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Abstract—In this work, we unveil new privacy threats against
Voice-over-IP (VoIP) communications. Although prior work
has shown that the interaction of variable bit-rate codecs and
length-preserving stream ciphers leaks information, we show
that the threat is more serious than previously thought. In par-
ticular, we derive approximate transcripts of encrypted VoIP
conversations by segmenting an observed packet stream into
subsequences representing individual phonemes and classifying
those subsequences by the phonemes they encode. Drawing on
insights from the computational linguistics and speech recog-
nition communities, we apply novel techniques for unmasking
parts of the conversation. We believe our ability to do so
underscores the importance of designing secure (yet efficient)
ways to protect the confidentiality of VoIP conversations.

I. INTRODUCTION

Over the past decade, Voice-over-IP (VoIP) telephony has

witnessed spectacular growth. Today, VoIP is being used

everywhere, and is making steady headway as a replacement

for traditional telephony in both the residential and commer-

cial sectors. The popularity of free online services such as

Skype, Fring, and Google Talk is a case in point. Indeed,

several analysts predict that VoIP will remain the fastest

growing industry over the next decade, and some forecast

that the subscriber base will top 225 million by 2013.1 Yet,

even with this widespread adoption, the security and privacy

implications of VoIP are still not well understood. In fact,

even with the attention VoIP security (or lack thereof) has

received in the past, the concerns have mostly centered on

the lack of authenticity in the call setup phases of the signal

and session negotiation protocol(s) or susceptibility to denial

of service attacks [33]. Regarding the confidentiality of the

data streams themselves, the prevailing wisdom is that, due

to the open nature of traffic traveling over the Internet, VoIP

packets should be encrypted before transmission.

However, current practices for encrypting VoIP pack-

ets have been shown to be insufficient for ensuring pri-

vacy. In particular, two common design decisions made in

VoIP protocols—namely, the use of variable-bit-rate (VBR)

codecs for speech encoding and length-preserving stream

1See, for example, Infonetics Research’s VoIP and UC Services and

Subscribers Report at http://www.infonetics.com.

ciphers for encryption—interact to leak substantial infor-

mation about a given conversation. Specifically, researchers

have shown that this interaction allows one to determine the

language spoken in the conversation [55], the identity of

the speakers [2, 41], or even the presence of known phrases

within the call [56].

Rightfully so, critics have argued that the aforementioned

threats do not represent a significant breach of privacy. For

example, the language of the conversation might easily be

determined using only the endpoints of the call—a call

from Mexico to Spain will almost certainly be in Spanish.

While the identification of target phrases is more damning,

it still requires the attacker to know (in advance) what she

is looking for within the stream. In this work, we make no

such assumption about a priori knowledge of target phrases.

Rather, our ultimate goal is to reconstruct a hypothesized

transcript of the conversation from the bottom up: our

approach segments the observed sequence of packets into

subsequences corresponding to individual phonemes (i.e.,

the basic units of speech). Each subsequence is then classi-

fied as belonging to a specific phoneme label, after which

we apply speech and language models to help construct

a phonetic transcription of parts of the conversation. To

assess the quality of our reconstruction, we apply widely

accepted translation scoring metrics that are designed to

produce quality scores at the sentence level that correlate

well with those assigned by human judges.

The approach we take has parallels to how infants find

words in a speech stream. As Blanchard et al. [8] point out,

adults effortlessly break up conversational speech into words

without ever realizing that there are no pauses between

words in a sentence. This feat is possible because we have

a lexicon of familiar words that we can use to segment the

utterance. Infants have no such luxury. Instead, they must

use perceptual, social, and linguistic cues to segment the

stream of sounds. Amazingly, the linguistic cues come from

learned language-specific constraints (or phonotactics) that

determine whether a word is well-formed or not; infants use

this knowledge of well-formedness to help segment speech.

The fascinating problem here is that infants must learn

these rudimentary, language-specific, constraints while si-
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multaneously segmenting words. They use familiar words

(e.g., their own names) to identify new words which are

subsequently added to their small vocabulary. Interestingly,

the Linguistic and Psychological Sciences literature abounds

with studies (e.g., [9, 23]) which show that, as early as

six months of age, infants use knowledge of which basic

phonemes occur together, as well as learned knowledge

of within-word versus between-word sounds, to segment

perceived utterances into words. As we show later, we

apply a similar methodology when tackling the problem of

reconstructing words from strings of phonemes.

II. BACKGROUND INFORMATION

Before proceeding further, we first present some necessary

background that is helpful in understanding the remainder

of the paper. The background material covers basic notions

in linguistics, pertinent VoIP details, and information about

the datasets we use throughout the paper.

Phonetic Models of Speech

The ideas in this paper rely heavily on insights from

modern theories of phonology. In particular, we draw from

a vast body of work on phonetics—i.e., the study of lin-

guistic sounds. From a computational perspective, phonetics

involves studying how sound is produced by the articulators

of the vocal tract and how they are realized acoustically [30].

In phonetics, the pronunciations of words are modeled

as strings of symbols representing individual speech units

called phones. While several alphabets exist for representing

phones (e.g., ARPAbet for American English), the de facto

standard is the International Phonetic Alphabet (IPA).

For the remainder of the paper, what is particularly impor-

tant is that each phone is based on articulatory processes, and

that phones are divided into two main classes: consonants

and vowels. Both kinds of sounds are formed by the motion

of air through the mouth, throat and nose. Consonants, for

example, are made by restricting airflow in some way, and

can be both voiced (meaning they involve vibrations of

the vocal cords) or unvoiced. By contrast, vowels usually

involve less obstruction of air flow, and are louder and longer

lasting than consonants. Moreover, because all consonants

are sounds made by restricting airflow, they can be distin-

guished from each other by where the restriction is made

(the place of articulation) as well as how the restriction is

made (the manner of articulation). In English, for example,

the “hissing” sound of [f ] in ‘fish’ is made by pressing

the lower lip against the upper teeth. There are several

major manners (e.g., stops, nasals, and fricatives) used to

distinguish consonants.

Likewise, vowels can also be characterized by articulatory

processes (see Figure 1), the most important of which are

vowel height (i.e., roughly the height of the highest part of

the tongue), backness (i.e., roughly indicating where the tip

of the tongue is relative to the vocal track), and roundness
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Figure 1. Vowels in American English (IPA format), differentiated by
their height and backness. Left: the relative tongue positions.

(i.e., whether the shape of the lips is rounded or not). For

example, compare how your mouth feels as you say ‘beat’

and ‘boot’. If you hold the vowels in these two words,

you should be able to feel a difference in the backness of

your tongue. Similarly, if you compare the words ‘beat’ and

‘bat’, you should feel your chin moving up and down; this

is a difference in height. To feel a difference in rounding,

compare the words ‘put’ and ‘pool’. As you say ‘pool’ you

should feel your lips pucker into a round shape; in ‘put’,

your lips should be loose.

Consonants and vowels are combined to make syllables,

which are governed by the phonotactics of the language —

that is, language-specific conditions that determine whether a

word is well-formed or not. At a high level, phonotactics are

constraints on which phones can follow which, i.e., rules that

govern how phones may be combined to form well-formed

words. In English, for example, there are strong constraints

on what kinds of consonants can appear together: [st] (as

in ‘stop’) is a very common consonant cluster, but some

consonant sequences, like [zdr] (as in ‘eavesdrop’), are not

legal word-initial sequences in English.2

Lastly, in linguistics and speech processing, an abstraction

called a phoneme (typically written between slashes) is

used to represent similar phones with a single symbol. For

example, the phoneme /t/ can be pronounced as any of three

phones in English; which of these three phones is uttered

depends on the position within a syllable: /t/ is pronounced

as [th] at the beginning of a syllable (as in ‘top’=[th op’]),

[t] in the middle of a syllable (as in ‘stop’=[st6p’]), and

[t’] at the end of a syllable (as in ‘pot’ = [ph ot’]). Phones

belonging to the same phoneme are called allophones: [th],

[t], and [t’] are allophones of the phoneme /t/.

In Section V, we leverage such linguistic insights to build

a string matching technique based on phonetic edit distance.

In addition, we use phonotactics of English (e.g., what

sequences of phonemes or allophones are allowable within

words) to assist with phoneme classification.

2Of course, [zdr] may exist word-initially in other languages, such as in
the Bulgarian word [zdraf], which means ‘health’.
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Voice over IP

In VoIP, voice data and control messages are typically

transmitted through separate channels. The control channel

generally operates using an application-layer protocol, such

as the Extensible Messaging and Presence Protocol (XMPP)

used by Google Talk or the Session Initiation Protocol

(SIP). The voice channel typically consists of a Real-time

Transport Protocol (RTP) stream transmitted over UDP. We

concern ourselves only with the voice channel in this work.

Typically, the audio for VoIP conversations is encoded

using an audio codec designed specifically for speech, such

as Skype’s SILK, the Enhanced Full Rate (EFR) codec spec-

ified by the GSM standard, or the open-source Speex used

in many VoIP applications (including Google Talk). Speech

codecs differ from general audio codecs since human speech

can be represented much more efficiently than general audio

due to the periodic nature of certain speech signals and the

relatively limited number of potential sounds. For speech,

sound is usually sampled at between 8 and 32 kHz (i.e.,

between 8,000 and 32,000 samples are recorded per second).

This sample stream is then segmented into frames, or blocks,

of a certain duration and each frame is compressed by the

speech codec for transmission. The duration is a fixed value

generally between 10 and 100ms; a typical value, and the

one used in this work, is 20ms, which corresponds to 320

samples per frame when sampling at 16kHz.

Many modern speech codecs are based on variants of a

well-known speech coding scheme known as code-excited

linear prediction (CELP) [49], which is in turn based on the

source-filter model of speech prediction. The source-filter

model separates the audio into two signals: the excitation

or source signal, as produced by the vocal cords, and the

shape or filter signal, which models the shaping of the sound

performed by the vocal tract. This allows for differentiation

of phonemes; for instance, vowels have a periodic excitation

signal while fricatives (such as the [sh] and [f] sounds) have

an excitation signal similar to white noise [53].

In basic CELP, the excitation signal is modeled as an entry

from a fixed codebook (hence code-excited). In some CELP

variants, such as Speex’s VBR mode, the codewords can

be chosen from different codebooks depending on the com-

plexity of the input frame; each codebook contains entries

of a different size. The filter signal is modeled using linear

prediction, i.e., as a so-called adaptive codebook where the

codebook entries are linear combinations of past excitation

signals. The “best” entries from each codebook are chosen

by searching the space of possible codewords in order

to “perceptually” optimize the output signal in a process

known as analysis-by-synthesis [53]. Thus an encoded frame

consists of a fixed codebook entry and gain (coefficient) for

the excitation signal and the linear prediction coefficients for

the filter signal.

Lastly, many VoIP providers (including Skype) use VBR

codecs to minimize bandwidth usage while maintaining

call quality. Under VBR, the size of the codebook entry,

and thus the size of the encoded frame, can vary based

on the complexity of the input frame. The specification

for Secure RTP (SRTP) [3] does not alter the size of the

original payload; thus encoded frame sizes are preserved

across the cryptographic layer. The size of the encrypted

packet therefore reflects properties of the input signal; it is

exactly this correlation that our approach leverages to model

phonemes as sequences of lengths of encrypted packets.

III. HIGH-LEVEL OVERVIEW OF OUR APPROACH

The approach we pursue in this paper leverages the corre-

lation between voiced sounds and the size of encrypted pack-

ets observed over the wire. Specifically, we show that one

can segment a sequence of packet sizes into subsequences

corresponding to individual phonemes and then classify

these subsequences by the specific phonemes they repre-

sent. We then show that one can segment such a phonetic

transcript on word boundaries to recover subsequences of

phonemes corresponding to individual words and map those

subsequences to words, thereby providing a hypothesized

transcript of the conversation.
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Figure 2. Overall architecture of our approach for reconstructing transcripts
of VoIP conversations from sequences of encrypted packet sizes.

Our work draws from advances in several areas of com-

putational science. A simplified view of our overall process

is shown in Figure 2. As an example, we use the phrase

‘rock and roll’, the dictionary pronunciation for which is

represented as [ô6k ænd ôoUl] in IPA. Our basic strategy is as

follows. First, we use a maximum entropy model (Stage ➊)
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to segment the sequence of packet sizes into subsequences

corresponding to individual phonemes. We then apply (Stage

➋) a combination of maximum entropy and profile hidden

Markov models to classify each subsequence of packet

sizes according to the phoneme the subsequence represents,

resulting in an approximate phonetic transcript of the spoken

audio. In our example, this transcript is [ô6kæmdôoil].

The hypothesized transcript is improved by applying

a trigram language model over phonemes (and phoneme

types) which captures contextual information, such as likely

phoneme subsequences, and corrects the transcript to rep-

resent the most likely sequence of phonemes given both

the classification results and the language model. In our

example, this results in [ô6kændôoUl]. Notice the unlikely

phonetic sequence [æmd] has been replaced with the far

more likely [ænd]. Next, we segment (Stage ➌) the resulting

transcript into subsequences of phonemes corresponding to

individual words using a phonetic constraint model, resulting

in the more recognizable string [ô6k ænd ôoUl].

Finally, we match each subsequence to the appropriate En-

glish word using a phonetic edit distance metric (Stage ➍),

giving us the desired ‘rock and roll’. In the general case, a

trigram language model over words (and parts-of-speech) is

then applied to the resulting transcript to correct tense and

disambiguate between homophones (i.e., words which sound

alike) by finding the most likely sequence of words given

both the hypothesized transcript and the language model.

Data and Adversarial Assumptions

The TIMIT Acoustic-Phonetic Continuous Speech Cor-

pus [21], a collection of recorded speech with time-aligned

word and phonetic transcripts (allowing us to label segments

by phoneme), provides the audio samples used in our ex-

periments. The TIMIT corpus is comprised of 6,300 speech

recordings from 630 speakers representing eight major di-

alects of American English. Each speaker reads ten pre-

determined, phonetically-rich sentences, such as ‘Alimony

harms a divorced man’s wealth’, ‘The drunkard is a social

outcast’, and ‘She had your dark suit in greasy wash water all

year’. The transcripts contain labels for 58 distinct phoneme-

level3 sounds. Following the standard approach used in

the speech recognition community, we folded the original

TIMIT classes into 45 labels [36] by combining some allo-

phones and combining closures and silences. ARPAbet, the

phonetic alphabet on which the labeling systems of TIMIT

is based, does not map directly to the articulatory features

in Section II; therefore, we convert the phoneme sequences

to their IPA representations for the latter stages of our

evaluation. In order to generate sequences of encoded frame

lengths from the (16kHz, single-channel) audio samples, we

encode each sample using the reference version of the Speex

3In addition to phonemes, the corpus contain some labels for sounds,
such as pauses and recording errors, unrelated to human speech.

encoder, instrumented to output the sizes of the encoded

frames, in wideband (i.e., 16kHz) VBR mode. The phonetic

labels from the time-aligned transcripts are then used to

identify subsequences corresponding to individual phonemes

for training; this encoding process gives us a number of

sequences for each phoneme.

We note that the approach we take assumes that the

adversary has access to (i) the sequence of packet lengths

for an encrypted VoIP call (ii) knowledge of the language

spoken in the call, (iii) representative example sequences

(or models derived therefrom) for each phoneme, and (iv) a

phonetic dictionary. The first assumption can be readily met

through any number of means, including the use of a simple

packet sniffer. Knowledge of the language of interest can be

gleaned using the ideas in [32, 55] or by simple endpoint

analysis. Lastly, obtaining representative example sequences

for each phoneme is fairly straightforward: one can use

prerecorded, phonetically-labeled audio files as input to a

speech codec to produce the examples. In fact, using labeled

examples from prerecorded audio is exactly the approach

we take in this paper in order to model phonemes. Note that

our primary goal is to build speaker-independent models and

thus we do not require speaker-specific audio. Finally, pho-

netic dictionaries (e.g., CELEX, CMUdict and PRONLEX)

are readily available; we use data from TIMIT and from the

PRONLEX dictionary (containing pronunciations from over

90,000 words) as our phonetic dictionary.

IV. RELATED WORK

Traffic analysis of encrypted network communications has

a long and rich history. Much of that work, however, is

focused on identifying the application protocol responsible

for a particular connection (e.g., [7, 12, 17, 31, 42, 43, 54]).

It was not until recently that researchers [10, 38, 48, 50, 52]

began exploring techniques for inferring sensitive informa-

tion within encrypted streams using only those features that

remain intact after encryption—namely packet sizes and

timing information. Song et al. [50], for example, used the

inter-arrival time between packets to infer keystrokes in SSH

sessions; Sun et al. [52] and Liberatore and Levine [38]

showed that identification of web sites over encrypted HTTP

connections (e.g., SSL) is possible using the sizes of the

HTML objects returned by HTTP requests; Saponas et al.

[48] showed how to identify the movie being watched over

an encrypted connection.

More pertinent to this paper, however, is the work of

Wright et al. [55, 56] that showed that encrypted VoIP calls

are vulnerable to traffic analysis wherein it may be possible

to infer the spoken language of the call or even the presence

of certain phrases. In the latter case, the approach of Wright

et al. assumes that the objective is to search an encrypted

packet stream for subsequences matching a target phrase

or word, such as ‘attack at dawn’, and therefore requires

that a probabilistic model of likely corresponding packet
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length sequences (i.e., representing the target phrase in its

entirety) be generated in advance. As discussed earlier, no

such a priori information is necessary under our approach:

we construct transcripts from the bottom up rather than

matching phrases from the top down.

Several other approaches for exploring information leak-

age in encrypted VoIP calls (working under different envi-

ronmental assumptions than Wright et al.) have also been

proposed. For example, if silence suppression is assumed

(i.e., packet transmission is suppressed when a party is

silent), researchers posit that the duration of talk spurts for

words spoken in isolation makes identification of specific

“speeches” [37, 41] possible. In a recent study with 20

speakers, Backes et al. [2] show that speaker-specific pause

patterns might be sufficient to undermine the anonymity

of speakers in encrypted VoIP calls. That said, it is well

accepted in the speech community that continuous speech

(i.e., everyday communication) lacks identifiable pauses

between words [11]. In fact, speakers generally talk faster

(and typically shorten or run sentences together) as speech

becomes more natural and colloquial. This observation is

even more important in our context where there are no

within-word pauses. Hence, we make no assumptions about

voice activation detection and/or silence suppression.

Lastly, Dupasquier et al. [15] investigate the extent of

information leakage from Skype voice traffic. The authors

conclude that the general concept we pursue here “seems

quite difficult” because classification of phonemes is too

challenging. Thus, they revert to the prior setting of knowing

the target phrase in advance and use dynamic time warping

to validate the work of Wright et al. A focus of this paper

is showing that such statements were premature, and that

phoneme-level reconstruction can be successful in under-

mining the privacy of encrypted VoIP conversations.

For conciseness, the relevant literature on speech and

language models will be presented elsewhere in this paper.

V. OVERALL METHODOLOGY

We now turn our attention to explaining the details behind

the key ideas explored in this paper. Wherever possible, we

provide the intuition that drives our design decisions.

A. Finding Phoneme Boundaries (Stage ➊)

Given the sequence of packet sizes from a VoIP con-

versation, the first challenge is to identify which of these

packets represent a portion of speech containing a boundary

between phonemes. While automatic segmentation of speech

waveforms on phonetic boundaries has received much at-

tention in the speech recognition community, in our context

we have no access to the acoustic information and must

operate on the sequence of packet sizes. However, recall

that many speech codecs, and Speex in particular, are based

on CELP (code-excited linear prediction), which encodes

speech with two different signals: the excitation signal and

the filter signal. As mentioned earlier, the filter signal for

a given frame is modeled as a linear combination of past

excitation signals. Thus more information must be encoded

for frames in which the sound changes drastically—such

as at the transition between two phonemes. Similarly, less

information is encoded for intra-phoneme frames, where

the sound changes relatively little. Figure 3 illustrates how

changes in frame size can indicate a phonetic boundary.

 ɛ  n   ɪ      f       ɪ      ʃ       l     d       ɛ    d    l       a       n

F
ra

m
e 

S
iz

e 
(b

y
te

s)

an         official                                deadline

Figure 3. Frame size sequence for the first few words of an utterance of ‘an
official deadline cannot be postponed’, illustrating how the sizes of frames
differ in response to phoneme transitions. Notice the distinct changes (e.g.,
a sharp rise) in frame sizes near some phoneme boundaries (e.g., [I], [f],
and [S] in ‘official’). Near other phoneme boundaries (e.g., [d], [l], and [a]
in ‘deadline’), however, frame size remains constant.

Methodology

To perform the segmentation, we apply a probabilistic

learning framework known as maximum entropy model-

ing4 [6, 28] that simultaneously captures many contextual

features in the sequence of frames, as well as the his-

tory of classifications in the sequence, to decide which

frames represent phoneme boundaries. Such models have

been successfully applied to problems like part-of-speech

tagging [46] and text segmentation [5].

Maximum entropy modeling estimates the posterior prob-

ability p(y|x), where x is an observation and y a label.

In order to do so, one calculates the empirical distribution

p̃(x, y) from training data as the relative frequency of

examples with value x and label y. One then defines binary

indicator functions, f(x, y), to describe features of the data

relevant to classification.

In the case of phonetic boundary segmentation, we rep-

resent a given frame with w. The labels, i.e., boundary or

interior frame, are represented by the binary variable v. An

indicator function f(w, v) then describes a feature of the

frame which is relevant to whether that frame represents a

phoneme boundary, for example:

f(w, v) =

{

1, if v is boundary and w has size n,

0, otherwise.

4Also known as multinomial logistic regression.
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Given an indicator function, one can compute the expected

value of a feature, f , with respect to the training data as:

p̃(f) =
∑

x,y

p̃(x, y)f(x, y)

One can thus represent any statistical phenomena in the

training data with p̃(f). The expected value of f with respect

to the target model, p(y|x), may be represented as:

p(f) =
∑

x,y

p̃(x)p(y|x)f(x, y)

Requiring that p̃(f) = p(f) imposes the constraint that the

model agree with the training data with respect to feature

f ; over all features, this yields a set of constraints for the

target model:

C =
{

p ∈ P | p(fi) = p̃(fi) for i ∈ {1, 2, · · · , n}
}

Many models may satisfy the set of constraints. However,

the principle of maximum entropy states that the model that

best represents the data given the current state of knowledge

is the one with the most entropy. This yields a constrained

optimization problem of the form argmaxp∈CH(p), where

H(p) is the entropy of y conditioned on x in the model p.

Phoneme Segmentation Feature Templates

1 size of frame wi (i.e., the current frame size)
2 size of frame wi−1 (i.e., the previous frame size)
3 size of frame wi+1 (i.e., the next frame size)
4 bigram of sizes for frames wi−1, wi

5 bigram of sizes for frames wi, wi+1

6 trigram of sizes for frames wi−1, wi, wi+1

7 sequence of frame sizes since the last hypothesized boundary
8 number of frames since since the last hypothesized boundary

Table I
FEATURE TEMPLATES FOR THE PHONETIC SEGMENTATION, WHERE wi

REPRESENTS THE iTH FRAME.

For boundary identification, we define several feature tem-

plates which specify features that we hypothesize correlate

with phoneme boundaries. The templates we use are given

in Table I, and some features are illustrated in Figure 4 for

clarity. Although each frame only gives us one observable

feature (namely, the size of the frame), we leverage the

surrounding frames, and the history of previously classified

frames, in the sequence to create a much richer feature set.

The templates are used to automatically generate the full

feature set directly from the data.

As per our hypothesis regarding the interaction between

linear prediction and frame size, notice that feature templates

1-6 capture the frame sizes in the proximity of the current

frame. The frame size unigrams, bigrams, and trigrams must

be explicitly captured because maximum entropy models

do not model feature interactions, i.e., they only consider

individual features in isolation. Some phonemes may always

exhibit a certain frame size sequence; we capture this behav-

ior with feature template 7. Lastly, because some boundaries

wilast boundary

Instantiation of 
Feature Template 7

Instantiation of 
Feature Template 8

number of

frames

frame 
sequence

Instantiation of 
Feature Template 6

frame 
trigram

Sequence of Frames

Figure 4. Classification example for current frame, wi. The label for wi

is dependent on a number of features, including the frame size sequence
since the last hypothesized boundary (shown here in gray). An example
feature derived from each of templates 6-8 is depicted on the right hand
side.

are not detectable by frame size changes (such as the long

sequence of same-sized frames in Figure 3), we also model

features such as phoneme length (feature template 8).

To efficiently solve the optimization problem posed by

maximum entropy modeling, we use the megam framework

with the limited memory BGFS [39] algorithm to obtain the

model p(w|v). Having built a model, we estimate the prob-

ability of each frame, in order, being a phoneme boundary

by evaluating the estimated posterior p(w|v). Since feature

templates 7 and 8 depend on previously classified labels,

we use a dynamic programming algorithm to maximize the

likelihood of the sequence as a whole rather than greedily

selecting the most likely label for each frame. The algorithm,

a beam search, stores a list of the l most likely candidate

segmentations up to the current frame; this list is updated

after each frame is evaluated. We choose as our final

segmentation the most likely candidate at the last frame.

Evaluation

In order to provide rigorous assessments of our method-

ology, we perform cross-validation in the segmentation and

classification stages of our experiments. Cross-validation is

a method for estimating the generalization performance of a

classifier by partitioning the available data into complemen-

tary subsets, training with one subset, and testing with the

other. In particular, we perform k-fold cross-validation, in

which the data is partitioned into k complementary subsets.

For each fold, one subset is selected for testing and the

remainder used for training. The training and testing are

performed as many times as there are subsets, with each

acting as the testing set in one fold. The results of all iter-

ations are then averaged to give the expected generalization

performance, which mitigates the possibility of experimental
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results being unduly influenced by fortuitous selection of

training and testing data.

To evaluate the performance of our phonetic segmentation

model, we perform a 5-fold cross-validation experiment

for each dialect in the TIMIT corpus. Using a holdout

set of female speakers from the New England dialect, we

experimentally determined an optimal value of 8 for the

beam width l. We report the performance using precision

(i.e., the fraction of boundaries in the transcription that are

present in the reference transcription) and recall (i.e., the

fraction of boundaries in the reference that appear in the

transcription) as our metrics.

n = 1 n = 2
Dialect Precision Recall Precision Recall

New England 0.8539 0.7233 0.9443 0.8735
Northern 0.8555 0.7332 0.9458 0.8837

North Midland 0.8509 0.7372 0.9402 0.8901
South Midland 0.8452 0.7086 0.9352 0.8627

Southern 0.8525 0.7037 0.9405 0.8586
New York City 0.8530 0.7096 0.9386 0.8628

Western 0.8586 0.7259 0.9439 0.8652
Army Brat 0.8465 0.7540 0.9389 0.8985

Table II
PHONETIC SEGMENTATION PERFORMANCE FOR EACH DIALECT IN THE

TIMIT CORPUS.

While interpreting these results, we note that Raymond

et al. [47] have shown that phoneme boundaries are inexact

even at the frame level—in fact, in their study, human

transcribers agreed (within 20ms) on less than 80% of the

boundaries. For this reason, a frame classified as a boundary

is considered as correct if it occurs within n frames of an

actual boundary; likewise, it is incorrect if there are no actual

boundaries within n frames. Table II summarizes, for each

dialect, our segmentation performance for n = 1 and n = 2.

For the sake of comparison, we also note that state-of-the-art

classifiers (operating on the raw acoustic signal) are able to

recall approximately 80% (again, within 20ms) of phoneme

boundaries in TIMIT [18, 44] with error rates similar to our

own. Unfortunately, the comparison is not direct: our labels

are necessarily at the granularity of frames (each 20ms),

rather than samples, which means that the within-n-frame

requirement for agreement is looser than the within-20ms

requirement.

The results in Table II show that our performance is

on par with these other techniques. More importantly, the

imprecision in the transcription boundaries does not neg-

atively impact the performance of the next stage of our

approach since the frames in question, i.e., the beginning

and ending frames of each phoneme, are precisely those that

will contribute the most variance to a phoneme model. In

other words, the transition frames are likely to incorporate

a significant amount of noise, due to their proximity to sur-

rounding phonemes, and are therefore unlikely to be useful

for classifying phonemes. It is for exactly this reason that

we explicitly exclude the transition frames in the phoneme

classification stage that follows. Finally, for the remainder of

this paper we make the simplifying assumption that phoneme

boundaries can be recognized correctly; this assumption is

revisited in Section VI.

B. Classifying Phonemes (Stage ➋)

We remind the reader that our overall approach requires

that we segment a sequence of encrypted packet lengths

into subsequences corresponding to individual phonemes,

and then classify these subsequences based on empirical

models derived from labeled training data. We therefore have

a classification problem where the classes of interest are the

various phonemes.

For classification, we employ a combination of two sys-

tems: one context-dependent, wherein the labeling of a

segment is dependent on the labelings of its neighbors, and

another context-independent, wherein a single segment is

considered in isolation. We combine these two approaches

in order to leverage the strengths of each. Our context-

dependent classifier is also based on maximum entropy mod-

eling, while the context-independent classifier is based on

profile hidden Markov modeling. Profile HMMs have been

used widely in both the biological sequence analysis [16]

and speech recognition communities [29].

Aside from the ability to incorporate contextual informa-

tion, maximum entropy modeling is discriminative. Discrim-

inative models are often used for classification tasks because

they model only the parameters of interest for classification

and thus can often encode more information. Hidden Markov

models, on the other hand, are generative models. Generative

models are sometimes preferable to discriminative models

because they model the entire distribution over examples

for a given class rather than just the information necessary

to discriminate one class from another.

To combine the two models, we utilize a form of Bayesian

inference to update the posterior given by the maximum

entropy classifier with the “evidence” given by the profile

HMM classifier. The updated posterior is then passed to a

language model, as described below. By utilizing both types

of models we enjoy increased classification accuracy while

providing input to the language model with a valid statistical

interpretation. Next, we discuss each stage in turn.

Maximum Entropy Discrimination of Phonemes

We discriminate between phonemes in a manner simi-

lar to the segmentation process described in Section V-A.

Specifically, we define a new set of feature templates over

sequences of phonemes (which are themselves composed

of sequences of frame sizes). For pedagogical reasons, the

specifics are given in Table III and an example feature is

illustrated in Figure 5.

Feature templates 1-3 capture the exact frame sequence of

the current and surrounding phonemes to identify phonemes

9



qi

Most Frequently Observed Trigrams
in Training Corpus

Sequence of Phonemes

containscontains

Figure 5. An example instantiation of feature template 10 which illustrates
how the template models the presence of common trigrams.

Phoneme Classification Feature Templates

1 qi (i.e., the current phoneme’s frame size sequence)
2 qi−1 (i.e., the previous phoneme’s frame size sequence)
3 qi+1 (i.e., the next phoneme’s frame size sequence)
4 qi, excluding the first and the last frames
5 qi−1, excluding the first and the last frames
6 length of qi (in frames)
7 length of qi−1 (in frames)
8 frequency of frame size n in qi
9 bigram b of frame sizes is in qi, for top 100 bigrams
10 trigram t of frame sizes is in qi, for top 100 trigrams
11 bigram b of frame sizes is in qi−1, for top 100 bigrams
12 trigram t of frame sizes is in qi−1, for top 100 trigrams
13 bigram b of frame sizes is in qi+1, for top 100 bigrams
14 trigram t of frame sizes is in qi+1, for top 100 trigrams

Table III
FEATURE TEMPLATES FOR THE MAXIMUM ENTROPY PHONEME

CLASSIFIER. WE DENOTE AS qi THE SEQUENCE OF FRAME SIZES FOR

THE iTH PHONEME.WE LIMIT THE NUMBER OF n-GRAMS TO 100 FOR

PERFORMANCE REASONS.

that frequently encode as exactly the same frame sequence.

Feature templates 4 and 5 encode similar information, but

drop the first and last frames in the sequence in accordance

with our earlier hypothesis (see Section V-A) that the

beginning and ending frames of the phoneme are the most

variable. Feature templates 6 and 7 explicitly encode the

length of the current and previous phonemes since some

types of phonemes are frequently shorter (e.g., glides) or

longer (e.g., vowels) than others. Feature template 8 captures

the frequency of each possible frame size in the current

sequence. Feature templates 9-14 encode the presence of

each of the 100 most frequent frame size bigrams or trigrams

observed in the training data; we limit the number of bigrams

and trigrams to maintain manageable run-time performance.

Finally, since we later incorporate high-level contextual

information (such as neighboring phonemes) explicitly with

a language model, we do not attempt to leverage that

information in the classification model.

Profile HMM Modeling of Phonemes

To provide generative models of the various phonemes,

we train a profile HMM for each. A profile HMM is a

hidden Markov model with a specific topology that encodes

a probability distribution over finite sequences of symbols

drawn from some discrete alphabet. In our case, the alphabet

is the different sizes at which a speech frame may be

encoded; in Speex’s wideband VBR mode, there are 19 such

possibilities. Given the topology of a hidden Markov model,

we need to estimate the parameters of the model for each

set of sequences. Towards this end, we utilize a well-known

algorithm due to Baum et al. [4] that iteratively improves the

model parameters to better represent the example sequences.

Classification

To label an observed sequence of packet sizes, we find the

posterior probability p(r|q), where q represents the observed

sequence of frame sizes, for each class label r. For the

standalone maximum entropy classifier, the output for a

given observation and label is an estimate of the desired

quantity. For the profile HMM classifier, we calculate, using

Bayesian inference, the posterior p(r|q) = p(r)p(q|r) using

the likelihood5 p(q|r), given by the profile HMM. This “up-

dates” a prior probability p(r) with the new “evidence” from

the profile HMM. For the stand-alone classifier evaluation,

we estimate the prior p(r) as the proportion of examples

belonging to the class in our training data. When using

both the profile HMM and maximum entropy classifiers in

conjunction, we use the estimated p(r|q) from the maximum

entropy model as the prior p(r). In all cases, we choose the

label whose model has the maximum posterior probability

as the predicted label for a given sequence. These posterior

probabilities also give a probability distribution over candi-

date labels for each phoneme in an utterance; these serve as

the language model input.

Enhancing Classification using Language Modeling

Lastly, in order to incorporate contextual information

on surrounding phonemes, we apply a trigram language

model using the SRILM language modeling toolkit [51].

In particular, we train a trigram language model over both

phonemes and phoneme types (e.g., vowels and stops).

We disambiguate between candidate labels by finding the

maximum likelihood sequence of labels given both the esti-

mated distributions output by the classifier and the phonetic

language model.

Evaluation

Our preliminary results show that we can correctly clas-

sify 45% of phonemes in a 10-fold cross-validation exper-

iment on the New England dialect.6 For this experiment,

5The likelihood given by an HMM is scaled by the marginal p(q).
6For brevity, we omit the other dialects as the results do not differ

significantly.
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we operate on input with perfectly segmented phonetic

boundaries so as to provide a baseline for our classifiers

when evaluated independently from the other stages in our

method. As can be seen from Figure 6, the combination of

the profile HMM and maximum entropy classifiers with the

language model outperforms the individual classifiers.

While this classification performance might sound lack-

luster, these results are quite surprising given the limited

context we operate under (i.e., packet sizes only). For

instance, recent approaches working directly on the acoustic

signal report 77% accuracy on the TIMIT dataset in the

context-dependent case (which corresponds roughly to our

approach after application of the language model). In the

context-independent case (analogous to our profile HMM

classification approach without the language model), accu-

racy rates as high as 67% have been achieved [26] on the

TIMIT dataset. Similarly, expert human transcribers achieve

rates only as high as 69% [36].

Figure 6. Phoneme classification accuracy on the New England dialect for
the profile HMM and maximum entropy classifiers alone, in combination,
and with the language model applied.

C. Segmenting Phoneme Streams into Words (Stage ➌)

In this stage, our task is to identify likely word boundaries

from the stream of classified phonemes. To do so, we follow

the methodology suggested by Harrington et al. [24] that,

until very recently, was among the best approaches for word

boundary identification. We also extend their approach to

incorporate an additional step that makes use of a pronun-

ciation dictionary.

Harrington et al. identify word breaks with a two-step

process. The first step consists of inserting potential word

breaks into the sequence of phonemes in positions that would

otherwise produce invalid phonemic triples, i.e., triples that

do not occur within valid words in English. Each such iden-

tified triple then causes the insertion of a pair of potential

word breaks, one between each pair of phonemes in the

triple. To resolve which of the potential word breaks are

actual boundaries, we match the surrounding phonemes with

all possible phonemes and pairs of phonemes which can

begin or end words, and remove potential word breaks which

would result in invalid word beginnings or endings.

We then perform an additional step whereby we use a

pronunciation dictionary to find valid word matches for

all contiguous subsequences of phonemes. For each such

subsequence, we insert word breaks at the positions that are

consistent across all the matches. For example, suppose the

sequence [InOIliôæg] (‘an oily rag’) has the following three

possible segmentations:

◦ [In OIli ôæg] (‘an oily rag’)

◦ [In OIl i ôæg] (‘an oil E. rag’)

◦ [In O Il i ôæg] (‘an awe ill E. rag’)

Since these choices have two words in common, we

segment the phrase as [In OIli ôæg].

Dialect Precision Recall

New England 0.7251 0.8512
Northern 0.7503 0.8522

North Midland 0.7653 0.8569
South Midland 0.7234 0.8512

Southern 0.7272 0.8455
New York City 0.7441 0.8650

Western 0.7298 0.8419
Army Brat 0.7277 0.8461

Table IV
WORD BREAK INSERTION PRECISION AND RECALL

The results of a 10-fold cross-validation experiment are

given in Table IV. Overall, we achieve average precision and

recall of 73% and 85%, respectively. Very recent results,

however, by Blanchard et al. [8] and Hayes and Wilson

[25] suggest that accuracy above 96% can be achieved using

more advanced techniques than implemented here. Due to

time and resource constraints, we make the simplifying

assumption that word breaks can be correctly recognized.

We revisit this assumption in Section VI.

D. Identifying Words via Phonetic Edit Distance (Stage ➍)

The final task is to convert the subsequences of phonemes

into English words. To do so, we must identify words

that best match the pronunciation dictated by the recovered

phonemes. Towards this end, we design a novel metric of

phonetic distance based on the difference in articulatory fea-

tures (i.e., the associated physiological interactions discussed

in Section II) between pairs of phonemes. Our approach has

some similarities to ideas put forth by Oakes [45], which

itself builds upon the work of Gildea and Jurasky [22] and

Zobel and Dart [58, 59]. Oakes [45] proposes a phonetically-

based alignment algorithm, though there is no notion of

relative distance between various places or manners of

articulation. In Zobel and Dart [59], the distances between

phonemes are handcrafted, and their matching algorithm

considers only the single most likely pronunciation.
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In our approach, we define the distance between a vowel

and a consonant as one unit, with a few exceptions: we

assign a cost of 0 for converting an [i] to a [j] (or vice-

versa) as well as for converting a [u] to a [w]. We do so

because [w] and [j] are what are known as semi-vowels, and

are essentially very short realizations of their corresponding

vowels. Moreover, we assign a cost of 0 for [R] (i.e., flap

‘r’) and [t], as well as for [R] and [d]. This is because [R]

is an allophone of [t] and [d]. Hence, we would like such

minor phonetic alterations to have little effect on the distance

between two pronunciations.

Stop

Fricative

Approximant

Place

M
a
n
n
er

Labiodental Velar GlottalInterdental

f θ

w

0.32

0.27

0.05

Sibilant

Figure 7. Illustration of distance between consonants [f], [T], and [w].

To measure the distance between two vowels or two

consonants, we use three different articulatory features as

axes and calculate the Euclidean distance (see Figure 7)

between the points corresponding to the two phonemes

(scaled to a maximum of one unit). For consonants these

features are voice, manner, and place of articulation. For

vowels they are rounding, backness and height. Thus we

differentiate between substitution of a phonetically similar

segment, such as replacement of [s] (as in ‘see’) by [S] (as

in ‘she’), or of a completely different segment, such as of

[s] (as in ‘seen’) with [k] (as in ‘keen’).

Phonetic Primary
Word 1 Word 2 Distance Difference

bæt ‘bat’ mæt ‘mat’ 0.0722 manner
bit ‘beat’ bæt ‘bat’ 0.1042 height
did ‘deed’ bid ‘bead’ 0.1050 place
b2t ‘but’ bOt ‘bought’ 0.1250 rounding
b2t ‘but’ bæt ‘bat’ 0.1267 backness
bid ‘bead’ bit ‘beat’ 0.5774 voicing
f6D3~ ‘father’ m2D3~ ‘mother’ 0.7292 n/a
hUkt ‘hooked’ f6nIks ‘phonics’ 2.9573 n/a
hEloU ‘hello’ w3~ld‘world’ 3.1811 n/a

Table V
EXAMPLES OF OUR PHONETIC EDIT DISTANCE BETWEEN PAIRS OF

EXAMPLE WORDS. THE LAST COLUMN LISTS THE PRIMARY

DIFFERENCE (IN TERMS OF ARTICULATORY PROCESSES).

To compare two sequences of phonemes, we use the

Levenshtein distance with insertions and deletions weighted

at one unit and edits weighted according to their phonetic

distance as defined above. Table V gives example word

comparisons along with their primary differences (in terms

of articulartory processes).

In order to determine the optimal values for the insertion

and deletion weights for our phonetic edit distance metric,

we performed a simple parameter space exploration. We

hypothesized that the absolute insertion and deletion costs

were less significant than the difference between them. As

such we tuned based on two parameters, base cost and offset.

Each insertion costs the base cost plus half the offset and

each deletion costs the base cost minus half the offset. The

effectiveness of each set of parameters is shown in Figure 8.

Somewhat surprisingly, a base cost of 1.0 and offset of

0.0 (corresponding to insertion and deletion weights of 1.0)

provided the highest average word accuracy.
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Figure 8. Parameter space exploration, in terms of average word accuracy,
for our phonetic edit distance.

To match a sequence of phonemes to an English word,

we compute the phonetic distance between the sequence and

each pronunciation in our dictionary in order to obtain a list

of the closest pronunciations to the sequence. However, the

existence of homophones means that, even if the pronunci-

ation is correct, we may have many choices for the word

spoken. For example, ‘ate’ and ‘eight’ are indistinguishable

phonetically: both are pronounced [eIt].
In order to disambiguate between homophones, we in-

corporate a word and part-of-speech based language model

to choose between the candidate words using contextual

information from the sentence as a whole. Thus we can

disambiguate between ‘ate’ and ‘eight’ by finding the most

likely part of speech (e.g., noun, verb, pronoun, or adverb)

for that position in the sentence. Using the SRILM language
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modeling toolkit, we train a trigram language model over

both words and parts-of-speech on the well-known Brown

corpus [20]. The part of speech tags used are those cur-

rently implemented in NLTK [40]. To improve the ability

of the language model to disambiguate between candidate

words, we assign each word a weight which estimates the

conditional probability of the observed pronunciation given

the candidate word.

To find these weights, we need a measure of how likely

an observed pronunciation is given the phonetic distance

to the actual pronunciation of the given word; therefore,

we estimate the cumulative distribution function (CDF)

over phonetic distances by deriving an empirical CDF (see

Figure 9) from the distances of a large number of pronun-

ciation pairs. We then transform the given distance between

pronunciations into a probability estimate by evaluating the

empirical CDF at that distance. For each pronunciation in the

candidate list for an observed word, we weight the associated

words with the probability estimate for that pronunciation.7

Thus we have, for each word in an utterance, a list of

candidate words with associated conditional probability es-

timates. Disambiguation is performed by finding the max-

imum likelihood sequence of words given the candidates,

their probability estimates, and the language model.
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Figure 9. Empirical CDF of phonetic edit distance.

At this point, the observant reader will have surely noted

that the overall process is fundamentally inexact because,

in the end, some sort of human judgement is required to

evaluate the hypothesized output. That is, we need some way

to measure the quality of our guesses, say, as assessed by

a human judge who compares them to the actual transcript.

Thankfully, the closely related problem of scoring machine

translations has been extensively studied. In what follows,

we discuss how we measure the accuracy of our guesses.

7A word which is associated with multiple pronunciations is weighted
according to the closest pronunciation, i.e., we take the maximum weight
of all associated weights for the given word.

E. Measuring the Quality of Our Output

Since the early 1990s, much work has gone into finding

appropriate metrics for scoring machine transcriptions from

automatic speech recognition and transcription systems. In

that context, the main task is to generate a literal transcrip-

tion of every word that is spoken. The closer the machine

transcription is to a human translation, the better it is. Early

approaches for automatically measuring such performance

simply relied on examining the proportion of word errors

between the actual and transcribed conversations (i.e., the

Word Error Rate (WER)), but WER has been shown to be

a poor indicator of the quality of a transcript since good

performance in this context depends not only on the amount

of errors, but also on the types of errors being made. For

example, from the perspective of human interpretation, it

often does not matter if the transcribed word is ‘governed’

instead of ‘governing’.

Hence, modern automatic scoring systems reward candi-

date text based on the transcription’s adequacy (i.e., how

well the meaning conveyed by the reference transcription

is also conveyed by the evaluated text) and fluency (i.e.,

the lengths of contiguous subsequences of matching words).

To date, many such scoring systems have been designed,

with entire conferences and programs dedicated solely to this

topic. For instance, NIST has coordinated evaluations under

the Global Autonomous Language Exploitation (GALE)

program since the mid-nineties. While the search for better

metrics for translation evaluation remains an ongoing chal-

lenge, one widely accepted scoring system is the METEOR

Automatic Metric for Machine Translation by Lavie and

Denkowski [35]. METEOR was designed to produce quality

scores at the sentence level which correlate well with those

assigned by human judges. We evaluate the quality of our

guesses using METEOR; for concreteness, we now review

pertinent details of that scoring system.

Lavie and Denkowski’s method evaluates a hypothesized

transcription by comparison with a reference transcription.

The two transcripts are compared by aligning first exact

word matches, followed by stemmed word matches, and

finally synonymous word matches. The alignment is per-

formed by matching each unigram string in the reference

transcription to at most one word in the hypothesis tran-

scription. To compute the score from such an alignment, let

m be the number of matched unigrams, h the number of

unigrams in the hypothesis, and r the number of unigrams

in the reference. The standard metrics of unigram precision

(P = m/h) and recall (R = m/r) are then computed.

Next, the parameterized f -score, i.e., the harmonic mean

of P and R given a relative weight (α) on precision, is

computed:

Fmean =
P ∗R

α ∗ P + (1− α) ∗R
.

To penalize hypotheses which have relatively long sequences
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of incorrect words, Lavie and Denkowski count the number

c of ‘chunk’ sequences of matched unigrams which are

adjacent, and in the correct order in the hypothesis. A frag-

mentation penalty is then computed as Pfrag = γ ∗ (c/m)β ,

where γ and β are parameters determining the maximum

penalty and relative impact of fragmentation, respectively.

The final METEOR score is then calculated as Sm =
(1− Pfrag) ∗ Fmean for each hypothesis.
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Figure 10. Example scoring of three hypothesized guesses. For each, the
hypothesized guess is on the left, with the reference on the right. Filled
circles represent exact matches. Hollow circles show matches based on
stemming.

Denkowski and Lavie [13] performed extensive analysis

to determine appropriate values for the parameters α, β,

and γ which optimize the correlation between METEOR

score and human judgments. In our experiments, we use

the parameter set that is optimized to correlate with the

Human Targeted translation Edit Rate (HTER) metric for

human judgement on the GALE-P2 dataset [14]. We disable

synonym matching as our system does no semantic analysis,

and thus any such matches would be entirely coincidental.

Some examples are shown in Figure 10. Notice that even a

single error can result in scores below 0.8 (e.g., in part (a)).

Moreover, in some cases, a low score does not necessarily

imply that the translation would be judged as poor by a

human (e.g., one can argue that the translation in part (c)

is in fact quite decent). Finally, Lavie indicates that scores

over 0.5 “generally reflect understandable translations” and

that scores over 0.7 “generally reflect good and fluent

translations” in the context of machine translation [34].

VI. EMPIRICAL EVALUATION

In the analysis that follows, we explore both content-

dependent and content-independent evaluations. In both

cases, we assume a speaker-independent model wherein we

have no access to recordings of speech by the individual(s)

involved in the conversation. In the content-dependent case,

we perform two experiments, each incorporating multiple

different utterances of a particular sentence. We use TIMIT’s

SA1 and SA2 sentences for these experiments because each

is spoken exactly once by each of the 630 speakers, provid-

ing a rare instance of sufficient examples for evaluation. In

the content-independent case, we incorporate all TIMIT ut-

terances.8 Except where explicitly specified, all experiments

are 10-fold cross-validation experiments and are performed

independently on each dialect. As discussed in Section V,

for these experiments we assume that the segmentation of

phonemes is correct to within human transcriber tolerances.

However, the effects of this assumption are specifically

examined in a small experiment described separately below.

SA1:“She had your dark suit in greasy wash water all year.” Score

She had year dark suit a greasy wash water all year. 0.67
She had a dark suit a greasy wash water all year. 0.67
She had a dark suit and greasy wash water all year. 0.67

SA2:“Don’t ask me to carry an oily rag like that.” Score

Don’t asked me to carry an oily rag like that. 0.98
Don’t ask me to carry an oily rag like dark. 0.82
Don’t asked me to carry an oily rag like dark. 0.80

Table VI
TOP SCORING HYPOTHESES FROM THE NEW ENGLAND DIALECT.

Figure 11 shows the distributions of METEOR scores

under each of the dialects for the two content-dependent

experiments. For SA1, the results are fairly tightly grouped

around a score of 0.6. The SA2 scores show significantly

more variance; while some hypotheses in this case were

relatively poor, others attained perfect scores. To ease inter-

pretation of the scores, we provide the three highest-scoring

hypotheses for each sentence, along with their scores, in

Table VI. In addition, recall that sentences with scores over

0.5 are generally considered understandable in the machine

translation context; 91% of our SA1 reconstructions and

98% of our SA2 reconstructions exceed this mark.

The independent case, on the other hand, proves to be a

more challenging test for our methodology. However, we are

still able to reconstruct a number of sentences that are easily

interpretable by humans. For instance, Table VII shows the

five highest-scoring hypotheses for this test on the New

England dialect. In addition, a number of phrases within

the sentences are exactly correct (e.g., ‘the two artists’). For

completeness, we note that only 2.3% of our reconstructions

score above 0.5. However, the average score for the top

10% (see Figure 12) is above 0.45. That said, we remind

the reader that no reconstruction, even a partial one, should

be possible; indeed, any cryptographic system that leaked

as much information as shown here would immediately be

deemed insecure.

To mitigate any concern regarding our two previous

simplifying assumptions, namely, the accurate segmentation

of frame size sequences on phoneme boundaries and of

(noisy) phoneme sequences on word boundaries, we perform

one final experiment. We believe sufficient evidence has

been given to show that we can accomplish these tasks

in isolation; however, one possible critique stems from the

8We follow the standard practice in the speech recognition community
and use the SA1 and SA2 sentences for training only.
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(a) SA1: “She had your dark suit in greasy wash water all year.”
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(b) SA2: “Don’t ask me to carry an oily rag like that.”

Figure 11. METEOR scores for all hypothesized transcripts of sentences SA1 and SA2 for each dialect in the TIMIT dataset.

Hypothesis Reference Sentence METEOR Score

➀ Codes involves the displacement of aim. Change involves the displacement of form. 0.57
➁ The two artists instance attendants. The two artists exchanged autographs. 0.49
➂ Artificial intelligence is carry all. Artificial intelligence is for real. 0.49
➃ Bitter unreasoning dignity. Bitter unreasoning jealousy. 0.47
➄ Jar, he whispered. Honey, he whispered. 0.47

Table VII
THE FIVE HIGHEST SCORING HYPOTHESES FROM THE NEW ENGLAND DIALECT UNDER THE CONTENT-INDEPENDENT MODEL.

potential effects, when these assumptions are lifted, on the

efficacy of the methodology as a whole. Thus we remove

these assumptions in a small, content-independent exper-

iment comprised of the audio samples spoken by female

speakers in the “Army Brat” dialect of the TIMIT corpus.

The average score for the top 10%, in this case, is 0.19, with

a high score of 0.27. We remind the reader that even such

low scoring hypotheses can be interpretable (see Figure 10),

and we stress that these results are preliminary and that

there is much room for improvement—in particular, recently

proposed techniques can be directly applied in our setting

(see Section V-C). Moreover, there are opportunities for

extensions and optimizations at every stage of our approach,

including, but not limited to, weighting the influence of the

different classification and language models. In addition,

other scoring systems for machine translation exist (e.g.,

NIST and BLEU), which may be appropriate in our context.

We plan to explore these new techniques, optimizations and

metrics in the future.

A. An Adversarial Point of View (Measuring Confidence)

Due to the difficult nature of our task (i.e., numerous

factors influencing phonetic variation and the fact that we

operate on encrypted data), an adversary is unlikely to be

able to construct an accurate transcript of every sentence

uttered during a conversation. Therefore, she must have

some way to measure her confidence in the output generated,

and only examine output with confidence greater than some

threshold. To show this can be done, we define one such

confidence measure, based on our phonetic edit distance,

which indicates the likelihood that a given transcript is

approximately correct.

Our confidence measure is based on the notion that

close pronunciation matches are more likely to be correct

than distant matches. We use the mean of the probability

estimates for each word in a given hypothesized transcript as

our confidence value for that hypothesis. Analysis indicates

that this confidence measure correlates (see Figure 13)

with the maximum METEOR score obtained from the 10

best hypotheses output by the word-level language model

(Stage ➍). This implies that, given a set of training data

such as the TIMIT dataset, an adversary can determine an

appropriate threshold for the calculated confidence values

to suit her preference as to the balance between precision

and recall in the hypothesized transcripts. The results in

Figure 14 provide one such analysis under the content-

dependent model. We note that the threshold reduces the set

of hypotheses to a subset with improved METEOR scores.
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Figure 12. The top 10% of METEOR scores for hypothesized transcripts under the content-independent assumption.
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Figure 14. METEOR scores for hypothesized transcripts for sentence SA2 with confidence values above the threshold of .90 for each dialect in the
TIMIT dataset. The number of transcripts with confidence values above the threshold compared to the total for each dialect is shown in parentheses.
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Figure 13. Scatter plot of METEOR scores against our confidence values
(Pearson’s r-value of 0.43).

Unfortunately, the correlation of this particular confidence

metric does not extend well to the content-independent

model. However, we note that there are many other methods

to measure confidence which an adversary could leverage,

including those based on the posteriors output by the classi-

fication stage, the likelihoods given by the language models,

and ex post facto analysis of the well-formedness (in terms

of syntax, i.e., grammar) of the hypotheses. We hope to

explore these strategies in the near future.

In closing, we note that one could also apply the notion

of confidence values to interpreting the results at the word,

rather than the sentence, level. In particular, we could filter

our hypotheses at the word-level by only outputting those

words for which we have high confidence. Preliminary

results indicate that such “masking” may provide benefits

to interpretation, for example, outputting ‘nonprofit ⋆ all

⋆ ⋆ raisers’ instead of ‘nonprofit organizations all swiftly

fairy raisers’ as the hypothesis for ‘nonprofit organizations

have frequent fund raisers’. We forego such analysis at this

time since the METEOR metric does not allow for unknown

words—an automated method of evaluating such hypotheses

is necessary before we can make any claims.

B. Discussion & Mitigation

We note, like other work in this area (e.g., [2, 37, 41, 55,

56]), that we assume each packet contains a single frame.

However, some recently designed codecs, such as Skype’s

new codec (dubbed SILK), can vary the number of frames

per packet based on network conditions. It therefore remains

to be seen if the approach outlined herein can be adapted to

that setting; exploring that, however, requires a substantial

data collection effort that is beyond the scope of this work.

Further, our experiments assume that packets are observed

in correct order and are not fragmented or combined, i.e.,

the adversary can observe packets at the level of the local

network (e.g., between VoIP endpoint and hub or PBX) or

can perform IP defragmentation or TCP stream reassembly.

The inherently limited fidelity of the channel, however,

suggests that our technique would be robust to reasonable

noise in the form of packet reordering and fragmentation.

Lastly, a knee-jerk reaction to thwarting this and other

aforementioned threats to VoIP is to simply use constant

bit-rate codecs or block ciphers. However, variable bit-

rate encoded audio encrypted under a block cipher with a
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small block size is theoretically vulnerable to our attack.

Packet sizes in that scenario still correlate with input signals,

albeit at a reduced fidelity; thus relatively large block sizes

are necessary to ensure privacy. For this reason, the use

of constant bit-rate codecs is important to consider as an

alternative to simple block ciphers for VoIP, since such

codecs might improve call quality given a relatively large

fixed packet size. Another alternative might even be to drop

or pad packets [19, 27, 57], though, in that case, the effect on

perceived call quality is unclear. We note, however, that VoIP

providers have made no move to employ any such measures:

Skype’s SILK, for instance, is a VBR codec. Similarly, one

of the leading proposals for 4G, the LTE Advanced standard,

specifies a VBR codec for audio [1] and the use of SRTP

to secure voice data channels.

VII. CONCLUSION

In this paper, we explore the ability of an adversary to

reconstruct parts of encrypted VoIP conversations. Specif-

ically, we propose an approach for outputting a hypoth-

esized transcript of a conversation, based on segmenting

the sequence of observed packets sizes into subsequences

corresponding to the likely phonemes they encode. These

phoneme sequences are then mapped to candidate words,

after which we incorporate word and part-of-speech based

language models to choose the best candidates using contex-

tual information from the hypothesized sentence as a whole.

Our results show that the quality of the recovered transcripts

is far better in many cases than one would expect. While the

generalized performance is not as strong as we would have

liked, we believe the results still raise cause for concern:

in particular, one would hope that such recovery would not

be at all possible since VoIP audio is encrypted precisely to

prevent such breaches of privacy. It is our belief that with

advances in computational linguistics, reconstructions of the

type presented here will only improve. Our hope is that this

work stimulates discussion within the broader community

on ways to design more secure, yet efficient, techniques for

preserving the confidentiality of VoIP conversations.
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