SOLVING REAL-WORLD LINEAR PROGRAMS:
A DECADE AND MORE OF PROGRESS

ROBERT E. BIXBY

ILOG, Inc. and Rice University, bixby@ilog.com or bixby@rice.edu

This paper is an invited contribution to the 50th anniversary issue of the journal Operations Research, published by the Institute of
Operations Research and Management Science (INFORMS). It describes one person’s perspective on the development of computational
tools for linear programming. The paper begins with a short personal history, followed by historical remarks covering the some 40 years of
linear-programming developments that predate my own involvement in this subject. It concludes with a more detailed look at the evolution

of computational linear programming since 1987.

1. INTRODUCTION

I am a relative newcomer to computation. For the first half
of my scientific career, my research focused exclusively on
the theoretical aspects of operations research and discrete
mathematics. That focus began to change in the early 1980s
with the appearance of personal computers.

My first PC was used primarily to implement elemen-
tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that I was teaching. As a result,
I started writing my own code, initially a simple tableau
code.

At that time, in the early 1980s, I knew nothing about
the computational aspects of linear programming (LP). T
knew a great deal of theory, but numerical analysis and the
computational issues associated with numerical algorithms
were not subjects that were part of my graduate education.
I had no idea that tableaus were numerically unstable.

Fortunately for me, by the time my interests in compu-
tation had started, the Department of Industrial Engineer-
ing and Management Sciences at Northwestern University
had hired Bob Fourer, one of the creators of the AMPL
modeling language. Bob had worked for several years at
the National Bureau of Economic Research doing practi-
cal linear programming, followed by a graduate career at
Stanford. He knew a lot about the computational aspects of
mathematical programming, and he passed on a great deal
of that knowledge to me in informal conversations.

Linear programming become more central to what I
was doing when a friend of mine, Tom Baker, founded
Chesapeake Decision Sciences (now a part of Aspen Tech-
nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. 1 said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

Subject classification: Professional: comments on
Area of review: ANNIVERSARY ISSUE (SPECIAL).

0030-364X/02/5001-0003 $05.00
1526-5463 electronic ISSN

To this day, I’'m not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.

After the code was delivered to Chesapeake, there fol-
lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, |
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib' testset my code was indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.

This comparison to XMP was an important part of
what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.

This was the mid-1980s, and integer-programming com-
putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grotschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
tion, they did not deal well with issues such as degeneracy.
The situation at the time is well described by some remarks
of Grotschel and Holland (1991), commenting on their use
of MPSX/370 in work on the traveling salesman problem:
They note that if the LP-package they were using had been

Operations Research © 2002 INFORMS
Vol. 50, No. 1, January—February 2002, pp. 3-15



4 / BIXBY

“better suited for a row generation process than MPSX is,
the total speed-up obtained by faster (cut) recognition pro-
cedures might be worth the higher programming effort,”
(p -174) and “Some linear programs that arose were hard to
solve, even for highly praised commercial codes like IBM’s
MPSX” (p. 142).

What was needed was a numerically robust code that
was also flexible enough to be embedded in these integer-
programming applications. It had to be a code that made
it easy to handle the kinds of operations that arose in a
context in which it was natural to begin with a model
instantiated in one form followed by a sequence of problem
modifications (such as row and column additions and dele-
tions and variable fixings) interspersed with resolves. These
needs were among the fundamental motivations behind the
development of the callable-library version of the CPLEX?
code.

The connection between linear and integer programming
also offered me the opportunity to work on something that
would not only be of potential commercial value, but would
fit nicely with a research program in integer programming.
This research program later grew to include one of my
most fruitful research collaborations, joint work with David
Applegate, Vasek Chvdtal, and Bill Cook on the traveling
salesman problem.

2. HOW FAR HAVE WE COME?

It was thus around 1987 that I became seriously involved
in the computational aspects of linear programming. The
first version of CPLEX, CPLEX 1.0, was released in 1988.
A lot has happened in the field since then. The question I
would like to address here—as quantitatively as possible—
is, how have the developments during this period affected
our ability to solve real-world LPs? The size and magnitude
of the real models that are regularly solved today was, I
believe, unimaginable 10 years ago.

It will come as no surprise that in most of what I present,
I will make use of the CPLEX LP code. However, it is
my sense that similar improvements could be demonstrated
using other modern LP codes. Much of what I will discuss
is based upon technological advances that have benefitted
LP in general.

While the focus of this paper will be on linear pro-
gramming, a few comments are in order on integer pro-
gramming. Integer programming, and most particularly the
mixed-integer variant, is the dominant application of lin-
ear programming in practice. Integer programming makes
direct use of all the advances we will discuss in LP algo-
rithms. In addition, there have been other major advances
that are domain specific to integer programming, such as
the use of cutting planes and integer-programming-specific
presolve techniques. These two classes of methods alone
often transform models from being unsolvable to straight-
forward. There is little doubt that the overall improvement
in present-day integer-programming codes exceeds that for
linear programming.

It will be assumed throughout this paper that the reader
has a general familiarity with LP algorithms, particularly
the primal and dual simplex algorithms and the primal-dual
log barrier algorithms. For a general reference on simplex
algorithms see Chvatal (1983), and for a more detailed dis-
cussion of some of the specific computational issues dis-
cussed here see Applegate et al. (forthcoming). For a ref-
erence on barrier algorithms see Wright (1997).

3. ADVANCES IN COMPUTING MACHINERY

We all recognize that advances in computing machinery
have had an enormous effect on the practical application of
linear programming. Without computing machines, linear
programming as we know it would not exist.

During the period since 1987, the influence of comput-
ing advances has been particularly strong. Indeed, it is
sometimes asserted that machine advances are the main
reason that linear programming has become such a pow-
erful tool. While it is my conviction that algorithmic and
software improvements have been equally important, there
is no doubt that hardware effects are large and pervasive.
Today’s desktop computers have reached the stage that their
power exceeds by a considerable factor that of even the
best supercomputers available just 10 years ago.

Beyond simply the issue of speed, huge increases in
computer memory capacity have made it possible to handle
much larger problems, and have made it possible to con-
sider entirely different solution strategies and implementa-
tions of these strategies. Many of the fundamental algorith-
mic ideas that are key to modern LP codes simply could not
have been implemented if memory were not so plentiful.
The improvements in computer programming languages
and systems have made it much simpler to build large com-
plex systems. Improvements in computer-human interfaces
have improved not only the usability of the tools that we
create, but greatly facilitated the creation of the tools them-
selves, including the basic improvements in the underlying
algorithms. The insights for many of these improvements
have come from the simple ability to examine larger and
more interesting real instances in real time.

3.1. Speed Comparison

A direct speed comparison is clouded by the differences
between barrier algorithms and simplex algorithms. In bar-
rier algorithms there is a single computational step that
usually dominates: the computation of the Cholesky fac-
torization. There is no such single step that dominates in
simplex computations. In addition, the computation of the
Cholesky factorization is very regular; we are much more
able to exploit the capabilities of modern computing archi-
tectures than in simplex algorithms.

For these reasons, I give separate estimates of machine
speed improvements for simplex algorithms and barrier
algorithms. To estimate simplex speedups I make use of
computational results from studies carried out in 1988
using CPLEX 1.0 combined with results on the same



Table 1. Machine improvements—simplex algorithms.
Old Machine/ Estimated
Processor New Machine/Processor Speedup
Sun 3/50 Pentium 4, 1.7 GHz 800
Sun 3/50 Compaq Server ES40, 667 MHz 900
25 MHz Intel 386 Compaq Server ES40, 667 MHz 400
IBM 3090/108S Compaq Server ES40, 667 MHz 45
Cray X-MP/416 Compaq Server ES40, 667 MHz 10

models using CPLEX 1.0 compiled and run on current
machines. For barrier algorithms, the standard Linpack
benchmarks® provide a good measure of the effects of
machine improvement.

A Sun 3/50 was the machine on my desk in late 1987. 1
do have computational results for Intel processors available
at that time, but the usability of machines based upon these
processors was severely hampered by their 16-bit, 640K
memory limit. The 25 MHz 386 listed in Table 1 was the
first of the PC processors available to me where these lim-
itations could be overcome, using so-called 32-bit “DOS
extenders.”

The IBM 3090 is included here because, into the mid
1980s, these machines were typical of the mainframes that
dominated LP practice. It is worth noting that the simplex
speedup listed is surely an overestimate of the speedup
relative to a code such as MPSX. The C compilers for
the IBM 3090 were not very good; moreover, the CPLEX
code took no account of the special properties of the 3090
architecture. MPSX, by contrast, was written largely in
machine assembly code and tuned to the specifics of the
3090 architecture.

The final machine listed, the Cray X-MP, was never in
wide use as an LP computing environment. However, sig-
nificant testing was carried out on these machines in the
late 1980s and early 1990s, and they do illustrate the upper
limit of computing power available at that time.

What I conclude from Tables 1 and 2 is that for desk-
top computing, machine speedups have contributed a factor
between 500 and 1,000 to the speed of simplex algo-
rithms. Barrier algorithms, on the other hand, have expe-
rienced speedups an order of magnitude greater. This dif-
ference is fundamental to the fact that barrier algorithms
have emerged as a powerful computational tool in linear
programming.

Table 2. Machine improvements—barrier algorithms.
Old Machine/ Estimated
Processor New Machine/Processor Speedup
Sun 3/50 Pentium 4, 1.7 GHz 13000
Sun 3/50 Compagq Server ES40, 667 MHz 12000
25 MHz Intel 386 Compaq Server ES40, 667 MHz 4000
IBM 3090/108S Compagq Server ES40, 667 MHz 10
Cray X-MP/416 ~ Compaq Server ES40, 667 MHz 5

Bixpy / 5
4. LP COMPUTATION: 1947-LATE 1980s

George Dantzig is widely recognized as the father of linear
programming. A central part of his many contributions to
this subject was the recognition that linear programming
was more than simply a conceptual tool. It was important
to be able to solve linear programs and compute actual
answers:

A certain wide class of practical problems appears to
be just beyond the range of modern computing machin-
ery. These problems occur in everyday life; they run
the gamut from some very simple situations that con-
front an individual to those connected with the national
economy as a whole. Typically, these problems involve
a complex of different activities in which one wishes
to know which activities to emphasize in order to carry
out desired objectives under known limitations (Dantzig
1948).

LP computation began with Dantzig’s introduction of
the simplex method in 1947.* The above quotation is
taken from the paper in which, to my knowledge, the
simplex algorithm first appeared. Perhaps the first instance
of a nontrivial LP solved with the simplex algorithm was
Laderman’s solution (see Dantzig 1963) of Stigler’s (1945)
diet problem. This LP had nine constraints and 77 variables.
Reportedly, nine coworkers working on electronic calcula-
tors for an estimated total of 120 man-days were needed to
carry out the computations.

The first computer implementation of the simplex
method seems to have been developed at the National
Bureau of Standards, the present-day National Institute of
Standards and Technology, on the SEAC computer. Orden
(1952) and Hoffman et al. (1953) report computational tests
with this machine. One instance with 48 equations and 71
variables was solved in 18 hours and 73 simplex iterations.

William Orchard-Hays began his pioneering work on
implementations of the simplex method in 1953-54. This
work was the beginning of the development of commer-
cially available LP codes. The computing machine used
was an IBM “card programmable calculator” (CPC), hardly
a real computer by today’s standards. In the words of
Orchard-Hays (1990) “The CPC was an ancient conglom-
eration of tabulating equipment, electro-mechanical stor-
age devices, and an electronic calculator (with tubes and
relays), long since forgotten. One did not program in a
modern sense, but wired three patch-boards which became
like masses of spaghetti” The first code implemented
by Orchard-Hays used an explicit basis inverse, with the
inverse freshly recomputed at each iteration. Again, in the
words of Orchard-Hays, “One could have started an iter-
ation, gone to lunch, and returned before it finished...”
The initial results were not encouraging. However, in 1954
Dantzig recalled the idea of the product-form of the inverse,
proposed by Alex Orden, and this device led to a second,
more efficient CPC implementation. Orchard-Hays (1990)
reports that the largest instance solved with this code had
26 constraints and 71 variables, and took “eight hours



6 / BixBYy

of hard work feeding decks to hoppers” to complete the
solution.

As computers continued to get better, so did implementa-
tions of simplex algorithms. In 1956 a code named RSLP1
was implemented on an IBM 704, a machine with 4K of
core storage, miniscule by today’s standards. The maxi-
mum number of constraints was limited to 255, with an
essentially “unlimited” number of variables. RSLP1 was
distributed through the SHARE organization and was used
by larger petroleum companies. In the period 1962—-1966
LP/90 was implemented for the IBM 7090, followed by
LP/90/94 for the IBM 7094. The number of allowed con-
straints grew to 1,024. By then the use and application of
LP had grown as well.

In 1966, IBM introduced a major advance in comput-
ing hardware, the family of IBM 360 computers. At about
the same time, the development of an LP system designed
to run on these computers was commissioned by IBM.
That system became known as MPS/360. MPS/360 was
followed by MPSX and later by MPSX/370. During that
period, motivated by Kalan’s (1971) work on supersparsity,
Ketron Corporation developed MPS III with Whizard; this
work was supported by Exxon Corporation through the urg-
ing of Milt Gutterman. Tuned for the new, fast IBM plat-
forms, these codes, most particularly MPS III, represented
quantum leaps both in speed and problem size, accept-
ing models with up to 32,000 constraints. Other powerful
systems were also developed during that period, including
the UMPIRE system for the UNIVAC 1108, APEX-III for
CDC machines, and in the mid to late 70s LAMPS, written
independently by John Forrest. With modest updates and
machine improvements, these systems were the dominant
LP computing environments into the late 1980s.

5. LP COMPUTATION: 1987-PRESENT

I will begin with a summary of important algorithmic ideas.
This summary will be followed by computational results
comparing LP performance in 1987 with LP performance
today, first in anecdotal form, and then through more exten-
sive tests carried out on several different collections of LP
models. The final and by far most extensive of these will
involve a testset with 680 models, the largest of which has
more than 6 million constraints.

5.1. Algorithmic Improvements

Some of the topics discussed here, such as primal-dual log
barrier algorithms, will be known to all readers. Others,
such as “bound shifting,” a device used in primal simplex
algorithms, will be less known. For a detailed presenta-
tion of the simplex-specific parts of this discussion, see
Applegate et al. (forthcoming).

The Dual Simplex Algorithm with Steepest Edge. The
dual simplex algorithm is not new. It was introduced by
Lemke (1954). However, to my knowledge, commercial
implementations of this algorithm were not available in

1987 as full-fledged alternatives to the primal simplex algo-
rithm. As examples, MPSX/370 and MPS I’ as well
as APEX-III® did include rudimentary implementations of
the dual algorithm, but these implementations included no
Phase I facility for dealing with infeasibilities.

All that has changed. The dual simplex algorithm is now
a standard alternative in modern codes. Indeed, computa-
tional tests, some of which will be presented later in this
paper, indicate that the overall performance of the dual
algorithm may be superior to that of the primal algorithm.

There are a number of reasons why implementations of
the dual simplex algorithm have become so powerful. The
most important is an idea introduced by Goldfarb (1976),
a so-called “steepest-edge” rule for selecting the “leav-
ing variable” at each dual simplex iteration. Dual steepest-
edge “version 1” as described in Forrest and Goldfarb
(1992)7 requires relatively little additional computational
effort per iteration and is far superior to “standard” dual
methods, in which the selection of the leaving variable is
based only upon selecting a basic variable with large pri-
mal infeasibility.

Linear Algebra. Linear algebra improvements touch all
the parts of simplex algorithms and are crucial to good
barrier implementations as well. Enumerating all such
improvements is beyond the scope of this paper. I will men-
tion only a few.

For simplex algorithms, two improvements stand out
among the rest. The first of these is dynamic LU-
factorization using Markowitz threshold pivoting. This
approach was perfected by Suhl and Suhl (1990), and has
become a standard part of modern codes. In previous-
generation codes, “preassigned pivot” sequences were used
in the numerical factorization (see Hellerman and Rarick
1971). These methods were very effective when no numeri-
cal difficulties occurred, but encountered serious difficulties
in the alternative case.

The second major linear-algebra improvement is that LP
codes now take advantage of certain ideas for solving large,
sparse linear systems, ideas that have been known in the
linear-algebra community for several years (see Gilbert and
Peierls 1988). At each major iteration of a simplex algo-
rithm, several sizeable linear systems must be solved. The
order of these systems is equal to the number of constraints
in the given LP. Typically these systems take as input a
vector with a very small number of nonzero entries, say
between one and 10—independent of overall model size—
and output a vector with only a few additional nonzeros.
Since it is unlikely that the sparsity of the output is due to
cancellation during the solve, it must be that only a small
number of nonzeros in the LU-factorization (and update)
of the basis were touched during the solve. The trick then
is to carry out the solve so that the work is linear in this
number of entries, and hence, in total, essentially a constant
time operation, even as problem size grows. The effect on
large linear programs can be enormous.

For primal-dual log barrier algorithms, as previously
noted, one computation typically dominates the time per



iteration, the computation of the Cholesky factorization of
AAT, where A denotes a matrix obtained by a column scal-
ing of the constraint matrix of the given LP. A crucial part
of this computation is a preprocessing step, carried out in
advance of the actual barrier solve, in which the rows of
A are ordered so that an associated symbolic factorization
of AAT will realize as little numerical “fill” as possible,
where fill refers to the additional nonzeros created by the
factorization process.

While ordering techniques for minimizing fill in
Cholesky factorizations have been under study for years,
long before barrier algorithms became important for lin-
ear programming, the kinds of matrices that arise in linear
programming are quite different from those that had pre-
viously been studied. Subsequent advances in this domain
have been crucial to the present-day performance of bar-
rier algorithms. See Rothberg and Hendrickson (1998) for
a description of the state of the art.

Primal-Dual Log Barrier Algorithms. Karmarkar’s
(1984) paper started a virtual revolution in the theory of
linear programming. It also played a major role in prompt-
ing the computational developments (see Lustig et al. 1994)
that led to present-day primal-dual log barrier algorithms
for LP.

As we shall see, for the CPLEX implementation, bar-
rier algorithms have emerged as overall the most power-
ful single algorithm for solving LPs. Moreover, for a wide
range of problem dimensions, these algorithms can be very
effectively parallelized, further increasing their advantage.
Simplex algorithms have not been successfully parallelized
in this sense. However, in spite of these facts, one prop-
erty continues to severely limit the importance of barrier
algorithms in practice: their inability to replicate the perfor-
mance of simplex algorithms when resolving an LP from
an advanced starting point.

The limited resolve capabilities of barrier algorithms
effectively limit their application in the domain of integer
programming to solving the initial LP relaxation, thus leav-
ing the majority of the work to simplex algorithms. Since
the solution of integer programs is the dominant applica-
tion of linear programming in practice, simplex algorithms
remain the dominant algorithms in practice. In addition,
even for very large models, where the advantages of bar-
rier algorithms tend to grow, simplex algorithms are still
the winning approach in a significant number of cases.

Other Ideas. Presolve. This idea is made up of a set of
problem reductions: removal of redundant constraints, fixed
variables, and other extraneous model elements. The semi-
nal reference on presolve is Brearley et al. (1975).
Presolve was available in MPS III, but modern imple-
mentations include a much more extensive set of reduc-
tions, including so-called aggregation (substituting out vari-
ables, such as free variables, the satisfaction of the bounds
of which are guaranteed by the satisfaction of the bounds
on the variables that remain in the model). The effects on

Bixpy [/ 7

problem size can be very significant, in some cases yield-
ing reductions by factors exceeding an order of magnitude.
Modern presolve implementations are also seamless in the
sense that problem input and output occur in terms of the
original model, with exactly the same solution information
being provided as if the full model had been solved.

Perturbation, Shifting, and the Harris Ratio Test. The
previous generation of LP developers were fully aware of
the problems posed by degeneracy, stalling (long sequences
of degenerate pivots), and cycling, at least in theory, but,
by and large, chose not to implement explicit procedures to
deal with these phenomena. The effects of degeneracy did
not seem to pose a serious threat to performance for the
size and difficulty of models being solved. However, as dif-
ficulty has increased, such measures have become essential.
Research in integer programming accelerated this process
by often focusing on structures with combinatorial origins
in which degeneracy was particularly pervasive.

In the CPLEX primal simplex implementations, the
key ideas for dealing with degeneracy are an expanded
two-pass ratio test introduced by Paula Harris (1974), a
bound-shifting idea (which temporarily expands bounds
that become violated during the application of a simplex
algorithm), and an associated notion of bound perturbation
that is applied simultaneously to all bounds of nonbasic
variables, if it is determined that the first two measures (the
expanded ratio test and shifting) have not led to sufficient
progress during optimization.

Corresponding ideas are used in dual simplex algorithms,
but applied to objective-function coefficients rather than
problem bounds.

Hybrid Pricing. Hybrid pricing, or variable selection,
is a technique used by CPLEX primarily in the primal
simplex algorithm. Two alternative pricing techniques that
work well in practice are some form of partial pricing,
in which one attempts to examine only a small subset
of potential entering variables at each iteration, and devex
pricing, introduced by Harris (1974), a relatively inexpen-
sive form of approximate steepest-edge pricing.

Partial pricing typically does well on easier LPs or at the
beginning of an optimization when good, potential entering
variables are plentiful. Devex pricing does better on more
difficult models and near the end of an optimization, but
incurs more cost at each iteration. Hybrid pricing is any
scheme that begins an optimization using partial pricing (or
some other inexpensive scheme), and switches to devex (or
some other more powerful, more expensive scheme) later
in the optimization. The result is a more robust version of
the primal simplex algorithm.

5.2. Performance Improvements: Examples

Unless otherwise stated, in this and subsequent sections the
computing platform used was a 667 MHz Compaq Server
ES40. All reported solution times are in CPU seconds.
ExaMPLE 1: A Fleet-Assignment Model. The size statis-
tics for this model, degen4, are displayed below, followed



8 / BIXBY

by a set of solution times in Table 3. The order of the results
in Table 3 roughly represents the chronology of events that
eventually led to the effective solution of degen4.

Model:  degen4

Rows 4420
Columns 6711
Nonzeros 101377

The degend model is a larger version of the netlib mod-
els degen2 and degen3, and is much more difficult. It is
an early instance of an airline fleet-assignment model. In
late 1989, degen4 was presented as a challenge problem to
optimizers and computer vendors.

In my first attempt at solving degen4, working together
with John Gregory, then at Cray Research, I tried using
CPLEX 1.0 on a Cray Y-MP. This attempt failed miser-
ably. After seven hours of computing, the solution was still
infeasible, and had been stuck on the same objective value
for several hours. Largely because of the effects of degen-
eracy, it appeared very unlikely that one could solve this
model with CPLEX 1.0. As it turned out, this conclusion
was probably incorrect. If running on a Cray hadn’t been
so expensive, and there hadn’t been so many competing
users, it now seems likely that degen4 would eventually
have solved.

Running CPLEX 1.0 on a current, fast workstation (a
667 MHz Compaq Server ES40), with no competing users,
degen4 solved after about 1.5 days of computing and over
26 million iterations. This run did illustrate clearly the
potential effects of stalling. For one period in the com-
putation, lasting some 4,897,095 iterations, the objective
appeared to remain identically constant. As the results in
Table 3 indicate, by simply introducing a perturbation (in
this case a pseudorandom perturbation reducing each lower
bound by 1.0E-5 multiplied by a uniform random [0, 1]
variable), CPLEX 1.0 was able to solve degen4, taking
about one-half hour on a present-day machine.

Following the above attempt, degend was successfully
solved using the OB1 barrier code of Lustig et al. (1994).
The solution time was about 20 minutes on a Y-MP, corre-
sponding roughly to the CPLEX 2.2 barrier time in Table 3.
The conclusion of some at the time was that barrier was
the right way to solve this model, and that there was little
point in further investigating the use of simplex algorithms.
That conclusion was wrong.

CPLEX 2.2 included the measures described in the pre-
vious section for dealing with degeneracy—shifting and

Table 3.  Solution times—degen4.

Version Remark Seconds
CPLEX 1.0 primal (default) 119364.0
CPLEX 1.0 perturbation 1545.7
CPLEX 2.2 barrier 125.8
CPLEX 2.2 primal (default) 170.2
CPLEX 2.2 primal on explicit dual 33.4
CPLEX 2.2 dual standard pricing 102.3
CPLEX 2.2 dual (default) 12.0

perturbation—and also included a hybrid primal pricing
algorithm using devex. The result was a greatly reduced
number of iterations (about 50,000 total) and a running time
that was at least competitive with the barrier approach. We
then finally recognized what turned out to be the key idea
behind solving this model correctly: Look at the dual. By
explicitly constructing the dual problem and applying the
default primal algorithm, all traces of degeneracy disap-
peared, and the solution time was reduced to a time much
smaller than that for the barrier algorithm. This observa-
tion was among the important motivations for implement-
ing dual simplex algorithms in CPLEX.

However, simply dualizing degen4 was not the end of the
story. As one can see from Table 3, using the dual alone,
with “textbook™ variable selection, choosing as the leaving
variable the basic variable with the largest primal infea-
sibility, resulted in performance significantly worse than
simply applying the primal to the explicit dual. The rea-
son was that maximume-infeasibility variable selection just
didn’t work very well, and doesn’t work very well in gen-
eral. The primal was using devex in this case, a version of
steepest edge. What was missing was steepest edge for the
dual. That final piece of the puzzle was provided by Forrest
and Goldfarb (1992), who introduced a particularly effec-
tive approach to steepest-edge pricing for the dual. This
modification not only works well on degen4, but in gen-
eral. It is one of the key reasons why the dual simplex
algorithm has emerged as a powerful all-purpose algorithm
for linear programming.

ExaMPLE 2: The PDS Models. These models are descri-
bed in Carolan et al. (1990). They are military logistics
models; “PDS” stands for patient-distribution system. The
smaller instances, from pds02 through pds20, are now part
of the standard netlib testset.

The PDS models have an underlying multicommodity
flow structure, often a source of difficult LP problems.
When first introduced, they were considered very difficult
indeed. Taking CPLEX as a measure, solving pds20 on a
1990’s vintage workstation would have taken an estimated
40 days, and solving pds70 would have been practically
impossible (see Table 5).

Table 4. PDS models.

Instance Rows Columns  Nonzeros
pds100 156171 546469 1193533
pds90 142823 507771 1112089
pds80 129181 467192 1025706
pds70 114944 422356 929346
pds60 99431 367268 809094
pdsS0 83060 304348 671605
pds40 66844 242649 536690
pds30 49944 177628 393657
pds20 33874 119438 265793
pds10 16558 52712 118283
pds06 9881 28655 62524

pds02 2953 7535 16390




Because of the difficulty of these models, they have
received considerable attention in the LP literature, and sev-
eral special-purpose algorithms have been developed. To
my knowledge, the most recent and best of these algorithms
is described in Castro (2000). The largest model solved
by Castro was pds90, with a solution time of 21,781 sec-
onds on a 200 MHz UltraSparc. As we shall see, Castro’s
algorithms are now dominated by current general-purpose
implementations of the dual simplex algorithm.

In Table 5, run times are given for three versions of
CPLEX, starting with CPLEX 1.0. All runs were made on
a 300 MHz Sun UltraSparc. Note that CPLEX 1.0 times
are missing for the largest of the models. These runs were
omitted because of their anticipated length.

Significant progress did occur between CPLEX 1.0 and
CPLEX 5.0. T have included solution times only for
the dual, but solution times for the primal are similar.
This progress was due largely to the effects of presolve
(CPLEX 1.0 had no presolve) and the use of strong pricing
algorithms (steepest-edge in the dual and hybrid pricing in
the primal).

The most recent improvements, between Versions 5.0
and 7.1, dwarf earlier improvements and transform the
PDS models, once considered difficult, into easy LPs.
CPLEX 7.1 performance on these models is due to the fact
that CPLEX 7.1 fully exploits sparsity, uses more aggres-
sive perturbation in the dual (treating this idea as an algo-
rithmic technique rather than simply a remedy for degen-
eracy), and also benefits from an idea called “bound flip-
ping.” See Applegate et al. (forthcoming) for a description.
Note that the primal simplex method has also benefited
from properly exploiting sparsity.

While not illustrated in the above table, standard bar-
rier algorithms have also become a viable approach for the
largest PDS instances. Current ordering algorithms are able
to directly exploit multicommodity-like structures in con-
straint matrices: CPLEX 5.0 barrier solves pds20 in 880.8
seconds, while CPLEX 7.1 takes only 69.3 seconds, an
improvement of over a factor of 10.

I would also like to note the effect of problem size on
the relative improvements from CPLEX 1.0 to 7.1, mea-
sured as the ratio of the CPLEX 7.1 dual solve time to

Table 5. PDS models—solution times.
CPLEX 5.0 CPLEX 7.1 CPLEX 7.1

Instance CPLEX 1.0 Dual Primal Dual
pds100 — 50413.1 2414.8 256.3
pds90 — 59981.0 2452.2 320.3
pds80 — 42055.4 2201.5 304.4
pds70 335292.1 21120.4 1504.1 197.8
pds60 205798.3 7442.6 852.4 160.5
pds50 122195.9 8509.9 493.2 114.6
pds40 58920.3 2816.8 188.3 79.3
pds30 15891.9 1154.9 74.8 39.1
pds20 5168.8 232.6 27.9 20.9
pds10 208.9 13.0 3.7 2.6
pds06 26.4 2.4 1.4 0.9

pds02 0.4 0.1 0.1 0.1

Bixpy / 9

the CPLEX 1.0 (primal) solve time. Results are given in
Table 6.

For the largest models in this set, the performance
improvements well exceed machine improvements for this
time period, while for smaller models this is not the case.
Ratios for the very largest PDS instances would likely
be larger yet. Indeed, I performed a related test on one
additional model studied by Castro (2000), mnetgen24.
This model has 66,641 constraints, 370,739 variables,
and 1,039,461 nonzeros and a multicommodity structure.
CPLEX 7.1 dual solved this model in 114.5 seconds, while
CPLEX 1.0 took 1,221,920.3 seconds (a little over two
weeks) on the same machine, a ratio of over 10,672.

Finally, I would like to make an observation about the
rate of growth of the solution times as the size of the PDS
model increases.® Consider Figure 1. In this figure the solu-
tion times for CPLEX 1.0 and CPLEX 7.1 are plotted as a
function of the “number” of the corresponding PDS model,
where the number for pds02 is ‘2’, the number for pds06
is ‘6’, and so on. These numbers are a measure of the num-
ber of distinct time periods, or “blocks” in the underlying
model.

It is clear from the shapes of the graphs in Figure 1
that the solution times grow at different rates for the dif-
ferent CPLEX versions. This point can be made more pre-
cise by applying straight line and parabolic least-squares
fits to the data. The adjusted R> for the CPLEX 1.0 data
when a straight line is used is 0.796, but for a parabola the
adjusted R? is 0.994. Thus, the parabolic fit is noticeably
better, explaining 99.4% of the variance in solution times,
while the straight-line fit only explains 79.6% of the vari-
ance. In the case of CPLEX 7.1, however, the straight-line
fit adjusted R? is 0.954, indicating that the simple linear
fit alone explains over 95% of the variance in the solution
times.

Based upon the above analysis, the growth rates of
solution times for CPLEX 1.0 and CPLEX 7.1 are qual-
itatively different: One appears to be quadratic and the
other, CPLEX 7.1, nearly linear. This phenomenon may be
explained as follows. Note first that a solution time may
be viewed as the product of the number of iterations and
the time per iteration. Beginning with iteration counts, it is
quite reasonable to expect a growth rate that is linear with
the number of blocks, or at least approximately so. What
about the time per iteration? In older versions of CPLEX

Table 6. PDS models—relative improvements.

Model CPLEX 1.0 CPLEX 7.1-Dual Ratio
pds70 335292.1 197.8 1695.1
pds60 205798.3 160.5 1282.2
pds50 122195.9 114.6 1066.3
pds40 58920.3 79.3 743.0
pds30 15891.9 39.1 406.4
pds20 5168.8 20.9 247.3
pds10 208.9 2.6 80.3
pds06 26.4 0.9 29.3
pds02 0.4 0.1 4.0




10 / BixBY

Figure 1. PDS models.

PDS Models

400000.00

350000.00

300000.00

250000.00

200000.00

CPLEX 1.0 seconds

150000.00

100000.00

50000.00
00 =l ‘J I

.00 10.00 20.00 30.00

40.00 50.00 60.00 70.00 80.00

PDS02 -- PDS70

|-t—CPLEX 1.0 Seconds

CPLEX 7.1 Seconds |

this growth rate was at best linear. Thus, the overall growth
rate was quadratic, at best. By contrast, the newer linear-
algebra routines in CPLEX 7.1, exploiting the ideas in
Gilbert and Peierls (1988), can avoid unnecessarily examin-
ing zeros during solves. This change implies that one might
expect the time per iteration for a one-block model to be
about the same as when many blocks are present, yielding
times that are essentially constant as the number of blocks
grows. The result is overall solution times that grow nearly
linearly.

ExaMpPLE 3: Primal. We recently received a customer LP
generated to test the viability of a new modeling approach.
Size statistics before and after presolve are as follows:

Very large model
Rows  Columns Nonzeros

Original size 5034171 7365337 25596099
After presolve 1296075 2910559 10339042

Solution times were as follows:

Very large model—solution times
Algorithm

Version Barrier Dual Primal

CPLEX 5.0 8642.6 350000.0 71039.7
CPLEX 7.1 5642.6 6413.1 1880.0

The barrier algorithm did not see a substantial improve-
ment version to version, but the dual algorithm improved
by a factor of 54.6 and the primal by a factor of 37.8. The
effect of presolve on the solution times for this problem is
also substantial. While the CPLEX 7.1 primal run took only
131,016 iterations using presolve (the default), running on
the unpresolved model the same code had completed over
875,000 iterations in slightly over 15,000 seconds, and the
solution was far from even being feasible. A corresponding
run with CPLEX 1.0 completed only 2,500 iterations in a
similar time period, a factor of about 350 times slower per
iteration running on the unpresolved model. Clearly, while
hard to estimate with any accuracy, the ratio of the best
CPLEX 7.1 solve time to the potential CPLEX 1.0 solve
time is easily in the thousands.

ExaMPLE 4: Barrier. It is not difficult to find examples
where barrier algorithms dominate the best of the avail-
able simplex algorithms. These instances obviously repre-
sent models where algorithmic improvements have been the
difference between solving and not solving. One particu-
larly striking example is the following car manufacturing
model:

Model: CARS

Rows 196400
Columns 205040
Nonzeros 604060



CARS solved in 583 seconds using barrier followed by
crossover to a basic solution, where the crossover step con-
sumed 481 of these seconds. Neither CPLEX 7.1 primal
nor CPLEX 7.1 dual finished solving this model in 350,000
seconds.

5.3. Performance Improvements: Larger Testsets

How should one carry out a systematic comparison of LP
technology in 1987 with that of today? Perhaps the ideal
approach would be to put together a large, representative
testset of models, run these models with some appropriate
code, vintage 1987, run the same models with a present-
day code, and compare the results. Indeed, I do have access
to an excellent testbed of models, and these could be the
basis for such a test.

However, as we saw in the case of the PDS models,
speedups can be substantially greater for larger models, and
many of these models, even with the best codes now avail-
able, take several thousands of seconds to solve. If one is to
solve the same models with older codes and really expect to
see the full effect of the speedups—some of which would
likely exceed four orders of magnitude—then run times
could easily range to significant fractions of a year. Carry-
ing out such a program is clearly impractical. As an alter-
native, I will present a sequence of results making com-
parisons that move forward in time. These results will, I
believe, make a convincing case when taken as a whole.

Where should the comparison begin? With what code?
I could choose to use as a baseline a state-of-the-art code
from the late 1980s, MPSX/370 or MPX III. However, there
are several reasons why I believe that would be the wrong
approach. Leaving aside software design issues that are
critical to the current state of linear-programming practice
(such as portability and embeddability), the simple speed
comparison is of limited interest. These solvers were tied to
mainframe computing, and those mainframes were no more
than 50 times slower than current workstations. The results
presented below will easily demonstrate that the algorith-
mic improvements between CPLEX 1.0 and CPLEX 7.1
exceed a factor of 50. Given that test results from 1989
(not presented here) comparing MPSX/370 and CPLEX 1.0
both running on an IBM 3090 showed comparable running
times on several more difficult models, the conclusion is
clear.

The code that I have chosen for the starting point
of my comparisons is the XMP code of Roy Marsten
(1981). Because it was portable and embeddable, XMP
was heavily used in the late 1980s in integer-programming
research. While certainly not comparable in speed to
MPSX or MPS 1III, it was in some ways more
advanced algorithmically, including state-of-the-art factor-
ization and factorization-update routines. MINOS, devel-
oped by Murtagh and Saunders (1998), was another
portable code available in the same period (and still avail-
able, in much improved form). It was significantly more

Bixpy / 11

stable than XMP, and somewhat faster (based upon com-
parisons I did at that time with CPLEX 1.0), but not as
easy to embed.

Besides XMP and MINOS, there were already several
PC codes on the market in the late 1980s; however, I have
seen no evidence to suggest that the performance of any of
these codes significantly exceeded that of XMP.

Table 7 is taken from a talk I gave in 1988 at Columbia
University. It compares CPLEX 1.1° to XMP on a subset
of the netlib testset. Runs were made on a Sun 3/50. Two
models that were included in the original test runs do not
appear in the table, grow22 and pilotnov, both of which
prematurely terminated due to numerical singularities when
running XMP.

One possible comparison from this table is the ratio of
the total solution times. These yield a speedup of approxi-
mately 4.3 (= 15979.2/3733.3). Another possible compari-
son is to compute the ratio of each individual CPLEX time
divided by the corresponding XMP time and compute the
arithmetic mean of these ratios. The result is an average
ratio of 9.6. However, both of these measures are overly
sensitive to single, large entries, either in the total solve
time or in the ratios. A much better, more robust, and more
conservative measure is the geometric mean of the individ-
ual ratios. The geometric mean in this case is 4.70.

Table 7. A 1988 comparison.
CPLEX 1.1 XMP

Model Iterations Seconds Iterations Seconds
share2b 103 3.0 138 6.6
bore3d 115 6.3 5801 736.6
standat 179 9.0 75 8.2
seba 187 11.9 1433 244 .4
sc205 191 11.1 273 23.0
share1lb 197 9.9 411 28.8
scorpion 227 13.8 429 449
brandy 241 20.8 8521 1144.0
forplan 249 17.9 2313 244.5
israel 300 25.6 242 27.0
capri 329 15.8 550 48.0
bandm 374 41.1 1679 250.9
€226 421 26.5 653 71.3
stair 446 134.6 1667 530.9
sierra 459 49.7 950 270.0
scagr25 508 46.9 1470 248.9
shell 530 322 830 1233
gfrd-pnc 613 43.9 983 1441
ganges 701 108.8 1769 587.6
sctap3 795 92.8 3404 1293.6
scrs8 812 81.1 1271 182.7
ffftt800 834 66.4 1611 297.2
etamacro 883 55.8 1140 144.6
scfxm3 1018 133.7 2860 864.8
ship12l 1035 144.2 1510 515.7
czprob 1138 137.8 3014 936.3
scsd8 1890 230.7 1818 346.7
nesm 3810 413.8 7255 1844.4
25fv47 4559 1742.3 10859 4753.2




12 / BixBY

Table 8. Model sizes—original. Table 10. Solution times—best simplex.
Model Rows Columns Nonzeros CPLEX CPLEX CPLEX CPLEX
Model 1.0 22 5.0 7.1 Algorithm
car 43387 107164 189864
continent 10377 57253 198214 car 1555.0 701.1 275.8 120.6 primal
energyl 16223 28568 88340 continent 364.7 110.5 104.4 46.7 primal
energy2 8258 21200 145329 energyl 12174 275.0  260.5 22.6 dual
energy3 27145 31053 268153 energy2 10130.1 736.0  664.0 693.9 dual
fuel 18800 38540 219880 energy3 21797.1 2719  229.1 161.7 dual
initial 27441 15128 96118 fuel 5619.5 11232  698.6 675.0 primal
schedule 23259 29342 75520 initial 3832.2 102.2 51.3 15.5 dual
schedule 152404.0 2523  220.8 64.6 dual

It is obvious, but worth noting, that the models used in
comparing XMP and CPLEX are trivial in size by today’s
standards. It is my view that they likely lead to an underes-
timate of the difference between XMP and CPLEX 1.0, and
they are certainly too small to yield any useful information
about current codes: The total running time for the entire
set on a 667 MHz Compaq Server ES40 is 3.5 seconds with
CPLEX 1.0 and 2.7 seconds with CPLEX 7.1.

For a second comparison, I will use a testset from a study
that was published in Bixby (1994), motivated by Lustig
et al. (1994), comparing CPLEX 1.0 to CPLEX 2.2 on a
set of models that at that time were considered quite diffi-
cult and quite large. The original sizes and names of these
models are given in Table 8. The sizes after application of
CPLEX 7.1 presolve are given in Table 9.

Tables 10 and 11 give solution times for the models in
Table 8 using CPLEX 1.0, 2.2, 5.0, and 7.1. Runs were
made on a 300 MHz UltraSparc. In the first table I have
tabulated the best of the primal and dual solution times for
each of the eight models and for each of the CPLEX ver-
sions. The final column specifies which algorithm was the
winner for each of the eight models running CPLEX 7.1.
The second table records the best of all three algorithms
—barrier, primal, and dual—with the final column again
recording the winners for Version 7.1.

Table 12 compares CPLEX 1.0 to the various other ver-
sions using geometric means of individual ratios of solve
times. According to this table, the best simplex algorithm
in CPLEX 7.1 is almost 52 times faster than CPLEX
1.0 on these models, and the best of three is 114 times
faster.

A shortcoming of the testset in Table 8 is that these mod-
els no longer are “large.” In addition, a single algorithm,

barrier, is dominant.!® To construct a more comprehensive,
less biased measure of recent improvements, I will use a
larger, more comprehensive testset, and focus on comparing
only two CPLEX versions, CPLEX 5.0 and 7.1. CPLEX
5.0 was the last release prior to introducing a number of
improvements for exploiting sparsity in large models.

For my final testset I have made use of the CPLEX
library of LPs, a library that has been collected over the last
13 years from industry and academia. In total it contains
approximately 2,000 distinct models. Since many of these
models represent multiple instances with differing sizes but
identical structure, I began by screening the set to remove
some of these multiple instances, generally keeping only
the largest two or three from a given set. In addition, all
models were removed from the set that solved in under
0.25 seconds with both CPLEX 5.0 and CPLEX 7.1 and
all three default algorithms, barrier, primal, and dual. The
set that remained contained 680 models.

Rather than presenting an entire table of model statistics,
I offer the summary statistics in Table 13, indicating the
numbers of models in various ranges of row counts. Row
count is the best simple predictor of model difficulty that I
have found. I ran the six different default algorithms on all
680 models using a 350,000-second time limit (about four
days): barrier (with crossover), dual, and primal for both
CPLEX 5.0 and CPLEX 7.1. All runs were made on 667
MHz Compaq Server ES40s.

There were three models, one with approximately
20,000, one with 50,000, and one with 1,300,000 rows, that
did not solve with any of the algorithms inside the time
limit. These models are omitted in further comparisons. It

Table 11. Solution times—best of three.

Table 9. Model sizes—after presolve.
CPLEX CPLEX CPLEX CPLEX

Model Rows Columns Nonzeros Model 1.0 2.2 5.0 7.1 Algorithm
car 32194 73512 145019 car 1555.0  203.0 117.1 67.3 barrier
continent 6808 45728 157812 continent 3647 110.5 99.5 46.7 primal
energyl 10470 19262 68799 energyl 1217.4 46.5 31.5 22.4 barrier
energy?2 6553 17899 126438 energy?2 10130.1 1714 71.7 324 barrier
energy3 9464 28649 185988 energy3 21797.1  152.6 113.4 82.2 barrier
fuel 8732 21313 149129 fuel 5619.5  999.1 340.5 124.7 barrier
initial 18913 10788 78567 initial 38322 102.2 51.3 15.5 dual
schedule 5044 12176 37828 schedule  152404.0 252.3 132.0 47.9 barrier




Table 12. Ratios—geometric means.
Version Best Simplex Best of Three
CPLEX 1.0 1.0 1.0
CPLEX 2.2 15.8 30.3
CPLEX 5.0 22.0 54.0
CPLEX 7.1 51.8 114.1

should be noted, however, that each of these models did
solve with barrier alone, omitting crossover; moreover, the
solutions appeared to be of high quality. However, omitting
crossover is not the default when using barrier in CPLEX.
Indeed, crossover is considered an integral part of this algo-
rithm, being invoked in a significant number of cases to
complete the optimization of nonoptimal barrier solutions,
including models that are declared infeasible.

The results of the indicated runs, excluding the three
models mentioned above, are summarized in Table 14. To
see what these numbers mean, consider the “Best simplex”
column. To compute it, the best of the primal and dual
simplex running times were extracted for CPLEX 5.0 and
CPLEX 7.1, respectively, producing two lists of 677 run-
ning times each. From these two lists, 677 ratios were com-
puted by dividing the best simplex time for each model
using CPLEX 5.0 by the best simplex time for that model
using CPLEX 7.1. To then compute an individual entry
such as that for “>25,000 ,” the geometric mean was com-
puted of all ratios for the models with at least 25,000 rows,
of which there were 182. The result was 3.7, indicating an
average of almost a four-fold speedup.

What can one conclude from the results of this section?
I have claimed an improvement of 4.7 for CPLEX 1.0
relative to XMP, both codes using exclusively the primal
simplex algorithm. Using the results of the eight problems
taken from Bixby (1994), one can conclude an improve-
ment in simplex algorithms from CPLEX 1.0 to CPLEX 5.0
of 22.0, yielding a total of approximately 103 from XMP
to CPLEX 5.0, for problems of moderate size. Now using
the comparison of CPLEX 5.0 to CPLEX 7.1 for mod-
els with, for example, 50,000 rows and more, one obtains
a total speedup that can be estimated at 960, roughly the

Table 13. Big testset—summary statistics.

Row-count Range Number
0-999 93
1000-2499 124
2500-4999 86
5000-9999 88
10000-24999 105
25000-49999 70
50000-99999 40
100000249999 39
250000-499999 15
500000-6662791 20

Bixpy / 13

Table 14. CPLEX 5.0 vs. CPLEX 7.1.
Best Best

Row Range Simplex of Three Primal Dual Barrier
>0 rows 2.0 2.3 2.0 2.7 2.1
>1000 rows 2.3 2.5 2.2 3.0 2.2
>2500 rows 2.7 3.1 2.6 3.5 2.5
>5000 rows 3.1 3.7 3.1 4.2 4.0
>10000 rows 3.7 4.8 4.0 5.5 3.6
>25000 rows 5.0 6.6 5.7 7.4 4.7
>50000 rows 6.7 9.3 8.3 9.9 6.0
>100000 rows 7.0 9.4 9.5 9.6 7.2
>250000 rows 10.6 15.6 19.1 14.9 8.4
>500000 rows 10.6 20.4 24.8 23.0 7.2

same as the magnitude of machine improvements for sim-
plex algorithms.

Including barrier algorithms in this analysis, one obtains
an estimated improvement of 250 from XMP to CPLEX
5.0, and for models with 50,000 rows and more a total
improvement of approximately 2,400. Really quite remark-
able. However, the proper way to compare this improve-
ment with machine improvements is far less clear, given
the huge machine effect enjoyed by barrier algorithms.

I would like to close with a brief comparison among the
three core algorithms, using CPLEX 7.1 alone. Table 15
was extracted from the same set of test runs as Table 14.

The results in Table 15 indicate that dual simplex is
about twice as fast as primal simplex, on average, and that
barrier is, overall, the fastest algorithm by a narrow but
growing margin as problem size increases. Interestingly,
taking the best of primal and dual simplex performance
yields an algorithm with average performance roughly the
same as barrier. However, it is important to note that the
numbers in Table 15 do measure only average performance.
A detailed examination of the data indicates that each of
primal, dual, and barrier wins in a significant number of
cases, an observation confirmed by the fact that the best
of three outperforms each individual algorithm by a signif-
icant margin.

Table 15. Algorithm comparison.
Primal/ Dual/ Best Simplex/ Primal/

Row Range Dual Barrier Barrier Best of Three
>0 rows 1.5 1.1 0.9 33
>1000 rows 1.6 1.1 0.9 35
>2500 rows 1.7 1.0 0.8 3.7
>5000 rows 1.8 1.1 0.8 4.1
>10000 rows 2.0 1.0 0.8 44
>25000 rows 2.0 1.2 0.9 5.1
>50000 rows 2.0 14 1.0 6.8
>100000 rows 2.1 1.6 1.1 8.5
>250000 rows 1.6 1.7 1.1 7.0

>500000 rows 2.5 15 0.9 8.9




14 / BixBy
6. CONCLUSION

In this paper I have focused primarily on one issue, solving
larger, more difficult linear programs faster. The numbers
presented speak for themselves. Three orders of magnitude
in machine speed and three orders of magnitude in algo-
rithmic speed add up to six orders of magnitude in solv-
ing power: A model that might have taken a year to solve
10 years ago can now solve in less than 30 seconds. Of
course, no one waits one year to solve a model, at least no
one I know. The real meaning of such an advance is much
harder to measure in practice, but it is real nevertheless.
There is no doubt that we now have optimization engines
at our disposal that dwarf what was available only a few
years ago, making possible the solution of real-world mod-
els once considered intractable, and opening up whole new
domains of application.

How do these speed improvements fit into the over-
all picture of linear-programming practice? They are only
a part of that picture, though an essential, enabling part.
The pervasive availability of powerful, usable desktop com-
puting, the availability of data to feed our models, and
the emergence of algebraic modeling languages to repre-
sent our models have all combined with the underlying
engines to make operations research and linear program-
ming the powerful tools they are today. However, there
are still important issues to be solved. In spite of all the
advances, the application of linear programming remains
primarily the domain of experts. The need for abstraction
still stands as a hurdle between technology and solutions.
While the existence of this hurdle is disconcerting, it is at
least gratifying to know that the benefits from overcoming
it are now greater than ever.

ENDNOTES

! See http://netlib.lucent.com/netlib/lp/data/
index.html.

2 CPLEX is a trademark of ILOG, Inc.

3 See (http://www.netlib.org/performance/html/
PDSbrowse . html).

4 See Gass (2001) for a further discussion of early LP
computational work.

> John Tomlin, private communication.

¢ John Gregory, private communication.

7 The dual steepest-edge algorithm in Goldfarb (1976)
is “version 3” in Forrest and Goldfarb (1992).

8 This observation was suggested to the author by Randy
Batsell, a Rice University professor in the Jesse H. Jones
Graduate School of Management.

® The simplex implementations in CPLEX 1.1 were
essentially identical to those in CPLEX 1.0.

10" Lustig et al. (1994) point out that seven of these mod-
els were primarily of interest because they appeared diffi-
cult to solve with simplex algorithms.

ACKNOWLEDGMENTS

It would be remiss of me not to mention here the other
people who have played a significant role in the develop-
ment of CPLEX. Zonghao Gu, Irv Lustig, Ed Rothberg,
and Roland Wunderling have all made fundamental con-
tributions to the CPLEX linear-programming algorithms.
Mary Fenelon, John Gregory, and Ed Klotz, while not
contributing directly to these algorithms, deserve consider-
able credit for persistent and significant insights. I would
also like to acknowledge Janet and Todd Lowe for trans-
forming a collection of algorithms into a successful com-
mercial product.

REFERENCES

Applegate, D., R. Bixby, V. Chvdtal, W. Cook. Solving Traveling
Salesman Problems. Forthcoming.

Bixby, R. E. 1994. Commentary: Progress in linear programming.
ORSA J. Comput. 6 15-22.

Brearley, A. L., G. Mitra, H. P. Williams. 1975. Analysis of
mathematical programming problems prior to applying the
simplex algorithm. Math. Programming 8 54-83.

Carolan, W. J., J. E. Hill, J. L. Kennington, S. Niemi, S. J.
Wichmann. 1990. An empirical evaluation of the KORBX
algorithms for military airlift applications. Oper. Res. 38(2)
240-248.

Castro, J. 2000. A specialized interior-point algorithm for
multicommodity network flows. SIAM J. Optim. 10(3)
852-877.

Chvital, V. 1983. Linear Programming. Freeman, New York.

Dantzig, G. 1948. Programming in a linear structure. U.S. Air
Force Comptroller, USAF, Washington, D.C.

— . 1963. Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, NJ.

Forrest, J. J., D. Goldfarb. 1992. Steepest-edge simplex algo-
rithms for linear programming. Math. Programming 57
341-374.

Gass, S. I. 2002. The first linear-programming shoppe. Oper. Res.
50 61-68.

Gilbert, J. R., T. Peierls. 1988. Sparse partial pivoting in time
proportional to arithmetic operations. SIAM J. Sci. Statist.
Comput. 9 862-874.

Goldfarb, D. 1976. Using the steepest-edge simplex algorithm to
solve sparse linear programs. Sparse Matrix Computations.
Academic Press, 227-240.

Grotschel, M., O. Holland. 1991. Solution of large-scale sym-
metric travelling salesman problems. Math. Programming 51
141-202.

Harris, P. M. J. 1974. Pivot selection methods of the devex LP
code. Math. Programming 5 1-28.

Hellerman, E., D. Rarick. 1971. Reinversion with the preassigned
pivot procedure. Math. Programming 1 195-216.

Hoffman, A., M. Mannos, D. Sokolowsky, D. Wiegmann. 1953.
Computational experience in solving linear programs.
SIAM J. 1 1-33.

Kalan, J. E. 1971. Aspects of large-scale in-core linear program-
ming. Proc. ACM Conf. Chicago, IL 304-313.



Karmarkar, N. 1984. A new polynomial-time algorithm for linear
programming. Combinatorica 4 373-395.

Lemke, C. E. 1954. The dual method of solving the lin-
ear programming problem. Naval Res. Logist. Quart. 1
36-47.

Lustig, I. J., R. Marsten, D. F. Shanno. 1994. Interior point meth-
ods for linear programming: Computational state of the art.
ORSA J. Comput. 6(1) 1-14.

Marsten, R. E. 1981. XMP: A structured library of subroutines for
experimental mathematical programming. ACM Trans. Math.
Software T 481-497.

Murtagh, B. A., M. A. Saunders. 1998. MINOS 5.5 User’s Guide.
Report SOL 83-20R, Dept of Operations Research, Stanford
University, Stanford, CA.

Bixpy [/ 15

Orchard-Hays, W. 1990. History of the development of LP
solvers. Interfaces 20(4) 61-73.

Orden, A. 1952. Solution of systems of linear inequalities on a
digital computer. Proc. ACM.

Rothberg, E., B. Hendrickson. 1998. Sparse matrix ordering meth-
ods for interior point linear programming. INFORMS J. Com-
put. 10(1) 107-113.

Stigler, G. J. 1945. The cost of subsistence. J. Farm Econom.
27(2) 303-314.

Suhl, U. H., L. M. Suhl. 1990. Computing sparse LU factor-
izations for large-scale linear programming bases. ORSA
J. Comput. 2 325-335.

Wright, S. J. 1997. Primal-Dual Interior-Point Methods. SIAM,
Philadelphia, PA.



