
Python Scrapers for Scraping
Cryptomarkets on Tor

Yubao Wu1(B), Fengpan Zhao1, Xucan Chen1, Pavel Skums1, Eric L. Sevigny2,
David Maimon2, Marie Ouellet2, Monica Haavisto Swahn3,

Sheryl M. Strasser3, Mohammad Javad Feizollahi4, Youfang Zhang4,
and Gunjan Sekhon4

1 Department of Computer Science, Georgia State University,
Atlanta, GA 30303, USA

{ywu28,pskums}@gsu.edu, {fzhao6,xchen41}@student.gsu.edu
2 Department of Criminal Justice and Criminology, Georgia State University,

Atlanta, GA 30303, USA
{esevigny,dmaimon,mouellet}@gsu.edu

3 School of Public Health, Georgia State University, Atlanta, GA 30303, USA
{mswahn,sstrasser}@gsu.edu

4 Institute for Insight, Georgia State University, Atlanta, GA 30303, USA
mfeizollahi@gsu.edu, {yzhang107,gsekhon1}@student.gsu.edu

Abstract. Cryptomarkets are commercial websites on the web that
operate via darknet, a portion of the Internet that limits the ability to
trace users’ identity. Cryptomarkets have facilitated illicit product trad-
ing and transformed the methods used for illicit product transactions.
The survellience and understanding of cryptomarkets is critical for law
enforcement and public health. In this paper, we design and implement
Python scrapers for scraping cryptomarkets. The design of the scraper
system is described with details and the source code of the scrapers is
shared with the public.

Keywords: Scraper · Cryptomarket · Tor · Darknet · MySQL

1 Introduction

The Darknet is a layer or portion of the Internet that limits the ability to trace
users’ identity. It is considered part of the deep web, which is a portion of
the Internet that is not indexed by standard web search engines. Accessing the
Darknet requires specific software or network configurations, such as Tor (“The
Onion Router”), the most popular anonymous network.

Cryptomarkets operate on the Darknet, much like eBay or Craigslist, as
commercial websites for selling illicit products, including drugs, weapons, and
pornography [1]. The first cryptomarket, Silk Road [2,3], launched in early 2011
and operated until October 2013, when the website was taken down by the
Federal Bureau of Investigation (FBI) following the arrest of the site’s founder,
c© Springer Nature Switzerland AG 2019
G. Wang et al. (Eds.): SpaCCS 2019, LNCS 11611, pp. 244–260, 2019.
https://doi.org/10.1007/978-3-030-24907-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24907-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-24907-6_19


Python Scrapers for Scraping Cryptomarkets on Tor 245

Ross Ulbricht. However, new cryptomarkets have proliferated in the wake of Silk
Road’s demise [4], presenting an increasingly serious challenge to law enforce-
ment and intelligence efforts to combat cybercrime [5]. We have documented at
least 35 active cryptomarkets as of February 2019. Figure 1 shows the homepage
of Dream Market, the largest cryptomarket at present. The link address ending
with “.onion” indicates that it is a hidden web service in the Tor anonymous
network. A hidden service in Tor means the identity (IP address or location) of
any web server is hidden. From Fig. 1, we can see that Dream Market offers five
categories of products including Digital Goods, Drugs, Drugs Paraphernalia, Ser-
vices, and Other. Table 1 shows the subcategories and number of corresponding
advertisements within each parent category. From Table 1, we can see that the
illicit products include hacking tools, malware, stolen credit cards, drugs, and
counterfeit products. Table 2 shows the largest seven cryptomarkets at present
according to the total number of ads listed in each market. All cryptomarkets
offer similar categories of products.

Fig. 1. The homepage of Dream market

The onion routing (Tor) system is the most popular anonymous network for
accessing these cryptomarkets. Tor conceals users’ activities through a series of
relays called “onion routing,” as shown in Fig. 2. The decentralized nature of
peer-to-peer networks makes it difficult for law enforcement agencies to seize
web hosting servers, since servers are potentially distributed across the globe.
Payments are made using cryptocurrencies like Bitcoin. Since both cryptomar-
kets and cryptocurrencies are anonymous, there are minimal risks for vendors
selling illicit products on the Darknet.

The surveillance and understanding of cryptomarkets within the context
of drug abuse and overdose is critical for both law enforcement and public



246 Y. Wu et al.

Table 1. Categories of products in Dream market

Categories Sub-categories

Digital Goods 63680 Data 2709, Drugs 587, E-Books 14918, Erotica 2819,
Fraud 4726, Fraud Related 11086, Hacking 2654,
Information 16206, Other 2051, Security 570, Software
1940

Drugs 87943 Barbiturates 49, Benzos 4031, Cannabis 29179,
Dissociatives 3258, Ecstasy 11672, Opioids 5492,
Prescription 5559, Psychedelics 6349, RCs 646, Steroids
4090, Stimulants 14296, Weight loss 220

Drugs Paraphernalia 401 Harm Reduction 65

Services 6166 Hacking 689, IDs & Passports 1545, Money 1432, Other
897, Cash out 1012

Other 7645 Counterfeits 4233, Electronics 257, Jewellery 1391, Lab
Supplies 109, Miscellaneous 620, Defense 376

Fig. 2. The onion routing system

Table 2. Cryptomarkets

Cryptomarkets #Ads

Dream 165, 835

Berlusconi 38, 270

Wall Street 16, 766

Valhalla 11, 023

Empire 9, 499

Point Tochka 6, 358

Silk Road 3.1 5, 657

health [3,6–8]. Enhanced surveillance capabilities can gather information, pro-
vide actionable intelligence for law enforcement purposes, and identify emerging
trends in substance transactions (both licit and illicit) that are contributing to
the escalating drug crisis impacting populations on a global scale. The absence
of a systematic online drug surveillance capability is the motivational catalyst
for this research, which is the development of an online scraping tool to employ
within cryptomarkets.

In this paper, we develop scrapers for the seven largest cryptomarkets shown in
Table 2.The scrapeddata are stored in aMySQLdatabase.Details surrounding the
computational development and capacity used in the scraper design are described.
To the best of our knowledge, this is the first Python package created specifically
for scraping multiple cryptomarkets to investigate drug-related transactions. The
scraper source code is publicly available upon request. (Send correspondence to
scraper.crypto@gmail.com with your name, position, and affiliation. We will send
you a link for downloading the source code upon verification).



Python Scrapers for Scraping Cryptomarkets on Tor 247

2 System Overview

Figure 3 shows the system networking framework. Our Python scraper programs
run in an Ubuntu operating system (OS). For the convenience of sharing, we use
VirtualBox and Ubuntu virtual machine. Since VirtualBox can be installed on
any OS, students can easily import our virtual machine and start using the
scrapers without the need for further coding or configurations. The university
security disallows the Tor connection. Therefore we use Amazon Web Service
(AWS) as a proxy for visiting Tor. The scraped data is uploaded into a local
database server hosted at the university data center. All data will be uploaded
into the database server and no data will be stored in students’ local computers.
The system is designed to allow multiple students to run the scrapers simulta-
neously. The scraper will check whether a webpage exists in the database before
scraping the webpage in order to avoid scraping duplicate webpages.

Fig. 3. The system networking framework

The scraping system consists of scraping and parsing stages. In the scraping
stage, the scraper program will navigate through different webpages within a
cryptomarket. The scraper uses the Selenium package to automate the Firefox
browser to navigate through different webpages, download the html files, and
upload them into the MySQL database. Most cryptomarkets like Dream Market
require users to input CAPTCHAs after users browse a predetermined number of
webpages. Cracking CAPTCHAs automatically is not an easy task and different
markets utilize different types of CAPTCHAs. Therefore the scraper is delayed
until human operators are able to manually input the required CAPTCHAs to
extend browsing time allowance. In the parsing stage, the program will auto-
matically parse the scraped html files and automatically insert the extracted
information into structured database tables.

3 Scraping Stage

In order to scrape the cryptomarkets, the computer needs to be connected to
the Tor network. Because the university security disallows Tor connections, we
use AWS as a proxy to connect to Tor, as shown in Fig. 3.



248 Y. Wu et al.

AWS Setup: We register an AWS account and launch an instance of EC2
t2.micro Ubuntu 18.04 with 1 CPU, 1 GB memory, and 30 GB disk, which is
free for 1 year. The download speed is about 970 Mbit/s and the upload speed is
about 850 Mbit/s. In the EC2 Dashboard webpage, we add Custom TCP Rule
for ports 9001 and 9003 from anywhere to the Inbound of the security group.
To install Tor on the server, we use Tor Relay Configurator [9], where we select
“Ubuntu Bionic Beaver (18.04 LTS)” for the Operating System, “Relay” for the
Tor node type. We do not choose “Exit Node” since AWS disallows Tor exit nodes
because of the potential abuse complaints [10]. We leave ORPort and DirPort as
defaults and set the total monthly traffic limit to 500 GB, maximum bandwidth
to 1 Mbit/s, and maximum burst bandwidth to 2 Mbit/s. After clicking on the
Submit button, users will receive a command starting with “curl.” Running that
command in the terminal of the AWS server will install Tor. After Tor is installed,
comment “SocksPort 0” in the Tor configuration file “/etc/tor/torrc” to allow
SOCKS connection [11,12]. Users must then type “sudo ss -n -p state listening src
127.0.0.1” to make sure that Tor is listening to port 9050 for SOCKS connection.
Restarting Tor service by “sudo service tor restart” will display the message
“Self-testing indicates your ORPort is reachable from the outside. Excellent.
Publishing server descriptor.” in the log file “/var/log/tor/notices.log”. This
means Tor is successfully installed. Three hours after Tor installation, you will
find it in Tor Relay Search website by searching the nickname [13].

Python Scraper: Part 1: Tor Network Connection: Users can now con-
nect the local Ubuntu virtual machine to the AWS server through SOCKS via
command

$ sshubuntu@serverid.amazonaws.com -i key.pem -L50000:localhost:9050 -f -N
Replace “serverid” and “key.pem” with your own server’s information. Users

can test the Tor connection by opening a Firefox browser and set the “Pref-
erences - General - NetworkSettings” to “ManualProxyConfiguration - Sock-
sHost:127.0.0.1 - Port:50000” and “Yes: Proxy DNS when using SOCKS v5”.
After that, check the status of the Tor connection by visiting the website [14] in
Firefox.

In Python, we use os.system(“ssh . . . ”) command to connect to the AWS
server. To setup the SOCKS connection, we first create an instance of the Sele-
nium Webdriver by “aProfile = webdriver.FirefoxProfile()”, and then set up the
preferences in Table 3 through “aProfile.set preference(Preference, Value)”.

Table 3. Network configurations for connecting to Tor in Python

Preference Value Meaning

network.proxy.type 1 Use manual proxy configuration

network.proxy.socks 127.0.0.1 SOCKS host

network.proxy.socks port 50000 The port used the SSH command

network.proxy.socks remote dns True Proxy DNS when using SOCKS v5

network.dns.blockDotOnion False Do not block .onion domains



Python Scrapers for Scraping Cryptomarkets on Tor 249

Firefox is the best option for connecting to Tor since Tor browser is modified
from Firefox. Firefox is more friendly for Linux than Windows OS. Therefore we
implement the Python scrapers in Ubuntu OS.

Python Scraper: Part 2: Database Design and Connection: Our database
server has CentOS 7 and MariaDB, which is a fork of MySQL. We run the com-
mand “mysql -u root -q” in the terminal to connect to the MySQL database.
We first create a database for the scraping stage by command “CREATE
DATABASE cryptomarket scraping;”. Our scrapers run on local Ubuntu vir-
tual machines, which will remotely connect to the database server. To enable
remote database connection, we run the command “grant all on cryptomar-
ket scraping.* to ‘user’ identified by ‘passwd’;” in the terminal of the database
server. Table 4 shows the seven tables in the cryptomarket scraping database.

Table 4. Tables in the cryptomarket scraping database

Table name Table content

cryptomarkets list List of cryptomarkets

product list List of unique products

product desc scraping event Events of scraping product descriptions

product rating scraping event Events of scraping product ratings

vendor list List of unique vendors

vendor profile scraping event Events of scraping vendor profiles

vendor rating scraping event Events of scraping vendor ratings

Table 5 shows the description of the “cryptomarkets list” table. Information
on the seven cryptomarkets is inserted manually. The scraper program will read
the table and retrieve the market URL, username, and password information to
navigate to and log into the market website.

Table 5. Description of the “cryptomarkets list” table

Field Type Null Key Default Extra

cryptomarket global ID int(11) NO PRI NULL auto increment

cryptomarket name varchar(256) NO UNI NULL

cryptomarket name abbr varchar(2) NO UNI NULL

cryptomarket url text NO NULL

my username text YES NULL

my password text YES NULL

Table 6 shows the description of the “product list” table. It stores the infor-
mation of products and helps avoid scraping the same product multiple times.



250 Y. Wu et al.

The fields whose names start with “my lock” are used for concurrent writ-
ing. Table 7 shows the description of the “product desc scraping event” table.
It stores the events of scraping product webpages and maintains the scraping
history. The scraped html files are stored in the file system and the html file
paths are stored in the “product desc file path in FS” field. Table 8 shows the
description of the “vendor list” table. It stores the information of vendors and
helps avoid scraping duplicate vendors. Table 9 shows the description of the
“vendor rating scraping event” table. It stores the fields from scraping vendor
webpages. The descriptions of the “product rating scraping event” and “ven-
dor profile scraping event” tables are omitted.

Table 6. Description of the “product list” table

Field Type Null Key Default Extra

product global ID int(11) NO PRI NULL auto increment

cryptomarket global ID int(11) NO MUL NULL

product market ID varchar(256) NO NULL

last scraping time pr text YES NULL

my lock pr tinyint(1) NO 0

last scraping time pd text YES NULL

my lock pd tinyint(1) NO 0

The scraped html files are saved to the disk of the database server and
the full paths of the html files are stored in the table. For example, the “ven-
dor rating file path in FS” field in the “vendor rating scraping event” table con-
tains the full path of the html files. In the parsing stage, the program will read
and parse the html files.

In Python, we import the mysql and mysql.connector packages for MySQL
connections. Specifically, we call the “aDB = mysql.connector.connect(host,
user, passwd, database, port, buffered)” function to connect to the database
server. The database cursor can thus be obtained by “aDBCursor =
aDB.cursor(dictionary=True)”. We can execute any SQL commands by calling
the “aDBCursor.execute(aSQLStatement)” function, where “aSQLStatement”

Table 7. Description of the “product desc scraping event” table

Field Type Null Key Default Extra

scraping event ID product int(11) NO PRI NULL auto increment

product global ID int(11) NO MUL NULL

scraping time text NO NULL

product desc file path in FS text YES MUL NULL



Python Scrapers for Scraping Cryptomarkets on Tor 251

Table 8. Description of the “vendor list” table

Field Type Null Key Default Extra

vendor global ID int(11) NO PRI NULL auto increment

cryptomarket global ID int(11) NO MUL NULL

vendor market ID varchar(256) NO NULL

last scraping time vr text YES NULL

my lock vr tinyint(1) NO 0

last scraping time vp text YES NULL

my lock vp tinyint(1) NO 0

Table 9. Description of the “vendor rating scraping event” table

Field Type Null Key Default Extra

scraping event ID vendor int(11) NO PRI NULL auto increment

vendor global ID int(11) NO MUL NULL

scraping time text NO NULL

vendor rating file path in FS text YES MUL NULL

represents a SQL statement. In the scraper program, we execute the SELECT,
INSERT, and UPDATE statements. To fetch the data records, we call the
“aDBCursor.fetchone()” or “aDBCursor.fetchall()” function. After we finish the
operation, we always call the “aDB.close()” function to close the connection.
Please refer to the source code for more details.

The “cryptomarket scraping” database stores the data scraped from all seven
cryptomarkets since all markets contain products, vendors, and ratings. There-
fore, in Python, we design a class containing the MySQL functions, which is
independent of the scraper classes of different cryptomarkets. Each scraper class
will call the MySQL functions to interact with the database.

Python Scraper: Part 3: Scraper Design
The seven cryptomarkets in Table 2 can be categorized into two groups. Dream,
Berlusconi, Valhalla, Empire, Point Tokcha, and Silk Road 3.1 belong to the first
group. Wall Street itself belongs to the second group. The two market groups
differ in how the webpages are navigated. In the first group, changing the URL
will navigate to different pages. For example, in Dream Market, the following
link is the URL of page 2 of products.

http://effsggl5nzlgl2yp.onion/?page=2&category=103
We can change the page value to navigate to different pages. However, in

Wall Street, the URL does not contain page information. We always get the
same link:

http://wallstyizjhkrvmj.onion/index

http://effsggl5nzlgl2yp.onion/?page=2&category=103
http://wallstyizjhkrvmj.onion/index


252 Y. Wu et al.

Table 10. Properties of cryptomarkets

cryptomarkets login CAPTCHA

Dream Yes Yes

Berlusconi Yes No

Wall Street Yes Yes

Valhalla No No

Empire Yes Yes

Point Tochka Yes No

Silk Road 3.1 No Yes

This URL will not change when we click on the “Next (page)” button. Based
on the above observations, we design two scraping strategies: 1. Scraping the
webpages of products and vendors on one product-list page first, and then nav-
igating to the next product-list page; 2. Navigating multiple product-list pages
first, and then scraping the webpages of products and vendors listed in those
product-list pages. Strategy 1 is used for the cryptomarkets in group 1. Strategy
2 is only used for Wall Street (group 2). Following these strategies, we design a
Python scraper program for each cryptomarket.

CAPTCHA is an acronym for “completely automated public Turing test to
tell computers and humans apart”. It is a challenge-response test used in com-
puting to determine whether or not the user is human. Different cryptomarkets
require different types of CAPTCHAs. The CAPTCHAs are the major obsta-
cle in scraping the websites. In our scrapers, we rely on humans to input those
CAPTCHAs. The scraping program will stall whenever it encounters a webpage
requiring CAPTCHAs. We use the explicit wait method provided in the Selenium
package. More specifically, we call the “aWait=WebDriverWait(aBrowerDriver,
nSecondsToWait)” and “aWait.until (EC. element to be clickable(. . . ))” func-
tions. The program will wait until some element that never appears in the web-
page containing CAPTCHAs appears in the new webpage and is clickable. Since
the speed of loading an .onion webpage is slow, waiting for a short time period like
2 s before extracting the product and vendor information will help reduce program
errors. During the experiments, we find that Dream, Wall Street, Empire, and Silk
Road 3.1 markets require CAPTCHAs, but Berlusconi, Point Tochka, and Val-
halla markets do not require CAPTCHAs. We also find that Dream, Wall Street,
Empire, Berlusconi, and Point Tochka markets require logins, but Silk Road 3.1
and Valhalla do not require logins. Table 10 summarizes these properties.

4 Parsing Stage

In the parsing stage, we implemented the Python parser programs to read the data
stored in the “cryptomarket scraping” database, parse various information from
the html files, and store the parsed data into the “cryptomarket parsed” database.



Python Scrapers for Scraping Cryptomarkets on Tor 253

Python Parser: Part 1: Database Design: All cryptomarkets contain the
webpages for products and vendors. In the product webpages, product title,
description, vendor, price, shipping, and rating information are shown. In the
vendor webpages, vendor name, profile, sales records, and rating information
are shown. Therefore we create the “product descriptions” table and the “ven-
dor profile” table to store the product and vendor information respectively. We
notice that the rating information is usually shown in tables in the product or
vendor webpages since vendors have an incentive to maintain their reputation.
Therefore, we created two more tables for storing ratings. An additional table is
created for memorizing the progress of the parser. Table 11 shows the five tables
created in the “cryptomarket parsed” database.

Table 11. Tables in the “cryptomarket parsed” database

Table name Table content

parser progress The progress of parsing

product descriptions Product descriptions

product ratings Ratings on products’ webpages

vendor profiles Vendor profiles

vendor ratings Ratings on vendors’ webpages

Table 12 shows the “parser progress” table. It is used for memorizing the
progress of the parser. If the program is interrupted by unexpected issues, the
parser can continue parsing the htmls file from where it stopped.

Table 12. Description of the “parser progress” table

Field Type Null Key Default

last parsed scraping event ID pd int(11) YES NULL

last parsed scraping event ID pr int(11) YES NULL

last parsed scraping event ID pd 4pr int(11) YES NULL

last parsed scraping event ID vp int(11) YES NULL

last parsed scraping event ID vr int(11) YES NULL

last parsed scraping event ID vp 4vr int(11) YES NULL

Tables 13 and 14 show the partial descriptions of the “product descriptions”
table and the “vendor profiles” table respectively. Some fields are omitted.
Table 15 shows the description of the “product ratings” or “vendor ratings”
table. These two tables both contain ratings and have the same description.



254 Y. Wu et al.

Table 13. Description of the “product descriptions” table

Field Type Null Key Default Extra

index pd int(11) NO PRI NULL auto increment

scraping time varchar(256) NO NULL

cryptomarket global ID int(11) NO NULL

product global ID int(11) NO NULL

vendor global ID int(11) NO NULL

vendor market ID varchar(256) NO NULL

vendor market name varchar(256) NO NULL

product title varchar(256) NO NULL

product desc text YES NULL

price bitcoin float YES 0

price usd float YES 0

price eur float YES 0

ships to varchar(256) NO NULL

ships from varchar(256) NO NULL

escrow varchar(256) NO NULL

category varchar(256) NO NULL

num sales int(11) NO 0

num stock int(11) NO 0

Table 14. Partial description of the “vendor profiles” table

Field Type Null Key Default Extra

index vp int(11) NO PRI NULL auto increment

scraping time varchar(256) NO NULL

cryptomarket global ID int(11) NO NULL

vendor global ID int(11) NO NULL

vendor market ID varchar(256) NO 0

vendor profile text YES NULL

terms conditions text YES NULL

join date member since varchar(256) YES NULL

last active date varchar(256) YES NULL

pgp text YES NULL

num orders completed int(11) YES 0

num orders open int(11) YES 0



Python Scrapers for Scraping Cryptomarkets on Tor 255

Table 15. Description of the “product ratings” or “vendor ratings” table

Field Type Null Key Default Extra

index pr int(11) NO PRI NULL auto increment

cryptomarket global ID int(11) NO NULL

vendor global ID int(11) NO NULL

buyer market ID varchar(256) NO NULL

rating stars float YES 0

text comments text YES NULL

post date varchar(256) YES NULL

money bitcoin float YES 0

buyer total num of orders int(11) YES 0

buyer total value of orders int(11) YES 0

product global ID int(11) YES NULL

Python Parser: Part 2: Parser Design: We use polymorphism to design
the parsers. We first create a base class called “parser base”. In the base class,
we create a member variable for each field of the tables in the “cryptomar-
ket parsed” database. In the Python source code, the member variables always
start with “m ”. In the base class, we implement all database related functions.
For example, the “insert one product rating()” function will insert a product
rating into the “product ratings” table. In the base class, we also design four
abstract functions:

1. def parse one html product descriptions(self): pass
2. def parse one html product ratings(self): pass
3. def parse one html vendor profiles(self): pass
4. def parse one html vendor ratings(self): pass

Each cryptomarket website has its own design. Therefore, we need to design
a parser for each cryptomarket. For each cryptomarket, we design a child class
inheriting from the base class. For example, the parser class for Dream Market is
defined as “class parser dream(parser base):”. In each of the seven child classes,
we only implement the above four abstract parsing functions.

When parsing an html file, we use the BeautifulSoup package. Once a
html file is read by “aFile = open(filename, encoding=‘utf-8’)”, we directly
convert it into a BeautifulSoup instance by “aBS = BeautifulSoup(aFile, fea-
tures=‘html.parser’)”. Then, we call “aBS.findChild(. . . )” to find a single ele-
ment or “aBS.findChildren(. . . )” to find a set of elements in the html file, and
then obtain data for different columns of the tables. Regular expressions are
useful for finding elements satisfying certain conditions. For example, we call
“aBS.findChildren(‘a’, {‘herf’: re.compile(‘http://.*’)})” to find all ‘a’ elements
whose ‘href’ attributes start with “http://”. Please see the Python source code
for more examples.



256 Y. Wu et al.

After we implement the scrapers for the cryptomarkets, we can start parsing
product descriptions, product ratings, vendor profiles, and vendor ratings. We
create a Python file for each task. In each file, the program reads the records
one by one from a table, identifies the cryptomarket, and calls the corresponding
parsing function to parse the html file. The parsing results will be inserted into
one of the four tables: product descriptions, product ratings, vendor profiles,
and vendor ratings.

Fig. 4. The screenshot of the “product descriptions” table in MySQL Workbench

5 Experimental Results

One student runs the scrapers for two weeks and inputs many CAPTCHAs. The
total number of hours for scraping the data is about 70 h. The parsing stage only
costs several hours and is automatic without human intervention. Table 16 shows
the numbers of data records in the tables in the “cryptomarket parsed” database.
From Table 16, we can see that the student has scraped 26,190 products, 3,950
vendors, 119,934 product ratings, and 626,850 vendor ratings. The dataset can
be easily shared with other researchers through MySQL Workbench.

Table 16. Statistics of the data

Table name #records

product descriptions 26,190

product ratings 119,934

vendor profiles 3,950

vendor ratings 626,850



Python Scrapers for Scraping Cryptomarkets on Tor 257

Figure 4 shows a screenshot of the “product descriptions” table. In Fig. 4,
each row represents a product and each column represents a property of the
product. Empty cells indicate missing values. The “product desc” column usually
contains a long text description of a product.

Figure 5 shows a screenshot of the “product ratings” table. In Fig. 5, each
row represents a product rating and each column represents a property of the
rating. From Fig. 5, we can see that each rating contains the vendor, buyer, date,
rating stars, comment, money, and product information. Each rating actually
represents one transaction. The buyer IDs are masked for privacy protection.

Fig. 5. The screenshot of the “product ratings” table in MySQL Workbench

Figure 6 shows a screenshot of the “vendor profiles” table. In Fig. 6, each
row represents a vendor and each column represents a property of the vendor.
The “vendor profile” and “term conditions” are two similar properties. Some
cryptomarkets call it “vendor profile” while others call it “term conditions”.
They both contain the long text descriptions of a vendor, which usually contains
rich information about the vendor.

Figure 7 shows a screenshot of the “vendor ratings” table. In Fig. 7, each
row represents a vendor rating and each column represents a property of the
rating. Each rating contains the vendor, buyer, date, rating stars, and money
information. Similar to the ratings in the “product rating” table, each rating
here still represents one transaction. But the product information is usually not
provided in the “vendor ratings” table in most cryptomarkets. The buyer IDs
are also masked for privacy protection.

We further perform preliminary analysis and visualization on the parsed data.
We first count the number of ads in each country. We use the “ship from” infor-
mation to determine the country of an ad. Note that some vendors may provide
fake information, e.g., they are in France but they claim Germany. In this work,
we did not analyze the authenticity but it is an interesting problem. Figure 8
shows the global distribution of ads across the largest seven cryptomarkets.



258 Y. Wu et al.

Fig. 6. The screenshot of the “vendor profiles” table in MySQL Workbench

Fig. 7. The screenshot of the “vendor ratings” table in MySQL Workbench

The hue is proportional to the number of ads. We can see that a large number
of ads are from USA, UK, Australia, Germany, and Canada. A small number of
ads are from Russia because we did not scrape the Russian cryptomarket called
the Black Market.

We further construct a social network among buyers and vendors. Each node
represents a buyer or a vendor, and each edge represents that a buyer orders
products from a vendor. The ordering information is collected from the feedback
ratings. Figure 9 shows a subgraph of the social network in the Dream Mar-
ket. The purple nodes represent vendors and the white nodes represent buyers.
The buyer IDs are masked and only the initial and last letters are visible. The
ten vendors all sell digital goods. From Fig. 9, we can observe the community
structures among buyers. Most buyers only buy from one vendor, and only a
few buyers buy from more than one vendor. We will analyze the collected data
further and discover more patterns.



Python Scrapers for Scraping Cryptomarkets on Tor 259

Fig. 8. The global distribution of ads across the largest seven cryptomarkets

Fig. 9. The social network between buyers and vendors in the Dream Market



260 Y. Wu et al.

6 Conclusion

Cryptomarket websites contain rich information about illicit criminal activities.
It is urgent to develop scrapers to collect data from cryptomarkets and then
develop AI algorithms for assembling intelligence from the data. In this paper,
we design and implement Python scrapers for scraping the seven largest cryp-
tomarkets. This work demonstrates the effectiveness and efficiency of the devel-
oped scrapers and provides the foundation for the next stage of data analysis.
The source code of the scrapers is publicly available.

References

1. Martin, J.: Drugs on the Dark Net: How Cryptomarkets are Transforming the
Global Trade in Illicit Drugs (2014)

2. Aldridge, J., Décary-Hétu, D.: Not an ‘Ebay for Drugs’: the Cryptomarket ‘Silk
Road’ as aparadigm shifting criminal innovation. Available at SSRN 2436643
(2014)

3. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International Conference on World
Wide Web, pp. 213–224. ACM (2013)

4. EMCDDA: Europol: DarkNet markets ecosystem – lifetimes and reasons for closure
of over 100 global darknet markets offering drugs, sorted by date (2018)

5. European Monitoring Centre for Drugs and Drug Addiction and Europol: Drugs
and the DarkNet: perspectives for enforcement, research and policy (2017)

6. DarkNet Market Archives (2013–2015). https://www.gwern.net/DNM-archives.
Accessed 12 Feb 2019

7. Lawrence, H., Hughes, A., Tonic, R., Zou, C.: D-miner: a framework for mining,
searching, visualizing, and alerting on darknet events. In: 2017 IEEE Conference
on Communications and Network Security (CNS), pp. 1–9. IEEE (2017)

8. Hayes, D., Cappa, F., Cardon, J.: A framework for more effective dark web mar-
ketplace investigations. Information 9(8), 186 (2018)

9. Tor Relay Configurator. https://tor-relay.co/. Accessed 15 Feb 2019
10. Tor Good Bad ISPs. https://trac.torproject.org/projects/tor/wiki/doc/

GoodBadISPs. Accessed 15 Feb 2019
11. Tor Relay Guide. https://trac.torproject.org/projects/tor/wiki/TorRelayGuide.

Accessed 15 Feb 2019
12. Tor Manual. https://www.torproject.org/docs/tor-manual.html.en. Accessed 15

Feb 2019
13. Tor Relay Search. https://metrics.torproject.org/rs.html. Accessed 15 Feb 2019
14. Check Tor Connection. https://check.torproject.org. Accessed 15 Feb 2019

https://www.gwern.net/DNM-archives
https://tor-relay.co/
https://trac.torproject.org/projects/tor/wiki/doc/GoodBadISPs
https://trac.torproject.org/projects/tor/wiki/doc/GoodBadISPs
https://trac.torproject.org/projects/tor/wiki/TorRelayGuide
https://www.torproject.org/docs/tor-manual.html.en
https://metrics.torproject.org/rs.html
https://check.torproject.org

	Python Scrapers for Scraping Cryptomarkets on Tor
	1 Introduction
	2 System Overview
	3 Scraping Stage
	4 Parsing Stage
	5 Experimental Results
	6 Conclusion
	References




