous payoff in time saving and automatic recall of useful
information.

What weassure you is this: The payoffs are enormous. Andthere
exists a starting point for you to understand computers, a starting point
well within your experience. Butthat starting point has been so confused
by misinterpretations and outright lies that we must begin once moreat
the beginning.

11

Wewill start with a promise.
In this book you will find the essential things you need to know to run

your own computer. Those essentials are easy to understand.
It is our belief that you have been lied to about computers as part of

a conspiracy—sometimes deliberate, sometimes unconscious—to keep
them in the handsof an elite few. We are here to help rid our world of an
elitist mystique that has acted as a barrier to your understanding.

Somewherein the courseof this book you should use a computer.It’s
the best way to learn. We promise that it will be easier than you may
think. Let’s cross that bridge when we cometoit.

First, to give you an idea of how we have separated the essentials
from the chaff, we will tell you a true story that has little to do with
computers but a great deal to do with what you need to know before you
can run one of these machines.

A youngfurniture salesman, closely observed by his boss, wasselling
a used refrigerator to an older woman. This was more than twenty years
ago. The woman askedhowtherefrigerator defrosted.

Using the manufacturer’s handbook,the young salesman took twenty
minutes to explain how therefrigerator performed. Satisfied, the woman
paid for herrefrigerator andleft the store.

At this point, the boss stepped in and angrily chewed out the young
salesman for “‘wasting so much time on that customer.”

13

14 ¢ Without Me You’re Nothing

“But she wanted to know howit defrosts,’’ the young salesman

protested.

Said the boss: ‘‘ Youtell her it defrosts at night!”’

Wedon’t intend to go quite that far in simplification, but there will be

points in this book that we will flag. You will be able to skip across the

flagged sections with full confidence that what goes on there happens ‘at

night.’ It may be interesting, but you really don’t need to knowit.

You will also find in this book an appendix for information you may

want. The stuff there is, for the most part, more complex and beyond the

primerlevel to which we are holding the core of this book. There are also

a glossary and bibliography for those of you who maywish to go deeper

into the subject, but you will not have to read them to follow the central

thread. That central thread will teach you how to use your own computer.

Things are happening in our world that make a necessity of the skills

we are about to share with you. Before longit will at least be a matter of

self-defense for you to have your own computer and be able to use it. You

are already being taken advantage of by people with computers. You will

not be able to meet that challenge or keep up with other changes unless

you acquire a computer yourself.

Luckily, very powerful small computers are already priced within the

range of most household budgets. Competition in this field is intense.

Computer poweris going up while the price is coming down.

Please take our warning to heart. Very soon, if you don’t have access

to a computer, you're going to be racing in something equivalent to the

Indianapolis 500—only you'll be on foot. An elementary look at what

computers do makesthis obvious.

It is often said that computers are ‘‘number crunchers, ’ that they can

handle large and complex mathematical problems very rapidly. In fact,

this commondescription of computers has been repeated so often thatit

forms a barrier against a deeper understanding of them even among

scientists.

In the general population, though, this description acts as a “‘big lie”

that keeps most people from looking into them or even considering the

purchase of a personal computer.

How does somethinglike that happen’?

There are many reasons, but here is one of the most powerful:

Mostteachers in the United States don’t understand mathematics. It

is not surprising, then, that many students don’t understand mathematics.

The whole idea of ‘‘math’’ in our world is much like what was once

considered ‘‘knowledge confined to the priesthood.’’ That plus the com-

What’s Happening ¢ 15

mon description of computers as ‘‘just math machines’ have built a
strong barricade aroundtheelite few.

It’s just that the word computer makes so many people feel their own
weaknessin ‘‘mathematics.”’

Okay—here’s a demystification for you:

YOU DON’T NEED TO BE A MATHEMATICIAN
TO RUN YOUR OWN COMPUTER.

The most important fact about computersis that they do things very,
very rapidly. Few people latch onto that key word rapidly. We want you
to focus yourattention onit. That single fact contains the unguentthat can
take the sting out of your ‘‘future shock.’’ We say flatly that computers
will have more influence on what people do thanall of the effects laid at
the doorof both fire and the wheel.

We have said that people with computers are taking advantage of
you. There is no doubt that yourhistoric rights of privacy and freedom
have been violated by business and government through their use of
computers. This is well enough knownthatit no longer can be questioned.

Private information aboutyourlife, information stored in government
and other data banks, has been sold (sometimes under the counter) to
people who useit for their ownprivate gain. It is used to plan assaults on
your wallet and on yourliberties.

Billing departments in major industries use their computers in a
system designed for regularly overcharging you on your monthly ac-
counts. This is done underthe guise of ‘‘cyclic billing.’’ Your bill goes out
on a set day each month,a day carefully planned to miss the posting of
your previous payment. These overcharges, which most people miss,
don't amount to muchindividually, but they are enormous collectively.
The effect is that these businesses get the use of large sums without
paying interest.

Your own computer will make the foiling of this gimmick a ten-
second operation at bill-paying time.

Computercrime is on the upswing. Clever programmersare stealing
millions of dollars each year throughtheir inside knowledge of computers.
If you have a business and it uses computersin any way,it would not hurt
you to knowa few of the basics that we will cometo in this book.

Computer automation may be creeping up on your job. That makesit
a matter of survival for you to know how you can benefit from these
machines.

16 © Without Me You’re Nothing

Weare already surrounded by people who use the computer as an

excuse for avoiding personal responsibility. How many times lately have

you heard the following excuse?

‘‘We are very sorry about the mistake in your account. It was a

computererror.’’

That is a lie. It leads to a kind of mental parasitism, a destructive

dependency. Every time you hear this excuse, you should tell the person

whousesit: ‘You are a liar.”

COMPUTERS DO NOT MAKEERRORS.

All so-called ‘‘computer errors’ lead back to some human being.

People makeerrors. People produce inadequate programs. Manufacturers

produce hardware that breaks down.

These few comments don’t begin to plumb the accumulating prob-

lems of the ‘‘Computer Age."’ That would take another book plus many

sequels. We are just touching on a few high points to emphasize the

urgency.

Right now there is an explosive growth of the number of computers

and things they can do. Not only are their numbers increasing at a

dazzling rate, but the storage of informationin giant data banks is growing

in the same explosive way.

We have no wayto control this now and nonein sight. In fact, the

very nature of this growth says that all controls will lag far behind

computer developments. Any attempt to ban them will only drive com-

puters underground. Neverlose sight of the fact that computers **crunch

time.’’ The speed at which computers can operate tells us that laws

cannot keep up with them. The person with a computer can dance rings

around you while you react as though you were embedded in molasses.

What can you do?

Get your own computer. Learn howto useit. Weare here to help you

make that first step: how to find the one that fits your needs and your

pocketbook, where to put it, how to program it—all of the essentials. If

you don’t do this, the Bill of Rights is dead and your individual liberties

will go the way of the dodo.

2
You Can Do Wonderful
Things

To give you a better idea of what's happening with computers, we’re
going to take a brief excursion through somepresent and potential uses.
Someof the potential uses may appear‘‘far out,’ but we assure youthat
the real potential will be farther out, far beyond anything we now imagine.
It’s the nature of the beast: Computers also amplify creative imagination.

In the arts and in our ownspecial requirements for aids to writing,
this is especially exciting. No matter how sophisticated, a computeris,
after all, only a tool. A pen is a tool. A typewriter is a more sophisticated
pen. A library is a tool. A painter’s easel is a tool. It’s the creative mind
behind the tool that is important.

Musicians are already using computers in the digital composition of
music. A digital recording of a composition allows you to change one note
or even a fractional note in a full symphonic performance. This is
extremely fine creative detail. And what separates any truly memorable
artistic event from the ordinary is just that—attention to detail. This is
true in all areas of artistic creativity. The thing of spontaneous beauty
comes from long hours where the artist concentrates on the fine details.

With a computer a calligrapher can create any desired shape on the
screen and then transfer that shape to paper with exact precision.

The sameis true in printing. The printer can choose any typeface he
wants and have the computer reproduce it. The cold type for this book
wasset by a computer.

The writer, too, can turn over to a computer someofthe housekeep-
ing chores of his profession. Newspapers already use computers for some

17

18 © Without Me You’re Nothing

of their proofreading and editing chores. Reporters now write their stories

directly into a computer.

In health and medicine present uses and the obvious lines of de-

velopmentare staggering. A Nobel Prize has just been given for develop-

ments in the use of computers to read X rays. That's only a bare

beginning. Computers can obviously give us another quantum leap in

longevity.

Many hospitals around the world now link their computers in a

data-sharing system that submits current treatments for certain diseases

to a combined analysis on a very large scale. This shows up new and/or

improved waysof treating many medical problems. The system already

has made significant contributions in the treatment of cancer, massive

burn damage, transplant rejection, heart diseases, and some diseases

carried by insects—to name just a few.

The ability of a computer to store, index, and cross-check massive

amounts of information very rapidly is of particular interest in medicine.

This means that any breakthrough in medical treatment can be available

worldwide with minimum delay and, what is more important, the feed-

back from a wide experience with a new treatment can be sharedat the

same high speed.

The medical profession is already excited by the potential that

computers have in scanning the deluge of publications for special infor-

mation. A pediatrician will be able to have his computer scan only for

information that applies to his specialty.

At an even more personal level, your home computer can already

keep track of your medication as well as assist in diet planning, diet

control, and exercise management. Your computer can be linked to a

system that will warn you against taking incompatible medicines. Major

hospitals already use such a system. Andthereis little doubt that your

home computer, linked to a larger central system, will soon be able to

monitor your physical status and statistics through blood and urine

analysis, actual physical measurements, and thelike.

The developmentof increasingly sophisticated optical scanners1s of

particular interest to medicine. High-resolution scanners capable of de-

tecting extremely fine detail and miniscule variations in such things as

color tones are already available. The application of such devices and

systems for automatic chemical analysis to medical detection and diag-

nosis can only be a matterof time.

The bookkeeping tedium, such as keeping patient records, is already

being turned over more and more to computers. But this only scratches

the surface of the medical potential. The pharmaceutical applications are

You Can Do Wonderful Things ¢ 19

legion. It is highly unlikely that anything like the thalidomide tragedy,
with its thousands of deformed infants, could occurin a society with a
computer-managed drug-monitoring system. The rapid sharing oftreat-
ment information and results would show upthe problem andthelikely
cause with extremerapidity. In fact, with widespread linkage of everyday
medical information, the detection of problems in medication can become
routine.

Human gullibility being what it is, this does not mean that all
over-the-counter nostrumswill vanish, but it does mean that hard data on
all medications will be readily available for anyone who wantsit.

In certain specialized medical applications the computerpotential is a
banner of hope. Sufferers from aphasia—the inability to translate printed
words into intelligible meaning—can get a computer to read to them.
Manypeople afflicted with aphasiafill important posts in our society—in
medicine, law, engineering, and the like. In each instance these people
keep a hired reader on hand. Aphasia blocksonly the visual channelto the
written word. Such sufferers understand the spoken word quite well. How

much more convenient to carry a small portable computer which will

break throughthis visual barrier for them.

The deaf can expect equivalent aid from a computer. The computer

will translate sounds into visible words.

If you’re blind, a computer will give you an auditory ‘‘picture’’ of

your surroundings—readsigns andtraffic lights, recognize friends, warn

of dangers, identify addresses, and provide the time of day.

The deafand blind can expect a “‘tactile translator’ that will spell out

necessary information on a sensitive patch of skin.

All of this means that the self-driving vehicle will be developed—a

fact of poignant interest to people whose physical problems confine them

to bed or wheelchair. A computer will make such people mobile by voice

or touch control—or by control through any movement of which the

person is capable.

To all of these people, the computer’s potential means a new kind of

freedom.

It is said with sometruth that modern society has built a technologi-

cal trap with life-support systems based on highly sophisticated man-

ufacturing and on vulnerable energy resources with their distribution

networks. Computersare not the solution to an escape from this trap, but

they do offer us manageable waysto deal with our technological environ-

ment on our own terms. We can do this individually with a home

computer.

Here are someof the present and potential home developments:

You Can Do Wonderful Things © 21

while you dress, your computerwill list for youthe things you needto do
that day.

While doing all of these things, your computer will also test the
moisture content of your lawn and, when appropriate, will turn on the
sprinkler system for precisely the time required to provide needed water.

Managementof routine household choresis just the kind of thing a
computer does best. In fact, this is sure to provide us with a new
interpretation of the word routine. It will become synonymous with
automatic. Take a quick scan through theseroutines:

A computercanlist all of your insurance policies and their provi-
sions, what they insure, when those policies need upgrading or other
changes, and when they must be paid. A computer can manage your
household budget with exquisite detail, keeping bank and tax records with
special attention to your unique needsand, through legal-advisor pro-
grams,indexing whatever require yourattention.

All of this involves a ‘‘special instruction’’ capability that computers
can provide. The extensions of this are too numeroustolist here, but just
look at a few of them:

Your home computerwill give special instruction to shut-ins. It will]
tailor home-study education for the particular needs of the student. It will
make gamesout of educational projects. It will test yourskills, increasing
the performance demands as you improve.

The thing you must rememberis that a computer can control any
system that can be automated. The sophisticated watering system that
tests the soil and irrigates accordingly has profound implications for the
interacting chemistry of land and food—plant or animal. This not only has
applications to lawns but to pastures, forest, and croplands, to floral
plantings outdoors, in greenhouses, and in your own home.This ability to
test, monitor, and contro] automated systems with preprogrammed in-
structions will transform manyareas of our world.

With appropriate sensors a computercan be applied to pest control.
With weather-satellite linkages it can be applied to soil improvement and
managementeither on a small and local level or over wide regions and
with high-resolution emphasis onfine detail. It’s easy to see how this can
influence ranching—feed, pasture, fertilizing, planting, and irrigation—
but it also applies to the medical monitoring of stock, to the Storage and
recovery of veterinary information at the point of use.

‘“What madethis leaf curl?’’

Given the appropriate diagnostic program, your computer will re-
quire only that you pass the leaf under a scanner and subject part of the
leaf to computer-monitored microscopic analysis.

22 ¢ Without Me You’re Nothing

There appears to be little doubt that ranchers and farmers will

someday get their informational alerts and updates from the Department

of Agriculture through a home computer. Once that starts, the improve-

mentof the informational network will be only a matter of time.

With optical scanners and other sensitive means of probing, this is

sure to have far-reaching implications for disease diagnoses and pest

identification—not just for farmers and ranchers.

We’re sure you can see the parallel implications for the control of

human diseases andpests.

For much of this discourse, we've been talking about business

applications, but you must rememberthat running a home has many

aspects of business management. A computer can only help you bring a

businesslike attitude and facility to that management. A machinethat can

monitor all of the applicance and mechanical parts of a home, that can

monitor the internal and external requirements for maintenance of the

building itself, gives its users a powerful economic advantage. This alone

could pay for your computer.

In the business world computers are already past the first develop-

ment phase, nowthere are increasing refinements. Computers keep track

of inventory and payroll. They control production and manage work and

manufacturing schedules. They take charge of such things as selecting

whichsteel plate will be used next and where in the construction of an

ocean liner. Computerized management of government forms and other

paperworkis already routine in many businesses for a very good reason:

This is the cheapest and mostreliable way to do these things.

Computers allow very precise and very fast profit analysis. They can

provide a quick performance assessment of salesmen, with attendant

route management and the flagging of probable areas for best sales

improvement.

You, the potential buyer, are the target for much ofthis businessshift

into computers. Do you think you can protect your owninterests without

your own computer?

Howfarwill the use of computers go in our government? All the way.

The White House now has at least two computer centers. The U.S.

Department of Transportation is already far along the road to being fully

computerized. Other bureaus and departments are following this same

path. The computer is seen as a superb decision-making tool because it

can store and sort through enormous amountsof information at extremely

high speed.

You won'tbe able to vote intelligently or have even the vaguest idea

You Can Do Wonderful Things ¢ 23

of what’s going on in any of these areas unless you can tap large sources
of data with your own computer system.

These business and government uses of computers in organizing and
indexing needed information, including published literature, will have
immediate home applications. Just as the professional may use his com-
puter to keep an index of magazine articles and technical books and
journals, scanning them for particular attention to personal needs, the
homeownerhasparticular needs for specialized information. The auto-
mated search of information at the home level may only tell you which
book to ask for at your library, but it will ‘‘Shome in’’ quickly on the
information.

Scientists and technologists will ‘‘crunch’’ numbers and play their
specialized computer games. Butthis is already part of a developmental
System with its own built-in course of changesthat will filter down to the
average home computeruser. Don’t be surprised at anything that comes
out of this system.

The analysis and storage of information on materials for architects
and engineers—stress formulas and applications analysis automatically
translated into forms for use by the construction trades, including au-
tomatic blueprint reading—are already accomplishedfact. This is sure to
become increasingly sophisticated.

Marine architects and landscape architects use similar computer
facilities.

Not only do building architects use computers for Shape and stress
analysis, they also project a proposed building into its Setting with a
computer. This gives them the building’s relationship to sun, wind, and
the views from within it. Architects also use computers to provide the
drawings for standard shapes andinstallations, such as trees and plant-
ings, the placement of 2x4 studs in wood construction, and the like.
Marine architects test the flow lines of proposed boats in computer
simulation. Aircraft designers do the same with proposed wing and
fuselage relationships.

From all of this will come improvements for your home and office
building.

Out of this same system of developmentwill come new methods of
mapping and navigation. That, too, has personal applications. How would
you like a screen in yourcar that tells you where youare in relationship to
your destination? No more squinting at maps or stopping at service
stations for bewildered questions.

How would you like your own newssheet and magazinesprinted in

24 © Without Me You're Nothing

your own home with attention to your personal interests and require-

ments?

Would you like a personal and portable device that would link you

with larger and more sophisticated computer networks and information

services? The next time someonetries to take advantage of you with a

computer, how would youlike to say, ‘‘My computer will talk to your

computer’’?

Some of these developmental steps, of course, come under what’s

generally called ‘‘futurism’’—the analysis and projection of trends with

highly accurate probability readings. Politicians use this computerfacility

regularly. Manufacturers are turning to it more and more in attempts to

determine what you will buy tomorrow and how much you will pay. Some

mail-order housesare using their computersin an interesting twist on this

‘‘futurism’’ concept. They are computer-linked to production facilities.

The item you ordertoday isn't even produced until your order reaches the

mail-order offices. A computerized orderfor the item is transmitted by the

clerk who reads yourletter. The clerk merely punches the item number

and your order numberinto a computer terminal. Your order is then filed

by the computer. When the item comesinto the warehouse, the computer

matchesit with your order number.

Wehave saved some of the major political implications of computers

for the last part of this chapter. This is an extremely sensitive, compli-

cated, and difficult area for prediction. People in positions of power tend

to react strongly against anything they see as a threat to their power.

There is little doubt that the widespread, intelligent use of personal

computers threatens any powerstructure based on deception or conceal-

ment. Legislative attempts may be made to ban, restrict, or otherwise

hobble certain uses of computers, uses not only by businesses but by

individuals.

Rememberthat your computerwill list and index anything you wantto

put into it. Your own computer will keep track of voting records on any

politician you want to observe. The computerwill give you an immediate

readout on that record, testing it against any requirements you may name.

Such a use of computers promises to sensitize legislators to those power

blocs that make this use of the machine. That is not altogether an

immediate entry into Utopia—butit could very well happen.

The routine political uses of a home computer hardly need

mentioning—automatic reminders on your calendar for voting dates,

places, times, and the candidates. Your home computer will provide that

For example, if you incorporate an automatic recorder and voice-
Stress analyzer in your computer, the machine’s potential in politics and
other public activities enters another dimension.It’s well for you to note
that some people are making it a matter of routine to monitor important
speakers with a voice-stress analyzer. Don’t make the mistake of assum-
ing that this provides you with an infallible lie detector. It does not. It iS,
however, a sensitive stress detector—andif you possess other essential
information, you mayalso learn the reason for the stress: It could be that
the speakeris lying.

The complexity and Sensitivity of this computer use cannot truly be
appreciated until youtestit against a real example. At that point, you see

Before and after the Begin-Sadattalks at Camp David, whichresulted
in their signing of a peace agreement, both Begin and Sadat joined
President Carter in speaking publicly about these events on U.S. televi-
sion. Both Begin and Sadat addressed themselvesto various key matters
in the peace talks with varying degrees of stress or lack of it. On one
subject, however, the difference was dramatic When their voices were
subjected to a voice-stress analyzer. Every time Sadat spoke of wanting
peace, his voice showed no stress whatsoever. But every time Begin
spoke of this desire, his voice showed extreme stress.

Do not assume from this that Sadat was being truthful and that Begin
was lying. You do not know this, and the evidence ofthe voice-stress
analyzer does not say it. Without inside information about the parties
concerned, any analysis you make mustbe inconclusive.

For example, if you have nothing but the voice-stress evidence, here
are someofthe limits to a possible analysis:

It is possible that Begin has a deeper and morestressful need for
peace, perhaps based on his own lifetime involvement in violence and
counterviolence.

It is possible that Israeli intelligence activity in the Middle East,
perhaps superior to that of the United States or of the Arabs, has
convinced them that the survival of their state requires military conquest
of the region. The stress in Begin’s voice could then be laid to the

26 © Without Me You’re Nothing

necessity for him to conceal an essential part of his motivation. He

truthfully would not see peace as a real way for Israel to survive, and quite

properly the survival of Israel is his first concern.

Also these men were speaking English when monitored by the

voice-stress analyzer. English is for both of them a foreign language.

Speaking a foreign language introduces its own stress patterns. The

answer to these observations may simply be that Sadat finds it more

comfortable to speak English than does Begin.

As you can see from this brief and incomplete analysis, attaching a

voice-stress analyzer to your computer does not solve problems. Quite

the contrary: It introduces another problem. It requires that you assess

the information. The value of the information depends on how well you

can analyze it. There is no doubt, though, that voice-stress analyzers are

coming more and moreinto use. Frequently, they have the application

described by one man who uses a voice-stress analyzer in all of his

business and other public negotiations. He said:

‘‘When I see stress, I am alerted to the need for caution. I must try to

find out why.”

Wehave explored this political and economic use of computers to

point up some essential facts. The machine is only as good asits

information and your judgment ofthat information. The thing to re-

memberis that a computer amplifies information. Depending on how you

use it, the machine will filter out some things while concentrating on

certain other things. That is a matter of howit 1s programmed—for which

we have somerelatively simple solutionsin this book. Just keep in mind

that computers amplify. Without discrete and intelligent intervention on

your part, your computer may give you nothing but loud ‘‘noise.”’

The Apple Il computer. Here is a personal computer system with keyboard and CRT. The
computeris in the foreground cabinet with the keyboard. The display screen is a standard TVset.
The top of the computer cabinetlifts off, giving access to the plug-in components. Photo courtesy
of Apple Computers

27

28 © Without Me You’re Nothing

Caee

Economica may be eeae ree

disturbances occur which Paoe

our prosperity, or our Ree

The Atari 400 computer. This personal computer system uses a cassette tape recorder as external

storage. The CRT is a special unit providing both capital and lower-case letters in a large

dot-matrix system. Photo courtesy of Atari Computers

Meet Your New Machine ¢ 29

 INFORMATION SWITCHING

(input)

similar to that of your TV at ACTION; a disk driver or cassette tape recorderlinked by cables to aninsulated box containing switches and lights. Note that we have changedthe accepted labels inorder to give you a better handle on what your machine does.

your IV. We don’t mind a bitif you call your CRTa screen. In fact, we
often prefer that.

Your new machineisalso linked to a disk driver or toa cassette tape
recorder, which you use for storage and recovery of information.

Look at the accompanying diagram. There are some clues in this
diagram to one ofthe best-kept secrets in the computer business.

THIS MACHINE IS AN ASSEMBLYOF SWITCHES.

That’s it. The simplest computeris an electric light with its wired-in
powersource and switch. Thelight tells you in which position the switch
has been placed—onoroff.

Weare assumingthat a switchin its simplest form is something very
familiar to you—a door openor closed, which stops you or through which
you can pass—a common, everyday device that you push,pull, turn, or
toggle to control such things as lights, TV sets, and telephones.

30 © Without Me You're Nothing

Take the switch in your telephone. It works automatically when you

lift the handset.

The switch in your TVis turnedto select the tuning system for the

channel you want to watch.

These are examples of what are called two-state switches. Even the

multichannel TV switch is two-state at its roots because for any channel

there is only an ‘‘on’”’ or “‘off”’ condition. Your world has countless

examples of such two-state switches. When the switch-activated device is

“lit,” ‘Shot,’’ or making appropriate noises, we say the thing has been

‘‘turned on’’ or simply is “‘on.”’

So it is with your computer.It's an assemblage of two-state switches

that can be arranged in many patterns. And those patterns can be

recognized. Just as when we recognize that the letter s stands for a sibilant

sound, we also can say (because that’s our choice) that one particular

switch pattern standsfor theletters. This pattern will reproducea letters

on your screen or on paper.

It’s a code. It is our code because we have agreed on what the

patterns represent.

Now,it’s one thing to have a machine that can flip a lot of switches

for you, but it’s another thing to make a generally acceptable code that

everyone can learn and use. That’s a language. We'll get to the special

languages of computerslater. Just accept our promise here that we know

of a computer language that will be easy for you to learn. The words in

this computer language stand for things that are very close to their

meanings in the language you already speak—English.

What we’re concerned with here is that you need to know about the

hardwarethatflips the switches.

Back when the first modern computers were being built, the de-

signers went to much trouble making certain that the things could add

numbers. The designers were driven by a powerful motive, the desire to

build a machine that could handle more numbersthan they felt they could

hold in their heads. Right away, before they even got close to the

automatic, electronic adding machinethat they all had in mind, they were

forced to face a very big problem.

How could they make the thing automatic?

To dothis, they had to build in a selective storage system. That raised

a new problem:the need for the machineto ‘‘write’’ things internally into

temporary storage. Then there had to be a way to select particular

automatic operations. Thus, the keyboard became the gadget of choice.

That is why we begin yourintroduction with the keyboard. Let us assure

Meet Your New Machine ¢ 3]

, that your keyboard is nothing more than a preselectedarrangement of switches. Each time you press a key on yourkeyboard,that switch, which you select, turns on more switchesfor you. This givesyou a place to enter the machine’s preset, built-in switch patterns.
Everything a computer does is based on the simple fact that a switch

can be turned on oroff. Always keep in mindthat computers respond to
only one thing: the presence or absence of electrical currents. This
presence or absenceis controlled by switches.

This is a primary reason why we have changed the more commonly
used labels in the boxes of our diagram. We wantyouto havefirm handles
on what happens in your machine. Take the time now to impressthis
diagram upon your memory.

The box that we have labeled INFORMATIONis commonly called
INPUT. We,too, will often call it INPUT, making our usage agree with
what you will read in your manufacturer’s manual. What we want to

Switches, not canning peaches or making lumber—although a computer
can help control those kinds of ‘“processing.”’

You will notice a smaller ‘‘CU’’ box inside the SWITCHINGbox.
We'll explain that one presently.

The ACTION boxis often called OUTPUT. We want you to re-
memberthat this is where your machine does something. The machine
does things automatically, and its results come out here as symbols on a
Screen, words printed on paper, or control of some other device.

STORAGEin our diagram is most often called MEMORY.Wethink
that is a serious error. Computer STORAGEis only remotely similar to
your human memory, usually faster in response but far more limited.
We'll go into some very enlightening comparisonsin a later chapter.

Before we go on, it’s obvious that there are things about computer
languages and the English language we must usein this book that require
our special attention.

We've already indicated that you'll be learning some new words,
those in the diagram for example, and othersthat are mostly a special kind
of shorthand. You may already use similar shorthandtricks if you write
such things as nr for ‘‘near’’ or w for ‘‘with.’’ Good examples of such
computer jargon are CPU for ‘‘centra] processing unit’? or CLK for
‘“clock.’* You should not have any trouble with such terms because we’re

32 @ Without Me You're Nothing

going to explain them carefully as we goa

contain someletters of an original word that you will know.

Occasionally, it will make things easier for us if we are allowed to

bring up a few specialty words, such as anthropomorphic. This is like a

longer switch pattern to which we can give a shorter code meaning. The

longer pattern for anthropomorphic is *‘things that are confined to human

shape or human behavior.’

Because of a bad habit that has developed around the manufacture

and programming of computers, we must use anthropomorphic words to

describe what goes on in these curious machines. Kicking and screaming,

we will go along with that bad habit. The necessity to use these an-

thropomorphic words, such as memory and decision and talk and write

and the like, is equivalent to saying we will have to write this book in

English. The illusions carried in this jargon have been welded to the

machine.

DON’T LET YOUR FAMILIARITY WITH SUCH

WORDS FOOL YOU.

Your computer has no will. It does not think. It is not conscious. It

does not know anything. It does not want.It does not plan.

Think for a minute about what you do when you plan. You use

language according to your own judgments. Your judgment controls what

you include in your plan. But more than that, you remake yourplan tofit

new information and the new demandsthat develop out of your plan—

more and more complex judgments. This is a high level of information

juggling, which requires that you create new theories and that you test

such personal creations outside the simulation play of your computer.

To say that your computer knows it’s time to add A to B andstore the

answerin C is about the sameas saying that when you’re drunk, your car

knows the way home. Both thoughts are dangerous; we don’t want you

telling your friends that we said computers knowanything.

Whenyou put a prejudice into a computer, whatyouget out the other

side is a prejudice that has come through a computer.

In a very real sense your computer tells you what you orderit to tell

you. Computers do not ‘‘disagree’’ with their programmers.

A computer is simply a tool that handles information. The informa-

tion is given to it in waysthat it has been built to store and use. It uses the

information according to your plan. You turn over to the machine the

things it can do rapidly and automatically. What the computer does with

Meet Your New Machine e 33

your information can range from nothing (usually frustrating to you) to
everything, which is our term for a computer “‘going berserk’’—paper
flipping out onto the floor, tapes spinning, a lot of random nonsense
flashing on the Screen—again, a sourceoffrustration, but not a ‘“comput-
er error.”’

little-understood faculty that, no matter how wecut it, cannot be included
in our diagram: EMOTION.It can be argued that people employ logic and
intuition (which may not be labels for the Same thing), but emotion is
something altogether different. Emotion goads you to action. Computers
don’t have such

a

self-starter. You are whatstarts a computer.
Whatwe have pausedto discuss right now is probably the single most

important barrier to the widespread useful development of individual
computers. It involves a lot of people blathering about their fears of
“computerintelligence.’’ Accordingto this scare story, ‘computerintel-
ligence will win out someday over human intelligence, and then we’reall
going to be in deep trouble.”’

That makes good science fiction drama, but it ain’t gonna happen.
Just the briefest comparison between the computer and your brain ex-
poses the idiocy of this scare story. Each computer switch has only 2
interconnections, whereas your dendrites (the equivalent switch branch-
ings in your brain) can have as manyas 300,000 interconnections. This is a
difference of enormous magnitude. The comparison also presupposes
something else not in evidence: that your brain’s functions can be reduced
to mechanicalrules.

But the idea of intelligence has been tied up with our brains for so
long it has come to have only a human definition. Ruling out our own
snobbery aboutthat definition may be the biggest barrier standing in the
way of a workable description of what your computer does. It was a

For the foregoing reasons, and for other reasons, the labels we attach
to computers, to the things done by them and by their accessories, are
often confusing if not misleading. Seemingly conventional uses of lan-
guage are at the core of the problem.

Sometimes you can identify a computer attachment in a simple,
direct way. The keyboard, for example. This is an INPUT device. That
meansthat with it you can put things into your computer.

The screen is another example. This is an OUTPUT device. That

34 © Without Me You’re Nothing

means this is an attachment by which computer SWITCHINGsends

signals to you.It is geared to yourabilities.

But now consider a cassette tape recorder attached to your comput-

er. It can be called a STORAGEdevice.It is also both an INPUT and

OUTPUTdevice. You can ‘‘play”’ things into the computer from it. You

also can ‘‘record’’ things from the computer onto the cassette’s tape. You

need a specific interpreting system to do this. If you play one of your

computer tapes over yourstereo system, you will hear bursts of beeps and

gurgles and other strange sounds.

Then there is SWITCHINGitself, the core of your computer. This,

too, is both an INPUT and OUTPUTdevice.

That is why we wantyou to putall the anthropomorphic nonsense out

of your head while you study our diagram from an operational viewpoint.

What is the thing doing at any given moment? Any label then becomes

only a temporary signal to you. Your attention is focused where it ought

to be—on whatthe thing is doing.

There is one othercritical fact worth mentioning: You often will see

the word computer used where SWITCHING (the PROCESSOR)is

meant. Try not to be too hard on people whodo this. You might even say

that we are doing it when wetell you that things are “‘put into your

computer’ and what we're actually doing is describing the uses of the

keyboard. Technically, the keyboard is part of the computer itself. We

hope that you are adaptable to the jargon and that you see the value of our

operational approachto labels.

We know that we are entering a time of wild confusion where our

human brain and computers are concerned. Most present approachesto

this confusion are dominated by the idea thata single unchanging law (or

rule) can be found at the root of everything in our universe. That is the

province ofreligion, not of logic. And computers remain logic machines

no matter how ‘‘intelligent’’ you may believe them to be. Use the funny

wordsif you must, but depend only on the operationallabels as laid outin

our diagram:

INFORMATION

SWITCHING

ACTION

STORAGE

Those are the things your machine can handle at your command.

Go back to the diagram now and lookat that small box in SWITCH-

Meet Your New Machine ¢ 35

ING. That ‘‘CU”’ is the central working area of your computer, often
called a CPU (for central processing unit) or MPU (for microprocessing
unit). That soundsas exotic as a Chinese recipe, but you already have the
key to it: No matter what wecall it, the thing is just switching electrical
currents on andoff.

At the heart of SWITCHINGaresilicon chips containing very tiny
(microminiature) electrical circuits—wires and electronic switches. The
comparisonis often made between computer SWITCHINGanda railroad
switchyard. If you allow for a very complex yard, this is a useful
comparison. Each branchline in your computertakestrains of electrical
Switch patterns. You can imagine a ‘‘yardmaster’’ obeying your com-
mands to make uptrains of different lengths and carrying different
‘“cargoes.’’ These are different combinations of bytes (which we will
explain presently).

All of this SWITCHINGand mingling of branch linesis regulated by
your computer's control unit (CU), the ‘‘yardmaster.’’ This unit, some-
times called simply the CONTROLLER,is to SWITCHING as SWITCH-
ING is to your entire computer. It is the ‘‘wheeler-dealer’’ behind the
whole operation, the thing which causes every internal activity of which
your computer is capable. The CU is directly tied to STORAGE and
makesuseof an arithmetic logic unit (ALU), which we have notindicated
on the diagram. This is a most essential piece of business, which wewill
be coming backto after explaining bytes. For now, just remember where
it is—in the CU, or attached to the CU, and both of them in SWITCH-
ING.

The diagram relates the basic devices you can use to assemble,
disassemble, and reassemble your trains. With these devices you can
form enormously complex patternsof trains moving through your switch-
yard.

The orderly movementof yourtrains is accomplished by subdividing
SWITCHINGinto manysections. This is necessary because the system
acts on only one instruction at a time and because SWITCHING can
interact with STORAGEin random ways.

All such movementis conducted in bits and bytes.
Bit stands for ‘‘binary digit,’’ the smallest unit of information that

your computer can use—one switch in an ‘‘on”’ or ‘‘off’’ position,
indicating a ‘‘1’’ or a ‘‘0.”’ (The ‘‘binary’’ system carried in those 1s and
Os is actually very simple, and we’ll get to that, too. One step at a time.)

A byte is eight bits in a string. The reasonforthis particular number
will becomeclear as we proceed. All you need to knowright nowis that a

36 @ Without Me You’re Nothing

bit is the smallest response unit of your computer, and a byteis eight of

those tiny units. Each bit is a ‘‘1’’ or a**0,” and eight ‘‘1s’’ and ‘‘Os’’ ina

train are a byte.

At the core of your CU is a synchronizing pulse, a counting system:

**Now you, now you, now you, etc.

This pulse regulates the timing of each thing the yardmaster does in

making upthe trains. The CU holds everything to a steady, although very

rapid, pace. To give you some idea of that pace, at four million cycles a

second (a commonpulse rate), a computer could handle four million bytes

a second. That’s four million actions every second.

Perhaps now you can begin to understand what we mean when we

call the computer ‘‘a time cruncher.”’ Pause for a moment and consider

that. If a computer had your time sense, it would be as though it accepted

your problem,followed yourinstructions to produce an answer,and then

had to wait seven or eight years for you to pick up the answer and get on

to the next instruction. If you took a few minutes to read a ‘‘printout’’

while composing the next steps in your head, the computer would be

counting off a wait of centuries. And that’s for computers with millionth-

of-a-second responses. Computers are now in the works with trillionth-

of-a-second responses.

Yourfirst computer probably will accept only one byte at a time,

eight of those 1s and 0sin

a

string. It is said to have *’an eight-bit format.’

Each byte can contain one piece of useful information (an instruction)

used by SWITCHING. SWITCHINGusesa byte’s pattern to transmit a

particular instruction. ‘‘01100110’" is not the same instruction as

‘*91000110.’’ How those patterns are set up in the simplest switching

arrangementis the internal vocabulary (the machine language or instruc-

is the way your computertalksto itself. You don’t need any knowledgeat

all of that vocabulary. You just need to know that it’s there and will

respond to your commands.

The different ways those eight bits can be arranged give you 256

combinations (2x 2x2x2x2x2x2x2). This does not mean there are

256 basic instructions in your computer’s vocabulary. Manyinstructions

are duplicates using a different group of switches. Most eight-bit formats

provide fewer than 80 different sorts of instructions. That’s pretty impres-

sive when you consider the variety of things your computer can do.

Many computers are built with more than eight bits in their basic

Meet Your New Machine ¢ 37

format. However, such machines are generally set up with a section that
deals with eight bits. This lets them talk to eight-bit computers. Even with
an eight-bit limit, there’s another way your computer can share more
complex information and instruction with larger machines. It can, for
example, be rigged to simulate sixteen digits. What we’re sayingis that an
eight-bit computer, used imaginatively, has an extremely large potential.

Let’s make a quick review ofthatfirst diagram now. Timespentwith
it here will be time saved later. The diagram illustrates relationships
within a machine that does something (ACTION or OUTPUT) in a
predictable way. It does this when you do something at the INFORMA-
TION (INPUT) stage—either when you type on a keyboard or activate an
attachment to the machine.

All of the problems you put into your computer are broken downbyit
into arithmetical steps—the bits and bytes—everything controlled by the
hardware and the programs.

This brings us to the arithmetic logic unit (ALU), which we noted
earlier is closely linked to SWITCHING. The ALUis at the heart of the
controller. In most machines the ALU can add, subtract, complement
(change Is and Os) negate, and rotate (push selected contents of STOR-
AGEtotheleft or the right), and here is where your computerdeals with
ANDand OR.Theseare the most importantinstructions you can program
into your machine. Remember these things that the ALU lets your
computerdo:

SUBTRACT

MULTIPLY

ADD

DIVIDE

COMPARE

Just like the control unit that directs it, the ALU accepts only one
instruction at a time. This is an extremely important thing for you to
remember. In a sense, SWITCHINGandallofits components contain a
large number of mazes, all obedient to a simple on-off code and always
operating just one action at a time, one track at a time—certainly a fast

38 © Without Me You’re Nothing

required parts of a problem and come back to them whenthey are needed

in the logical steps of a solution.

If your program carries the right instructions, the computer will even

adjust to some changes—'‘if this happens, then do that’’—ail through the

process of solving a problem you have given to it.

Because these things have been built into it, your computer takes

your original INFORMATION and puts it through long strings of

SWITCHING/STORAGEmixtures with marvelousrapidity. You never

need to look in on what your computeris doing until the answer(s) pop out

at ACTION.All you haveto dois feed it the INFORMATIONand push

the key that tells the machine the information is there. The hardware and

the program(s) do therest.

The ACTION maybe presented to you in a wide variety of ways:

displayed on a dial or other indicator, printed or punched on paper,

plotted on graph paper, flashed as lighted symbols on a CRT, spoken

aloud through a speech simulator, presented as raised Braille dots for the

blind, or as a change in some control mechanism. The potential 1s

enormous.

Just rememberthat when yougetto the levelof the electronic gadgets

in SWITCHING,there’s nothing more complicated than a refrigerator

light and its push-button switch that turns off the light when you close the

door. All of the electronic gadgetry is just various mixtures of two-

position switches. In one way or another, each switch is controlled by a

train of other two-position switches. The train reaches back to an original

INFORMATIONandforwardin a continuousline through moretrains of

two-position switches to a final response (ACTION).

These are the keys to how your machine handles numbers and

symbols other than numbers. Keep in mindthatit can switch on groups of

tiny glowing spots that will appear on yourscreen. Those glowing spots

can be made to merge and form any symbols you may require.

Given the logical limits it must follow, your computer's potential

accuracy approachesabsolute. It will not make arithmetical errors. Thus

the symbols controlled by the internal arithmetical system will be a

precise response to yourinstructionsat the keyboard. If you require that

kind of accuracy, this is your machine.

But don’t let that fact go to your head. ‘‘GIGO”’ should be your

constant reminder of human failing: ‘‘Garbage in—garbage out.’’ The

answers you get will be no more accurate than what you put in at

INFORMATION. Your computer has to be directed by you or by a

program that you set up through every step of a problem. You not only

give itINFORMATIONbutwhatitis to do with your INFORMATION.

Meet Your New Machine ¢ 39

Depending on how you define them,all of this is done with fewer than
a dozen electronic devices. The keyis foundin the fact that these devices
can be wired together to produce a very large numberof effects. And the
number and variety of things you may automate in your computer is
limited only by how many switches you want to string into how many
trains and how youput togetherthosetrains.

SIMPLE STEPS—COMPLEX JOBS

At its roots the machine itself is simple. The wide variety of auto-
mated jobs it can do dependson the almost unlimited ways the available
pieces can be put together. This elementary truth about computers guided
the challenging format we chose for our book. Weinsist that the machine
must fit your needs, not the other way around. And we are presenting
what you need to know in a way that simulates the computer’s own
switch-oriented increased complexity. We are doing this to Carry you
along on tide of increased understandingthat will let you grasp and make
your own thoseskills heretofore reserved for the elite few.

Review

You should now have a goodstart on the following jargon and, more
important, what the named things do. Referring to the diagram where
necessary, see if you can describe whatis done bythe following:

INFORMATION (INPUT)

SWITCHING (PROCESSOR)

CU (CPU or MPU)

ACTION (OUTPUT)

STORAGE (MEMORY)

ALU

CRT

Two-state switch

CLK

Can you explain the following terms?

dendrite

bit

byte

machine language

4

Intelligence

It is very common in computertexts to start with simple, basic ideas and

then to inflate them until they completely lose touch with their roots. We

already have exposed for you one of the engines driving this system—the

desire to keep computers in the handsofan elite ‘‘priesthood.’’ Another

driving force in this is the computer industry's long refusal to reexamine

some of its most prized ideas, the ideas concealed in their jargon,

especially the arguments that the machine is somehow intelligent or

capable of intelligence.

Whenapplied to computers, the word intelligence is really a measure

of automation, how much the computer can be programmed to do

automatically during arun. This word intelligence is often introduced into

computer jargon as a sales pitch. Apple computers, for example, calls its

accessories Apple Intelligent Subsystems. From the semantic viewpoint,

you can say, ‘‘That’s not very smart.’’ From an advertising department

viewpoint, however, you haveto agree that this goes along with current

mythology.

Whether you accept the idea of ‘‘machine intelligence’’ depends in

large part on how youdefineintelligence. As you probably know,one of

the most commontests for this illusive factor in people is the Stanford

Benet Intelligence Test. Who in our society has not heard of the “‘IQ

Test’’? Who has not been awed by such a statementas “*She has an IQ of

180°"?

Abhhhh,but the insiders know something about IQ tests they don’t

often share: What they test for is nothing more than an artificial concept

they have called “‘IQ.”’

40

Intelligence ¢ 41

IQ TESTS TEST ‘‘IQ”’

That’s it. The tests do not measure intelligence, not even ‘‘native
intelligence,’’ whatever that may be.

But the label ‘‘intelligence test’? creates a marvelous illusion. It
Suggests that the testers understand the thing they are testing. After all,
that thing has a namethatis part of the test’s own name: intelligence.

Weall know whatintelligence means, right?
Someof the IQ testers will admit that they don’t understand intelli-

gence. The most they will say is that their tests flit around the edges,
giving an occasional foggy glimpse of something that maybeintelligence.

Thusit is with these funny words that describe what computers do.
They inflict us with illusions and with illusions built on illusions.

Intelligence has to be a measure of self-starting and success in the
things youself-start. That is why, no matter the jargon, we keepreturning
to that operational question:

WHATIS THE THING DOING?

Wethinkit’s vital that we face upto this problem at once because we
are dealing here with the sudden and explosive growth of a vernacular.

Vernacular comesfrom a term used by the Roman historian, Marcus
Terentius Varro (ca. 116-27 B.c.). Varro’s term was vernacula verba. It
wastranslated as ‘‘unilateral expressions used by slaves or serfs.’’ This
idea movedinto othersocieties to mean, loosely, ‘‘the native language of
an unlettered peasantry.’’ A vernacular can often be identified by its
grammatical simplicity, its ‘‘pidgin’’ character.

But there was no day in history when someonewent to bed one night
Speaking either classical or vernacular Latin and woke up the next
morning speaking French,Italian, or any other “‘Romance language.”’
Those languages came about through the explosive demands of
change—the very thing that’s happening right now with computers and
computerjargon.

In point of fact, French, Spanish, and Italian evolved from a mixed
vernacular called Camp Latin. Camp Latin picked up valuable expres-
sions in the field. The original language was modified by necessity—the
necessity to say new things andthe necessity to be understood by people
whodid not share the original linguistic tradition. Camp Latin was in a
sense a “trade language,’ a compounded lingo worked out by camp
followers and others as a domestic convenience between conqueror and

42 ¢ Without Me You’re Nothing

slave, between native and invader, and for the use of travelers and

merchants.

Such languages have occurred many times in our history. A good

example wasthe languagecalled Chinook, which originated in the Pacific

Northwest of North America long before the first European arrived on the

scene.

Chinook wasa linguistic sponge that absorbed meanings and usages

wherever and wheneverthey were needed for communication. It was the

language of slaves and conquerors and of traders. When French trappers

arrived, Chinook absorbed whatit needed from French. When other

Europeans came along, Chinook treated their languages the same way. It

was impartial, taking on such wordsaskitty and bouche and making them

its own. Prior to European contact Chinook had a word hyas (meaning

‘‘bigger,’’ ‘‘louder,’’ or ‘‘amplified”’). Kitty entered Chinook as the name

of that new thing, the domestic cat. This new thing altered an earlier

meaning, and hyas kitty took over as the name of the mountain lion.

Bouche is preserved today in the nameof the Washington coastal com-

munity of La Push, whichis at the mouth of several rivers. (Bouche

means ‘‘mouth’’ in French. The indigenous people had no b sound; thus

push wastheir closest approximation of bouche.)

We’re sure you can see the connection between this brief historical

excursion and what’s happening right now in computer lingo. You can be

sure that computer jargon will happen no matter what any of us may

desire. It will grow out of necessity—a new vernacular. We have no

argumentwith this. It is an exciting development, a sure sign of ferment

and change. We are seeing the growth of a ‘‘trade language’ not only

between elite and elite but also between elite and you ‘‘invaders.’’ What

we wantyou to watch with careis the carrying over of misleading illusions

into the new lingo. This has largely been anactivity of the elitists, and we

don’t think it’s very intelligent.

At the start of writing this book, we entertained a personal conceit about
Whatwe should call computers. We were notthe first people to face that
problem.

Some people have called it the ‘‘organization machine.’’ Not a bad
idea. We'll discuss later some of the advantages found in using your
computer as an organizer.

‘‘Computer”’ was not the best choice, but we’re stuck with it. That
name suggests mathematics too strongly.

Some of the first computer users wanted to call it the ‘‘all-purpose
machine”’ or the ‘‘everything machine.”’ Very suggestive. After all, a
computeris anything you can makeit do.

We focused on the maze character of the internal switching system
and went aroundfor a time calling it the ‘‘maize machine.’’ The pun on
maze and the reference to corn were intended. Aside from the fact thatit
was a corny idea, there was somesensein it. Corn, as some of you may
know, cannot survive or adapt without us. If people didn’t plant and
cross-pollinate corn, the plant, as we knowit, would die out. We have
developed whatscientists call a ‘“‘symbiotic relationship’’ with corn. It
dependson us and we dependonit.

Well, that’s the way it is with computers. Without our intervention,
they are useless junk. We are the ones directing the computerevolution

. . and the computer revolution. We may use computers to help us do
this, but we are doing it. We are responsible for whatis happening.

43

44 ¢ Without Me You’re Nothing

Wedefinitely do not want to call them ‘‘electronic brains.’’ That is

the most misleading name to come along. It 1s highly unlikely that

computers everwill “‘think’’ the way you think, or that they will possess

thought structures even vaguely similar to yours. People have experi-

_encesthat a computer, by its very nature, cannot share.

The complexity of our universe necessitates animal adaptations (such

as your brain), which can work without words. Some survival reactions

must happen too fast for words to have any effect. But without words

there can be no program. Without a program, your computer cannot

communicate—with itself or with you.

Not a ‘‘brain,’’ then.

Maize machineis too corny.

The ‘‘relativity machine,’ perhaps? After all, we do owe something

to Einstein. And the computer is giving us a leg up in the multistep

universeof relativity.

But that’s kind of pretentious.

Onething certain in the name quest: Your interaction with your own

computer will be unique, just as you are unique. You already have a

whole bag of things you enjoy doing or wantto do. You can very well

decide to make your computer do things no oneelse has ever done with

one. If you’re a little whacko, your computer may very well do whacko

things.

How do you put a name onthat?

Namesare important, though, and we should not give up too easily.

And we have seen many computer specialists playing a remarkable

identification game with the machine.

Eachof these specialists imposes upon his computer a mirror image

of his own personality. It’s fascinating and well nigh universal. Psycholo-

gists call this ‘‘transference behavior.’’ That meansthat the person gives

to the machine a personality that originates in the user’s unconscious.

Now,weall know (especially in our folk wisdom)that such behavior

is not confined to ‘‘computer freaks.’’ It can be seen in the man-auto

relationship and in the ways we deal with other machines.

“Tin Lizzy’’ is not a chunk of metal devoid of personality!

Look at the popularity of individualized decoration on cars and the

pet names people give them—evento painting the names on the cars or

putting the namesonlicenseplates.

We know of a milling machine operator who calls his machine

Esmerelda. Why? ‘‘Because it performs better when I call it by name.”

This has a great deal to do with naming the device because people

What’s Your Name, Funny Machine? ¢ 45

seldom observe the otherside of the coin: How you identify the machine

determines how you will use the machine.

Computers are extremely susceptible to this unconscious ‘‘name

game.’ SWITCHINGworkssofast that it can create an illusion of human

behavior. But the thingis still just switches and electric currents. Illusion

remainsillusion.

Howaboutcalling it the ‘‘illusion machine’’?

This ability with creative illusion is at once a danger and one of the

most attractive characteristics of computers. Whenwegetinto the section

of this book dealing with images on screens, you will understand even

more of that fascination with creating illusions that correspond to our

‘‘real world.’’ One of the most exciting things about computerscreens has

to be that ability to create illusionsof reality.

But there is a gossamer and transparent quality to such creations.

Just for the preservation of your sanity they require that you think

‘illusion... illusion... illusion...’ When the play is over, you come

back to a quite different world.

Wesuspect, however, that the interaction between illusion and what

we call ‘‘reality’’ will undergo profound changes because of computers.

Manyphilosophers have warnedusthat reality, too, has a way of shifting

under our feet. Let’s just remember that yesterday’s reality is today’s

illusion. It’s worth noting that when unworkable illusions merge with

whatever we're currently calling reality, that’s a good definition of insan-

ity.

There’s something in this, though. We all know that the closer we

bring ourillusions to the way the universe performs around and within us

(based on a hard reading of consequences), the better we are at predicting

what’s going to happen next. Accurate prediction, after all, is the real

nameofthe scientific game.

Should wecall it the ‘‘prediction machine,’’ then? Or perhaps‘‘real-

ity machine’’?

They sound even cornier than ‘‘maize machine.’’

Let’s get back to the fact that this device is a tool, and by the best

operational definition it is anything you can makeit do. Let’s go ahead

and be little bit anthropomorphic, as long as it’s all in fun. And let’s

nameit in a waythat keepsthething in its place. Let’s call it ‘‘Hey, you!”’

or anything else that suits you at the moment you’re usingit.

One more thing in this same vein. Just to make very sure that you

keep the relationship between you and your computer in the proper

perspective, the first time you prepareto use it, stand there for a moment

46 © Without Me You’re Nothing

and addressit sternly. Say, ‘‘You stupid, inanimate chunk of hardware!

Without me, you’re nothing!”’

Weguarantee that unless somebodyis playing a very difficult joke on

you, your computer will not answer back. After all, computers don’t

argue; they just don’t forgive.

6
Inside Information

For this next step you should have your own small computer or have

access to one. Weare going to take you on a guided tour underthelid of

the computer. Don’t be afraid. Your friendly native guides will protect

you from all the dangerous flora and fauna in here. All you really need is a

general understanding of what’s under that lid. This also gives us an

excuse to familiarize you with some of the buzzwords behind which the

‘‘experts’’ are hiding.

First, unplug the machine. An electrical shock is at least a painful

experience, and we want this tour to be enjoyable. Now, following the

manufacturer’s instructions, take off the lid, which conceals and protects

the ‘‘working parts’’ of the computer.

The biggest box underthat lid will be a large container (usually metal)

that encloses the power supply. The contents of this box feed a constant,

steady electrical current into the computer. Your TV and radio have

similar devices, but they are not designed to quite the tight requirements

of your computer. Don’t try to open the power supply box unless you’re

deeply into electronics. Just understand that this is what changes your

household electricity into ‘‘juice’’ that the computer can use.

Your computer itself and the essential parts are mounted on a thin

plastic board (most often green, black, or rust brown) manufactured by a

photographic and etching methodthat leaves plated copperlines sealed on

both surfaces of the board. Thoselines are the ‘‘wires’’ of your computer.

If you look closely at this plastic board, you will see little metal dots

here and there on the plated copper lines. These are dollops of solderat

47

48 ¢ Without Me You’re Nothing

Vertical view of computer. With lid removed, the inner works of an Apple Il computer are

revealed. The large metal box at left is the power supply. RAM and ROM chips plug into the

printed circuit board. Note that the keyboard reveals a strong similarity to that of a portable

typewriter. Photo courtesy Apple computers

Inside Information ¢ 49

points where circuits go from one surface of the board to the other

surface. The dots mark the places where your computer’s electrical lines

cross.

At some location on the plastic board you will see a series of thin

parallel ‘‘wires’’—all of the lines fairly close together and in stacked rows.

The presence of these rows locates the internal STORAGEarea of your

computer. The small rectangular boxes in this area contain the switches

with which the computer jugglesits signals.

Those little boxes are called ‘‘chips’’ in the computer industry. A

chip is a plastic sandwichin a very small package. Sealedin it are a great

many very slender imprinted ‘‘wires’’ and electronic switches. Some of

those switches are stuck in one position—onoroff (a 1 or a 0). The preset

patterns of those switches, either stuck or changeable, identify what that

particular chip can do.

One of the largest chips under here will be the microprocessor,

SWITCHINGin ourfirst diagram. You already know what happens in

this box.

A code numberon eachchip identifies the manufacturer and whatthe

chip does. Some of them also maybeidentified as ROM or RAM.We'll

explain that presently.

Rememberthat your computeris basically a juggler of codedsignals.

In a sense, all of those signals are sent darting around through a maze, and

they are always subject to a simple on-off code. Long sequences of such

juggling are carried out automatically in these chips. The internal STOR-

AGEholds anessential key to how your computer solves your problems.

Note the RAM and ROM.

RAMstands for random-access memory.

ROMstandsfor read-only memory.

Aside from the fact that STORAGEis only remotely comparable to

your memory, this computer jargon is even more misleading. Both RAM

and ROM canreally be used as random-access devices. Furthermore,

both can be described accurately as direct-access devices. The really

distinguishing thing about ROMisthatit is permanentstorage.

Your friendly native guides will now try to lead you through this

dangerous part of the computer jungle. Stay close and pay verystrict

attention. If you fall off, you’re on your own.

What random really meanshereis ‘‘non-predeterminable.’’ There is

no way for you to know in advance which switch or which pattern of

switches in RAM will be selected for a particular job. It makes no

difference how you identify any particular bundle of switches here. They

90 ¢ Without Me You’re Nothing

48k RAM board. This printed circuit board (PCB) contains part of a computer's circuitry that can
be plugged into an S-100 bus system. This board holds the “read and write” portion of internal
storage (RAM). Photo courtesy Vector Graphic, Inc.

can be numbers one time and letters another time. The pattern that you
label ‘‘stroganoff’’ today can be ‘‘violin’’ tomorrow and ‘‘E = mc2’’ the
dayafter.

ROM on the other hand really stands for ‘‘stuck switch.’’ It’s as
though the light switch on your wall were alwayseither ‘‘on’’ or ‘‘off,”’

always locked down in a preset pattern. Your computer cannot change
that pattern, it can only read the pattern, only respond to the pattern.

Keep in mind that your computer does everything, even printing

letters, by the numbers. Every switch has a numberattachedto it. And

you are sitting there giving this machine commandsto shift information

around—movethis overthere; find that thing; compare these items; select

the biggest, the smallest, the longest, the shortest; find the stored meaning

for that word. . . a great many commands.

Since important information must be taken from one place and put

into another place, your computer makes temporary copies in RAM. The

bits and bytes go in here. You will recall that if the same sequence and

number of switches are always used for a specific symbol, then you not

only can identify (decode) that symbol(repeat it correctly every time), but

youalso will know where each symbol starts and stops just by how many

switches have been used since the start of the message. For the math-
minded among you,it requires seven two-position switches to give you a

Inside Information ¢ 51

different on-off code for one hundred different symbols—a powerful

‘‘alphabet.’’ With one extra switch for important internal instructions,

this gives you eight switches per symbol—oneof the reasons there are

eight bits in a byte.

But now youare finished working with your computer, all answers

received, all the important stuff stored on tape or disk or paper. You turn

off your computer. RAM is gone—instant amnesia. Ahhh, but ROM

remains. The switches are stuck, remember? And the next time youfire

up your computer, the basic patterns for operating your computer are

already there in ROM.

Very handy.

Howeverall of that randomity makes it necessary that you use

addresses when you’re operating this machine. By the numbers—never

forget it. The addresses are easy, and your computer will store them for

you if you like. We'll address this more directly in the section on

programming.

Meanwhile, more about what happens in ROM and RAM.

Fixed patterns are available to you in ROM in whatis called a

random selective process. That means that whenever your computer

needs a particular thing that has been stored in ROM,that thing can be

yanked out at random. You do not need to know in advance where that

thing has beenstored.

With RAM,on the other hand, your computer can both store and

pick up a switch pattern at any convenient and available position. You

have direct access to any place in RAM—bothin and out.

We suggest that you think of RAM as “‘‘read and write.”’ Your

computer can store patterns there temporarily and within the system’s

mechanical limits while it moves other patterns around. ROM can only be

read. ROM is wherethe ‘“‘machine language’”’ is stored so that it won’t be

lost.

Weattach little analysis now to remove the confusion from RAM

and ROM. Confusionis assured by the fact that both RAMs and ROMsare

random access devices.

The first “memories” were the read and write variety still known as

RAMS. The label random access described the conceptual breakthrough for

internal storage devices. Any of a large numberof storage places could be

used as long as each place had its own unique address. This meant you could

store many different things in different places and get anyone of them back

when neededjust by knowing where it was stored. Things could beretrieved in

any order, and this feature becamethe basis for the name: random access. You

could select any piece of stored information at any time.

o2 ¢ Without Me You’re Nothing

produced the name read only (ROM,or Read Only Memory)for the device
you could not write over.

Wethink one of the computerindustry’s biggest blunders wasto hideits
mistakes behind a cloak of incoherent jargon. With the realization that even
ROMwas a randomaccess device they should have changed the nameof the
writable memoryto reflectits writability. (Perhaps RAW forread andwrite.)

Now,what do youreally need to know aboutall of this stuff under
the lid? Whatit does in a general way. While we’rehere, then, we're going
to makea shortside trip from the keyboard to the screen.

This is what happens whenyouhit a key and see the proper symbol
displayed on yourscreen:

Hitting the key sendsa signal to the controller. That signal is stored in
RAMuntil the controller refers to a machine language instruction in ROM
that tells it to test the switch and makesure that a key has actually been
hit. If the answer is no, the controller may consult some other machine
language instruction to see if perhaps something else has happened.

In any event, the controller will eventually come aroundfull circle
and test the switch again until it finds that yes, a key has indeed beenhit.
The controller then leaves the circle and copies into RAM (temporary
storage) the switch positions identifying the key you hit. The controller
then finds the location in STORAGEwherethe identities of the switch
position are kept. The controller compares andidentifies that pattern and
then copies the identified pattern into another temporary storage position.
Finally, the temporary positions are sent out to your screen’s controller,
which usesthose patternsto place dots in a familiar shape on yourscreen.

Voila! You see the letter on the screen.

All of these activities take place in the tiniest fraction of a second. As
far as your own observations are concerned, the machine’s reaction is
instantaneous—which should give you an insight into the concept of
relativity.

Asyou can see, temporary storageis vital to what these chips do.
This may be more than you bargained for when you joined oursafari

under the lid, but we warned you that we would use this as an excuse to
familiarize you with more of the jargon. There’s still a way to go before
were out of the jungle.

Somewhere in here will be a block of plastic enclosing a crystal. It
may only be identified by some code numbers,butit is in here. This is the
heart of a system whose pulses synchronize all of your computer’s

Inside Information ¢ 53

operations. It is called a ‘‘clock,’’ and the jargon beasts have doneit

again.

This ‘‘clock”’ is really a very fast metronomethat operates at several

million beats a second. Calling it a clock confusesit with a time clock or

the kind of clock that could tell you the time of day. We think a real clock,

the kind that records the time of day, should be incorporated in every

computer, but we’ll go into thatlater.

All of the chips are plugged into your computer’s board by rows of

pins that go all the way through the board, making contact on both sides.

This makes for easier replacement and upgrading.

Somewhere near an edge of the board you mayfind a row of long

plastic receptacles with slots of brass connectors downthe center. These

are INPUT/OUTPUTconnectors, where you can plug in other boards for

special jobs.

These are called **I/O ports.”’

I/O ports are described as being ‘‘on a common bus.’’ That has

nothing to do with rapid transit. Bus here means pathwaysforsignals that

have something in common. A busis made up of conductors. (No! Not

bus conductors! You see what happens with language?) These are con-

ductors of electrical current. They are communications tracks between

switch points, nothing more.

You will most commonly hear about three **buses’’ in computers—

data bus, address bus, and control bus.

The data bus is where information flows.

The address bus leads to stored information by the numbers.

The control bus sends signals to different parts of the computer

according to your instructions.

Here’s another word the jargon beasts have inflicted us with: inter-

face. You'll find computerinterfaces underthislid.

Sociologists, psychologists, political ‘‘scientists’—almost every

specialty in academe—have leaped onto this word with unholy glee.

Ignore them. For your purposes, interface describes a device that

matches one part of your computer with another part, however that match

is managed. There can be a ‘“‘TV interface’ that lets you use your

household TV as a computer screen. There can bea “‘tapeinterface’”’ that

lets you use a cassette recorder as an external storage device. There is a

‘*keyboard interface’ that lets your typewriter-style keyboard interact

with the other parts of the computer. In computer usages alone, ‘‘inter-

faces’’ are already legion, and there’s no endinsight.

Some of the chips under this lid contain transistors that are first

04 ¢ Without Me You’re Nothing

cousins to those in your TV, yourradio, and yourstereo amplifier. Most
of the transistors are just used in amplifiers to transmit trains of informa-
tion through your computer. Wetell you this to reassure youthatall of the
fauna underthis lid are notalien.

By now you havenoted that several parts on your computer’s board
have namesprinted on them. Take a closer look. You maysee suchlabels
as “Game IO,” ‘Color Trim,’’ or ‘‘Memory Select.’’ Those names
Should not give you any trouble. What happens in there happens ‘‘at
night.”

For you electronics aficionados, the small resistors and capacitors
you see attached to the computer board serve mostly to tie in the
interfaces and matchthe timing circuits. (The rest of you did not hear us
say that.) Exquisitely precise timing and tuning are an absolute require-
ment of computers.

Two more things under the lid are worth mentioning: a character

generator and a keyboard encoder chip. They maybeidentified by name.

The character generator translates computersignals into numbers, letters,

and other readable (by you) symbols. The keyboard encoderchip takes

the signals from your keyboard and translates them into patterns your

computer can use.

Nowclosethe lid. The truth is, everything underthatlid ‘“‘happensat

night.’” However, we hope you understanda bit more of the jargon.

Review

Can you identify the following?

powersupply

chip

ROM

RAM

machine language

random

clock

|/O port

bus

data bus

address bus

control bus

interface

7
History Without

Hysteria

You should now have a beginning familiarity with the basic outline of how

your computer works. That gives you the building blocks upon which we

can add the other skills you will need. You should also have by now a

pretty strong motivation to makethis new tool a part of yourlife. As you

now know,the principles of computer design are actually quite simple.

Those simple elements can be mixed in a way that makes complex

patterns, but no single step is beyond your understanding.

Reflect a moment on what your computer does:

1. It manipulates symbols according to preset rules.

2. It accepts and stores information, and it does the same thing with

the rules.

3. It shows youits results.

4. It doesall of this by flipping switches.

Nothing in that is overly difficult, and there is no need for us to

increase the difficulty.

With that in mind, we are now going to digress for a brief history of

computer evolution. If you already knowthat history, move on to the next

chapter. Nothing in this historical excursion is absolutely essential to you.

However, let us emphasize our reasons for introducing the history at this

point:

If you know where youve been, it’s easier to locate where you are

now and where you cango.

History evokes an interesting insight into a pattern that people have

repeated many times. We want to arm yourintelligence with that raw

material.

995

96 * Without Me You’re Nothing

The Greeks had a combined calculator and astrolabe for navigation
by at least 86 B.c. But artificial calculation is much older, as old as
mankind's first awareness that we could count on ourfingers and toes.In
fact, there is an even more elemental bodily counting system called
Syriac, which is based on 2s and 4s because we have two hands and two
feet. Some South American tribes still give specific names to particular
number groupsin a Syriac system:5 is ‘‘one hand,’’ 10 is ‘‘two hands,”’ 15
is “‘two hands and a foot,”’ and 20 is ‘‘two hands and twofeet.”’ It has
been suggested that this system is the origin of our own word ‘‘fourscore’’
for 80, 4 times 20 (a ‘‘score’’).

The Romans used counters made of pebblesor bits of glass, bone, or
ivory. The Latin word for such countersis calculi. The Greeks employed
a counting board or table with grooves or lines on it where the markers

were put down according to place value. They called this an abakion. The
Romanscalled such devices abaci.

This system is known to have been used in very ancient times all

through the Middle East, India, and Africa. In fact, there are several

‘‘pebble games’’ still popular in Africa that can be traced back to this

methodof calculating.

In the New World the Mayans used a similar system with grains of

corn strung on threadsin rowsoften.

As you can see, all such devices are based on the ten fingers of the

human hand. We knowthis device today as an abacus.

Of course the abacusis not properly a computer; it is a calculator, an

ancestor of computers. The linguistic marker is there in our modern

language, however,tied to our past by the same kinds of strings we can

find in the word computeritself. That, too, comes from Latin—com and

putare, meaning ‘‘to reckon with.’* (You had better believe that you will

have to reckon with computersin yourlifetime.)

The fact that abacus and calculation are still meaningful and im-

portant parts of our language points to another historical fact sometimes

overlooked: The persistence of abacus calculating systems through the

Dark Ages and Middle Ages. That persistencetells us how it was possible

for our ancestors to perform quite involved mathematical operations

while still using Roman numerals. We know that the Arabic notation with

its zero and decimal-place rules was a relative latecomer. It is quite

obvious that our ancestors did their actual calculations with ‘‘counting

tables’’ or the equivalent. Roman numerals were used merely to note the

results.

It’s useful to understand this evolutionary trail because the calculat-

ing methods, the “‘mental tools,’’ of those times persist today. Just as you

History Without Hysteria ¢ 57

can detect trial and error in those ancestral systems, with the survival of

the most useful (or most commonly used) systems, the samesort of thing

is happening today. Apparently, it has always been that way in the

evolution of ourtools.

The French philosopher and mathematician Blaise Pascal (1623-1662)

built a gear-based machine for adding numbers. His machine, which he

called La Pascaline, was interesting but impractical, too early for the

mechanicalabilities of 1642, when it wasbuilt.

However, interest in such devices cropped up frequently all through

this period. Gottfreid Willhelm von Leibniz (1646-1716), the German

inventorof calculus, put his considerable talents to the problem in 1694.
He built a machine thathe called a ‘‘step reckoner,’’ an improved version
of Pascal’s device. It could add, subtract, multiply, and divide. It also

could extract square roots by repeated additions—which is exactly what
modern computers do with such problems.

Leibniz’s machine, too, was ahead of the mechanical abilities of his

time. The “‘step reckoner’’ proved unreliable, although it demonstrated
where the shortcomings were andit projected a time when a successful
version of this machine could be made.

It wasn't until 1835 that Charles Babbage (1792-1871) solved the
Pascal problem. Babbage, an English banker’s son and self-taught
mathematician, was a pioneer in what wecall ‘‘operations research’’
today. With British governmentfinancing, Babbage built an ‘‘analytical
engine.’ It not only performedthe calculations of the Leibniz machine,
but was a true programmable computer. It combined arithmetical and
logical functions, and it was capable of storing partial answers for later
use.

Babbage’s “‘engine’’ could compare quantities and perform different
instructions according to preset programs.It could execute very complex
sequences of automatic operations, using punch cards, gears, levers and
cams. Although its storage system was limited, the Babbage machine
went a bit farther into esoteric functions than you might have expected
from the available hardware of his age. Babbagedid this by employing the
punch-card system then in use for controlling the loomsoftextile mills.
Punch cards controlled the sequence of numbersin his device.

Essentially, Babbage’s technique is the samebasic principle that has
been carried over into today’s high-speed computers. Babbage died
before completing the machine to his ownsatisfaction. Still unfinished,it
is preserved in a London museum—aninstrumentthat anticipated today’s
computers.

In those parts of the world then in technological ferment, Babbage’s

58 © Without Me You’re Nothing

work and its implications spread rapidly. Automatic tabulation of com-

plex information wasof particular interest to Hans Hollerith in the United

States—particularly as it applied to the census. It was estimated that the

information to be gathered by the 1890 U.S. census would require

fourteen years to tabulate by hand.

Hollerith put together a census system in 1890 that scanned the data

of that year through punch cards and electromechanical (electrical con-

tacts) operations. His system cut tabulation time to less than half that

required by the census just ten years earlier. On the basis of this success,

Hollerith founded a company that eventually merged with others to

become International Business Machines (IBM).

Developmentsin this field moved with relative slowness until 1939,

when Harvard’s Howard Aiken signed an agreement with IBM to build

MARKI, the first automatic digital computer. It still operated elec-

tromechanically, and its noisy relay switches sounded like an auditorium

full of tin crickets.

IBM failed to see the advantages of shifting to electronic switches

and was not in on the development of ENIAC,thefirst fully electronic

computer. ENIAC wasthe brainchild of John Mauchly and J. Presper

Eckert at the University of Pennsylvania. It operated silently and

thousands of times faster than MARK I. However, ENIAC wasbased on

the vacuum tube, and this produced its own tremendous problems: heat

and frequent breakdown,all adding to the high cost. ENIAC was also a

complex monster; you had to rewire it for each new setof instructions.

The cost barrier was not broken until the 1960s, when transistors

began to take over. Transistors and photoetching techniquesalso opened

the door to miniaturization, and this brought on the rush of hand-held

calculaters. We’ll deal with calculators in more detail in the next chapter,

but there’s an importanthistorical fact worth noting here.

One of the reasons calculators came on the scene so rapidly and

computers have beenrelatively slow gaining speed is that by the time

calculators happened,all of the computer technology wasalreadyin hand.

Even though the calculator in its hand-held version happened chronologi-

cally much after computers, the whole stage was ready for it. All that was

really required wasa set of standards.

At the beginning of the Computer Age there were no standards.

However, automation was seen as desirable. Many different approaches

to the computer/calculator automation problem weretried, and mostfell

by the wayside. At best, the early devices were large, clumsy, hand-

made, and mechanical. Early computers were hand-wired, disjointed

History Without Hysteria ¢ 59

patchworksof resistors, capacitors, and moreor less continually failing

vacuum tubes. Each newsetof instructions required that the whole mess

be rewired. Nobody would ever have made the mistake of calling those

early devices ‘‘intelligent.’’

One of the first standards to evolve in the infant industry resulted

from the decision to go forreliability: adoption of the binary system. We'll

deal with this in a later chapter. All you need to know, really, is that this

binary system uses numbers based on 2 instead of on thetraditional 10.

The decision to go binary was made independently by many people

and with the usual reluctance to choose any one methodoverthe othersin

fear that you would throw out the baby with the bathwater. Most of the

holdouts remained so deeply entangled in the mechanicsof trying to keep

their systemsreliable that they never got downto solving other problems.

The binary system, with its natural affinity for the two-state switch,

gave us a basic building block. From that designers could dream up an

infinite variety. No matter the immediate problem, it was now knownthat

if the digital computer were to evolve into a useful tool, anything con-

nectedto it (including you) had to be capable of handling binary informa-

tion in some way. Anything transferred to or from the computer had to be

converted to binary form. (For those of you who insist on sticking to the

decimal system, most computers can do the binary translation internally.)

Certain physical things began to happen in computer design as a

result of this landmark decision. Key functions becamestandardized. The

number 2 and its successive multiples became the starting point for

determining the numberandlength of storage places.

Amongother things, this means you canfind off-the-shelf hardware

and programs to do an enormous variety of jobs. You do not have to

originate unique programs unless you havetruly far-out needs. You can

shop for existing systems and programs to meet your demands. Two

important things are happening asa result of this: The numberof things

your computer can do is undergoing wild growth, and the cost of systems

and componentsis plummeting.

(An offshoot of this situation is that much of the industry is in a state

of chronic obsolescence. This leads us to give you some cautious advice:

Don’t buy last year’s model unless it fits your needs and the priceis
irresistible. You may not be buying just last year’s model but a modelthat

is several generations old. Shop and compare with your own needs and

budget as your primary concerns. Aboveall else, don’t buy before you

consult the Buyer’s Guidesection of this book and useits guidelines.)

After the shift to binary, computer designers homedin ontransistors.

60 ¢ Without Me You’re Nothing

The move to transistors made mass production possible and increased

reliability. The smaller size allowed the design of components that were

easily replaced if they failed. It was possible then to locate the general

area of a malfunction and replace an entire unit. The computer could be

restored to working order quickly while the actual faulty component could

be repaired at leisure.

This development dictated a functional approach to design. It was

necessary to minimize the numberof wiresthat tied together the different

parts of the computer. And that approach blended smoothly into the next

breakthrough: the shift to integrated circuits (ICs). The IC puts many

transistors into one piece of semiconductor material and lets you make

standard circuits capable of being combined in many different ways. It

also permits another dramatic reductionin size.

The industry had new building blocks.

What originally took thousands of square feet of floor space and

vacuum tubes from floor to ceiling was reduced to a small roomful of

transistors and then to a box scarcely larger than a desk filled with ICs.

Connections which originally took miles of careful handwiring were

exchanged for conductive pathways sealed in tiny semiconductor crys-

tals. Logic units that once required fifty pounds of hardware were reduced

to a few grams of semiconductorandplastic.

The stage was set for an evolution in miniaturization that has not yet

bottomed out. We are fast approaching the point where the electronic

elements of a computer can be compressedinto a package aboutthe size

of the tip of your thumb, perhaps even smaller. In fact, the miniaturization

of some computers and calculators is now limited only by the size of your

finger. You still have to punch keys and buttons.

One parallel improvement wascritical to today’s miniaturization

and increase in power for computers. In current computers your instruc-

tion codes can bestored in the machine the same wayas data. To modify

instructions or even change them dramatically you merely manipulate the

trains in the switchyard. In effect, your computerflips its own control

switches internally, following your commands.

Earlier, we explained the ‘‘stuck switch” type of storage and com-

pared it with its opposite number,the kind of switch that can be manipu-

lated either by you or by the machine. You will recall that it is a common,

although not universal, feature of the wnstuck storage to self-destruct

when youshutoff the power, thus giving your computer amnesia.

Before the days of stuck switches and fixed storage, whenever the

computer wasturned on, it had to be reprogrammedfrom scratch. Part of

that procedure involved flipping bunchesof switches by hand and copying

History Without Hysteria ¢ 61

their patterns into storage until there were enough machine language

instructions for the processor (SWITCHING) to copy other switch pat-

terns from one of the higher-speed input attachments.

Such instructions circled back upon themselvesin a waythat allowed

you to push a button that caused SWITCHINGto do the things you asked

of it. SWITCHING would do these things over and over until you pushed

a button that stopped everything.

Assuming yougotall the initial switch positions right, you could shift

to the high-speed input device and put more machine language switch

positions into the machine. SWITCHING would faithfully copy each

pattern into storage until you decided you had reprogrammedit to the

point where it would perform as desired. At this stage, you could stop

everything, flip some switches, and push another button to set the

processoron the correct instruction to get things started. You then pushed

the start button. If each individual step had been done correctly, you were
rewarded with a bell or the thunk of a teletype machine and you were

ready to use the computer for something worthwhile—such as playing
chess or space waror even figuring the interest on next year’s mortgage

payments.

As you have probably guessed,a lot of things could go wrong. Any

one of these things was almostcertain to be a disaster. The nameofthat

game wasfrustration, and the answer involved plenty of coffee and late

hours.

The major solution was the stuck switch, not exactly a new inven-
tion, but it has only come into its own in the past decade. And oneof the
handiest things aboutthis solution is that your computer doesn’t loseall of
its marbles when the powerfails.

What the designers did was to incorporate a great many stuck
switchesinto just the right positions and patterns. All you do is turn on the
power. Before you pull your hand away from the power switch, the
machine has gone ‘‘ding”’ or ‘‘beep’’ or done somethingelse to tell you
it’s ready to work.

This is today’s technology: semiconductors and individual transis-
tors, integrated circuits and the combining of tens of thousands of
individual parts into a thin crystal wafer. The extreme precision of
machine etching in these crystals requires computer-controlled manufac-
ture. This is leading into an obvious evolutionary path—computersthat
design and build more and moreeffective computers. Once weget this
going and produce machines that pass along the preset improvement
pattern to more and more effective computers, we will be into a brand
new ball game.

62 ¢ Without Me You’re Nothing

This has given rise to the story that computers themselvesare really

out of our control and are building themselves. That myth ignores the fact

that it required millions of man-hours in planning anddesign plusbillions

of dollars to make it happen. Even more importantly, it passes over the

fact that the improvement pattern must be preset and revised and thatit

must be measured against our requirements.

As we’ve shown, noneof these things would have happened without

standardized design—and that brings us face to face with economic

reality.

Back in the early days when you wanted to remakea circuit, it could

be tedious, but you really were only cutting wires and perhaps adding

sometransistors and more wires. However, with the adventof large-scale

integration—more and more complex things in smaller and smaller

packages—when the manufacturing machinery was set in motion,

economics dictated that millions of components had to be built just in

order to break even. You hadto be right when youtooled up for a design

change.

Of course the designs had been around long enoughfor the designers

to know pretty much which things did what. But the designers do not

know everything, and it’s unlikely they ever will. This is one of the

reasons that the whole computerindustryis still in such a wild evolution-

ary state: Electronic experimenting is in the hands of a great many

resourceful people who owe no allegiance whatsoever to existing com-

panies. A product emerging from someone’s basement workshop could

make a multimillion-dollar investment obsolete overnight. It has hap-

pened before and it will happen again.

Intel, the first company to put a computer on an IC chip,is a case in

point. The IC is a rectangular (and probably soon to be square) bit of

plastic with protruding metal connectors muchlike the legs of a science

fiction spider. The IC’s functions are identified by serial numbers that you

can look up in the manufacturer’s manual. The manualwill tell you what

pulses or charges of electrical current you can sendinto one leg and what

you will get out of another leg when youdothis.

Intel’s computerchip, the 8080, created its own industrial revolution.

It was really a computer of impressive power and wide versatility, how

wide wasnotat first appreciated. It was not until Ed Roberts of Micro

Instrumentation and Telemetry Systems (MITS) in Albuquerque, New

Mexico, brought out his Altair computer, a kit based on the 8080, that the

rocket took off. That was in 1974, and the price wasa ridiculous $420 for a

computer whose competition, in terms of computing power, wasstill

thinking of ‘‘$100,000 cheapies.”’

History Without Hysteria ¢ 63

Roberts advertised in Popular Electronics and Scientific American.

Those ads mark the beginning of the first stage in the personal computer

explosion. But the ads were only a small part in the wildfire spread of the

personal computer. Word of mouth gave Altair an even bigger push. This

graduated almost overnight into computer clubs and other exchange

networks where you could find out anything from how to hook up

accessories to sources for specialized programsto fit your machine.

There was andstill is just south of San Francisco, California, the

heaviest concentration of companies making chips, computers, and ac-
cessories. It is called ‘‘Silicon Valley’? and extends from near San

Francisco International Airport south through San Jose. It is an area of

extremely competitive business with industrial spying and sabotage more

commonthan the industry wouldlike to admit.

The area around Silicon Valley wasone of two hotspotsin the spread

of personal computers. The other was in the shadow of Massachusetts

Institute of Technology at Cambridge. Special magazines and other
localized publications copied on duplicators sprouted all over those

landscapes. They werecirculated by handordistributed at club meetings,

and they set the pattern for what is happening today.

Twenty-twenty hindsight is the only thing you can trust completely in
the computerindustry, and it takes a great deal of courage to invest in a
major design change. Keep that in mind when you turn to the Buyer’s
Guide section of this book (Chapters 13 and 15). Don’t let it stop you from
buying your own computer—youreally can’t afford to stay out of this
revolution. Just be cautious.

All of this is why we turn your attention to something you can rely
on—the thrust of standardization. There is no paradox here. A great many
machines are being manufactured. They are very powerful, and because
of standardization, they are increasingly interrelated. This is doing valu-
able things, especially where computer languages are concerned.

The same high-level commands have been made to workin the same
way for many machines. Standards have been developed for how the
letters and numbers maybe represented in intermachine communication.
Languages have evolved in which many operations follow a standard
grammatical structure. They have the sameinternalrules.

Oneresult of this is that your computer can nowtalk to a wide variety
of other machines. Information and highly complex programs stored in
other computers are available to you . . . and the prices are dropping.

Standard machines, standard languages, standard programs—these
mean weshare a base of useful knowledge available to everyone.

Whichis whatthis bookis all about.

8
The Gadget World

Those of you who have been wandering around complaining that 1984 is

already here and that computers are going to be everywhere pretty soon

make us wonder where you’ve been the past decade. Have you been so

interested in your doomsaying that you missed the invasion?

We've already been *“‘wiped out.”’

Look at what has been happening to automobiles. Today’s cars talk

back to you, telling you such important matters as ‘““You forgot your

keys.’ Or ‘‘It’s time to changethe oil filter.”’

Gadgets which do these things are correctly called computers. They

are stripped-down, fixed-purpose computers.

These devices take many forms—TV recorders, traffic light control-

lers, video games, elevator controllers, teletypewriters, furnace ther-

mostat mechanisms, automobile cruise controls and fuel metering sys-

tems, oven timers, airline flight booking systems, foreign language phrase

reminders, digital control centers for multiphonic music systems, au-

tomatic telephone dialers, home security sensors, weather monitors (to

close windows, turn on lights, turn off irrigation systems, andthe like),

and, of course, programmable calculators. The list goes on and on, a book

in itself.

All of these things have in them a device with a built-in program that

reacts in a preset way.

Mostelectrical devices are fast becoming or incorporating comput-

ers. There is compelling economic motivation behind this rapid shift.

First, it avoids the cost of more complex wiring.

64

The Gadget World ¢ 65

Second, it frequently makes the device more versatile and adaptable

to your needs.

Third, because they often are easier to use, the computer-based

device is more attractive in the marketplace. It really is the ‘‘latest

model.’

One of the most universally accepted computersis the elementat the

core of the hand-held calculator. It is also one of the most advanced

computers technologically because of its impressive miniaturization.It is

also considerably more straightforward from a functional viewpoint be-

cause it has a single input source (the buttons) and a single output (the

numerical display). Although it contains fewer elements than the massive

systems found in the Pentagon, its general structure and the types of

things it does are almostidentical.

We're going to take a closer look at these calculators now because

what they do gives you a powerful leverage in understanding what other

computers do. Since you probably havealready used a calculator, we will

approach our explanation from the process of adding two numbers and
seeing the displayed answer. Westart with a single-digit number, add a
two-digit number, and makethe answera three digit number. Here’s how
it goes:

1. You turn on the calculator and push the button that clears every-
thing. This starts you atzero.

2. You push one button for a single-digit number. That number

appears on the display.

3. You press the **+’’ button.

4. You press the first (tens) digit of your two-digit number. This
causes the original number to disappear and the new digit to appear in
display.

5. You press the second (units) digit of your two-digit number. The
first (tens) digit moves one space to the left and the second (units) digit
takes its place besidethefirst digit.

6. You push the button with the ‘‘=’’ on it and read the sum on
display.

Internally, this is what happens:

1. When you press a key with a number on it, that numberis
translated into the unique switch pattern (binary) that the manufacturer
uses to represent the decimaldigit.

2. That switch pattern is copied into a place where many switches
have been reserved for keeping track of numbers youare putting into the
calculator.

66 © Without Me You're Nothing

3. When you push the ‘‘+’’ button,the first numberis copied into

another group of switches reserved for this purpose.

4. Whenyou pushthe ‘‘=”’ button, the machine pulls out the stored

numbers andperformsthe indicated operation—displaying the result.

Keepin mind that the only things in the storage system of computer

or calculator are bunches of two-position switches. Any significance

associated with the positions of those switches is the result of our own

preparations—the programming.

For example, all the manufacturers we have studied chose the

four-switch pattern in which all switches are off to represent the digit 0.

This is translated to activate lights that make the closed oval shape on the

screen we associate with the digit 0.

The machine is programmed to translate one switch pattern into

another switch pattern that activates the proper display oflights, creating

the symbols we have learned to recognize.

The most commonoptional feature on calculators is the ‘‘memory.”’

You mayalready have reasonedthatthis is just another group of switches

that get used whenever you want to copy what is being displayed.

Sometimes, you find arithmetic functions associated with such storage

systems, in which case the switch positions are first copied into a place

where they are treated as operands before the arithmetic function is

carried out and the answeris then copied into the storage switches. (In

case you’ve forgotten, an operand is just a quantity upon which a

mathematical operation is performed—convenient mathematical short-

hand, no more.)

You can get the sameeffect by flipping a control switch that makes

the storage switches one of the operands, then performing youroperation,

and, finally, flipping the control switch backto its original position. The

next operation you perform will then refer back to the switches for the

required arithmetic function. In one instance, you store the numbers; in

the other, you store the operation. The endresult is the same.

Another optional feature on calculators is the ‘*parenthesis.’’ This

allows you to perform intermediate operations on operands before using a

result with other operands. You do this with the control switch.

The optional feature that makes a hand-held calculator most like a

full-size computer is the ‘‘programmable’’ model. This lets you save a

particular sequenceof operations for future use. An example would be in

figuring how much you’re spending on interest for a loan over a period of

many payments. Such a model will display the payments easily and

quickly.

The Gadget World © 67

One thing you'll notice about the programmable calculator is the

extra buttons that do nothing unless you’re in the ‘‘learn’’ or ‘‘program’’

mode. The buttons have such labels as ‘‘GOTO,’’ ‘‘STO,’’ ‘‘RCL,’’

“WAIT,” “START,” and “‘END.”’

STO and RCL stand for ‘“‘store’’ and ‘‘recall.’’ If you have a

calculator with memory option, you already know about these buttons.

They allow you to put things into storage and recover them.

The other buttonstell the calculator’s processor where to GOTO next

or they stop it, permitting you to do something without trying to catch the

problem onthefly.

Everything it does is preprogrammed, waiting only for the problem

you give it. This is a conceptual background that you will find useful all

through your use of your own computer.

It would be difficult to overemphasize the importance of that most

basic capability your computer needs for automation: the ability to locate
and copy a numberthat has been previously saved somewhere so that
whenit comes time to use the number,it is available.

What you have in your machine is a gadget that, in effect, can
examine binary digits. You'll recall that we call such digits bits. The
gadget can examinethe bits and compare them. Are they the same orare
they different? Reading this, it can store the answerin a ‘‘carry’’ column
just the way you do when you’re adding a columnoffigures in the decimal
system.

Believe it or not, the gadget that does this is called an adder.
Computer users have been knownte maketerrible puns around this, such
as “‘Its byte is worse than an adder’s.’’

The adder is the basic element from which all other calculations in
your computer originate—not only addition, but subtraction, multiplica-
tion, and division (not to mention hyperbolic sines, Square roots, and
elliptic integrals . . . from the simplest to the most esoteric).

Because you can store special symbolic patterns in your computer,
the machineitself can automatically display the decimal equivalents after
it does all of its mathematical operationsin binary.

From these few simplefacts, it is easy to see that we are at the barest
beginning of the computer-driven gadget revolution. You had better learn
howto use these gadgets before they are turned to using you.

9

Your computeris limited to whatis called a ‘‘Boolean logic’’ system. This

is named for an English mathematician, George Boole (1815-1864), who

devised the deductive system upon which modern computersare based.It

uses only three operations—*‘AND,”’ ‘‘OR,”’ and ‘‘NOT.”’ This confines

your computer’s comparison abilities to the ‘‘is . . . is not’’ rules thatits

switches can handle:

‘*This and not that.”’

The rules of this logic include the rules of syllogisms, a further limit

on what these machines can do because your problem has to be based on

only two premises.

A typical form of this argument goes: “All A is B; all B is C; therefore

all A isC.”’

This says that if your premises are correct, your answer will be

correct. But that is an extremely blurred argument outside of mathema-

tics. And weare here to keep reminding you that your thinking processes

operate mostly outside the rules of mathematics.

The concept‘‘logic’’ has entered our mythologyas a kind ofultimate

answering system, a Delphic oracle that cannotfail. People believeit is a

source of absolute truth. One of the reasons the ‘‘computer brain’’ myth

has taken such strong hold on popular fancy is the fact that your

computerwill not question what you feed it unless you have introduced a

logical or mechanicalerror.

Let’s face it. This is a constraint on the machinethat does not apply

to you. Your computeris a moron.It calculates as an idiot savant might

68

70 © Without Me You’re Nothing

memorable of such experiences occur at moments of extreme stress. You
are required to make an immediate survival decision in secondsorless.
Suddenly, you experience a sensation as though time had stopped or
slowed to a crawl, but your thought processes accelerate to a dizzying

speed. You are able to comparelong strings of options, choosing just one
decision upon whichto act. You do this in a fraction of a second.

Both authors of this book had such an experience while driving an
automobile. A review of the experiences showedthat each of us chose the

one survival decision from a large numberof options. Each automobile,

moving at about sixty miles an hour, could not have covered more than

ten feet while those life-and-death options were being compared.

Many people have reported similar experiences.

Such CT events are usually written off as ‘‘purely subjective’’ and

therefore not amenableto scientific proof. What that really meansis that

these very real experiences cannot be confined within the logical limits we

have described. They occur in a dimension computers cannotuse.

People who argue for the ‘‘electronic brain’’ are refusing to admit

those limits of logic. If this were not tied up with such deadly conse-

quences, it would be laughable. Logic is always calling something a

‘‘law’’ that is not a law at all. What you must recognize when you use

computer logic is that you govern the machine. It will follow your

program; it will conform to your schemeof things. It is a blank page that

will sit there and do nothing until you give it your purpose, and your

purpose has roots in dimensions and experiences the computer cannot

use.

Computers may be superb for logic and accuracy within described

and describable limits, but don’t ever depend on one for creative work.

The machine will not go outside its limits. It has no imagination. In fact,

people of limited imagination, people who don’t understand what you

mean by ‘‘creative brainstorming,’ tend to lead the argument for the

‘‘electronic brain’? myth. They impose limits on themselves and they

want to apply similar limits to the universe because that makes them feel

safer. Despite the mask of logic on this argument, it is an emotional

matter.

We must keep reminding such people that our brains work in dimen-

sions other than logic. When those who would limit us say that the

occasional sparks of brilliance can be explained by your brain’s multi-

channel capabilities, we must correct them by saying that it is just as

accurate to describe your thinking as multidimensional. Always re-

member that you can deal with the continuum; a computer cannot.

You are not a mechanical! toy. That’s the essence of it. The patterns

The Logical Crutch ¢ 71

in a computer’s circuits are not alive. You evolved to confront infinity.

Computers work within mechanical limits.

Oneof the best things to come out of the home computerrevolution

could be the general and widespread understanding of how severely

limited logic really is—that plus a new appreciation of our own

capabilities.

Wehavereally knownthis for a long time. Scientists express it when

they say: ‘‘By the time you have the question properly formulated, you

already know the answer.’’ Folk wisdom says: “‘Ask a stupid question,

get a stupid answer.”’

People who deny these things apparently don’t trust their own

abilities very much. They also assume that every aspect of your thought

processes is based on rules that can be determined and converted into

computer programs. The best evidence now available says such rules do

not exist in an absolute and unchanging form. The basic concept of

communication (including, of course, nonverbal forms) appears open-

ended, infinitely expandable, and without any boundaries. Given no

limits, we do not have a system that can be enclosed in absolutes; we do

not have a system that can be reduced to a works-every-time program or

any otherrules.

Weare saying that it’s about time the philosophical implications of

Einstein and Heisenberg entered the mainstream of our technological

inventions. We do not agree that philosophy is ‘‘just one more science

with a more important theme but a clumsier method’’ than that of the

other sciences. Wefind it impossible to separate philosophy from any-

thing we do,and webelievethis is a good thing. We have an opinion about

it. There ought to be an underlying philosophy to anything we attempt.

That's what binds our substance together. We don’t understand things

when we take them out of their working environment. You cannot

understand ‘‘mind’’ by separating it from ‘‘body.’’ You cannot under-

stand “‘politics’’ by separating it from ‘‘economics,’’ and you cannot

understand either of theseartificial concepts without acceptingall of their
extensions—including the possibility of war.

No auto mechanic worth his salary would think he could tune up an
internal combustion engine every time by adjusting only onepart. Getting
an engine to run properly is often a balancing act. Philosophy is the

balancing act we chose to use while we walk the tightrope of this book.
Wethinkthat if there is any single underlying conceptual approachto our
universe, an approachthatallowsfor infinite variation in everything, that
will be a philosophical approach,not a scientific rule.

To play fair with you, then, here is our philosophy:

72 © Without Me You’re Nothing

In any logical system there can be different steps of ‘‘truth’’ such that

you cannot prove the truth in one step by taking that truth out ofits

context. Every truth requires a context and, in fact, can be provedfalse

outside that context.

This is a clear implication from Einstein’s special theory of relativity

and Heisenberg’s demonstration of the limits to observation and mea-

surement.

Before this understanding entered our awareness, countless logic-

limited people devoted their lives to attempts at unraveling paradoxes

such as the famous Epimenides paradox. This is usually seen today as a

small card on one side of which is printed: ‘‘The statement on the other

side of this card is true.’’ And on the other side, the message reads: **The

statement on the other side of this card is false.”’

The card itself clearly demonstrates the two completely separated

contexts. They are incompatible. They must be looked at spatially—

separate and forever divorced.

The real problem hereis the servile dependence upon a one-context

universe within which you seek absolute rules. (For ‘‘context’’ you can

substitute “‘dimension’’ or ‘‘system.’’)

The multicontext universe of relativity gives us a more dependable

ability to predict the workings of our ‘‘natural universe.”’

The implications of this insight are enormous.

First, it says that the number of possible contexts (dimensions or

systems)1s infinite.

Second, it says that the truth of one religion (government,

philosophy, etc.) cannot be proved by anartificial comparison with the

truth of anotherreligion (government, philosophy, etc.). Such matters can

only be tested in the crucible of survival, not in the play of symbols.

Symbol jugglings that ignore this (including those in computers) are

exercises in futility.

Folk wisdom has recognized this for centuries: ‘“‘One man’s truth 1s

another man’s lie.”’

This is also one of the things we are saying to you with our

philosophy: Limited systems are often seen as better systems because

their performance is easier to predict. It’s a simple step from this

observation into the belief that you have found the Rosetta stone that will

open up the universe. That idea has great current attraction becauseit has

helped us produce powerful technical devices—including the computer.

However, the end results of such technical prowess are growing more and

more sour. It did not take the Three Mile Island charadeto tell us that

The Logical Crutch ¢ 73

systemsarefailing. It is observable that people are being destroyed by the

uses of our technology. More and more outright lies are being told to

shore up the facade aroundpotentially catastrophic failures.

Weare saying thatit is not our tools that are at fault, it’s how we use

those tools and the beliefs we invest in them. We say also that the

personal computer is potentially the most powerful instrument of indi-

vidual freedom ever conceived. You are called upon to juggle more and

more survival information every day—torecall it, compare it, and revise

it. The mental abilities with which you were born, enhanced and amplified

by your own computer, give you the capacity to meetthat challenge. An

interactive network of such computers widely distributed throughout a

free society is, if used openly and wisely, a bulwarkagainstall attempts at

enslavement.

Weare questioning more than the philosophy behind our dependence

uponlimited and limiting systems. We question the powerstructures that

have grown up around such systems. We question the multinational

monopolies that deepen our dependence and usurp the functions of

representative government.

The tool is at hand to meet that challenge. We will not escape,

however, unless we have a well-grounded understanding of computers

and their limits. Computers operate within the narrow boundariesoflogic,

one step at a time with discrete information and a limited time frame. You

have greater abilities.

Take this as a challenge. Computers are challenging us to use more of

our abilities. All animal forms, and we’re no exception, can be shownto

profit from such a challenge. We are throwing downthe gauntlet in front

of those defending a particular current idea about computers, people who

say: “‘Computers are much too complicated for the average person to

understand.”’

Nuts! That’s just job insurance, a defense mechanism to protect their

own positions. What the bigdomes don’t tell you is that computers are

actually such simpletonsthey are relatively easy to understand.

The nature of the lie is easy to penetrate. Larger computers have

been defined to suit marketing schemes, to maintain dominancein those

particular markets. This requires a premeditated and built-in complexity

plus a high level of difficulty before the machines can be understood.If

you are in the business of selling complicated devices and their acces-

sories, which are advertised as being not only profitable but necessary,

then it’s obviously not in your economic interest to make a computerthat

is easy for people to use.

74 © Without Me You’re Nothing

Thatis defining computers according to monopolist interests, accord-
ing to the needsof certain computer manufacturers, not according to your
needs. Many computer companies have followed this lead like pro-
cessionalcaterpillars. We recommendto the directors of such companies
the poignant lesson reported by J. Henri Fabre, the great French
naturalist. This is an insect drama, but wepray that its lesson will not be
lost on the world’s leaders nor on any of you who define yourselves as
followers.

Fabre discovered by close observation of processional caterpillars
that they would follow the slimetrail of a leader without deviation. To test
this, he places a long row of processional caterpillars on thelip of a large
pot. Dutifully, the caterpillars humped and crawled aroundthe pot. Then
an interesting thing happened. The leader came upontheslimetrail of his
own procession and became a follower. Around and around the proces-
sion went without food or any other relief. Even when membersof the
procession began to die and fall off the pot, the caterpillars closed ranks

and maintained their mad circling. They kept it up until all were dead.
Let this be a warning. The computer monopoly cannot be main-

tained. Too many people are busily engaged in redefining this machine
according to your requirements, simplifying the hardware, simplifying

computer languages and the programming. The home computerbusiness

soon will have machines and programsto equal or surpass the best built

by the big companies—andpriced at less than you would pay for a used

Car.

Because the computer monopoly has been punctured, many other

monopolies will fall.

(It’s worth noting that IBM rejected the opportunity to take the lead

in development of electronic computers back when there were no such

computers. Apparently, IBM was too committed to mechanical comput-

ers and calculators.)

Manyof you no doubt have noticed that we, too, are busy redefining

computers in your terms. And by this time you should be focusing on an

operational definition of computers—what the machine can do, as op-

posed to what you can do. The twoarefar apart.

Always remember that computers are machines. They are tools,

mechanical devices. And just as you can drive an automobile without

knowing how to build one, you can use your own computer without

knowing how to assemble it. Your computer is a moron or less. We

assumethat you are notthat limited.

But computers are going to happen to your world. Make no mistake

The Logical Crutch © 75

about that. They give an enormoustime and information storage advan-

tage to the people who can use them.It is inevitable that computerswill

permeate almost every aspect ofourlives. The positive rewards makethis

a certainty. They will kick in a dramatic speedup to the changes and

evolution of our world. If you have your own computer, you will be able

to adapt to those changes with relative ease. You will have your own

‘*time machine. ’’

10
Let’s Get Organized

Nowthat you know quite a bit about computers and how they evolved,
we're ready to explore more of their functions. In the process we'll
increase yourfamiliarity with more jargon.

Every speciality shields itself behind jargon, which is another kind of
job insurance. Computer programminganddesign carried this tendencyto
someridiculous extremes, but, with your help, we’ll get them back into
the main channel. Just remember that computer mythologyarises out of

and is fueled by the same emotionsthat gave rise to Utopian dreams. It is
the dream of Walden II and Oneida. In each instance, the authors are
saying: ““Please, let us have a world like this because that’s the kind of
world whereI feel safest.’’ Symphathize, but be careful how you follow.

One of the most useful things your computer doesis to shift things

around according to plan. That’s one of the reasons they’re such great

organizers.

This essentially uncomplicated action is basic to such jobs as sorting

meaningless jumbles of information into neat, orderly, and coherent

bundles of information that have been organized precisely according to

your needs—all done in the twinkle of an electron and without any

backtalk.

If you’re one of those people whoare always ‘‘getting organized,”’

youre going to find the investmentof time and effort spent learning to do

this with your computer the wisest such investment you’ve ever made.

If you tend more toward wanting to get organized but never quite

achieving this, you're going to discover that your computeris a necessity.

76

Let’s Get Organized ¢ 77

For those of you groping around in a paperfog of informationthatis

essential to earning your daily bread,the computer-as-organizer will mean

survival.

Understand that you probably won’t save muchif any time putting

your information into the machine. Getting it out according to your exact

specifications is another matter. That’s why you're likely to be happiest

with your computer’s ability to organize and store large blocks of infor-

mation for ready access.

When we say your computer will become your favorite tool for

keeping track of things, that is the voice of experience. Computers are the

organizer’s dream machine. They doit by the numbers, but you don’t

have to know anything about those numbers except that they are ad-

dresses in the machine. If you tend to forget addresses, your computer

will save them for you and list them at your command.

Just rememberthat in spite of the fact computers have been made to

do a lot of fast and tricky things with numbers, they don’t know whata

number is. We’re here to keep reminding you that the only thing your

computer ‘‘understands’’ is a switch, andit really doesn't understand a

switch the way you do. But you can makethe machine respond depending

on whether a switch is on oroff. It will react with its preset electronic

reflexes whenever you touch oneofits triggers. (Yes, we warned you we

would join the anthropomorphic game,but only in fun.)

We can assure youthatthe first time you see your computer doing

exactly what you wanted without any mistakes and faster than Superman,

the experiencewill fill you with an elation hard to describe. You mayfind

yourself overcome by a severe case of the smiles and you will probably

want to demonstrate your triumph to someone—explaining quite carefully

that this computer had to be directed by you (or by a program that you

initiated) through every step of this marvelous problem. You not only

gaveit the information buttold it what it had to do with that information.

Wewill never forget the fully matured and highly respected depart-

ment chairman at Stanford actually giggling with glee when he saw his

new toy not only doing what he had orderedit to do but responding more

efficiently and effectively than he had expected.

In effect, your computer is a specially organized office—organized

just to fit your needs.

Not only can you put things into the machine and save them there for

later reference, you can also print those things on paper if you add a

printing accessory. A printer is optional equipmentand not cheapatthis

writing, but you may find it a necessary addition. Be alert to the fact that

78 © Without Me You’re Nothing

extremely fast and sophisticated printers are coming on the market; this is
making some very good secondhand printers available.

With a printer you can have a neatly typed shoppinglist ready for you
while you put on your coat before going to the market.

You can print out the telephone numbersto leave with your baby-
sitter.

Whena neighbor comesoverasking for your lemon pie recipe, you
can put the pastry recipe cassette in the recorder and type a command
whichprints the recipe for him. No need to look up the cookbook.

The more alert among you already have noted that the printed paper
is another form of STORAGE. Very handy under many circumstances.
When we describe our ideal ‘‘Rolls Royce of computers’ in the next
chapter, you will observe that it would print out any program the machine
has developed. That should alert you to ourbelief that a printeris quickly
becoming essential.

What we’re dealing with here is your interaction with the machine,
computer-people interfaces. Several devices fall into this category—
punch cards (fast becoming obsolete because of their bulk), papertapes,
magnetic tapes, magnetic cards, and telephone cradles. None of these
things can beinterpreted easily and immediately by humansenses.

Two other classes of interaction devices are on the market—optical
scanners and light wands(orlight pens). The optical scanner reads printed
characters from a page. The light wand lets you choosedifferent sections
of the screen for preset messages.

Your screen can be divided into sections, each section displaying a
different activity, in a numberof ways. Suchsections are called windows
or panels. Windowsandpanels are always defined by lines around them.
Whenyousetaside a place on yourscreen without a border, that’s called
simply an area. You’ve seen similar things done on your TV when a
close-up of sports action is shown simultaneously with a general view of
the game.

Don't let this TV-CRT comparison fool you, though. The CRT may
appear so muchlike your TV screen that you assume it is exactly the
same. In a hardware sense, that has sometruth to it, but that’s where the
comparison stops. In the first place, it’s likely that the present form of
CRT will be replaced soon by something similar to the display system ona
hand-held calculator—larger but using the sameelectronic techniques. In
the second place, your CRT carries its different messages in different
ways. Here are some of the terms that will help you understand the
differences:

Let’s Get Organized ¢ 79

CURSOR

This is a marker that you (or the computer) can move around to

indicate a starting point on the screen. It takes several forms on different

computers and is sometimes confused with a PROMPT symbol. The word

CURSORis rooted in the Latin for ‘‘runner’’ and stands for control of

movementin the computer. When the computer movesthe cursor, that’s

to tell you where you should be looking or where the next symbols will

appear. The cursor points to a particular place. It’s like a bookmark,

showing you your place on the screen.

PROMPT

This tells you what the computer is doing. It prompts you to do

something, and the small flashing marker may be accompanied by words

telling you what it is you should do. When your computer displays

something for you to do, that’s a PROMPT. Whenthere is a particular

place on the screen for such

a

display, that’s a PROMPT AREA.

There are quite a number of other performance signals that can

appearon yourscreen, things it can do or conditions for your interaction.

Peopleare still inventing them and the possibilities appear infinite.

There is, for example, the light pen. You can usea light pen andits

program to draw on yourscreen. The light pen is really receiving light

from the CRT. Thosesignals flip switches in your computervery rapidly.

Some combination oflight pen and graphic symbols appears to promise a

new leverage on yourinteraction with a computer. This is being built into

some exciting new languages, which, at this writing, have not been

perfected.

When a computer is set up to display things on a screen, that is

always a two-waystreet. Even withouta light pencil, you can respond to

the display and shift those internal switches by other devices—the

keyboard, knobs that turn, a thing like an aircraft’s control stick (called

appropriately a joystick), also by waving your hand across or through a

sensitive electrical (or magnetic) field, by changing your brain-wave

patterns (we'll go into this in more detail later when we talk about the

‘‘biomachine’’), by talking to a speech-activated interface . . . and so on

and on.

When the computer reacts to a choice you have madeorto a choice

directed by a program you have initiated, that reaction is called a

branching. It is comparabie to the branch-line switching in our railroad

80 ¢ Without Me You’re Nothing

Computer branching appears to be limitless. The possibilities are
compounded as the branching systems interact with more and more of
your senses and responseabilities. If you can see a picture on a screen
and changethatpicture to fit your choices, the interaction growstight. If
you only have to think about the changes you want on the screen, or the
changesin soundpatterns,or in the lines of a new design, the interaction
is very tight. |

Whenyou order your computerto shift things around, the controller
Swingsinto action. It goes to an address that you give it or that it receives
because of a switch pattern you have set in motion. At that address it
writes a pattern into temporary storage. It then Opens up a place where
you want to use the essential information carried in the temporary
pattern, andit puts that information into the new position. Both positions
can be temporary, and temporary can stand for a millionth of a second.

A small section of your computer keeps track of whereto find the
next instruction in your program. This is called the program counter. It
contains program instruction addresses only. It keeps your program steps
separated from the information that is also kept in the same internal
Storage areas. The only way a program step can be performed is if the
address ofthat stepis first put into the program counter. Once located, the
instruction is put into another device called an instruction decoder. Here,
the appropriate switches are flipped. And rhey direct the trains of switch
positions that are juggled to solve your problem.

Now, don’t let all this business about addresses put you off. The
things a particular program can do are always shown on a MENU,which
you can list on your screen. Each menu item is flagged by a number
preceding it. That numberis an address. It’s like shouting back to the
short-order kitchen: *‘I’ll have a number 10 and hold the mayo!’’ When
you tell your computer to give you a ‘‘number 10,”’ it will do that thing
whichis listed on the menu after the number10 in your program.

Earlier, we mentioned anotherdeviceessential to this performance, a
device called a ‘‘clock,’’ which is usually designated in computer manuals
as a ‘‘CLK.”’ This device provides the synchronous beatfor the opera-
tions we've just been describing. It is similar to the quartz crystal in
electronic watches, butit doesn’t tell time. All it doesis tick electronically
very fast. Each tick starts one of a series of operations involved in
something you’ve told the computer to do. If you want a clock thattells
time, you will require another device that counts the ticks.

Let’s Get Organized ¢ 81

It may seem overly complicated to do things this way, but there is a

reason: economics.

Back when computer designers made the decision to go with the far

more expensive two-position switches, they knew that if anybody was

going to afford the finished machine, they had to keep everything else as

simple and inexpensive as possible. One of the economiclimits arising

from this decision wasthat,if it was possible to get along with just oneof

an essential part in the computer, they would find a way to use only that

one part, they would do this evenif it would be more convenient to hook

up additionalparts.

We hope yourealize weare not yet talking about expensive deluxe

versions that contradict this guideline. Believe us, a very small percentage

of computers have more than one or two deluxe features that set them

apart from the rest of the herd.

That’s why there is in most computers only one device to find a

particular address in STORAGE.Andthat is why youfind the seeming

complexity of operation, which, as far as the computer is concerned,is

not complex at all. Remember that computers work very fast and have no

opinions about such things as complexity.

Review

Describe the following in your own words:

printer

STORAGE

interface

optical scanner

light wand

light pen

window

panel

area

CRT

CURSOR

PROMPT

PROMPT AREA

branching

controller

program counter

CLK

instruction decoder

MENU

11

The Rolls Royce

Onthe international automotive scene, there exists some argumentas to
whether the Mercedes or the Rolls is the better engineered general-
purpose car. Some people argue that the Rolls leads the pack only
because of its high price. Others say the Mercedes prestige can be
attributed to the myth that Germans makebetter mechanical devices.

Wedon’t intendto get into that argument except to warn you that you
should avoid thinking a high price necessarily means a better machine.

We did, however, choose the Rolls Royce as the symbol of our dream
computer partly because the machine we have in mind would probably

cost a very large bundle of money.

Andjust as we would bethefirst to admit that there probably are lot
of things about the Rolls that could be improved, we have not included

every imaginable improvement on our‘‘Rolls Royce of computers.’’ We
have confined ourselves to what we consider are essential improvements,

and we should advise you that someof these things are already available
or are just over the horizon.

One reason we’ve taken this approach is that when you cometo

purchase your own computer, there are many things other than price to

consider—and prices are coming down dramatically for highly sophisti-

cated systems.

In this respect, buying a computeris a lot like buying a stereo music

center. You expect your stereo to work for a reasonable period without

breaking down. Whether the cabinet goes with the rest of your furniture

could be far less important than the quality of performance. Afterall, it

has been demonstrated clearly in stereos that bad sound reproduction can

82

The Rolls Royce ¢ 83

tire you rather quickly. Just so, you don’t want a computer that is

tiresometo use.

Herethen is our Rolls Royce:

It has its own program-writing feature. The machine will composeits

own programsand print them out for your examination.

One of the least desirable things about today’s computers is the

difficulty you have in making them perform automatically at your whim.

The right kind of program is basic to automatic operation. Even though

important strides have been made recently toward easier programming,

this still takes a lot of your time and concentration.

Buying your programsfrom a specialist is useful in many applications

but not a complete answer. To betruly effective, programmers should not

only be specialists in computersbutalso in the field where they are using a

computerto solve problems. There can belittle doubt that an MD whois

also a computer expert would write better medical programs.

The present system requires a great deal of compromising. This has

the effect of producing programsthat are all too often designed with a

poor understanding of either the machine or the problem—orboth.

Program languages have becomeeasier to understand, and BASIC,

the language we recommend youlearn, is really quite simple. But all

presently available computer languages suffer from at least one serious

flaw: They are designed from the viewpoint of the machine’s internal

construction. This implies that the programmer mustfirst know every-

thing about the technology behind the machine—howitflips its switches,

whatthe easiest flow channels are, and so on and on.

Don’t let this implication frighten you. It does not hold true for you

unless you want to graduate into extremely sophisticated programs. But

we do believe that the language and the machine ought to be designed

primarily from the viewpoint of your needs and not from the needsof the

computer.

A far better approach than whatyoufind today would beto set up the
computer to generate the relevant questions that need answering when

you write any program. That way, when the machine has enough infor-

mation to solve the problem,it also should have the program tosolve the

problem. You would not have to be concerned, then, with the mechanics

of the solution. You could concentrate on typing in accurately all of the
limits and elements of your problem.

Mostof the drudgery in programming is of a bookkeeping nature.It

could reasonably be turned over to the computer. The machine would be

programmed (with stuck switches) to ask such questionsas:

84 ¢ Without Me You’re Nothing

‘*Whatsort of program do you need?”’

‘‘What accessory equipmentwill be used?”’

‘‘How many accessories?”’

‘‘What performance demands will you place on the accessories?

Speed? Capacity? Form of output?’’

‘*What name?”’

‘*Where will the input originate?”’

‘*Do you require a permanent record?”’

‘‘Where do you wantthe information stored?’’

‘‘How do you want the information retrieved?”’

‘*What options would you like?”’

And so on until enough questions are asked and the whole program

can be composed by your computer. We know this is not a simple

problem, but our Rolls Royce would haveit.

Our dream machinehasall plug-in components.

To some extent this already is a feature of many personal computers.

The most common problems with them can be solved by removing a chip

and plugging in a replacement. This is only slightly more difficult than

inserting a conventional electrical plug into a wall socket. Guarantees

being whattheyare today, the replacement should cost you no more than

the waiting time for the new component.

For example, we had a problem with the personal computer we used

as a demonstration unit and a reminder while writing this book. Any key

you hit would repeatitself ad infinitum. A telephonecall to the manufac-

turer pinpointed the glitch as a faulty encoder chip. That is the chip that

translates keyboard signals into signals the computer can use.

The mails had a new chip in our hands three days later. It was

obvious that an amateur could have madethe repair without even know-

ing what an encoderchip did.

If we had lived closer to a major urban center, we could have had the

chip in one day. The price we paid for enjoying a more primitive rural

environment was two additional days for the shipment.

Wethink plug-in components are such a desirable feature that every

part of our Rolls Royce would be exchangable this way—everything from

keyboard to CRT—simple multiple-pin plugs.

Two components are of critical importance in your ideal computer

system: the keyboard and the CRT.

Unless you have one of the new ‘‘speech lab’’ units, by which you

actually can vocalize your commands to the machine, the keyboard will

The Rolls Royce © 85

be your only means of ‘‘talking’’ to the computer. Even with a vocal-

response system, your keyboardis likely to get more frequentuse.

The keyboard, then, should have a decent‘‘feel.’’ The keys should

move smoothly and positively. The keys should, of course, transmit

accurately what you type into the system. These are typical keyboard

problemsthe Rolls Royce should never have:

1. Pressing one key gets you two or more characters. (The thing has

an electronic stutter.)

2. You get a different character from the one you typed.

3. You get no responseatall.

With these problems in mind, you should inquire about the perform-

ance record of any keyboard before you buyit.

Unless you buy a printer, the screen will be the only way your

computercan display its answers and keep you posted on your progress.

Your screen should have these characteristics:

1. A steady image—no bouncing or jumping aroundor otherdistor-

tions.

2. Good contrast. You should not have to burn out your eyes reading

it. The symbols should be clear even in a well-lighted room.

3. Easily read character symbols.

In printing and computerjargon, the symbolsof one style and size are

called afont. Most computerfonts are built up out of patterns of dots that

are five dots wide and seven dots high. That’s enough if you only want

capitals (referred to as upper-case letters) and numbers of the same

dimension. If you want both capitals and small letters (upper and lower

case), you need at least six dots by eight, but seven by nineis better.

Our Rolls Royce has a seven-by-eleven matrix and not only can

display in black and white but in color. The colors each come in four

shadesfor further differentiation.

It might interest you to know that these color shades are available

today as an option on some personal computers. The cost depends largely

on the required internal storage capacity.

We come nowto the manuals that accompany each machine andare

supposed to tell you how to run it. Many people have complained that

computer manuals generally appear to have been written only for experts.

We have seen some manuals that may not have been written by

people—orat least not by people who speak English. There is a suspicion

that they were written by computers to be read only by computers.

There can be no denying that some jargon is required for computers.

86 © Without Me You’re Nothing

Weare, after all, entering an area of new experiences and need new

words. But jargon for the sakeofjargon is ridiculous.

Our Rolls Royce meets this problem head-on. It has a special

program that is an explanatory dictionary and graphic demonstration to be

shown on your own screen. The demonstration will be in cartoon form

and will display the operation of each of the computer’s parts. It will be

written at a level a child could understand.

We're reasonably sure this Rolls Royce feature will appear on the

market before long, and we hopeit will be at a Model-T price. Untilit

does appear, make sure the store where you buy your computer has

someone standing by to translate for you when the confusionsarise.

Either that or find a friend who already knows computerjargon. Have the

friend sit down beside you when you first open your manufacturer’s

manual. We have provideda glossary that should be of considerable help,

but new jargon keeps being invented.

If our short course in jargon plus your friendly expert still do not

make the manual understandable, call the manufacturer andlay it on him.

It may alert him to make his manuals more understandable, and it may

produce an answerto your puzzlement.

A word of caution: If you buy from a department store or from an

ordinary electronics store that is not familiar with computer problems,

don’t waste your time going back to that store for help. Chances are very

good that the salesman will not know as much about computers as you

will after you read this book.

Our Rolls Royce will have no ordinary printer; it will have a photo-

typesetter. This is a marvelous device for reproducing symbols on paper.

When you want something on paper—even extraordinary shapes and

graphic symbols of your own invention—you program those shapes

through your computer onto your screen. The symbols on your screen can

then be edited, reshaped, put into any type font you desire. When you are

satisfied that the screen shows what you want, you tell the computer,

‘*Put it on paper.’’ The computer copies the dot patterns of the screen to

the phototypesetter, giving you on paper an exact match of what you had

on the screen.

Phototypesetters are already in use in the reproduction of Chinese

and Japanese ideographs, Arabic script, and Cyrillic. People using them

say they have barely scratched the surface potential of this versatile

accessory.

The Rolls Royce will have its own microwave transmit/receive

system. When you wantaccessto any large information center around the

The Rolls Royce © 87

world, you say, ‘““HEY, YOU! Give methe straight quill on the mating

habits of North African sandfleas. Try the Library of Congressfirst. If it’s

not there, try the Little America Free Library. I’m sure one of them will

haveit.’”’ Your computer then makescontact with the various information

centers via microwaveandsatellite.

ROM(the stuck switches, rernember?) in our Rolls will be very high

powered. There will be enough for the most enhanced version of every

high-level language plus the most versatile operating system.

There will be enough RAM (the changeable storage) that everything

you havetied to your computer can run at the same time, quickly and

independently.

Eachaccessory will have its own CPU, RAM, and ROM.There will

be a central CPU that controls the sequence of operations for each

peripheral CPU and the intercommunications.

MASS STORAGEinthe Rolls will be more than enough for informa-

tion and programs to be taken from any source and used immediately.

There will be file systems that automatically switch to a larger-capacity

mass-storage device when they outgrowtheir existing storage.

SOFTWAREin the Rolls will provide translators from every pro-

gramming language to every other programming language, including

machine languages.

There will be a CPU from every model of every manufacturer which

can be used at will with any part of the Rolls system.

Furthermore, this computer will control kitchen appliances, sprin-

kling system, burglar alarm, fire extinguishing, heating and air-conditioning

system, powergeneration and distribution and storage, window shades,

lighting, and fireplace dampers. It will read mail, pay bills, answer the

door andthe telephone, and record selected TV programs sans commer-

cials. It will call computers that send incorrectbills and read them the riot

act, causing their fuses to blow. It will rock you to sleep when you're

suffering from insomnia, andit will throw you out of bed when you have

to get up.

That’s sciencefiction?

It will be fact quicker than you think. Which is one reason we have

projected our idealized computer. Knowledge of a hypothetical Rolls

Royce will alert you to extremely valuable features, which, because of the

rapid rate of developmentin this industry, may be on the marketat a price

you can afford by the time you read these words. At the very least, you

should ask aboutthe possibility of adding such features. How open-ended

is the system you are considering?

88 @ Without Me You're Nothing

These things we havevisuaiized and even moreare going to happen.
If you’re prepared for them, you can help to make them useful tools. You
see, what separates the professional from the amateur in manyfieldsis

attention to detail. Your computer can look after almost infinite detail
without ever a complaint. Whateverit is that bores or annoys you, think
of how you can turn that detail over to your computer. That’s whatwe did
in the mental assembly of our Rolls Royce. While we were doing it, we
well knew that the eventual reality will go far beyond ourinitial projec-
tion.

12
The Computer

Two-Step

This chapter is about binary arithmetic. You do not need to know about

binary before operating a computer. Your computer can handle these

matters for you. Evenif all things mathematical turn you off, though, you

might like to dip into this chapter. If you’ve never before heard about

binary, that’s good. If you have heard aboutit, there’s a good chance that

you have been confused. If you will give us your unprejudiced attention,

we will attempt to succeed where the public schools defaulted to ‘old

math.’’

As we’ve told you earlier, there is no complex mathematicalability in

your computer. It cannot do anything except add. Presumably, you can

add, subtract, multiply, divide, and perhaps much more. Your computer

only simulates the functions other than addition. It does them bylabori-

ous, but very fast, addition.It doesall of this in binary and for a very good

reason.

It requires a ten-position switch to represent a decimaldigit. A binary

digit can be represented by that far simpler two-position switch, upon

which modern computers are based.

But most of us are used to the decimal or ‘‘base-10’’ numbering

system. Oneofthe first things we learned aboutit was how to count. This

is really a complex procedure. It involves starting with the number1, then

adding | to it which gives us the number2, then adding | again and so on.

One of the things most of us were nottold was that you can only countas

high as the biggest digit before you have to add anotherdigit to get the

next number. This is perfectly obvious when you think about it because

89

90 ¢ Without Me You’re Nothing

everybody knowsthatthe biggest digit is 9 and when you add a | to 9 you
get 10, a two-digit number. However, what you maynot have beentold is
that 9 is merely the biggest digit in the decimal(or base-10) system. There
are larger numbering systems where, whenyougetto 9, the next number
is still only one digit. And there are smaller-based systems where 9 of the
base-10 system is already represented by two or more digits.

As you know, your computer operates with on-off switches. If one of
those switches is on, you are looking at the binary number ‘‘1.’’ If the
Switch is off, your binary numberis ‘‘0.”’

Having learned that, you now know as much aboutelementary binary
switching as the most accomplished computerexpert.

You can make your computerreact one wayor another depending on
whether a switch is on or off. The dumb machine doesn’t know or
understand anything about this operation. It just reacts with its electronic
reflexes wheneveryoutouchits triggers. As we havetold you, to say that
it knows whento add A to B andstore the answerin C is aboutlike saying
when you’re drunk that you car knows the way home. Both thoughts are
dangerous.

In its infancy, the computer industry tried many different kinds of

electronic switches. One early model used a ten-position switch. There
was even a system using a one-hundred-position switch on the theory that
the more positions per switch, the fewer switches were required to
represent larger numbers. The main hope wasthat this electronic marvel

would enable its designers to calculate at the breakneck speed of several

additions per second. And there wasthe fact that a switch was a part and

the fewerparts the cheaper the machine.

However,it did not take long to discover that the more positions you

gave a switch, the less certain you were aboutits position at any given

moment.

Just consider a multiposition switch with which you probably are

familiar: your TV channel selector. This is a thirteen-position switch.

Each position gives you one channel turned on and the other twelve

turned off. Now, consider the problem if the channel indicatorlight fails

and all of this happensin total darkness.

We probably do not have to remind you that electronic gadgets

sometimes fail. That fact spelled the death of ENIAC (Electronic Nu-

merical Integrator and Computer), the first fully electronic switching com-

puter. It used eighteen thousand vacuum tubes. On average, a tube blew

out every seven and one-half minutes. The best they ever achieved after

design improvements was a breakdown every two days.

The Computer Two-Step ¢ 91

It finally was recognized by the computerindustry that, since accu-

racy and reliability were so important, the best switch was the two-

position model. (For the trivia-minded, the two-position switch is fully

twice as accurate as the next most reliable one, the three-position.)

And thus we cometo binary arithmetic.

The highest number your computer can represent with a single digit is

the number1. The highest digit of any numbering system is | less thanits

base. And for very elemental reasons, base-2 is the smallest numbering

system possible. When you have just started counting in binary, you are

already as high as you canget with only onedigit. The smallest two-digit

numberin this system is ‘‘binary 10.’’ Don’t confuse that with your old

familiar ‘‘decimal 10.’’ The thing to keep in mindis that a binary 10 counts

an entirely different quantity than a decimal 10. They are two distinctly

different numbers. The quantity you count with binary 10 is the same

quantity as decimal 2. We get each of them the same way—by adding 1

and |.

It may be helpful at this point to follow the train of discovery by

which one of the world’s greatest mathematicians came upon the base-2

system. The mathematician was Gottfried Wilhelm von Leibniz (1646—

1716). In his day the peasants used the binary system for a simple

multiplication method called ‘‘peasant multiplication.’’ With this system,

the peasants did not need to knowtheir multiplication tables beyond the

2s.

A simple problem will show you howthey did it. We'll multiply 36

times 47 using the peasant method.

To begin, place 36 and 47 at the top of two columns you are aboutto

make. Then divide 36 by 2 and divide that numberby 2 and so on until you

reach 1. You then multiply 47 by 2 successively, as shown below:

w
o

O
s

t
h
N

—
N
O

R
R

O
O

@
®

w
o
N O
s

Right away, you observe that 9 cannot be divided evenly by 2. But

since weare peasants and not expected to be very goodat arithmetic, we

92 ¢ Without Me You’re Nothing

throw awayall extra Is. Next, we cross out every numberin the second
column that is opposite an even numberin thefirst column. After that, we
only have to add the remaining numbers in the second column.

The answer, as indicated, is 1,692.

Try it yourself. You will find that it works every time. Leibniz made
the same discovery. He saw this as a wayto build an adding machinethat
would multiply. This is exactly how your computer multiplies. It is how
most modern adding machines multiply.

Peasant multiplication can be explained quite simply by the binary

system. Expressed in binary, the number36 is binary 100100. To change

a number from decimal to binary, all you have to do is divide it by 2

successively, just as we did with 36 in the foregoing problem. You then

put a 1 opposite all odd results and a 0 opposite all even results. The

binary number 100100 is then read from bottom to top. Here’s how this

conversion looks:

36

|

—
-

O
S

K
R

O
O

O
O

—
-

o
O
0

—
0
0

In peasant multiplication we eliminated every number opposite an

even number, which means in binary the numbers opposite the zeros. To

multiple 36 (binary 100100) by 47 like a computer, we multiply each digit

of the second column by successive powers of 2 and again by 47, then we

add the products. Here’s how it goes:

0x 29x 47=0xX 47=0

Ox 2'k 47=0x 94=0

1 xX 2?X 47= 1X 188= 188

0X 23x 47=0X 376=0

0x 24x 47=0X 752=0

1X 25x 47= 1X 1,504= 1,504

188+ 1,504= 1,692

That’s identical to the system in peasant multiplication. All we did

was to convert 36 into binary and multiply it by 47. This is precisely what

your computer does, converting the 47 into binary form as well. Even the

The Computer Two-Step * 93

exponents in these equations would have to be binary, but your computer

solves that problem by morerepetitive additions.

You see—your computeris a peasant.

Generally, when computer people talk to one another they prevent

confusion about the number system bycalling each digit separately or by

preceding their number with the word binary The binary for decimal 2

would becalled out as either ‘‘one, zero”’ or ‘‘binary ten.”’

As you can see, binary racks up a lot of digits without counting very

high. For example, decimal 8,a single digit, is four digits in binary—one

thousand(1000). Decimal 64 in binary comes out one million (1000000).

Decimal 600 in binary is more than a billion.

Conventionally, four digits are often used for any binary number up

to decimal 15. (Another binary digit must be used when you counthigher

than decimal 15.) This is done by placing zeros in the empty columns. This

doesn’t change the value because, as you will recall, we’re still in peasant

multiplication. By this convention, decimal 3 becomes binary 0011.

Decimal 4 is binary 0100 and so on. The following decimal-binary table

showsthe basic notation. Zeros would be addedto theleft.

Decimal Notation Binary Notation

0 0

|]

2 10

3 11

4 100

5 10]

6 110

7 11]

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

You can convert from binary to decimal by starting with the right-

hand digit and adding values. The rule is that you add a value when the

binary digit is a 1 and don’t whenit is a 0.

Youget the value of a digit by doubling the value of the digit to the

94 ¢ Without Me You’re Nothing

right, starting with 1 for the rightmost digit. The value of the right-hand
digit is 1. The value of the second digit from the right is twice that of the
rightmost digit, or 2. The value of the third is twice that of the second
digit, or 4, the value of the fourth is 2 times 4, or 8, and so on. With binary
1111, you get8+4+2+ 1, or 15. With more binary digits you would carry
this out that many moresteps. Binary 11101 becomes 16+8+4+0+ 1, or
29. Binary 111001 becomes 32+ 16+8+0+0+ 1, or 57...andso on.

These conversions become awkward when you reach very large
numbers, and various conversion codes have been developed in attempts
to simplify the process. Any computercan be rigged to make the conver-
sions automatically. All of them should display binary results in decimal.
No computer will get bored doingthis.

If you now go back over what we’ve said about binary numbers and
work a few problems on your own,you should havea sufficient grasp of
the system and howyoutranslate either way between binary and decimal.
This facility will come in handyif you really get hookedbytheintricacies
of computer programming.

We hope you understand that binary is important because you can
add a pair of such numberstogether electronically if you look at each
switch position of each binary place of both numbersat the sametime,
Starting with the units position and going sequentially on up through the
largest binary digit of the longer number. Then if you have one extra
switch, you can keep track of the ‘‘carry.’’ Look back at the multiplica-
tion of 36 times 47 and you will see that this is exactly what we have
illustrated.

Your computercan do this becauseit can store part of its information
in its microminiaturized circuits. Those circuits are laid out in stacks of

gridiron patterns. The pattern forms a series of intersections, each of

which can have a switch position. One way the intersection records an

‘‘on,’’ ora ‘‘1.’’ The opposite way records an ‘‘off,’’ or ‘‘0.”’

You now have all the clues you need to understand how your

computer can deal with symbols other than numbers. Depending on the

pattern it recognizes and upon which the designers have agreed, the

machine can light up tiny spots on your CRT. Those lights can be
arranged to form any symbols you may need. They also can select the
Keys of a special typewriter or of anotherprinter.

It was observed in the early stages of computer developmentthat if

a fixed number of bits and a unique pattern were always used for each

specific symbol, then you not only could identify the symbol (repeat it

accurately every time) but you could also know where each symbol

The Computer Two-Step ¢ 95

started and stopped just by how many switches had been usedsince the

start of the message. By including letters, numbers, and punctuation

symbols along with a few basic typewriter functions such as tab,

backspace, and so on, you could write anything you would normally

want. It takes 7 two-position switches to provide a different on-off code

for each of 128 different symbols.

We now can explain why8 bits equal a byte. A bit, you will recall,is

the smallest unit of information to which computers can respond.It is a

binary digit.

While 128 symbols seemed enough for most purposes, the designers

decided to allow for an eventual 256 symbols, thus making the basic

symbol length equal to 8 binary digits. Such ‘‘overengineering’’ has

invariably proved valuable in the past and there was no reason to doubtit

would be equally valuable with computers.

Some computers use the extra symbol patterns for special

symbols—graphics, the Greek alphabet, Chinese or Japanese characters.

Most employ the eighth digit for an extra degree ofreliability. It was

decided that since any symbol will always have either an odd or even

numberof ‘‘on’’ switches, the eighth digit is either on or off to make the

total agree with a verification code—an identifying odd or even. By

counting the number of ‘‘on’’ switches, you can make sure that a

particular eight-binary-digit sequence is a legitimate symbol.

13
Buyer’s GuideI

If you think you’re now ready to buy your own computer, read this
section before you go to the store. We hope you nowacceptthe reasons
for getting your computer and knowthat you have been misled about how
difficult it is to gain the necessaryskills.

Weare urging you to buythis valuable tool as soon as youare able to
do it. Not only are the reasons urgent, but the economic timing is

excellent. It’s a buyer’s market and will be for some time. There’s another
important reason you should buyas soon aspossible: You will learn how

to operate it faster and moreskillfully if you use it while you study about
it.

Just as in learning to drive a car, a bookis useful but never enough.

You have to get your own hands on a car before you can be called a

driver.

First, we owe you someprecautionary advice based on experience

and investigation of many computers. In giving you this advice, we want

to emphasize that in no way do we imply there are a large number of

problems with personal computers. Wearetelling you something anyone

should realize on a moment’s reflection, but it is something which needs

emphasis:

These machines are made by people and are subject to some human

failings.

Reliability, however, is on an obvious and dramatic increase. Stan-

dardization plus automated (computer-controlled) manufacture of many

parts make mostrepairsrelatively simple. Considering the complexities to

96

Buyer's GuideI ¢ 97

which the various hardware combinations can be put, problems are
astonishingly rare.

Uniess you are a qualified expert, confine your ownrepair efforts to
those plug-in replacements. Don’t get in there with your soldering iron.
Seek out a specialist who is familiar with any glitch you may encounter. In
most cases your probiem will turn out to be something simple; a faulty
connection, a short in a chip—seldom anything more complicated.It may
even be that you have misread the manufacturer’s instructions.

The store where you buy your computer should be able to put you in
touch with other people using the same machine. Insist on this before you
buy. Findout how thoseotheruserslike that model. Ask about problems
and be specific. We’ll get to some specific questions presently. Feel free
to copy those questions and take them with you when you go shopping.

Keep in mind that there will be varying degrees of expertise in the
computer-user population. However,they will knowthe real experts. Find
one of those real experts if you need help. We guarantee you’ll meet some
interesting people.

Whateveryour problem,help is at hand somewhere. More and more
specialized computer stores are opening every month. The ones that
endure will be run by people who understand computer problems. Word
gets around among the users of personal computers. Ask how long the
Store has been in business. Ask about the specialized experience of the
people who are running the store. Don’t be bashful. With any given store,
they need you; you don’t need them. The same goes for any given
manufacturer. There’s another store (factory) ‘‘just around the corner.”’

If you do encounter problems, consider returning a machine to the
manufacturer as a last resort—only when all else fails. But keep your
machine’s special packing box just in case. Failure to protect the compu-
ter in shipment can void the guarantee.

Finding a computer to fit your budget is much easier today thanit
was, say, in the early 1960s. For only a few hundred dollars you can geta
computer with greater capacity and versatility than one with a price tag
in the hundreds of thousands of dollars in those earlier days. It’s really
bargain times.

But *‘Buyer Beware

There are good reasons for so many bargains—con)petition and the
rapid progress in computer development. This is generating a chronic
obsolescence in the industry, and it represents a possible pitfall for the
unwary first-time buyer.

You wanta tool, nota toy.

"°°

98 ¢ Without Me You're Nothing

There are some ‘‘cheapie’’ models around with a limited higher-level

language in them. They will not copy information into an external storage

system such as a cassette recorder. They will copy programs but not

information. These are toys, not tools. They will play games with you but

very little else. You cannot, for example, save your checking account

records on a tape with one of these toys. They are little more than

calculators, as far as computer power is concerned. A hand-held cal-

culator would be cheaper and more accurate.

If you already have one of these toys or feel that the price Is tco

attractive to resist, you have a couple of options. You can convert this toy

into a tool by biting the bullet and paying the extra amount of money to

expand the system according to the manufacturer’s specifications. This

will probably cost you more than twice what you paid forthe original toy.

The other option: Find a local expert who can convert the thing for you.

The price of having your own conversion done should be a fraction of

what the manufacturer usually wants. But it will probably void your

guarantee.

Theterrible part of all this is that there is no technical reason whythe

cheaper machines could not be built correctly in the first place—to copy

and store your information. Wesuspectthat this is a marketing gimmick:

they lure you into the toy and then stick you for the expansionpricelater.

After all, you already have their machine.

We strongly recommend against the purchase of such toys. The

question youaskis: ‘‘ Will it copy my information into an external storage

device and then accept the playback of that information into the

machine?’’? You want a machinethat takes your information, not one that

just takes programs.

Obsolescence creates other problems. You don’t want a machinefor

whichthere will be no new attachments or more powerful programsin the

near future. But an older computer may exactly fit your needs, even

though it uses moreparts. If the price of such a machine ts attractive, you

should consider it. You are interested in performance, not necessarily in

the numberofparts. If those parts are standardized, easily replaced, and

readily available, they should not impose serious limitations on your

computer.

Thefirst question you should ask yourself is: *‘What do I want to do

with a computer?’’ If you know in advance exactly what you will want

your computer to do for all of your life, your job in selecting the right

hardwareis easy. All you do is find one that does what you want in the

way you wantthat done.

It is not quite as simple as selecting a console entertainmentcenter,

Buyer’s GuideI ¢ 99

however. When you have decided whether you want a tape recorder, TV,

radio, record player, or such, all that remainsis to find a system with the

required features in a pleasing package and with the desired sound

quality.

Not so with a computer.

More often, a home computeris bought in a stripped-downversion.

This basic model will probably be enough while you learn howtouseit
and decide what you will want to do with it. As time goes on, though, you

will probably increase its accessories.

To do that, choose a model with a wide range of accessories which

are supported by the manufacturer.

Even though you are buying the bare-bones model, you will want to

see the deluxe version in action. That was one reason weran the Rolls

Royce past you. Stay aware of new accessories. As these new accessories

come out, make a pointto see them in action. That will provide you with
information on what is possible with your computer. It is important that

you stay abreast of the possibilities—the potential. For that, your

machine has to have a potential. Don’t paint yourself into a corner with

yourfirst machine.

You should enter this list with operational questions of the most
specific type, the questions that are most directly involved with what your

computer will do and what you will have to payforit.

Recall the box labeled STORAGEin our basic diagram? The ver-

satility of your machineis a direct function of its storage capacity, of such
problems as whether it handles color or a more advanced higher-level

language.

With storage systems you pay for speed and size. Small and slow
usually meansless expensive, but that, too, is relative. Each new genera-
tion of computers gets bigger in capacity and faster. Because last year’s
model might give you just what you need, knowledge of changes in
Storage capacity could give you some useful economic leverage. Ask
whetherthere is a newer,faster, more powerful model of the machine that
attracts you. Ask whether an improved version is about to come on the
market. Then ask yourself whether you really needall of that upcoming
powerandstorage.

Also ask yourself whether you need a disk driver or a cassette
recorder. Disks are faster and cost more than cassettes. Both function as
external storage, but you canfind information faster in a disk and you can
revise that information more quickly. Disks also will interact with a
computer’s internal storage in a much more responsive way.

If speed and fast interactive capacity are what you need,then byall

100 * Without Me You're Nothing

means go to disk. For most users, though, cassettes are more than

adequate.

As you might expect, the simpler the computer you choose, the more

likely that you will be able to walk into the store and buyit off the shelf. If

you get into a larger and more complex machine, however, you may be

asked to wait a suggestive nine months for delivery. Don’t let this ignite

any fantasies about how the machinesare actually reproduced. If you are

asked to wait for your particular model, keep track of what’s happening in

the industry during the interval. Put a clause in your purchase contract

that will allow you to withdraw with grace and not too much expenseif the

machine for which you are waiting is superseded by a far better model

before you even get the thing in your hands.

We recommend that you go to a computer specialty store for your

first machine, but don’t evenset foot in the door without going completely

through this Buyer’s Guide section, which is designed to give you specific

overational questions. Better yet: Finish the book: the book as a whole

should allow you to generate your own questions—a far more valuable

asset.

Gut Questions

Believe it or not, one of the most difficult probiems for a first-time

computer buyer is to define what it is he wants his computer to do. We

have a wayto approachthis problem that webelieve youwill find helpful.

Take pen and paperand list the demands you expect to make on the

machine. Put each demandinto as clear a statement as you can—language

not easily misunderstood. Avoid strange technicalese. What you are

defining is what you intend to do with your computer. You want a direct

way of describing those things, and that’s a very powerful leverage on

both your language and your understanding. Yourfirst statement may be

something likethis:

‘‘T want it to do all of my household bookkeeping, my savings

account, my checking account, and all of the balancing. [| want it to

contain my budget and to have as complete a breakdownas possible of

where my money goes.’’

A relatively simple computercan do this provided it can copyand put

your information into external storage (cassette or disk).

Now, that sample statement appears to contain all the necessary

requirements, but this is not the case. The following questions will make

this clearer:

Buyer’s Guide! ¢ 101

Howdo f use this computer?

Wheredo I controlit?

Whatelse does it do?

Is there a model that would be easier for me to use?

HowdoI feed (activate, renew, supply, repair, maintain) it and the

accessories?

Where do instail it?

Howdo I connectit to a power source?

Howdo shut it down whenit’s not in use? (You want one switch for

start-up and shutdown, no more.)

Howbig should it be (and still meet my needs)?

Howsmall can it be?

Is portability necessary?

Howdo I connect attachments?

Am I limited in the kinds of attachments that can be fitted to this

computer? If so, how?

Is there a less expensive wayto do what I want?

Is there a morereliable way to meet my requirements?

What ts the history of this machine?

Howoften does it break down?

On the average breakdown, howlongis it out of service?

Can I fix most problems myself or does everything require a

specialist?

Howvulnerable is it to damage by my mistakes?

Is it soon to be superseded by a better or less expensive model?

Will it soon go so far out of style (common usage, and so on) that

repair parts and attachments will not be available? (Many people

still own early-model Polaroid cameras, very good cameras with

excellent lenses but for which film is no longer generally avail-

able.)

And don’t forget to ask how long the computer store has beenin

business, or how long it has been selling computers.

As you can see, some of these questions focus on the same or on

similar elements of your problem. This 1s good practice: Ask your

questions several ways. All should relate to your original demand: What

do I want my computer to do?

It’s not enough to say that you want ynur computerto do all of your

bookkeeping, even if you define what will go into this chore.

This is the operational approach. This list of questions has far wider

102 ¢ Without Me You’re Nothing

application than just to computers. Almost everything we use would be

better understood if subjected to such test.

Our questionsareall built around the idea that the machine must be

made to adapt to you, not the other way around.

It should be clear by now thatfinding a computerto fit your needs

presents some problems. You’!] want to avoid the dogs and lemons, the

quick-profit toys. But there are ways to meetthis challenge, ways to arm

yourself with knowledge and, especially, knowledgeable questions. Here

are more well-tested questions and some of the reasons they should be

asked:

Does the manufacturer make only computers and/or their acces-

sories? Or is the manufacturer a subsidiary of a noncomputer corpora-

tion?

If computers are only part of a corporation’s business, you may have

problems. Generally, management of big corporations will only invest in

strong market trends. They are prone to mount expensive advertising

campaigns and dumptheir mistakes. You don’t wantto be their ‘dumping

ground.’ You want some sign that the manufacturer’s research, de-

velopment, and production are committed to your needs.

Does this manufacturer sell worldwide and have they sold more than

a couple of thousand computers?

If the answer is yes, you are buying experience. This is generally

safer, but no guarantee. If the answeris no, bring in somereally expert

opinions ofyour own choosing.

Does this manufacturer have a local service center?

The most important service center 1s the one in your community. It’s

worth paying something extra for a machine that providesthis.

What manufacturer-supported accessories are available with this

computer?

There is a great deal to be said for matched equipmentthatis tested

by and guaranteed by the one manufacturer. If they also have a local

Service center and can provide you with the software (programs) you

need, you'll always know whereto go if you have problems.

You may haveto deal with more than one manufacturerto get just the

system you want, but understand the problems raised by your decision.

The manufacturer of your disk driver may not wantto be responsible for

the connection with your computer. . . or vice versa. Whatever you do,

you wantto insure ongoing advice andhelp.

Howflexible is this computer?

This is another wayof getting at the machine’s potential. It gets into

Buyer’s GuideI ¢ 103

things you may not know you will want to do with your computer. You

want to know how much additional storage, both internal and external,

this machine can handle. Can it take on several jobs at the same time?

If it can, you will pay less to expand your system. Take it for granted

that you will discover new things you will want your computerto do.

Whatare the electrical power requirements of this computerandits

accessories?

Some computers will lose everything stored in RAM if there is a

powerfailure. Some will even lose what’s being stored on a disk when a

failure occurs. If you live in an area subject to frequent power outages,

you mayhave to consider taking protective measures—batteries or an

information storage system not vulnerable to powerfailures.

Do you have a grounded powerline into which you can plug your

computer?

The machine should always be grounded to protect the internal

circuits. If you don’t have a grounded powersystem, adding one will be a

hidden cost.

Does this computer require its own powerline, without any other

electrical equipment on that line?

Some of them do andthis could be another hidden expense. Findout.

Discovering hidden costs after you have bought your computercanreally

destroy your budget. While we’re on that subject, get the store to putall

of the costs in writing—including installation.

Is a maintenance contract available?

If you are going to put a lot of hours on your computer, this could be

cheap insurance.It is comparable to buying the samekind of contract ona

refrigerator or a freezer. For a fixed sum the store guarantees to maintain

and keep your computerin operation.

Howfast is this computer?

You want to know how longit will take you to do the various things

you contemplate. This involves such things as how long it takes to store

information in an external system? Howbig a display can you put on your

CRTat one time? You may want to put an entire page ofa letter on the

screen—-much faster than scanning the letter a few lines at a time.

Rememberthat if you’re going to use this computer every day and a slow

interaction adds fifteen minutes a day, that’s more than a week every

year. The right computer is a magnificent time cruncher, but it’s possible

to build in tedious delays. When you know what you wantto do with your

computer, ask how long the machine will take with these jobs.

Does the manufacturer spell out installation requirements?

104 ¢ Without Me You're Nothing

This is another way of uncovering possible hidden costs. You want
someone to be responsible for the machine being installed in your house
and working. With home computers, this most often will fall on your
shoulders, but the backup from theseller is crucial. If your machine does
not work, wiil they send someoneto help you solve the problem?

Will the store guarantee that whatit is demonstrating is what you will
have when you get the computer in your home?

Special demonstrations can lead you to believe a particular computer
is just what you need. Computer demonstrations can be madeto look as
though they are doing exactly what you want whenin fact they will not
perform that wayatall. Always ask this question:

Will you guarantee in writing that when I get this computer in my
home, it will do exactly what you are now demonstrating?

Ir you can buy a maintenance contract, find outif there are mainte-
nance requirements for your computer that are not included in the

contract. Gei specific answers abcut the maintenancehistory of excluded
items.

Don't get the idea from anvof this that you’re walking into a den of
thieves when you enter a computer store. We just want you to know that
there are a few ‘‘sharpies’’ around. Our questions will smoke them out.

Getting to Know You
Buying your own computeris sure to create another ‘‘entity’’—you

and the computer. Every such relationship has a break-in period. This is

true of a lot of consumer products, including cars and major household

appliances. It is especially true of computers. Here’s the basic rule we

would like you to apply before buying a computer:

You should be able to understand the elementary operating proce-
dures in no more than a half hour of use and instruction.

A half hour, no more.

This brings us back to a central theme of our book: There should be

an easily measurable pathway through these computer skills, starting
from that introductory half hour.

No matter how clumsy youare at the start, using a computeris still

the best wayto learn.

What about computer courses offered at various colieges and night

schools? Someof those coursesarestill being taught by faculty whoinsist
on high complexity. Investigate this carefully. Reject complexity. Such

Buyer's GuideI ¢ 105

courses will be phased out by the obvious evolution of computers going
on all around us.

Many courses, evenin the best schools, use antiquated equipment.It
doesn’t take long for very expensive hardware(especially stuff based on
the complexity myth) to lag behind by at least a generation. Considerfor a
moment how educationis financed and how school budgets are adminis-
tered.

“You want a new computer, Dr. Johnson? You already have a
computerand it’s only four years old!”’

Proceed with caution.

And understand that you are notlikely to be satisfied with waiting for
your turn at the computer in the natural rotation of a class. These
machines are fun to use. So you pay $150 for a computer course at the
local night school. Big deal! You get to use the computer twenty minutes
on Tuesdays and Thursdays—but only after you’ve plowed throughtheir
complex textbooks.

The $150 would have beenbetter applied to the purchase of your own
computer. You'll get more for your money, especially in education. And
after you've learned to use it, you will still have the computer. That
computer may very well be all you will ever need—unless of course you
branch out into spaceship design.

Get your own machine. It’s the best way. And follow our two basic
guidelines:

1. Spend aslittle money as possible for a computerthat will do what
you want,

2. Make sure the computernot only does what you want now but can
be expanded or modified to match your growing skills and your increased
demends.

Designed for Each Other
Many preducts in the marketplace (not just computers) are obviously

manufactured more for show than for performance. We call this the
“‘chrome-trim and flashy dial syndrome.’’ While such things are not
conclusive, they should make you immediately suspicious.

Don’t rush inand buythefirst computerthat blinks its pretty lights at
you. Take your time. Shop around. Makeit clear from thefirst that this is
what you are doing—to yourself as well as to the salespeople. And even
after you find a computer you believe suits your needs and your budget,

106 ¢ Without Me You’re Nothing

don’t whip out your checkbook. Seek out another computerthat fits your

requirements. Compare.

Many consumeritems, especially those based on electronics, can be

divided into two distinct categories: (1) ‘ritzy taste,’ and (2) “‘designed

for people.”’

There was, you will recall, no ‘‘ritz’’ in our Rolls Royce. Even the

most expensive additions were included only because they were function-

ally valuable.

But taste is a controlling motivator in the marketplace, and manu-

facturers have knownfor a long timethat taste can be manipulated. Weall

know this. A market can be built to follow manipulated taste. The sheer

size of the U.S. advertising industry should be sufficient evidencethatthis

is true. Fashions in automobiles and clothing demonstrate the fact.

This involves those things weclassify as ‘‘chic’’ andall of those other

status symbols by which oursociety marksits niches.

In spite of this, we all recognize that for any product there must be a

‘‘best design’’ that is strongly determined by how the thing is used—by

what you use it for, where you control it, how you keep it in functional

condition, where it has to be housed, any possible dangers in using the

thing—all of this and more. Forthat ‘optimal design,”’ the thing mustfit

not just some abstract called *‘environment,”’ it must fit you.

Designers have long been aware that people come in various sizes

and shapes, and with a variety of physical conditions, attributes, abilities.

Somehow,the designers haveto listen to you, and the machine hasto be

modified by what you do with it. But the dialog between human and

machine has been a latecomerto the design board. Popular jokes reveal a

common awarenessof this. There is, for example, Finagle’s Law:

‘‘With any given mechanical device, that part which requires the

most frequent repair, adjustment, maintenance, and replacementwill be

the most difficult to reach.”’

Weall sense that the key to better design is to be found in simplifica-

tion, a return to the Model A Ford while keeping all of the comfortable

luxury features to which we have become accustomed. This involves an

interplay between designer and buyer,an interaction modified and some-

times distorted by manufacturer decisions not really based on improving

the product.

Here’s where the intense competition works for you. There already

have been manysignificant redesignings of computers. There are strong

clues telling us that this will continue until the product more closely fits

you. The Dartmouth group that redesigned the computer languages FOR-

Buyer’s GuideI ¢ 107

TRAN and COBOL into BASIC had the right idea. The proof is that

BASIC has taken over the personal computer field. BASIC will be

replaced only when a more easily used and learned programming lan-

guage Isfitted to the hardware.

Wehavetaken you onthis tourof ‘‘ritz and design’’ for two reasons:

to warn you against being dazzled and to alert you to pressures that may

be brought to bear on you, aimedat getting you to ‘‘throw out the old and

buy the new.”’

It could very well happen that a sufficiently useful improvementwill

comealong at such an attractive price that weall will want to ‘‘throw out

the old.’’ But this takes careful thinking. Does the improvement mean we

all have to be completely retrained? Some of the big manufacturers have

countedon resistance to retraining as a means of keeping a share of the

market.

These are seldom easy questions to answer. We introduce them

because they are a help in understanding some design changes. We

emphasize that computer design must follow your demands. What you

buy ultimately controls the marketplace. Why you buyis subject to both

internal and external influences—all subject to modification.

AS more and more computers comeinto private use, simplicity and

clarity should exercise an increasing control of the market. Hardware and

programs of greater simplicity and power are increasing in numbers.

When you buy, remember that ‘‘simple’’ does not have to mean

‘‘weaker’’ or ‘‘less useful.”’

Thefirst limit on a wider acceptance and use of computers was the

failure of most people to understand the enormous personal advantages

gained by using them.

Then there wasthe failure to realize how simple and clear the things

could be made.

That is changing. Response to a market is a wonderful thing to

see—like a gold rush or a land rush—and never more exciting than what

you see in the computer industry right now. Recognize that this has

advantages and dangers. Armed with enough knowledge, you can make
the times workfor you.

66

Small Investment—Big Return
Are you a “‘joiner,’’ or do you resent the very idea?

Even if you have a deep-seated prejudice against ‘‘clubmanship,’’ we

advise you to put it aside and join a computerclub as part of yourinitial

108 ¢ Without Me You’re Nothing

education. All of them are young and fermenting, full of exciting new

ideas. The first such club probably was the Southern California Computer

Society, started in 1975. There now are chapters of SCCSscattered ail

over the North American continent.

The value of such a group as a source of advice and exchange of

programs cannot be overemphasized. They also publish informative

newsletters and magazines, often on mimeograph. The SCCSnewsletter,

INTERFACE,is oneof the most useful sources of specialized information

about personal computers available. You must be a memberto receiveit,

but we agree with those who say INTERFACEis worth the price of

admission.

INTERFACE has a commercial spinoff called Interface Age, but

first-time computer users frequently complain thatit is too technical. You

may graduate into a subscriber, but it cannot be recommendedfor the

neophyte.

Our appendix lists names and addresses of computer publications

available at this writing. Getting subscriptions has to be your problem. We

will make a few comments, but publications have been knownto change

rapidly—for the better as well as for the worse. Look before you buy.

A numberofslick publications are trying to cash in on the personal

computer bonanza. They range from highly technical periodicals to

strictly hobby magazines. You would be advised not to subscribe to any

of them in a burst of new-found enthusiasm. Browse at the magazine

stand andthelibrary first. Shop for one you can understand, one whose

articles (as demonstrated by several monthsof publication) clearly fit your

needs.

One of the most popular commercial magazinesin this field is BYTE,

founded in 1975. At last report it had more than a hundred thousand

subscribers. BYTE is sometimes technical if not obscure, sometimes

beautifully simple for the newcomer. ‘‘Creative Computing,”’ a ‘users’

programs” feature in BYTE,hasattracted a large following.

Electronics hobby magazines such as Radio Electronics and Popular

Electronics are now running computer articles in almost every issue.

Unless you already subscribe for other reasons, we don’t recommend

these magazines for the beginner. If they are easily available at a

magazine stand, scan them for what interests you. Watch the announce-

ments on their covers. They are sometimes very good, but they’re not

consistent.

Look into the sales-oriented books published by computer manufac-

turers, such as those sold by Radio Shack. If you have bought Tandy’s

Buyer’s GuideI ¢ 109

tool instead of its toy, the Radio Shack publications could be useful.

However, at this writing, they are not sufficiently broad gauge for us to

recommend them as “‘generally useful.”’

Ourbest advice is for you to browse, pick, and choose.Be selective

according to your own needs. No one knowsthose needsbetter than you.

The range of interests in computer magazines is large and expanding.

Look for new magazines and look for changes in old ones.

Program for the Players
“You can’t tell the players without a program’’ is just as true of the

computer industry as it is of baseball. It'll help you decide on your own
machine if you know howthe industry sees itself. There are several
categories:

Kits

Ready-made systems

Standard systems

The PDP-11 family

**Loners’”’

Others

KITS

Before you decide to assemble your own kit, ask yourself whether
you want the immediate use of a computer or if you would rather be
entertained by a long preliminary trip through the hardware?

Unless you are really into electronics, we urge you notto begin at the
assembly level. It’s not as simple as the kit promoters would have you
believe. A certain amountof skill with a soldering gun andthe ability to
follow schematics is required.

And please don’t believe that this is the way to learn computer
programming. Any programming youlearn by building your own compu-
ter froma kit will have verylittle scope. It is bit-level programming, the
setting of switches one by one. The whole procedure of learning by
assembly is comparable to learning how to drive a car by buiiding your
own from roughly shaped andunfinishedpiecesof metal.

There’s a better way to learn programming, and we’ll get to it
presently.

110 © Without Me You're Nothing

READY-MADE SYSTEMS

Ready-made systems can be attractive. More than twenty-five

manufacturers are already on the market or about to enter it with

ready-mades. There are some questions you should ask yourself before

choosing one.

Whatlanguage doesit use?

The language must match the system. That system is all of the

hardware plus the preset of the internal switches. We recommend that

you learn the language called BASIC.It is simple, easy to acquire, very

similar to English in its meanings.

Is the machine aimedonly at a limited specialty market?

Right now there is heavy promotion of machinesthat do little more

than play video games. Be warnedthat you will probably want a computer

to do much morethan that. The tool can be used as a toy, but often the toy

cannot be converted into a tool.

Can this machine interact with the wide range of new accessories that

are coming on the marketso fast?

Some ready-madesarelimited in the accessories they can use with-

out expensive modification.

Are a great many people using this computer andits language?

This does not mean that you should buy only the most popular

ready-madeor any other category of computer. But the numberof people

using a particular machine can be a measure of several importantthings.

1. Is there widespread experience upon which you can draw in

learning how to use your new computer?

2. Are there likely to be a wide variety of programs to dothe things

you want?

3. Will it be easy to get parts and repairs?

Ready-madesrepresent one of the strong argumentsfor standardized

parts in the computer industry. Notall of the ready-made manufacturers

have heard this message. Many of them, however,use the S-100 bus.

Buses, as you will recall from Chapter6,fall into three categories:

Data bus

Address bus

Control bus

The three together are referred to as your computer’s “‘system bus.”’

At least part, and often all, of the lines in the system bus go to each

Buyer’s GuideI ¢ 111

part of your computer. Many of the accessories you may wish to add to

your basic system will have to connect to these lines. That is the reason

for the I/O ports. Not all I/O ports are standard.

The I/O ports allow you to add accessories. The connector on the

accessory must match the I/O port—thatis, each line on the accessory’s

connector must be in the same position as the corresponding line of your

I/O port. Think of the port as a complex wall socket. The plug must match

that socket, or the things you connect to it won’t work.

As a Standard system for I/O ports and accessories, many manufac-

turers have adopted the S-100 bus. An older version of this standard is the

S-50 bus, with a fifty-line connector. The S-100 has one hundred lines. In

both cases, each line has been assigned its own position and function.

Whether your computerhas one of these standards or its own special

port, it is imperative that any accessory you are considering match the

I/O port of your machine. Ask before you buy.

The S-50 and S-100 ports are for ‘‘parallel’’ accessories. Thatis, they

accept accessories that transfer information to the computer a byte or

more at a time. Some devicestransfer information ‘‘serially,’’ or a bit ata

time, and they use a different type of I/O port. The RS-232 port has long

been a standard for serial communication. Most computers matching

Serial accessories useit.

STANDARD SYSTEMS

Wedefine standard computers as ‘‘those machines whose manufac-

turers have chosen to compete in the same marketplace with a large

numberof interactive parts, accessories, and computers.”’

You should consider a standard if you will want a wide range of

accessories. This is an important question.

Is it likely that you will want to buy somespecial accessories now or

in the future?

Not everyone will want graphics or interactive graphic screens. Nor

will everyone want automatic telephoning systems, specialty printers,
heating control to balance temperatures in every room of a house or

office, a music synthesizer, interactive architectural drawing andprinting
systems...

Specialty devices make up a long, open-endedlist. But if that is the
way you intend to go, you will want a wide choice of specialty devices.
You will want to buy in a competitive market.

112 ¢ Without Me You're Nothing

\ oP 7 OPPY
Ld : _ 0.0. CHARACTERIS’Peg> We a VE Aaee

Fae Bt jo fOo, Veo

Syorhat ‘ Puranuster Man Typ.

saesc® Fo Seems US web fegeesneT La *

iat High W

eed
hoa aanae

boy

eeeSSAAAantnarenaANAMAMAAAAAH

Componentboard. This board was manufactured by a photoetching process that left the metallic

“wires” intact. The chips were then pluggedinto it. The board is coated to protect its conductive

pathways. The connectors (offset bottom) plug into an I/O port that is compatible with an S-100

bus system. Photo courtesy Vector Graphic, Inc.

You should ask about availability and matching problems of the

various standards and their accessories. Go back to our ‘‘gut questions’’

and be demanding in yoursearch for answers.

If you buy a standard, you should give strong consideration to a

maintenance contract. With standard systemsall repair and maintenance

may be yourpersonal responsibility. Ask about “‘interface maintenance.”’

Find out if the seller will help.

Don’t makethis the only issue controlling which computer you buy.

Rememberthat you should not haveto fit yourlife to the computer;it

mustfit you. And there’s another possible solution to maintenance. There

is a growing population of computer professionals who are branching into

repair and maintenance at a community level. They are into personalized

instruction, program writing, andrelatedfields.

They make housecalls.

Your supplier may be able to connect you with just such a person.If

Buyer’s GuideI e 113

not, then go to a computerclub. Tap into the population using the kind of

computer you want.

THE PDP-11 FAMILY

We have separated the PDP-11 family from the others for sound

reasons. Many computer designers and users swearthat the PDP-11 from

Digital Equipment Corporation (DEC to the aficionados) is the world’s

finest. While it is not our Rolls Royce, we agree that it is a superb

machine. The beauties of DEC’s PDP-11 are more than skin deep. It

probably offers more languages and more powerful languages than any

other readily available computer.

But understand that this is an expensive way to go—andnotjust on

the first purchase plus installation. Programs and accessories can also

have high price tags because they are designed for the PDP-11. There

often is very little competition.

DECoffers a small and less expensive version called the LSI-11 with

all electronics on a single card about a foot square. However, the LSI-11

is incomplete and certainly not something for your novice hobbyist kit

assembler. When you buythe card, that’s a bare-bones beginning. You

will stiil need a housing, a power supply, and much more. DEC will sellit

to you complete as the ‘11-03,’ but by the time you get it instailed and

working, you should be well over the five-thousand-dollar mark.

Heathkit, through an agreement with DEC, has offered a cheaper

version, but all accessories must come from DECatthe full markup. You

won't save much onthetotal system if you start buying accessories—and

youwill be buying accessories.

You maybe told that an advantage of the PDP-11 and its cousins1s to

be foundin the large library of programs available from DECUS, DEC’s

softwarelibrary.

Be warned that most of this library is highly specialized stuff that 1s

not likely to meet a neophyte’s needs. Check out that library’s ability to

do what you want before you commit your cash to the system.

We’re not trying to downpiay the many advantages of the PDP-11.

Wejust want you to know what you might be getting into. If money is no

object, by all means consider the PDP-11.

As an alternative to buying DEC’s own accessories for its system,

you can buy a hookup from General Robotics that permits connections to

the regular PDP-1i1. This lets you shop for compatible accessories in a

much larger marketplace and at much lowerprices.

114 © Without Me You’re Nothing

Here’s the place to tell you that the whole problem of compatible
hookups is also in a wild state of change. Some highly ingenious
modifications and programs are coming on the market. These will permit

some very exotic cross-couplings, not only of computer-to-computer but

of computer-to-accessories.

The situation is in such state of flux, however, that we can provide

little advice except to tell you that you should look into the possibilities.
If, for example, you find an older and limited computer at an extremely

attractive price, there may be a way to modify it into a moreversatile tool.

Should you decide on the PDP-11, you will want to know about
UNIX, the PDP-11 operating system from Bell Laboratories. UNIX uses
a ‘‘structured language,’’ meaning it is tied very tightly to the system
hardware andis, therefore, extremely powerful. If you are really serious
about developing your computerskills, find out if the machine you want

can be or will be improved to take such a ‘‘structured language.’’ Don’t

worry about learning such a language right now; just know that such

languages exist and that they are valuable.

UNIX is expensive andtheprice is expected to rise, but if you can

afford a fully operating PDP-11 system, you can probably afford the

‘*structured’’ operating system.

“LONERS”

‘‘Loners’’ takes in the volatile hobby market. Here are a number of

companies that offer hobby computers that will not match any standard

system of interconnections. What you see is what you get. Walk very

cautiously into this area, but don’t necessarily avoidit. If you want a tool

and not a toy, make that clear to the seller. Understand that it is not

necessarily a bad thing to buy a “‘loner.’’ It is also not necessarily true

that you are confined to what this manufacturer makes if you buy his

computer. For some manufacturers, what ‘‘loner’’ describes is more a

State of mind than an actuality. Modification systems are coming along,

and it is possible to get a tailor-made modification for some computers.

OTHERS

Under ‘‘others,’’ we lump all the computer manufacturers whose

machines are somewhatless than loners but not really standards. They

impose some limits on the accessories you can hook to the computer.

Sometimes, those limits are severe. You can identify them immediately

Buyer’s GuideI ¢ 115

because they will spell out ‘‘recommended accessories’’ for which they

will be responsible. Those ‘‘recommended accessories’’ will be rather

small in number and often extremely specialized.

Even when such systems are based on very fine engineering—and

some of them clearly qualify—make a careful comparison with a system

from one of the other categories before you buy. You may very well find

here a model that does precisely what you want and at a far more

attractive price than that asked for any other system. Just be aware that

you maybe getting into a dead end. Go to oursection on computerusesin

this Buyer’s Guide andtake a long, hard look at things you may wantto

add to your system.

With loners and others more than with any other category, you must

consider the popularity of the particular computer. Find out how manyof

them have been sold, especially in your area. Discover if there is an

organization or a club that concentrates on the computer that has caught

youreye.

Finding It a Home
Before you buy your own computer, decide where you are going to

put it in your homeor office. This requires that you be able to answer a

few questions on how youwill use the machine.

What accessories and attachments will you hook to it? There has to

be room for them.

Is there a nearby electrical outlet? Makeall the necessary electrical

connections as short as possible.

Will there be easy access to the computer? Ease of access for the

kind of work you will be doing will determine whether youreally useit.

The computer should be close to the things you will be using with

it—your desk, the source material for household bookkeeping, and the

like.

Think of as many uses as you can, uses to which you may put your

computer—filing menus andrecipes for the kitchen, educational programs

for your children, electronic games (and how many will play them at one

time), sorting information for your job or business. Go to the section on

computerusesandletit stimulate your imagination.

How muchremote wiring will you attach to your computer? You may

wantto link your computer with remote CRTs and keyboards.

Do you want your computer to be compatible with the furniture

around it? You may haveto get a special cabinet built just for you. Make

116 © Without Me You’re Nothing

sure the cabinet has proper ventilaticn. Don’t enclose your computerin a

‘‘hot box.’ In fact, check out your chosen installation site for its general

ventilation. Don’t put it in the presence of too much dust and moisture.

Will it be easy to protect the computer from contamination? Let

everyone who has anything to do with the machine (even those who

merely stand and admire your skills) know about a simple precaution:

Get no foreign matter, liquid or solid, into the machine. Don’t park

your coffee cup on it. Don’t put an ashtray there. Don’t work with your

computer while you have a cigarette dangling from yourlips. A talk with

any computer repairman will tell you why. A surprisingly hign percentage

of computer repairs involve ‘‘accidents’’ with coffee, water, wine, food,

or ashes spilled into the keyboard or into the cassette recorder or disk

driver.

Whyinvite problems?

When you understand these things, remember that your computeris

your MASTER CONTROL CENTER.Putit in the control room. Provide

it with a table of its own. Hang up a ‘‘no smoking”’ sign. Give it room to

breathe. Dust it. Don’t water it. Ordinary room light !s sufficient.

Uses

The more you think about it, the more things occur to you that

computers can do. The possibilities that we list here will be incomplete.

Any suchlist will be at least partly out of date before it can be printed.

Just review these things that a computer can do with information:

Compare andselect.

Correct and rearrange.

Adjust on a screen or paper anything from a sequenceto the position

of a line or a diagram.

Magnify or reduce the whole or anypart.

Keep in mind that a computer will give you instant feedback on

results, then change the material according to new instructions. It allows

you to work with little pieces or big ones.

Computers can be made to direct the performance of any machine.

They will type a novel (which a person has written) or they will guide a jet

to a distant city. A major advantage of these machinesIs in automation,

where they can relieve us of both monotony andperil.

Despite the direct implications of automated factories, it is highly

unlikely that any alert person will be made obsolete by a computer. Don't

think of yourself as being replaced by a machine.

Buyer's Guidei ¢ 117

The age of leisure predicted by so many science-fiction writers as an

absolute outgrowth of computer automation does not appear very proba-

bie. There is always that area of things that you can do that a computer

cannot do. There has to be the constant assertion of personal worth.

How muchdo youvalue yourself?

Computers can already be applied to almost anv routine machine-

oriented job that takes the tedious presence of a person. What they can do

is free us to focus on other things, but that does not necessarily mean

leisure.

Whenwetalk about uses of computers, we are talking about where

we direct our design emphasis. Design has to start first with what you

want a device to do. Functional performanceis the key to most products,

not just to computers. Pinning down what you want the device to do and

how you wantto centrol that function becomecrucial first considerations.

You do notstart from the technical end—what the hardwareis capable of

doing—you start from the performance end: what you require from the

product. With computers, this assumes enormous importance. Theseare,

indeed, ‘‘universal machines.’’ Feedback from computer use into the

society that uses them is already very great and will be even larger. We

must be careful in deciding what we want them to do.

Before listing some uses of computers, we are directing your atten-

tion to one of their more dangerouspitfalls.

Getting into computers will influence the ways you think. That

involves us directly with something called ‘‘futurism.’’ Futurism is the art

of trying to plan a course without knowing exactly where you are going.

Under those circumstances, if you are not ready at every turn to change

your course, you are acting stupidly.

14
Computers Are Not
Oracles

A few years ago, a friend asked one of us how computers differed from

programmable calculators. The friend received a mumbled answerabout

peripherals and storage space, but the real differencelies in the stuff being

handled. With calculators, it’s numbers; with computers, it’s information.

The information may be numeric, verbal, graphic, or any of a host of

things that can be represented by anelectrical signal and subsequently

quantified by a computer.

Information is the raw material with which intelligence works. Com-

puters are usually nothing more than information rearranging devices.

There is no such thing as an intelligent machine, and the label ‘‘machine

intelligence’ is one of those devious oversimplifications that sound true

but are dangerous nonsense.

Your computer must use logic. All that is called logic is not necessar-

ily logic. Cold calculation is often called logic. Cold calculation 1s usually

a form of emotion, often no more than ambition. The effort to make logic

shoulder every job in our world is the effort to create a world that can be

totally controlled. That is done for emotional reasons. It is a powertrip.

Carriedto its illogical extremes, it will fail. Computers can accelerate that

failure.

Wethink you are now sufficiently well armed that you can consider

some present and potential uses for computers. Remember that you

already have a whole bag of things you like to do. A computer can amplify

your enjoymentof those things.

118

Computers Are Not Oracles ¢ 119

Anyclerical workfalls into the province of computers. Certainly, this

includesall bookkeeping, balancing your checkbook, doing your taxes.

At-home banking and bill paying by phone can be monitored and

controlled by your computer.

A computer can adjust your furnace automatically according to a

preset mix of inside and outside temperatures—balancing various heat
sources such as solar and electric, adjusting temperatures according to

whether any people are on the premises, or even whetheryouarestill in

bed or are up and around and in particular room.

A computer can call the police if a burglar enters your home, giving
the police all the necessary information—your address, how many burg-
lars, whether they are carrying metal objects that could be weapons. You
can even key such a system to respond to your voice; if you say, ‘‘ Burglar

emergency!’’ your computercalls the police.

A computercanlisten for particular voices and alert you when those
voices are nearby.

Keep in mind that you can attach accessories called peripherals,
which respond in ways similar to your senses and muscles. Accessories
can mediate between your computerand the outside world. A computer
can be rigged to read printed pages and abstract information according to
your requirements. It can respond to outside messages by phone or
keyboard.

A service called ‘‘News-Share,’’ which can provide electronic de-
livery of local newspaperstories to any home computer, has already been
demonstrated. Computer-edited news sheets printed in your home or
announcedfor your ears on your demand will not be far behind. You will
even be able to have such a service tailored to select only news items that
fit your particular interests.

Don’t get the idea that these uses of computers are off in some far
distant future. In Washington, D.C., an assistant secretary of transporta-
tion for the U.S. Governmentis already using a computerto keep track of
his daily calendar, transmit notes to his staff, log his telephonecalls, file
(and dial) his telephone numbers—and his systemis portable. Anytele-
phoneline links him with his office.

It is possible to have a remote display system, each CRTwith its own
limited keyboard, at every telephone in your house. These remote units
will be linked to your index, providing every number you may want to
call. The computeritself will do all of the dialing.

Informationretrieval from a remote or central storage system such as

126 ¢ Without Me You’re Nothing

a library is well within present computer capabilities. Using such sources,

your computer cantell you where to find equipment or information you

may need.

With remote sensors, a computer can tell you when tofertilize your

garden or water your lawn, even whenfruit is ripe. It also can frighten

awaypests suchasbirds.

A computer can alert you whento call for repair cf equipment. It can

even make appropriate repair calls automatically.

Don’t underestimate what is happening with optical scanners, which

can read the printed page, nor such vocal interfaces as ‘“‘Speech Lab,”’

now being marketed for home computers.

There are people walking around happily alive today who would be

dead wereit not for computers. In the medical and socialfields computers

can accumulate enormous amounts of information and compare this

information in ways that would take centuries for the plodding human

senses. Never forget that computers are time crunchers.

Computers have already provided information that has changed ways

of dealing with such diseases as cancer and some congenital defects.

Projected medical uses of computers are even more exciting. You will see

holograph images of the human body, the sections enormously enlarged

and coupled with microminiaturized instruments for extremely fine

operations—all in a real-time relationship. The surgeon will see what is

happening as it happens. This forecasts awesome improvements in such

fields as brain surgery and dentistry.

The ability of computers to reproduce any symbol, plus the fact that

we can tailor electronic sensors and analog-to-digital interfaces (circuits

that translate voltage changes into encoded signals, for example) have

profound implications. They will, for instance, catalog anything and

summon up the whole or pieces according to your precise needs. This

means that once you get the computer adjusted to yourneeds, it will act

like an extension of your abilities.

Architects will be able to do everything from sketches to finished

plans in the computer and according to a very sophisticated system. They

will be able to do the drafting and the design with a light pencil that draws

directly on the screen. The computer will make the materials compari-

sons, the engineering, and reveal which materials can be used where. The

finished design can be projected in its natural setting, tested for its

relationship to sunlight, to a view, to other features of the landscape.

Whenthe architect is satisfied, he can direct his computer to produce the

blueprints and all of the necessary construction details.

Computers Are Not Oracles ¢ 121

The savings should be obvious. You will not have to erect the
buiiding and then discover it should have been turned at a slightly
different angle to the sunlight, the prevailing wind . . . whatever. Youwill
not get four-fifths of the way through construction and then find out that
the foundation is inadequate. The computer will have stored the geologi-
cal and engineering information and will have inserted it at your com-
mand.

A key to the computer’s extreme value when coupled to various
display systems is found in its ability to store and recall extremely fine
detail. The computer doesn’t worry about working overtime while sorting
through the characteristics of different building materials. Just as long as
the information has been stored correctly, the computer will go through
that information in any way you ask.

The entertainment industry is only now beginning to see the pos-
sibilities in computers. Star Wars barely scratched the surface of
computer-directed special effects. Computer direction of much more
sophisticated ‘‘reality simulations’’ will be a personal toy available before
long in your home. This can dolittle else than ignite a renaissance in
creative imagination.

Right now, this is an expensive process, but several research projects
to makethis facility available to personal computerusers at a much lower
price are already underway. Twoofthe research directors sweartheywill
be successful, that the difficult work has already been done andall that
remains is refinement and cost cutting.

Computers are now being usedto print newspapers and books. Soon,
they will monitor al! distribution and marketing of printed matter. That
probably spells the end for most regional distributors of books from the
major publishing houses. The publishers will be able tofill orders directly
on the basis of information supplied daily by bookstore computers.

The linkage of contro! diagrams to various mechanical operationswill
open up even more computer uses. With control diagrams you create a
picture of a desired effect on your screen. At yoursignal the computer
performsthe indicated action in the external world.

Ou refineries and distilleries are already using this process. Instead of
having someone manually turn vaives and route the flow of liquids in the
System, an operator projects a map of the flow system onto a screen.
Wherever he wants a valve adjusted he touches that point on his screen
with a light pencil. The selected area is then enlarged automatically on the
screen. The operator can keep on enlarging the selected area until the
needed detail comes up to sufficient size. He then touches the selected

122 © Without Me You’re Nothing

valve symbol in the enlargement. Numbers in a panel on the screen

changeto indicate thatthe fluid has been routed properly andis flowing at

the correct rate. When the flow reaches a predetermined rate, the

operator can change other valves in the system to conform to the new

pattern. All of this can be done in a few seconds.

Economic advantages make it a foregone conclusion that the entire

refining and processing world will be forced to convert to this kind of

computer-assisted central control. Steel mills will be run this way. And

auto factories. Every consumerproduct that can be carried on an auto-

mated assembly track will be produced underthis kind of manufacturing

management. Reliability alone would make it certain this will happen.

Anyflow procedure can be improved by control diagrams.

In the not far distant future, the instructions for many new products

will be built into them through a fixed program and some way of playing

that program on a screen—perhaps through your TV. This will be a

reactive system that will tell you how well you are performing as you learn

to use the product. It will be a teaching device, part of the package you

buy when youget a new car, a freezer, a home music center. ... You get

the picture.

Someday, the only way you will learn to drive a car or its equivalent

will be through a computer. Computers will also teach you to play tennis,

Ping-Pong, and many other gamesandskills. You will do this electroni-

cally. If there is danger in the real thing you are learning, that danger

will only be simulated while you are learning, but with a high degree

of ‘reality sense.’ The Link Trainer, for teaching “‘blind flying,’ and

the more sophisticated current descendants of the Link Trainer will

be looked back on as primitive.

Electronic games haveto be one of the biggest spin-off businesses to

come from the personal computer revolution. Such gamesare certain to

become increasingly complex and sophisticated, teaching many new

skills. Educators will pick up on the use of such gaming procedures in

many academicareas. If learning becomes fun, the problem of motivation

vanishes.

No study of the various uses to which computers can be put ts

complete without at least a brief review of some different kinds of

computers presently available. We divide them into digitals, analogs,

direct analogs, hybrids, andfixed-purpose.

The digitals are what we have been describing thusfarall through this

book. They are based on Boolean algebra and the binary switching

system, with which you should bepretty familiar by now.If you have the

Computers Are Not Oracles ¢ 123

need, they will do numerical computations of almost any complexity with
both speed and accuracy. That numerical accuracy has beentranslated
into symbols, where you encounter an inherent weakness of symbol
systems: They cannot be madeto describe all aspects of everything.

Within its limits, however,a digital computer can perform asa ‘“‘truth
machine.’’ Wherever the computer has sufficient information to provide
an answer, it can tell you ‘‘true”’ or ‘‘false.’’ To explain this, we will
introduce two symbols: ‘‘>’’ meaning ‘‘is greater than,’? and ‘“<”
meaning ‘‘is less than.’’ You then can ask your computer whether one
quantity ‘*>’’ another. If you tell the computerto print a statement saying
that the one quantity is greater than another, the computerwill respond
with a symbol for *‘true’’ or a symbolfor ‘‘false.’’ This becomes useful
when you poseproblemsthat include long strings of variables. With this,
you can set up your own syllogisms. Just rememberthat ‘*true-or-false’’
questions and syllogisms are extremely limited in our ‘‘real world.”’

Analog computers operate in quite a different way. They set up

mathematical analogies to whatever problem you wish to pose. The

speedometer on your car contains elements that are analog computers.

The speedometer clocks the rotational rate of a shaft and converts this

into speed andthe distancetravelled.

While analog computers are not as accurate as their digital relatives,

they are usually lower in cost and simpler to program. Analogs also work

continuously. Digitals are discrete. Analogs can represent a physical

problem that may have many ongoing elements to which you require

answers. They are valuable in the design of such complex devicesas cars

and airplanes and in attempts to understand such complex systemsas the

weather and human societies. They will operate under a wide variety of

theoretical conditions. The best way to understand analog computersis

probably to think of them as models that simulate a physical system under

actual use.

Direct-analog computers havea fixed purpose and can be brokeninto

three general types—mechanical, electrical, and fluid. Scale models are

the most common example of the mechanical type. Tests of a model will

tell a designer many (but not all) things he needs to know about the

full-scale device. The scaling problems, both up and down scale, can be

extremely complex and can involve subtle differences that are deliber-

ately introduced to preserve accuracy.

Many modernelectrical and electronic meters used in the design and

building of electrical and/or electronic devices employ analog circuitry

that simulates equivalent circuits. There are special alternating-current

124 ¢ Without Me You’re Nothing

and direct-current analyzers that use relatively simple networksto ‘‘stand
~ °

in’’ for giant electrical distribution systems.

Fluid types are represented by models of rivers, dams, harbors, and

estuaries that tell engineers what they need to know about proposed

construction projects. Anotherfluid type is used to test models of ships. A

wind tunnelis a relatively crude gas/ fluid type in this group.

One of the most common examples of the fixed-purpose type is the

Link Trainer, a flight-training simulator that provides a student with

aircraft responses while never leaving the ground.

Hybrid computers use both analog and digital elements and methods.

Some automobile speedometers are beginning to use digital components

and may be thought of as hybrids. Any computer that takes analog

information, analyzes that information through programs in a digital

system, and then displays the results on some form of screen or paper

printout is a hybrid.

Manypresent uses or currently possible uses of computers predict

their increasing involvementin ourlives. Right now they switch telephone

lines and are employedin editing TV tapes andfilm, collecting and grading

college entrance exams, credit card monitoring, airline flight booking,

commercialbilling, the delivery of goods, and psycnological testing. They

are beginning to keep tabs on our federal budget. Many businessmenare

using computers to set up their forms and to keep up with the mounting

volume of information demanded by the bureaucracy. In fact, businesses

are turning to computers in response to an interesting phenomenon in our

society—the spread of the so-called *‘computerfreaks.”’

The vouths who ‘‘breadboarded”’ their own computers and began

nibbling away at the big computer manufacturers’ businessare either big

themselves now or fast on their way to that status. When a young

computer expert goes to a local businessmanandsays:

‘‘T can handle your inventory for you at a fraction of what you’ve

been paying.”’

... that’s a revolution.

Businessmen have a way of listening to such statements. When the

truth is demonstrated, they may hope to keep this pleasant knowledge

from the competition, but there is no way to keep somethingthis big a

permanent secret.

Per-capita spending on data processors, including home computers,

is expected to top $2,000 by 1985. If present trends continue and are

adjusted for such variables as inflation, that could well be a lowfigure.

Computerbusinessat that time could account for more than 15 percent of

Computers Are Not Oracles ¢ 125

our gross national income. Many areas of our economy are coming to
understand that computersare cost-effective when you figure in the time
they save andthe errors they prevent. It is clear that right now computers
prevent far more errors than they cause. This is a ratio that is sure to
become even moreattractive.

The question is not ‘‘What’s it all mean, Alfie?’’ but ‘‘Do you really
know whatyourtime is worth?”’

Whatare someof the other computer-use implications?
Weprobably will see the custom manufacture of many consumer

products—clothing, shoes, furniture, and even various kinds of
vehicles—all on a mass-marketbasis. The entire process from ordering to
delivery will be computer controlied.

Voice activation with computers suggests that we may return to the
oral tradition of our earliest ancestors: fewer and fewer written records,
more and more records on tape for immediate replay at your individual
command. In its turn, this calls for a greater dependence upon your
memory as we becomeincreasingly interactive with computers.

The reduction in our use of paper could saveentire forests.

1s
Buyer’s GuideII

Wares

Before tackling the problem of separating one ware from another, we had

to make decisions about categories. How you break down a problem

always includes some arbitrary choices. We tried to follow a logical

pattern that would makeit easier for you to understand programming.

(Wewill go into more detail in Chapter 18. Consider this an introduction.)

First, there are the language levels. By language we mean the

agreed-upon words that flip appropriate switches and make the machine

do what you want. We broke the language levels down this way:

1. machinelevel

2. higher level

Machine level happens completely within the computer and Is not

generally readable by a human being without some computer aid. A

higher-level language is one you can be taught to read. The words bring

about a specified performance.

Wethen broke downthe programming categoriesinto three levels:

1. compilers

2. interpreters

3. assemblers

A compiler is a program that converts a language you can read into

machine instructions. The language you can read is called a source

language, and a program written in it is a source program.

An interpreter is a special kind of translating program. It takes each

126

Buyer's Guide II ¢ 127

of your statements and translates them one by one, causing each trans-
lated statement to be executed before the next oneis translated.

An assembler is a machine-language program.It has words that are
abbreviated descriptions corresponding to machine-language switch pat-
terns. Attempts have been made to have these wordsbe easily remem-
bered, but they don’t necessarily make sense outside of their machine
applications.

We had then the problem ofthe relationship between the physical
devices for internal storage of programs. This, we divided into two
categories:

1. RAMs—software

2. ROMs—firmware

Because RAMscan be changedby yourprogram,theyrelate easily to
the software concept. ROMs, on the other hand,are usually fixed firmly
into the machine. Their switches are stuck. ROMsrelate easily to the
concept of firmware.

Two more program categories were then introduced:

Il. service

2. applications

Service programs are operating systems. They put the machine and
its accessories through their paces. Applications programsgoto a specific
problem, adapting the machineto particular jobs that you require—such
as keeping track of your checking account.

Now,we can tackle the problem of ‘‘wares.’”’

Wares has an archaic meaning of being aware, conscious, watchful,
or even cautious. We wantyouto beat least watchful and aware while we
explore the various computer wares.

In commonusage, these wares comein three forms. There used to be
only two, hard- andsoft-, but the hard was too difficult to change and the
soft was alwaysslipping around andsurprising people.

Firm- filled the gap.

Hardwarerefers to the actual equipment—the keyboard,the circuits,
and all the physical devices attached to your computer. Hardware is
solidly in place. The only way to changeit is with screwdrivers, soldering
irons, and an in-depth understanding ofdigital electronics.

Software refers to programs. It originally meant all programsinclud-
ing the ones that make the hardware work. Now,it’s evolving into a word
for programs that meet special requirements. These ‘‘applications pro-
grams’’ must be adaptedeasily to changing needs.

The advent of ROMs madeit possible to put standardized machine

Buyer’s Guide II © 129

If you are a true do-it-yourselfer, you may want to write your own
machine-language programs. You would start with your own
assembler—the program that lets you write machine-language instruc-
tions with words instead of with ‘‘1s’’ and ‘‘0s.”’ Perhaps you’d rather
Start with a cassette handler, again using ‘‘1s’’ and ‘‘0s’’ but giving youa
way to save your assembler when you’ vefinished it. Then you could write
the keyboard interpreter loader and the handlers for the other devices,
making them all work the way you want. Your own high-level language
would be next onthelist, after which you could start writing applications
programs. The whole process could take several years.

Unless you want to work with computers themselves as a career,
don’t choose this route. Get a system that’s already working.

Firmware operating systems are relatively new, relatively transpar-
ent (most things happenin the dark), and always there when you turn on
your machine.

The disadvantage of firmware operating systemsis that they cannot
be changed without replacing ROMs. When you want to add a new piece
of hardware to your computer, you either have to replace firmware or add
appropriate software. If you try to combine software and firmware in a
single operating system, don’t blameusif you can’t get it working.

Software operating systems are flexible. They have to be loaded
somehow every time you turn on your computer, but this can be made
automatic with a ROM loader. Later, if you decide to add a new piece of
gear, you can modify software or add newandintegrate this with the rest
of the operating system. Thatis exacting work, not recommendedfor an
amateur. You would be better off most times hiring an expert to do it for
you.

Whatever operating system you choose, it should be tested
thoroughly before you buy. Make sure the documentationis accurate and
easy to read.

Howeveryou go aboutit, rememberthe levels of entry:

machine language

firmware

software

To the hardware, the only programming code is machine language.
This uses the internal wiring system of the computer. Every elemental
instruction your computer obeys has to be built into it with machine
language. As we’ve indicated, that’s a long and complicated process,
which we do not recommendfor beginners.

130 ¢ Without Me You’re Nothing

Sending one symbol from the keyboard to your screen may take

twenty machine-language steps. You do not have to operateat that level:

just know that it occurs. Because those stepsare built into your computer,

you can use a higher-level language, which combines them into longer

steps each time you type aninstruction.

The other type of language you may encounter, assembly language,

was originally intended as a three-letter code that would correspond

exactly to machine-languagebits.

As you might guess, there is some confusion and overlapping in the

use of the labels for the various languages.

What you need to rememberis that firmware is the programming

package that makes your computer work. It is often referred to as system

software. Make sure it doesn’t cramp your style. You address the

firmware with a higher-level language. Think of firmware as intermediary

between software and hardware.In the hardware, basic circuits are built

into long trains of logic, the instruction set. These are coupled to even

longer strings, the firmware. This steps up into much longer strings of

logic, the software.

Firmwareis written by specialists to help applications programmers

perform their jobs. An applications program performs a specific task, such

as making up a payroll. Firmware takes some of the tedium out of

programmingandhelpseliminate errors. Just remember that you can buy

it.

If you want to get into your own programming, almost any computer

system will provide you with enough capability to learn the fundamentals

of a higher-level language, one you can use to do your own programming.

In fact, purchasing your own computer could be a muchbetter investment

for a would-be professional programmer than manyof the classes being

offered. At today’s prices for specialized education you could even save

money. Keep in mind that there’s an art to programming that can only be

mastered by practice.

Where do you buy programs?

At a computer store, from a manufacturer of computers, from a

computerusers’ society, by mail order (look in the computer magazines),

or from a professional programmeryouhire forthe job.

Whatdo you do before buying an operating system?

You try to rejectit.

You ask hard questions. Doesit really do what you want? Doesit

work on your computer? (You’d be surprised at how many people mess

up on that: wrong program for the computer.) Does it come with

documentation? -

Buyer’s Guide II ¢ 131

Documentation should give you the name of the person responsible
for the program.It should contain a short outline of the system with some
comparative notes that detail benefits from using it. There should be a
‘‘handbook’”’ section explaining essential things you need to know before
using the system: output file instructions, the coding, any possible
shortcuts and problems that are known from experience with the system.

The documentation also should contain some otherhistorical notes
on what users have encountered: special applications and possible
modifications.

The whole thing should be in orderly form with an index and any
reasons for changesin the variables.

Before you buy any system, you also should askif it allows for the
correction of typing mistakes. With some systems you haveto start over
every time you makea typingerror.

And don’t buy before you test the system yourself. This is the really
critical question: Does it work for you? If it needs modification, are you
sufficiently familiar with the programming language that you can modify it
yourself?

You've decided you’re going to buy the system?
Don't. See if you can find another one that does the same thing.

Compare.

Welcome Home

Okay, youfinally did it; you bought your own computer. NOW,don’t
do anything until you’ve read this short section.

First, exercise special care when you unpack the machinefrom its
plastic cocoon. There may be small parts and manuals in there concealed
between layers of protective Styrofoam.

You found the manual? Good.

Take your time setting up the computer and follow the directions
exactly. You would be astonished at how many ‘‘machine errors’’ occur
at this point—through faulty connection of elements by the buyer, a
misreading of how youstart up the computer, and suchlike.

Match the connectors carefully. Make the hookup to the CRT (which
could be your home TV)only according to instructions.

Before you turn on the power, checkto see if you have conformedto
the grounding requirements for your new machine. Using a grounded
socket makes good sense with any electronic equipment, but especially
with computers. Some of them, if plugged into an ungrounded socket, are
vulnerable to damage from a short circuit. If you don’t have grounded

132 © Without Me You’re Nothing

sockets and they are a requirement, rig your ownorcall in an electrician.

Grounding does not need to be a complicated nor a costly precaution.It

can consist of nothing more than a wire from your plug clamped to a

convenient cold waterpipe.

Makesure that every accessory you intend to use with your compu-

ter is matched to it. You should do this before buying, but there have been

mistakes in shipments. Check it and besure. If you have a problem with a

mismatched accessory, the manufacturer of the computer and/or the

accessory may have no solution to your problem. Everything must

match—disk driver, cassette recorder, game controls, printer—anything

that attaches to the computer.

These are all simple and ordinary precautions. Someare listed here

only as reminders. We do not intend to indicate a serious number of

problems. We want to emphasize that manufacturing flaws are re-

markably rare with computers. One of the most common probiemsis the

failure of a first-time user to follow installation and start-up instructions.

Get that manual andreaditfirst.

16
Soloing

Put on yourflying hat and goggles. Tie your Red Baron scarf around your
neck. It’s time for ‘‘switch on!”’

The keyboard actually does look much like that of an electric
typewriter, doesn’t it? But notice the extra keys. Luckily, they are few
and easy to learn. There should be one labeled RETURN or ENTER.
That will be the most commonly used key on the board.It’s a signal that
you're finished with an INPUTandit’s time for the computerto doits
thing.

Okay, flip the switch to turn on your machine. The screen may show
some random dots or lines or even other symbols. Whatever happens
first, it should shift at once into a uniform backgroundwith nothing onit
except perhaps something to indicate that your computeris standing by
for your first commands. This may take the form of a small blinking
Square or rectangle, or an arrowhead—acursor or a prompt.

Rememberthat a cursor merely marks your place on the screen. A
promptis a suggestion that you do something.

Some computers don’t blink uniess you make a mistake. There’s
nothing complicated about these signals from the machine. They justtell
you what’s happening.

There should have been a manual with your computer. If not, turn the
machineoff right now and go get a manual. The manual should describe
the type of cursor/prompt and what the symbols indicate. The manual
also should tell you what signal will be displayed on your screen to

133

134 ¢ Without Me You’re Nothing

indicate that a higher-level language is in there and ready to use. What-

ever that signal, it should flash onto your screen when you have done the

right things at the keyboard. Just follow the instructions in your manual.

Some computers require you to enter BASIC from a storage device,

such as a cassette. This will require you to type certain wordsandletters

on your keyboard in a prescribed sequence, then punch the ENTER or

RETURNkey. A message indicating that the language is being loaded

into the computer will appear on your screen. You maythen see a rapid

display of numbers. The thing is merely flipping its switches, not flipping

out. The numbers and other symbols indicate switching sequences that

are being programmedinto the machine automatically.

If you have a friend who already knows BASIC, it would be helpful to

have thatfriend sitting beside you right now.If not, refer to our chapter on

BASIC, and remember that your new machine may use a dialect of

BASICslightly different from the one we used.

Whenthe languageis fully loaded in your machine, the screen should

clear and the cursor should reappear. Depending on the computer you

have bought, there mayalso be a list on your screen showing how much

internal storage is still open for you to uSe.

Even without learning a language such as BASIC you can use quite

sophisticated programs simply by loading them into the machine from an

external source, using a cassette or disk driver. For this, you will need no

more knowledge of the higher-level language than how to type the words

LOAD and RUN.

LOAD means you want your machine to accept a program. When

you type LOADandhit the RETURN key, your computeris ready to

accept a program.

While it is LOADing, your screen should display somesign that the

system is doing what youtold it to do. The cursor may blink, or there may

be an audible beep and a play of numbers on yourscreen,or there may be

just a beep and a steady cursor. Different computers responddifferently.

The manufacturer’s manual will tell you what to expect.

Whenthe program is loaded, there will be a distinct signal of some

kind—a beep, an indicator on the screen, or simply the stopping of your

tape deck or disk driver.

If something went wrong in the loading, your computer should also

let you know this. The most commonsignalis the appearance of the word

ERRORonthescreen. It may also tell you what kind of error, whether

you set the volume andtone controls wrong on yourcassette recorder,for

example.

Soloing ¢ 135

ERRORsignals that flash on your screen can take many forms. They

include someofthe following:

SYNTAX: You broke one or more of the rules that the computer’s

language structure must follow. (Worth noting: Syntax, meaning the

grammatical rules of a language, is generally interpreted as meaning that

the rules are finite. We assumethat such rules have no absolute limits.)

NO END ERR:Youforgot to tell the machine where the program

ends.

RANGEERR: You have gone beyond the numericallimits built into
your computer.

STR OVFL ERR (string overflow error): Your computer cannot
handle that long a train. Some computers will accompany STR OVFL

ERR with a message such as STOPPED AT20. That tells you at which

Statement number (20) the program stopped. You then can ask the

machine to LIST 20. This puts the statement at 20 on your screen, where

you can examineit and locate what you did wrong.

MEM FULL ERR (memoryfull error): You tried to put too muchina
STORAGEsystem. Such systemshavetheir limits, too, and your comput-
er’s manualwill tell you the capacity of the system.

As you can see, the messages are direct and simple. Rememberthat

you're dealing with a stupid machine, and such messagesoften define the
limits of the machine’s performance.It tells you how long a train you can
assemble, how big a number you can use, the STORAGElimits, and the
sequential strictures of the syntax. If you understand these messages, you
have learned something about the machine’s limits: which command
signals you can send throughit, how you pace yourstatements, and which
orders you must follow to get the thing to behave.

Observe that just in using English to lay out the elements of these
computer limits, we have employed a far more complex system than a
computercan use.

However, once you’ve loaded the program correctly, all you have to
do is type RUN and hit the RETURN or ENTER key. Rememberthat
RETURNor ENTERsignals the computer that you’re done and nowit’s
the computer’s turn.

When you've typed RUN and hit RETURN,yourscreen shouldlight
up with a display telling you whatthis particular program does. This is your
MENU.If the program deals with your bank balance, the MENUwilltell
you how to enter your new information, how to examine and perhaps
change previous entries, or how to strike a new balance. You just follow
the instructions and type the things that are spelled out in the MENU.

Soloing ¢ 137

fraction of the time it once took you. A half hour should be more than

enough for the average householder. In that time you can try your tax

computation in any of the wayslegally available. Should you use the short

form or the long form? Joint or separate returns? Itemized deductions or

allowable averages?

Anotherfeature is worth note: You can print out this tax information

for visual inspection or audit. If you can’t afford a printer, the printing can

be purchased. You just take your cassette or disk to a computer store or

similar establishment with a printer. Such facilities are becoming in-

creasingly common andare sure to become even more common. Wecan

even see the day when the IRS will provide this service. You’re called in

for an audit? You take in your receipts and your cassette. Your computer

talks to their computer, andit’s all over in a few minutes.

(A tax consultant of our acquaintance believes that the wide use of

computers by householders to figure their taxes will force some funda-

mental changes in the law. Computers tend to show up illogical and

confusing conflicts in rules. He also expects the membersof his profes-

sion to get more and moreinto consulting andless and less into the actual

figuring of your taxes; they will really be advisers rather than simply

accountants. He estimates from his own experience that many household-

ers could save the cost of a small personal computer in only a few years

by wisely employing oneto figure taxes.)

Keep in mind that you don’t save much if any time feeding the

necessary information into your machine. When you need the informa-

tion, though, the time saving can be startling—seconds as compared with

hours, a couple of hours as compared with weeks.

But you say: ‘‘I’m the world’s worst typist! I make mistakesall the

time!”’

Simple. Most systems permit you to backspace to a mistake and

correct it. Select only a system that does this easily. Evenif it’s a mistake

you don’t discover for months, there should be relatively easy way to

get back and reenter the corrected information. Insist on this capability.

To make the correction, you may have to LOADanentire program over

again, but remember that your computer doesthis in secondsvia tape or

disk. Most computers have a CONTROL (CTRL), BREAK (BRK), or

ESCAPE(ESC)key, which stops the program.Torestart it, you just type
RUNand hit RETURN. You’re right back to square one and can repair
any error just by following the instructions on the MENU.

Part of the system monitor lets you make such changes. This is the
part called the editor.

Whenyou type a statement, the editor puts it in the correct place in

138 ¢ Without Me You’re Nothing

your program. It finds where the statement number belongs in the
program and makes room for it by copying any larger-numberedstate-
ments into the unused portionsofinternal storage.

If the statement number has already been used, it copies the new
statement in the same place while adjusting the storagesizeto fit the new

entry. This obliterates the old statement—the one you have now cor-
rected.

We told you that soloing could be fun. And we hope that the

high-flying finance really was enjoyable. When you’re finished with it, you
can erase the program from temporaryinternal storage. It will be saved

for you on the external storage device. Your own high finance—the

checks and other information—canalso be saved in external storage. You

record it from the computer onto the tape or disk. Do this before you shut

down your machine andloseall of that INPUT.

Erasure of internal storage is easy, sometimes too easy. Learn the

procedure carefully and how to avoid it when you don’t want it. Check the

manual. It will describe the procedure. In erasing a program, you'll want

to be sure that you don’t also erase BASIC. For most computers, erasing

temporary programs is simply a matter of typing NEW andhitting the

RETURNkey.

It’s time to end yourfirst solo flight now. Before you shut off the

machine, make sure you’re not about to cause a crash. That is the word,

by the way, for a loss of information through a powerfailure or other

shut-downerror. Save your information, then turn off the machine.

That’s how it works. Simpler than you expected, wasn’t it?

17
Review Time

In the beginningthere werejust Is and Os.

Different two-state switch patterns of a program made different
things happen. The things that happened received names that roughly

corresponded to what was happening and whereit happened.

It was all very technical.

As time went on, the nameswereshortenedto groupsofletters called

mnemonics. These werelike the alphabetical names of government agen-

cies. They often stood for several words—like ISZ for ‘‘increment and
skip on zero”’’ or IOC for ‘“‘INPUT-OUTPUT command.’’

Still very technical but much easier to read than a column of Is and
Os. Programs called assemblers were madeto translate the mnemonicsto
their corresponding switch patterns in the machine.

One day, a “‘data processing chief’ was ordering anotherfiling

cabinet. He was checking sizes and usesof the ones he already had when

he saw an overloaded cabinet with a tag on it: ‘‘INPUT.”’ Heaskedhisfile

clerk what the heck that meant.

The file clerk said:

“We've had two thousand programmers through herein the past six
years, and theyall had one thing in common: Theyliked to figure things
out for themselves. We usedto keepfiles according to author, but nobody
could remember who’d written what, and last year you sent out that
memotelling us to arrange this stuff by subject.”’

‘*So what did you do?”’

“Well, I didn’t know quite what to do because mostof this stuff is

139

140 ¢ Without Me You’re Nothing

beyond me, but J talked to Dennis in Programming aboutit. He said he’d

have a lookatit, and it turned out thatall two thousand programmers had

these complicated and somewhat different ways of doing what Dennis

calls ‘setting the switches.’ ”’

To makea long story short, the data processsing chief had a look in

the filing cabinet called INPUT and found out that every programmer was

using a slightly different assembly language program.

‘*T?’m building a Tower of Babel!”’ he said.

The answer was obvious. There had to be some standardization of

languagesat a higher level. But his programmers objected, crying out for

‘‘flexibility,’’ meaning each wanted to do his own thing. This flexibility is

great. but flexible languages are harder to use and certainly harder to

learn. Easier languagesare rather rigid. BASIC, the higher-level language

we are recommending,is really quite rigid, but it 1s very easy to learn and

a beginner can useit.

Standardization, then, required a compromise between flexibility and

ease of use and learning. The compromise resulted in what are called

operating systems, and this brings ina whole new vocabulary. We’ll get to

that presently.

As we havesaid, programming ts nothing less than the skill of making

your computer do what you want. You have some choices. You can learn

it. You can buyit ‘‘pre-packaged.’’ Or you can buy some ofit and modify

this to create personal programs.

If you’re really inventive, you can make up your own rules. You can

invent your own symbols and your own language. You just have to

rememberthat the computer respondsto electrical signals accordingto its

very tight logical system. To program a computer you mustbe just as

logical and just as regular no matter what symbol system youuse.

Even if you buy and use only the prepackaged variety, rememberthe

levels of entry and the labels:

Machine language and assembly language. These are firmly attached

to the hardware, built into the preset switching systems.

Higher-level language—firmware. Asthefirm- implies, these also are

solidly fixed, not to be changed.

Applications programs—software. These are the things you can

changeif you know the language. The code hasa certain flexibility.

Machine language uses the wiring system internal to the machine

itself. Every elemental instruction your computer follows has to be buiit

into it with machine language. Sending one symbol from the keyboard to

your screen may take twenty machine-languagesteps.

Review Time ¢ 141

Because such steps are built into your computer, you can use a

higher-level language, which takes longer steps each time you issue an

instruction.

Assembly language was originally intended as a code that would

correspond exactly to machine language words rather than to numbers.

Assemblers have advantages and disadvantages. Both are to be found

in the languageitself. To understand the mnemonics, a programmer needs

a background in digital electronics. The advantage, also found in the

language, rests in dealing directly with machine language. This yieids

faster and more efficient programs.

Compilers are often frustrating. If there’s anything wrong with any

statement anywhere in the program, nothing happens except an incom-

prehensible list of error messages. It takes a long time to translate the

entire program, and al! the programmer can do meantime ts hope against

hope that this time the thing will actually get translated. But there’s

usually something wrong somewhere, and you have to ‘“‘debug”’ it.

However, once it’s working, the translation is pretty efficient. Any

programmerworth his salt will guard a working compiler translation with

his life.

With any program you buy or adapt keep in mind the facility of the

language in which the program is written. The program should be com-

patible with you as well as with your computer. If you choose to write

programsin an easily learned !anguage, you will sacrifice someflexibility

for the ease. The limits of your computer’s storage, given a rigid language

for programming, can limit the kinds of programs available to you. Rigid

languages use up a lot of storage very fast.

It boils down to what you want to do with your computer. Presuma-

ly, you already have goneinto that decision. Just make sure the program

language and the system will work for you.

All of this is preparation for your next step. You now should be ready

to go on into more advanced Computertalk.

18
Computertalk
Spoken Here

As is probably clear to you now,the past three decades have seen the

age-old tradition of trial and error run wild in the computer world.

Language evolution followed much the same pattern in computer pro-

gramming that it did in human languages—starting with pictographic

switch patterns and running through brief phrases that embodied exten-

sive accumulations of human experience.

That’s right: human experience.

Remember that it was human experience that made computerlan-

guages happen. The experiences of thousands of people directly involved

in making computers useful were combined over the years. Sections of

programs that were used repeatedly in many different applications were

converted into single units that could be used by name.

Gradually, the list of names grew. These, in turn, were combinedinto

single groups of higher-level languages.

It should not surprise you that one computer language can say things

others cannot say. After all, you can say things in Spanish which you

cannot say in English—and vice versa. Some languages have difficulty

Separating yesterday and tomorrow. The operative word means ‘‘not

today.’’ It is common to hear speakers insert brief bursts of English to

meet this problem.

With computers, a lot of different machines were built by different

people to solve a wide variety of problems. The major categories involved

business, scientific, information handling, word processing, simulation,

graphics, and process control. In time, the list grew to include such things

as medical diagnosis, aircraft navigation, and, of course, computer games.

142

Computertalk Spoken Here ¢ 143

Each general application had its own specific set of requirements. For

instance, the major requiremertof the scientific and engineering crowd

wasto find quick answers to complex calculations. The business commu-

nity wanted a device to print the many forms they needed to keep their

books up to date, a way to keep up on inventory andsales. Governments,

large corporations, and libraries needed to keep track of enormous

quantities of information. Industry needed computers to control the

operation of complex machines. Research and development centers

needed ways to simulate designs, make changes, and explore conse-

quencesof their changes. Architects and designers needed ways to make

drawings that could be changedeasily.

Most of these problems were solved from the ground up, indepen-

dently. Each specialty struck off on its own. Machines were built that

could calculate efficiently, print, store information, and control other

machines.

Languages evolved to makethese different machines do their differ-

ent jobs. And someof these languages were formalized by the American

National Standards Institute (ANSI).

Early languages suffered from a commonmalady: They weredifficult

to master. Although attempts were madeto relate names of operations to

conventional languages, the parallels were often obscure, and limits were

imposed by such things as storage size and accessories. These varied

widely from machine to machine. Complicated formats had to be followed

exactly. Even then, errors in manufacturers’ manuals were frustratingly

common. Machines -Eroke downoften, and there was a shortage of people

who could repair them.

On top of all this, the machines were so expensive that only a small

percentage of time could be allowed for program development. Pro-

grammers often had to wait weeks to find out whether a particular

program workedproperly. If the program did not perform as expected

(the case more often than not), it took more time for the programmerto

get back into the original train of thought before he could resolve the

problem.

A great deal of time and effort went into finding a reasonable solution

to these problems. This led to the developmentof new typesof languages.

Before we get into these new languages, you need to know someofthe

things that made it difficult to use the old ones—evenafter they had been

mastered.

Briefly, the names used weretranslated by the machineinto groups of

machine-language instructions that enabled the computer to do its work.

This translation was doneby a special program Known as a compiler.

144 ® Without Me You’re Nothing

The compiler process involved putting a complete higher-level lan-
guage program into a computer’s internal storage along with the compiler.
The compiler program itself was a long and complex thing. And you had
to make sure that the higher-level program was complete andthatall the
limits had been observed. It was tedium amplified.

This was only a beginning.

You then had to go through the laborious processof translation. The
resulting machine-language program had to be placed step bystep into
internal storage. Often there wasn’t enough room for this in internal
storage. When that problem showedup, it was necessary to do the job
piecemeal, placing sections of the programs into some external storage

and copying backinto internal storage when needed. Whenyoudid that,

you first had to move anothersection of program out into another external
Storage system to make room.

This was not only time consuming, it led to monumental bookkeeping

problems.

Today, we have a newtypeof language with whichit’s easier to make

changes. It’s called an interpretive language andit differs from compiled
languages in fundamental ways. Instead of translating the whole higher-

level program all at once into machine language, the translator program

(in this case calied the interpreter) is in permanentinternal storage at all

times. It interprets only one higher-level instruction at a time. It then

performs the machine-languagesteps of that instruction and goeson to the

next instruction.

That procedure saves a considerable amount of time and space.

There’s another new type of language, even more important in

potential, about which you should have more than a nodding acquain-

tance. It 1s similar to the older higher-level languages in that it must be

compiled. But it is much easier to learn than the old languages becauseit

has been successfully unified. The basic programming concepts have been

reduced to a short list of building blocks similar to an alphabet. With this

language you no longer need to treat each peripheral machine attached to

your computeras different from any other machine you have attached. As

far as the computeris concerned,there is no difference between switching

information to an external storage device or to a telephoneline. Switching

to a CRT,to anotherplace in internal storage, or to a printer—it’s all the

sameto this language.

That uniformity makesit easy to simplify the programming operation

into the necessary juggling of information. It lets the operating system

take care of all the mundanedetails and the information ends up whereit

is supposedto go.

Computertalk Spoken Here ¢ 145

This is the structured language to which we have referred (see page
114),UNIX usesa structured language.

Whatthe structured-language concepthas doneis to open the doorto
an enormously increased variety of applications. It lets you concentrate
on putting information into the system and getting out what you need. A
structured language consists of a shortlist of carefully thought-out opera-
tions that go directly to the essence of SWITCHING.Speciai routines are
called into action just by naming them. Oncethe structure is learned,
structured languagesare the easiest with which to write programs.

The bad news? The structure is complex and somewhatdifficult to
learn, making it less suitable for a beginner.

Let’s go through the vocabulary once more andgetit firmly in your
mind.

Assembler

This translates assembly language into corresponding switch patterns

of machine language.

Compiler

This translates Englishlike higher-level languages into switch pat-
terns. The entire program is translated each time.

Interpreter

This also translates Englishlike higher-level languages into switch

patterns, but each statement is transiated byitself during execution.
Interpreters speed up programming. If a statement is set up correctly

according to the rules, it gets translated and executed. If something is
wrong with it, it stops and prints an incomprehensible error message, but
at least you know where the culprit is. The same thing that makes an
interpreter nice for programming makesit lousyfor efficiency. Every time
itis run, the program hasto be translated statement by statement beforeit
can be executed.

Handler

A machine-language program that makesa specific accessory work.
It is said to be dedicated to that accessory. It is also called a device
handler andis not to be confused with ‘‘device management,’ which will
be explained shortly.

146 © Without Me You're Nothing

Monitor

A master control program. It accepts commandsand invokesvarious

routines needed to carry out those routines. It usually includes an editor.

Operating system

All of the firmware. It includes handlers, monitor, language support,

and device management. In the operating system, device management

divides up the system so that many devices can shareit.

Whatyou should understandfrom all of this 1s that each language has

its limits—its range of performance. The language handles details for you

automatically, commanding sometimes hundredsor even thousandsof the

tiny machine-language switching patterns.

The higher-level languages are already legion and growing. They

sometimes have strange names such as BLISS, MUMPS, SNOBOL,

FORTH, LOGO, and GRASS. Sometimes they go simply by initials—

such as APL.

APL stands for ‘‘a programming language.’ It was devised by

Kenneth Iverson and is a powerful system for expressing mathematical

concepts. That makes it very useful in programming. Because

mathematical-scientific notation just ‘“‘growed like Topsy,’ it has many

chaotic features. Iverson undertook to take the chaos out of such notation

by creating a new system that follows some orderly general rules. APL may

survive as the one lasting achievement to come out of the complex

computer mystique that fostered it. If you’re interested, Microsoft

markets a version of APL.

Earlier, we mentioned FORTRAN and COBOLasthe parent lan-

guages from which BASIC wasderived.

FORTRANsimplifies the programming of algebraic formulas. It

stands for ‘“‘formula translation.’’ Many programmers now consider

FORTRANto be a ‘‘period piece’’ that has been supplanted by languages

better at what it was supposedto do.

COBOLstands for **common businessoriented language.’’ As with

FORTRAN, it is decidedly inflexible for certain applications and is

rapidly being superseded.

BASIC is the standard language of hobby and amateur computing

and, because of the ease in learning it, will very likely be the basis for all

home-computer systems for some time. As a beginner’s language, it may

never be superseded, althoughit is sure to incorporate some changes.

Computertalk Spoken Here ¢ 147

If you’re looking for a structured language, try PASCAL.
Here are a few others:

ALGOL—a language expressing mathematical proceduresin a rela-

tively pure form. As such, it is widely used to compile computer proce-

dures in a way that other programmerswill understand.

PL/I (programming language 1)—a product of IBM and,as such, has

a strong bias toward maintaining the salability of IBM computers. It

combines elements of FORTRAN, ALGOL, and COBOL,picking up

many of their strengths and also someoftheir limits.

SMALLTALK—a language created by Alan C. Kay and associates

at the Xerox Palo Alto Research Center. The development of

SMALLTALK was guided by ideas in SIMULA, a programming lan-

guage developed in the mid-1960s by Ole-Johan Dahl and Kristen

Nygaard at the Norwegian Computing Center in Oslo. SMALLTALK

leans heavily on graphic symbol techniques and for this reason is readily

understood by beginners and children. The concepts being developed in

SMALLTALKmayvery well sweep the computerlanguagefield.

Before leaving this short overview of the various higher-level lan-

guages, we should mention the LAMBDA languages, all based on

Lambdacalculus (which you do not need to know even if you want to use

them). A key strength of these languageslies in the fact that the results of

any operation can be madethe basis for any new operation. The original

LAMBDA language is called LISP, and one of its most identifying

features is its frequent use of parenthesis. LISP stands for ** List Process-

ing’’ and it is an interpretive language. It provides a powerful handle on

symbolic lists and on arithmetic logic.

If you want a language with such features, you have some choices:

These include LOGO (developed at MIT) or TRAC. TRAC wasinvented

by Calvin Mooers and is a trademark of Rockford Research, Inc., 1402

Mount Auburn Street, Cambridge, Mass. 02138. Both are suited to small

computers. TRAC can be run with only 8K storage.

You should emerge from this chapter with an understanding that

hardware developmentis far ahead of software development. Softwareis

much more tedious and difficult to create than the beginner suspects, but

this is changing rapidly. Someday, your computer will create your

software for you.

19
Let’s Talk About
Programming

Things we’ve demonstrated and described have probably given you the

correct notion that it requires time and concentration to program a

computerin a way that will make it perform to yoursatisfaction. Before
you start using that as an excuse to avoid everything about programming,

you should be reminded that these machines have been around long
enoughthat there are a large number of people who have spent much of
their lives putting manylittle computer pieces together, and oneresult is
that what once had to be done in a tedious way by machine language can
be done today in big chunks. What once took months can be done nowin

a matter of days or even hours. This process of putting greater and greater

detail into more and more powerful (but less cumbersome) statementshas

not stopped.

In common with other interpreters and undercover agents, prc-

grammers not only must second-guess the king but keep from rousing the
rabble, that is, they must speak both the hard and soft languages. That’s

why we began byintroducing you to the moronic hardware, the simple

Switches first, and are now graduating by easy steps into the more

complex switch patterns of higher-level languages.

Take heart from the fact we mentionedin the first paragraph of this

chapter. Because so many people have recognized the need to understand

programming before these machines can be madeto perform, there are an

increasing number of programmers around. What this meansis that the

novice has a far greater chance today of finding a program to suit a

particular need—orvery nearly suit that need. It also has become easier

148

Let’s Talk About Programming ¢ 149

to buy programs that can be changed, and it’s easier to change those
programsto fit your needs.

It is misleading, though, to suggest that your computer will only do
what you program it to do. That sounds true, but it assumes you can
predict everything a particular computer and its programswill do. Sorry,
but there’s always an edge of indeterminate reaction even in simple

computers. That’s a product of many things, but they all boil down to

humanerror and ignorance.

Ignorance has a special meaning here. It touches that barrier between

consciousness and unconsciousness through which bursts of insight

sometimes cascade, that reservoir of ‘‘the unknown.’’ Being aware of

this, all you can say about a computeris that no matter whatit does, the

performance can be traced back into how it was manufactured and into

the logical limits imposed by its hardware and programs.

When you doubt your computer’s results, go back to what wentinto

the thing. ‘‘Back to the drawing board!”’ is often the best rule in many

human enterprises.

DON’T DEPEND ON OUTPUT UNTIL YOU'VE

TESTED THE ASSUMPTIONS.

Untested assumptions are tricky, but the trickiest of all are those

assumptions we do not even recognize as being assumptions.

Programming involves many assumptions about the various wares.

These are generally rooted in the assumption that the hardware works.

Reliability of machine. Generally, you should make that assumption the

object of a quick test when you have problems. Switches on? CRT

plugged in correctly? Just remember that you have a more powerful

thinking system than the computerhas.

Checkthelogic.

As we told you earlier, your computer builds all of its activities

around Boolean logic—three concepts: AND, OR, and NOT—plus

STORAGE.These produce your computer’s instructions—the elements

of programming. The system operates only onestep at a time. It requires

an internal ‘‘yardmaster’’ to switch between trains of operations and

trains of information. (Anyone who believes that this defines himman

thinking has to be pretty simpleminded.)

To program, you will be dealing with a hierarchy of logical steps—

from the king, who cangive grand orders, right on downto the peasants,

who must carry out every tedious detail.

150 ¢ Without Me You're Nothing

There are laws of the land that even the king must obey. Syntax is

one of those laws. This refers to the grammaticalrules of the programming

language. The rules for BASICare few, simple, easy to learn.

To program your computer, you will divide the program into neces-

sary steps. This will break down what you want to do into its most

elemental parts. You will have to makea list of those parts, one statement

at atime. We’ll get to that presently.

We’ve taken this short excursion because we think you should at

least get into the rudiments of programming, but we want you to under-

stand someof therestrictions.

Whenyou play a computer game, use a one-purpose control system

such as an automatic telephonedialer, or even set a preprogrammedther-

mostat, you are using someoneelse’s program. Youare notlearning how

to program, you are learning how to set the cruise control. This can be

useful and even fun, but it doesn’t provide real insights into the scope of

your new machine.

What you really need to know about this programming hierarchy 1s

that it’s in there performing in a stepped fashion—from the simple to the

more complex. Each key you touch on your keyboard executes a number

of switching responses in the machine. Your handle on the system is the
programming language. We’re recommending you learn the language
called BASIC.

Many people whodivedirectly into the use of computers discover quite

early that the hardware is so stupid you have to know something about

programming if you ever hope to make the machine do anything.

Wehope we’ve madeit plain that you can get a great deal of valuable

use out of your computer without knowing very much about program-

ming. Many of you may decide neverto enter this area of computeruse,

and for a variety of understandable reasons:

It just doesn’t interest you.

You don’t have time.

You think it’s too difficult. (That ain’t necessarily so.)

You thinkit’s too tedious. (It can be tedious, but it also can be fun.)

We urge you to ignoreall of those rational arguments and get into

programmingat least on an elementarylevel, and for important reasons:

It can make your machine moreversatile.

It gives you another powerful lever on a world fast becoming pro-
foundly computerized.

It makes you less dependent upon specialists.

Even if you lean heavily on prewritten programs, your ownability to
program will let you modify those ‘‘store-boughts’”’ to suit your individual

needs.

Learning to program keeps the machinein its proper place—your
tool. The thing is a dumb machine. To program it you haveto tell it every
step to take and whento take that step. Omit onestep andit flunks out. A
three-year-old child requires less ‘‘programming’’ to perform complicated
tasks.

151

152 ¢ Without Me You're Nothing

Wehave an axiom thatstates the case:

ENGAGE LOGIC BEFORE PUTTING PROGRAM

IN GEAR.

There is a relatively recent approach to the required skill called

‘‘top-down programming.’ This means that the entire purpose of the

program is written down in plain English before any attempt to translate

the problem into computer language. Storage sizes are specified, se-

quences of operations are laid out—everything the program will do is

clearly identified.

A tool of this plain English version is the flowchart. We’ll give you an

introduction to flowcharts presently. There’s a more detailed treatmentin

Appendixes C, F, and H. For now, you only have to understand that a

flowchert serves mainly as a picture of the order in which your program

flows. It is a rough sketch of information movement and program func-

tions.

In programming, you are translating down, stepping down from the

general to the specific. You are working out consequences, arranging the
logical placement of decision points. Your goal is a kind of deceptive
precision, where the answerwill be no better than the information through
which you got that answer. By now you should understand without any
hesitation that your computer respondsonly to electrical signals ina very
tight logical system that can be handled by two-state switches. The
Switches are set in on-off patterns, which can stand for a great many
different things and which can be recognized. To program such a device,
you must be every bit as logical and regular. You must follow a stepped
sequence—by the numbers. The computer does nothing more than proc-
ess what you give it. Remember GIGO—garbagein, garbage out. Like a
goat, your computer will ‘‘eat’’ almost anything. When you doubt the
results, you have to go backto the front end. What went in?

Programming is good training for you. Never doubt that your com-
puter is a superb educational tool. Programming teaches you orderly
thinking, another piece of armament in your mental arsenal. A computer
is absolutely unforgiving in its demandfororder.

There’s a right way, a wrong way, and the computer way.

The right way is the way people think without computer limits—in
the round, multichannel, recognizing grand patterns and intuitively
grasping totalities, with thoughts smoothly flowing in a continuum.

The wrong wayis the waythat gets you into the blind alley described

Telling It Who’s Boss ¢ 153

by the old Down East joke: ‘‘There ain’t no way to get there from here,
mister.”’

The computer wayis stolid, one step at a time, rigorously logical,
reduced to clear and elemental order. In a real sense, you are shifting intc
a ‘“‘low gear’’ and therefore into a very powerful system that will haul
heavyloads.

As we’ velet slip on several occasions, we recommendthat you write

your programs in BASIC. This is one of those ‘‘higher-level languages’’
we've mentioned from timeto time.

BASIC stands for ‘‘Beginners All-purpose Symbolic Instruction
Code.’’ It originated with a group working at Dartmouth in the 1960s.

They set out to make a computereasier to understand and to use.In part,

BASICis a simplified version of FORTRAN (forroula translation), but it

also reveals a relationship with COBOL (common business oriented

language).

Do not confuse BASIC with basic English. They have aspects in

common, aspects you will find useful, but it would be misleading to

confuse them. Basic English is still ‘‘plain English.’’ Your computer’s

BASICis a kind of easy shorthand that is derived from English and from

the design requirement of the machine. It unites a large number of

elementary instructions in each statement and, what is highly important,

makes most of those statements with common wordsthat signal to you as

well as to the machine whatis to be done. Rooted in English, BASIC is a

very powerful too! for operating your computer, and because of that

affinity to English, it is relatively easy to learn.

While BASICis oneof the easiest of all computer languagesto learn,

complex problems require complex programs when youare confined to

this language. Be assured, though, that the way it echoes English plusits

similarity to other higher-level languages more than make up forits

limitations. It will probably endure for many yearsasa first language for

beginners.

Computers that employ BASICall use a similar syntax. In case you

have forgotten, syntax refers to the rules and patterns that ccntrol the

meanings in sentences and phrases. It is made up of agreed-uponsignals

that tell you the meaning (if any) in any group of words. Weall know,for

example, that ‘‘The man ate the cow”’ has quite a different meaning from

‘*The cow ate the man.”’

Computers with similar syntax in their BASIC may differ in size of

vocabulary and the definitions of some words, but you can considerall

such variations as minor differences in dialect. One BASIC will let you

154 ¢ Without Me You’re Nothing

understand another quite easily. Substitution lists are available for trans-

lating from one BASICto another. Suchlists are very small. It’s as though

you weretranslating from British English to the American version. Lift’

would become ‘‘elevator.’’ ‘‘Bonnet’’ would become “‘hood of a car.”’

Your own experience with the two versions of English probably already

tells you what limits to expect. We presume you don’t have too much

difficulty understanding a British-made ‘‘flic’? when it’s played on your

“telly.”

Capacity limits also influence the language. If you bought a computer

with a small but highly efficient version of BASIC, say one taking up only

4K of storage, then it probably would break down if you tried to write

your program in an 8K BASIC. (K = thousand, remember? In com-

puterese, K stands for a ‘‘thousand bytes.’’ For technical reasons, this 1s

actually 1,024 bytes, but you can ignore this in most applications.)

As you’ve probably guessed, there’s another side to this capacity

coin. An Extended BASIC, requiring 12K or 16K of storage, would be

able to override the limits of the simpler form. Extended can also perform

more complex operations.

All programming languages have rules. Some of the rules are so

fundamental you must know them before you can do anything. Otherslet

you do more things or makeit easier to do certain types of things. We are

taking you on a tour of BASIC and its syntax. Those rules involve the

order in which you must say things. Weall know it’s unlikely a cow will

eat a man, but we certainly understand the meaning carried in the

sequential order of the words. We know whodid what to which simply

becauseof the order.

In BASIC the most elemental syntax of typing things on the keyboard

requires that you type the thing and then hit the RETURNkey. This key

signals the computer that you’re done typing something. Anything you

type has to end withit.

BASIC has two modes of operation: command mode and program

mode. When your computeris turned on, it is in one modeorthe other.

Whenit is in command mode, you can type a command instruction

(commandfor short) or a program statement (statement for short). When

it is in program mode, whatever you type is taken as INPUTinformation

to the program. Whether it is a command or a statement or a program

INPUT, the last key you type is the RETURN key. Here is the most

elemental BASIC syntax:

SOMETHING

RETURN

Telling It Who’s Boss ¢ 155

Hitting the RETURN key when you have completed a line of

instruction, a commandoran input, should become second nature. Doit

enough times and you won’t even think aboutit.

Whenyoufirst turn on your computer,it is in the command mode.It

is ready for you to type a command or a statement. The syntax of a

commandis

COMMAND

then

RETURN

This causes something to happen immediately. You type it, the

computer does whatit’s supposed to right away, and then the command

signals are gone. Commandsare not saved anywherein the computer.

Statements are different. The first thing you type in a statement is a

number. This is called the statement number. It signals your computer

that the line is a statement instead of a command. The syntax of a

statement Is

STATEMENT NUMBER

INSTRUCTION

RETURN

The only thing that happens whenyoufollow this statement sequence

is that the things you type get saved in your program.

When you hit the RETURN key, that signals the computer that

you’re through with what you’re doing and now the computer must do

what it does. Every separate commandor statementhas to end with you

hitting this Key.

The shortest program you can have in BASIC is one statementlong:

32000 END

You turn on your computer and makesureit’s in the command mode.

(Refer to your manufacturer’s manual for this procedure.)

Now, type the word NEW.

This is a special command that removes any BASIC program from

internal storage and allows the input of a new program. Other special

commandsthat let you do things ‘‘around’’ your program will be intro-

156 ¢ Without Me You're Nothing

duced as we proceed. They are different from statements that are the

actual program steps.

END is a statement. Even if your computerlets you RUNa program

without this statement, you should get into the habit of using it. Many

computers with limited BASIC require ENDasthefinal statement of a

program. If you fail to put this statement in the program on such a

machine, the program won’t RUN.

Eachline of a BASIC program hasto start with a statement number,

sometimes called a line number. Normally, the statement in a particular

line will be executed whenits line numberis the smallest of the remaining

numbers in the program. This orderly sequence (from lower numbersto

higher) can be modified by the program with a special type of statement

called a control statement, which wewill explain presently.

Since the END statement must have the largest line numberin the

program, you can anticipate this by writing it at the beginning with the

largest allowable number, 32767—usually rounded down to 32000. That

puts it at the END whereit belongs.

Now,we can type our shortest program:

32000 END

That’s it. The program is finished.

To execute it, we use a special command: RUN. Commands don’t
require line numbers. Just type RUN and hit the RETURNkey.

When you hit RETURN,the cursor moves over to the left and
another promptis printed. It would appear that nothing has happened,
since just hitting RETURN whenyou’re in command modealways makes

the cursor move overto the left and print another prompt.

However, thereis a difference.

The word RUN does execute whatever BASIC program is in the

internal storage. If there’s no program stored, an ERROR messageis
printed. If something’s wrong with one of the program statements, an

ERROR messageis printed. Under these circumstances, the only way to
prevent an ERROR message 1s to have a valid BASIC program in the

machine.

Here’s what happens:

The program is first checked to see if there’s an END statement.

Since there is, the program is executed. But the first statement is END,
which signals that the program is finished. The promptis then displayed

and the machineis ready for your next command.

Telling It Who’s Boss ¢ 157

Let’s go on to something more important now.

If you were to ask for the most important statement in BASIC, the

answer would have to be PRINT. Without it, your program has no way

to get your aitention. Everything going on inside the machine would be

invisible.

There are several versions of the PRINT statement, but we’ll just go

into one of them at this point. This is the use of PRINT to display any

symbols enclosed by double quotes. Put this in your machine:

1000 PRINT “ANYTHING”

32000 END

Whenyourun this, your computerwill display

ANYTHING

PRINTINGthings in quotesis useful for requesting specific informa-

tion. When your program is at a point where it needs input, for instance,

you can insert this sort of thing:

PRINT “TYPE NAME”

If you put that just before the INPUT statement, the person using the

programwill see on the screen exactly whatis needed.

This sort of PRINTing is limited to “‘constant’’ information. It’s

something you already know when you’re writing the program. A *‘vari-

able’? however, is something that can change. Since this variable some-

thing often happens “‘in the dark,’’ if you want to know whatit is, you can

PRINTit.

There are two typesof variables: integer and string. Integer variables

represent numbers between —32767 and +32767. String variables repre-

sent groups of characters (letters, marks, or special symbols).

Integer variables are named with a letter. (Some computers allow a

name with more than one letter—see your manual.) Theletter is foliowed

by a numberin parentheses. The numberindicates how manyintegers use

that variable name.

String variables are named with a letter followed by a dollar sign ($)

and a numberin parentheses. The number indicates how many symbols

can be in the string.

The dollar sign is what differentiates a string variable from an integer

158 © Without Me You're Nothing

variable. Your manual will tell you the maximum numberof symbols you

can have in onestring and the maximum numberofintegers that can use

one integer variable name.

Don’t be confused by our use of name in this context. If you have a

dog named George and youcall his name, George is supposed to show up.

If you have a string variable named G$ and you call that name (on your

computer), that string variable is supposed to show up. The difference

between George and G§$ is that G§ may give you a morereliable response.

The dog George wehadtendedto ignoreall calls except those for dinner.

Now,back to BASIC:

With most machines, should you want to see how the BASIC

program is inserted in the machine, you simply type LIST and hit the

RETURNkey(or its equivalent). Your screen now willlist lines ofletters,

numbers, and other symbols. Each line will be preceded by a numberin

increasing order, the statement numberof the program.

The personal computer we used as a model and reminderfor prepar-

ing this book employs Extended BASIC. There are some easily remem-

bered things you do when you work with such a machine syntax. For

instance, quotation marks have a special significance. And one of the
most common BASICinstructions is PRINT. If you tell your machine:

PRINT 15+ 5

and then hit the RETURNkey,it will display

20

It has added 15 and 5, which is what you commandedit to do. But if

you put quotation marks on your commandthis way:

PRINT “15+ 5”

it will producethis display:

15+ 5

It will simply display whatever you put between quotes. Similarly, if

you type

“T54+5=",154+ 5

Telling It Who’s Boss © 159

and now hit the RETURNkey,yourscreen will display:

15+ 5 = 20

Anyone unfamiliar with the things we already have revealed to you
and seeing such a display might assume the computer had done something

intelligent. We leave it to you to explain to such a rank amateurthat the

machine merely displayed the results of your intelligence. Anything your

computer does, no matter how advanced, sophisticated, or complex, is

just an extension of that kind of intelligence. You do it; the machine

obeys.

You may have noticed the semicolon in the line we told you to type.

The semicolon controls the number of spaces inserted after the equals

sign. Commas, semicolons, or TABS merely position the symbols on your

screen. These can help you set up columns, tables, and thelike as well as

space your information for easier reading.

You already have learned some important elements of BASIC pro-

gramming. Quotation marks in the PRINT command cause your computer

to display whatever you type between them.If you type:

PRINT “MY NAME IS JOHN HENRY”

your computerdisplays

MY NAME IS JOHN HENRY

The train of symbols between the quotes is called a string. Your

computerhas limits on the length of such trains it can handle. No big deal.

Whateverthat limit, when you reach it, you close the quotes andstart a

new line, again within quotes. Extended BASIC and someotherhigher-

level languages permit you to edit and sort strings of text. Such functions

are included in ‘‘word processing packages.”’

Referring back to the PRINT command, your computeris limited in

what it can respond to without quotes. If you type

PRINT MY NAME IS JOHN HENRY

your computerwill display

SYNTAX ERROR

160 © Without Me You’re Nothing

or some otherindication that you have asked for somethingthat is outside

the sequencing or other rules the machine must obey. BASIC has no

connections that will permit it to PRINT unquoted text.

Mathematical problems are a different matter. Division, multiplica-

tion, addition, and subtraction fit right into a computer’s hardware. The

switches are designedto flip with relative ease for such problems. The

answers will be displayed in familiar form. You probably are already

familiar with three of the commandsfor these mathematical functions, +

(plus), — (minus), and / (divided by). However, to avoid confusion with

the letter ¥, BASIC uses an asterisk (*) to indicate multiplication. You

have only one new symbol to learn and you can perform addition,

subtraction, division, and multiplication on your computer.

The computer will also store parts of a problem until you need them.

If you type

A = 549

B= 10

you can tell your computer to

PRINT A*B

Since it has number equivalents of A and B stored in one ofits handy

Switching systems, your computer (when you hit the RETURNkey)will

display

5490

the multiplication of 10 times 549.

That’s a handy thing when you’re dealing with many numbers and

many different operations on them. For you math buffs, BASIC in your

computer also handles exponentials with ease. The symbol is an upward

pointing arrow ¢ or A. Thus, 3 } 5isa short wayoftelling the machine to

perform the following multiplication: 3*3*3*3*3 (3 multiplied byitself five

times).

BASIC programs have rules (a syntax). When you want to type a

complete program, you first type the command NEWandhit the RE-

TURN key. This removes any other BASIC program already in internal

storage. Now you can type the statements of your new program. The

largest-numbered statements must be END on most machines.

Telling It Who’s Boss ¢ 161

You can also tell your computer to repeat an instruction by using the

BASIC word GOTO.Thus, if you type

10 PRINT “HELLO”

20 GOTO 10

30 END

then command your short program to RUN,yourscreen will fill up with

HELLOs. The 30 ENDinstruction keeps your machine from flashing

an ERRORsignal. You can stop the repeated HELLOsbyhitting the

CTRL (control) key and the letter C simultaneously or by performing

whatever appropriate BREAK commandis outlined in your manufac-

turer’s manual. It’s very simple.

In this example, your computer is performing a controlled stutter.

You have set up an endless loop. The machine, operating at its one-step-

at-a-time limits, performs the instruction at line 10, then does whatit’s

told to do at line 20, whichtells it to repeat the instruction at line 10.

Whenweweretelling you about the simpleton limits of computer

logic, we pointed out that these machines are great at comparing. They

can supply answers to questions about

less than <

greater than >

less than or equal to < =

greater than or equal to > —

not equal to <>

The BASIC symbols for these functions are shownatthe right. These

apply not only to numbers but to any other quantities you can feed into

your computer. They can comparethe lengths of textual strings and sort

in manydifferent ways for word editing. BASIC will also square numbers

or round them off. It has another function that approximates randomness.

You get this by typing RND (RANDOM). The machine plus program

limits are the real limits to such random selection. Most good random

programswill give you a statistically accurate randomness within usable

162 ¢ Without Me You’re Nothing

limits. When you use the RNDinstruction, the machine displays a number

chosen by its RANDOMprogram and within whatever limits you have

set—a random numberfrom | to 10, for example. With this program,it

will flip an imaginary coin for you, indicating ‘‘heads’’ or ‘‘tails’’ ad

infinitum. This function has been used in many computer games.

As you grow more skillful in writing programs, you will find that

some simple programscan be used at manyplaces in a longer program. To

do this you save the simple program as a subroutine. Any time you want

to reuse that short program without recopying it, you tell the computerto

GOSUBandfollow this with the proper statement numberforthe start of

the subroutine loop.

The similarity between these BASIC words and their English lan-

guage equivalents will not have escaped you. This makes them extremely

easy to remember. You already have familiar hooks in your own memory
upon which to hang these new words.

There are few delights to compare to having yourinstructions carried
out precisely to the letter every time. Computers are famousfor doing just
that. It is up to you to makesure the instructions you give it reflect what
you wantit to do. Thatis the art of programming. The payoffis that once
you have solved a particular problem with a program, the computerwill
faithfully solve that problem for you forevermore.

21
A BASIC Vocabulary

The vocabulary of the BASIC language consists of a list of statements,

each of which has a definite function. Within many of the statements are

modifiers that should be understood before you try to program.

A statement may be preceded by a statement number. This number

identifies a particular statement and sets its fixed position in an orderly

sequence of statements. A BASIC programstarts at the statement with

the smallest statement number and proceeds in sequenceto the largest,

unless the order is changed by one of the control statements. (See

GOSUB and GOTO)

Some of the statements include expressions. This has become a

catchall term. In different situations it may mean integer, string, variable

assignment, or even comparison. Sinceall of these are quite different, we

recommendthat you use the specific term instead of expression.

Integer can be an actual integral number (in BASIC,integers range

from —32K to +32K)or an integer variable (which see). It can also be the

numerical result of an arithmetical operation on two or more other

numbers, (say 5+ 7). When you tell your computer to PRINT 5+7,the

§ +7 is itself a number (12). BASIC allows any operation that results in a

numberto be used wherever a numbercan be used.

A string is a group of characters. It has a beginning and an end.It

may contain up to 255 characters in one continuous sequence on some

computers. It can be referred to by a namethat yougiveit, andit’s called

a string variable. This is a good example of obscurity in Computerese. We

usually refer to the nameof the string instead of to the string itself, and it

might better have been called string name.

163

164 © Without Me You’re Nothing

In integer BASIC variables come in two forms: string variables and

integer variables. The contents of these variables can be changed at any

time.

Following is a list of BASIC statements and what they do. The

statements themselves are CAPITALIZEDandthe modifiers are in small

letters.

CALL number

CALLtransfers the program to a machine-language routine. On an

Apple II computer, CALL —936 clears the screen. The integer(s) follow-

ing CALLis the addressforthe start of the routine. Refer to your owner’s

manual for the different options.

DIM variable (number)

DIMension reservesspacein internal storage for your variables. The
numberin parenthesesgives the numberof integer variables or characters

in the string. String variable names must end with a dollar sign: $.

END

ENDisthe final statement in a BASIC program. It must have the
largest statement numberin the program.

FOR variable-number TO number STEP number

FORis the start of a FOR. . . NEXT loop. Thevariable is an integer
variable and it starts with the value of the first number. The second
numberis the value that the variable will have when the last repetition of

the loop is completed. The third number is the amount added to the
variable at the end of each repetition. The third number and STEP may be

omitted if you only add 1 each time.

GOSUBstatement number

GOSUBtransfers the program to a BASIC subroutine; The last

statement of the subroutine is RETURN.This returns the program to the
Statement following the GOSUB.

GOTOstatement number

GOTOtransfers the program to the statement headed by thestate-

ment number. GOTO 10 transfers you to the statement numbered 10 in

your program. The program then does whatstatement 10 tells it to do.

A BASIC Vocabulary ¢ 165

IF variable comparison THEN statement

IF... THENfirst makes the variable comparison.If the comparison

is accurate, the statement following the THEN is executed. If the com-

parison is not accurate, the statement after THEN is skipped. (For

example, if the variable comparison says ‘‘A = 4’ and the integer variable

which you have named A doesin fact equal 4, the statement is executed.

If A does not equal 4, the statement is ignored.) You might pause and

rememberat this point that ‘‘A=4”’ flips switches according to the rules

which have been preset in your machine.

INPUT variable

The storage area assigned to the variable is there to receive your

information. Whatever information you type on your keyboardis copied

into the storage area.If it is an integer variable, a numberbetween —32K

and +32K must be typed. A string variable will accept any keyboard

entry, just as long as the total numberof charactersis less than thetotal

reserved with the DIMension statement. A carriage return ends the

INPUT.

LET variable = number

LET string variable = string

LET copies a numberto an integer variable or a string to a string

variable.

NEXT integer variable

NEXTis the last statement of a FOR . . . NEXTloop. The integer

variable is increased by the STEP value that is assigned in the FOR

statement. If the result is less than the final value (also established in the

FORstatement), the loop is repeated. Otherwise, the program continues

with the statement following the NEXT.

POKE number, number

POKEstores the second numberin the internal storage location (the

address) that is equal to the first number. (It POKEs the number in there.)

PRINT variable

PRINT “THINGS IN QUOTES”

PRINTdisplays information on your screen or printer. Integer vari-

ables are displayed as numbers, string variables as strings, and anything

166 © Without Me You’re Nothing

enclosed by double quotesis printed just the way youtyped it between

those quotes.

REM anything

REMarklets you write reminders to yourself in the middle of your
program. Anything after REM (which you canalso think of as REMinder)
is ignored by the computerupto the carriage return signal.

RETURN

RETURNtransfers the program back to the statement after GOSUB.
It is the last statement of a subroutine. (Not to be confused with directions
referring to the RETURNkey on your keyboard. The RETURNwerefer
to here is a word in BASICthat performsin the computerin a waysimilar
to that key. With this word, you build the key’s function into the
program.)

TAB number

TAB movesthe cursorto the horizontal position on the line equal to
the number you assign. The number must be between | and 40 on most
machines.

Now, let’s have another look at this vocabulary. They are just words
that have beenassignedthe job offlipping certain switches. The switches
in their combinations, by performing certain actions, give meaning to the
words.

In a real sense, CALL ‘‘calls up”’ a particular routine and performs
whatever routine is designated by the number.

DiMension opens up a reserved space in the internal storage and
holds that space for a particular use.

ENDis something like the period at the end of a sentence.It is the
final stopping point in the program.

The FOR . . . NEXTloopis a bit more complicated, but an example
should makeit clear. Here’s an example of a FORstatement:

10 FORA=1TO6

10 1s the statement number.

This statementsets up a routine. It assigns the value 1 to the variable
A. The number6 is the high limit of A and the numberoftimes the loop
will be repeated.

A BASIC Vocabulary ¢ 167

The next statementin the routine could go this way:

20 PRINT “A="; A

Andafterthat:

30 NEXT A

The NEXTstatementsets the end of the loop and increases the value

of A by (A =A + 1). If isstill 6 or less, the program goes once more

through the loop. When A exceeds6 (the high limit that we have assigned

to the variable named A), the program skips to the statement after the

FOR. ..NEXT loop. Just rememberthat a FOR statement must always

have a NEXTstatement somewhere below it to tell where the loop ends

and to send the program back to the FOR statement and another run

through the loop.

FOR... NEXTis a method of constructing loops to perform tasks

you want done. It has advantages. Such loopsare easier to read in your

program. You don’t haveto lookall through the program to find out what

the loop is doing. All you dois look for the NEXT that contains the same

variable as the FOR.

GOSUB, GOTO, POKE,and PRINTall are sufficiently close in

meaning to plain English equivalents that you should have no trouble

remembering what they do.

IF ... THEN makes a comparison. IF (something), THEN (dothis

other thing). IF (not something), THEN (go on about your business).

INPUT has become a part of the American vernacular. You’re

putting information into the machine.

To understand LET, rememberthat you are writing something after

this word. What you write is copied by the machine because the switches

that respond to LET have been arrangedthat way.

REMarksare just what they seem: REMindersthat are supposed to

elicit some response in your head,not in the computer.

If you can type on a typewriter, RETURN and TAB need no more

explanation.

We think the few other words in this short vocabulary are self-

explanatory. Try all of these words a few times on your own computer

and the meanings will be fixed into your memory.

Now you can get into BASIC programming.

22
Getting Down to
BASIC

There is a language associated with programming that is shared by most
higher-level languages, including BASIC. As you now should recognize,
an advantage of BASICisthatit introduces you to the vocabularyof this
related language in a more pleasant and forgiving way than mostof the
more specialized higher-level languages. When you have mastered this
related language with BASIC, much of what you have learnedwill carry
overinto almost any other language you may choose.

In this related language are such words as instruction, statement,
command, variable, constant, expression, string, number, source and
object. You may already understand every one of these words, but all of
them are worth a review.

An instruction is information that, when coded and introduced as a
related whole into your computer, causes that computer to perform its
operations. It’s easy to remember: An instruction is what tells the
computer to work.

A statement is one line element of a program and is preceded bya
statement number, which sets the sequence of whenthe statement will be
used. Statements are put into operation sequentially from lower number
to higher in Basic.

A commandspecifies the operation to be performed. Don’t confuse a
command with a statement. A command is smaller. It causes a pulse,
a signal, orset of signals to start, stop, or continue some operation. Commands
cause something to happenright away.

Variables and constants are equally easy to remember. Constants

168

Getting Down to BASIC ¢ 169

don’t change, but variables might mean one thing one time and something

else anothertime.

A string 1S a group of items that are set up in sequence according to

some rule. Your computer will have a limit on the length ofstring it can

accommodate.

A numberis an expression of quantity: how many.

Numbers and strings come in both variable and constant form. A

constant number appears in a BASIC program asitself. Just type it

anywhere a number can be typed. It won’t change unless you type

another number in its place. In many systems, a variable numberis

represented by a letter. (Some systems allow more than oneletter for a

variable name.)

You’ve already seen examples of constant strings. Whenever you

PRINT anything in quotes, the thing in quotes is a constant string. A

variable string is represented by a letter followed by a dollar sign ($).

Variables change. The idea to rememberis that you never know what

the variable is, so you give it a nameand alwaysreferto it by its name, not

its contents.

Constants work the other way around. You always know the con-

tents of a constant, so there’s no reasonto give it a name. The only reason

for quotes around a constantstring is to separate it from the other symbols

of the program. Anything in quotesis a constantstring.

To understand source, think ofit as the place from whichthingsflow,

and it can be the channel along which things flow. When applied to the

coding of a program, the concept of a source code provides you with some

flexibility. The thing you want to do does not have to be wired into the

hardware logic. You can put together a program that lets you enter and

modify the source code.

With a source you go to the elemental nature of your computer’s

operation. A source program, for example, is a program written in a

language that is easy for you to use in expressing certain problems or

procedures. It 1s also a program that can be automatically translated into

machine language (where it becomes an object program).

The object program is the program you are aiming for. The source

program is developed first. The object is the translation of the source into

the machine program andit’s made by the computeritself.

You will find source and object useful concepts in programming

because they relate to how your machine uses whatyoutell it to do. They

relate to how your program is translated into machine code. No matter the

language in which you write your program, your aim is to have that

170 ¢ Without Me You’re Nothing

program workat the machine code level where the computerflips its own

switches.

The source code is what you write. The object code is what the

computer does.

An expression Is a group of program words and/or other symbolsthat

are set out according to the rules—that is, in a required sequence and

according to the syntax that is specific to the programming language you

are using.

Now, to BASICitself:

Earlier, we introduced you to PRINT and GOTO. On most machines

these can be used as either commandsor statements.

Recall our example of quoted text. When quotes are used in BASIC,

the enclosed text never changes unless you change it by retyping the

Statement. It is a constant.

Constants are useful for displaying information that doesn’t change.

The prompt ‘“*“TYPE NAME” will do nicely for any name. You cannot use

a constant for the nameto be typed, however.If you did, you would have

to write a new program for each name you typed. That’s where variables

enter the picture.

String variables let you put new information into a program. If you

Set up this program sequence:

10 PRINT “TYPE NAME”

20 INPUT A$

30 END

this would prompt the person using the program to type a name and then

wait for the name to be typed. It wouldn’t make any difference which

name wastyped.In fact, it wouldn’t make any difference what you typed

just as long as the RETURNkeywas hit. Whatever you type in response

to this program will be put into a variable string named A$.

String variable names end with $ in BASIC. The namehasto start

with a letter, and some versions allow several internal variations.

The letter A might have different meanings in different contexts. By

itself it names a variable number.

PRINT A

tells your computer to print the current value of the variable number

named A.

Getting Down to BASIC ¢ 171

PRINT “A”

would just print the letter A. Rememberthat it’s a constant string when

there are quotes aroundit.

PRINT A$

would print the current contents of the variable string named A$.

Now, recall that you can print the number equivalent to this expres-

sion:

PRINT 5*6

That prints the result of multiplying 5 times 6. The expression (in this case

5*6) is first broken downto its single-number answerand that answeris

printed. Variable numbers or constant numbers may be used in such

expressions.

You now haveseenthe four kinds of PRINT instructions possible in

BASIC.

PRINTing constant strings is useful when you want to prompt the

person using your program.If your program is at a point whereit needs a

particular piece of INPUT, you PRINT a few wordsin quotes, whichtell

that person what to do. This is common procedure even with quite

complex and sophisticated programs.

If you are writing a program to save names, addresses, phone

numbers, birth dates, and anniversaries, at some point you are going to

have the names of people typed into a variable string. A reasonable

sequence in such a program would be:

200 PRINT “TYPE NAME”

210 INPUT N$

The initial statement numbers would, of course, be determined by where

you needed the namein the program. The ENDstatement is assumedto

be somewhatfurther along, with a higher numberprecedingit.

The INPUTinstruction copies what is typed into a stored variable.It

is in STORAGEand can be recalled when needed. This can beeither a
String variable or a numbervariable. If you are using a numbervariable

and you type something other than a number, an ERROR messageis

displayed. Any symbols can be typed when youareusing a string variable.

172 ¢ Without Me You’re Nothing

Statement numbers (those sequential numbers at the beginning of

each line) usually go by tens. This leaves some openings betweenstate-

ments for adding things later. Don’t put yourself into the position of

having to retype a lot of statements that already work just because you

decided to add another statement and there aren’t any statement numbers

left in the place where you wantto makethe insert.

Mostversions of BASIC allow statement numbersas high as 32K.If

you get into the habit of being liberal with your statement numbers, your

programswill be easier to follow and to modify.

Programs usually have several major parts. If you start each of these

parts on an even-thousand statement number, you havea visual reminder

that a new thing 1s about to happen. This first statement of a new section

should be a REMark to remind you what you’re doing in the program

segment.

The END statement has to be the highest-numbered statement in

your program. If you makeits statement number 32000, you can typeit at

the beginning and forget about it. The statement will always be there at

the end of your program.

Remember that the GOTO statement lets you change the normal

order of statements in your program.In the ‘‘HELLO forever’’ exampleit

was uSed in a statement that created an endless loop. GOTO can also be

used as a command. While you are writing statements (rememberthat

you’re in the command mode whenyoudothis), you can GOTOanyof

the statement numbers of your program whenever you wish. This lets you

test a small section of your program without having to wade through the

whole thing every time.

GOTOis the ‘‘debugger’s friend.”’

Where computers are concerned, some things are more equal than

others. The equals symbol (=) can be used two ways. Asthe assignment

operator, it copies things into variables where they are stored for later

use. Just make sure the variable matches the thing being copied. If you’re

copying a number, you must use a numbervariable (no $), while strings

must use string variables (letter $).

The equals sign can also be used to compare things. We nowreturn to

the conditional statement IF. This first compares a variable with a

constant or with another variable. Equality is one of the conditions of

comparison. Remember that we’re flipping switches according to very

elemental logic, it either is or it isn’t. Your switches can go only one of

two ways: on oroff, yes or no.

Another wayof assigning things to variables is with the LET instruc-

Getting Down to BASIC ¢ 173

tion, but this really doesn’t do anything except stick out in your program.

Whenyouseeit, you know that whateveris on the right-handsideof the

equals sign is being copied into the variable whose nameis ontheleft.

Don’t try to copy a numberinto a string or vice versa. Most computer

systems will give you an ERRORif you do, but if your system lets you do

this and you do it by mistake, the results are apt to be disastrous.

It may help to go a bit anthropomorphic andthink of the IF statement

as a demandthat a decision be made. This is the statementthat lets you

write single programs that do one of two things. (Two-state switches;

neverforget it.) First, you set up a comparison between a variable and a

constant or between a variable and another variable. The comparison can

be set up any way you want, and we’ll show you some exampleslater.

When you RUNthe program, the instruction at the end of the IF

statement is run if the comparison is true. Otherwise, this instruction is

skipped and your program goesto the next statement.

The syntax of the IF statement is as follows:

Statement number

IF

Comparison

THEN

Instruction

With some computer systems, the THENis optional and serves

merely to separate the comparison from the instruction.

You can use the IF statement to let the person using the program

select one of several options. By making the instruction (see the forego-

ing) GOTO a statement number,the section of your program starting with

that statement numberwill be used only whenthe input variable contains

a preselected symbol. Here’s what we mean:

1000 PRINT “TYPE FIRST LETTER OF SELECTION”

1010 PRINT “ ADD NEW RECORDS”

1020 PRINT” LIST OLD RECORDS”

1030 PRINT “REPLY:”

1040 INPUT R$
1050 IF R$ = “A” THEN GOTO 2000

1060 IF R$ = “L’” THEN GOTO 3000

1070 GOTO 1000

174 ¢ Without Me You’re Nothing

Statements 1000 to 1030 tell the person using this program what
options are available by printing the constant strings. 1040 copies the
user’s Selection into a variable string named R$. 1050 is a conditional

GOTO.It goes to the first statement of the routine that adds a new record

to a file. The only time it would GOTO 2000 is when the user types the
letter A. If the variable string R$ consists of the constant string ‘‘A’’, then
the next statement number in the program is 2000. If not, the next
Statement is the next sequential numberafter 1050—in this case 1060.

1060 is the same as 1050 in its operation.

1070 returns to the 1000 statement when neither an A nor an L is

typed.

If you commit to memorythedefinitions and the operations we have

just explained, you will have a powerful tool in your possession for
programming in BASIC.If you go no farther into programming, this will

let you understand and modify many programs.

23
A Structure for People

There is a revolution going on in the computerindustry called structured

languages. Structured languages use a minimum of types of statements

and emphasize the use of namesthat are developed by the programmer.

They follow a certain format akin to grammatical structures. They are

meant to include a visually obvious relationship between the various

operations of a program.

Wehave developed anothersort of structure that will work with any

programming language. Wecall it structured program development.

First, the problem to be solved is stated in a verbal form. Just say

what you wantit to do. This can usually be done in a sentence or two.

Then make an outline of the steps that will be needed to do it. This

will include such things as changing and displaying or printing recorded

information, selections of different things to do, and establishing a general

sequence for the final program. Some languages use statement numbers

(BASIC included), and this stage will also assign numbers to the major

parts of the program. If namesare used instead of numbersto label things,

the nameswill be assigned to the major pieces of your program.

The next stage is to make a map of the program. Using symbols that

have been carefully designed to be universally understandable (such as

international highway signs) and a structure that is easy to understand and

visually informative, lay out the entire program step by step from begin-

ning to end. If you’re using statement numbers, include the major ones.

Finally, the program is written in the programming language. This is

also done in stages. First, signposts are put up to help guide the wayfor

175

176 ¢ Without Me You’re Nothing

the detaiied work to follow. When this is complete, the program is ‘‘filled
in’’ until it is finished. The program mapis usedas a toolin this stage.

Some of the stages will require two or more tries before you are
satisfied that they are right. Don’t be afraid to throw awaythefirst attempt
of any stage if you come up with a different and better way of doingit.

Fach stage should be completed before the next is begun. Make sure
it is right and that everything has been included; changes are always more
difficult to effect when a later stage of greater detail has been reached.If
you come up with a muchbetter approach while writing the program, go
back to the outline and change it to correspond to the new way. Then
carry the change through the map (wecall it the PROGRAMAP)and
finally come backto the program with a good understanding of what must
be done. Makethetoolsfirst.

Documentation (such as a flowchart) should be anintegral part of the
program's development. It should evolve with the stages, not come as an
afterthought.

We makethis point because many professional programmers, dis-
mayedby the ‘‘standard’’ flowchart system, have stopped making them.
Programmersfind it too tedious to change the chart every time a minor
modification is introduced into the program. Theresult: Charts often have
been droppedaltogether.

Weaddressed ourselves to changing the system because the present
philosophy of flowcharting stinks. The truth is, most existing flowcharts
were made after the programs were written. They provide the experi-

enced programmerwith a visual abstract of the program.

The abstract became the ideal: Pack as much information into as
small a space as possible and make it tell you ‘‘at a glance’? what is
happening.

Some thirty abstract symbols were agreed upon to ‘‘represent’’ the

different programming operations. Those symbols are so abstract that
they sometimes confuse experienced programmers.

The idea behind the standard system is that you can write a great deal

of information inside the symbols and pack the symbols side by side and

above and below one another until you get the whole program abstracted
downto a page or two.

This becomespart of the documentation package. Its sole purposeis

to describe in as few wordsas possible what has already been done.

That, as one of our sainted ancestors oncesaid, is ‘‘bassackwards.’”’

The visual representation of programs is a marvelous idea. But it should

be a developmental tool, not an end product. The program is the end

product. We object strongly to the way the industry uses flowcharts.

A Structurefor People ¢ 177

Aire de Briis-sous-Forges
i Total. 161.490.76.63

: Aire de Limours-Janvry
Shell: tel. 490.76.54

_ Aire de Chartres-Gasville a
Esso: tél. J. BORELSeif Esso”
37) 22.62.32 tel. (37) 22.6241/42

télex 780.098/086

Alre de Chartres-Bois-Paris

Elf: tél. (37) J. BORELSelf
pecs, 22.82.40 our) tél. (87) 22.62.41/42
FP) 22.62.91 (nuit) .télex 780.098/096

fs. “. Aire de Brou-Dampierre
8558 Esso: 161. (87) J. BOREL Seif

98.06.70 (jour)
98.07.50 (nuit)

Aire de Brou-Frazé
_ Total: tél (37) J. BOREL Self
: 98.05.73

 ‘gg’ Aire de Villaines-la-Gonais
|Antar: tel, (43) 93.09.49

Airede La-Ferté-Bernard
Shell: tél. (43) 93.09.55

 «Airedu Mans-La Pivardiére =| Alre de Sargé-iéa-Le Mans

Elf:ouverture 1979 ei Total:ouverture1979 0

sh
l‘Oceane All. This graphic map of the French freeway from Paris south reveals features in

common with computer flowcharts. It shows access points, start and end, special features along

the way, and the distances between entry and exit points. No attempt has been made to show

small geographic variations. Special signs (P), easily read, show rest stops (aire de repos). Other

features have their special symbols. What you need to knowis right here.

178 © Without Me You’re Nothing

Thus, the PROGRAMAP.

It should start at the beginning and flow step by step to the end of the
program—yjustlike the programitself.

It should bridge the gap between the verbal statement of the problem
to be solved andthefinal program.

It should be easy to produce and easily understood.

It should have a structure, and its symbols should be as suggestive as

possible of what they represent.

The examples we will provide you are typical of many things that

come up In programming. We have chosen the BASIC language because

of its ready availability and ease of understanding for the novice. What-
ever your experience, neophyte or professional, we hope we havesuc-
ceeded in showing you a straightforward way of program development
that will make the task of programming easy and will thus open the door to
your owncreativity.

24
PROGRAMAP

The funny word weuseastitle for this chapter is the label for a new

graphic way of laying out a computer program. We're talking about

flowcharts. As we’ve indicated, most programmers get away from them

because the symbols have been designed and arranged in a waydifficult to

use. Flowcharts became too muchof a hassle. But the flowchart can be a

superb tool. It can form an easily understood picture of what happensin

your computer.

What do we do? Go along with the stiff and clumsy present system?

Our solution was to go back to the symbols and redesign the flow-

chart into a one-dimension diagram, taking the common, ordinary road

map as our guide. Westudied the symbols, comparing them with graphic

forms that have come out of the International Convention on Graphic

Symbols.

There’s a general recognition all around the world that symbols

transcend differences in languages, that they can be a marvelousinstru-

ment of quick and effective communication. This has given us easily

understood highway signs, essentially the same in France, England,

Germany, the United States, Canada—everywherethere is motortraffic.

Take a good look at the way those highway signs are designed.

Particular shapes have been chosen to meanparticular things. You don’t

have to see the word stop to know it’s a stop sign. And they are positioned

in a way that relates directly to what they tell you to do. Further, they

contain easily recognized symbols; a hand, an arrow,an intersection T, a

snake track for a winding road ahead. You see on the sign the thing

179

180 ¢ Without Me You’re Nothing

signified by that sign: a pedestrian, a leaping stag, a child, a symbolized
steep hill with a car on it in outline, a gasoline pump, a wrench(for repair

Services), or a tent (indicating campsites).

You see a recognizable thing.

This entire concept is adaptable to computer programming in a way

that has never before been quite achieved. And it serves a multiple

purpose here.

1. Carrying over the highway sign concept emphasizes the urgent

need for a general understanding of computers. After all, understanding
highwaysigns can be a life-and-death matter. We assure you that survival
is involvedin understanding computers.

2. No one imagines that highway signs are inherently intelligent.
Theyare a tool of travel. And that’s the wayit is with computers: Such
signs can be a reminderthat weare using a tool and that we are engagedin
movement.

3. The idea of ‘‘traffic flow’’ is extremely useful when using a
computer. Keep in mind that you are routing electrical signals. The
routing involves switch patterns that can be recognized and repeated.
Traffic signs are adaptable to this in a natural way with which you are
already familiar.

4. Because highway signs are designed for quick and urgent mes-
sages, they have been reduced to commonideas, often to things asso-
ciated with mechanical or bodily movements. This is the principle of
primitive sign languages and it makes such signs easy to learn and
remember.

5S. You probably already know many of the symbols we employ.

Attaching them to your computer is simply a matter of using them
yourself.

After coming to a decision on the symbols, we tackled the problem of

how the chart flows. Conventional diagrams jump around alot—up,
down, sideways, over to that box, out of one symbol and branching into

several others. They containlots of little boxesfilled with cryptic short-

hand notes.

Very confusingthefirst time you try to use such a diagram. We have

reduced all of that jagged movement to a straightforward, one-

dimensional progression.

It may appear pretentious of us to address ourselves to such funda-

mental change. Afterall, the flowchart has been used for about a quarter
of a century as a visual aid to the internal paths of computer programs. It

has become standardized. Its symbols were adopted by the American

PROGRAMEAP« 181

National Standards Institute in 1970 and were approved by the Federal

Office of Management and Budget in 1973. Very heavy stuff. They are

used everywhere.

But road maps have probably been evolving for at least ten thousand

years. Sign languages have an even longerhistory. An illiterate person

can understand such signs once the concept has been explained. They

contain fundamental ideas, perhaps built into the way our thinking proc-

esses have evolved.

A computer program can be compared quite easily with a route

across a section of terrain. Boundaries are defined and routes are vis-

ualized for getting from one place to another. A correct route can be found

when you know the terrain. Our ‘‘road map’’ only needs some new

symbols for bridging because a program can make extraordinary leaps

from one place to another without touching any places between.

In a useful graphic system it’s important that program statements

appear step by step from beginning to end, that they be structured. We are

convinced that the ‘‘structured languages’’ will soon dominate the more

advanced uses of computers. A flowchart concept that follows the same

idea will endure. Therefore, our PROGRAMAPfollows a structured

pattern starting at the top of the page and going downstep by step toward

the bottom. It does not split into separated multiple paths, as the standard

diagramsoften do.

Another important feature keeps track of what’s happening outside

your system—the inputs and outputs. They must be clear and unmistaka-

ble. They require a place of their own in the visual scheme.

Finally, there must be signposts—everyday words posted at im-

portant places along the way. These are commonly called comments or

remarks. They should give a brief but clear description of what the

program is doing. They should appear on both the flowchart and the

program.

One of the things you'll notice nght away about the written form of

your program when you begin putting it on paper is that you can write

notes to yourself all over the page and it’s easy to distinguish such

personal notes from the actual steps of the program. Writing such notesis

an excellent habit to form. Remind yourself right on the flowchart and the

program whatit is you’re doing. When it comes time to put the program

into your computer,all you haveto dois type three letters, REM, and put

after it the same REMinder. The computer will treat the matter within

the quote marksas text and will display that text for you in your program,

an ongoing reference to the working steps shownright on your CRT.

All along, our goal has been an improvedlink between the verbal

182 © Without Me You’re Nothing

Statement of the problem and the final program. In simplifying the
procedure, we believe we havereachedthis stage:

‘f you can type a letter on a typewriter andtell a stranger how to get
to your house, you can write your own programs. You know you don’t
have to be a math whiz to do thosethings.

You begin the PROGRAMAPbycarefully defining what you want to
do. You need a general statement of the problem—somesuchthing as ‘‘I
want to keep track of my auto servicing records and have a reminder
about maintenance.’’ Give the program

a

title, perhaps ‘‘Car MAINTE-
NANCE.”’

(We have supplied a complete sample program on car maintenance
in Appendixes F and G. You may wantto refer to it as you read this
chapter.)

The next step involves an outline. Outlines are important because of

a fundamental difficulty that has been recognized in programming. People
rarely if ever think in the required tightly logical steps. You haveto get
organized before you can put yourself in a computer frame of mind. Part

of your organization must include an overall strategy. There can be no
foggy areas. You must understand what is taking place in the machine at
all times.

That’s why westart you with an objective. You want a reminder

program for car maintenance? Why? You knowyourcarwill last longerif

you follow a good maintenance policy. And in fuel-crunch times you

know you'll get better mileage that way.

Our preliminary sketch can be based on the owner’s manual:

. Changeoil and lube every three months or 3,000 miles.

. Changeoil filter every second oil change.

. Rotate tires and check brakes every 6,000 miles.

. Change radiator coolant every fall.

. Repack wheel bearings and change transmissionfluid every 24,000

miles.

m
n
&
W
N

=

This list provides the rules from which the maintenance times and/or

mileage can be figured. The program will use records of when service was

last performed and these rules will be used to calculate when the next

service must be done.

Both the objective and the outline must be verbal. Weare not yet into

the PROGRAMAPproper. The outline will go on to break the objective

into manageable pieces that will contain every switching operation. We

PROGRAMAP e« 183

will give each piece a name and carry that name through to thefinal

program. We will give statement numbersto each step, starting at 1000

and counting by thousands for major steps and giving the intervening

smaller numbers to the smaller steps.

Wewill include notes about what will be displayed. We will show the

what and the where of each input. We will indicate whatis to be saved and

what calculations and rearrangements will be made.

Weare setting out to establish the order (sequence) in which things

will happen. There is usually a good reason for one particular order. Think

it through before making arbitrary decisions, but don’t expect to hit it

perfectly on thefirst try every time. Just keep in mind that your computer

has been designed to follow a coldly logical order and that you will regret

illogical choices.

You are required to describe the steps in their proper sequence, a

sequencethat leads directly to the desired result. The computer must deal

with yes or no answers and no middle ground.

When you’re doing it right, you are conforming perfectly to the

popular myth about Germans, the idea expressed by Vicki Baum when

she said she looked out the window of her Berlin hotel and saw the

Germanrobins piling the leaves according to size.

(Math aficionados among you know suchparticular problem-solving

procedures by the buzzword algorithm. But just like the Baum robins,

you can follow such a procedure without knowing either the wordorits

meaning.)

Twofunctions will be needed for our program to work across a period

of time. There must be a wayto revise when a particular maintenance has

been completed, and the new schedule mustbe figured from the rules and

displayed.

Since the revision depends on information gathered when youfigure

the new schedule anddisplay it, you might want to put the second routine

in the first position.

It really makes no difference.

However,it’s wise to get into the habit of simply making a choice

whenever there is more than one way of doing something, even if your

choice is purely emotional. If you want to change things later, you will

remember those emotional decisions and they will help you find your way

through the program. And with two distinct functions you must make a

choice right at the beginning.

You now have enoughof an idea about what’s to be done that you

can follow the preliminary verbal outline. This will serve as a guide in our

flowchart.

184 ¢ Without Me You're Nothing

1. Display title and provide a choice between two functions.

2. Complete maintenancefunction:

A. Select which maintenance was completed.

B. Revise ‘‘maintenance last done”’ record.

C. Figure new ‘‘next maintenance’’ mileage and/ordate.

3. Display ‘‘next maintenance’’ schedule.

You should note that this outline points up the difference between the

way people think ‘‘in the round’’ and how computers are forced to

operate—limited to handling one thing at a time. In the completed

program a choice must be made between five different maintenance

operations. You could do it easily, but your computer must go through

five separate selection and rejection steps in turn. While the outline makes

sense to us in spite of its five-way choice problem, programming it

requires us to break downthelist into a series of “‘yes-no’’ questions.

Here’s where a flowchart comesinto its own. It shows you visually

how your program will be written. It breaks the problem into graphic

individual steps and shows you the sequenceofsteps.

It’s time for you to meet the PROGRAMAP.

We separate our PROGRAMAP symbols into four columns. The

first column is reserved for accessories. Each device is designated by a

graphic symbol in a square. Wheneveryou see a square, you know youre

dealing with an accessory. The symbol in the square will picture the

device—phone, tape deck, TV screen, and so on.

The second columnis reserved for things done by the central proc-

essing unit (CPU), our old familiar SWITCHING. All symbols in this

column contain some curved element. Whenever you see these curved

lines, you know you’re in the CPU.

To the right of CPU is a column we call REROUTE.Here’s where we

get into the bridging leaps your program can make. Every symbolin this

columnis triangular. When you see a triangle on the flowchart, you know

your program is being rerouted.

To the right of REROUTEwereserve a wide columnfor statement

numbers and verbal descriptions. Here’s where you write notes to your-

self. Here are the brief and clear descriptions of what the program is doing

and the namesof the things being done. After you have gained someskill

with these descriptions, they will often contain some of the exact wording

for your program. The statement numbersin this columnare all enclosed

in ovals to set them off.

Here’s how the symbols look:

PROGRAMAP« 185

PERIPHERAL CPU REROUTE DESCRIPTION

186 © Without Me You're Nothing

We have chopped a number of symbols off the standard system.

Thus, the visual basis of the PROGRAMAPnot only is easier to recog-

nize, but you have fewerthingsto learn.

This is what the symbols mean:

SCREEN (CRT)

TAPE

DISK
KEYBOARD

PRINTER
MICROPHONE

SPEAKER

PROGRAMAP e 187

J oe

(We decidedto put PS in the ‘‘printer’’ square because of the number
of languages that begin their word for printing with either a p or ans.
(English has both print and stamp.) And PS in English stands for a verbal
addition to a letter. It’s an easy thing to remember.)

—> INPUT

= OUTPUT

INTERNAL SWITCHING

REROUTE?

END OF PROGRAM

ALTERNATIVE END OF PROGRAM

———__——--

START OF PROGRAM

188 ¢ Without Me You’re Nothing

Down—to a higher statement

number in the program.

Up—to a lower statement

numberin the program.

<< Entry point

Reroute to a higher number when

a condition (C) is met.

Reroute to a lower number when

a condition (C) is met.

Subroutine detour

In the fourth (right-hand) column, reserved for statement numbers

and verbal descriptions of the program, these aretherules:

When you are prompting the program user to do something, you put

that somethingin plain English and bracket it with quotation marks. When

it comes time to translate from flowchart to program, you merely type

PRINTand put the prompt (quotes andall) in the program.

All reminders to yourself start with REM.

All entry points for the program get statement numbers on the

flowchart. Major sections of your program count by thousands, minor

entry points count by round hundreds.

PROGRAMAP « 189

All dimension statements go at the beginning. (In BASIC these are

called DIM statements. They assign the maximum numberof characters

that can be contained in a SETseries, which meansa series of symbols to

be placed in storage.)

With variables, you use the actual name. (Wewill go into this in more

detail presently.)

All REROUTEsare labeled with the statement number of the

destination—where the program will GOTO.

A line connects each sequential step in the chart. Put an arrow on the

line to show the direction of traffic flow. Think of that line as a street sign

on one-wayStreets.

When you REROUTE, you moveto the appropriate column and

indicate direction of flow by wherethe triangle points.

Use of the REROUTE column and symbols will probably take you

the most time to master if you’re a rank beginner. For that reason, we’ll

' go into it in a bit more detail.

REROUTEis where you symbolize many of the IF statements (if

this, then that . . .). These all involve decisions to be made—yvesor no,

true or false. They direct your program to anotherplace if a condition has

been met.

In conventional flowcharts, this operation has been indicated by a Y

(for yes) or N (for no) contained in a box of some sort. We find that

confusing and unnecessarily complex. When youget to such a point ina

program, you actually have only one question to answer:Is the condition

metor isn’t it? The letter C seems appropriate to stand for a condition.If

there’s aC in ourtriangle, that tells you there’s a condition to be met. The

description column describes that condition. If there’s no C in the

triangle, that triangle stands for anything else your program is about to do

in its REROUTing.

You proceed from there.

Now, go back to the illustrations of the symbols and note the

question markin the switching circle. That’s what signals a shift into the

REROUTE column. You have a question to answer, a condition to be
met.

REROUTE has many functions. It lets one program do several

things, depending on a decision you make at that point. You have a
routing choice. (Our section on conditional statements, pages 172-74,

explains this morefully.)

REROUTEalso lets you create subroutines that save a lot of time

and space. We apply another label to these subroutines. We call them

190 © Without Me You’re Nothing

DETOURSs.The process of switching to a subroutine and coming back to

the mainstream is akin to making a detour around a roadblock. The next

statement after the GOSUBis eventually reached in a roundabout way

with the RETURNstatementat the end of the subroutine DETOUR.

REROUTElets you jump around quite remarkably in your program,

touching down only where you want, searching out and presenting things

the way you require.

For example, the IF statement allows you to find the smallest of a

group of variables. (Don’t be confused by the wordvariable.Itissimplya

symbol standing for an entity that can assume a number of different

values. It can vary depending on howit’s used.)

Here’s how youfind the smallest:

Enter the first variable on your list into a special variable. This

special variable is compared in turn with each of the other variables on

yourlist. If the special variable is larger than the one being tested in its

turn, the smaller one gets copied into the special variable. It then becomes

the standard for the next comparison. You come out the other end with

the smallest on yourlist, and you can start with that one when youstack

according to size. (We’re only joking.)

The actual program statementto find the smallest could go this way:

1100 IFS > A(l) THEN S = A(I)

In this example, S is the special (smaller) variable and A(/) is the one

being tested for comparative size. 1100 is the statement number.

While this example uses numbervariables, the same statement with

the string variables S$ and A$(J) would copy the first (alphabetically)

string into S$.

That is a very valuable tool for finding things lost in a jumble of other

things. Knowing how to use REROUTEwith the other programmable

features of your computer lets you sort and rearrange all kinds of

variables.

REROUTE,with its ability to set up conditional questicns in ways

they can be answered, uses the statements IF and FOR. Those two

statements in the BASIC language allow you to make programming

decisions.

Rememberthat the FOR statementcreates a loop.

In more precise programming terms, FORis the initializing statement

of the FOR... NEXT loop. NEXTis the /ast statement of a FOR...

NEXTloop. You can put any numberof statements between the FOR and

the NEXT,limited only by the storage capacity of your system.

PROGRAMAP « 191

That buzzword initializing is essentially simple. It stands for the

preliminary steps used in arranging instructions and information in stor-

age whenthosethings are not going to be repeated. You want those things

in storage to be used over and over—a loop.

FOR1s actually a shortened form of a sequence of statements used so

often that a shorthand abbreviated term is desirable. You’ve already met

the sequence in the chapters on BASIC, (Chapters 21 and 22) where we

explored counting and the counting variable.

Whenyou use FOR,the counting variableis initialized. It is arranged

in storage in such a way that you can use it without having to repeatit.

You do this to lim't the number of times your loop will play. You don’t

want the loop repeating endlessly the way we did with the ‘‘HELLO

forever’ example.

If we call this variable L (for loop), all we have to dois set it equal to

some numberat the beginning. That’s the lowerlimit of the variable.

Unless there’s good reason to start your loop at something other than

the number |, that’s a desirable lower limit and it makes the loop easier to

write. Later on, we’ll show you how a loop looks on a flowchart. Right

now, this is how the start of a loop appears in a program statement:

1000 L= 1

An alternative wouid be

1000 LET L =]

You then pick up the next statement number:

1010

which ts thefirst statement of your loop.

After you have composedall of the things that are supposed to

happen in your loop, you need two more statementstotieit off:

TIOOL=L+1

1}TIOIFL < = N GOTO 1010

N indicates a variable limit to your loop. N could be a constant,

provided you know in advance the numberof times your loop will have to
play.

192 © Without Me You're Nothing

The same thing happens with two statements when you use the FOR

... NEXT loop:

1000 FORL= 1 TON

1010

1100 NEXT L

NEXT L adds 1 to L loop and returns the program to 1010 (the

first statement after FOR) unless L is then larger than N.

Note that the FOR statementstarts the loop at 1 and establishes the

final value of L as the value of N. These examples presumethat you gave

a value to N somewhereelse in the program. By changing the value of N,

you can change the numberof times your loop will play. This makes the

loop a flexible tool that can be used and reused as you require.

Now,here’s how the IF appears in a flowchart:

PERIPHERAL CPU REROUTE DESCRIPTION

10 Cono>

ANYTHING ELSE

Note that the triangle containing the conditional C points upward toward a

smaller statement number. Loops always start at a smaller number (a

previous statement). All IF statements take this form in the chart.

PROGRAMAP « 193

Here’s how you could chart the loopitself:

PERIPHERAL CPU REROUTE DESCRIPTION

LET L=1

6& REM INITIALIZE LOOP
COUNTER

LET L=L+1

1101 REM INCREMENT LOOP

COUNTER

IF L<=N THEN GOTO
110

REM END OF LOOP58
6
6

Instead of calling the left-hand column PERIPHERAL,you could get

closer to computer function with a shorter label by calling it I/O for

INPUT/OUTPUT.The symbols in the column would not change.

Here’s how you chartyour loop in more detail with PROGRAMAP

symbols:

194 ¢ Without Me You’re Nothing

I/O CPU REROUTE DESCRIPTION

L=1 (initialized loop
counter)

REPEAT LOOP

L=L+1 (increment

loop counter)

CONDITION MET—
REPEAT

C NOT MET—END LOOP

Note that if you fail to make a perfectly vertical column and CPU wanders
off into I/O or into REROUTE,the shape of the symbol prevents any
confusion. That’s why westandardize shapes of highway signs, too.

When you’ve completed yourfirst program chart and outline, com-
pare them with your objective. Did anything change? Do yousee a better
way to do the outline or the chart? If you see a better way, try it. Then
compare. Did you do a messy job with either one? Recopy until you can
read your work easily. While recopying, you will come to think about
previcus programs you have written. Does something remind you of a
clearer wayto do this?

PROGRAMAP ®¢ 195

Don’t hesitate to change either outline or chart. Play with the verbal

versions of your program before trying to translate into a computer

language. There are often better ways of doing these things, and pro-

grammers have been knownjust to stumble on those better ways while

playing with a program in verbal form.

There comes a point of diminishing returns in such play, however,

and you will have to determine that poini. Just rememberthat the best

time to make changes is while you’re working on ycur outline. And

changes at the chart level are easier than changes in a programming

language.

Don’t start the chart until you’re sure the outline leads you to your

chosen objective. Don’t start the program until you’re sure the chart

answers the same demand.

As you drawthe picture of your program,put switching operations in

the same order as they appearin the outline. Include statement numbers

and namesof the major divisions in your program. Describe eachstep.

Whenthe picture is complete, compare it with your outline. Make

sure you haven't left anything out.

NOW-—goback andlookat all of your REROUTEs.

Is there a good reason for each one?

A program can often be simplified by eliminating unnecessary RE-

ROUTEs. Sometimes you can do this by changing the sequence in your

program. If you change the sequence in the chart, be sure to make the

same change in your outline. Outline and chart form a handy cross-check

system, and they should be dealing with the same things tn the same

order.

Sometimes you will want to convert a section of your program into a

subroutine. If a procedure happens several times in your program, a

subroutine can be a real saver of time and space. Sometimes you can scan

back toward the start of a program andfind a place before a branching

where a procedure can be written once and performed in several different

branches after the split.

Just remember that subroutines add REROUTESs, and these make

your chart harder to follow. Use subroutines sparingly.

You have just completed one of the hardest chapters in this book, and

we did not flag it to keep you from reading it. No, we are not cheating.

Even if you avoid all aspects of personal programming, there are things in

this chapter that will help you all through yourassociation with comput-

ers. If you do no more than learn how things flow, you will have

accomplished something very valuable. But if you learn to understand and

196 © Without Me You’re Nothing

use these PROGRAMAPsymbols, if you master the steps from outline to
flowchart to program, you will be the unquestioned master of your
computer. We recommend that you review this chapter, studying the
illustrations and the examples. You will find a PROGRAMAP dictionary
in Appendix C. It takes you through the meanings of the individual
symbols and the various combinationsin greater detail.

29
Writing Up a Storm

All through the writing of this book we have been designing and assem-

bling the pieces for a computer to be used by authors. In doing this, we

know we are going to arouse controversy. There will be protests even

from someauthors and a lot of the usual garbage based onthe belief that

computers can ‘‘think.’’

Wagswill say: ‘‘Ohhhh, so you’re going to let a computer write your

books!’

This tiresome stupidity is a mental trap we hope you can avoid. A

computer does nothing more than process whatyou giveit. If you giveit

garbage, it returns garbage that has been processed by a computer.

Garbage stays garbage no matter how you process it. Always re-

member GIGO.

Our approach to the new computer has been rooted in the driving

concept of this book: The machine must befitted to you, not the other

way around.

Think about what’s happening here.

Weare writing.

Weare writing about computers.

One of this team is a successful author and amateur electronics-

computer buff; the other member is an acknowledged expert in both

computer engineering and programming with somefifteen years of experi-

encein thefield.

That’s a powerful combination for this designing job. We are engaged

in doing many of the things we would turn over to the computer—tedious,

197

198 ¢ Without Me You’re Nothing

routine tasks that should be done at higher speed. And webelieve that the
best wayto learn is to do.

Computers can be madeto direct the performance of any machine—a

typewriter, for instance. Computers work very fast. With computer

control, a fast printer can type a long novel in a couple of hours. That can

take two or more weeks with a conventional typewriter and humantypist.

The possibilities in having an extremely sophisticated and very fast
typewriter that is also a highly responsivefiling system for notes and a

rapid source for reference materia! make the computer extremely attrac-

tive to an author.

Here are some oi the problems you face in writing a book:

1. The creative process often demands that you work at breakneck
speed, a speed that makes every petty interruption a bitterly resented
nuisance.

2. Complex developments in a book often demand that you use many
notes and references—youroriginal notes on the characters, a dictionary,
encyclopedias, specialized reference works relating to geography,
physics, psychology, medicine, astronomy.

.

. It’s an open-endedlist.
3. As you write, you often want to make extensive changesin earlier

portions of your work—eliminate a character, add a character, combine
characters into one person, change dialog, introduce new dialog, and
other business.

Since you can program your computer to whip through the Storage
Systems where information is kept, and since you can do this in almost
limitless ways, the possibilities for editing and word management are
awesome.

Writing employs both intuition and logic in a highly individualized
balancing act. A writer tends to develop a style that can be recognized.If
you can use a computer for an ongoing check on your logic and as a
storage system forall the other essentials (including the manuscriptitself),
you have a marvelous tool that will not slow you down or otherwise
cramp yourstyle.

The manuscript for an entire novel can be automatically scrolled
upward or downward on your screen. You canscroll rapidly or slowly.

You can jumpinto the manuscript anywhere you choose. With clever

editing cues you can dart to any part of your work that you wantto see,
and you can dothis in seconds. No fumbling around with papers; you just
push a few keys. The computer does your bidding automatically.

Once you have located a place where you want to work on the
manuscript, you can open a spaceto insert new material, you can rewrite

Writing Up a Storm ¢ 199

the portions around the new insertion, and then you can rapidly scroll

forward to make the new material appropriate at every other necessary

place.

Finding those necessary places is a task you turn over to your

computer and your editing program. It is accomplished with dazzling

speed. A new character can be integrated into your work in a quarterof an

hour.

You want a change?

You can make that change (even a highly involved one) at such speed

that you do notlose the flow of your own creation.

Now, let’s say that you get near the end of the bookand you suddenly

realize that you have characters with quite similar names—Tim and Jim.

Believe us, it can happen. One very popular American author admitted to

us in confidence that he was into the last chapter of a book before he

realized that he had a Sam and a Haminhis work.It was an easy mistake

to make, he said. When they came onstage, the characters were Samuei

and Hamilton. But familiarity bred confusion because the other charac-

ters were alwaysreferring to them as Samand Ham.

With the old manuscript method you iaboriously search through the

lines of typescript and change one of the names. There is a strong

possibility that you will miss one of the changes. The authorreferred to

abovedidjust that, and none of the copy editors or proofreaders caughtit.

Ahhbhh, but with a computer, you can direct the machineto dothis

automatically. No mistakes. It won’t miss a one. The entire job will

require only a few minutes at most while you go on to somethingelse.

The machineis an editor and proofreader that responds to your every

need.

It is also a very fast secretary.

Notes and other reference materials can be called up onto the screen

as you need them. You hit a few keys and the needed material is there in

front of you, separated from the manuscript by a horizontal line on the

screen.

Because writing is rooted strongly in an oral tradition—youtalk to

the ears through the eyes—manyauthors tend to make homonymicerrors

in spelling: their for there and the like. Other spelling idiosyncrasies can

crop up from time to time for any number of reasons. When these

mistakes produce real words, they can be missed quite easily. Copy

editors and proofreaders will spot a teh without much trouble and change

it to the. But what if you intended to write they and droppedthe y?

Rest easy.

200 © Without Me You’re Nothing

You can incorporate an entire dictionary into your computer and
program a system cuedto yourparticular problems. If the context of what
you're writing makes the meaning of a word clear, the computerwill

automatically correct what you type. If there’s a doubt about the word,

your computerwill flag that word in such a way that you can comebackto

every decision pointat the end of the day and make your owncorrections.

What you store in your computeris there in a fixed form and can be

recalled at your demand.

Rafael Sabatini, the Italian-born master of English prose, could never

remember whetherhe had already killed off a particular character in his
work. He is noted for handling a large number of charactersin intricate
relationships. To keep himself from inadvertently bringing a dead
character backtolife in a later chapter, Sabatini kept a row of dolls on his
desk. Each doll was labeled with the name of a character. When Sabatini
killed off a character, he searched out the appropriate doll and pushedit
over. Keeping an eye on the dolls that werestill standing told him which
ones werestill ‘‘alive’’ in his book.

A computercan store your ‘‘dolls’’ for you. If you try to reintroduce
the deceased withoutfirst arranging a ‘‘second coming,’’ the computer
will stop you with ringing bells and flashing ERROR messages.

Any logical business of your work can be assigned easily to the
computer's programsand storage system, leaving you free to get on with
the business of drama.

For a science fiction writer, the computer is a ‘‘dream machine.”’
That becomes clear if you follow what we are doing with this new
computer and what has been done with other computers to augmentthe
dramaticeffect.

First, we are building the large storage capacity for sophisticated

computer graphics into our new machine.

Computer graphics—the production of computer-managed images on

the CRT—offers an open-sesameto the simulation of imaginary settings.

This already forms a mainstay of Hollywood’s attempts to translate

science fiction into movies. Some of the things Hollywood calls science
fiction are really comic books for the screen, akin to some early pulp

Stories in their primitive assumptions and laughable mistakes in science.

Butit’s obvious that these crude attempts to translate imaginative images

into film are still in their infancy. The written form of science fiction has

left the pulp training ground anderrors far behind. Films will do the same.

But we have seen the “‘image writing’’ on the screen.

Our ‘‘author’s computer’’ has a system to simulate visually some of

202 ¢ Without Me You’re Nothing

bond paper in familiar typed appearance. An editor, seeing nothing but
the manuscript, would not knowit had been typed by a computer—except
that there might be some comment aboutthe neatness and clarity of the
typing.

This printer will type a completed novel in about two hours. By
changing the typeball, it offers a wide selection of different type faces:
italic, roman, plain, or fancy.

The computeris actually several computerstied into a single system.
One chip can be managing notes while another goes on with other work.

To keep all of this running smoothly, we set a lower limit of
twenty-one million bytes for external storage on disks. Internal storage
will also be relatively large. At this writing, we have notyetfixed an upper
limit for it.

What about loss of work through a machine malfunction or other

problem?

Writers are notoriously paranoid about the loss of completed work.

There have been somehorrorstories to reinforce this paranoia. Work has

beenlostin fires—all of Jack London’s manuscripts were destroyed by an

arson blaze. Wine hasbeenspilled on the paper, reducingit to pulp—this
happened to Truman Capote. Manuscripts have beenlost in the mails or
even stolen. One washeld for ransom. They have even beenscattered out

a windowby a sudden windstorm.

As a protection against loss of work through any such breakdown,

inciuding electrical failure or other mechanical malfunction, our system is

backed up by cassette tape. The tape makesa record of everything that’s

done—every word typed, every command to the computer(s), all of a

day’s labor. In the event of a breakdown,the tape will restore that work in

just a few minutes. You can carry an entire novel on a couple of tapes and

lock them in a fireproof vault every night if that’s your wish.

What has even moreinteresting potential is the fact that a publisher

can use our completed disks to set the actual type for a book. The editor

would need only a disk driver, a computer of sufficient capacity for a

simple editing program, a good keyboard, and a CRT.

Although this new computer is built on an eight-bit format, it can

simulate sixteen bits and thus can ‘‘talk’’ to larger machines, providing

access to necessary programs and information through the long-distance

telephonelines. (Yes, a disk on the West Coast of the United States could

transfer its information to a disk in New York City in a few minutes.)

As a bonus, the keyboard of our machineis silent. There’s norattle of

a typewriter to distract you while you compose your deathless prose. This

Writing Up a Storm ¢ 203

is important to some writers. For instance, Robert Heinlein writes on a

silenced typewriter, the kind built for use in mortuaries. Some authors

feel so strongly about this that they write only with a pen.

We don’t feel that silence is absolutely necessary, but it’s a pleasant

feature.

There are some other bonuses.

With twenty-one million bytes we can have a second terminal and a

time-sharing system on which to doall of the household bookkeeping.

The system also gives accessto a large personal library in four ways:

by author, by publisher, by title, and by a précis of subject matter. With

special reference worksit provides a cross-index to page numbers.

All of these books are filed in computer storage by Library of

Congress numbers—a program commercially availabie and widely

used—andthis actually provides a fifth means for calling up the stored

books.

Wehavetakenthe time to acquaint you with this machinefor several

reasons. Since there was no computer on the market tailored to quite

these demands, we havealerted you to the fact that you can have a ma-

chine designed precisely to your needs. The cast need notbe prohibitive,

especially for tax-deductible business equipment. Wehesitate to put an

actual price on it now because mass production methods and refinements

are sure to reduce thatprice.

It was also our desire to show you the design process in action—

fitting the computer to personal needs. It would be difficult to overem-

phasize how strongly we feel about this approach.

MAKE THE MACHINEFIT YOU!

Accept nothingfess. If you get a salesman or ‘‘computer expert’’ who

balks at this, go somewhereelse. The computer industry needs you; you

don’t need any particular one of them.

Lastly, make it fun. Being the first kid on your block with a time

cruncher should at least provide you with considerakle enjoyment, not to

mention time saved for other pleasurableactivities.

Go and compute.

26

Did we write this book on a computer?

No.

This book waspartly a test project to set the design requirements for

a writer’s computer. This required that we use conventional methods

while comparing those methods to available computer methods.

Have we been redundant in our presentation of what you need to

know before you can run your own computer?

Yes, of course.

We conformed to a well-tested educational technique usually ex-

pressedas:

‘*Tell them what you are going to tell them.”’

“Tell them.”’

‘*Tell them what you told them.’’

‘*Reinforce this with repetitious examples.”

We don’t want to conceal any of this process from you because we

really don’t think of you as *“‘them.’’ You are somebody whocould profit

from the use of a personal computer. Our basic motive has been to help

you do just that.

If you take us up on our challenge in sufficient numbers, we expect a

‘*Tansley effect’’ to result. This 1s named for an Englishman who noted

about a hundred years ago that when many amateurs get together with

common interests and avocations, their combined individual insights

result in a vastly increased understanding of a particular field. It’s

synergistic, a benefit both individual and collective.

204

PS ¢ 205

The information age 1s upon us.

With more and morepeople becoming interested in home computers,

more organized information will come into the hands of an increasing

number of people. With books such as this one and in many other ways,

people are sharing what they have learned. The Tansley effect will

certainly come into full force. Computers are playing an increasingly

important role in amateursocieties by distilling large massesof individual

insights into useful packages.

Quality is sure to dominate such a trial-and-error process.

Our hopeis that you get your own computer and join the information

age as soon as possible.

Note that we have attached supportive appendixes to our book.

Although they are more complex than the necessary essentials already

detailed, we urge you at least to dip into them. You might keep the

glossary (Appendix J) handy while you make your first attempts at

operating your new machine.

Appendix A

Someday we will attach a computer directly to the human nervous
system. Computer storage will flow directly into your thoughts—in
graphic symbols, in wordswritten or oral, in pictures projected onto your
‘‘inner eye,’’ and in sounds uttered for ‘‘your ears alone.’’ High-speed
computer sorting will respond to your unspoken mental demand.

On that day your personal computer will probably be a pea-size
device implanted in your flesh. Mass storage and the data banks will be
someplace outside your body, linked to you by something like micro-
wave.

That is a clear direction of research and development. The major
barrier to this prediction is not the hardware, but the software—the
programs.

Before that day comes wewill have to match our high-data-rate and

multichannel system to the computer’s one-step-at-a-time but high-speed

sysiem. We will have to mesh extremely different ways of coding infor-

mation. That is a probiem in translation, and that is primarily a software
concern.

It is a monumental interface task, especially in view of the fact that

we do not know our own mental coding system. The speed/exchange
problem is daunting. Your nervous system is composed of biological

elements having a reaction-response-relaxation time of some two hundred

milliseconds, about six orders of magnitude slower than most present
computers. Despite this relatively slow use-and-recovery rate, you can

achieve a very high effective speed while maintaining a large data rate.

206

The Biomachine ¢ 207

You can handle a lot of information very fast. The smoothly expanding

continuum is available to you, not to the computer.

There is no doubt that this linkage between flesh and machine will

occur—a kind of ultimate prosthesis. Several current developments make

this apparent.

An electroencephalograph (EEG for short), an instrument for de-

tecting your brain’s electrical activity, can distinguish between your

decision-making and your action signals. This has been recognized for

some time.

This predicts that an EEG linkeddirectly to a computer can produce

information out of which the computer can determine whether you have

spare mental capacity available from moment to moment. The implica-

tions in biofeedback training are awesome. This says that you can be

trained to use your mental capacity to its limits.

Since computers can also be set up to detect nonverbal signals—

those commonly associated with stress analyzers and autonomic

responses—itis likely that a computer can be programmedto assess your

decision-making and associated responses. In plain English, your com-

puter will read you and produce information out of which you can judge

the effectiveness of your decision making.

The possibilities of such developments are legion, especially in

education.

This says the biomachine will come, a mixture of you and computer

in an extremely tight relationship. Trying to stop this evolution is like

trying to play King Canute. As the good king demonstrated to his

sycophantic courtiers, whenthe tide’s rising, words won’tstopit.

None of this says computers will give you an instant education in a

foreign languageor any otherskill. It will give you instantaneousaccess to

a dictionary, but you will still have to learn how to convert what the

dictionary provides into the spoken and written words.

Don’t imagine that this evolution can be outlawed. The first brain

surgeon able to engage a tight instantaneous link with his medical library

and other surgeons while he is operating will lead the way for all other

surgeons to follow. When that surgeon demonstrates a computer-assisted

ability to operate at a microscopic level, perhaps even at a cellular level,

there will be a stampede of surgeonsto join him.

Countless lives have already been saved through the computer’s

ability to sert great masses of medical data, but that is only a crude

beginning.

What about our lawmakers? Can they be inducedto try blocking this

208 ¢ Without Me You’re Nothing

computerevolution? Thefirst attorney able to do an instantaneous sorting
throughhis entire law library while he stands in the courtroom will makeit
certain that his fellows acquire the sameability.

Present concepts of ‘‘intelligence’’ and ‘‘brain’’ do not apply to what
we are describing. What we have with computers is an interactive
evolutionary process. It applies equally to us and to computers. It is
deeply involved with our desires, some of which are instinctual and
unconscious. Because of this, a tight symbiotic relationship between
human and computer can be predicted with certainty. We will become
increasingly dependent upon computers and they upon us.

The mutual adaptation between humankind and computers will be
far-reaching. There appearto be few arenasofour activity where comput-
ers Cannot improve the sorting-comparison-reactionrate.

Much of the information managementin this evolutionary develop-
ment is being turned over to computers—rapidly growing mountains of
information plus faster and faster sorting and comparison. This means
that the speed of developmentis following an exponential growth curve.
The first group to make the adaptation may never be caught by its
competitors. Whoever movesfirst will be out in front and gaining speed
faster than anyone coming up from behind.

Does that mean we havea tiger bythetail?

Perhaps. But the fur is already betweenourfingers.

There will be conflict over this evolution. A great manycareers are
tied to ‘‘things as they are.’’ Jobs, rank and prestige, profits and power,
are involved. And computersin the hands of people whowishto use them
as weaponsare, indeed, dangerous instruments. We don’t doubt for a

minute that the organized managementof great masses of information has
destructive potential.

To whatuses will this tool be put?

Will a pharmacist and biotechnician in some small, emerging nation
use this new ability to produce a world-threatening plague? Will a dis-

placed dictator use it to develop a way to cause great seismic sea waves?
Will a ‘‘military genius”’ think he has the key to world conquest?

In an age of weaponsthat can destroy the entire planet, submitting to

‘‘military instinct’? is obviously suicidal and not very intelligent. There
will be no real estate left where a victor can stand and beat his chest.

Of course it’s possible that a nut with a computerwill do something

monumentally insane. And if one person can use a computerfor violence,

others can retaliate. There we go back into the adolescent murk of our

bloody past.

The Biomachine ¢ 209

Wesaythat this is already the insane course upon which our world is

embarked, and weare holding out for the individual and for intelligence.

Wedefine intelligence as the ability to adapt to change. Computers are

great for managing the conditions of change. In the sense that they

provide quick access to massive amountsof information, they can amplify

this kind of intelligence. They can be instrumentsof survival.

There appearslittle doubt, though, that the age of the biomachinewill

be ushered in by severe times.

We assumethatintelligence is really a survival characteristic, but this

turns upon itself. Those who adapt survive. Survivors are the ones who

write the rules and write even the descriptions of intelligence. Our

argument turns on the observation that some kind of information proc-

essing appears to be at work in our adaptability, at work on both a

conscious and unconscious level. We see a severe screening process

imposedontheability to sift through information for the survival knowl-

edge (again, our definition of intelligence). Even if you assume that good

instincts may be quite as workable for survival as good intelligence, you

are still operating on a base of information.

The implication here is that the computer/biomachineis a conscious-

ness machine. If you identify instinct as an awesome deposit of informa-

tion gathered from evolutionary experience, then the computer offers you

the opportunity to manage that amountof information consciously. It can

provide the ultimate marriage between conscious and unconscious.

This brings us back to square one and ourdefinition of intelligence,

back to our argument for the widely disseminated use of computers. We

say that the uninhibited broadcast spread of computers to everyonein our

worldwide society offers a way out for a civilization that suffers from the

false idea that we live in a universe where absolute rules can be deter-

mined.

Admittedly, this is an open-ended argument and fraught with peril.

But welive in a world where ourdifferences are precious for the survival

of the species. Anything that strengthens our individualism becomes

precious for us all, and computers are certainly a powerful instrumentfor

the individual.

Visibly, the computeris already here and appearsto be unstoppable.

The biomachine is coming. Weare entering the age of the Chinese curse:

‘*May you live in interesting times.’’

Appendix B
Computers Are Not
People

There exists a real question whether the fundamental processes in your

brain are even remotely comparable to the mechanical and electronic
switching of computercircuits.

Calculating and memoryare only a small part of what we must use to

feel human. The way we view our universe is surrounded by grand
assumptions and screened by vaguely glimpsed inferences that emotion-

in-the-guise-of-logic frequently denies, and we often deal in ideas that

Authority mistakenly punishes. Today, few would question Galileo if he
called the Church Fathers of his day ‘‘power-hungry monsters suppres-

sing ideas for personal gain.”’

The best medical specialists in today’s world still don’t know how

your brain works. They may never know. The subjective complexity of

that unique anatomical creation—YOUW—islike an ever-unfolding mys-

tery, without beginning, without end. The more wediscover, the more we

find there is to discover.

It has been suggested that we are ‘‘colloidal computers’’ using an

electrochemical system. According to this theory, we mediate the transfer

of ions through a chemical medium to produce our data bits. Any

first-year chemistry student knows this would have to be a very slow

process when compared with purely electronic data juggling. Computers

are already into the trillionths-of-a-second range and maygofaster.

Colloidal systems are confined to the millisecond range (milli =

thousandth).

Yet it’s obvious that we can operate in some respects at an effective

speed much faster than computers—perhaps by bridging much larger

210

6

Computers Are Not Peopie ¢ 211

spans of ‘‘unknowns.”’ If the computer comparison is to hold, we would

have to make up for our shortcoming in speed by being multichannel,

multidimensional, or by some meansyet to be discovered.

At an operational level we know that yourbrain uses chemical as well

as electrical processes. You may even have capacities similar to those

demonstrated in holograms. For those of you who have never before met

this term, hologram labels a three-dimensional photographic process

involving lasers. When you break the ‘‘negative’’ of a hologram, each

shattered part contains the three-dimensional image of the whole original,

although sometimesin less detail.

There is even a new suggestion arising out of research in particle

physics that your brain shares in a ‘‘cosmic data bank’’ thatis linked to

the universe by tachyon phenomena.

Tachyon refers to a concept proposed onthe basis of an implication

in Einstein’s special theory. The suggestion is partly responsive to obser-

vations of a rare particle behavior in cloud chambers. These observations

can be explained if you assume ‘hat some particles travel backward in

time. The suggestion is that if signals or information can travel backward

in time, that would be equivalent to particles going faster than light. If the

suggestion is verified, it makes precognition possible—not certain but

possible.

There are indications that various types of memory are localized in

specific areas of our brains, but the current theoretical model of our brains

is approximately equivalent to the flat-earth theory, which began going

out of vogue about the time of Columbus. We don’t even Know what form

the actual signals take within the brain. The decoding process remains a

mystery.

Whichever way weturn, we are forced to ask even more difficult

questions about the brain-computer comparison.

Compared with your brain, a computeris a simple, one-dimensional

thing restricted to linear pathways and movementonestep at a time. Even

the dullest human does not suffer such restrictions.

Primarily because of its speed and storage capacity, your computer

has an edge on youin the exhaustive analysis of the possibilities that you

have laid out for it in some fashion.It will not, however, examine every

possibility because we don’t know howto program for every possibility

and, by extension, will never know how to dothis. This is an elemental

fact about infinity that we can face but a computer cannot.

But given any system with known limits or known to havelimits,

your computer can exhaust the possibilities within those limits. That’s a

computer’s strength. You can program it to do such things. The machine

212 © Without Me You’re Nothing

flips switches. It simulates. It obeys your commandsand caneven control

other machines within theselimits.

Computers break down when confronted with such problems as the

construction of workable plans. Logical systems can deal only with
limited worddefinitions, and they can do that just so long as there are no

evolutionary changes in grammarordefinitions. Much to the dismay of
absolutists in Linguistics and the French Academy,all words and lan-

guages are in a process of evolutionary change, sometimes slow, some-
times rapid. Computers keepgetting left behind. They are outpaced by the
humanplan.

Furthermore, our languages do not always stick to their theoretical

descriptions or to ‘‘knownrules.’’ Languages are notorious for perform-
ing outside their theoretical descriptions. This is much more than a

problem of discovering rules. Every reader of this book should be able to
produce examples of where the rules of grammarhave been broken, often
dramatically, without the least influence on understanding.

Your computer is based squarely on a logical system, confined to
those logical rules. Logical systemsare in seriousdifficulty when you can

break their rules without seriously affecting understanding. And those

rules are in even greater trouble when breaking the rules improves
understanding. This is especially true in poetry (try e.e. cummings) and in

urgent survival commands.

‘*Watch out!’

**Keep clear!”’

Yes, we talk to each other and have been doing this since we were

quite young. Now,you can even talk to a computer. However,there is a

telling observation that must be made aboutouruse of language.

Wepractice a form of communication that requires agreements about

Shared experiences. Anyone who hastried to translate from one of our

languages into another knowsthe severe limits placed on quite useful

languages by this shared-experience agreement.

There is an amusingstory told about the project to design a computer

system that would translate Russian into English and vice versa. Totest

the system, the designers fed the translations back into the computer,

setting the machinetorestore the translations to the originals.

In one case, they went from English to computer Russian, then from

computer Russian back into computer English. The computer produced a

new word: watergoat. The designers knew they had nothing like that in

the English original. They went back to that original and found the

offending words: hydraulic ram.

Computers Are Not People ¢ 213

They started with a term for a mechanical pump and ended by

inventing a new animal form.

When you assumethat a translation can form a perfect two-way

bridge between you and a machine,you are confronting this agreement on

shared experiences. You also are assuming there will be no changes in

definitions or grammar and that computer evolution can follow precisely

in the tracks of animal evolution.

Yourbrain juggles a vastly more subtle and highly differentiated mass

of information than computers can handle. Lookatit briefly.

Through light rays, your eyes screen for countless variable rhythms

in your surroundings: colors, written words, pictures, animate and inani-

mate objects (the difference is often a key to survival), and much more.

Through sound wavesyourskin and ears juggle another spectrum of

variables: spoken words, deep reverberations, the meanings hidden in

subtle tones, the magic of music, the calls of animals and birds, the signals

of horns andbells.

Your nose is just as wide a window on your world, sensing those

external hormones called pheromones, sensing the gross insults of ozone

and smog, responding to the fine distinctions in floral perfumes.

Not only does your skin sense sounds, but it responds to tempera-

ture, touch, and other fine gradations of pressure changes, and it may

even be able to detect light. There are some interesting experiments

suggesting this.

These are just a few of the conscious parts of the human system.

There remains that vast reservoir of unconscious cataloguing that accom-

panies your consciousness, which monitors and influences your

behavior—that great inheritance which we sometimes pass off with the

inadequate labelof *‘instinct.’’ This, in turn, is rooted in a bioevolutionary

history that has modified us throughout our racial development.

How do we compare all of that with computers?

It is easy to see, though, how the comparison attempts developed,

how the false image of computers was built up in our minds. Like you, a

computerreceives information from the universe around it. The computer

is programmed to classify that information, store it, and then act (in a

programmed way) to influence the outside world. It became easytocall

the storage process ‘‘memory,’’ even though human memory1s a far more

complex affair. Programming is easily likened to conditioning. The be-

havioral psychologists have had a field day with that comparison. Andit’s

quite attractive to call data input ‘‘reading’’ or ‘‘listening.”’

Out of this came the conceptofartificial intelligence and the other

214 © Without Me You’re Nothing

anthropomorphic forms now commonly used to describe computerper-

formance.

We suggest that you must impose clearly unrealistic limits on your

own abilities before you can make such comparisons. The machine does
not understand. It cannot knoworplan. It has no judgment that you can

trust to look out for your best interests. The machine has no such
interests.

This is a problem in semantics carried to a dangerous extreme.
Computer simulation (essentially a complex of labels) will never be the
thing at which it points in our flesh-and-blood universe. No complex of
computercircuits nor of our brain cells can ever be that thing which the
symbols try to describe.

Guide your reactions by this fact and you will always be at least one
jump ahead of your computer.

Despite the elementary and obvious nature of this observation, the
computer industry and many computer experts appear united in an effort
to denyit. It’s as though they were trying to break down somefinal
Semantic barrier, trying to create a symbol which is in fact what the
symbol describes.

To the extent that this is an attempt to make symbols predict events
in our universe, it is praiseworthy. To the extent that it confuses computer
performance with what people do, even going a step beyond into an
emotionalbelief in the reality of the symbols, this is a sad commentaryon
wishful thinking.

Whetherthis illusion game turns out to be destructive depends in
large part on the beliefs we invest in the computer’s symbols before we
test what these symbols create.

If computers ever acquire something we could understandasintelli-
gence, it will be profoundly different from our mentalactivity, and issuing
from something distinctly not a brain. The mechanical roots are too
different from the animal roots: the experience framework will be too
divergent.

Whateverit is your brain does, you experience/ife, you embodythis.

Wesuggest, though, that you do not know tife. This is something you can
Share with your computer. There is a Zen axiom that you can embody
truth but you cannot express it. This conforms to Heisenberg’s theory

that at some point our own observations distort what we are observing.
That places real limits on what we can express, limits we should always
test and attempt to expand, but what you cannot express you cannot
convert into a program.

Appendix C

PROGRAMAP

Dictionary

PROGRAMAP DICTIONARY

GOTO(larger statement number)

GOTO (smaller statement number)

IF (condition) GOTO larger

statement number

IF (condition) GOTO smaller

statement number

215

216 © Without Me You’re Nothing

GOSUB (statement number)

ENTRY POINT

RETURN FROM SUBROUTINE

to main program

=>

INTERNAL SWITCHING

OUTPUT

INPUT

PROGRAMAPDictionary ¢ 217

PRINT ON SCREEN

PRINT ON PRINTER

RECORD ON TAPE

RECORDON DISK

|> OUTPUT TO SPEAKER

OUTPUT TO PHONE LINE

INPUT FROM KEYBOARD

218 © Without Me You're Nothing

oo=> INPUT FROM TAPE

INPUT FROM DISK

INPUT FROM MICROPHONE

Ji=> INPUT FROM PHONE LINE

BASIC PRINT STATEMENT

@.52
CRT SCREEN PRINTER

PROGRAMAPDictionary ¢ 219

BASIC GOTO STATEMENT

OR

smaller number

bigger number

BASIC GOSUB STATEMENT

BASIC RETURN STATEMENT

220 © Without Me You’re Nothing

BASIC IF STATEMENT

 smaller

number
larger

number

BASIC FOR...... NEXT STATEMENT

INITIALIZE COUNTER, INCLUDE SIZE
—————v—o—oeoe & LIMIT (FOR)

———— START OF LOOP

am om— NEXT

PROGRAMAPDictionary ¢ 221

BASIC END STATEMENT

(alternatives)

ALL OTHER BASIC STATEMENTS

Appendix D
Computer Magazines

Note: Names and addressesare based onlatest information available at press
time. Due to delays for production there maybe inaccuracies.

BYTE

Byte Publications, Inc.

70 Main Street

Peterborough, NH 03458

Calculators /Computers

DYMAX

PO Box 310

Menlo Park, CA 94025

Computer Music Journal

Peoples Computer Co.

PO Box E

Menlo Park, CA 94025

Computer Notes

MITSInc.

2450 Alamo S.E.

Albuquerque, NM 87106

Creative Computing

Creative Computing

PO Box 789-M

Morristown, NJ 07662

222

Digital Design

Benwill Publishing Corp.
167 Corey Road

Brookline, MA 02146

Dr. Dobbs Journal

Peoples Computer Co.

PO Box E

Menlo Park, CA 94025

EDN

Chaners Publishing

270 St. Paul Street

Denver, CO 80206

Elementary Electronics

Davis Publications, Inc.

PO Box 2630

Greenwich, CT 06830

Electronic Design

Hayden Publishing Co.

S50 Essex Street

Rochelle Park, NJ 07662

Electronics

McGraw-Hill Inc.

1221 Avenue of the Americas

New York, NY 10020

Ham Radio

Communications Technology

Greenville, NH 03048

IEEE Computer

IEEE

345 E. 47th Street

New York, NY 10017

Interface Age

McPheters, Wolfe & Jones

16704 Marquardt Avenue

Cerritos, CA 90701

Kilobaud

Kilobaud Inc.

Peterborough, NH 03458

Mini-Micro Systems

5 KaneIndustrial Drive

Hudson, MA 01749

Peoples Computer (PCC)

Peoples Computer Co.

PO Box E

Menlo Park, CA 94025

Computer Magazines ¢ 223

Personal Computing

Benwill Publishing

167 Corey Road

Brookline, MA 02146

Popular Computing

PO Box 272

Calabasas, CA 91302

Popular Electronics

One Park Avenue

New York, NY 10003

Radio Electronics

Gernsback Publications

200 Park AvenueS.

New York, NY 10003

ROM

ROMPublications Inc.

Route 97

Hampton, CT 06247

SCCS Interface

Southern California Computer

Society

1415 Second Street

Santa Monica, CA 90401

73 Amateur Radio

73, Inc.

Peterborough, NH 03458

Appendix E
Microcomputer

Accessories and
Manufacturers

Note: Names and addresses are based on latest information available at
press time. Due to delays for production there maybe inaccuracies.

Apple Computer Company Commodore

770 Welch Road 901 California Avenue

Palo Alto, CA 94304 Palo Alto, CA 94304

Applied Microtechnology Compucolor Corp.

100 N. Winchester Boulevard Subsidiary of Intelligent Systems

Suite 260 Corp.

Santa Clara, CA 95050 5965 Peachtree Corners E.

Norcross, GA 30071

Bitech, Inc.

1440 State College Boulevard Computer Data Systems

Bldg. 6 c/o Robert Boyer

Anaheim, CA 92806 English Village Apts.

Atram Hall #3

Byte, Inc. Newark, DE 19711

1261 Birchwood Drive

Sunnyvale, CA 94086 Computer Powerand Light

12321 Ventura Boulevard

CGRSMicrotech Studio City, CA 91604

PO Box 368

Southampton, PA 18966

224

Microcomputer Accessories and Manufacturers ® 225

Control Logic, Inc.

9 Tech Circle

Natick, MA 01760

CramerElectronics

85 Wells Avenue

Newton, MA 02159

Cromenco

OneFirst Street

Los Altos, CA 94022

Cybersystem,Inc.

4306 Governors Drive

Huntsville, AL 35805

Data General Corp.

Southboro, MA 01772

Digital Electronics Corp.

2126 Sixth Street

Berkeley, CA 94710

Digital Equipment Corp.

146 Main Street

Maynard, MA 01754

The Digital Group

PO Box 6528

Denver, CO 80206

E&L Instruments

61 First Street

Derby, CT 06418

EBKAIndustries, Inc.

6920 Melrose Lane

Oklahoma City, OK 73127

EBNEK,Inc.

254 N. Washington Street

Wichita, KS 67202

ECD Corp.

196 Broadway

Cambridge, MA 02139

Electronic Control Technology

PO Box 6

Union, NJ 07083

Electronic Memories & Magnetics

Corp.

12621 Chadron Avenue

Hawthorne, CA 90250

Electronic Products Associates, Inc.

1157 Vega Street

San Diego, CA 92110

Electronic Tool Co.

4736 W. El Segundo Boulevard

PO Box 1315

Hawthorne, CA 90250

Fabri-Tek,Inc.

5901 S. County Road 18

Minneapolis, MN 55436

Fairchild Microsystems Division

1725 Techology Drive

San Jose, CA 95110

Futurdata Computer Corp.

11205 La Cienaga Boulevard

Los Angeles, CA 90045

226 © Without Me You’re Nothing

Hal Communications Corp.

Box 365

807 E. Green Street

Urbana, IL 61801

Heath Company

Benton Harbor, MI 49022

Heurikon Corp.

700 W. Badger Road

Madison, WI 53713

Hewlett-Packard Corp.

1501 Page Mill Road

Palo Alto, CA 94304

HughesAircraft Co.

Aerospace Group

Culver City, CA 90230

IMS Associates, Inc.

1922 Republic Avenue

San Leandro, CA 94577

IMSAI Manufacturing Corp.

14800 Wicks Boulevard

San Leandro, CA 94577

Infinite, Inc.

1924 Waverly Place

Melborne, FL 32901

Intel Corp.

3065 Bowers Avenue

Santa Clara, CA 95051

Intelligent Systems Corp.

5965 Peachtree Corners E.

Norcross, GA 30071

International Data Systems, Inc.

400 N. Washington Street

Suite 200

Falls Church, VA 22046

International Microsystems, Inc.

122 Hutton Street

Gaithersburg, MD 20760

Intersil, Inc.

10900 N. Tantau Avenue

Cupertino, CA 95014

M&R Enterprises

PO Box 61011

Sunnyvale, CA 94088

Martin Research

336 Commercial Avenue

Northbrook, IL 60062

Microcomputer Associates Inc.

2859 Scott Boulevard

Santa Clara, CA 95050

Microdata Systems

2 Mack Road, #101

Woburn, MA 01801

Microkit Inc.

2180 Colorado Avenue

Santa Monica, CA 90490

Midwest Scientific Instruments

220 W. Cedar

Olathe, KS 66061

MITS, Inc.

2450 Alamo S.E.

Albuquerque, NM 87106

Microcomputer Accessories and Manufacturers © 227

Monolithic Systems Corp. Polymorphic Systems

14 Inverness Drive E. 737 Kellogg

Englewood, CO 80110 Goleta, CA 93017

MOSTechnologyInc. Process Computer Systems (PCS)

950 Rittenhouse Road 750 N. Maple Road

Norristown, PA 19401 Saline, MI 48176

MOSTEKCorp. Processor Technology

1215 W. Crosby Road 6200-T Hollis Street

Carrolton, TX 75006 Emeryville, CA 94608

Motorola Inc. Microsystems Pro-Log Corporation

2200 W. Broadway 2411 Garden Road

Mesa, AZ 85202 Monterey, CA 93940

Multisonics, Inc. Quay Corporation

6444 Sierra Court PO Box 386

PO Box 2295 Freehold, NJ 07728

Dublin, CA 94566

Radio Shack

National Semiconductor Corp. 2617 West Seventh Street

2900 Semiconductor Drive Fort Worth, TX 76107

Santa Clara, CA 95015

Realistic Controls Corp.

Noval Inc. 3530 Warrensville Center Road

8401 Aero Drive Cleveland, OH 44122

San Diego, CA 92123

Rockwell International

Ohio Scientific Instruments Microelectronic Devices

11679 Hayden Street PO Box 3669

Hiram, OH 44234 Anaheim, CA 92803

Pacific Cyber/ Metrix, Inc. Signetics Corp.

180 Thorup Lane 811 E. Arques Avenue

San Ramon, CA 94583 Sunnyvale, CA 94086

Pertec Computer Corp. Southwest Technical Products

12910 Culver Boulevard Corp.

PO Box 92300 219 W. Rhapsody

Los Angeles, CA 90066 San Antonio, TX 78216

228 ¢ Without Me You're Nothing

Sphere Group

791 S. 500 W.

Bountiful, UT 84010

STS Systems

Mount Vernon, NH 13057

System Integration Associates

Little Conestoga Road and

AdamsDrive

Glenmore, PA 19343

Systems ResearchInc.

1010 Westwood Boulevard

Los Angeles, CA 90024

Technical Design Labs

Research Park Bldg. H

1101 State Road

Princeton, NJ 08540

Terak Corp.

PO Box 3078

Scottsdale, AZ 85257

Texas Instruments Inc.

8600 CommercePark Drive

Houston, TX 77036

TLF

PO Box 2298

Littleton, CO 80161

Tranti Systems,Inc.

1 Chelmsford Road

North Billerica, MA 01862

Vector Graphic, Inc.

717 Lakefield Road

Suite F

Westlake, CA 91361

Veras Systems

PO Box 74

Somerville, MA 02143

Warner & Swasey Co.

30300 Solon Industrial Parkway

Solon, OH 44139

Wave Mate

1015 W. 190th Street

Gardena, CA 90248

Western Data Systems

3650 Charles Street, #2

Santa Clara, CA 95050

Wyle Computer Products

3200 Macgruder Boulevard

Hampton, VA 23666

Appendix F
Car Maintenance
PROGRAMAP

In the next appendix we will get into an actual program you can run on

your machine. Butfirst we want you to go through the PROGRAMAPfor

that program. Remember that the symbols in a flowchart provide an

overview. They show the ‘‘whole picture’’ and must beset out in a clear

and uncluttered way. If the flowchart is cluttered, your picture of the

program will be blurred.

Specific descriptions accompany the flowchart. Without translating

the program language you can read these descriptions to tell what’s

happening. The descriptions will also appear in the program as comments

or remarks. They provide a cross-reference. Always go through these

detailed steps. Six months later, when you decide you want to make your

program do something more complex, the time saved with a matching
flowchart and program remarkswill more than compensateforthe original

effort. The flowchart also saves time in the actual program writing.

We strongly recommendthat you try our symbol system rather than

the industry standards. The reasoning behind our system is known as

top-down. In it, you solve the problem first, then write the program that

does the problem solving automatically.

Here’s howit goes:

The first thing on the outline (page 184) is “Display title” The

program’s beginning is indicated on the chart by an oval box containing

the word START. Since BASIC programs alwaysstart with the smallest-

numbered statement and proceed sequentially to the largest, we start with

that smallest numberin this way:

229

230 © Without Me You’re Nothing

I/O CPU REROUTE DESCRIPTION

CTARTD DISPLAY TITLE
“CAR MAINTENANCE”

The object of the PROGRAMAPis to provide a smooth transition

from outline to program. The description columnis vital for this transi-

tion. Overall program strategy is contained in the outline. The PRO-

GRAMAPfollows that same strategy and elaborates on details needed in

the program. In the description column such things as main statement

numbers, variable names, REROUTEs, and SWITCHINGoperations are

identified. The resulting map will translate easily into BASIC or other

programminglanguage.

Note that informationis first given to the program uservia the screen,

just one step with the PROGRAMAP.Otherdetails include the START

symbol and beginning statement number, whichis circled. When outputis

to the screen or printer, remember that the things you put in quotes

constitute a constant string, always displayed or written verbatim.

Wenowlet the program user choose between twothings: (1) record-

ing completed service, or (2) displaying the upcoming maintenance. We

also must copy existing maintenance records from cassette tape storage.

You need two tapes: one for the program and one for the maintenance

records.

The program tape will be copied using the BASIC ‘‘LOAD”’ state-

ment. The record tape will be controlled by the program. (Note that the

first time you use this program you will have to provide appropriate

information on the record tape for the program to RUN.)

Since both functions use the information stored on the record tape,

it’s best to copy the recordsat this stage. That way the copying operations

have to be in the program only once. The programtells the user to put the

cassette into the recorder and rewind the tape. We must also stop the

program while this is done and provide a wayto restart it from the

keyboard whenthe cassette 1s ready. Look at the description column. The

INPUT symbolfor this step is accompanied by a descriptive WAIT FOR

RETURN.

Car Maintenance PROGRAMAP e 231

1/O CPU REROUTE DESCRIPTION

“INSERT ‘CAR MAINTENANCEFILE’
CASSETTE IN RECORDER AND REWIND.
PRESS 'PLAY’ SWITCH ON RECORDER.
PRESS ‘RETURN’ ON KEYBOARD.”

ma WAIT FOR ‘RETURN’

COPY ‘CAR

MAINTENANCEFILE’

CASSETTE

Let’s say you accidentially insert the wrong tape. Here’s the program

solution to that problem:

I/O CPU REROUTE DESCRIPTION

‘CAR MAINTENANCEFILE’?

TO €i100>

“CASSETTE MISREAD.
‘RETURN’ AND TRY AGAIN.”

‘ WAIT FOR ‘RETURN’

TO

232 ¢ Without Me You’re Nothing

Tapes have to be rewound.It’s good practice to get into the habit of

rewinding tapes after they are used. This instruction is added to the

flowchart:

I/O CPU REROUTE DESCRIPTION

“REWIND CASSETTE THEN
PRESS ‘RETURN’ KEY ON

KEYBOARD.”

WAIT FOR “RETURN”

Now, we provide a choice between two functions. There are many

ways to do this. The one welike best is to list functions and let the

program usertypethefirst letter of the choice. This means, of course, that

no two functions can start with the same letter. In this program, that

presents no problem. The twofunctionsare:

RECORD COMPLETED MAINTENANCE

and

DISPLAY SCHEDULE

Your computer will not confuse an R with a D.

Car Maintenance PROGRAMAP e 233

I/O CPU REROUTE DESCRIPTION

TYPE SELECTION

“TYPE FIRST LETTER OF
SELECTION:
RECORD COMPLETED
MAINTENANCE
DISPLAY SCHEDULE
CHOICE:”

as, WAIT FOR SELECTION

Part 1 of the outline now contains only the one item: We must check

the selection and reroute the program to the correct routine. If you have

not typed one of the two required letters, the program should return to the

point wherea Selection is made. Wewill reroute twice:

I/O CPU REROUTE DESCRIPTION

“R” TYPED?

YES: GOTO

“D" TYPED?

YES: GOTO

 GOTO

234 ¢ Without Me You’re Nothing

Wenow go on to part 2 of the outline, which is more complex. It must

provide access to each maintenance record individually and compute the

next maintenance. It should start with a title (good practice for every

routine) and the list of maintenance functions from which you can choose.

1/0 CPU REROUTE DESCRIPTION

“RECORD COMPLETED

MAINTENANCE

TYPE FIRST LETTER OF

SELECTION:

LUBE AND OIL

OIL FILTER

BRAKES AND TIRES

RADIATOR COOLANT

WHEEL BEARINGS

CHOICE:”

WAIT FOR SELECTION

Car Maintenance PROGRAMAP °¢ 235

The five selections need five “REROUTE?” symbols in the flow-
chart, ending again with return for typing mistakes:

I/O CPU REROUTE DESCRIPTION

“LY TYPED?

YES: GOTO LUBE

ROUTINE

(>) "O" TYPED?

¥ YES: GOTO OIL FILTER
ROUTINE

236 © Without Me You’re Nothing

1/0 CPU REROUTE DESCRIPTION

“BY TYPED?

YES: GOTO BRAKE

ROUTINE

“R” TYPED?

YES: GOTO RADIATOR

ROUTINE

“W" TYPED?

BEARING

ROUTINE

GOTO SELECTION € 2000 5

\/ YES: GOTO WHEEL

Maintenance routines work with information pertaining to each

routine. The information is organized in groups corresponding to each

maintenance function. Each group is known as a record. The complete

collection of records is called afile. We have five maintenance recordsin

the maintenancefile.

The rest of the routines use the various maintenance records. Part 2

of the outline changes the information in the records to reflect completed

servicing. Part 3 displays the record information on the screen.

Car MaintenancePROGRAMAP e 237

Routines in part 2 request the necessary information from the pro-
gram user. This information on services performed together with the rules
from the owner’s manualonthe car establish the next date and/or mileage
for a servicing. This information is stored in the relevant record, an
updated record file on a CAR MAINTENANCEFILEcassette.

The first routine is LUBE AND OIL CHANGE.This must be done
(in our example) every three thousand miles or three months, whichever
comesfirst. It must request date and mileage from the program user.It
will then calculate the date and mileage for the next such Servicing and
automatically put these into the LUBE ANDOILrecord.

I/O CPU REROUTE DESCRIPTION

“LUBE AND OIL CHANGE

TYPE DATE OF SERVICING:”

GET DATE

238 © Without Me You’re Nothing

1/0 CPU REROUTE DESCRIPTION

“TYPE MILEAGE OF

SERVICING:”

GET MILEAGE

CALCULATE NEW DATE &

MILEAGE

RECORD NEW FILE

Finished with the LUBE AND OIL CHANGEfunction, the program

can either END or go back to part 1 of the outline, where you choose

between the two functions. We must not forget to rewind the cassette tape

if we go back to the choice point. Going back to the start also makes It

possible to run this or another part of the program without restarting.

Since the information tape must be read again if the program is restarted

from the beginning, the program is easier to useif it is returned to the

function choice, thereby eliminating unnecessary operations.

Car Maintenance PROGRAMAP e 239

I/O CPU REROUTE DESCRIPTION

GOTO

The OIL FILTERroutine might best be includedin the LUBE AND
OIL CHANGEroutine, but for now we will makeit Separate just to
outline the operations. Make a note that this sort of thing happens
routinely in the writing of programs. Changes and condensations can
comelater.

For this step we again need date and mileage:

I/O CPU REROUTE DESCRIPTION

“OIL FILTER

TYPE DATE OF SERVICING:”

240 ¢ Without Me You're Nothing

1/O CPU REROUTE DESCRIPTION

GET DATE

“TYPE MILEAGE OF

SERVICING:”

GET MILEAGE

CALCULATE NEW DATE

AND MILEAGE

RECORD NEW FILE

GOTO

Car Maintenance PROGRAMAP e 241

TIRE ROTATION AND BRAKE INSPECTIONuses mileageonly:

1/0 CPU REROUTE DESCRIPTION

<

“TIRE ROTATION AND
BRAKE INSPECTION
TYPE MILEAGE OF
SERVICING:”

i GET MILEAGE

CALCULATE NEW

MILEAGE

RECORD NEW FILE

/\ GOTO

242 ¢ Without Me You’re Nothing

The RADIATOR COOLANTroutine needsonly the date:

I/O CPU REROUTE DESCRIPTION

“RADIATOR COOLANT

CHANGE

TYPE DATE

OF SERVICING:”

GET DATE

CALCULATE NEW DATE

oo RECORD NEW FILE

GOTO

Car Maintenance PROGRAMAP e 243

The WHEEL BEARING REPACKINGroutine uses mileage only:

1/0 CPU REROUTE DESCRIPTION

“WHEEL BEARING REPACKING
TYPE MILEAGE OF SERVICE:”

. GET MILEAGE

CALCULATE NEW MILEAGE

RECORD NEW FILE

GOTO

Part 3 of the outline, the final part of the program,requires display of

NEXT MAINTENANCEschedule. This uses information from each
maintenance record and displays it on the screen, then returns to the
function selection. There is no cassette tape rewindat this point.

244 e Without Me You're Nothing

1/0 CPU REROUTE DESCRIPTION

“NEXT MAINTENANCE SCHEDULE

MAINTENANCE DATE MILEAGE”

(display recorded information)

[\, co
Wehave now completed a flowchart.

This is the point for removing redundantsteps.

Asit stands, the flowchart goes from one end of the program to the

other in a continuous way. This is knownasstraight-line programming.

Whenyouare starting to write your first programs, this is the recom-

mended wayto do it. But nowthat the flowchart is complete, you can see

if there are any sections that are repeated.

Wementionedearlier that it might be good to put LUBE AND OIL

CHANGE and OIL FILTER routines together. Except for title, the

flowchart showsthat they are identical. This doesn’t mean the programs

would also be identical, since the rules for the calculations differ. If we set

up the LUBE AND OIL CHANGEroutine to ask: “‘OIL FILTER

CHANGED? (Y ORN):,”’ then we can address the problem another way.

Since the filter is changed only at alternate oil changes, if the filter was

changedthis time, it doesn’t have to be changed next time. The conditions

can be written into the program using the answer to the FILTER

CHANGED?question. Verbal information in the record must be made to

conform. We dothis by using the words ‘‘LUBE, OIL CHANGE, AND

FILTER” whenit’s time to replace thefilter, and just ‘*‘LUBE AND OIL

CHANGE”whenthefilter is not to be changed.

Since we have combined FILTER with LUBE ANDOIL,the control

routine now containsoneless reroute. This saves programming space and

time. Thefirst two routines now looklike this in the PROGRAMAP:

Car Maintenance PROGRAMAP e 245

I/O REROUTE DESCRIPTIONCPU

“LUBE, OIL CHANGE AND FILTER,
TYPE DATE OF SERVICING:”

GET DATE

“TYPE MILEAGE OF SERVICING:”

GET MILEAGE

246 © Without Me You’re Nothing

1/0 CPU REROUTE DESCRIPTION

“OIL FILTER CHANGED?
(YOR N):”

GET ANSWER

CALCULATE NEW DATE AND
MILEAGE AND PUT CORRECT
INFORMATION ON THE
FILTER INTO RECORD

RECORD NEW FILE

/\ GOTO C1100>

Our program still contains repetitions. The combinations ‘‘TYPE

DATE OF SERVICING:’’—GET DATE and ‘‘TYPE MILEAGE OF

SERVICING:’’—GET MILEAGEare each used several times. They

could be done more easily with subroutines.

Wehavealready seen examples of a program going to another place

and then returning to the main selection. Subroutines also do this, but ina

slightly different way.

If we call part 1 of the outline the control routine (this is where it’s

determined whichfunction will be performed), then each routine in parts 2

and 3 is reached from the control routine and returnsto it. It’s as if the

routines that perform the functions wereright there in the control routine.

They could have been put there in the preliminary PROGRAMAP. We

didn’t do it that way because we’re too lazy to try and keeptrack of the

Car Maintenance PROGRAMAP e 247

whole thing all at once. It’s easier to break programs into smaller groups,

each performing a specific function.

The control routine embodies the whole program. It is the main part

of the structured concept. The rest of the routines merely ‘‘detail’’ the

functions that can be selected from the control routine.

Detail routines ‘‘know not from whence they come.’’ This is what

separates them from subroutines. A subroutine contains detailed opera-

tions that are encountered many times in a program. A subroutine is set up

in a way that lets you reach it from any place in the program. You return

to that same place whenever you need the automatic performance stored

there.

Our flowchart representation of a subroutine excursion consists of

two REROUTEsymbols, the first going to the subroutine and the second

returning from it. The commentspecifies which subroutine:

I/O CPU REROUTE DESCRIPTION

GOSUB

“DATE” SUBROUTINE

248 ¢ Without Me You’re Nothing

The subroutine contains the detailed operations and REROUTE

symbols from and to the program:

1/O CPU REROUTE DESCRIPTION

DATE SUBROUTINE FROM

PROGRAM

“TYPE DATE OF

SERVICING:”

GET DATE

RETURN TO PROGRAM

The mileage subroutine is the same, but with MILEAGEreplacing

DATE where appropriate and, of course, with a different series of

Statement numbers.

A final redundancy involves recording the new file on cassette tape.

This is done at the end of each RECORD MAINTENANCEroutine. We

could handle this by a subroutine, the same wayas the date and mileage.

That would involve a GOSUBto the recording steps, a return to the

maintenance routine, and then the final GOTOthe control routine.

Since the next step after recording is always a return to the control

routine, we could simply make this part of the program another detail

routine, with the last step a GOTO returning the program to the control

routine. We have chosen to put the GOSUBat the return point in the

control routine. It will go in at the start of the control routine right before

the ‘“REWIND CASSETTE” message.

The control routine PROGRAMAPnowbegins with:

Car Maintenance PROGRAMAP e 249

I/O CPU REROUTE DESCRIPTION

<

“MAKE SURE TAPE 1S REWOUND.
PRESS ‘RECORD’ SWITCHES ON
RECORDER, THEN ‘RETURN’ KEY
ON KEYBOARD.

WAIT FOR RETURN

OO
RECORD NEW FILE

Wethen go to the ‘‘REWIND CASSETTE”’ messageandtherest of

the control routine as before.

Each of these modifications has improved the program. We didn’t
require them to make the program work, but without redundantsteps the
program will be much easier to write. However, before westart to write
the program, we should make a new outline and PROGRAMAPto reflect
the improvements. This method of starting over with the outline when the
final shape of the program has been decided is what is meant by the
top-down concept.

This new outline will be more detailed than the original. The steps
have been rearranged and renumbered, and the new operations added.
PROGRAMAPandfinal program will follow the same sequence. Num-
bers on this outline will be the statement numbers of the final PRO-
GRAMAPandprogram.

Initialization is the first step. It starts with statement number 1000.

250 © Without Me You're Nothing

There are often more statementsin initializations because of DIMensions,

REMarks, readingfiles, and establishing string constants. Therefore, we

will skip 200 statement numbers(an extra 100) to the first entry point.

CAR MAINTENANCE OUTLINE

1000 Control routine—initialization

1200 Control routine reentry—recordfile

1300 Control routine reentry—rewind cassette tape

1400 Control routine reentry—modeselection

2000 Recording routine—maintenance selection

3000 Lube, oil change, and filter maintenance

4000 Brake and tire maintenance

5000 Radiator coolant maintenance

6000 Wheel bearing maintenance

7000 Display schedule

8000 Date subroutine

9000 Mileage subroutine

Other entry points appear in the program, but these are in the detail

routines and we don’t need them in the outline. When the program is

typed into the computer, statement numbersonthe outline should contain

REMswith brief descriptions of the new outline. This outline is less

verbally descriptive than the original, but its main purpose is to provide

signposts for the steps you will follow.

The PROGRAMAP, too, must be made to conform. Here’s the

reworked flowchart:

Car Maintenance PROGRAMAP e 251

1/0 CPU REROUTE DESCRIPTION

INITIALIZATION

“CAR MAINTENANCE
INSERT ‘CAR MAINTENANCEFILE’
CASSETTE INTO RECORDER AND
REWIND. PRESS ‘PLAY’ SWITCH
ON RECORDER. PRESS ‘RETURN’
KEY ON KEYBOARD.”

WAIT FOR RETURN

COPY ‘CAR MAINTENANCEFILE’

CASSETTE

CASSETTE TITLE =
‘CAR MAINTENANCEFILE’

YES:

TO €1300>

“CASSETTE MISREAD.
“RETURN AND TRY AGAIN.”

WAIT FOR RETURN

TO ©1000

NY¥NiadY¥OdLIVM

‘ASDINYALAY,SSdaudNSHL

‘A1L4SSV9GNIMA3Y,,

4JLLASSVOGNIMa3d

<008>>

J1ldGYOOsSY

WNUNLAY,YOdLIVM,=

1GHYVOEAAy
NOAa>NYNLad,NSHL‘Y3qHOO
“ddNOSAHOLIMS,QHYOO3Y,SSAYd

‘GNNOMAYSISLLASSVOAYNSAIVW,,

didQYOOSY

<>>

NOILdIYOSAd4LNOYSYAddO/I

BHulyjON]24.noXap]Inoyji/yyeZSZ

Car Maintenance PROGRAMAP e 253

1/0 CPU REROUTE DESCRIPTION

MODE SELECTION

“TYPE FIRST LETTER OF

SELECTION:

RECORD COMPLETED

MAINTENANCE

DISPLAY SCHEDULE
CHOICE:”

GET CHOICE

“R'’ TYPED?

YES: GOTO

“D" TYPED?

YES: GOTO

GOTO
(TYPING MISTAKE)

DSC

C0009OLOD-SAA

€Q4dAluM.

C000OLOD‘SSA

éG3adALude

/\

/\

camourssx/\

/\

€QadAl14,

CO000E>OLOD‘SSA

éadAl.1,()

NOILO3S14S¥OdLIVM

«~JOIOHO

ONIYVW3AdTASHM
INV10090YOLVIOVY

SaYILONVSANVUE
Y¥41714110GNV110“398nN1

-NOILO3174S40YSLL497AdAL

JONVNALNIVWG3LdIdNODQHOO03H.,,

(6662-000Z)
ANILNOYONIGYOOSY

00025

NOILdIY¥9OS3GALNOYSYNddO/|

I/O CPU REROUTE DESCRIPTION

GOTOC2000>
(TYPING MISTAKE)

LUBE & OIL (3000 - 3999)

“LUBE, OIL AND FILTER”

GET MILEAGE

<
eng

3100

“OIL FILTER CHANGED?

(YOR N):”

GET ANSWER

“N” TYPED?

REROUTE DESCRIPTION

“VvTYPED?

\°/ YES: GOTO

/\ “

REM COPY “LUBE, OIL & FILTER”
INTO RECORD

GOTO

REM COPY “LUBE & OIL”

COPY “LUBE & OIL CHANGE”INTO
RECORD

COPY AND CALCULATE NEW
DATE

MONTH <= 12?

GOTO

MONTH = MONTH ~ 12
YEAR = YEAR #1

I/O CPU REROUTE DESCRIPTION

COPY AND CALCULATE

NEW MILEAGE

BRAKES & TIRES (4000 - 4999)

eS “BRAKES AND TIRES”

@ ©

GOSUB ©9000
GET MILEAGE

COPY AND CALCULATE
NEW MILEAGE

GOTO

RADIATOR ROUTINE

(5000 - 5999)

“RADIATOR COOLANT”

GOSUB C8000

GET DATE

257

258

1/0 CPU REROUTE DESCRIPTION

COPY AND CALCULATE

NEW DATE

GOTO

WHEEL BEARINGS

(6000 - 6999)

“PACK WHEEL BEARINGS”

GOSUB C9000

GET MILEAGE

COPY AND CALCULATE

NEW MILEAGE

GOTO

DISPLAY MAINTENANCE

SCHEDULE (7000 - 7999)

“MAINTENANCE SCHEDULE”
“NEXT MAINTENANCE

MILEAGE DATE”

DISPLAY MAINTENANCE

SCHEDULE

656

YVAALAD

wtdVaAn

HLNOW40AVGL4D

wtHLNOW40AVG,

YAGWANHLNOWL345

wedAGWANHLNOW.,

(6668-0008)

ANILNOYENSALVA

NYNLAYYOdLIVM

NOILdIYOS3AG4ino¥sad

1/O CPU REROUTE DESCRIPTION

“DATE OK? (YORN):”

GET ANSWER

“N” TYPED?

GOTO C8000

“y" TYPED?

RETURN

GOTO C8100
MILEAGE SUBROUTINE
(9000 - 9999)

“THOUSANDS OF MILES?”

a, GET THOUSANDSOF MILES

I/O CPU REROUTE DESCRIPTION

“HUNDREDS OF MILES?”

——____> GET HUNDREDSOF MILES

<

“MILEAGE OK?”

(YORN):”

GET ANSWER

“N” TYPED?

/\ GOTO

€

9000

“Y" TYPED?

> RETURN

[\ ox
261

Appendix G
Car Maintenance
Program

Now,we canget into the actual program built on the PROGRAMAPin

the preceding section. This program will run on most computersfitted

with BASIC.Just type it into the computer anduse it. Our purpose wasto

supply you with an example. The techniques can be adapted to many

other uses. Study this program with the chapters on programming. You

will not only see how software appears in print, but you'll get the

essentials of an important programming format.

You don’t really need to know any more aboutthis program than how

to type it into your computer and RUNit. Many programs should be

available to you in that form. But practice getting this program to work

will teach you other things than how to make a ‘‘canned’’ program

operate.

This is a good place to advise you that once you have your own

computer, you should notbe afraid to try out someof the readily available

software that has been written for other machines. Quite often a program

written for one machine will work on the competition’s product just as

long as the same language is used.

There are, however, occasional booby traps. Manyofthose traps can

be disarmed with minor adjustments.

_ For example, if your machine has less internal storage than that

required by a particular program,it may be possible to adapt the program

to your machine by reducing the number of records to be saved, or by

splitting the program into two or more sections that can work indepen-

dently.

262

Car MaintenanceProgram ¢ 263

Don’t expect your machine to grow a printer for your bare-bones

system just because you giveit a program that requires a printer. Equally,

don’t be surprised if the output intended for a printer can be put onto a

screen with only two or three small changes.

This CAR MAINTENANCE PROGRAMwaswritten for an Apple II

computer with 48K RAM with Integer BASIC.If you have trouble putting

it into your machine, reread these paragraphs andact accordingly.

Before we get into the program, we want to take you through the

essentials about PRINT control. This is good practice and will pay off

every time you use a computer.

You already have seen the four types of PRINT statements:

1. You can print a constant string (anything in quotes).

2. You can print the numerical answerto an algebraic expression (a

numberconstant).

3. You can print the contents of a variable string.

4. You can print numerical variables.

Each time a PRINTstatementis executed,it starts printing one place

and finishes printing somewhere else. PRINT control symbols allow you

to establish where things will be printed.

Most machines use two special symbols: commas and semicolons.

These are typed immediately after the thing you are printing. A comma

causes the cursor to moveto the right for the next column. A semicolon

leaves the cursor in the position immediately to the right of the final

character printed. If neither symbol is used, the cursor movestothe left

end of the next line down on the screen endingthe line it started on.

You also have special statements that control the position of the

cursor before the PRINT statement is executed. The TAB statement

movesthe cursor to any position on the line and the VTAB movesit to the

beginning (left side) of any line onthe screen.

With that information in mind, here’s how the program goes:

If you makethe first statement of a BASIC program a DIMension

statement, the variable names that have been reserved are easily found.

You just look at the beginning of the program.

To begin, statement number 1000 is the DIMension statement. We

will come backto it from time to time and add the variable namesas they

are needed.

1000 DIM

Referring to the PROGRAMAP,youwill see that the first thing the
program does1s display thetitle and instructions on how togetthefile into

264 © Without Me You’re Nothing

storage. Your computer will have a special statement that clears the

screen of all previous material. This clear-screen statement varies from

machine to machine. It is a ‘‘machine-dependent”’ instruction, and wewill

merely bracket the required function in parentheses, leaving it to you to

find the particular instruction for your machine. It will be in your

programming manual.

1010 (clear screen)

Most machinesleave the cursorat the upper left corner of the screen

after this instruction. To make the display pleasing, the title should be

centered. Since ourtitle, CAR MAINTENANCE,hasfifteen letters and

there most often are forty character positions across a screen, thefirst

letter of the title should start in the thirteenth position. The cursor can be

movedto that position with the TAB instruction:

1020 TAB 13

Now, wedisplay the title with aPRINT instruction:

1030 PRINT “CAR MAINTENANCE”

Whenthe print statement ends without a comma or semicolon, the

cursor returns automatically to the left end of the next lower line on the

screen. However, we want somespacebelow thetitle. To get that, we use

the VTAB(vertical TAB) instruction. VTAB 4 gives us a gap of twolines

between the title and the next instruction. If your computer does not

incorporate the VTABinstruction, two PRINT “‘ ”’’ statements do the

samething.

1040 VTIAB 4

1050 PRINT “INSERT ‘CAR MAINTENANCEFILE’ CASSETTE”

Double quotation marks cannot be printed on most systems: the

apostropheis a substitute.

At this point you don’t have a ‘CAR MAINTENANCE FILE’

cassette. We’ll show you how to makeonepresently.

1060 PRINT ” INTO RECORDER ANDREWIND.”

Car Maintenance Program ¢ 265

If you wantto start a line a little to the right, it is often easier and
more readable to put a few spacesinside the quotation marks instead of
using TAB. TABs shouldbe reserved for wide gaps.

Next, we display new information. This requires another vertical
gap, just one line this time. Either PRINT ‘“ ” or VTAB 7 will work.
However, PRINT ‘‘ ’’ has the advantage of being independentof things
happening around it. You don’t have to count back the numberoflines
already used and supply an appropriate number. When PRINT ‘ ”’ is
used, there will always be one blank line between the line you havejust
completed andthe next one, evenif a line is later added or. removed.

1070 PRINT ” ”

1080 PRINT “PRESS ‘PLAY’ SWITCH ON RECORDER.”
1090 PRINT “ ”

1100 PRINT “PRESS ‘RETURN’ KEY ON KEYBOARD.”

Whenthe program is RUN,bythetimeit reachesthis point, all the
instructions necessary to copy the CAR MAINTENANCEFILEinto
internal storage will be on the screen. An INPUTstatement will Stop the
program until the person usingit is finished with the instructions. When
the RETURNkeyon the keyboardis pressed, the program continues:

1120 INPUT Z$

The variable name Z$ has not been used beforein this program. You
now can go back to the DIMension statementat the beginning andenterit.
Rememberthat when youretypethatoriginal statement number 1000, this
wipes out whatever wasalready there. Statement 1000 now lookslike
this:

1000 DIM Z$ (1)

Z$ will provide for single-letter inputs wherever they come up in the
program.

Now, since most program ‘‘bugs’’ result from typing errors rather
than mistakes in logic, it’s a good idea to try your program at various
stages. If you do too much program withouttesting it, the mistakes tend to
Stack up. Correcting them canbe tedious. But beforetesting you need an
ENDstatement:

266 © Without Me You’re Nothing

32000 END

You can type RUNat this point and see how the program is coming.

Your screen should show:

CAR MAINTENANCE

INSERT ‘CAR MAINTENANCEFILE’ CASSETTE

INTO RECORDER AND REWIND.

PRESS ‘PLAY’ SWITCH ON RECORDER.

PRESS ‘RETURN’ KEY ON KEYBOARD.

If you now press the RETURN key, the BASIC promptshould come

back because the END statement has been reached.

A look at the display on the screen tells us what to do next. Thefile

must be copied from the cassette into internal storage, another machine-

dependent operation. Your manufacturer’s manual should tell you how to

do this.

The same variables with space reserved by the DIMension statement

will be contained in the CAR MAINTENANCEFILEcassette. Since we

still don’t know all of those variables, a label will do for now to keep the

statement numberreserved:

1130 (copy car maintenancefile)

Wecan comebackto this after we know whathasto be kept in the

file.

Someidentification should be written on the outside ofall cassettes

and stored on the tapeitself. Program cassettes generally play thetitle at

the start. Data cassettes can also be identified with a title. Since we are

already calling this one CAR MAINTENANCEFILE,wecanputthis on

the tape.

Now the program can checkthe variable that containsthis identifica-

tion, making sure we have the correct tape. Here’s how the detection

routine works:

Something is checkedto seeif its value is the same as a constant that

is knownto be correct. If the values match, everything’s OK.If they're

different, something is displayed that roughly corresponds to a descrip-

Car MaintenanceProgram © 267

tion of your problem. Everything is brought to a screeching halt until the
problem is corrected.

On mostlarge computerinstallations, such problems usually crop up
around four A.M. Generally, the system programmeris rousted from the
sack by a phonecall. A frantic voice comes ontheline, often smackin the
middle of a sentence: ‘‘. . . and that’s all I did, but maybe I shouldn’t
have hit the RETURN,butit happened about an hour ago, and I’vetried
everything because I didn’t want to wake you again, and.

.

. you there?”’
The system programmerusually goes downto the computerinstalla-

tion and spends the next few daystrying (often in vain) to figure out what
happened. Of course, the main reason he became system programmer was
because he knew where to hide the working, bugless version of the
operating system—a place where nobodyelse could find it and destroy it
in the middle of a panic.

Tape verification is straightforward.
The variable nameto hold cassette identification can be JS. Addit at

the DIMension list, which now becomes:

1000 DIM 1$(20), Z$¢1)

The 20 after /$ reserves space for twenty letter inputs at this variable.
To make the comparison, you need an IF statement:

1140 IF 1$ = “CAR MAINTENANCEFILE” THEN GOTO 1300

This continues your program at the point where the REWIND
CASSETTEmessageis displayed whenthe correct information is on the
tape. If the wrong tape has been copied, chances are good that the
program would not have madeit this far because the operating system
would have discovered the mistake in the numberof bytes on the tape.It
would then have displayed a somewhat cryptic message, sending you to
your manualto find out what went wrong.

In case your system has no such error-catching features, you can
provide your own message:

1150 PRINT “CASSETTE MISREAD.”

1160 PRINT ” ‘RETURN’ “ AND TRY AGAIN.”:
1170 INPUT Z$

1180 GOTO 1010

268 ¢ Without Me You’re Nothing

This will return youto the original display, giving you another chance

to get the right cassette.

On the PROGRAMAP,thenext operation is to record thefile on the

cassette. As with copying, the recording routine varies with the machine.

1200 (clear screen)

1210 VTAB 4

1220 PRINT “MAKE SURE CASSETTE IS REWOUND.”

The sequence of clearing screen and positioning the cursor before

displaying a new instruction is quite common. It’s much like erasing the

blackboard between the history and arithmetic lessons.

1230 PRINT” ”

1240 PRINT “PRESS ‘RECORD’ SWITCHES ON RECORDER,”

1250 PRINT” THEN ‘RETURN’ KEY ON KEYBOARD.”

1260 INPUT Z$

1270 (record car maintenancefile)

The routine from 1200 through 1270 records the new version of the

file after a servicing has been recorded. This same routine can be used

later to create the CAR MAINTENANCEFILEcassette.

The 1300s just display the REWIND CASSETTE message. This 1s

needed whenthefile tape is read (when the programisfirst run) and after

recording.

1300 (clear screen)

1310 VTIAB 4

1320 PRINT “REWIND CASSETTE, THEN PRESS ‘RETURN’ KEY.”

1330 INPUT Z$

Therest of the routine lets you select which program functionto use.

The two options are (1) recording a completed new maintenance;or(2)

displaying the schedule for the next servicing.

1400 (clear screen)

1410 VIAB 4 |

1420 PRINT “TYPE FIRST LETTER OF SELECTION:”

1430 PRINT” *

1440 PRINT“ RECORD COMPLETED MAINTENANCE”

Car Maintenance Program ¢ 269

1450 PRINT” DISPLAY SCHEDULE”
1460 PRINT” ”

1470 PRINT “CHOICE: ”;4

On most systems, the semicolon Stops the cursorafter the last letter
is printed. Using it at the end ofstatement 1470 makes your reply appear
on the line with CHOICE:.

This time, the reply will be compared with the constantstrings R and
D in order to determine the next Step. If something else is typed by
mistake, the last statement loops the program back to the start of the

1480 INPUT Z$

1490 IF Z$ = “R” THEN GOTO 2000
1500 IF Z$ = “D” THEN GOTO 7000
1510 GOTO 1400

The control section is now complete.
The nextpart of the program (numbersin the 2000s) provides another

selection. Its structure is similar to that of the previous section, although
longer becausethere are more options:

2000 REM RECORDSELECTION (2000-2999)
2010 (clear screen)

2020 PRINT “RECORD COMPLETED MAINTENANCE.”
2030 VTAB 4

2040 PRINT “TYPE FIRST LETTER OF SELECTION:”
2050 PRINT” ”

2060 PRINT“ LUBE, OIL AND FILTER”

2070 PRINT” BRAKES ANDTIRES”
2080 PRINT “ RADIATOR COOLANT”
2090 PRINT ‘’ WHEEL BEARING REPACKING”
2100 PRINT’ ”

2110 PRINT “CHOICE: ”;

2120 INPUT Z$

2130 IF Z$ = “L’ THEN GOTO 3000

2140 IF Z$ = “BY” THEN GOTO 4000
2150 IF Z$ = “R’ THEN GOTO 5000
2160 IF Z$ = “W” THEN GOTO 6000
2170 GOTO 2000

270 © Without Me You’re Nothing

Again, the last statement loops us back through the display if some-

thing other than L, B, R, or W is typed.

Numbersin the 3000s are reserved for recording lube-and-oil servic-

ing.

3000 REM LUBE & OIL (3000-3999)

3010 (clear screen)

3020 PRINT “LUBE, OIL CHANGE, AND FILTER”

3030 VTAB 4

After displaying thetitle, the program detours to the date and mileage

subroutines. Each will return with the numbers typed into the integer

variables named Z(/) through Z(5).

3040 GOSUB 8000

3050 PRINT” “

3060 GOSUB 9000

3070 PRINT ”

3100 PRINT “OIL FILTER CHANGED? (Y OR N): °;

3110 INPUT Z$

This time, Z$ should contain a Y or an N. You can do this in a way

you've already used:

3120 IF Z$ = ’N” THEN GOTO 3200

3130 IF Z$ = “Y” THEN GOTO 3300

3140 GOTO 3100

Following is a different type of comparison with one less REROUT-

ing. After Y is compared, the input variable is checked to see if it’s

different from N.If it’s different, neither Y nor N were typed, andit loops

back to the question. When N is typed, instead of looping back, it

continues with the next statement:

3120 IF Z$ = “Y” THEN GOTO 3300

3130 IF Z$ < > ’N” THEN GOTO 3100

If the first method makes more sense to you, use it. The extra

statement makes no difference unless you run out of storage room when

you’ve reachedthe end of the program. In that case, the shorter version

lets you eliminate somesteps andfit the program to your machine.

Car Maintenance Program ¢ 27]

Statement 3200 puts ““LUBE,OIL FILTER” into a string named A$.If the answer to the “OIL FILTER CHANGED?” question is N, theprogram goeshere.If you did not changethefilter this time, that shouldbe done at the next lube-and-oil maintenance. With 3210 the programthen skips ahead to 3400 so that ‘LUBE AND OIL CHANGE”do notget put into A$.

3200 A$ = “LUBE, OIL & FILTER”
3210 GOTO 3400

If the OIL FILTER CHANGED?answeris Y, the filter does not have
to be changed at the next servicing, and the words ‘‘LUBE AND OIL”
are put into AS,

3300 A$ = “LUBE ANDOIL”

The rest of the lube-and-oil section copies the date and mileage from
Z(1)-Z(5) into A(1)-A(5). The dateis copiedfirst with the number 3 added
to the month number:

3400 A(T) = 2(1)+3
3410 A(2) = Z(2)
3420 A(3) = 2Z(3)

If the numberof the resulting monthis larger than 12, then 12 must be

~

monthisstill less than or equal to 12, this part is skipped in statement 3430
and the mileage is copied:

3430 IF A(1) <= 12 THEN GOTO 3500
3440 A(1) = A(1)— 12
3450 A(3) = A(3)+ 1

While the mileage is copied, 3 is added to the thousands:

3500 A(4) = Z(4)+ 3

3510 A(5) = Z(5)

3520 GOTO 1200

Statement 3520 returns us to the file-recording part of the control
routine, ending the lube-and-oil section.

972 ¢ Without Me You're Nothing

4000 REM BRAKES ANDTIRES (4000-4999)

4010 (clear screen)

4020 B$ = “BRAKES AND TIRES”

4030 PRINT B$
4040 VTAB 4
4050 GOSUB 9000
4060 B(4) = Z(4)+ 6
4070 B(5) = Z(5)
4080 GOTO 1200

The new things are the addition of a 6 instead of a3 to the thousands

integer of mileage, and Bs are used for the variable names.

Radiator coolant servicing comes up once a year. You need only the

date subroutine:

5000 REM RADIATOR (5000-5999)

5010 (clear screen)

5020 C$ = “RADIATOR COOLANT”

5030 PRINT C$

5040 VTAB 4

5050 GOSUB 8000
5060 C(1) = Z(1)
5070 C(2) = Z(2)
5080 C(3) = Z(3)+ 1
5090 GOTO 1200

The wheel bearing routine is almost identical to the brake-and-tire

routine. You add 24 to the mileage thousandsinstead of6.

6000 REM WHEEL BEARINGS (6000-6999)

6010 (clear screen)

6020 D$ = “PACK WHEEL BEARINGS”

6030 PRINT D$

6040 VTAB 4

6050 GOSUB 9000

6060 (4) = 2(4)+ 24

070 D(5) = XA(5)

6080 GOTO 1200

display the contents of the records using their respective variable names.First, you display the column headings:

7000 REM DISPLAY MAINTENANCE SCHEDULE (7000-7999)
7010 (clear screen)

7020 PRINT “MAINTENANCE SCHEDULE DATE MILEAGE”

The information in the records is then displayedline byline:

7030 VTAB 4

7040 PRINT A$, A(1);"7"A(2);"1'GA(3),A(4);",".AS)

The commas between A$ and A(/) and between A(3) and A(4) cause
the information to be displayed in columns by tabbing the function.
Semicolons keep the cursor from moving after the last character of the
preceding data has been printed. Check your manufacturer’s manual to
See if your machineusesotherprint-control characters.

The first variable, A$, contains the words ‘‘LUBE AND OIL” or
“LUBE, OIL & FILTER’’. This describes the servicing to be done by the
date and mileage shownontherestof theline.

A(/) contains the month number. The commabefcre it moves the
cursor to the beginning of the next column and the semicolon after it
prints the next part of the display immediately after the number. The ‘‘/”’
IS a constant string. This causes a slant bar (/) to be printed after the
month number. The semicolon keeps the cursor from moving, and the
A(2) prints the day number immediately after the slant bar. Another / is
printed after the day, and the A(3) prints the year after the day. The
comma moves the cursor to the next tabulation, and A(4) prints the
numberof thousandsof miles. A semicolon insures that the commawill be
printed immediately after the thousands. Finally, a semicolon puts the
hundreds digit immediately after the comma. The absence of any print-
control character at the end causes the cursor to moveto the beginning of
the next line on your screen.

The rest of the records are printed in much the same way:

7050 PRINT ”
7060 PRINT B$, B(4);”,”;B(5)
7070 PRINT” ”
7080 PRINT C$, C(1);/";C(2);"/;C(3)
7090 PRINT” ”

274 ¢ Without Me You're Nothing

7100 PRINT D$, D(4);,";D(5)

7110 VTAB 14

7120 PRINT “PRESS ‘RETURN’ TO CONTINUE.”

7130 INPUT Z$

7140 GOTO 1400

Statement 7130 stops the program until the RETURNkeyis hit. This

keeps the display on your screen until you finish looking at it. When the

RETURNkeyis hit, the program goes back to the function-selection part

of the control routine (which clears the screen). Without the INPUT

statement, the display would flash by so quickly you would not be able to

read the schedule.

This completes the schedule display section.

The two subroutinesare all that remains. First, the date subroutine:

8000 REM DATE SUBROUTINE (8000-8999)

8010 PRINT “MONTH NUMBER?”;

8020 INPUT Z(1)
8030 PRINT “DAY OF MONTH?”;
8040 INPUT Z(2)
8050 PRINT “YEAR?”;
8060 INPUT Z(3)
8100 PRINT “DATE OK? (Y OR N):”;
8110 INPUT Z$
8120 IF Z$ = “N” THEN GOTO 8000
8130 IF Z$ = “Y” THEN RETURN

8140 GOTO 8100

The date is now stored in variables Z(/) through Z(3). When Y is

typed in response to the ‘‘ DATE OK?”’ question, the first statement after

the GOSUB 8000 becomes the next step on the program. The Zs must

then be copied to the appropriate integer variables.

The mileage subroutineis similar:

9000 REM MILEAGE SUBROUTINE (9000-9999)

9010 PRINT “THOUSANDSOF MILES?";

9020 INPUT Z(4)

9030 PRINT “HUNDREDS OF MILES?";

9040 INPUT Z(5)

9100 PRINT “MILEAGE OK? (Y OR N):";

Car Maintenance Program ¢ 275

9110 INPUT Z$

9120 IF Z$ = “N” THEN GOTO 9000
9130 IF Z$ = “Y” THEN RETURN
9140 GOTO 9100

32000 END

There’s your completed program. Onceit’s in your computer,it will
keep track of the Servicing and the general maintenance on your car. You
can get at the information rapidly, changeit easily, and/or adaptit to
anothervehicle.

Whatis more important, this shows you howa general information
Storage/reminder program is written. There are many uses for such
programs—for example, work scheduling, inventory control, mainte-
nance and repair of buildings—and no doubt you can come up with
adaptations of your own.

With slight alterations, such a program could keep you posted on
whatit’s costing to operate your chariot. It also could monitorfuel costs
for your home.

Wedid not forget to complete the DIMension statement. We have put
it on the next page. Don’t lookatit just now.First, see if you can go back
through this program and supply the missing DIMensions.

276 ¢ Without Me You're Nothing

will put this program into your machine. You could just type them in

series now (after typing in the earlier parts of the program). Your

computerwill insert them in their proper order automatically.

Statements 1130 and 1270 each havefive instructions. They read and

write the information on the CAR MAINTENANCEFILEcassette.

Colons are used to separate the instructions.

1010 CALL — 936

1130 POKE 60,0: POKE 61,8: POKE 62,200: POKE 63,8: CALL — 259

1200 CALL — 936

1270 POKE 60,0: POKE 61,8: POKE 62,200: POKE 63,8: CALL — 307

1300 CALL — 936

1400 CALL — 936

2010 CALL — 936

3010 CALL — 936

4010 CALL — 936

5010 CALL — 936

6010 CALL — 936

7010 CALL — 936

POKE and CALLare explained in the computer's programming

manual. Equivalent functions are handled differently in different

machines. For an Apple II computer, these statements copy the file and

clear the screen. CALL —936 just happens to be the ‘‘clear screen”’

method on this machine. POKE ‘‘pokes’’ the required information into

storage.

Before the program will work, a CAR MAINTENANCE FILE

cassette must be made. We have allowed two hundred bytes of informa-

tion forthis file. Now that the recording routineis completed, we can use

it to make the file cassette. This will take two extra statements at the

beginning of the program.

First, we need the DIM statement (number 1000) to establish the

variable sequence. Thenthetitle must be supplied as a constant string

Car MaintenanceProgram © 277

copiedinto the tape identification variable, which is named I$. This can bedene with:

TOOT LET I$ = “CAR MAINTENANCE FILE”

Now,if we REROUTEto 1200 and put a new tape in the recorder,
the recording routine will make a tape with two hundredbytesof informa-tion on it. Thefirst twenty bytes will contain the identification CAR
MAINTENANCEFILE.Thestatement for the REROUTEis:

1002 GOTO 1200

Now,just run the program and follow the instructions on the screen
to make the file. When you are done, remove the statements 1001 and
1002 and the program canbe usedasit was intended.

In our community there is a district named Morgan Hill, which is better

known throughoutthe area as Mortgage Hill becauseofall the bank loans

on the property there. This is just another sign that mortgages are a fact of

life in our world. That’s one of the reasons we decided to include a

mortgage-calculating program in our book. You'll learn something about

such programs while you study this appendix and, when you get through,

you'll have an actual program that will tell you everything you need to

know about a mortgage except how to payit.

Wewill take it from the beginning in our top-down system—first the

outline, then the PROGRAMAP,andfinally the actual program.

The Outline

Ourobjective is to keep track of the interest paid on a mortgage. The

program should calculate the paymentif that’s unknown.It must make a

table of interest amount, the date, and the amountof the new balance. It

must show totals of interest and of principal payments.

The program will, of course, use calculations typical of the account-

ing world. These calculations must haveten digits of accuracy in orderto

insure that the cents will come outright for dollar amounts up to a million

dollars. (Who knows? There may be somehigh flyers among you. And

there is inflation.) Our program will work on a floating point system with

ten digits of accuracy.

278

ment with

Principal x

I—(14+1)-N
PMT =

where i = monthly interest,

PMT = monthly payment,
N = total numberof payments,
Principal = starting balance.

2. If amount of monthly paymentis known, calculate number of pay-
ments with program loopas follows:

XXxx B = B*(1+i)- PMT

N=N+1

If B > 0 THEN GOTO xxxx

(XXXX represents an appropriate statement numberin your program)

For this calculation, B = balance,

i = monthly interest,

PMT = monthly payment,

N = total number of payments.

Whentheloopis finished (that is, when B < = 0), the variable N will
accurately reflect the number of payments.

3. Each line (monthly):

Interest payment = (prev. bal.) x (monthlyint.)
Payment = (PMT) — (interest payment)
Balance = (prev. bal.) — (principal payment)

4. End-of-yeartotals:

Yearly interest paid = sum of monthlyinterest payments.
Yearly principal paid = sum of monthly principal payments.

280 © Without Me You're Nothing

5. End-of-contract totals:

Total interest = sum of yearly interest.

Total principal = sum of yearly principal.

Working Outline

1. Get starting balance of yearly interest.

2. If monthly payment known, getit. Otherwise get number of payments

and calculate payment.

3. Get starting month and year.

4. Calculate and display date, interest payments, and new balance. Sum

interest and principal for year totals and final total.

5. Stop when end of year. Allow keyboard input to start new year.

6. Display overall totals after last payment.

The PROGRAMAP

97C00ZDOLO0D

€000Z>OL09

SHA
éGAdALuN.

C000E>0.105

‘SAA
éG3dALWW.

«*FOIOHO
SLNAWAWd

ATHLNOW40H3AEINAN
LNNOWYVLNAWAVdATHLNOW
‘JOIOHS4OYAL1971LSYHISAdAL,,

Co0zt>

ISSYSLNIIVANNYVL395

w(%IVWANNY)

LSSYSLNIAdAL,

«IWdIONIYdLAD

«IWdIONIYdAdAL
LNAWAVdJOVOLYON,,

66v-O00L)NOILVWHO-NIAJDVOLYOW

000T>

Add

“ANILNOYNOILVZINVILINI

NOILdIYOS3qG
ALNOYsY

O/!

G86

SLNAWAVd

JOYAEWNNALVINOIVO

LINSWAVdATHLNOWLAD

weLNAWAVdATHLNOWAdAL.,

LINSAWAVdATHLNOWL395

ooo

>

0007

D

OLOD

INAWAVd

AITHLNOWSLVINOWO

SLNAWAVd30YSEWAN139

uwSLNAWAVd

40HASINANAdAL.,

SLNSWAVd40HSEWOANLAD

C0002

NOILd!H9S3d4inowsYAddO/I

E8C

C000OLOD

‘SAA

€QadALAn

YAMSNVLAD

a(NYOA)

€LO3YYHOONOILVWYOANL,

YVAALAD

w(SLISIGOML)

dVAAONILYVLS3dAL,,

HLNOWLAD

wiL-L)HASWAN

HINOWONILYVLSAdAL,,

JLVdONILYVLSL949

0007

NOILdIHYDSAGALNOYSYNdd

G
i
g
i
:

O/I

86

JONVIVE‘LAYLNISALVOLNIidd

(LINYONIYd)-1Wa=1V48

(LIIWYONIYd)HIONIHdHA)S(ONIYdYA)

(LINWLNI)-(LWdHLNW)=(LIYONIdd)

(LINWLNI)+(LNIYA)=(LNIYA)

(ALVYLNIATHLNOW),1VE=(LINVLN1)

JONVI1VE8

INNOWYLNIALVTINOTWO

INITLNIHdCO0tS>

wuLNNOWV

AONVIVaLNIALVa

$=LINd=SHLNOW“ON

%=LSAYALNI$=ONIUd.

HVAALYVISCOOISD>

SATEVIYVAAZIIVILINI

NOILVIWHO4NI
-FADVOLYOWAV14510

“SAA

éGadALuN.

NOILdIY¥OSAG43iLnowadAddO/|

G86
ud=ONIYd

$=LNI“AVAL

SANSATYVIA4dOGNNOY
(WINSONIYdYA)H(ONIYdLOL)=(ONIHdLOL)

(AINSLNIYA)+(LNILOL)=(LNILOL)

‘SIWLOLALVINDIVD

SWNSYWSACOOLI>

440GQNNOW

RBLWdLSV1ALVINDIV9

C0019OL09

“SAA

c0O<dq

O=>gd

0009

CO0zSDOLOD

LIWdLSV71ALVAINDIVS-

‘SAA
écl=>HLNOW

LtHLNOW=HLNOW

0009)0109

“SAHA
¢O=>FJONVIVE

NOILdl¥OS3GJLNOYSYAddO/I

986

wd=IWLOL

$=LSV1‘LNAWAVd.

«w$=ONIYd

$¢=INI‘IVLOL,

SIVLOL440GNNOU

€001SDOLOD

0=(INNSONIYdHA)
0=(INNSLNIYA)

|=HLNOW
l+YUWAIA=HVA

SSATAVINVAYVSAAZIIVILINI

NHALIYHOSLIVM

WYWaALXSNOdNYALAY,»

<000Z>OL09

‘SAA

é0=>AJONVIVE

NOIiLdtd0S30ainoOdsadNdOO/|

- Appendix I
Mortgage Payment
Program

You could just type this program into your machine and RUNit. Since

machinesof different manufacture have slight variations in their function

requirements, we have enclosed‘‘machine-dependent’’ functionsin paren-
theses in small letters. See statement 1010 below for an example. Check

your owner’s manual beforetrying to put this program into your machine.

1000 REM MORTGAGE PAYMENT PROGRAM

1010 (clear screen)

1020 HTAB 12

1030 PRINT “MORTGAGE PAYMENT”

1040 PRINT” ”

1050 PRINT “TYPE PRINCIPAL: “,

1060 INPUT P

1070 PRINT’ ”

1080 PRINT “TYPE INTEREST (ANNUAL %): ,

1090 INPUT|

1100 J = 1/1200

1110 PRINT” ”

1120 PRINT “TYPE FIRST LETTER OF SELECTION:”

1130 PRINT “ MONTHLY PAYMENT AMOUNT”

1140 PRINT “” NUMBER OF MONTHLY PAYMENTS”

1200 PRINT “CHOICE: “”;

1210 INPUT C$

1220 IF C$ = “M” THEN GOTO 3000

1230 IF C$ = “N’ THEN GOTO 2000

287

AVIALAVLSW3aCOOLS

dg,=(ZL$W:,AON,,=(LUSW3,100,=(OL)SW:,,d3aS,,=(6)$W

ONV,,=()$wANS,=(2$wNAL,=(D$W*,AVW.,=(S)$W

“dv,=(P)$Swvw,=(e)$w:,,dds,=(ZwNver,,=(L$wovos

(ZLI$WWIGO€0S

(Z)1(Z)S'(Z)9(Z)VWIGOZ0S

d=@Ol0S

NOILVWUOANIJOVOLIOWAV1dSIGW3a000S

OOL”YOLODOFLY

OOOLN3HL.N,,=$9SIOL

000SN3HL.A,,=$941OZLP

$9)LNdNIOLLP

(NYOA)éLDIWYODNOILWWHYOANI,,LNIAdOOLY

»nnINIdOLOP

AINdNI09047

‘14(SLIOIGOML)AW3AONILAVILSAdAL,,LNIYdOSOP

»1»INIdOVOP

dGLNdN!IO€0r

‘ynAZL-L)YAGWNNHLNOWONILAVILSSdAL,,LNIYdOZOP

»vnLNIdOLOP

JIVGONILAVIS139Wa000r

OZ0€OLODN3HLO<@JIO60€
L+N=NO80

W—(f+L)xd=8OLOE

d=9090€

O=NOSOE

SLNIWAVd4OYFEWNNSLVINDIVDWeOVOE

WLNdNIO€0€

‘,LNIWAWdATHLNOW3dAL,,LNI8dOZOE

»nLNlddOLOE

IN3WAVdAIHLNOW139WaaO00€

000rOLOD0202

(N—)J(r+L)—L/(def)=W0902

INSWAVdATHLNOWSLVINDIVDW3d0S0Z

»nvLNlddOv0Z

NLNdNIO€02

',?SINAIWAVdJOYdEWANAdAL,,LNIddO20?

»owANdOLO™

SLNIWAVd4OaSEWNN139W3a0002

00ZLOLODOVE

/

~

BSulyJON24noXapINoyjlMe§8Z

Mortgage Payment Program ¢ 289

5110 (clear screen)

5120 PRINT “PRINC = $";P, “INTEREST = “; |; ““%”

5130 M = INT (M*100+ .5)/100

5140 PRINT “NO. MONTHS =) “;N," PMT = $”;M

5150 PRINT”

5160 PRINT “DATE”, “INT”, “BALANCE”

5170 PRINT“ “, “AMOUNT”

5180 PRINT”

5200 REM PRINT LINE
5210 A(1) = B*J
5220 A(2) = M— A(1)
5230 S(1) = S(1)+ A(1)
5240 S(2) = S(2)+ A(2)
5250 B = B—A(2)
5260 C(1) = INT (A(1)*100 + .5)/100
5270 C(2) = INT(B*100 + .5)/100
5280 IF C(2) < 0 THEN C(2) = 0
5290 PRINT M$(D);“ ”;Y,C(1),C(2)
5300 IF B <= .005 THEN GOTO 6000
5310D=D+1
5320 IF D <= 12 THEN GOTO 5200
6000 REM IF B<= 0 CALCULATE LAST PAYMENT
6010 IF B > 0 THEN GOTO 6100
6020 S(2) = S(2)+ B
6030 M = INT((M+ B)*100+ .5)/100
6100 REM YEAR SUBTOTALS
6110 T(1) = T(1)+ S(1)
6120 (2) = T(2)+ S(2)
6130 S(1) = INT(S(1)*100 + .5)/100
6140 S(2) = INT(S(2)*100 + .5)/100
6150 PRINT” ”
6160 PRINT “YEAR: INT = $”;S(1);
6170 PRINT” PRINC = $”,S(2)
6180 IF B<= .005 THEN GOTO 7000
6190 PRINT” ”
6200 PRINT ” ‘RETURN’ FOR NEXT YEAR”;
6210 INPUT C$

6220 REM INITIALIZE NEXT YEAR

6230 Y= Y+ 1

6240 D= |

CN3OO0ZE

(Z)L+(1)L'.$=WLOL,,LNIYd0902

‘W',.$=LSWTILNIWAVd,,LNIddOSOZ

(Z)L'.$=DNIAd,,LNINdOVOZ

‘(CL)1F$=LNI‘IWLOL,,LNIddO€0Z

OOL/(S’+OOLAZ)LIENI=(Z)LOZOZ

OOL/(S’+OOLSCLILINI=(1)LOLOZ

SIVLOLGNVaSW3d0002

OOLSOLOD0229

0=(Z)S0979

0=(L)S0SZ9

BulyjON]34.nOXapINoyIMe067

A

accessory—any piece of equipment that is attached to a computer. Some-

times called peripheral equipment, or merely peripheral.

accumulator—special group of switches used for arithmetic and logical

manipulations of information.

action—switching operation resulting from a commandorinstruction.

adder—circuit that performs the operations necessary to add two (usually

binary) numberstogether.

address—switch pattern identifying the location of a particular piece of

information or program step.

address bus—group of wires with a voltage level corresponding to an

address(see).

ALGOL—higherlevel programming language that uses instructions espe-

cially adapted to ‘‘numbercrunching.”

alphanumeric—symbol group consisting of letters, numbers, and punctu-

ation marks.

ALU—arithmetic logic unit: consists of adder, accumulator, and control

and logic circuitry used in mathematical switching operations.

analog—continuoussignal with a voltage corresponding to a measurement

of something observed or monitored. Also, a device which, byits

performance, can represent the performance of some other device. A

model airplane can be the analogofits full-size counterpart.

analog computer—computer designed to operate directly ona continuous

voltage. Analog computers represent numbers by continuous quan-

tities, by mechanical quantities, or by models.

291

BASIC—Beginner’s All-purpose Symbolic Instruction Code: an easily
learned higher-level language designed to be used in ‘*number
crunching’’ and business-oriented problems.

BASIC, Extended—an enhanced version of BASIC that provides for
accessories andfloating-point numbers (see).

BCD—binary-coded decimal: list of switch positions correspondingto the
ten decimal digits.

binary—numbersystem in whichall digits are either Is or Os.
binary-coded decimal—see BCD.
binary digit—seebit.
bistable—electronic device having two different stable voltage outputs.
bit—dinary digit: single element of a binary numberwith a valueof either

1 or 0.

branch—synonym for REROUTEoperation.
branching—makes as muchsense as GOTOing.

Glossary © 293

BREAK (BRK)—special symbol sent from a terminal to the computer

indicating that the person using the terminalis finished.

buffer—special group of switches used to keep information until it can be

used.

bug—programerror.

bus—conductive pathwaythat distributes information to several different

devices.

bus, address—see address bus.

bus, control—see control bus.

bus, data—see data bus.

byte—group of (usually) eight bits that, when taken together, represent a

piece of information (ASCII character or binary or BCD number) or a

machine-language program step (or part of one).

C

C—a structured higher-level programming language corresponding

closely to machine language.

calculator—numeric computational device.

CALL—synonymfor detour.

card—paperrectangles with information permanently fixed to them in the

form of holes, a system rapidly being phased out.

card reader—machinethat copies information from a card by sensing the

positions of the holes.

case, lower—small letters; dates from the days of hand-set type, when the

small letters were kept in a case that was racked at a lowerposition

than the case holding thecapital letters.

case, upper—capital letters (see case, lower).

central processing unit—see CPU.

character—a single symbol.

chip—electronic circuit enclosed by a ceramicorplastic package.

circuit—electronic device performing a predetermined function.

CLK—clock: electronic device that emits electrical pulses at a specific

rate.

clock—see CLK.

COBOL—common business oriented language: a higher-level pro-
gramming language especially suited to information processing in-

stead of to numbercrunching.

294 ¢ Without Me You’re Nothing

code—symbolic representation.

command—instruction to the monitor that causes something to happen
immediately.

comparator—see relationship symbols.

comparison—determination of the relationship between two pieces of

information.

compiler—program that converts source-language statements (statements

that can be read by people) into machine-languageinstructions.

complement—a numberthe samesize as but the opposite sign of another

number.

computer—machine that automatically processes information in a pro-

grammable way.

CONTROL (CTRL)—special key on keyboard;it alters the normal switch

patterns of other keys so that they can be used as signals to the

computer.

control bus—group of conductors that transmit control signals to the

various parts of the computer.

control diagram—chart used by computer technicians; it gives correct

signals for troubleshooting the hardware.

controller—program that checks the output of a machine outside the

computer and keepsit within specified limits by changing the power

supplied to that machine.

control section—part of a program that establishes access to detail

routines.

counter—groupof switches in a circuit that accumulateselectrical pulses.

counter, program—see program counter.

CPU—central processing unit: main switching circuitry; it includes the

ALU, instruction decoder, program counter, clock, and other ele-

ments.

CRT—cathode ray tube: a glass screen upon which output informationis

displayed.

cursor—special symbol displayed on screen indicating the position where

the next character will be displayed.

cycle—the smallest complete element of a repeating electrical signal.

D

data—input information; often refers to numeric input.

data bus—conductive pathwayfor information.

Glossary © 295

debugging—processof finding and correcting program errors.

decimal—pertaining to the base-10 numbering system.

decision—programmedselection of one of two alternatives according to

the positional content of a switch or switches.

decoder—circuit that converts coded information into a form that can be

read by humans.

decoder, instruction—see instruction decoder.

decrement—the reduction of a numeric value in a set of switches by a

fixed amount.

demultiplexer—circuit that switches information to one of several de-

vices.

dendrite—branching protoplasm of the nervecell.

description—verbal plain-language explanation of a program step.

detour—the process of going to a subroutine and returning from it.

device management—software procedure for scheduling and using par-

ticular accessoriesfor different programs as these are needed.

diagram, control—see control diagram.

digit—single element of a number.

digital—relating to the separate and discrete ‘‘counting’’ numbers instead

of continuously variable numbers.

digital computer—machine that automatically processes discrete infor-

mation in a programmable way. A digital computer follows a definite

numbering system built into the hardware. It employs discrete sym-

bols.

DIM (DIMension)—higher-level language statement that sets aside

specific storage space for named variables.

discrete—numbering system in which different numbers must differ by at

least a certain definite amount.

disk—external storage accessory for a computer.

disk driver—machinethat stores information on disks.

documentation—verbal and pictorial information describing how a pro-

gram worksand what the program does.

E

editor—program that modifies textual material according to commands.

encoder—circuit that converts input information into switch patterns that

can be processed by a computer.

encoder chip—chip containing the encoder.

296 © Without Me You’re Nothing

END—statement defining the last place in a higher-level language pro-
gram.

ENTER—theprocessof transferring information into a computer.

erase—removing information from a computer.

ERR, MEM FULL—program mistake; attempting to put more information

into internal storage than can be accommodated by the storage

system.

ERR, RANGE—mistakeresulting from trying to enter a larger or smaller

numberthan allowed.

ERR, STR OVFL—(string overflow error); mistake resulting from trying

to put more information into a string than it can hold.

ERROR—nmistake in a program statement or the format of information

input.

ESCAPE (ESC)—key on the keyboard often used with other keys for

special functions.

execute—the process of running a program orpart of a program.

expression—algebraic formulation that results in a number.

Extended BASIC—an enhanced version of BASIC that permits more

high-level functions or accessories.

F

field—part of a record containing a specific type of information.

file—collection of similar records on external storage device.

firmware—machine-language program stored on ROMs.

first generation—term referring to earliest computers, which used vacuum

tubes.

flip-flop—simple storage switch.

floppy disk—small external mass-storage medium.

flowchart—pictorial representation of a program.

font—in printing, a complete assortment of type in one style andsize.

FOR... NEXT—first and last statements of a program loop.

FOR-TO-STEP—first statement of a program loop in a higher-level

language.

FORTRAN—Formula translator: higher-level language designed to

crunch numberseasily; primarily used to express computer programs

in arithmetic formulas.

Glossary © 297

G

gate—circuit performing a logical function with two or more input and one

output.

GIGO—Garbage in—garbageout: Input errors produce false answers.

glitch—a hardwareerror.

GOSUB—higher-level language statement that causes a detour.

GOTO—higher-level language statement that causes a reroute.

H

handler—program that makes an accessory work.

hard copy—output on paper.

hardware—physical piece of equipment.

hexadecimal—pertaining to a numbering system that uses sixteen digits

instead of ten.

higher-level language—programming language that uses standard written

statements that are translated by a compiler or interpreter into the

machine’s language.

holograph—three-dimensional image produced by a laser photographic

process.

housekeeping—pertaining to the ‘‘bookeeping”’ aspects of programming.

IC—integrated circuit; synonym for chip.

IF ... THEN—higher-level language statement that permits the pro-

grammedselection of one of two alternatives according to the con-

tents of a variable.

illegal operation—synonym forerror.

increment—increase of a numeric value in a set of switches by a fixed

amount.

information—that which is processed by a computer.

initialize—to start the processor in a known waythat does not have to be

repeated.

input—information put into a program.

instruction—single element of a language: a command orthe operational

part of a statement.

298 © Without Me You’re Nothing

instruction decoder—program that translates an instruction into the corre-
sponding machine operation.

instruction set—a complete language.

integer—whole numberwithoutanyfractional part.

integrated circuit—see chip.

interface—that which connects one thing to anotherthing.
interpreter—program that translates higher-level language statements one

by one into machine language. It causes each statement to be
executed before the next statementis translated.

interpretive language—higher-level programming language that is trans-
lated and executed one statement at a time.

interrupt—a signal from an accessory that stops the execution of a

program temporarily, permitting the program to transmit or receive
information from the computer.

I/O port—input/ output port; connector for an accessory.

J

joystick—input accessory that transmits to the computer the informa-

tion on howthestick has been moved.

K

K—kilo (1,024)

keyboard—the typewriterlike keys used to put information into a com-

puter.

keyboard interpreter loader—circuit that translates signals from the

keyboard into standard switch patterns and puts those patterns into

internal storage.

L

language—completeset of instructions describing standard machine oper-

ations.

LET—higher-level language instruction that copies information into a

variable.

Glossary © 299

light pen—an input accessory used with a screen;it transmits information

relative to its position on the screen.

light pencil—another nameforlight pen.

light wand—another nameforlight pen.

line printer—high-speed output accessory that prints information on

paper.

loader—program that copies other programs from an external device to

internal storage.

logic—mathematical rules governing circuit functions and program opera-

tions.

logical state—the on or off condition of a switch.

logic circuit—circuit designed to perform a specific mathematically

defined function.

lower case—see case.

loop—section of a program that can be repeated as needed;it reroutes to

an earlier step in the program.

M

machine language—complete set of instructions that the machine can

execute directly.

magnetic core—type of internal storage using small donut-shaped rings

that can be magnetized.

magnetic disk storage—synonymfordisk.

magnetic tape storage—external storage system on magnetic tape. An

ordinary cassette recorder can workasthis kind of storage system.

mass storage—external storage accessory such as disk or magnetic tape

systems.

master control program—program that controls the entire system includ-

ing accessories.

matrix—general term for coding circuits or arrays.

MEM FULL ERR—programming mistake. See ERR, MEM FULL.

memory—synonymforinternal storage.

menu—table of contents listing a program or parts of a program.

microcomputer—small- to medium-capacity computer with its majorcir-

cuitry on chips.

microcomputer chip—small-capacity computer with complete circuitry on

a single chip.

300 © Without Me You’re Nothing

microprocessor—the central processing unit (SWITCHING) of a mic-
rocomputer.

microprocessor chip—a microcomputer central processing unit on a

single chip.

mnemonic—abbreviated description of a machine-language step used in
an assembly language.

monitor—There are two different kinds: One is a piece of hardware, the

other is a type of program. The hardware monitor is the display

screen. The software monitor is a nickname for ‘‘system monitor’’

(see).

monitor program—anotherterm for ‘‘system monitor.”’

MPU—nmicroprocessor unit: see microprocessorchip.

multiplexer—circuit that takes information from any of several places and
puts it onto a single bus.

MUMPS—AMiulti-user multi-processor system: an operating system that

integrates several computer systems in a way that lets them share

informationefficiently.

N

NEW—commandin a higher-level programming language. NEW removes

previous applications programsfrom internal storage; allowing you to

put a new programintothat storage.

NEXT—higher-level language statement used at the end of a FOR...

NEXTloopto return to the start of the loop.

nibble—between a bit and a byte: a piece of information that is four bits

long.

NO END ERR—error messageindicating that a higher-level language has

no END statement where the syntax of the language requires such a

Statement.

number—a mathematical entity that may indicate quantity, value, or

amountof units.

O

object program—machine-languagetranslation of a source program (see).

operating system—group of (usually machine-language) programs that

perform housekeeping functions: run accessories, translate or inter-

pret higher-level language programs, and perform commands.

Glossary ¢ 301

operator—person using a computer.

optical scanner—input accessory that uses light to convert printed infor-

mation into switch patterns that can be processed by a computer.

OUTPUT—information transferred out of a computer to an accessory for

storage, display, or printing.

OUTPUT section—that part of a program which transfers information

from internal storage to an output accessory.

P

panel—section of a screen reservedforspecific displays.

paper tape—long thin strip of paper with information permanently stored

on it in the form of punchedholes.

paper tape reader—input accessory that copies information stored on

papertape.

parallel processing—two or more programs running at the same time ona

computer that has two or more central processors.

parity bit—an extra bit in a byte of information;it is used for verification

of the coded messagein the byte.

PASCAL—astructured higher-level programming language.

peripheral—-synonym foraccessory.

prompt—instruction or special symbol printed by the program to inform

the operator whatis needed.

pulse—electrical signal used to transmit a bit of information.

R

RAM—random-access memory: internal storage device with switches

that can be changed.

random—a group of things each element of which can be selected as

easily as any other element; a random numberis one of a sequence
believed to be free from conditions that might bias the selection of

that number.

random-access memory—see RAM. (This is actually a synonym for

direct-access memory,or direct-access storage.)
RANGE ERR—see ERR, RANGE.

read—the process of copying information from a storage or input device.
read-only memory—see ROM.

read-write memory—synonym for RAM.

302 © Without Me You’re Nothing

record—collection of information about one elementin file.

register—set of switches reserved for a special purpose.

relationship symbols—less than <

greater than >

less than or equal to < =

greater than or equal to > =

not equal to < >

REM—REMinder; REMark;a higher-level language statement used for a

description of a program operation. REMsare displayed, not other-

wise acted upon.

REROUTE—a PROGRAMAPcolumn depicting changes in the normal

sequence of a program.

RETURN—higher-level language statement used at the end of a sub-

routine; it ends the detour by rerouting to the statement following the

GOSUB. The RETURN key on a computer keyboard tells the

computerthat the operator has completed a particular operation.

ROM—read-only memory:internal storage device with stuck switches.

rotate—a machine-level instruction that shifts a group of switch patterns a

specified numberof placesto the left or right.

RUN—higher-level language commandusedtostart a program in internal

storage.

S

SAVE—higher-level language command that transmits a program from

internal storage to an external storage device.

scanner, optical—see optical scanner.

second generation—computers that used transistors rather than vacuum

tubes.

sequential logic—train of circuits in which the output of each circuit is

determined by an immediately preceding input; held to consecutive

operations.

serial processing—the manipulation of information one piece at a time.

software—programs that are used in read-write storage and that can be

modified.

solid state—semiconductor circuitry consisting of transistors, diodes,

chips, and the like.

sorting—programming process used to organize information in a way

determined by the operator.

Glossary ¢ 303

source program—untranslated version of a higher-level language program.
Source programsare written in a language the operator can read.

statement—single instruction of a higher-level language program.
storage—that part of the computer hardware where information is kept.
storage device—anyofthe internal or external pieces of hardwarein which

information is kept.
string—specific chunk of information.
string variable—chunkof information that can be referred to by name and

changed by the program.
STR OVFL ERR—see ERR, STR OVFL.
structured language—a higher-level language that uses a multilevel syn-

tactical structure.
subroutine—part of a program that is used in several different places of

the program; it is separated from the main part of the program in
order to makeit available for use at any point.

switch, two-state—simple switch with two positions called ‘‘on’’ (repre-
sented by a binary 1) and ‘‘off’’ (represented by a binary 0).

switching—information manipulation by switch patterns.
synchronous—several switching operations that happen regularly (at a

constant time interval) or predictably with respect to one another.
syntax—required structure of a command, instruction, or program.

tween accessories andinternal storage.
system software—software version of operating system (see).

T

TAB—higher-level language instruction that controls the horizontal posi-
tion where the next symbolwill be printed on a screenora printer.

teletypewriter—input and output printing terminal often used for trans-
mitting information over long-distance cables.

terminal—inputand output device with keyboardand printer or screen.
third generation—type of computer that uses integrated circuits for most

of its circuitry.
transistor—semiconductor device used for Switching in a digital com-

puter.

two-state switch—see switch, two-state.

304 © Without Me You’re Nothing

U

UNIX—multiuser operating system developed at Bell Laboratories and

based onthe structured language C.

upper case—capital letters; see case.

V

variable, string—see string variable.

variable assignment—the process of copying information into a specified

variable.

Ww

word—basic unit of information handled by a computer; it contains the

same numberofbits as there are lines on the data bus.

write—process of copying information into RAM internal storage or of

sending information to an output accessory.

FRANK HERBERT lives in Washington,the state of his birth.

He is probably most famous for his series of novels dealing

with the desert world Arrakis: Dune, Dune Messiah and Chil-

dren of Dune. These books have sold in the millions of copies.

Another novelin the series is in the works and the author has

worked on the screenplay for a movie based on the first volume

which is currently in production by Dino De Laurentiis.

Along with Max Barnard, Herbert has been devoting his

time recently to developing his own home computer system

which will operate his household appliances, manage his

finances and help him producehis books.

L
r
D
1
¥

