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Abstract--Characteristics of an autocorrelation or crosscorrelation associative memory largely depend on how 

items are encoded in pattern vectors to be stored. When most of the components c~f encoded patterns to be stored 

are 0 and only a small ratio of the components are 1, tire encoding scheme is said to be .vmrse. The memory 

capacity' and information capacity of a sparsely encoded associative memory are analyzed in detail, and are 

proved to be in proportion of n~/(logn :, n being the number of neurons, which is very large compared to the 

ordinary non-sparse encoding scheme of about O. 15n. Moreover, it is proved that the sparsely encoded associative 

memory has a large basin of attraction around each memorized pattern, when and only when an activity control 

mechanism is attached to it. 
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1. INTRODUCTION 

Correlational associative memory models were pro- 

posed by Nakano (1972), Anderson (1972) and Ko- 

honen (1972), and its capacity was studied by Uesaka 

and Ozeki (1972). Its stability as well as the dynam- 

ical behavior was studied by Amari (1972). Since 

then there have been a large number of papers pub- 

lished on this subject, in particular since Hopfield 

(1982) proposed the spin glass analogy. Hopfield 

demonstrated by computer simulation that an asso- 

ciative memory model with n neurons can store about 

0.15n patterns in the form of its equilibria. It is now 

well-known that the capacity of this model is n/(21ogn) 

patterns, if exact recalling is required (see, e.g., 

Weisbuch, 1985; McEliece, Posner, Rodemich, & 

Venkatesh, 1987), and the capacity is about 0.15n, 

if a small noise is permitted (Amit, Gutfreund, & 

Sompolinsky 1985; Amari & Maginu, 1988). The dy- 

namics of recalling processes was analyzed by Amari 

and Maginu (1988) and Amari (1988a, 1988b), where 

interesting dynamical phenomena were found and 

explained theoretically. See also Meir and Domany 

(1987). 

The binary signal values 1 and -1 are used in 

most of the above models, instead of 1 and 0. If the 
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binary values 1 and 0 are used, the result is somewhat 

different, provided the learning rule is Hebbian: The 

connection weight w,~ between the ith and jth neu- 

rons increases by 

i~ IV~i = CXiX I. 

In the 1 and 0 case, w~i never increases when xi = 

x i = 0, while it increases in the case of 1 and -1 

even whenxi = x I = -1, as well as the case with 

x~ = x i = 1. Amari (1977) showed that the memory 

capacity decreases drastically in the case of 1 and 0 

values. Of course, if the learning rule is correlational, 

that is, 

,X w,, = c(x, - a)(x, - a), 

we have a similar result as the case with 1 and - 1, 

where a is the average firing rate of x~. 

An encoding scheme is said to be sparse, when 

the number of excited or active components (i.e., 

those components for which x, -- 1) are very small 

compared with n, the dimension number of vector 

patterns x to be memorized. More precisely, the ratio 

a, of the number of excited components to n tends 

to 0 as n tends to infinity. Superiority of the sparse 

encoding has been remarked by many researchers 

(Gardner, 1988; Palm, 1980; Willshaw & Longuet- 

Higgins, 1970). Palm (1980) studied the information 

capacity of a special model where the connection 

weight takes on only 0 and 1 values, and showed that 

the memory capacity increases drastically in the case 

of sparse encoding. He also extended his idea of 

sparse encoding to a general associative memory 
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model, and showed that the sparse encoding is ex- 

cellent (Lansner & Ekeberg, 1985; Palm, 1981, 1988). 

Such results are also remarked recently by spin glass 

people (Gardner, 1988), where sparse encoding im- 

plies a strong applied magnetic field. Rolls (1987) 

proposed an associative memory model of the hip- 

pocampus, and he observed that "sparse encoding" 

is realized in the hippocampus, asking for its theo- 

retical outcomes. Sparse encoding is supported by 

the experimental results of memory by Miyashita and 

Chang (1988). 

The present paper gives a mathematical analysis 

of associative memory models with sparse encoding, 

extending the results by Palm (1981). We introduce 

the sparseness exponent e by 

a n = n e (0<e< 1) 

where a, is the probability that a component of x~ of 

vectors x to be stored is equal to 1. Therefore, among 

n components of x, only about nan = n ~-~ compo- 

nents are 1 and the other components are 0. We use 

the convention that e ~ 1 implies a,, = (logn/n), so 

that log n components are 1 in this case with e ~ 1. 

The main results of the present paper are sum- 

marized as follows: The memory capacity, which is 

the maximum number C(e) of patterns to be stored 

in the network in the form of its equilibria is of the 

order 

f p/l+, logn' 0_<- e< 1 

C(e) = 

(logn) z, e ) 1 

for the e-encoding scheme. Therefore, the capacity 

is maximized as e ---> 1 (see Palm, 1981). When e > 

1/3, the result is the same in order, in the both cases 

of 1 and - 1 signal values and 1 and 0 signal values. 

However, the 1 and 0 case is much worse when e < 

1/3. 

A sparsely encoded pattern x includes a small 

amount of information compared with a non-sparse 

encoding case. However, we shall prove that the total 

amount of information stored in the network is 

roughly 

Cl(e) = logn' e = 0 

en 2, 

which again shows the superiority of sparse encoding. 

How large is the basin of attraction? If it is small, 

sparse encoding is useless even if it has a large mem- 

ory capacity. Let x* be a noisy version of a memo- 

rized pattern x such that, among n components of x, 

about np components are changed from 0 to 1 or 

from 1 to 0. We can show that it is difficult to recall 

the memorized x from a noisy x*, implying that the 

basin of attraction of x is extremely small. However, 

if we introduce a mechanism which keeps the activity 

(i.e., the number of excited components) constant, 

the sparse encoding scheme has a good performance J 

We consider a p-noisy version x* of x in the sense 

that 100p% of the active components (xi : 1) of x 

are changed from 1 to 0, and the same number of 

inactive components (xi = 0) change their value from 

0 to 1, keeping the activity constant, it is then proved 

that the basins of attractor of one-step recalling are 

very large for such noisy patterns having a fixed ac- 

tivity. Actually, when the number of stored patterns 

is 100k% of its capacity, a stored pattern is recalled 

correctly, via one-step state transition, from its noisy 

version with p = 1 - ~/k noise ratio in the above 

sense. 

We treat in the present paper only an autocor- 

relation associative memory model, which recalls a 

memorized x from its noisy version. However, we 

can treat a crosscorrelation associative memory 

model by the same method, which stores pairs of 

patterns (s ~', r'),/t = 1, 2, ..-, such that the model 

outputs r/' when a noisy version ~ff s ~' is given. The 

memory characteristics of crosscorrelation memory 

is the same, provided the key patterns s F' are sparsely 

encoded. They do not depend on the sparsity of the 

associated r ~', so that r ~ may be non-sparse. This sug- 

gests that, if we encode non-sparse r ~ into sparse s~:, 

we can obtain an autoassociative memory of s ~' of a 

large capacity. We then can use a crosscorrelation 

decoder to obtain the original r ~ from s ', without 

destroying the memory capacity~ 

2. ASSOCIATIVE MEMORY 

Let us consider a neural network composed of n 

mutually connected McCuUoch-Pitts formal neurons. 

We assume that all the neurons work synchronously 

at discrete times t = 1, 2, .... A neuron emits output 

1 when it is excited and its output is 0 when it is not 

excited. A neuron is excited when a weighted sum 

of its inputs exceeds a threshold value h. Let x = 

(xl, x2 .... x,) be a vector whose component xi 

denotes the output of the i-th neuron. This vector is 

called the state vector of the network. When the 

present state is x, the next state x, is determined 

from x by 

x; = 1 w~/x, -- h , (2.1) 

where wi/is the weight of connection from the jth 

neuron to the ith neuron and the function l(u) de- 

notes the unit step function, 

11 . :~- o, l(u) = 0 , ~0. 
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This equation defines the state transition of the 

network from the present state x to the next state 

Ill[ p " 

x' = Tx (2.2) 

where T is the nonlinear operator defined by (2.1) 

in the component form. Let x(t) be the state at time 

t of the network. Its dynamical behavior is then 

written by the state transition equation 

x(t + l)= Tx(t). (2.3) 

Let us consider m vectors s 1, s:, ..., s". When a 

network satisfies 

s" = Ts" (2.4) 

for all/~ = 1, 2, ..., m, that is all the vectors s t` are 

equilibrium states of the net, we say that m vectors 

are memorized or stored in the net in the form of its 

equilibria. The autocorrelation associative memory 

proposed by Nakano (1972), Anderson (1972), Ko- 

honen (1972), analyzed mathematically by Amari 

(1972, 1977) and reformulated by Hopfield (1982), 

is a network whose connection weight matrix W = 

(w,i) is determined by 

1 m 

w, = - ~ s,~s'/, w,, = 0 (2.5) 
/7 ~z-I 

from m patterns s" to be stored, where s~ ~ is the ith 

component of s t` . 

When an initial state x ° belongs to the basin of 

attraction of a stored pattern s", it satisfies 

s ~, = T~x 0 

for some k. Starting with x °, the state of the net falls 

in s t` after k steps of state transition. This is inter- 

preted that the network recalls s t` from an initial state 

x °. When 

s ~' = Tx ° (2.6) 

holds, the network recalls s t` from x ° by one-step state 

transition. 

Let us define the activity a of a state vector x by 

the ratio of excited neurons to all the neurons, 

a = - x,. (2.7) 
n ~ i 

When the activity of x is a, among n components of 

x, na components are 1 and n( 1 - a) are 0. The 

activities of all the patterns s ~ to be stored are con- 

trolled to be equal to a fixed constant a in the present 

paper. In other words, we assume that the threshold 

value h is controlled by some mechanism such that 

the state x of the network is always controlled to 

have a fixed activity a. We do not mention this ad- 

ditional mechanism in detail. It can be easily imple- 

mented by a feedback control mechanism with an 

analog inhibitory neuron (or neuron pool) which is 

excited by the output activity of the associative mem- 

ory network and which in turn inhibits its component 

neurons (see, e.g., Amari & Arbib, 1977). We simply 

assume here that, among n neurons in the network, 

those which receive the na largest stimuli (weighted 

sums of inputs) are excited. 

A pattern s ~ includes na active components whose 

values are 1. We treat also a noisy version of s t', such 

that, among na active components, 100p% (i.e., nap 

components) are changed to 0, and instead the same 

number of non-active components whose values are 

0 are changed to 1, keeping the total activity con- 

stant. Such a vector is said to be a noisy version of 

s t` with a noise ratio p. 

3. SPARSE ENCODING WITH 

FIXED ACTIVITY 

We consider the case where patterns s t' to be stored 

are generated independently and randomly under the 

condition that they have a fixed activity. In this case, 

items to be memorized are encoded in randomly gen- 

erated s" and the latter patterns are stored in the 

network. We treat asymptotic properties of the as- 

sociative memory, so that we assume that activity a,, 

of s" depends on n. When 

lim a,, = 0 (3.1) 

holds, this encoding is said to be sparse, because the 

number of active components in s" becomes negli- 

gibly small compared to n. 

Vectors s~ are independent random vectors subject 

to a common probability distribution. More pre- 

cisely, s t' are generated in such a manner that, given 

an, ha,, components are randomly chosen among n 

components and put equal to 1 and all the other 

components are put equal to 0. Therefore, the prob- 

ability distribution of each component s~' of s t` sat- 

isfies 

E[s~'] = a,,, V[s,,'] = a,,(1 - a,,), (3.2) 

1 
Cov[s~', s~'] = -- a,,(1 - a,,), i ~-/, (3.3) 

n 

where E, V, and Coy denote the expectation, vari- 

ance, and covariance, respectively. Because of the 

fixed activity constraint, s~ and sf are not indepen- 

dent. However, their correlation is negligibly small, 

and careful calculations show that we may disregard 

this correlation in the first approximation. This im- 

plies that we may treat it as if all s~ ' are independent, 

s~ taking 1 with probability a,, and 0 with probability 

1 -- a~. 

In order to evaluate the sparseness of encoding, 

we put 

a~ = cn ", (3.4) 
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where c is a constant and e is a power exponent. This 

is called an e-encoding. When e = 0, we have an 

ordinary non-sparse encoding. If e = 1, the number 

na, of active components is kept constant even if 

n --~ ~. We exclude this case, because the central 

limit theorem cannot be applied in this case as will 

be shown soon. Instead, we use the following con- 

vention that 

lira a° = c(logn)n ~. (3.5) 

so that the number naa of active elements grows in 

a logarithmic order of n with e ~ 1. 

4. MEMORY CAPACITY AND 

INFORMATION CAPACITY 

We now search for capabilities of an associative 

memory network using sparse encoding with a fixed 

activity. A memory capacity is defined by the max- 

imum number of patterns which can be stored as 

equilibria without any confusion, that is, the maxi- 

mum number m for which 

Ts ~ = s ~', /~ = 1.2 ..... m (4.1) 

hold. Since the patterns are randomly generated, we 

define the memory capacity Ca(e) of e-encoding by 

using the probability measure asymptotically in n such 

that Ca(e) is the maximum m for which (4.1) holds 

for all/2 = 1,... , m with a probability as close to 

1 as desired for sufficiently large n. 

Theorem 1. The memory capacity of associative 

memory with e-encoding is given asymptotically by 

//3e 
e<0.5 

8c3(1 + 3e)logn' 

nl*e 

C,,(e) = 8c(2 + e)logn " e > 0.5 (4.2) 

//2 
e >1. 

• 24c(logn) 2 ' 

The proof is outlined in section 6. The theorem 

shows that the memory capacity increases as e be- 

comes large. Therefore, as encoding becomes spar- 

ser, the capacity becomes larger. It should be noted 

that the memory capacity ratio m/n diverges as n 

tends to infinity for e > 1/3, implying that the pos- 

sible number of stored patterns grows more rapidly 

than a linear order of n. This differs from the non- 

sparse encoding scheme. It is known (MeEliece et 

al., 1987) that the memory capacity is 

t/ 
C~ - 

41ogn 

in non-sparse encoding (e = 0, c = 0.5), if each 

component takes on the binary values 1 and - 1. In 

our case of the binary component values 1 and 0, 

the memory capacity is much worse, if e < 1/3. The 

distinction between these two different binary com- 

ponent values disappears, if we use a little unnatural 

connection matrix given by 

1 ~ 
w~ = -~, (s ~, - a,)(sf ...... a,~) (4.3) 

// t~=l 

instead of (2:5). In this latter case, we have 

nl+e 

C,,(e) :- ~8c(2 + e)logn' (4.4) 
//2 

~, e ...... , 1 

Although the memory capacity increases as en- 

coding becomes sparser, the amount of information 

of one encoded pattern decreases as e tends to 1. 

There are aC,,, vectors whose activity is a, where aC~ 

is a binominal coefficient. Therefore, such a pattern 

vector includes log aCaa bits of information. Hence, 

one e-encoded pattern sU includes asymptotically 

fnH,, = 0 e 

l(e) -- ~cen ~ clogn, 0 < ~] < I (4.5) 
[c(logn) -~, e----~ 

bits of information (see Appendix A), where 

H~ = -clogc - (1 - c)log(1 - c). 

It is natural to define the information capacity 

C~(e) of a sparsely encoded associative memory by 

C,(e) : l(e)C,(e). (4.6) 

which is the total amount of information of stored 

pattern vectors. This gives the following theorem. 

Theorem 2. The information capacity of e-en- 

coded associative memory is {e 
8c:(1 + 3e) n~ ~''' e < 0.5 

U 
C,(e) = 8(2 + e) n~" e > 0.5 (4:7) 

//2 

2-4" e ----~ 1. 

This theorem shows that the information capacity 

again increases as encoding becomes sparser. In the 

case of (4.3), we have 

Hcn'- 

J16clogn' e =-0 
C~(e) = 

I e 1~ nZ, otherwise. 

Therefore, the information cal~ci~ is in proportion 

to the number n 2 of synapses, except for thecase 

with non-sparse encoding (e = 0). 
The fact that C~(e) does not :~pend on the coef- 

ficient c is interesting, Since C~(e):~s larger as 

c ~ 0, the memory capacity may become larger if 

we use a sparser encoding than e --* 0, for example, 
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a,, = X~ logn/n. However, this does not increase the 

information capacity, because Ct(e) is fixed even 

c--, 0. 

5. ONE-STEP RECALL REGION 

It has been shown that the sparse encoding makes it 

possible for an associative memory model to have a 

large memory and information capacity. If it has a 

large basin of attraction, its recalling performance is 

very good. It is, however, difficult to search for the 

size and shape of the basin of attraction (see AmarJ 

& Maginu, 1988) in the case of non-sparse encoding). 

We study the region of one-step recalling from a 

noisy version of a stored pattern. 

When 

Tx,, = s' 

holds, s" is said to be recalled from x0 by one-step 

state transition. When s" is recalled from any of its 

p-noisy versions and less noisy versions (q-noisy ver- 

sions, q < p), we say that s' has a one-step recall 

region with a radius no less than p. Since all the 

patterns to be stored are randomly generated, we 

define the radius p,, of the one-step recalling region 

of s" asymptotically by the maximum p~ such that the 

probability of recalling s" from a p-noisy version tends 

to 1 as n goes to infinity. The radius Pn depends on 

e and rn so that we write 

p,, = p,,(e, m). 

It is obvious that p,, --~ 0 when rn is larger than the 

capacity C,(e). Therefore, we study the radius p,, 

when m is given by 

m = kC,,(e). 

We show that the asymptotic radius p, 

p : lira p,,{e, kC,(e)) (5.1) 

depends only on the ratio k. 

Theorem 3. The radius of the one-step recalling 

region is given by 

p : ~ - Vk. (5.2) 

The theorem implies that the radius of the one- 

step recall region is sufficiently large, if rn is kept 

adequately small compared to its capacity, It should, 

however, be remarked that this is because of the 

activity control mechanism. The activity of initial pat- 

tern x0 should be controlled to be equal to a,,. If the 

activity of an initial pattern is not controlled to be 

equal to a,, one-step correct recalling is never guar- 
anteed. 

6. OUTLINE OF PROOFS 

Without loss of generality, we study the one-step 

recalling process of the first pattern s 1 from a p-noisy 

version x of s ~. To this end, we evaluate the prob- 

ability that 

Tx=s ~ 

where 

n u 2 i~.~ 

is the crosstalk term due to other patterns disturbing 

correct recalling of s 1. Since x is a p-noisy version of 

s t , we have 

s ~. x = na,,(1 - p). 

Therefore, the ith component of Tx is given by 

(Tx), = l[u,] = l[a,,(1 - p) + X,- h] 

when s~ = 1, and when s~ = 0, 

(Tx), = I[N,- h]. 

The threshold value h is determined such that nan 

components of Tx become 1. Recalling is correct 

when 

h - a,,(1 - p) < N, andN,< h 

for s) = 1 and s] = 0, respectively. In order to obtain 

the probability of the above inequalities, we evaluate 

the probability distribution of Ni, where s' (/l = 2, 

.... m) are assumed to be random variables (Ap- 

pendix B). 

Lemma 1. The probability distribution of N~ is 

asymptotically normal with mean ma~ and variance 

a'- = ~ ma~, e < 0.5 (6.2) 

( mn ~a], e > 0.5 

The threshold value h is then asymptotically given 

by 

h = ma~ + 0.5 a,(1 - p). (6.3) 

We now evaluate the probability q of an error 

occuring in the ith component. When s) = 1, an error 

occurs if N~ < h - a,(1 - p), and when s] = 0, an 

error occurs if Ni > h. The error probability is given 

in both cases by 

q = Prob {N, < rn a~ - 0.5 a,,(l - p)} 

1-p 

holds. We put 

P(e, n, rn, p) 

= Prob {Tx = s'{x is a p-noisy version of s~}, 

When p = 0, this gives the probability that s ~ is an 

equilibrium. Let us define u, by 

l~ i = ZWiiXi -- h 

1 
--s)sT.x + N,- h, 

H 
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where F (u) is the error integral given by 

f' F (u) = (2~r) -t:- exp{-x2/2}dx. 

Therefore, the probability that no error occurs in 

any components, that is, Tx = s ~, is given by 

Q = (1 - q)". 

More precisely, N~ are not independent so that we 

need to take their correlations into account. How- 

ever, if we do so, the probability can be evaluated 

asymptotically by the above Q. 

The probability that 

T x" = s" 

holds for fall/~, where x" is a p-noisy version of s", 

is given by 

P= Q" = (1 - q)"". 

We have 

(1 - p)-' 
logP =nm log(1 - q) = - exp 80.2 a~ 

log nm - log(a,/a)}, (6.5) + 

where we use the following asymptotic evaluation of 

F (u) when u is large, 

F (u) = (~/2 ~ru)-'exp{- u2/2}. 

In order that P converges to 1 as n tends to infinity, 

the number m should not be larger than the following 

limit (see Appendix C), 

(1 - p)2a~ ~ 8aZlognm. (6.6) 

In order to determine the capacity, we put p = 0 

and solve the above equation to evaluate m. By using 

(3.4), (3.5), and (6.2), we hae the capacity (4.2). By 

using (4.5), we have the information capacity. 

By substituting m = kC,(e) in (6,6), we easily 

have the radius of one-step recalling (5.2). 
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APPENDIX A. INFOP~MATION AMOUNT IN A 
SPARSELY ENCODED PATI'ERN 

The number of vectors in which k components are 1 and (n -- k) 
components are 0 is given by the binomial coefficient ,Ck. Hence, 
the amount of information included in such a pattern is I = log,,Ck. 
By using Sterling's formula, we have 

I ~ Iog~Ck = nlogn -- klogk 

-- (n -- k)log(n - k) -~ O(logn) 

= klog(n/k) + O(lognl + O(k), 

when k ~ n. By substituting k = ha, = cn j ~, we have 

I(e) = cen 2 qogn, 0 < e < 1. 

In the limit e ~ 1, k = clogn so that 

l(e) = c(logn):. 

When e = 0, we have the well known k~rmula 

l(e) = nil, 

APPENDIX B. PROBABILITY DISTRIBUTION OF N~ 

Since the noise or crosstalk term N, is a sum of n(m - 1) variables 
sfs~xj divided by n, it is not difficult to show that Niis asymptot- 
ically normally distributed if an adequate scaling factor is chosen, 
It should be noted that these n(m - 1) variables are not inde- 
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pendent. Let us put 

r" = s"" x = ~ ~;x,. 

Given a p-noisy version x of s ~ of which nao components are 1, r" 

is written as a sum of s'/. 

r"= Z's~, 

where E' implies summation over such ) for which x~ = 1. Hence, 

r" is a sum of na,, random variables sL Therefore 

el~"l = ",~.. 

The variance of r ~ is a little complicated, because sj are not in- 

dependent, of (3.3). Neglecting small order terms, we have an 

asymptotic evaluation 

V,r"] = V [~'sf] = na,,V[sl' ] + na~(na,, - 1)Cov[s~/,s~] 
L J 

= na~,(l - a,,) - na),(1 - a,,) 

na~,( l - a,,): - na~,. 

From 

we have asymtotically 

N, = - s~'r~L 
Pl . = 2 

E[N,I = ma~. 

Similarly, since s'/r" and s; r" (,u ¢ ,k) are almost independent. 

n:V[N., = V f~ s,'r"l = mV[s,'r" ] 

m{E[s'/(r~'):l (E[s~'r"])"} 

- m{a,Jna](l - a,,): + n~-a~] - n'~a~} 

= mna.'{(l - a,,)-" + nai(1 - a~,)} 

- tuna2(1 + na~,). 
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When e < 0.5, the term naZ, dominates 1, and when e > 0.5. 

na~---* O. Therefore, we have 

a" = ~ ma~, e < 0.5 

t_ mn ~a2 e > 0.5 

This proves (6.2). 

The covariance between N, and N i is given similarly by 

Cov[N, N,] = mn 'a~. 

In order to evaluate Prob {Tx = s~}, we need a little complicated 

procedure, because of this covariance. 

When the connection matrix (w,,) is given by the covariance 

(4.3) of excitations of the neurons, the variance is 

0 -2 ~ mE/ ta,~ 

irrespective of the value of e. This is the same as the case where 

the output of each neuron takes on 1 and 1. 

APPENDIX C: EVALUATION OF PROBABILITY 

When and only when 

(1 - p)-' a,, 
8a 2 a~, + log nm log a ' -~ 

the probability P converges to 1, Since a' is proportional to m, 

this shows that m cannot be greater than some order of n. When 

m satisfies 

8a'-lognm = (1 - p)~-a~, 

a,,/a ---. 2, so that P ----, 1. However, when m is larger than this 

limit, P cannot tends to 1. By substituting (6.2) and (3.4), the 

above equation is easily solved in the asymptotic sense, giving the 

result (4.2). See Amari and Maginu (1988) or McEliece et al. 

(1987) for more detailed discussions. 


