INTELLIGENT
DECISION
oUPPORT
METHODS

The Science
of Knowledge Work

VASANT DHAR
ROGER STEIN

INTELLIGENT
DECISION
SUPPORT

METHODS
The Science of
Knowledge
Work

Vasant Dhar

Principal, Morgan Stanley

Professor of Information Systems

Stern School of Business, New York University

Roger Stein
Vice-President, Quantitative Analytics
Moody’s Investors Service

Prentice Hall, Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data

Dhar, Vasant.
Intelligent decision support methods : the science of knowledge
work / Vasant Dhar, Roger Stein.
p. cm.

Includes bibliographical references and index.

ISBN 0-13-519935-2

1. Decision support systems. 2. Management information systems.
I. Stein, Roger. II. Title.
HD30.213.D49 1997
658.4’03--dc21 96-44084

CIP

Editor-in-Chief: Richard Wohl

Senior Acquisitions Editor: Jo-Ann DeLuca
Assistant Editor: Audrey Regan

Editorial Assistant: ~ Marc Oliver
Marketing Manager: Nancy Evans
Managing Editor: Katherine Evancie
Manufacturing Buyer: Alana Zdinak
Senior Manufacturing Supervisor: Paul Smolenski
Manufacturing Manager: Vincent Scelta
Production Editor: Carol Lavis

Design Director: Patricia Wosczyk

Cover Design: Suzanne Behnke
Composition: Graphic Sciences Corp.
Cover Art: Marianne Sporn

© 1997 by Prentice-Hall, Inc.
Simon & Schuster / A Viacom Company
? Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without written permission from the Publisher.

Printed in the United States of America
1098765432

ISBN 0-13-519935-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

DEDICATION

To Curran, Sonya and Erica.

To my parents who taught me to work hard, be fair and stay curious, and
to Jeff and Janet for keeping me honest.

Contents

Preface vii

CHAPTER 1 INFORMATION SYSTEMS:
PAST, PRESENT, AND EMERGING 1

Introduction 1
A Taxonomy of Management Information Systems 3

CHAPTER 2 INTELLIGENCE DENSITY: A METRIC FOR
KNOWLEDGE WORK PRODUCTIVITY 7
Intelligence Density: A Measure of Organizational Intelligence 9
Making the Right Tradeoffs 12

CHAPTER 3 THE VOCABULARY OF INTELLIGENCE DENSITY 15

Introduction 15

Dimensions of Problems and Solutions 17

The “Stretch Plot”: A Vocabulary for Requirements and Analysis 20
Using the Stretch Plot 22

Summary 25

Appendix to Chapter 3: Dimensions of Problems and Solutions 26

CHAPTER 4 DATA-DRIVEN DECISION SUPPORT 30

Introduction 30

The ABCs of Data-Driven Decision Support 33
Intelligence Density Issues 47

Suggested Reading 50

CHAPTER 5 EVOLVING SOLUTIONS: GENETIC ALGORITHMS 52

Introduction 53

Optimization 53

The ABCs of Genetic Algorithms 60
Intelligence Density Issues 70
Suggested Reading 76

Rive

Contents

CHAPTER 6 SIMULATING THE BRAIN TO SOLVE PROBLEMS:
NEURAL NETWORKS 77

Introduction 77
The ABCs of Neural Networks 81
Intelligence Density Issues 94

Suggested Reading 101
Appendix to Chapter 6: The Back Propagation Algorithm 101

CHAPTER 7 PUTTING EXPERT REASONING IN A BOX:
RULE-BASED SYSTEMS 104

Introduction 104
The ABCs of Rule-Based Systems 106
Intelligence Density Issues 117

Suggested Reading 123
Appendix to Chapter 7: How Rete Works 123

CHAPTER 8 DEALING WITH LINGUISTIC AMBIGUITY:
FUZZY LOGIC 126

Introduction 126

The ABCs of Fuzzy Logic 128
Intelligence Density Issues 142
Suggested Reading 148

CHAPTER 9 SOLVING PROBLEMS BY ANALOGY:
CASE-BASED REASONING 149

Introduction 150
The ABCs of Case-Based Reasoning 151

Intelligence Density Issues 161
Suggested Reading 166

CHAPTER 10 DERIVING RULES FROM DATA:
MACHINE LEARNING 167

Introduction 168
The ABCs of Machine Learning 171
Intelligence Density Issues 180

Suggested Reading 186
Appendix to Chapter 10: Entropy as a Measure of Disorder 187

APPENDIX A SAVING TIME AND MONEY WITH OBJECTS 191

Introduction 191
A Case 197

APPENDIX B AISOFTWARE PRODUCTS 199

APPENDIX C GENERAL READING 201

v i

B Vi Contents

APPENDIX D CASE STUDIES 203

1. Quality Control and Monitoring of Suppliers, Kaufhof AG 203
The Organization 203
The Problem 204

2. Workflow Monitoring and Improvement for Rapid Customer
Service, US WEST 207
The Organization 207
The Problem 207

3. Help Desk Task Scheduling, Moody’s Investors Service 210
The Organization 210
The Problem 210

4. Financial Market Analysis and Prediction, LBS Capital Management 213
The Organization 213
The Problem 213

5. Customer Support, Compaq Computer Corporation 217
The Organization 217
The Problem 217

6. Pattern Directed Data Mining of Point-of-Sale Data, A. C. Neilsen 220
The Organization 220
The Problem 220

7. Improving Personnel Dispatching, NYNEX, Inc. 224
Preface 224
The Organization 224
The Problem 224

APPENDIX E CHAPTER KEY WORDS AND
DISCUSSION QUESTIONS 227

INDEX 235

Preface

Sen-ri no michi mo ippo kara.
Even the journey of 1000 miles begins with the first step.
Japanese Proverb

Why did we write this book?

We felt we had something useful to say about making some powerful
technologies really work in business. These technologies have been motivated
by a variety of underlying reference disciplines such as biology, neurology, psy-
chology, statistics, and computer science. The field of Artificial Intelligence (AI)
provided a sort of glue in integrating the ideas from these underlying disci-
plines by comparing them in terms of their power for solving various types of
problems.

One motivation for writing the book was for business people who often
asked us to explain to them in simple terms how these technologies could be
used profitably in business. Technical books on Al, decision theory, and statis-
tics are much too technical or abstract for business people, while others are too
superficial to give them a good solid understanding of the technology. Clearly,
we needed to bring the technology down to earth without losing its essence.
This is one need we’ve tried to fulfill. We’ve also provided detailed case studies
showing how some organizations have utilized these technologies to improve
key business processes.

We also were motivated by technologists who understood the technol-
ogy well enough, but were unclear on how they could apply it to business
problems. How could they explain the techniques in a clear and simple way to
business people? Is there a methodology they could use to compare tech-
niques from a business standpoint? Are there classes of business problems
that map onto these techniques? These are the questions we’ve addressed for
the technologists.

In short, we’ve tried to reduce the sophisticated models to their essence,
and at the same time adopt a pragmatic business orientation in describing when
and how to use them.

The modeling techniques on which we focus in this book have emerged
over the last few decades: the symbolic approach (rules, case-based reasoning,

Hviim

B viii Preface

and fuzzy logic), the connectionist approach (neural nets), the evolutionary ap-
proach (genetic algorithms), and the inductive approach (machine learning). At
the same time database technology, “data warehousing”, and online analytical
processing (OLAP) are making it easier to get at organizational data. This is
significant because the difficulty in fluid access to corporate data has been a big
barrier to data intensive decision support. Collectively, the tools that we de-
scribe in this book allow organizations to access, view, understand and manipu-
late their data more easily to make decisions. They are essentially a set of
“search engines” that can leverage organizational data.

These techniques derive their power only when more fundamental tech-
nologies are in place: telecommunications networks, database systems and desk-
tops. The figure below shows how these fundamental enablers have matured
over the last few years. With these enablers in place, organizations have an un-
precedented opportunity to harness the power of intelligent search engines.

The figure also highlights one reason that previous attempts at exploiting
intelligent techniques were not altogether successful. The information infra-
structure was simply not mature enough. Computing power was expensive; net-
works were neither reliable nor did they provide adequate bandwidth.
Database technology was immature. Consequently, access to corporate data
was slow and limited. Finally, desktop technology was still in its infancy. Com-
puters were only available to those who had access to special terminals and
knew the right commands. It doesn’t make sense to build a skyscraper starting
with bricks. You’ve got to be able to construct larger subassemblies in order to
build useful systems quickly and easily.

Maturity

Networks_ .- ===~-

™ -

1970 1980 1990 1996
FIGURE PREFACE.1 Technological Maturity

Preface iIX H

But the primitive state of the infrastructure was only part of the problem.
As the figure shows, Al/search technology was also highly inadequate a decade
ago. People misperceived which types of problems computers could solve well
and which types they couldn’t. Early successes with expert rule-based systems
that could do pattern recognition, solve calculus equations, or play chess led re-
searchers to predict that machines with full human reasoning power were only
a decade away. Unfortunately, it turns out that solving equations and playing
chess, although very difficult for humans, happen to be activities that lend
themselves to clear algorithmic descriptions and thus are tasks that software
systems can be programmed to do quite well, as long as adequate computing
power is available. On the other hand, recognizing faces and understanding
simple sentences turns out to be very difficult for computers, even though most
human children do these things with no problem. Early AI programs had
tremendous difficulties in situations where there were subtle distinctions or
ambiguous conditions.

And what about business applications of AI during the early days? Al-
though rule-based expert systems were the focus of most AI development,
businesses were unable to take advantage of this technology to as high a degree
as they had hoped. Why?

While most businesses have lots of data, most have only limited amounts
of the valuable expertise required to feed a rule-based system. Rule-based ex-
pert systems need human business experts to teach them about business. It can
be very expensive to have a highly paid expert spend months helping to de-
velop an expert system. Ironically, rule-based systems couldn’t capitalize on the
transaction data that businesses had in plenty. Instead, they required high-
priced expertise that businesses had in short supply.

A decade ago, other technologies such as neural nets were still largely ges-
tational, having been prematurely stifled in their development because of harsh
critiques by some Al gurus. Genetic algorithms were a fringe phenomenon. Most
people hadn’t even heard of fuzzy logic. Machine learning was in its infancy.
Case-based reasoning hadn’t even been envisioned. All of these technologies
began to come into their own during the eighties and nineties.

We now have a much richer bag of tricks at our disposal, whose effective-
ness can be realized using mature networking, database, and desktop tech-
nologies. Each one models a different aspect of human reasoning and decision
making. Each technique has a different objective and different character. Col-
lectively, these techniques offer the business community a broad set of tools
capable of addressing problems that are much harder or virtually impossible
to solve using the more traditional techniques from statistics and operations
research.

In what way are the different characters of the techniques useful?

Some of the techniques, like rule-based expert systems and fuzzy systems,
are based on “top-down” representations of knowledge where a model devel-
oper gives a computer explicit expert knowledge about how to solve a problem.
For such models, problem solving involves designing systems that follow an en-
coded reasoning process. One can also use these as pattern recognition systems

M X Preface

that sit on top of databases and monitor their data content, triggering alarms or
other kinds of processing whenever the patterns are matched by the data in the
database. Such systems can be extremely useful in attention focusing.

Other approaches like neural networks take a “bottom-up” approach.
These models are given no knowledge about how to solve a problem. Instead,
neural networks themselves learn through trial and error how to build models.
Similarly, other machine learning algorithms take as input large amounts of
data and discover rules or relationships that exist in the data. Given the explo-
sion of raw data in this electronic age, such techniques are highly useful to busi-
ness organizations.

Another approach comes from the “evolutionary” natural selection
paradigm. Techniques that have emerged from this area, most notably genetic
algorithms, work by allowing various potential solutions to compete simultane-
ously for the chance to solve a problem. Survival of the fittest then determines
which solutions ultimately “bubble up” to the top. This approach has applica-
tions ranging from pattern discovery to combinatorial optimization.

Yet another problem solving approach based on “analogical reasoning,”
that is, using “similar” past situations and answers to solve problems. Models
developed with techniques such as case-based reasoning find solutions to prob-
lems by looking for similar problems that have been solved in the past and then
modifying the past solutions to these problems to account for differences be-
tween the past and present situations. This approach has a highly flexible feel to
it, allowing new knowledge to be added incrementally to a system with addi-
tional experience. This approach is highly useful to organizations that deal re-
peatedly with variations of a problem, such as customer services.

But technologies are useless unless they are accompanied by a framework
that makes it easy to compare or combine them. In order to demonstrate the
practical usefulness of the technology, we have provided a business oriented
methodology for helping a decision maker systematically map techniques onto
problems. It involves a consideration of the organizational and technical issues
that are important in developing knowledge based systems. We have found the
methodology useful in our own work. In retrospect, whenever we used it, we
had greater success than when we did not.

In describing our approach, we have also tried to demystify the technol-
ogy. We explain the techniques in such a way as to give a thorough introduction
to their workings and application, while rooting this discussion in the reality of
the business world. Our treatment is highly “visual”: All key concepts and ex-
amples are presented using highly descriptive graphics. The visual presentation
is also intended to make it easier for technologists to communicate these ideas
with business people.

While our treatment is “demystified,” it is nonetheless a thorough investi-
gation of the technology, designed to give the reader a working foundation for
understanding the techniques. Our goal is to put the reader in a position to un-
derstand how a technique can be applied, why it works, and what concerns
might arise as a result of its use. People seeking technical depth shouldn’t be
disappointed.

Preface Xi

One last point. Intelligent systems don’t necessarily lead to more intelli-
gent organizations. Technology provides the maximum leverage when it is well
integrated into a well designed business process. To drive home the practical
significance of the various techniques that we discuss in this text, one section of
the book is devoted to case studies. It contains seven extended case studies il-
lustrating the application of each technique. The cases, drawn from various ap-
plication areas, demonstrate how each of the techniques covered in the book
was considered or applied in order to address a business problem, given the
context of the organization doing the development. The case studies discuss
what the business process looked like before and after a system was introduced
and in what ways that system strengthened the process. Ultimately, the true
benefit of smarter systems derives from their repeated application in a larger
business process.

Despite the usefulness of the methodology and the power of the various
techniques we discuss, there are no magic bullets. There is no framework,
methodology, or technique that eliminates the need to think critically, cre-
atively, and with curiosity about problems you are trying to solve. Intelligent
systems are usually components of larger systems, and ultimately, organiza-
tions. We have written this book to help you integrate intelligent solutions
into your organization. Its goal is to empower you to increase your firm’s in-
telligence about how it deals with its customers, suppliers, and internal busi-
NESS Processes.

W Xii Preface

ACKNOWLEDGMENTS

This book would not have been possible without the help of some very special
people.

Andrew Kimball read and re-read this entire text several times. We thank
him deeply for his tireless reviews, his countless suggestions, and his endless pa-
tience. Without Andy’s help this would have been a far less readable text and
we would have struggled far more in writing it.

We also thank Kevin Parker, Mike Dellomo, Douglas Lucas, Ted Stohr,
Ken Laudon, Herbert Simon, Stephen Slade, Joe Sniado, William Ries, Bill
Rosenblat, Ritu Agarwal, Mark Silver, and Fred Powers for helpful reviews and
comments at various stages of the project. We thank Barbara Sporn for sug-
gesting the “visual” approach that we adopted for presenting the material.
Each picture replaced more than a thousand words.

For case histories and background, we thank Ganesh Mani of LBS Securi-
ties, Tej Anand of AT&T, Gary Kahn of Coopers and Lybrand, Constantin
vonAtrock of INFORM GmbH, Andrea Danyluk and Foster Provost of
NYNEX, Trung Nguyen of Compaq, and Rod Ermish of U S West.

Much of this material was refined and developed as class material taught
by the authors at NYU. We thank MBA and Ph.D. students, who attended these
lectures, for their comments and suggestions on the material.

The proprietors of several restaurants were more than accommodating in
letting us spend hours in their establishments while we worked on and de-
bated portions of the book. We would like to thank the owners of Rectangles,
Café Reggio, the Village Crown, John’s Pizza, and the Olive Tree Café for their
hospitality.

VASANT DHAR
ROGER STEIN

Information Systems
Past, Present, and Emerging

I know of no commodity more valuable than information.
—Oliver Stone, spoken by Gordon Gekko in the movie Wall Street

What a long strange trip it’s been. . . .
—Jerry Garcia

The field of information systems (IS) has undergone dramatic changes since its incep-
tion several decades ago. In this chapter, we discuss how these changes have affected
business and how changes in business have affected IS. We explore a taxonomy for
understanding the various branches of IS, and then briefly introduce the material that
follows in this book.

INTRODUCTION

Twenty years ago, the term information system in a business usually meant an elec-
tronic data processing system. The goal of such systems was to deal with large vol-
umes of commercial transactions quickly, with few errors, at low cost. The workhorse
of electronic data processing systems was a mainframe computer.

Information systems (IS) have come a long way since those early days. Main-
frames still process the bulk of most business transactions and they have become
even faster. But the real growth area in IS has been in distributed systems. Unlike
mainframe systems that concentrate all their processing power in a single large com-
puter, the processing power in distributed systems is spread out across many smaller
computers and desktops.

How did this shift help businesspeople?

A key characteristic emerging from the trend toward distributed processing is
that computing has become much more interactive. Early mainframe systems pro-
cessed user requests in what was known as batch mode. This meant that the user

mlm

W 2 Chapter1

would submit to the mainframe a list of all the tasks (programs) needed. The user’s
request would be put into a processing queue with all of the requests from all the
other users. When a user’s turn came, the entire request would be run at once. This
meant that programs needed to be written to run without any user involvement since
the user couldn’t interact with the program once it was in the queue.

Now, since each workstation or PC has its own processor, much more of what
the computer does can be customized to the needs of the individual user. Users can
interact with their own private processor to execute the commands they need as they
need them executed, instead of all at once. Workstations now have graphical user in-
terfaces and are often networked with other computers, making it easier for a user to
access remote databases and other devices. This allows users to be more spontaneous
in how they use computers and the data they store.

The trend toward more interactive systems has been a gradual one. In the mid-
70s IS departments began developing new types of systems called decision support
systems (DSS). DSS made a sharp distinction between the earlier genre of transaction
processing systems that crunched through lots of data and kept accurate records, and
those systems that were designed to support business decision making in a more in-
teractive manner. Not surprisingly, the origin of the DSS concept also coincided
roughly with the emergence of interactive workstations, although decision support
systems really began to come into their own with the maturing of workstations and
powerful personal computers.

The shift toward decision support also reflects the changing nature of the work in
business organizations. Increasingly, work is becoming “knowledge oriented.” People
have to work with information—gathering, summarizing, and interpreting it—in order
to make decisions. There has been an explosion in the volume and variety of electronic
data available to businesses, and, correspondingly, a huge need for systems that help
businesspeople make sense out of these reams of data. This has led businesses to de-
velop systems that are smarter about how they condense and interpret data for the end
user.

Early DSS were quite rudimentary. In fact, many were nothing more than simple
systems developed using spreadsheet software (which was novel at the time). The more
sophisticated DSS also used optimization models taken from operations research and
management science (OR/MS). These systems incorporated techniques like linear pro-
gramming and they had front-ends that made them more user friendly. These front-ends
made it easy for the decision maker to run models and do “what if”” kinds of analyses.

Why was this so useful?

“What if” analysis was particularly powerful because the standard OR models
that ran on mainframes only spat out a single “best” solution; that is, they were com-
pletely automated. They didn’t permit the user to explore solutions interactively. With
the introduction of more user-friendly and interactive front-ends, the decision maker
could explore a wider range of possibilities and exercise more judgment in making
decisions.

Since these early beginnings, decision support systems have become increas-
ingly sophisticated, making use of models from a variety of disciplines including arti-
ficial intelligence. Systems that use artificial intelligence techniques are sometimes
referred to distinctly as knowledge-based systems (KBS).

Information Systems 3 W

We don’t find the distinctions between DSS and KBS to be terribly useful since
the type of model used by a system, be it a simple spreadsheet model or a complex
neural network, is irrelevant from the decision maker’s standpoint. The user just
needs help doing analysis to make good decisions. We think of a DSS as any kind of
system that supports decision making, regardless of the type of internal model that
the system uses.

That said, this book is about smarter kinds of intelligent decision support sys-
tems that make use of techniques that have emerged from the field of artificial intelli-
gence over the last two decades. Interestingly, these techniques have all reached a
high level of maturity. What this means is that we now have an unprecedented oppor-
tunity to build powerful decision support systems with minimal effort and cost, if we
go about it sensibly. This text presents a framework for helping with this task.

There are literally dozens of books on the more traditional types of DSS,
which use spreadsheets, mathematical optimization, numerical analysis, or simula-
tion models. While these will continue to remain a mainstay for many problems, the
growing number of “knowledge workers” in organizations will require systems that
“know more” and “do more” in terms of accessing, summarizing, and interpreting
information. Knowledge workers will depend more and more heavily on these sys-
tems to help them make decisions faster or with a greater degree of confidence. This
is the future of information systems in general, and decision support in particular.

A TAXONOMY OF MANAGEMENT INFORMATION
SYSTEMS

Figure 1.1 shows a general taxonomy of management information systems (MIS)
along the lines we’ve been discussing above. The taxonomy breaks information sys-
tems in general into transaction processing systems and decision support systems.

The major purpose of a transaction processing system is accurate record keep-
ing. Every transaction that the business conducts is recorded, primarily for bookkeep-
ing, billing, and audit purposes. These systems deal with the bread and butter of a
business. For example, a large bank would have a transaction processing system to
record every customer’s activity with the bank. Such systems are usually highly auto-
mated, where the choices that the system makes are simple, like deciding on how
much cash to let you withdraw from your bank account on a particular day.

Because a major goal of transaction processing systems is accurate record keep-
ing, such systems are also set up to make very simple “decisions” about whether the
data they get are valid. For example, the bank’s system might check to see whether
the account number on a transaction is a valid one and whether the name on the ac-
count matches it.

Transaction processing systems do this type of validation before recording
transactions so that the database is as “clean” as possible, and more generally, to en-
sure that people get paid only what they are supposed to be paid. They are also de-
signed to be able to do things like “roll back™ a transaction, which involves canceling
a transaction and undoing its consequences. The logic involved can be quite complex
because of the need to keep accurate and up-to-date records.

W 4 Chapter 1

Management Information Systems

Transaction Processing Decision Support
Systems Systems (DSS)

Data-Driven

Model-Driven DSS

DSS

FIGURE 1.1 A Taxonomy of Management Information Systems

The second class of information systems, decision support systems, includes
systems designed to support businesspeople and managers with decision-making.
DSS are used as part of a process where a human is in the loop making the decision.
Whereas a transaction processing system handles routine daily activity, a DSS ty-
pically supports decisions that have longer-term implications and require some
human judgment. The need for human judgment arises when a particular problem is
too “unstructured” for the DSS model to capture all the nuances of the decision-
making situation.

In the late 1970s and 80s, the term decision support system was used exclu-
sively for systems that used some sort of model into which data could be fed to let a
user do “what if” and other kinds of analyses. An example is a model that lets the
manager of a retail sporting goods chain see the impact on profitability for a product
in response to various price changes for that product. Such a system would have a
model that would relate the input (the price change) to outputs (revenues, cost of
sales, and so on). Similarly, a DSS for a fund manager might let him or her vary
input parameters such as the volatility of interest rates and compute their impacts on
the value of a given portfolio.

These days the term decision support is used rather generically, but it is useful
to think of DSS as being divided into two basic branches or types. The first type con-
tinues along the lines of the older DSS and involves primarily “model-driven” sup-
port systems. The value of such a system is largely in the quality of its model. Its
analysis capabilities are based on a strong theory or model, coupled with a good user
interface to make the model easy to use.

For example, the portfolio manager’s system might take in historical data
about an investment portfolio’s contents and use an econometric model to compute
and graph variables like the expected risk of the portfolio and how this risk varies in

Information Systems 5 W

response to certain market parameters. The decision maker can use this system to
make a judgment about the “goodness” of the portfolio based on the outputs of the
system and the investment objectives.

The second type of decision support systems are more “data-driven.” In such
systems, most of the value added is in the data. The model is usually quite simple,
computing information like averages, totals, and maybe data distributions. The idea
is to allow the user to easily condense large amounts of data into a form that is useful
to manage the business.

For example, a sales manager may want to know how much of each of his
products was sold by each salesperson in each region. He can then reward or mentor
salespeople according to the numbers, reassess the overall sales strategy, and so on.
The value of the system is largely in its ability to summarize large amounts of data.

With the maturing of networks and database technologies, data-driven decision
support is achievable to a much greater degree. Unlike the more traditional reporting
systems, the goal of such systems is to free the user from painfully specifying the re-
quirements and then painfully waiting for months while they are coded. Rather, the
user decides in real-time how to slice through the data: by customer, geography,
time, and so on. This is a dramatic break from the traditional approach in which var-
ious pre-defined perspectives on the data would be coded into a system. The current
drive towards “data warehousing” reflects the growing importance of interactive
data-intensive types of decision support systems.

It is useful to think broadly about the “data” that feed a DSS. In most cases,
such as the example above, the data come from a database system consisting of
structured transaction data. However, organizations are also swimming in data from
hundreds of different sources: news stories, internal projects, group meetings, and so
on. Much of this goes unseen despite the fact that there’s a lot of potential value in it.
There is a huge requirement for decision support systems to make sense of these di-
verse types of data.

You may be wondering about the dotted line on the bottom left of the figure
between transaction processing systems and model-driven decision support. This
highlights a hybrid kind of system, which is very much like model-driven DSS, in-
corporating a sophisticated model, but with one important difference: There is no
human in the loop.

This type of system is used when the time required to make decisions is short
and/or the system makes equally good or better decisions than a human. This type of
system performs what you might think of as decision automation. Such a system
might sit on top of a transaction processing system and evaluate each potential trans-
action. If a potential transaction is approved, the data are passed on to the transaction
processing system. Otherwise the transaction is rejected. In such systems, the sophis-
tication of the DSS model enables it to take over the judgmental part of the decision
process.

For example, a system that approves credit card transactions might be fully au-
tomated, without a decision maker in the loop. In this sense, it is like a transaction
processing system, trying to determine whether a potential transaction is legitimate
or fraudulent. But its decision about legitimacy might be based on a complex model
that uses expert knowledge, more in the spirit of a decision support system. As busi-

W 6 Chapter1

nesses become more “real-time” oriented and leverage their data in the process, they
will develop more of these kinds of systems that combine transaction data and com-
plex decision models.

In general, as the information infrastructure of organizations continues to ma-
ture and data quality and access improves, there is an increasing need for more so-
phisticated model-driven as well as data-driven types of decision support systems.
Putting such systems into place requires two things:

1. an understanding of the range of tools and techniques available to model business
problems

2. a business-oriented methodology for developing decision support systems

This book focuses on the two requirements simultaneously. In the next chapter,
we discuss the central concept around which the methodology is motivated. We pro-
pose that the central purpose of a decision support system is to increase the “density”
of relevant information that it presents to the user. We use the term intelligence den-
sity to refer to this concept.

Chapter 3 presents the methodology for operationalizing the concept of intelli-
gence density. The methodology shows how you can map solutions to the business
objectives and the constraints of a specific organization.

Chapters 4 through 10 focus on the techniques using the business-oriented
methodology of Chapter 3. To bring the methodology squarely into a business con-
text, we present an appendix of seven case studies from organizations. Each of these
cases shows how the methodology and techniques can be applied to analyzing prob-
lems and to finding effective solutions as painlessly as possible.

Intelligence Density

A Metric for Knowledge
Work Productivity

I’m not interested in developing a powerful [artificial] brain.
All I’'m after is just a mediocre brain . . .

—Alan M. Turing

The major drag on performance is the limited number of
hours in the day. You run out of time.

—Jim Little, Morgan Stanley & Co.

Once upon a time there were two companies. Airhead Industries and Jetstream Un-
limited. Airhead and Jetstream manufactured and sold do-it-yourself PC computer
kits. They both faced a similar problem: A cursory analysis of their technical support
databases revealed that about 60% of the support calls they received from do-it-
yourselfers were passed on to engineering personnel because it took the technical
support staff too much time (usually more than 20 minutes) to assess and resolve the
problems. As a result, the engineering staffs of both organizations were overloaded.
In addition, the calls were proving to be a distraction to the engineering staff, whose
primary responsibilities involved product development, not support . . .

Airhead Industries elected to remedy its problem by doubling its technical sup-
port staff.

Jetstream, on the other hand, decided to analyze its database further and inter-
view its staff. The firm examined its technical support database and corrected incom-
plete and erroneous records. Jetstream classified the types of support problems into
various categories, charting the relative frequency of each type. The firm’s IS depart-
ment interviewed engineering experts to ascertain how they dealt with various types of
problems. The engineering staff determined that most of the calls did not, in fact, re-
quire an engineer once the problem was properly identified. Unfortunately, most prob-

m7m

W 8 Chapter2

lems were not identified correctly. Jetstream formalized the expertise, categorized its
problems into prototypical cases, and put this information into an interactive system
that was made available on-line to the technical support staff within a month. The vol-
ume of Jetstream’s transferred calls dropped to 5%. . . .

What can we make of the two companies’ approaches to solving their problems?

Airhead chose to treat a symptom.

In contrast, Jetstream’s solution is far more knowledge intensive than the Air-
head approach. Jetstream does a more thorough analysis of its database. It leverages
its highly skilled engineers’ expertise by collecting it, codifying it, and quickly mak-
ing it available to its less skilled support personnel. As an organization, Jetstream Un-
limited learns about itself and about its industry and customers.

Knowledge-intensive approaches to solving problems are applicable to every in-
dustry. For example, consider a securities firm that uses intelligent systems to detect
patterns in historical price data so that its analysts can make better investment deci-
sions, or a mail-order company that uses intelligent systems to analyze demographic
information to better target high-probability prospects, or a consulting company that
makes important facts about its past consulting engagements easily accessible and us-
able by its professionals around the globe. All of these organizations are knowledge in-
tensive: They transform raw data into something useful—knowledge—and deliver the
knowledge to the part of the organization where it can be used most effectively.

What makes this kind of transformation and delivery possible?

Skilled employees, of course. But skilled employees are stretched for time, es-
pecially as the business environments in which they work become more complex. It
is almost impossible for any one employee to understand, evaluate, and act on all of
the information available in a practical amount of time.

Can computers help? Yes. But computers and networks are becoming a com-
modity. They are necessary just to enter the competitive arena. Increasingly, firms are
looking for higher value-added uses for their computing infrastructure. Organizations
today need to be able to leverage the expertise embodied in their employees and
locked up inside their large stores of data. Much of the foci's now is on developing
smarter decision support systems. These systems need to increase the value of data
and allow organizations to learn from them.

For example, consider a toy manufacturer with a large database of orders. The
fact that one of the firm’s customers, Toy Town, placed an order for 15 Messy Paint
kits is a relatively meaningless piece of data. To add value, the manufacturer’s DSS
might organize this and other pieces of data into a more informative format, say,
showing the overall sales of Messy Paint kits in the Southwest region, and comparing
this to the other regions.

Alternatively, the DSS might look for patterns in the sales of products. Perhaps
the purchase of Messy Paint kits is accompanied by a purchase of Tidyboy Smocks in
83% of all cases. The toy manufacturer might then interpret this and other informa-
tion to decide that an effective campaign would be to package Tidyboy Smocks with
Messy Paint kits to reduce production and operations costs. Knowledge and action
are the results of this interpretation.

As you transform the raw materials from data to knowledge, your ability to use

Intelligence Density 9 M

these new value-added materials to make useful decisions increases. The efficiency
and quality of the decisions your organization makes also increase by using these
more concentrated decision materials. In effect, the decision content of these materi-
als becomes more dense.

INTELLIGENCE DENSITY: A MEASURE OF
ORGANIZATIONAL INTELLIGENCE AND PRODUCTIVITY

Adding value to data enables an organization to “know more” about something—its
industry’s environment or “terrain,” circumstances under which its products do or
don’t sell well, the movements of its competitors, and so on.

An organization can increase its intelligence in the same way that an army unit
gathers “intelligence” about the movements of the enemy. A radar-tracking system or
a satellite-imaging system that tells a military unit about the enemy’s movements is
providing intelligence. So is a monitoring system that analyzes that satellite and radar
information and comes up with a useful summary.

In this book, we are not so concerned with making the computer “intelligent” in
the human sense as we are with using it to provide more intelligent solutions. Statis-
tics, decision theory, and operations research all provide methodologies that are sim-
ilarly motivated and have been used extensively to build decision support models for
problems that can be described mathematically. Our focus on the less traditional
techniques in this book reflects their growing usefulness for less well-structured
problems, where traditional techniques tend to break down or require excessive
effort.

To characterize the intelligence provided by a particular analytic decision tool,
we use the term intelligence density. Intelligence density (ID) is a heuristic measure
of the “army type” of intelligence. Think of it as the amount of useful “decision sup-
port information” that a decision maker gets from using the output from some ana-
lytic system for a certain amount of time. In other words, how much of the book,
chart, status report, financial statement, or computer output do you have to examine
before you can make a decision of a specified quality; or, inversely, how quickly can
you get the essence of the underlying data from the output?

While there is no general method for measuring an amorphous concept such
as “the amount of decision support information,” there’s a useful concept in eco-
nomics of utiles or utility units. Utiles are simply units for comparing different
types of consumption (i.e., “one whiskey will give me the same amount of pleasure
as two vodkas™).

Conceptually intelligence density can be viewed as the ratio of the number of
utiles of decision-making power gleaned (quality) to the number of units of analytic
time spent by the decision maker. Said another way, ID measures how many utiles
per minute a particular output gives us.

Thus, if a decision maker can consistently make the same quality decisions and
come to the same conclusions after examining Source A for 3 minutes as he or she
could after examining Source B for 30 minutes, Source A can be said to have 10 times
the intelligence density as Source B. Similarly, if the time required to make a decision

m 10 Chapter2

were fixed and unchangeable, and a decision maker made decisions that were consis-
tently determined to be twice as good (by some qualitative or quantitative measure)
after examining Source X as those made based on Source Y, we could say that Source
X had twice the intelligence density as Source Y and we would prefer to use it for that
reason.

In effect, if an organization can either decrease the time spent making specific
decisions and doing specific analysis without a loss of quality, or increase the qual-
ity of analysis performed in a fixed time frame, its resources can be used more
effectively.

Intelligence density is the postindustrial or information age equivalent of what
we think of as productivity. Just as you can give a manufacturing organization a big-
ger factory or a faster die-casting machine, you can give a data-intensive organization
higher intelligence density materials thereby making its information systems and de-
cision making more knowledge intensive.

An excellent metaphor is the phenomenon that occurred in the financial indus-
try with the advent of the electronic spreadsheet. Prior to this innovation, a financial
analyst who wanted to, say, make projections about the impact of different sales
growth scenarios on a particular firm would (a) copy by hand the income statement,
balance sheet, and cash flow data into a ledger; then (b) perform the appropriate arith-
metic and accounting operations for a scenario; (c) repeat steps a and b for each sce-
nario; and, finally, (d) perform the analysis. The frustrating thing was that the brute
force calculations required to do the work in a, b, and c took the lion’s share of the
time, but the actual analysis of the end results, d, which took a much shorter time, was
what the analyst was really getting paid for!

With the advent of electronic spreadsheets, though, things changed. Now an an-
alyst can experiment with new scenarios as fast as they can be typed. Once the initial
data are entered and the spreadsheet is set up (one time only), the analyst is free to ex-
periment extensively. All of the extra time that the analyst would have spent calculat-
ing ratios and adding columns by hand can now be spent doing analysis and making
better decisions. While many would consider a spreadsheet to be a rather primitive
tool compared to some of the ones we will discuss later on, the spirit is the same: You
need tools that show you the important things quickly.

This metaphor of squeezing out the tedium and leaving the essence is an impor-
tant component of intelligence density. High intelligence density materials allow de-
velopers and decision makers to concentrate more of their time on the higher
value-added portions of their work, rather than worrying about the lower value-added
and more mundane aspects. Those organizations whose members are able to take ad-
vantage of high intelligence density materials to produce, measure, and improve their
output have a competitive advantage.

Figure 2.1 shows how you can increase the intelligence density of a firm’s raw
data. It is important not to forget that the data we are talking about are not necessarily
a bunch of numbers in a database but could be any one of the various forms that data
might take in an organization.

The data by themselves are not very useful. The trick is to condense them. This
means that you need to first figure out how to get at the data. For electronic data, this
means figuring out where they are located, how to query them, and so forth. For

Intelligence Density 11 W

Increasing Intelligence Density

Learn

/ Discover \

Transform

Integrate

Scrub

/ Access \

Data

FIGURE 2.1 Steps for Increasing Intelligence Density

human expertise, this means figuring out who has the experiences you want to tap
into and how to contact them.

Once you get your hands on the data, you need to scrub them. This means that
you might have to deal with inconsistent or conflicting data, sloppy record keeping,
and so on. If you clean the data up, you can next integrate them with data from vari-
ous sources to build up a more complete picture of the business.

The problem with bringing together a lot of types of data is that there is usu-
ally too much detail. You get buried in the minutiae without being able to see the
bigger picture. To improve the situation, you can transform the data into compound
or aggregate units. Statistics, ratios, totals and subtotals, trends, and so on. are all
examples of how you might want to transform data to get a better picture of what
they mean.

But what if you want to do more than just look at the data and analyze them in-
teractively? What if you want to learn about new relationships in the data or use auto-
matically the knowledge about the data to help solve business problems?

The next level of intelligence density boosting takes advantage of many of the
model-based approaches to DSS that we will discuss. In addition to using data-driven
systems to make examining your data easier, you can use them to generate data to
feed more sophisticated model-based DSS systems that discover new relationships in
data or apply known relationships in new ways.

What do we mean by learning from discovered relationships? Let’s go back to
Jetstream and Airhead. What'’s the difference between the firms?

m 12 Chapter 2

Jetstream was able to reduce wait time on customer calls from an average of 30
minutes to just under 5 minutes, thus increasing its customer responsiveness. In addi-
tion, the general quality of the responses has become much more uniform and of
higher caliber since the engineer’s expertise was made available on-line for the tech-
nical support staff.

Furthermore, now only the most complex calls (about 5% of the total number of
calls) are passed on to the engineering department. As a result, the productivity of
that department has correspondingly improved. In fact, some of the calls they get in-
volve such sophistication that they are very useful for R&D! Since the engineers are
no longer overloaded with calls, they are able to concentrate more on the calls they
do get. Instances of the same caller repeatedly inquiring about the same error has de-
clined to about 25% of the original.

On an organizational level, Jetstream gained a rich understanding of the prob-
lem resolution process because, as part of the development of this project, it needed
to track, classify, and learn about the quality and quantity of its historical respon-
siveness. Jetstream is now able to predict better the volume of calls it will get re-
garding various types of support problems, and how these problems relate to a
diversity of factors from new product lines to seasonal usage. Jetstream is now able
to better plan staffing, new product releases, and research projects based upon this
knowledge.

Airhead, on the other hand, got eight new employees.

Consider again the steps that Jetstream took. Figure 2.2 shows how the firm
moved its data through each of the steps we’ve been discussing. Note how each of
Jetstream’s actions helped the firm move up the ladder of intelligence density. When
the firm finished its system, it not only had tools to let its staff work more efficiently,
it also understood its business to a much greater degree.

MAKING THE RIGHT TRADE-OFFS

Getting to the right solution was far from easy for Jetstream. It forced the firm to de-
fine explicitly which business requirements were critical and which weren’t. It de-
manded that the firm understand the capabilities of the various modeling techniques.
Jetstream needed to pick solutions that covered the important business needs. The
firm needed to compare various approaches from a technological and business per-
spective, analyzing the trade-offs among the different solutions.

What kinds of trade-offs?

For starters, Jetstream had to determine what was required from a business per-
spective in order to make the support solution successful. For example, the accuracy
of the advice to Jetstream’s customers had to be high. Even though Jetstream’s old
way of doing things kept customers waiting, at least the clients were confident that
they would get pretty good advice at the end of the call. If the quality of advice from
the new system dropped, Jetstream would lose customers. That was unacceptable.

Likewise, the response time had to be quick. Jetstream’s management deter-
mined, for example, that it would be unacceptable for the support staff to keep cus-
tomers waiting for too long while the staff resolved problems. If the new system kept

Intelligence Density 13 W

Increasing Intelligence Density

How call process works

How to predict call volumes _— Learn
New R&D ideas from customers
Most calls fit well-defined S . / Discover \
patterns or prototypical cases
Group calls into categories —_— Transform
Combine expert knowledge

——>
and call data Integrate
Correct erroneous records —_— Scrub
Call-trackmg. database Access
Interviews with experts

Customer call data - Data
Engineer’s expert knowledge

FIGURE 2.2 Jetstream'’s Steps for Increasing Intelligence Density

the customer on hold for long periods of time, it would accomplish nothing over the
current way of doing things, at least from the customer’s perspective.

And what about the depth of advice the system was able to help provide? Cus-
tomers were used to engaging in a dialog with the expert, sometimes steering the con-
versation to other, possibly related subjects. An expert could deal with this. The
expert could explain the problem in simple English and explain how it could be fixed.
Would a sales rep using the new system have sufficient knowledge about customers’
problems to even describe the customer’s problem correctly to a computer system?
Could a system provide depth in its reasoning comparable to the expert? Could it jus-
tify why it was recommending a particular action? That seemed important. In order
for Jetstream’s customers to feel comfortable with the support, they had to feel that
reps on the phone understood the dynamics of their problems and were confident
about the advice they were giving.

These factors, accuracy, response time, explainability, and others like them, are
the ultimate determinants of intelligence density. In developing and evaluating alter-
native solutions, an organization needs to ask how well a proposed course of action
meets the constraints specified for such dimensions.

We should underscore that accuracy, response time, and explainability were di-
mensions that Jetstream determined as being important. For an organization with

m 14 Chapter2

different objectives, the important dimensions could be very different. For example,
while Jetstream needed to be able to explain its system’s recommendations, a truck-
ing company that develops a system to generate optimal routes and schedules auto-
matically for its truckers might not require this level of explanation if it only cares
about optimality of the schedules. On the other hand, for the trucking firm, even a
response time (waiting time) of 1 hour from the system might be acceptable. Re-
quirements specified in terms of the dimensions of intelligence density will always
be problem specific.

Jetstream also had to think about the logistics and organizational resources
needed to build the system. Presumably, it had enough recognized experts who could
be counted on to articulate clearly the knowledge that would go into the system, but
what about the programmers and technical people? Did they have sufficient expertise
in building similar systems? Did they have sufficient knowledge of the relevant
tools? How would various solutions line up with Jetstream’s existing call logging and
tracking systems?

Logistic organizational constraints tell the solution providers what resources
they have at their disposal. The availability, experience, and technical expertise of
staff will determine which solutions to consider. Some approaches might take a
longer time to develop than others. Or a certain methodology might require large
computers, and an organization might not have access to those machines when its
staff actually uses the model (when visiting a client’s office, for example).

Finally, Jetstream had to take all of these competing constraints and somehow
decide on which problem-solving technique would work best. Each technique has in-
herent strengths and weaknesses. Some techniques make it easy to explain their out-
puts. Some give very fast answers. Some require consultation with experts in a
particular field during development. Some need lots of data. And so on.

Effective solutions require generating a good match between the intelligence
density requirements of a problem, the logistic constraints within which to develop
the solution, and, finally, the compatibility of a proposed solution method with these
two factors.

This all involves compromise. The trick is to try to create solutions that require
as little compromise as possible. You don’t want to whittle away the real problem re-
quirements too much, otherwise you end up either solving the wrong problem or
solving the problem in the wrong way. You need to be realistic about the resources at
your disposal and what you can accomplish with them; otherwise you simply won’t
be able to deliver anything. And you need to understand what each of the various
techniques can and cannot do; otherwise you’ll spend a lot of time learning this—the
hard way—instead of delivering a solution. If a solution stretches any of these three
factors too far or compromises them too much, chances are all of the reaching and
stretching will result in a less than satisfying solution. You might be able to pull it off,
and occasionally people do, but the deck will be stacked against you. You’re taking
an unnecessary risk.

The next chapter lays out a methodology that is helpful in avoiding the down-
side risk. In the following chapters, we explain the various problem-solving tech-
niques by applying the methodology to each of them in the context of real-world case
studies.

The Vocabulary of
Intelligence Density

Now, if the estimates made before a battle indicate victory, it is because careful
calculations show that your conditions are more favorable than those of
your enemy; if they indicate defeat, it is because careful calculations show
that favorable conditions for a battle are fewer. With more careful calculations,
one can win; with less, one cannot. How much less chance of victory has one
who makes no calculations at all!

—Sun Tzu, The Art of War

The following anecdote is told about a seasoned golf pro playing with three
younger players on a difficult course. The pro had won a famous tournament on
the course thirty years earlier. When the group approached a particularly
notorious hole, one of the younger players asked the pro, “Thirty years ago,
when you shot a birdie on this hole, how did you do it?”

The pro replied, “See those trees over there? I hooked the ball over the
tops of those trees and onto the green.”

Each of the three young players tried to “hook the ball just over the tops of
those trees” and each had his ball fall squarely into the wood.

“Wait a minute,” said the last of the young golfers to the pro, “We’re all pretty
good strong golfers, and we couldn’t even come close! How were you able to
hook over the same trees thirty years ago?!?”

The pro smiled, “Thirty years ago, those same trees were a lot shorter.”

—Anonymous

Avalon said solemnly, “We are merely outlining the dimensions
of the problem, Mr. Washburn.”
“And doing it all wrong,” said Gonzlo.

—Isaac Asimov, “Middle Name”

INTRODUCTION

1. A Case of Poorly Defined Business Objectives and System Requirements:
A large bank commissioned the development of a system that would take
over the back office function of processing letters of credit (LOC), which banks

m15nm

m 16 Chapter3

issue for commercial clients as guarantees of payment. The system was sup-
posed to categorize LOCs into acceptable and unacceptable categories, depend-
ing on whether the letter had logical errors in it or exposed the bank to
unacceptable risks.

A rule-based expert system' was developed and tested. The results of the
testing showed that the system was accurate about 90% of the time. At the final
review meeting with top management, a senior business manager wanted a
“yes” or “no” answer as to whether the system should be deployed.

None of the businesspeople could give the manager a straight answer.

All the manager got were conditional answers, which was not satisfactory.
The meeting digressed into a discussion about the consequences of the errors.
Would the bank lose important business as a consequence of the system’s er-
rors? What would be the average size of a loss due to an error? Should the sys-
tem be used in a decision support mode where all applications would be
scanned by clerks after being processed by the system? And so on. In effect, the
real definition of business objectives and hence the system’s accuracy require-
ments started only after the system had already been designed, implemented,
and tested! The bank had not adequately considered the system’s accuracy re-
quirements and their implications.

2. A Case of Bad Problem Formulation and System Inflexibility:

A national railroad company wanted to install an intelligent diagnostic
system on all of its locomotives. The system was supposed to enable the train
operator to diagnose and correct mechanical problems quickly.

A research team spent several man-years of effort interviewing experts
on how they diagnosed faults in locomotives. The experts described their rea-
soning sequentially: “first I check for traction; if there is traction, I check to
see if there’s a short; if there is a short, I throw open the switch to release trac-
tion and see if the short goes away; if it doesn’t go away, then I try and release
the brake . . .” The research team decided that the problem area was small (ap-
parently with only a few hundred symptoms), and the reasoning process
seemed clear and simple enough for it to be specified literally as described by
the experts.

They used flowcharts showing the logic sequence as articulated by the ex-
pert. After a few months of interviewing experts . . . they were still at it. Only
now, they found that each time the expert told them something new that the ex-
pert had neglected to mention earlier, they spent the whole day trying to figure
out how to modify the logic, and everyone ended up feeling uncertain about the
integrity of the knowledge at the end of the day! Their approach had failed to
consider adequately issues of scalability and flexibility.

3. A Case of Low Scalability and High Complexity:

A trading firm wanted a system to predict foreign exchange movements.

The system was supposed to analyze the past patterns of exchange rates for var-

'This type of system uses pre-programmed rules of thumb to solve problems. Rule-based expert systems are dis-
cussed in Chapter 7.

The Vocabulary of Intelligence Density 17 B

ious currencies and highlight those that looked likely to increase or decrease in
value significantly over the course of the month.

A research group chose a fuzzy logic-based system? to do the task. Basic
trading rules were encoded and developed for the system. Using the basic rules,
combined with the manually interpreted information, early tests of the trading
system showed promising results.

However, when the system was actually scaled up to a realistic environ-
ment, it got more and more complicated. In the end the system could only pre-
dict accurately for the previous month, and only if experienced currency traders
also input their opinions!

Why did the system fail to produce useful results? Because the knowledge
representation, in this case fuzzy rules, couldn’t capture the range of situations
that affect exchange rates. The developers had to spend many hours interview-
ing experts and the resulting knowledge was far from complete and accurate.
The problem complexity didn’t favor a “top-down” approach. The research
group had not considered adequately the degree to which its system would need
to scale up from a simple prototype to a practical system operating in a complex
environment.

DIMENSIONS OF PROBLEMS AND SOLUTIONS

How can you avoid having your projects end up like the ones above? Is there a
method you can follow that can ensure that you’re on the right path?

We think there is.

The method needs to cover the problem requirements (like accuracy) without
overextending the organization’s resources (like development time or cost). A good
solution does not compromise the problem requirements and does not overly
“stretch” the limits of the organization in doing so.

Other than the obvious things like immediate costs and benefits, what “dimen-
sions” should you consider in formulating and evaluating alternatives?

First, you need to satisfy model output quality requirements. A solution must
satisfy basic things like accuracy and response time. More generally, the quality of
the outputs should be adequate to meet your organization’s needs.

Second, you need to consider longer-term cost drivers. Like what it will cost
to maintain, extend, or modify the system. These types of constraints will help de-
termine how useful the system is in the long run. The system must be engineered
correctly.

Third, you need to ensure that the quality of the organization’s resources is suf-
ficient to undertake the proposed project. These dimensions deal with human re-
sources and infrastructure.

*Fuzzy systems use rules expressed using linguistic variables like “hot” and “cold” or “inexpensive” and
“costly” rather than specific numerical values. Fuzzy systems are explained in Chapter 8.

m 18 Chapter3

Finally, you need to ensure that the organization can support the logistical re-

quirements of the project. These considerations impact things like development
schedules and budgets.

The first set of these factors, those dealing with model quality, is listed in Figure

3.1. They answer the following questions:

Does the system need to provide optimal solutions in terms of accuracy or “goodness”?
Does the decision maker need to know how the answer was derived?
Does the system provide responses within a reasonable amount of time?

¢ Accuracy

¢ Explainability

* Speed/Reliability of
Response Time

FIGURE 3.1 Quality of Model

Business examples:

A bank needs a back office system that processes and classifies letters of credit into “ac-
ceptable” and “unacceptable” categories to be able to classify at least 85% of the letters
correctly to make business sense. (accuracy)

A mortgage application evaluation system must give some indication of what fac-
tors it used to determine that a mortgage applicant scored poorly so that this can be ex-
plained to the applicant or be used as the basis of further inquiries by the mortgage
officer. (explainability)

A point-of-purchase credit card fraud-detection system must be able to return the
results of its evaluation in under 5 seconds so that using it will not overly inconvenience
store owners or cardholders. (response time)

The second set of factors shown in Figure 3.2 relates to how well the solution is

engineered when it is developed:

How flexible is the system in allowing the problem specifications to be changed?
How scalable is the system?

How easily can the system be embedded into a larger system or the existing work flow
of an organization?

How compact is the system?
How easy is the system to use?

* Flexibility

¢ Scalability

¢ Compactness
¢ Embeddability
¢ Ease of Use

FIGURE 3.2 Engineering Dimensions

The Vocabulary of Intelligence Density 19 ®

Business examples:
A system designed to rank financial investment alternatives according to risk and return
needs to be updated over time to allow for new investment instruments and financial
strategies. (flexibility)

A system that designs shipping routes for a cargo freight firm needs to be able to
generate good routes regardless of whether there are 10 or 200 cities being served, or 3 or
30 ships in the fleet. (scalability)

A system that aids marketing personnel in interviewing clients and suggesting
products needs to be compact enough to be installed on a laptop computer and taken on
client calls. (compactness)

A system that determines how much a client should be billed for a particular
service based on information about the client must be able to share information with
the firm’s client information database and its current billing and accounting systems.
(embeddability)

The third set of factors listed in Figure 3.3 addresses issues relating to the re-
sources available in the organization required to attack the problem. These are orga-
nizational dimensions. They require you to assess the complexity of a problem, and
the amount of “work” you need to do to understand a problem, organize the data re-
quired to model it, and model it correctly:

* Are there good, high-quality electronic data available?
o Are there a lot of electronic data available?

* Is the organization far enough up the learning curve?

* How subtle and easily understood are interactions between the problem variables?

¢ Tolerance for Noise in Data
¢ Tolerance for Sparse Data
e Learning Curve

¢ Tolerance for Complexity

FIGURE 3.3 Quality of Available Resources

Business examples:
In developing a particular type of stock trading system using neural networks,’ develop-
ers estimate that they will need at least 60 months of accurate historical data, normalized
for stock splits, and so on. (tolerance for data sparseness and noise)

A consultant suggests that you need to develop a system using a genetic learning
algorithm for data mining. You have never done it before, which means you’ll need to
do a lot of background work and learning first and implement a small-scale prototype
system to understand how the GA would mine the data. (learning curve)

In talking to a portfolio manager about choosing securities to acquire or discard,
you find out that the manager first runs a simple test involving three financial parameters

*Atrtificial neural networks are systems that automatically “learn” relationships from raw data. The developer
only needs to tell the system how to learn, but does not need to put problem-specific knowledge into the system.
Artificial neural networks are explained in Chapter 6.

m 20 Chapter3

on all securities in the database, then additional tests involving two more variables, and
finally, a ranking phase based on preserving a specific profile of the overall portfolio. Is it
reasonable to decompose the portfolio selection problem like this? (complexity)

Finally, the fourth set of factors shown in Figure 3.4 relates to the logistical
constraints within an organization:

* What is the access to experts, or conversely, how independent are you from them? In
particular, are experts readily available for advice and testing?
* Are the computing infrastructure resources adequate for the problem?

* What development time can the organization afford?

¢ Independence from Experts
e Computational Ease
¢ Development Time

FIGURE 3.4 Logistical Constraints

Business examples:
In developing a stock-picking rule-based expert system, you need to realize that you
need access to an experienced trader for at least 4 hours a week over the course of sev-
eral months in order to specify the process by which stocks are selected, and for validat-
ing the system’s results. (access to experts)

If you decide to use a genetic algorithm* for data mining, you will have to load
hundreds of megabytes of data into memory at one time; this will require access to a
very large mainframe or a massively parallel computer. (computational ease)

Based on initial discussions with experts, in developing a hybrid rule-based system
to spot exchange rate patterns, you estimate that the system will consist of roughly 500
rules, which will probably require 6 to 8 months to extract from experts, validate them,
and organize them to develop a production version of a system. (development time)

THE STRETCH PLOT: A VOCABULARY FOR
REQUIREMENTS AND ANALYSIS

The interesting thing about the four sets of dimensions is that they serve as a vocabu-
lary for expressing system requirements as well as for comparing solutions. In other
words, the vocabulary is a checklist of the objectives and constraints of the various
stakeholders in the organization—top management, users, and technologists. The vo-
cabulary helps you describe the problem and to compare how various alternatives
stack up in addressing requirements.

*Genetic algorithms are systems that solve problems by using a kind of “survival of the fittest.” They try many
different solutions and allow the better ones to survive. Genetic algorithms are explained in Chapter 5.

The Vocabulary of Intelligence Density 21 H

Interestingly, the dimensions of this vocabulary fall into the quadrants of a plot,
as shown in Figure 3.5. We refer to this as a stretch plot since in practice you end up
stretching some of the dimensions when making trade-offs on requirements or system
features.

The dimensions in the top half of the stretch plot relate to the system itself and
reflect requirements of the end product being designed, while those in the bottom half
deal with the organizational environment in which the system will be developed and
used. The dimensions in the left-hand quadrants of the stretch plot relate to quality is-
sues, whereas those in the right deal with practical constraints in system development
and use.

Model Related

ity

U O
Accuracy Scalability
— (]
Explainability Compactness
(]
Flexibility

Response Speed

b U
= Embeddabilit
% [Ease of Use Y
4
2 O [Learning Curve
® Tolerance for Complexity
5]
(<}
Development
Tolerance for Noise Speed
in Data
U
Tolerance for
Sparse Data
O
Independence Computing
from Experts Ease

@

Organization Related

Constraint Related

FIGURE 3.5 The Stretch Plot: A Comprehensive View of Intelligence Density

W 22 Chapter3

Together the dimensions form a “committee of critics.” Each of the committee
members has an ax to grind. Each is concerned with a separate aspect of the develop-
ment process or the organizational impact of the system. Each critic will try to influ-
ence the outcome of the final product. Each of the critics must be satisfied to some
degree or another in order for the project to be a success.

The useful thing about such a committee is that it forces you to consider early in
the life cycle the set of issues you’ll have to deal with during the course of the sys-
tem’s development, use, and maintenance. Depending on how concerned you are
with the issues that each critic raises, you will weigh more or less heavily its influ-
ence on the decisions that lead up to selecting a technique and strategy for solving a
problem. The final system will be the result of careful consideration of these issues.
As is often the case with committees, it will almost always also involve compromises.

For example, the end user of a customer support system (say, a customer service
representative) might want to be able to explain the diagnoses and recommendations of
a system easily to customers. The explainability critic would represent these demands.
But the user may also need the system to produce answers quickly, say within 30 sec-
onds, so that customers don’t have to wait a long time on the phone. The speed critic
asserts itself to advocate this dimension. Taken together, these two critics might narrow
down considerably the range of techniques that you could use to build a system.

You can think of each technique and each problem as having certain rubbery
“shapes” that are determined by the various critics. The ideal solution will match a
problem to a technique without allowing the competing critics to stretch beyond the
snapping point. In other words, you must try to match your solutions to the problem
without “stretching” the technique, the environment, or the requirements for the solu-
tion too much.

USING THE STRETCH PLOT

How did we decide on the critics in the stretch plot?

We based the stretch plot on our own experiences and those of other informa-
tion systems professionals. What we tried to do was concentrate on the critics that
are most general to the broadest variety of problems and techniques. But the critics
we’ve described above are not exhaustive. In particular, critics like management
comfort, internal resistance to technology projects, and external marketability are
often important.

Fortunately, each of these would also fall into one of the four quadrants. Inter-
nal resistance, for example, would go into the lower right quadrant: an organizational
constraint. The framework is robust enough to accommodate a wide variety of addi-
tional dimensions.

Are all critics created equally?

No, some are more equal than others. Not every critic is important for every
problem. For example, if you are involved in a project in which the data were plentiful
and of very high quality, the data quantity and data quality critics cease to influence
development decisions (except that you may decide to rule ir certain techniques you
might normally have excluded!).

The Vocabulary of Intelligence Density 23 B

So how do you know whether or not a critic will be important?

You need to perform a stretch plot analysis. Each problem and each technique
has its own stretch plot “landscape.” You reveal the landscape by asking questions
about the problem or solution. For any given problem, you can look at the landscape
formed by your problem specification and see the importance of each critic. Figure
3.6 shows what such a landscape might look like for a typical problem. The height of
a bar indicates its importance for the problem.

In this case, it was important that a solution have HIGH explainability. In con-
trast, scalability was not as important, and so you would tolerate any solution that
provided only LOW scalability.

What is happening is that you are defining the boundaries of your solution. For
example, you would be more inclined to rule out solutions that did not provide
HIGH explainability, but you would be less concerned if they did not have HIGH
scalability.

We’ve defined the dimensions in such a way that if the value required for a
critic is HIGH, it is harder for a technique to satisfy it. For example, it is harder to
find techniques that satisfy HIGH explainability than it is to find techniques that have

Explainability is .r

important \

Model
Related

Scalability is
not important

Constraint
Related

t‘;
Organization
Related

FIGURE 3.6 An Example of an ID Profile for a Problem

W 24 Chapter 3

LOW explainability. Why? Explainability is always a desirable trait. All things being
equal, you’d rather have it than not have it. By definition, HIGH explainability also
satisfies LOW explainability.

The upper half of the stretch plot of Figure 3.5 can be used to describe two
things: When you are talking about a problem, it describes what the system will pro-
vide to the organization. When you are talking about a potential solution technique, it
describes what is demanded by the organization (requirement). The more demanding
the organization is, the harder the problem becomes for a technique. The challenge is
one of finding a solution that meets or exceeds the requirement.

The dimensions on the lower half of the stretch plot give you the complement.
They describe what the organization provides, and how the technique stacks up on
that dimension. The idea is that the organization constrains the availability of factors,
and it is up to you to design a solution that makes the best of what you have: It satis-
fies the constraints.

The four types of dimensions are important to any systems development effort.
In fact, as we mentioned earlier, you might want to define other dimensions for your-
self. Beware, however, that the meaning of some of the dimensions depends on the
problem context, while others are much more obvious.

For example, when people discuss scalability for a database, they are generally
concerned with how the database performs as the amount of data in it increases. Fac-
tors like storage space and the time it will take to update the database after a new
piece of data is input are usually central to this discussion. However, when you con-
sider the issue of scalability for, say, an expert system, you are more concerned with
issues of knowledge engineering; for instance, how easy will it be to extract rules
from an expert as you scale from a dozen rules to several hundred? How will these
new rules interact with other rules? In this case, storage and time requirements neces-
sary to execute a larger system are secondary compared to the knowledge acquisition
bottleneck problem involved in maintaining the system.

Another property of the critics is that some critics are technique specific (that
is, they favor or discourage certain types of techniques regardless of the problem at
hand) and some depend on both the problem and the technique (they will favor or
discourage certain techniques depending on the nature of the problem). This makes
life easier.

For example, let’s say that you are trying to classify mortgage applications into
good and bad risks. Assume that you also want to be able to explain to prospective
borrowers why they were or were not granted credit. The explainability critic be-
comes important.

What if you solved the problem using a neural network? While neural nets can
be very good at classifying things, you also need to consider that neural networks are
generally unable to provide good explanations as to how they decide on the classi-
fications. On the other hand, rule-based systems are very good at explaining their
results.

In fact, what you will find is that neural networks are usually difficult to ex-
plain, while rule-based expert systems are almost always easily explained. Thus, the
explainability of systems developed using a certain technique tends to be independent
of the problem you’re solving. The explainability critic is largely problem indepen-

The Vocabulary of Intelligence Density 25 ®

dent. This is useful to know since it immediately suggests or rules out certain tech-
niques if explainability is to be an important feature of a system.

In contrast, other critics can depend on the interaction between the problem and
the technique being considered. For instance, rule-based systems have fairly quick
development times for moderately sized problems provided there is a good theory for
how to solve the problem. This type of expert system does, however, require far more
time for complex, poorly understood systems. Neural networks, in contrast, do not
suffer as severely in this respect. On the other hand, as we will discuss, much of the
neural network development time is often spent identifying the correct variables and
preparing meaningful input data for training and testing the net. This also takes time,
but in a different way.®

The point is that from the development speed critic’s perspective, the right
choice of technique depends on the number of variables, the quality and quantity of
data, the existence (or lack thereof) of a theory, and so on. Thus the influence of the
development speed critic varies both with respect to problem characteristics and tech-
nique. It is problem dependent.

SUMMARY

The preceding dimensions provide a concrete way of operationalizing the concept of
intelligence density. The checklist provides a handle for bringing to the surface the
important questions involved in imposing structure on an initially ill-defined prob-
lem. The framework makes explicit both the organizational and technical objectives
and constraints. It reduces the risk of getting trapped into developing a solution that
uses a favorite technique or an apparently obvious solution that could turn out to be a
bad choice from a business standpoint.

In the next chapters, we describe a toolbox of techniques for solving problems.
Along with each technique, we present an analysis of its strengths and weaknesses
with respect to the stretch plot. In the case studies in the latter part of the text, we pre-
sent a series of cases that demonstrates how the stretch plot can be used in a practical
manner to plan and solve real business problems.

‘Throughout this book we will discuss these features of techniques and explain why some techniques demon-
strate certain characteristics while others do not.

m 26 Chapter3

Appendix to Chapter 3:
Dimensions of Problems and Solutions

Intelligence Density Dimensions: Quality of System

Accuracy measures how close the outputs of a system are to
the correct or best decision. Can you be confident that the errors
(results that are not accurate) are not so severe as to make the sys-
tem too costly or dangerous to use?

Explainability is the description of the process by which a con-
clusion was reached. Statistical models explain the output to some
degree in the sense that each independent variable influences or
“explains” the dependent variable in that it accounts for some por-
tion of the variance of the dependent variable.

Other systems, where rule-based reasoning is involved, show
explicitly how conclusions are derived. Yet others, such as neural
networks, generate opaque mathematical formulas. These are
sometimes referred to as “black boxes” because for the user they
are the mathematical equivalent of the magician’s black box: Data
go in at one end and results come out the other, but you cannot
(easily) see the rationale behind the conclusion.

Response speed is the time it takes for a system to complete
analysis at the desired level of accuracy. The flip side to this dimen-
sion is confidence in the sense that you can ask how confident you
are that a certain period of time, within which the system must pro-
vide an answer, will be sufficient to perform the analysis. In appli-
cations that require that results be produced within a specified time
frame, missing that time frame means that no matter how accurate
and otherwise desirable the results are, they will be useless in
practice.

The Vocabulary of Intelligence Density 27 ®

How Well Is the System Engineered?

Scalability involves adding more variables to the problem or
increasing the range of values that variables can take. For example,
scalability is a major issue when you’re interested in going from a
prototype system involving 10 variables to one with 30 variables.

In early Al projects, it was not uncommon to find systems that
worked well for solving small problems (for example, do the pa-
tient's symptoms indicate meningitis or hepatitis?) but broke down
when the problem size increased (given the full range of human ail-
ments, what is wrong with the patient?) Scalability can be a real
problem when the interactions among variables increase rapidly in
unpredictable ways with the introduction of additional variables
(making the system brittle) or where the computational complexity
increases rapidly. '

Compactness refers to how small (literally, the number of
bytes) the system can be made. Once a system has been devel-
oped and tested, it needs to be put into the hands of the decision
makers within an organization. It must be taken out into the field,
be that the shop floor, the trading floor, or the ocean floor.

Compactness deals with the ease with which the system can
be encoded into a compact portable format, whether that be em-
bedding in a spreadsheet, coding into a computer language, or en-
graving on a silicon chip. If a system is too “bulky” to be easily
embedded in a format that makes it usable where and when it is
needed, then the system itself may not be very useful.

Flexibility is the ease with which the relationships among the
variables or their domains can be changed, or the goals of the sys-
tem modified.

Most systems are not designed to be used once and then
thrown away. Instead they must be robust enough to perform well
as additional functionality is added over time. In addition, many
of the business processes that you might model are not static
(i.e., they change over time). As a result, the ability to update a
system or to have the system adapt itself to new phenomena is
important.

Embeddability refers to the ease with which a system can be
coupled with or incorporated into the infrastructure of an organiza-
tion. In some situations, systems will be components of larger sys-
tems or other databases. If this is the case, systems must be able to
communicate well and mesh smoothly with the other components
of the organizational infrastructure. A system that requires propri-
etary “software engines” or specific hardware will not necessarily
be able to integrate itself into this infrastructure.

W 28 Chapter3

Ease of use describes how complicated the system is to use
for the businesspeople who will be using it on a daily basis. Is it an
application that requires a lot of expertise or training, or is it some-
thing a user can apply right out of the box?

Quality of Available Resources

Tolerance for noise in data is the degree to which the quality
of a system, most notably its accuracy, is affected by noise in the
electronic data.

Tolerance for data sparseness is the degree to which the qual-
ity of a system is affected by incompleteness or lack of data.

The availability and level of detail of data and the accuracy are
central issues in choosing among different techniques. It is some-
times not possible for an organization to get hold of the data that it
would ideally like to have in order to develop a system. The data
that the organization can get may not have the level or types of in-
formation required, the data may not go back historically as far as
necessary, or may not provide as many data points as would be
ideal.

Tolerance for complexity is the degree to which the quality of
a system is affected by interactions among the various compo-
nents of the process being modeled or in the knowledge used to
model a process. Complex processes involve many, often non-
linear, interactions between variables. A prototypical example of
this is weather prediction. Weather systems involve thousands of
factors such as temperature, topology, wind speed, and so on.
These variables all interact in very complex ways, which is why
long-term weather prediction is virtually impossible.

The availability of knowledge about how to deal with the com-
plexity of the problem at hand makes the problem easier to model.
Lower complexity problems are easier to model.

Learning curve requirements indicate the degree to which the
organization needs to experiment in order to become sufficiently
competent at solving a problem or using a technique.

The Vocabulary of Intelligence Density 29 W

Logistical Constraints

Independence from experts is the degree to which the system
can be designed, built, and tested without experts. While expertise
is valuable, access to experts within an organization can be a logis-
tical nightmare and can be very expensive.

Computational ease is the degree to which a system can be im-
plemented without requiring special-purpose hardware or software.

Development speed is the time that the organization can af-
ford to develop a system or, conversely, the time a modeling tech-
nology would require to develop a system.

Data-Driven
Decision Support

... [C]ompanies today are manipulating data in the terabyte (one trillion
bytes) to pedabyte (one thousand terabytes) range. If bytes were raindrops,
that would be enough to float the QFII.

—Edgar F. Codd, et al.

“Data! Data! Data!” he cried, “I cannot make bricks without clay!”
—Arthur Conan Doyle, spoken by Sherlock Holmes

If we are to have a really fast machine, then we must have our information,
or at least part of it, in a more accessible form . . .

—Alan Turing

Managers need information retrieval that matches the speed of thought.
—Anonymous

The fundamental input to any intelligent system is some sort of data. Although com-
puters were originally developed to perform complex mathematical calculations, re-
searchers soon realized that they had tremendous potential for organizing data. But
fluid access to large amounts of data remained a problem for most business users. Al-
though businesses stored lots of data, especially about their transactions, they rarely
made good use of them. With the maturing of network and database technology, this
has changed. Timely and accurate management information is becoming more of a
reality. This chapter describes a new way of thinking about data and a new genre of
tools that are making this possible.

INTRODUCTION

Several years ago, it was estimated that the amount of electronic data in the world
was doubling every 18 months. By current standards, that estimate is probably far
too conservative. As a society, we’re awash in data not only because the volume of
what gets recorded electronically is exploding, but also because people’s access to it

m30m

Data-Driven Decision Support 31 B

is increasing at a tremendous rate. Businesses, researchers, and even casual home In-
ternet users, are experiencing intense “data overload.” That’s why there’s a dire
need, particularly in business, for systems that can find, summarize, and interpret
large amounts of data effectively.

Businesses are recognizing the value of data as a strategic asset. This is re-
flected by the high degree of interest in new technologies like “data warehousing,”
and “OLAP” systems that make use of these warehouses.

As the name implies, a data warehouse is a large-scale storage facility for data.
Like a conventional industrial warehouse that stores products from many different
sources, bringing the goods together in one place until they are needed, a data ware-
house stores data from many different databases until they are needed for business
decisions. And, like an industrial warehouse, a data warehouse makes it possible and
convenient to combine items from different sources into an integrated package.
OLAP systems are the tools that help decision makers actually package the various
data products in the warehouse and deliver them as needed.

Why are these types of systems useful from a business standpoint?

The current reality is that managers need to get information a lot faster if they
hope to run a business intelligently. Suppose that as a sales manager of a line of copy-
ing machines, you have a hunch that your largest customers are the least profitable. If
your hunch is true, you’d like to alter your pricing and customer support strategies to
try to increase the profitability of these large clients.

Managers constantly want answers to such seemingly simple questions but
rarely get them in time to be useful. There is generally a long time lag between the
point that a business manager has a hunch or a hypothesis that needs testing and the
point where an answer is retrieved. For many businesses today, that just isn’t good
enough. Managers need “information retrieval that matches the speed of thought.”

So what are the barriers to this information-rich world and why do you need
special systems to overcome them?

Businesses have long made use of transaction processing systems to manage
huge amounts of data relating to operations: billing, invoicing, and auditing. These
systems, in the language of our industrial warehouse metaphor, are like the individual
producers. These are mission-critical systems. They have to be accurate, fast, and reli-
able. Each is specialized for a particular problem and finely tuned to do what it does as
efficiently as possible. Each has its own format and structure. As a result, the data
recorded in most of these transaction processing systems are not easily accessible to
other systems and it is also not easy to look at the data in any way but the prescribed
structure. A great deal of effort is still required to get useful information out of such
systems.

Another difficulty is that data access can be prohibitively expensive from a
computation time standpoint. Most transaction processing systems run on huge multi-
million dollar mainframe computers. These machines usually have large staffs and
special data centers that exist just to keep them running. As a result, mainframe com-
puter time is very expensive, and management is under pressure to keep its usage
under control. From an operations standpoint, most managers consider data access to
be simply a lower-order priority than billing customers.

But the expense is not just the salaries of the data center staff. It can be measured

m 32 Chapter 4

in terms of time and inconvenience as well. Because of the complexity involved in
using most database systems, it is easy for a well-intentioned user to unwittingly issue
a query on a business database that will bog down the host computer. Such queries
could execute for days, weeks, or months! Imagine what would happen if your billing
system server were hit with such a query while it is generating invoices for the day.
Even if a user is experienced, some queries just take a long time, no matter what you
do. If you want to ensure that your operations go smoothly, providing users with ad
hoc data access can be a dangerous thing to do.

Furthermore, because many of the applications that businesses need call for a
lot of computing power and storage space, it is not uncommon for a single company’s
data to be spread out across many databases and many computers, sometimes even
across many states or countries. While this allows the firm to process data more
quickly, it makes it almost impossible for a single user to bring together pieces of data
from different operational areas of the business.

Finally, even simple queries on a single database often demand a level of pro-
gramming skill that most businesspeople do not have. The result: Managers submit
requests for reports to a department of programmers who then try to bend the transac-
tion systems into shapes that will satisfy the businesspeople.

The bottom line is that transaction processing systems cannot be used very eas-
ily to do anything except process transactions. Any other applications will tax them.
But users have a hard time accepting this.

Why?

At the same time that businesses have been developing powerful mainframe
computing architectures, software on the average user’s desktop has become increas-
ingly user friendly. This gives the average businessperson powerful data analysis and
modeling tools right on the desktop. Many of the decision models that users want to
play with can be implemented using simple spreadsheet or database software on a PC.

As a result, it is common to find users with individual models that are com-
pletely independent of the organization’s MIS department. What users are crying for
is data to feed into their powerful user friendly analysis tools. The lack of fluid access
to corporate data has limited the inroads of desktop computers in providing good
business level information.

To be able to put decision data into the hands of more decision makers, busi-
nesses are turning to data storage facilities that allow users to manipulate data more
easily. The generic name for these types of systems is a data warehouse. The idea be-
hind a data warehouse is simple: Siphon off and integrate data from various transac-
tion processing systems into a single separate place where the data can then be used
to feed a range of decision support applications. Typically, data warehouses contain
between 10 and 500 gigabytes or more of data from across an organization.

But once the data are collected, users still need an easy way of digging through
them to get to the pieces they are interested in. OLAP systems let users do this.!
OLAP, which stands for on line analytical processing, is supposed to make possible
“retrieval at the speed of thought.” These systems eliminate the pain of waiting
months for an application programmer to code up something and praying that it’ll be
what you need.

'Some OLAP systems bypass a data warehouse altogether, accessing transaction databases directly.

Data-Driven Decision Support 33 B

THE ABCs OF DATA-DRIVEN DECISION SUPPORT

To appreciate what data warehousing and OLAP are all about, consider an ad hoc
kind of question that a sales manager might want to answer:

“What is driving sales in the Northeast region?”

This sounds like a simple question. It turns out, though, that most current infor-
mation systems would have a very hard time bringing the data together to answer this
type of question on the fly. The data that the sales manager needs to see would usually
be spread over several database systems: billing, inventory, and personnel, for exam-
ple. These databases might be on different computers or even in different states. Fig-
uring out how to bring the data together and reconcile the different databases with
each other can be daunting.

But data problems are only part of the issue. The sales manager’s question is
also sufficiently open ended, sufficiently “human” one might argue, that it could
mean different things depending on how you interpret it. Is the user looking for the
revenues of each of the top 10 products? Or the profit per sale by salesperson in the
Northeast? Or the breakdown of revenues by city across the Northeast? Maybe the
sales manager can’t even be more specific about what he or she would really like to
see unless he or she sees an overall picture first!

The point is that the sales manager’s requirements are interactive. If you show
some data, the sales manager will look at it and tell you more about what is needed.
There is a loop being created: The manager makes a request, gets the results, analyzes
the results, uses this new information to formulate another request, and so on.

This loop is not very satisfactory to users since there is always a bottleneck in
the loop: the request. A user needs to go through some arcane database system or pro-
grammer to get at the data. Data warehouses and OLAP systems try to unclog this
bottleneck.

So why doesn’t every company run out and build a data warehouse and OLAP
system?

It’s not that easy. For users, access is the whole issue with respect to data ware-
houses, but for an organization, it is only one part of the equation. Creating a data
warehouse requires serious business thinking since the content of the warehouse de-
pends on the kinds of questions users are going to want to answer with the data.

If the data warehouse is to feed a variety of applications, it must be defined from
a business-level perspective. This takes time and planning. It often means coordinating
different business units and inventorying the data assets that the entire firm possesses.

To put data warehouses and OLAP systems in perspective, let’s look at the
forces that have led us there.

The Old Way

Let’s say that you are a large toy manufacturer. Every day, hundreds of orders for
hundreds of different toys and games come in to your firm and need to be processed,
tracked, and billed. Manually, this would require an army of clerical and administra-
tive staff.

B 34 Chapter 4

But in the 60s and 70s, this began to change. Mainframe computer technology
made it possible for large businesses to organize their order processing and billing
electronically. These on line transaction processing (OLTP) systems came about in
part because of advances in computer hardware, and in part because of the develop-
ment of database software that ran on these new computers.

To make the access and organization of data easier, computer scientists devel-
oped database management systems (DBMSs). These systems were designed specifi-
cally to store, organize, and retrieve data quickly.” The early DBMS approaches were
based on the indexed sequential access method (ISAM). ISAM databases store all of
the data in a large file. In addition to the main data file, ISAM systems also created
separate files called indexes. Indexes sped data access tremendously.

Index files work the same way that the index of a book works. The pages of this
book are arranged in a particular order: by the chapters, sub-chapters, and so forth.
But, if you want to find information about a particular subject, and you don’t know
which chapter it is in, you can use the index in the back of the book.

For example, if you want to find the part of this book that deals with the RETE
algorithm, you can either start at the beginning of the book and keep reading until you
see the words “RETE algorithm,” or you can look at the index and find out on which
pages in the book we mention the RETE algorithm. In effect, an index helps map a
“value” such as RETE to a “physical location” on a hardware device much like the
page number of a book.

For our toy example, Figure 4.1 shows how the toy manufacturing database
might store and index orders. In the figure, the index key for the first index is the
name of the customer. The data are ordered by this key. To find where the records for
Funland Toys are, just look up the key “Funland Toys” in the Index-by-Customer file.
Funland Toys is in database rows 2, 11, and 15. Going back to the main data file, you
can see that the record at row 2 is indeed an order from Funland Toys and it shows
that the store ordered 10 Messy Paint Kits on 12/1/96.

You could also print out a list of all customers that ordered 10 items or more by
using the Index-by-Quantity file. Just go down the list until the quantity key is greater
than 10 and print out the record at each row indicated in the index after that. Indexes
let you change the order of the data, without actually sorting all of the data each time.
In effect, the data are simultaneously in the order of each of its indexes all the time.
(By the way, the data in Figure 4.1 can answer the question about what is driving
sales in the Northeast region. Unfortunately, ISAM systems are not very good at let-
ting users discover the answers to questions like this. Can you see what’s driving
sales?)

’It turns out that sorting and searching data can be very complicated. In fact, developing efficient algorithms for
doing these things was what most early computer scientists spent much of their time thinking about. Being able
to search and sort quickly can mean the difference between an application that increases the efficiency of a pro-
cess twenty-fold, and one that is impractical for business purposes.

For example, let’s say that you had 1,000,000 orders from different toy and department stores in your toy
database. Let’s say that you had a really fast disk drive that could read or write 10,000 records per second. To
find a particular order could take 0.0003 seconds, a second and a half, or a minute and a half, depending on the
way that you set up the search. If that doesn’t impress you, consider that to sort all 1,000,000 orders by date
could take you 1% minutes, 23 minutes, or a staggering 3 years and 2 months depending, again, on how you set
up your data!

Data-Driven Decision Support 35 B

Complete Data

DB_ROW DATE CUSTOMER REGION PRODUCT QUANTITY
1 12/1/96 Toy Town SE Mr. Snowman 10
2 12/1/96 Fun Land Toys NE Messy Paint Kit 10
3 12/1/96 Toy Town SE Messy Paint Kit 25
4 12/1/96 Joe's House of Toys NE Death Avenger Doll 5
5 12/2/96 Toy Mania SE Mr. Snowman 10
6 12/2/96 Nutcracker Toys SE Puppet Maker Kit 10
7 12/2/96 Joe’s House of Toys NE Puppet Maker Kit 20
8 12/2/96 Toy Town SE Death Avenger Doll 20
9 12/2/96 Nutcracker Toys SE Mr. Snowman 10
10 12/2/96 Toy Mania SE Messy Paint Kit 5
1 12/3/96 Fun Land Toys NE Mr. Snowman 25
12 12/3/96 Nutcracker Toys SE Death Avenger Doll 20
13 12/3/96 Toy Town SE Puppet Maker Kit 10
14 12/3/96 Joe’s House of Toys NE Mr. Snowman 25
15 12/3/96 Fun Land Toys NE Death Avenger Doll 5
Index by Customer Index by Quantity
CUSTOMER DB_ROW QUANTITY DB_ROW
Fun Land Toys 2 5 4
Fun Land Toys 11 5 10
Fun Land Toys 15 5 12
Joe’s House of Toys 4 5 15
Joe's House of Toys 7 10 1
Joe’s House of Toys 14 10 2

FIGURE 4.1 A Toy ISAM Database and Two Indexes

ISAM represented a great step forward in storing and retrieving data. Most
early DBMSs used ISAM architectures. But ISAM was not without its problems. For
one, each index in a database needed to be updated any time a record was added to
the database.? This meant that if there were 10 indexes, then each time a new record
was added to (or deleted from) the database, each of the 10 indexes also needed to be
modified. This became more and more time consuming as the number of records in a
database and the number of indexes increased.

Even more troubling, however, was that the designer of a database had to deter-
mine, before the database was ever built, how the users were going to need the data
arranged. In order to create indexes, a designer needs to specify which keys each
index will use. This is the same as the designer telling the user in which orders the
data can be arranged and by which criteria the database can be searched. This made
retrieval inflexible.

*This could be necessary sometimes even if only a single field in a record was changed.

m 36 Chapter4

A breakthrough came with the advent of relational database management sys-
tems (RDBMS). Instead of storing all of the data in a single large file, RDBMS broke
up data into smaller files that made it easier to keep data consistent and to maintain it.
This is called data normalization.

To provide a flavor of normalization, consider our toy database. Notice that
every time a record for Nutcracker Toys shows up in Figure 4.1, the Region field is
always “SE.” This is a waste of space. Why? Because every Nutcracker Toys is al-
ways in the SE region. Even if that field weren’t stored in the database with each
record, you could find the region for all of the Nutcracker Toys records just by look-
ing it up once and copying it onto all of the records.

In recognition of this, instead of storing the fact that Nutcracker Toys is in the
SE region in every record, an RDBMS approach creates a separate database file or
table that maps each company to its region. The orders table can then be smaller, con-
taining just the item ordered, the quantity, the customer name, and date.*

When a user wanted to print out a complete listing like the one in Figure 4.1, he
or she would join the two tables. What this means is that the user would tell the
RDBMS to look up the region of the customer in every record in the orders table. Fig-
ure 4.2 shows how this works. Note how the orders table is more compact now.

Although this might sound more involved, RDBMS were a major advance in
data management. For one thing, much larger databases could now be constructed.
The region field was pretty small in our example, but imagine if you wanted to in-
clude addresses, phone numbers, contact information, and account numbers with
each record. In an ISAM system, this might mean adding separate fields for each item
and storing each of these long items with each record. If you had 5,000 orders from
Nutcracker Toys, you would have 5,000 copies of the address in the database (and
5,000 copies of the phone number, etc.).

With an RDBMS approach, you could store the exact same amount of data with
only one copy of the address. In addition, this made it easy to change the address of
Nutcracker if the customer moved. Instead of searching through all 5,000 records and
making 5,000 changes (and updating indexes if necessary), you could just make one
change in the addresses table.

But more importantly, in addition to making data storage less redundant and
more efficient, RDBMS allowed users to tailor data more to their specifications.
Users could combine different tables to create views on the data that the designers of
the database had never imagined. Any table could be joined with any other related
table to bring together related information. (Of course, joins take time, but that wasn’t
anissue . . . at first.)

The powerful thing about such systems was that they provided a flexible “query
language” called SQL (structured query language) that allowed a user to write
database queries tailored to specific needs. Database queries could now be much
more involved and they could do much more complex things.

But there is no free lunch. Now in order to get at the data, a user had to know
SQL in addition to knowing the structure of the database. This was fine for program-

*An RDBMS approach to record orders would actually be implemented a little differently, but this example
serves to illustrate conceptually how RDBMS work.

Data-Driven Decision Support 37 B

Orders Table
DB_ROW DATE CUSTOMER PRODUCT QUANT
1 12/1/96 Toy Town Mr. Snowman 10
2 12/1/96 Fun Land Toys Messy Paint Kit 10
3 12/1/96 Toy Town Messy Paint Kit 25
4 12/1/96 Joe’s House of Toys Death Avenger Doll 5
5 12/2/96 Toy Mania Mr. Snowman 5
6 12/2/96 Nutcracker Toys Puppet Maker Kit 10
7 12/2/96 Joe's House of Toys Puppet Maker Kit 20
8 12/2/96 Toy Town Death Avenger Doll 20
9 12/2/96 Nutcracker Toys Mr. Snowman 10
10 12/2/96 Toy Mania Messy Paint Kit 25
11 12/3/96 Fun Land Toys Mr. Snowman 25
12 12/3/96 Nutcracker Toys =] Death Avenger Doll 20
13 12/3/96 Toy Town Puppet Maker Kit 10
14 12/3/96 Joe's House of Toys Mr. Snowman 25
15 12/3/96 Fun Land Toys Death Avenger Doll 5
Region Table
CUSTOMER REGION
Fun Land Toys NE
Join tables on Joe's House of Toys NE
customer name to get region - Nutcracker Toys SE
Toy Mania SE
Toy Town - SE

FIGURE 4.2 A RDBMS Approach Which Eliminates Keeping Many Copies of the Region
Around for Each Customer

mers, but most managers didn’t know it and were unwilling to learn it. Even though it
was written to be easy to use, to most nontechnical people SQL looks threatening. For
example, here’s an example of an SQL query that might show pending orders for a
particular product:

select count (*) from pending_orders_queue ¢, orders_main m
where q.sold_by_1d=20010
and g.s_id = m.s_id
and m.s_type=152
and g.status_id =2

To write this query, a user had to know not only the syntax of SQL, but also the
structure of the database (which tables to join) and the details of each table (variable
names, etc.). While this was fine for database specialists, most managers and business-
people had a tough time with it.

But managers still needed information. To get businesspeople the data they
needed many firms tried to understand and systematize senior managers’ data needs.
They then predefined the access paths data to the data the managers needed.

m 38 Chapter 4

These systems, known as executive information systems (EIS), were essentially
front-ends to traditional transaction oriented database systems.® They attempted to pro-
vide the right intelligence to the decision maker by predefining the types of infor-
mation a manager would typically want to see and putting it into an intuitive visual
format.

For example, instead of requiring the user to type the cryptic (to a non-
programmer) SQL query in the example above, an EIS might let the user choose
“Sales Status Update” from a menu, specify items of interest, and from there, the
system would make the appropriate translations for the database query. Figure 4.3
shows how this might work conceptually.

The key thing to notice about EIS is that they represent a major step away from
using data to track transactions and toward using data to support decisions. Rather
than using the database to fill out invoices and track the status of a particular order,
EIS allow the user to ask, “How is John Smith doing on sales of games?” This was a
fundamentally new view of data. Now data were not only an audit trail but they were
also an input to management tools.

EIS allow users to take transaction-level data that are far too detailed to be useful
to managers and aggregate them into more meaningful units. Instead of presenting in-
formation such as, “On 12/1/96, John Smith sold 15 units of the game Mr. Snowman to
Toy Town,” EIS present summary information like, “John Smith has sold 25 units of
games, and 60 units of arts and crafts kits.” Managers could use this summary informa-
tion to decide how well John Smith is doing, how well game sales are going, and so
forth.

Even though EIS provided much better access to data for decision support, they
have some serious drawbacks. Since all of the database queries and reports are prede-
fined in the EIS, users are limited in the information they could derive from the data. If
a user wanted to see data organized along a criterion that didn’t fit into the pro-
grammed framework, new programming needed to be done. This took time and cost
money. EIS were, in fact, inflexible by design since the access paths were predefined.

Furthermore, these systems did not address a major drawback of using transac-
tion processing systems for decision support. Most EIS still required a lot of effort to
bring together data from disparate databases throughout the firm. For example, it
might be difficult (or impossible) to combine data about the product sales of one sub-
sidiary with data from product sales of another since the two subsidiaries used differ-
ent databases and computers. Nonetheless, a manager might want to do this to look
for corporate synergies among shared clients.

Scrubbing, Transforming, Slicing and Dicing with
Data Warehouses and OLAP Systems

In response to the limitations of traditional EIS, a new approach to data access has
begun to emerge. This new approach involves data warehouses and OLAP systems.

*Technically most true EIS performed some type of rudimentary data aggregation and moved transactions data
into an interim storage facility. However, a large class of DSS similar in spirit to formal EIS, did not do this. In
the business environment these DSS were often known as EIS as well, thus blurring the line.

Data-Driven Decision Support 39 ®

Sales Status Update Form

Salesperson John Smith

Product Type GAME

Status PENDING

Translate from fo database codes

John Smith = 20010
GAME = 152
PENDING = 2

Plug codes into predefined database query

select count (*) from pending_orders_queue g, orders_main m
where g.sold_by_id = 20010
and g.s_id = m.s_id
and m.s_type = 152
and qg.status_id = 2

FIGURE 4.3 An EIS Provides User-Friendly Access to Data

These systems allow users to have flexibility and ease of use. Data warehousing
applications and OLAP systems put more of the power of data retrieval and synthesis
into the hands of business managers and decision makers.

A data warehouse is a database specifically designed to answer business ques-
tions. It serves as a repository for many types of business data from many sources.
Data from these sources are transferred into the warehouse to make them easier to ac-
cess. Once the data are in the warehouse, they are extensively indexed and combined
for very fast access.

OLAP systems are high-powered software front-ends and data manipulation
systems that sit on top of data. These systems are like very flexible EIS. Although we

m 40 Chapter4

call them front-ends, they are usually a good deal more powerful than simple graphi-
cal user interfaces.

OLAP systems allow users to “slice and dice” data in almost any manner. Typi-
cally an OLAP system lets users select variables from a list, mix and match them, and
perform business-related operations on them very quickly. For example, most OLAP
systems allow a user to very simply convert individual records into regional totals,
quarterly totals, percentages, or annual growth.

If OLAP system users need more detail about some piece of data, they can often
drill down into the data as well. For instance, while looking at the sales of Messy
Paint Kits by region, a manager may want to understand why the Southeast region is
doing so much better than the rest of the sales zone. The manager might drill down
into the region by customer and discover that a single large chain of department
stores in the Southeast has made a series of large orders for Messy Paint Kits. Or
maybe the manager drills down by salesperson and discovers that John Smith is sell-
ing larger volumes than other salespeople. By drilling down into John Smith’s indi-
vidual sales, the manager may discover that John Smith has offered a discount that
makes the items more attractive to buyers without reducing profits very much. And
wouldn’t it be interesting if John Smith services that Southeastern chain of stores?
And so on.

The key thing to note here is that the user has much more control than with
traditional EIS. An EIS dictates beforehand what data a decision maker can or can-
not use and in what sequence the user can see the data. OLAP systems allow the user
to dive into the data and explore them at levels of detail more appropriate for his or
her analysis. In most cases the user can get to the data, without resorting to special
programming.

An easy way to think about the differences between OLAP systems and data
warehouses is that data warehouses bring all of the data together from across the orga-
nization, and OLAP systems let you look at them and manipulate them interactively.

To understand how data warehousing and OLAP systems work, it is useful to
consider the steps that data go through as they move from a collection of separate
OLTP database into a single data warehouse and then through an OLAP system.

Figure 4.4 shows a rough schematic of how you can think about data ware-
houses and OLAP systems. Keep in mind when you look at the figure, though, that in
many systems several components may be wrapped up in one. For example, some
OLAP engines are also small data warehouses, and many data loaders incorporate
data transformers as well.

The figure shows how data move through five steps on their way into the data
warehouse. First the data are loaded from various remote data sources. As the data are
loaded, they must be converted to a common format, scrubbed to get rid of errors, and
transformed into things like aggregates that are useful for analysis. Finally, the data
are put into the warehouse where they are indexed for fast access.

The data loader’s job is to handle the operational side of moving data from a par-
ticular data source into the warehouse. It handles information like determining
whether or not there have been changes to the original data source and how the new
data should be added to the warehouse. It also determines how a particular set of data
should be loaded. Does a specific request need to be made to a mainframe? Should a

Data-Driven Decision Support 41 ®

LAN Servers

o =
PC Files @\

%

&

Mainframe

;

OLTP Databases

= =|

-\
N«
External
Sources

Data Loader

Data Scrubber

|
-
I
|

|
Data Converter I
|
|

Data Transformer

Data Warehouse

OLAP Interface

OLAP*Server

-

FIGURE 4.4 Data Warehouses and OLAP Systems

file be read from a local area network (LAN) server? Should a CD-ROM drive be
read? And so forth. The loader is usually also responsible for scheduling when these

activities will take place.

The data converter handles translating data to formats that are appropriate to the
data warehouse. For example, the data warehouse might store text in ASCII format,

but a mainframe computer might use

EBCDIC to store its files. The converter would

perform the conversion. Or a data vendor’s CD-ROM might list industry codes as
“FINANCE,” “MANUFACTURING,” “SERVICE,” “UTILITIES,” and “TRANS-
PORTATION,” but the data warehouse might use Standard Industrial Classification
(SIC) codes. This type of conversion would also be done by the transformer. Or one

W 42 Chapter 4

database might call a variable “prft_marg,” while another calls it “prof_mrg” and the
data warehouse calls it “profit_margin.” In order to be able to use the variable from
these three different sources, the transformer would need to map them all to a stand-
ard variable name.

The scrubber cleanses the data. What this means is that it identifies and reme-
dies errors or omissions in the data. Missing values, for example, might be replaced
with a predefined code or a default value. If a character string is found in a field that
is supposed to be an integer, the record may be flagged or discarded, or an error re-
covery procedure might be executed.

Finally, the transformer performs aggregation and summarization. For instance,
all of the individual sales by John Smith might be summarized into a single variable
to make the information more meaningful or easier to access. Depending on the busi-
ness requirements, the detailed sale-by-sale information might also be included in the
warehouse.

It is important to note that data warehouses don’t generally need to be updated in
real-time. OLTP databases are designed for fast writing and record keeping. They are
constantly being updated with new information as it becomes available. In contrast,
data warehouses usually perform updates periodically during off-hours. Most data
warehouses cannot operate effectively in real-time because they are not set up for this.

On the other hand, data warehouses usually store historical information in a
much more accessible manner than OLTP systems. Using OLTP systems, you have to
do a lot of work to summarize information historically and you need to perform com-
plicated operations to figure out when new records entered the database and for how
long older records were valid. Since data warehouses are used for decision support,
they usually do not flush out old data to make room for new data. Because of this,
they are more easily able to capture historical trends in the data. And because the
warehouse is designed with business objectives in mind instead of transactions,
queries on them lead to more actionable answers.°

Once the data are in a warehouse, the OLAP server becomes important for an-
swering these queries. But how?

OLAP systems let you explore data in ways that are decision oriented. For
starters, an OLAP system lets you perform various types of “slicing and dicing” of
data easily and without defining beforehand what you will need to do. In other words,
you are able to view the data and get at them from many different perspectives along
many different dimensions. But more importantly, the system gives you the entry
points into the data based on the characteristics of the data themselves. The system
would also allow you to drill down into data to get to higher and higher levels of de-
tail if that’s what you need. Finally, OLAP tools are usually fast and easy to use. You
can plow through megabytes or gigabytes of data without having to wait hours for
your results.

There are several different approaches to OLAP representation, but the most

“To be technically correct, data warehouses typically contain data spanning about a year’s worth of history and
they usually aggregate the data to facilitate analysis. A similar type of database called an operational data store
is like a data warehouse but is typically used to store operational (not analytic) data for a period of only 30 days
or so and wouldn’t usually perform aggregation. The main purpose of the operational data store is to bring data
together in one place for convenience in reporting, and so forth. In practice both are often referred to as data
warehouses.

Data-Driven Decision Support 43 B

common is a multidimensional approach to data storage. Figure 4.5 shows this
method of structuring the data. In OLAP terms this representation shows a matrix of
customer dimensioned on product. The blocks or cells are like records in the toy
database. A row of cells is called a vector.

To see why a multidimensional approach is so powerful, it is useful to consider
how complicated data manipulation can get without it. Let’s go back to our toy
database. This database only contains 15 records, but you can imagine that it contains
15,000 or 15,000,000 if you like.

How would you answer the question,

“How many Mr. Snowman games were sold?”

Looking back at the database in Figure 4.1,” you can see that, in this case, since
there is no index for product, you would have to run through all of the records in the
database, totaling all quantities that corresponded to records with a product of “Mr.
Snowman.” This is not very efficient.

You might suggest adding an index for product. Let’s say that you do that.

Now you ask,

“How many Mr. Snowman games were sold on 12/2/977”

Well, again, since there is no index on product and date, you have to examine
each record (or at least all of the Mr. Snowman records, assuming you made a product
index in the last step).

But the.problem here is that you don’t know in advance how you will want to
see the data. In the first case you looked at the dimension of product, in the second
case you drilled down a little bit and looked at product by date. You could just as eas-
ily have wanted to see product by customer or customer by date, and so forth. It de-
pends on what questions you need answered.

Our toy database has only a few columns, but most databases have many more.
Each can potentially become a dimension of inquiry. It is impractical to try to antici-
pate every possible combination of dimensions and index your OLTP system on these
dimensions. Even if this were possible, doing so would bring your system to its knees.

Now consider the multidimensional OLAP approach shown in Figure 4.5.

The white cells in the figure are inputs to the OLAP server. They represent the
atomic level or simple data elements. The shaded cells represent outputs. These are
the results of aggregating and transforming data.® Outputs are often formed by per-
forming operations on the vectors. For example, in the figure, the outputs are various
sub-totals and totals along different dimensions of the data. These were formed by
simply summing along the vectors.

In this example, the gray cells are a “count” of items sold. However, the gray
cells could result from applying other functions to the data such as average cost of
sold items, total revenues, and so on.’

"We will be using Figure 4.2 in this discussion for simplicity. Although Figure 4.1 represents an ISAM database,
similar reasoning to that which follows holds for RDBMS like the one represented in Figure 4.2.

*In some systems these cells might be computed by and stored in the data warehouse. In others they would be
computed by the OLAP system.

There could even be whole dimensions made up of measures (output cells) where one vector would represent
averages, one vector would represent totals, one vector would represent maximums, and so on.

B 44 Chapter 4

Product
{L\\-
N & &
S & & @&
é () % L
é@ o & QQQJ
&
v NI
N\
Fun Land Toys . > 10
40 Total items sold to
~\, Joe’s House of Toys
Joe’s House of Toys
5 25 20
5 50
E AN
.3 Nutcracker Toys
20 10
3 10 40
Toy Mania
5 15
1 10
N\
Toy Town
20 A1 25 10 10 65
Total of all
50 95 40 | items sold
25
Mr. Snowmans purchased _—_\
by Toy Mania Total Messy Paint Kits sold

FIGURE 45 A Multidimensional OLAP Representation of Customer Dimensioned on
Product

Notice that depending on the question you are interested in answering you can
get the answer by simply going to the appropriate dimension and selecting the correct
input or output cell. For example, to find the total number of Messy Paint Kits sold,
you just need to find the cell at the intersection of the vector Messy Paint Kit and the
total output vector.

Notice that for the customer dimension, the entry points into the data are “Fun
Land Toys,” “Joe’s House of Toys,” etc. In other words, every value of the customer
attribute that appears in the database is an entry point into the data. Think about this.
You can literally “see” every value of every attribute and dive into the data from any
of these values. With data that are continuous, like revenues, the system might group
it into various buckets or ranges.

The usefulness becomes even clearer when we add the dimension of time. Con-
sider how many questions you can ask if you expand the matrix to a cube as in Figure
4.6. Answering even a handful of the questions shown in the figure would require a
tremendous amount of programming in a traditional OLTP system. Furthermore,
some queries would take hours or days to execute.

Data-Driven Decision Support 45 ®

Product
. FS ‘Cll\\ How many Messy Paint Kits were
00\ & & & sold to Fun Land on 12/2/96?
& & L s
O Q & K
Yg?’ S - Date How many items were
12/1/96 sold to Fun Land
Fun Land Toys 12/2/96 on 12/2/967
12/3/96
5 Joe’s House of Toys
g { How many Messy Paint
® Nutcracker Toys Kits were sold to
8 Joe’s in total?
A
Toy Mania
N
Toy Town
How many items were
How many Avenger sold in total on 12/2/96?
Dolls were sold to (hidden underneath cube)

Toy Mania in total?

How many Avenger Dolls were \

sold in total on 12/3/96? How many Messy Paint Kits were How many items
sold in total? were sold in total?

FIGURE 4.6 Hypercube data representations make it convenient to query data along any
dimension.

Something else becomes clear when you examine Figure 4.6. Earlier we spoke
of drilling down into the data. Looking at the cube, you can see how this might work.

You might start in the bottom right by asking simply, “How many items were
sold?” Once you got this information, you might pop that cell out to reveal the next
level of vectors. Let’s say you had a hunch that overall sales were boosted by a large
number of Messy Paint Kit sales. You might ask about the total number of units of
Messy Paint Kits sold (the middle cell at the bottom). Now maybe you want to know
why sales of Messy Paint Kits were so strong. Perhaps you suspect that sales to a par-
ticular client were particularly strong. You could check this by peeling away another
layer of cells to determine how many Messy Paint Kits were sold to a particular
client, say, Joe’s House of Toys (the middle cell near the top). If you were still curi-
ous, you could peel away another layer to see if a particular day was a strong selling
day to Joe’s.

B 46 Chapter 4

But this is only one possible path of analysis. You could easily have had a
hunch that a certain date was a particularly strong sales date for all products. You
would start by asking about the total sales on a particular day, say 12/2/97. From there
you could branch off in a variety of directions by spinning the cube to the right place
and drilling to the appropriate cell.

If you have more than three dimensions, the basic principle is the same, you just
add another one to the representation. Vector and matrix operations work fine no
matter how many dimensions you add. Unfortunately, as will often be the case with
concepts we treat in this text, it is very difficult to imagine what a four- or five-
dimensional hypercube looks like!

Most OLAP systems have graphical user interfaces that allow users to see data
both numerically and in a variety of graphical representations. For example, the sales
of a region might be shown in a table, as a series of bars on a bar graph, or as colored
patches on a map of the United States. The user can drill down by pointing to the re-
gion of the screen for more detail.

Figure 4.7 shows one way a typical OLAP system might represent the toy data
in our example on screen. Note how the data are shown in percentage terms. This
simple step makes the data much more meaningful. (Most RDBMS would have to
perform several queries and joins just to do that!)'° For more detail on the sales of
Messy Paint Kits in the Northeast region, the user might use the mouse to click on the
Messy Paint Kits region of the pie chart on the left.

By the way, looking at the chart, you can probably figure out what is driving
sales in the Northeast region. Fully 56% of the items sold are Mr. Snowmans. In fact
78% of the items sold are either Mr. Snowmans or Puppet Maker Kits. Death Avenger
Dolls and Messy Paint Kits are not very popular in the Northeast.

Contrast this with the sales in the Southeast where Messy Paint Kits are the
number one seller, with a 30% share of the quantity. In contrast, the Mr. Snowmans
and Puppet Maker Kits that were so overwhelmingly popular in the Northeast only
get about a third of the sales in the Southeast.

If you are a marketing executive for the toy manufacturer, you might try to fig-
ure out why Mr. Snowman and Puppet Maker Kits are so popular in the Northeast or,
conversely, why Messy Paint Kits and Death Avenger Dolls don’t seem to go over
very well.

Maybe the demographics of the Northeast region are such that the age levels of
the children tend to be lower than in the Southwest and also lower than the minimum
suggested age for the Messy Paint Kit. Maybe the Northeast has more religious com-
munities that frown on aggressive toys like the Death Avenger Doll. And so on. This
could all have implications for how you market these and other products in the North-
east.

One thing is certain though. You now know what is driving sales in the North-
east.

"“Even if you did that, you have no guarantee that would be how you needed to see the data. The strength of
OLAP systems is that they let you try out many different hunches quickly to see which ones seem to pay off.

Data-Driven Decision Support 47 W

NE SALES SE SALES
Death
Avenger Doll Mr.
11% Snowman Death

19% Avenger Doll

“\ Messy Paint 30%
Kit

11%

Puppet

Maker Kit

15%
Puppet
Maker Kit
Mr. Snowman 22% ;
. Messy Paint
56% Kit

36%

FIGURE 4.7 An OLAP Interface showing percentage of sales by region and answering
the question, “What's driving sales in the NE?”

INTELLIGENCE DENSITY ISSUES

So when is it a good idea to think about an OLAP/data warehouse solution?

Clearly, if you want to be able to look at several different databases at once,
combining their contents to make them more easily queried, a data warehouse might
be a good idea. Similarly, if you want to give users the ability to quickly slice and
dice data, OLAP solutions can be appealing.

Because data warehouses combine data from many different sources, aggregate
and scrub the data, they make it much easier to get at the data. In fact, even for stand-
ard database queries, some data warehouses experience one to two orders of magni-
tude increases in performance for queries.

But, as always, there is no free lunch. What data warehousing applications usu-
ally give up to get that high performance is the ability to deliver real-time data. As a
result, users need to realize that the data they are basing their decisions on may be
several hours or days out of date. On the other hand, because the data have been
scrubbed, the data may be of higher quality than those in the transaction databases
that feed the warehouse. Missing values, nonsense characters, and incorrect data
types will often be corrected. These two factors balance each other out to a certain ex-
tent, but the user must be aware of the limitations of the data nonetheless.

In general, data warehouses need to be run on special-purpose computers, usu-
ally their own mainframe or network server. While this seems like a big price to pay
for ease of access in the short term, in the long term, this arrangement will save you a
lot of traffic on the transaction processing systems. Recall that most EIS and database
reports are run directly against an organization’s OLTP systems. This can cause
tremendous bottlenecks for those systems, so the cost may be worth it.

W 48 Chapter4

Because of the high demand for computing power, developers have put a pre-
mium on efficient storage of data. To understand why this is so important, look back
to the first matrix we showed in Figure 4.5. Recall how not every cell in every row
had a number in it. This made sense since not every customer ordered every item.
Imagine if there were 400 products instead of just four. Think about how much space
would be wasted storing blank cells if a customer had only ordered one item: The
vector dimensioning customer by product would waste 399 cells.

To get around this inefficiency, many data warehousing and OLAP systems cre-
ate a special kind of hypercube that uses sparse matrices. A sparse matrix is like the
regular matrix shown in Figure 4.5, except that the empty cells are omitted. In other
words, rather than storing blank values in the empty cells, the entire storage location
is taken out of the matrix. These unused storage locations can then be used for storing
other data.

Figure 4.8 shows what a sparsely populated hypercube might look like concep-
tually. Notice how the cube still holds its shape and how the vectors’ output cells
(darker shaded) still contain all of their values. This property allows the data to be
used as if they were still stored in a complete hypercube, while at the same time sav-
ing a tremendous amount of space. For example, the cube of input cells shown in the
figure only requires about 60% of the storage space that would be required for a fully
populated matrix representation of the same data.

Conversely, data that are redundant can be eliminated from representations as
well. For example, let’s say that the price of the Messy Paint Kit was $19.95. Since
the price does not change on a daily basis, every record for a Messy Paint Kit pur-
chase during the time when the price is $19.95 will have the exact same entry for
the price dimension. Again, imagine how many times $19.95 would occur over the
course of a month if 200 toy orders a day come in. This is the converse of the prob-
lem above. Rather than records not having data, every record has the same data.
Again this is wasteful. Most data warehouses and OLAP systems that have func-
tionality for dealing with sparse matrices also can deal with this type of redundant
data. '

These types of innovations can greatly increase the amount of data that OLAP
systems and data warehouses can manipulate. Nonetheless, most of these systems
cannot approach the data storage and crunching power of OLTP systems specifically
designed to work on massive amounts of data. As more dimensions are added and
more data imported some systems begin to approach practical data limitations."

It is interesting to note that when we discuss scalability in most places in this
text, we are specifically not talking about hardware and storage issues, but instead
about knowledge engineering issues. However, since data warehouses and OLAP
systems are more similar to DBMS than to intelligent DSS systems, in this context
scalability shares a comparable meaning with traditional database systems.

'"Many OLAP systems use hierarchical representations for data to achieve sparse matrices. Say you had a di-
mension called product line containing each of your firm’s ten product lines. If the company had 100 products
total, you would need a 1000 cell hypercube (10X 100=1000). By collapsing the products into the product-line
dimension you end up needing only 110 cells (100+10=110). The collapsing is usually done through aggre-
gation. From a practical perspective many OLAP systems try to limit the number of dimensions to about seven
or less.

Data-Driven Decision Support 49 m

Product
&
N 'S N
& s@w ?&& &
) O K x
& o a o
& & & RS
\s S S Q -
ate
‘m h\ \\ 12/1/96
Fun Land Toys ”[\ 12/2/96
I 12/3/96
Joe’s House of Toys N

3
]
£
£ Nutcracker Toys
3

Toy Mania

Toy Town

FIGURE 4.8 A Sparse Matrix Representation of the Toy Database

But, as we have discussed, OLAP systems are also quite different than tradi-
tional DBMS. Rather than just looking at a static query, users can bend and mold their
data search to fit their exact needs. As the data or business changes, the user can re-
spond by changing his line of inquiry or level of detail.

Because OLAP systems give the user this ability to dive into data and drill up
or down for more detail, the user can understand the data much better. OLAP
systems allow users to make the data speak for themselves. Rather than just getting a
summary of the data, a decision maker can also explore why the summary came out
the way it did.

Finally, you have to realize that the benefits of OLAP and data warehousing
do not come for free. In order to understand which types of data to use and how to
organize it, you need to spend time with the people who understand the business.
These decision makers will tell you how they plan to use the data in the warehouse

m 50 Chapter4

and what types of questions they will need answered. The organization itself will
have to discover what types of data are available, where they are and what addi-
tional data elements might need to be collected to foster good decision making.
This can take some time. Add to this the need to set up an infrastructure to move
their transactional systems to a warehouse and the need to configure new hardware
and it could take even longer. And don’t forget, you have to allocate time for the
maintenance and training of support staff for the new systems. Nonetheless, you will
still probably experience a great increase over the turnaround time you might expect
if you were going to customize an EIS or create special reports for each user’s needs.
In summary, OLAP and data warehousing systems stack up as follows:

Dimension OLAP/Data Warehouse But...

Accuracy Moderate Depends on how often data are updated
and how well they are scrubbed.

Explainability Moderate User navigates through data to find
explanation

Response speed High —

Scalability Moderate Depends on efficiency of data represen-
tation, use of sparse matrices, and
redundancy reduction

Compactness Low —_

Flexibility High —

Ease of use High Needs good OLAP interface

Independence from Moderate Needs to discuss uses to which data will

experts be put; needs to inventory data

Development speed Moderate Depends on complexity of existing
infrastructure and business uses of
data

Computing resources High Tends to reduce traffic on other core
business systems

Suggested Reading

Burkan, W. C., Executive Information Systems from Proposal through Implementa-
tion, Van Nostrand Reinhold, NY, 1991.

Codd, E. F, S. B. Codd, and T. S. Clynch, “Beyond Decision Support,” Computer-
world, July 26, 1993. (Note that there was an important correction to this article
published in Computerworld on October 11, 1993.)

Data-Driven Decision Support 51 ®

Date, C. J., An Introduction to Database Systems, Addison-Wesley, Reading, MA:
1975.

Date, C. J., Relational Database Selected Writings, Addison-Wesley, Reading, MA:
1989.

Inmon, William H., Building the Data Warehouse, QED, Wellesley, MA: 1992.
Inmon, William H., Building the Operational Data Store, QED, Wellesley, MA: 1996.

Poe, Vidette, Building a Data Warehouse for Decision Support, Prentice-Hall, Upper
Saddle River, NJ: 1996.

Raden, Neil, “Data, Data, Everywhere,” Information Week, October 30, 1995.

Ullman, Jeffrey D., Principles of Database Systems, Computer Science Press, MD:
1982.

CHAPTER

Evolving Solutions
Genetic Algorithms

I have called this principle, by which each slight variation, if useful,
is preserved, by the term Natural Selection.

——Charles Darwin

You can’t always get what you want . . .
but if you try sometimes, you just might find . . .
you get what you need.

—DMick Jagger

The genetic algorithm does implicitly what is infeasible explicitly.
—John Holland

Optimization problems involve finding one or a series of very good (optimal) solu-
tions from among a very large number of possible solutions. For certain problems,
powetrful algorithms exist for finding these solutions using mathematical techniques.
However, in many cases, such as when there are trillions of potential combinations
and “poorly behaved” functions involved, mathematical techniques can break down.

A genetic algorithm (GA) solves problems by borrowing a technique from na-
ture. GAs use Darwin’s basic principles of survival of the fittest, mutation, and cross-
breeding to create solutions for problems. What is particularly appealing about the
technique is that it is robust at finding good solutions for a large variety of problems.
GAs can be especially attractive since they do not require that you be able to describe
how to find a good solution. The approach only requires that you be able to recognize
a good solution when you see it. When it does find a good solution, the GA percolates
some of that solution’s features into a population of competing solutions. Over time,
the GA “breeds” good solutions.

We start this chapter with a general discussion of optimization problems and
what makes some of these harder to solve than others. We then go on to discuss
GAs and show how they can be used effectively to solve optimization problems.

52 nm

Evolving Solutions 53 m

INTRODUCTION

In daily conversation, you often talk about doing things “efficiently” or choosing the
“best” option. For example, let’s say that it’s Saturday and you have to run some er-
rands. You’d like to go to the bank to get money, have lunch with a friend, buy a
Mother’s Day gift for your mother, go to the travel agent to make reservations for
your summer vacation, and drop the dog off at the pet groomer. Let’s also assume that
the different stops you have to make are not all near each other.

Before you set out in the morning, you would probably try to plan out mentally
where you were going, and in what order. Your implicit objective would probably be
to minimize the time that you spend running around between errands. Nonetheless,
you would also have to consider certain realities in your planning.

For instance, no matter how efficient it might be to go first to the restaurant
where you will meet your friend for lunch (it is closest), you cannot have lunch at
9:30 in the morning. Likewise, you cannot buy a gift for Mom until you go to the
bank to get money. And while you might be able to run all of your other errands be-
fore dropping Spot at the groomer, do you really want to travel all over town with the
dog?

The schedule that you choose reflects your assessment of the realities of the sit-
uation, your own personal preferences, the amount of time and energy you have to
plan, and your opinions as to what is most efficient. Planning your daily schedule is
an optimization problem in a microcosm: You know that there is an optimal, most ef-
ficient solution . . . if only you could find it.

OPTIMIZATION

The basic goal of optimization tasks is to figure out the best mix of components
(combination of elements, permutation of activities, set of values, etc.) for solving
some problem. “Optimal” is judged based on some pre-determined measure of good-
ness or fitness given some constraints.

Said another way, optimization is the process of reducing the space of potential
problem solutions to one or a few of the best ones. The criterion for the goodness or
fitness of a solution is also a part of the problem, defined by you, and acts as a uni-
form measure for judging the quality of solutions.

Examples:

* Provident Investments, a portfolio management firm, wishes to choose portfolios of
financial instruments that will offer the highest yields, based on certain risk prefer-
ences and subject to various regulatory constraints.

» Ultima Systems, a computer manufacturer, has many types of computers with many
options and peripheral components. The firm wants to automatically generate com-
puter component configuration recommendations based upon user needs and uses.

¢ ACME Transport, Inc., a shipping firm, needs to plan a delivery route that will mini-
mize the time and cost of the shipping, but at the same time, make deliveries to all 10
of its overseas clients.

m 54 Chapter5

Global maximum

Local maxima

FIGURE 5.1 A Hilly Terrain of Possible Solutions

Optimization problems involve making decisions and formulating plans in situ-
ations where you have some sort of resource constraints: time, money, equipment,
personnel, etc. The goal of optimization techniques is to try to make the best of such
imperfect situations by taking the fullest advantage of what resources, time, etc. you
have available.

Using a physical analogy, you can think of an optimization problem space as a
hilly terrain like the one shown in Figure 5.1. The valleys of the terrain represent the
worst solutions to a problem, and the peaks represent the best. An optimization
method seeks to identify the highest peak and climb it in as little time as possible.
Good methods need to avoid becoming stranded on top of a small hill or trapped in a
deep valley since this would only make it harder to climb to the better peaks.'

To put it another way (and further extend our physical example), it might be
impossible to explore every inch of every mountain in the Alps to find the highest.

'This is the general case in which we are trying to find an optimum value for some function or process.
In some cases (Chapter 6, for example), it is more convenient to think of the terrain as an “error space” in
which we want to minimize error and therefore seek out the valleys where the error is at a minimum rather
than the peaks. In practice, it is trivial to convert a maximization problem into a minimization problem and
vice versa.

Evolving Solutions 55 m

But unless you had a lot of time, it probably wouldn’t be a great idea to start
in an arbitrary valley and try to explore neighboring peaks one at a time, on the
off chance that you would find the highest! Instead, you would be far better off if
you got into an airplane and flew over the whole region for a bit, surveying the
area. You could then drop down to explore the most promising (highest) looking
areas. This is essentially what optimization methods like genetic algorithms seek
to do.

For example, consider again ACME Transport, the shipping firm. Let’s say the
firm had to make shipments to 10 different countries. Clearly, there are many routes
that an ACME ship can take to make even a small number of deliveries? and some
will be better than others in terms of minimizing time and costs. For instance, it
makes more sense to go from San Francisco to London to Paris than it does to go
from London to San Francisco to Paris since the first route would use much less fuel,
time, etc. The better route would be on a higher place in the problem terrain than the
second. The goal of the optimization process in this case is to find the route for a ship
that best minimizes the time and cost: the optimal route.

You might be asking yourself why you couldn’t just try every solution and pick
the best one?

You might reason as follows, “ACME could just write a little computer pro-
gram to try all of the routes possible, and just pick the best! They could write the
program in a few hours and run it overnight.”

Good news . . . you would be right! Such a technique, called an exhaustive
search, would be guaranteed to find the right solution. (It generates and tests every
possible solution.) In fact, we would not even have to wait overnight. A very fast
computer could solve the problem described above in a few minutes.

The bad news is, if you were to increase the number of countries from 10 to
25, you would have to wait a little longer. Actually, you would have to wait a lot
longer. Specifically, if you had a very, very fast computer that could construct and
evaluate, say, a million routes per second, and you had started the computer comput-
ing just around the time that life began on Earth (about 4 billion years ago), then as
of today you would have evaluated just under one quarter of 1% of all the possible
solutions!?

Clearly, ACME would not want to take the exhaustive search approach if the
firm wanted to deliver any products on time.

The difficulty we have just illustrated is typical of what are known as NP-
complete problems. NP is shorthand for non-deterministic polynomial. What the term
means is that the time required to solve a problem increases very, very quickly as a

’If there were 10 customers and one ship, there would be 10! = 3,628,800 different routes possible.

Because there are 25! = 1.55 X 10 configurations and we can do one million (10°) evaluations per second, it
will take 1.55 X 10" seconds (25!/10°) to find the solution. Because there are 60 seconds in a minute, 60 minutes
in an hour, 24 hours in a day, and 365.25 days in a year, there are 60 X 60 X 24 X 365.25 = 31,557,600 seconds
in a year. In 4 billion years, there are 4 X 10° X 31,557,600 = 3.15576 X 10' seconds. Because we calculated
that it will take 1.55 X 10" seconds to completely solve the problem, we can calculate the percentage of the
problem that we can complete in 4 billion years as 3.15576 X 10'/1.55 X 10", which is approximately equal to
0.0023 or 0.23%.

W 56 Chapter5s

function of the number of elements in the problem.* In ACME’s case this would
imply that the time required to solve the problem exhaustively would grow very
quickly with the number of deliveries.

What this means more practically is that while such problems are usually man-
ageable for small numbers of elements, they quickly grow intractable if the number
of elements gets even slightly large. This, in large part, is why more efficient opti-
mization methods have been developed.

Optimization problems involve three components: a set of problem variables, a
set of constraints, and a set of objectives. To explore what each of these means, con-
sider how they apply to ACME.

To solve ACME’s problem, you can start by defining a set of problem variables
that describes various aspects of the problem. For the shipping firm, a variable might
be something like where to send a ship next, which crew and ship would be best for a
particular job, or the cost associated with sending a shipment to a particular location.
Variables can be numbers, such as the number of products to be placed in the cargo
bay of a ship or the time a customer must wait for a delivery. Variables can also be log-
ical, such as the presence or absence of a particular type of storage facility on the ship.

Constraints restrict the allowable values that a variable can have. Each can be
composed of expressions involving the variables you define as well as other constant
values. For example, you might wish to constrain the number of ports visited by an
ACME ship, or the number of tons of cargo it can carry. Here are three constraints
that might apply to ACME:

* Shipping costs must be less than 70% of fees charged.
» Customer waiting time must be less than 90 days.

e If a customer does more than $ x of business with ACME then waiting time must be less
than 60 days.

Finally, you need objective functions that are used to evaluate the fitness of so-
lutions. Objective functions usually involve the minimization of some type of re-
source usage (like time, fuel, or money), and/or the minimization of some undesirable
effect (risk of lateness, time wasted traveling with an empty cargo bay), and/or the
maximization of some benefit, such as profit or efficiency.

The following are possible objective functions for ACME:

* Overall delivery time is minimized.
* Overall profit is maximized.

*When we talk about a particular problem being polynomial or non-deterministic polynomial what we mean is
that the number of possible combinations to be considered in searching for solutions, and hence the time it takes
to exhaustively search for a solution, is in some way a function of the number of elements that make up a combi-
nation in the solution.

The simplest form of such a relationship is a /inear one. That means that if we doubled the number of el-
ements (customers in our ACME example), we would expect the number of evaluations (and the time) required
to find a solution to double as well.

On the other hand, sometimes a polynomial relationship exists. This means that the time would grow
faster than the number of elements, perhaps growing at a rate proportional to the square of the number of ele-
ments. In this case, each time we doubled the number of elements, we would increase by a factor of four the
amount of time it would take to find a solution. Finally, non-deterministic polynomial problems exist for which
the time required to find solutions exhaustively grows even faster, as in the ACME example.

Evolving Solutions 57 m

 Ship fleet wear is minimized.
¢ Number of repeated country visits is minimized.

The variables, constraints, and objective function used to describe an optimiza-
tion problem define the basic “geography” of the search space, and determine which
techniques might work. The objective function is the metric along which solutions are
ranked, and it, in effect, creates the hills and valleys.

For example, in Figure 5.1, there are two variables, so the search space has
three dimensions: the values of variable one (x), the values of variable two (y), and
the objective function’s value (z, the height) for every possible combination of x and
y. If we had more than two or three variables, the search space would be harder to vi-
sualize, but the idea is the same.

The geography of the search space determines which optimization methods
are suitable for solving the problem. If the variables and function that define the
landscape are continuous (i.e., the z values in Figure 5.1 don’t jump sharply with
small changes in the x or y values), the solution space is continuous as in Figure
5.1.

Notice that there are no holes in the landscape and that the landscape is smooth:
There are no plateaus, and there are no sharp points. As a result the high points in the
landscape are all “continuously approachable.” If you’re standing at some point in the
landscape, you can “see” the slope in every direction from that point, and move incre-
mentally up a hill until the slope levels off and no further improvement is possible.
This is what you do with calculus-based methods: Calculate the slope at every point in
the terrain. Of all these points, the interesting ones are those where the slope is zero.
These correspond to the peaks and troughs. The highest peak is the global maximum.’

But sometimes the terrain is not continuous. For example, the two-dimensional
terrain in Figure 5.2 has “discontinuities.” If X and Y represent two products that are
being manufactured and sold, then a constraint such as “don’t make more than 50
units of X,” that is, X < 50, is a vertical line that imposes a sharp discontinuity in the
space as shown in Figure 5.2: Every solution in the area to the left of the vertical line
is legitimate, whereas the area to the right is not.

A constraint such as “don’t make more than 75 units of Y” imposes a similar
boundary as shown. Finally, if it costs $A to make one unit of X and $B to make one
unit of Y, the constraint “ensure that the total manufacturing cost doesn’t exceed
$5000,” that is, pX + qY¥ < 5000, represents a line (with slope —p/q) which slices off
the search space at an angle (the slope) as shown in Figure 5.2.

The shaded region formed by the intersection of the various constraints is called
the feasible region. That’s where the best solution will be found. If you think about it
a little, when X and Y have a positive sales price, the best solution will lie on one of
the “extreme points” labeled B, C, D, and E. With more variables, the search space

SUsing calculus, calculating slope requires differentiating the function. The derivative is then set to zero, which
tells us where the peaks or troughs are in the landscape. For example, the function x* — 4x? + 4x, when differen-
tiated, is 3x? — 8x + 4. This function gives us the slope of the landscape (for every value of x) corresponding to
the original function. Since we’re interested in the peaks, we want those x values where the slopes are zero.
Solving the equation 3x? — 8x + 4 = 0 yields x=2 and x=2/3. Of these x=2/3 gives the higher value when substi-
tuted into the original function. It is the global optimum for this simple function.

m 58 Chapter5

Y x<50——]
B c
r
Y<75
D
pX + qY < 5000
E
AO O —
G .

FIGURE 5.2 A Linear “Discontinuous” Terrain of Possible Solutions

becomes harder to visualize, but the idea is the same. The best solution will always lie
at one of the extreme points.

Linear programming is the most common technique used for solving such prob-
lems. The linear programming algorithm typically begins at the origin (A) and hops
from one extreme point to another while the solution keeps improving. As long as the
surfaces are linear (that is, the constraints and objective function are linear), this
procedure is guaranteed to improve with every hop and find the best extreme point.
Linear programming is a very popular technique since many of the problems in the
business or scientific world are linear or can be approximated as such.

But some terrains are not only discontinuous, they also have “holes” in them, or
areas where solutions do not exist. For example, if there were certain combinations of
routes that ACME could not use due to regulatory reasons, these might be discontinu-
ities. Further, the constraints might be non-linear, involving ratios or products. It is
hard to navigate such a domain, let alone find the best solution. You don’t know the
shape of the terrain to start, and once you do start, there’s often little or no informa-
tion about the terrain that helps you figure out in which direction to move once you
start searching. These problems can be very tough.

This is where heuristic techniques such as genetic algorithms (GAs) excel. Un-
like many mathematical techniques, solution times with GAs are usually highly pre-
dictable. Also, solution time is usually not radically affected as the problem gets

Evolving Solutions 59 m

larger, which is not always so with the more traditional techniques. The formulation
of the problem and thus the shape of the terrain can be more flexible: The constraints
and the objective function can be non-linear or discontinuous; GAs don’t find these
problems any more difficult than the linear or continuous problems!

But you don’t get something for nothing.

Heuristic techniques cannot guarantee optimal solutions. Users must often set-
tle for “near optimal” solutions. These solutions, while usually not perfect, can suf-
fice for a broad range of problems. So, for example, using a heuristic optimization
method, ACME might not get the “perfect” schedule (the absolute shortest route).
Nonetheless, the schedules the firm does get will probably be very good and ACME
will get them quickly.

Thus there is a constant tug-of-war going on between the degree of optimality
achievable by using a particular technique (heuristic or numerical) and the opera-
tional advantages and disadvantages of that technique.

Genetic algorithms are simple yet powerful optimization programs. Like neural
networks, genetic algorithms have their basis in biological theory. Whereas neural
nets take their foundations from neuroscience, GAs adapt the evolutionary concept of
survival of the fittest as their basis.

GAs were originally developed by computer scientist John Holland in the
1970s. Holland developed GAs as experiments to see if computer programs could
evolve in a Darwinian sense. It turns out, though, that GAs are also very useful for
solving classes of problems that were previously computationally prohibitive. GAs
have had especially good success in the area of optimization. What is most surprising
is that GAs achieve such power while using only a few simple operations.

To understand the fundamentals of GAs, we turn to the basis for the genetic algo-
rithm: natural selection. In nature organisms have to solve a very simple problem: sur-
vival. Those organisms that solve the problem will flourish, and those that don’t won’t.

Imagine that there is a primitive evolving organism fighting for survival. We’ll
call this beast a krome. The krome is constantly competing with many other kromes
for the same feeding grounds and to evade the same predators. There are two types of
kromes, black kromes and white kromes, which have varying degrees of intelligence
and physical prowess. Lastly, kromes, like their predators, feed only at night.

Different kromes will survive based on the compatibility of their attributes with
their environment. Since kromes are hunted by their predators at night, we would ex-
pect the dark-colored ones to have an advantage. The same is true of kromes that are
smart and can run fast. In fact, we can create a table of possible krome attributes, and
rank each combination of attributes (Figure 5.3). Each type of krome represents one
solution to the “survival” problem.

Genetic algorithms also use a ranking process. GAs start by creating an initial,
usually random set of guesses about how to solve a particular optimization problem.
The GA then ranks each of these solutions by how well it solves the problem. The GA
removes solutions that do not seem to solve the problem well (“bad” solutions) from
the population. In their place, the GA creates new solutions, made by combining bits
and pieces of the “good” solutions. Occasionally, a GA will make a random change
to one of the solutions, trying out something totally new to see if the solution can be
improved upon. This process is repeated many times until a very good solution has
been found.

m 60 Chapter5

Color Speed Intelligence Etc. Beler Soutions
Solution 1 Black Fast Smart ... 98% score
Solution 2 Black Med. Speed Smart ... 93% score
Solution 3 Black Med. Speed Med. Smart ... 92% score

il

Solution 50 White Slow Dumb ... 35% score

Worse solutions

FIGURE 5.3 A Range of Nature’'s Solutions to the Kromes’ Survival Problem

For example, if you were trying to balance a portfolio of stocks, like Provident,
you might create a whole set of random portfolios, and then let each portfolio evolve.
At the end of the process, you could select the best (the “king of the jungle” in Port-
folio Land) and base your actual portfolio selection on it. On the other hand, to solve
a problem like ACME Transport’s, you could create a whole set of random shipping
routes and let them evolve, choosing the best route when the GA finished.

A genetic algorithm experiments with new solutions while preserving poten-
tially valuable interim results. If an experimental solution is not successful, it will be
ranked poorly and, in all likelihood, it will be discarded. On the other hand, if the ex-
perimental solution is good, it will be ranked more highly, and its attributes will be
carried into the next “generation” for further refinement. Thus the GA keeps the
“best” parts of solutions, and discards the less useful parts. Genetic algorithms are
able to search potentially huge and even discontinuous problem spaces efficiently by
using this approach.

THE ABCs OF GENETIC ALGORITHMS

So how do GAs work?

The smallest unit of a GA is called a gene. A gene represents a unit of informa-
tion in your problem domain. For example, if you were trying to balance a portfolio
of stocks for Provident Investments, the unit might be the percentage of the portfolio
given over to a particular stock; for ACME, the basic unit might be the name of a city
in its delivery list.

Evolving Solutions 61 m

A series of these genes, or a chromosome, represents one possible complete
solution to the problem.

Examples

For the portfolio problem, a chromosome might look like

0

oP°

7% 2 3%.

oo

15

o

3

oo

5

o°

Interpretation/decoding: “Buy 3% of Stock A, 5% of Stock B, . . . etc.”
For a routing problem a chromosome might look like:

New York - London - Paris . . . - LA.

Interpretation/decoding: “Start in New York, proceed to London,
then to Paris . . . etc.”

The key to GA’s power is that the chromosome itself does not do much of the
work in guiding a GA to a good solution. It can’t. The chromosome itself doesn’t
even understand the problem! Not specifically, anyway. The chromosome does not
“understand” the problem in the sense that it doesn’t know the meaning it carries.

In order to make use of a chromosome, the GA, therefore, needs to decode it
and determine how good a chromosome’s solution is for a particular problem. The
GA makes use of a special program module that does understand what a good solu-
tion to the problem looks like. This module is called a decoder. The decoder converts
the chromosome into a solution to the problem. The decoder for ACME’s problem,
for instance, knows how to convert a chromosome into a shipping route.

Once decoded, another module called the fitness function determines which
chromosome solutions are good and which are not very good. (Remember the objec-
tive function from our discussion of optimization? The fitness function does the same
thing.) These two components, decoder and fitness function, are the only parts of the
GA that actually understand the problem domain.

What this means is that you can change how you rank different solutions to the
same problem by keeping the same decoder, but changing how the fitness function
evaluates the solutions. Even more impressive is that you can use the same GA to
solve many different problems just by changing the decoder and fitness function. Fig-
ure 5.4 shows the different modules of the GA.

There are many ways to represent and code chromosomes, but to make things
easier to understand in this chapter, we will use a very simple coding for most of our
discussions. The simplest (and most commonly used) chromosome coding uses single
bits (1s or Os) to represent each gene. For the bulk of our discussions, we will use
chromosomes that take the form of

110101

in order to describe solutions.

m 62 Chapter5

Raw chromosome
(Doesn’t know the “meaning” of the string)

Decoding portion of GA
Proposed Solution (with associated
(Interpreted Chromosome) fitness)

FIGURE 5.4 Decoding a Chromosome

We do this for two reasons. First, these codings are simple to analyze, explain,
and understand. Second, and equally important, this simple coding format is robust
enough to solve a wide variety of very different problems.

Just to get familiar with the idea of encoding and decoding, consider how the
krome problem might be coded in a string of ones and zeros like the one on the previ-
ous page.

In our example, shown in Figure 5.5, a krome’s color is encoded with one gene
and can take on one of two values, black or white. Speed is encoded with two genes
and can take on one of the four values of speed. Finally, intelligence can be coded
with three genes. Using this scheme, the chromosome on the right of Figure 5.5,
110 1 0 1, wouldrepresent a white, slow, and dumb krome.

Now consider a couple of very different business problems shown in the follow-
ing box.® We can solve both using our simple genetic algorithm. Note how we don’t
need to change the GA, we only change the way in which we interpret the meaning of.
each chromosome and how we evaluate its fitness. In this example, we consider a
chromosome consisting of 20 genes, each coded as a single bit (0 or 1).

‘We present two very simple examples for illustrative purposes. In actual practice, the usefulness of GAs over
other methods of optimization for solving these problems would depend greatly on the problem’s specific
details.

Evolving Solutions 63 m

Color Encoding (gene 1)

Code
Black ————® ¢
White ————» 1

Speed Encoding (genes 2 & 3)

Code
Fast —_— 00 Chromosome Structure
Medium Speed ————= 01 [
Slow —> 10

Very Slow —_ 11

(1] Jo]1]o]1] <—_|
dumb

Intelligence Encoding (genes 4, 5 & 6) Decodes to white, slow, and
Code krome
Very Smart — 000
Smart — 001

Somewhat Smart —p» 010
Medium Smart — 011
Dumb — 101
Very Dumb . — 110

FIGURE 5.5 Coding and Decoding Binary Chromosomes

In the simplified example in the accompanying box on the next page, only the
interpretation of the chromosome’s representation changes. As Figure 5.6 shows, the
same chromosome is decoded differently by the GA, but only the interpretational
mechanism varies. In the first case, the chromosome represents a rule for predicting
the S&P 500. In the second, it represents the percentage of employees on the night
shift for a chemical manufacturer.

But remember that GAs do not only use a single chromosome. A GA creates an
initial population of chromosomes (Figure 5.7). Each chromosome is different. By
creating a diverse population instead of a single solution, the GA is trying many solu-
tions at once. After an initial random population is set up, the GA begins an iterative
process of refining the initial solutions so that the better ones (those with higher fit-
ness) are more likely to become the top solution.

The GA experiments with new solutions by combining and refining the infor-
mation in the chromosomes using three operations: selection, crossover, and muta-
tion. These operations produce in new chromosomes which form a new population.
Each new population is called a generation.

During selection, the GA chooses “fitter” solutions to remain and multiply in
the population, but eliminates the poorer ones. During crossover the GA takes useful
information about good solutions and shares it among other chromosomes. During
mutation the GA tweaks solutions slightly in an attempt to improve them.

B 64 Chapter5

PROBLEM 1: Variable Selection
Find the best subset of 20 variables to predict the stock market. That is, we want to
know which variables we should use as inputs to a neural network model for exam-
ple, in order to predict the S&P 500 a week into the future.

PROBLEM 2: Production Levels
Find the optimal percentage of employees a chemical manufacturer should have on
the night shift of a particular factory in order to maximize profit given a variety of
other factors such as overtime, electrical costs, demand, and so forth.

The profit of a given level of production at day or night is hard to optimize
since it increases and decreases many times as the number of night workers moves
from zero to 100% of the total workers, and as different combinations of employees
are used on each shift. This profit behavior is described by a very complex and
poorly behaved (nonlinear, discontinuous) equation, f{x) where x is the number of
employees on the night shift.

PROBLEM 1: Solution

Decode/lnterpret

1. Interpret each bit position as the presence (1) or absence (0) of one of the 20 vari-
ables. (Example: If bit 3 were 1, we would interpret that as meaning “include
variable 3.”)

2. Construct a neural network that uses as input the variables indicated as present in
the chromosome.

3. Train the neural network for some prescribed period. Neural networks are dis-
cussed in Chapter 6.

Evaluate

4. Evaluate the performance of the neural network based on predetermined perfor-
mance measures of prediction accuracy against the S&P 500.

5. The fitness of the chromosome is proportional to performance.

PROBLEM 2: Solution
Decode/Interpret
1. Convert the chromosome into an integer x by interpreting it as a 20-bit-long bi-
nary number (i.e., a number between 0 and 2% -1).
2. Divide x by the largest possible x value, 2?° —1, to get a number between 0 and
1.0. Call this number percentOnShift.

Evaluate
3. Evaluate the value of f{percentOnShift).

4. The fitness of the chromosome is proportional to the value of fipercentOnShift).

As the GA progresses into later generations, you expect to see the average fit-
ness of the population grow. The fitness increases as each new generation combines
the traits of the chromosomes in the previous generation, eliminating those chromo-
somes that do poorly. That is, you expect that the solutions will get better toward the
end of the GA’s run.

Evolving Solutions 65 W

Raw chromosome
(Doesn't know the “meaning” of the string)

Decoding portion of GA Decoding portion of GA
(Convert to variables for (Convert to percentage
predicting S&P 500) of employees)
A f . 660877
ccuracy o 30-day volatility, =63% 9
neural net % Yesterday's price, 1048576 ° f(63%)
FIGURE 5.6 Alternative Decoding of a Chromosome
Color Speed Intelligence Fitness
(1o [1]1]o]1] 1 White Medium Dumb 40
(o]1]o]1]o]1] 2 Black Slow Dumb 43
nn 3 White Slow VeryDumb 22
nnnn 4 Black Fast Dumb 71
nnnnn 5 White Medium Very Smart 53
A population of Decoding of Evaluation of
chromosomes chromosomes chromosomes

FIGURE 5.7 The Components of a GA

W 66 Chapter5

If you envision the problem domain as a vast search-space with many hills and
valleys representing areas of good and bad solutions as in Figure 5.1, a GA allows
you to search many of these areas at once. Figure 5.8 shows the three-dimensional
landscape with a population of solutions. If this landscape were a graph of the sur-
vival space for kromes, each point on the x and y axes would represent one combina-
tion of two possible krome characteristics. On the other hand, if this were a graph of
the solution space of the portfolio balancing problem, each point on the x and y axes
would represent a different series of weights for the stocks in the portfolio.

The hills represent better solutions, and the valleys represent poorer ones. It would
be impossible to visualize the complete problem space for the kromes since there are
many more dimensions involved than we can show visually. But the idea is the same.

The graph in Figure 5.8a shows the solutions in generation 0. Each dot repre-
sents a chromosome or solution to the problem. In this first generation, the GA basi-
cally generates some random solutions as a starting point. This is the initial
population. At generation 20 (Figure 5.8b), however, we see that more of the solu-
tions are hovering around the peaks. There has been a clustering around some of the
local maxima. This is because the GA has discovered that these areas of the search
space hold more promise, and the chromosomes are concentrating on the peaks. Fi-
nally, in generation 50 (Figure 5.8c), we see that the population has, for the most part,
converged around the global maximum (the biggest peak). Nonetheless, note that
there are still instances of low-fitness chromosomes in the population. This is because
the GA is still experimenting with new solutions.

FIGURE 5.8a Population at Generation 0

Evolving Solutions 67 W

FIGURE 5.8b Population at Generation 20

FIGURE 5.8¢ Population at Generation 50

m 68 Chapter5

How do the poorer solutions get weeded out and how do better solutions get re-
fined and improved?

The operation of selection determines which chromosomes will be carried on to
later generations. Selection is the process in which chromosomes are chosen to sur-
vive. A chromosome that is not chosen “dies” and is not able to pass on its traits to the
next generation.

A common form of selection is one where each chromosome’s likelihood of
being picked is proportional to its fitness. This type of selection is called fitness pro-
portional selection. Thus, if chromosome A is twice as fit as chromosome B, it should
have twice the chance of reproducing.

One way to think about this is to imagine that when the GA selects a chromo-
some to reproduce, it selects it by spinning a roulette wheel on which each chromo-
some has a slot. The size of the slot is proportional to its fitness. Figure 5.9 shows the
five kromes (from Figure 5.5), each with a slot on the roulette wheel. Chromosomes
with high fitness take up more space on the wheel, and therefore have a higher likeli-
hood of being chosen on each spin.

In Figure 5.8a we pointed out that there were a good number of solutions in the
“valleys” of the solution space. These represent low-fitness solutions. In ACME’s
routing case, these might have been routes like:

New York - London - Boston - Paris - LA .

Not very efficient: a zigzag transoceanic route.

When these chromosomes were evaluated, they had low-fitness values, and thus
got small slots on the roulette wheel. They didn’t get picked to reproduce too often.
By generation 5, most of them have gone the way of slow dumb white kromes:
They’ve been dropped from the population.

Selection explains how bad solutions are weeded out, but it doesn’t explain how
good solutions are improved. The refining process takes place as a result of two addi-
tional operators. The first of these, crossover, involves the exchange of information
between two selected chromosomes.

During crossover, two chromosomes basically swap some of their information
gene for gene. In the example shown in Figure 5.10, the two chromosomes exchange
genes (crossover) after gene 2. Crossover allows the combination of the elements
within one solution with those of another. This allows the GA to “share the wealth”

Most likely to be chosen Least likely to be chosen

FIGURE 5.9 Roulette Selection of Chromosomes from a Population

Evolving Solutions 69 ®

aasnnn
o[o]+

HB
o -
—_ -
aa

Crossover point

=<
Before After

FIGURE 5.10 How Crossover Works

(or “spread the misery,” depending on whether a solution swaps components that are
good or bad). In our krome example, a “good” crossover might be one in which a
smart krome crosses over with a fast krome. Their “offspring” is likely to be a smart
fast krome who is fitter than either parent.

An important point to consider, though, is that crossover can only rearrange in-
formation that is already in the population. For instance, if our initial krome popula-
tion did not contain any black kromes, then no matter how many genes we swapped,
we would still never get a black krome! (Each pair of chromosomes would just be
trading the value “white” over and over again.)

To get around this problem, we need a way to inject new traits into a GA popu-
lation. The other refining operator, mutation, does just this. The mutation operator
changes the value of a gene from its current setting to a different one. In the example
below (Figure 5.11), the fifth gene from the left has been mutated. A GA can use mu-
tation to experiment with components of new solutions that may not have existed in
the current population by introducing new traits into the population. As in the biolog-
ical case, most mutations are more destructive than helpful. As a result, in GAs, as in
nature, mutation occurs very infrequently and randomly. However, occasionally a
highly beneficial change will occur. The effect of mutation is that it provides opportu-
nities for members of the GA population to jump from one area of the solution space
to another, thus exploring new areas in search of better solutions.

These three operators, selection, crossover, and mutation, act to refine solutions
to problems very quickly. When combined with the decoding/evaluation module,
GAs can solve a very wide variety of problems.

(o] ofolr] (lefafof+]1]

Mutation point
Before After

FIGURE 5.11 How Mutation Works

B 70 Chapter5

To solve a typical problem, a GA creates chromosome population of a particu-
lar size randomly. The GA then evaluates each chromosome in this population and as-
signs a fitness to it. Selection, mutation, and crossover then take over, weeding out
and refining solutions. The whole process is then repeated over and over until a satis-
factory solution is found. It is often surprising to some people that this simple decode,
evaluate, select, crossover, mutate cycle, repeated over and over, is such a powerful
optimization technique.

But this general approach is not new. It has been around for about 4 billion
years.

INTELLIGENCE DENSITY ISSUES

So when is it a good idea to use a GA?

In general, if you are working on a problem that lends itself well to standard op-
timization techniques (the problem is well behaved) it is best to use them. On the
other hand, when you find yourself in a situation where these mathematical methods
break down or are painfully difficult to use, a GA is often a good heuristic method.

The applicability of a GA versus another heuristic method, such as a rule-based
system or other heuristic methods, will depend on the nature of the problem, and
which of the intelligence density determinants are important. Very often a GA can
simplify the work required to solve a problem. In addition, you may wish to use a GA
even when there are mathematical methods available or even where you discover spe-
cial tricks that work well for a particular problem. A GA can sometimes provide a
more flexible or more stable solution, even though it may take longer on average to
solve problems. Because GAs scour the problem terrain very efficiently, their re-
sponse time, even for complicated problems, is usually fairly quick and stable.

GAs form populations of solutions. Just the fact that the GA does this gives a
hint as to why GAs stack up well in terms of response time. By creating an array of
solutions, the GA is metaphorically stretching itself across the solution space in many
different directions at once. GAs try lots of solutions at the same time.

But if this were all a GA did, it would be similar to a random search and not
much more powerful. In fact, the response time of the random search approach can be
very unreliable. Haphazardly wandering through the solution space, a random search
might stumble on a good solution quickly in some cases, but drift about aimlessly for
a much longer time in others. To get such high marks on response time, the GA’s
multi pronged search effort needs to be augmented by something else.

Itis.

Enter selection, crossover, and mutation. What these operations mean to a GA is
that it can quickly “distill” out the essential elements of a problem and its solution,
concentrating on the areas that have the biggest payoff. Recall what is going on here:
A GA s able to (1) try many solutions at once; (2) evaluate each of the solutions; and
(3) refine the better ones. To accomplish this refinement, GAs share information be-
tween the different solutions (crossover) and experiment with new solutions (muta-
tion). By experimenting with a range of solutions, the GA, early on, can determine
the areas of the entire solution space that seem most promising and explore them in

Evolving Solutions 71 W

more detail. The GA accomplishes this distillation through the interplay of the three
operators.

To understand why zeroing in on a solution tends to be efficient and take a pre-
dictable amount of time, consider the following. Since a GA always follows the
same steps, the amount of time it will take to find a solution will depend only on the
number of chromosomes in the population and the number of generations you run. If
you know about how long it takes to evaluate the fitness of a single chromosome,’
then you know that it will take that time, multiplied by the number of chromosomes
in a single generation, multiplied by the number of generations. It will take approxi-
mately this amount of time any time you run the GA for that number of chromo-
somes and generations since it will always involve evaluating exactly the same
number of chromosomes.

It gets even better. Since every population is full of possible solutions, you are
usually guaranteed to find at least some kind of solution when the GA terminates. In
fact the solution will often be a very good one.

But how do GAs manage to consistently find such good solutions?

In an attempt to explain how GAs search, Holland developed schema theory.
The crux of schema theory is that each chromosome in a GA, while only representing
a single possible solution, actually gives the GA information about many areas of the
search space at once. What this means is that a GA only needs to evaluate a small
number of chromosomes to get information about large areas of the search space.

Consider the chromosome representing the white, medium fast, very smart krome:

101000

While this chromosome only represents a single solution, there is bonus infor-
mation in the evaluation of the chromosome. In addition to its own fitness, the chro-
mosome is also giving the GA information about many other possible chromosomes.
How?

Holland proposed a concept called a schema which works as follows. A schema
has the same length as a chromosome. However, each gene in the schema can take on
the value of (in the case of a binary representation) 0, 1, or a special value, *, where *
means “don’t care.” Consider the example below:

ACTUAL CHROMOSOME:

white, medium fast, very smart krome: 101000
SAMPLE SCHEMA:

All white kromes: 1 * * *x % %
All medium fast kromes: * 0 1 * * *
All very smart kromes: *x % 000
All white very smart kromes: 1**000
All medium fast or very fast kromes * 0 * x x %

As we will discuss later, this can be where most of a GA’s time is spent.

W 72 Chapter5

The 1 in position 1 of the first schema means “white chrome”; it represents all
white kromes—slow, fast, dumb, smart, or otherwise. Likewise, the second schema
represents all medium fast kromes, and the third schema represents all very smart
kromes without regard to their other attributes.

The five schemata above are represented by our chromosome because in each
of the above schema the values in the non- “don’t care” (*) positions in the template
match the value in the chromosome. In fact, since for any chromosome, each of the
six positions on a template can take on one of two values (either the corresponding
value in the chromosome or *) there are 2° = 64 different schema being sampled by
each chromosome. In a sense, like the GA itself, each chromosome in a GA also
spreads its tentacles across many dimensions of the search space.

Looking at it the other way, a single schema can also be matched not only by
the current chromosome, but by many other possible chromosomes in the population.
Since all of this matching goes on simultaneously, we say that it takes place in paral-
lel. This property of the GA is sometimes referred to as implicit parallelism. It is im-
plicit because we get it without even trying!

There’s another thing about schema theory that illustrates why GAs explore the
solution space quickly and efficiently.

Note that the third template has “don’t care” symbols for all positions except 4,
S, and 6 (for which the values are all 0). What this says is: “This schema votes that
the gene positions 4, 5, and 6 should be Os in the optimal solution.” If bits 4, 5, and 6
in the actual optimal solution are, in fact, set to zero, then we would expect that, all
things being equal, chromosomes that match this schema (very smart kromes) would,
on average, be ranked higher (their votes would count for more) than those that do
not since their fitness will be higher than solutions that don’t match that pattern. If on
the other hand this pattern did not represent part of a good solution, we would expect
matching chromosomes to be ranked lower.?

But keep in mind that in addition to testing the validity of the one schema that we
just discussed, the GA is also using this chromosome to test the validity of each of the
other 63 schemata represented by the chromosome in exactly the same manner. The
GA, without any special overhead, keeps track of how well different schemata perform
simply by selecting the chromosomes that perform best. (What this really means is that
high-fitness chromosomes match the high-fitness schema). Over many generations,
chromosomes sharing the traits of high-fitness schemata should proliferate.

But there is no free lunch. Part of the price we pay for the quick convergence
and stable response time is lower levels of optimality in our results.

Looking back to Figure 5.8c, notice that the solutions are scattered about the
peaks. In most cases, none of the solutions will hit the top of the peak exactly. This is
because the GA is only good at finding high-fitness regions. In other words, the GA is

fActually, this would depend on the “deceptiveness” of the problem. Deceptiveness describes to what degree
high-fitness interim solutions will lead to the ultimate optimal solution. If the good interim solutions resemble
the final solution, then the problem is considered to have low levels of deception. However, if the optimum solu-
tion is very far away from the high-fitness interim solutions, then a problem is considered to be highly deceptive.

Note that in the case of finding the correct combination for a lock, for example, there is only one solution
that will satisfy the problem. Every other solution, even those that have all but one digit correct, are wrong. Fur-
thermore, there is no information in the “wrong” solution to tell a GA how far away the wrong guess is from the
right one, or how much better one wrong guess is than another.

Evolving Solutions 73 W

very good at identifying schema that result in high-fitness solutions. However, you
need to realize also that while a GA can identify the schema that perform well, out of
all of the millions, billions, or trillions of chromosomes that can relate to each schema
there is only one® chromosome that is the best solution to a problem. It is exceedingly
difficult to happen on that one optimal chromosome during a GA’s execution.

To think of it another way, humans have evolved to higher and higher levels of
physical and mental ability. Despite this fact, it is almost unimaginable to hope that
any population of humans would yield a member with the raw intellect of an
Einstein, the humanity of a Mother Teresa, and the agility of a Michael Jordan. Since
GAs essentially mimic the evolutionary process, we must accept the fact that the
solutions we get, like the humans in the world, will also generally be sub-optimal.
(Most humans still have weak lower backs, a sign of sub-optimal engineering, and,
unless it’s been removed, most of us have an organ in our bodies called an appendix
that seems to serve no purpose, a sign of wasted resources.)

A good sub-optimal solution does not mean that the model is a failure. Quite the
contrary. For many problems, near optimal solutions are good enough. This is as true
in natural evolution as it is in a GA.

In addition, a common observation of GA users is that GAs produce very novel
solutions. Since at the end of a GA run, you have an entire population of alternative
solutions, users can often look at an array of good options. There are frequently one
or two, “Wow! I never would have thought of that one!” solutions in each population.

This is partly due to an attractive feature of the interplay between fitness func-
tions and GAs. You never tell the GA how to solve a problem. For example, in our
portfolio example above, we do not provide the GA with a theoretical framework or
rules for selecting good combinations of stocks. We only give it a decoder and a fit-
ness function that provide feedback as to how good a particular portfolio is and how
well the GA is doing at finding a solution. As a result the GA will try almost anything,
sometimes with surprising results.

What this means is that you can use a GA to solve problems that you don’t even
know how to solve! All you need to be able to do is describe a good solution and pro-
vide a fitness function that can rate a given chromosome. In essence you can say to
the GA, “I don’t know how to build it, but I’ll know it when I see it!”

Since you only need to be able to describe a good solution, not define how to get
there, GAs require low levels of access to experts. In cases where you can describe
easily the process of optimization, an expert system might be a good choice. But GAs
can be useful when you can only describe the quality of the resulr. For this reason,
GAs can be attractive when compared to expert systems in that they often do not re-
quire as much explicit knowledge about how to find an answer to a problem. GAs only
need to know how to measure the goodness of a solution (through a fitness function).

Even when you can describe the rules and steps that you would use to solve an
nptimization problem, there are cases where it still could make sense to think about
using a GA. For example, while the rules describing a certain optimization process
might be common sense, there might be hundreds of them to encode. Or the rules
might be very dynamic, changing depending on the particular situation. There might
be lots of exceptions to the rules that make it difficult to determine how to optimize

°Or in some cases, this may be a relatively small number.

B 74 Chapter5

some process. In all of these situations, a GA can offer an alternative approach to
solving the problem.

By concentrating on the definition of a solution (defining the fitness function)
rather than on the process of formulating a solution, you can limit the drain on an or-
ganization’s expert staff considerably.

All this can also be a drawback, however, because GAs are themselves blind to
the optimization process, it is difficult to determine why a GA produces a particular
solution. In fact, the level of explainability associated with genetic algorithms is al-
most nil because the GA uses only the fitness function to guide it toward a better so-
lution. Selection only looks at the fitness value for each chromosome without
knowing what the fitness means. Crossover and mutation work blindly on chromo-
somes, and they work the same way regardless of what the 1s and Os mean to the de-
coder and fitness function.

Since the only thing that ties a GA to a particular problem is the manner in
which the GA’s chromosomes are decoded and their fitness evaluated, to change what
the GA tries to optimize, you only need to change the way in which the GA decodes
and evaluates chromosomes. This is true not only when switching between different
problems, but it is also true when modifying the conditions of a single problem. A GA
has high levels of flexibility.

For example, let’s say that in the night-shift problem earlier we hypothetically
determined that we needed to ensure that the night-shift levels were always above
30% due to capacity issues. To accommodate this new constraint, we would need
only to adjust the scaling of our decoder so that it produced values between 0.3 and
1.0 instead of 0 and 1.0.

Since so much of the GA’s activity centers around the fitness function, many
things such as accuracy, scalability, and response time will depend on how the fitness
function works and therefore be problem specific.

For example, GAs tend to be moderately scalable. By adjusting the length of the
chromosome to 30 instead of 20, we can easily expand the variable selection problem
to one in which we examine 30 variables at a time. In fact, we are often able to scale
up quite nicely in this manner. However, this scalability is not without its limits. It be-
comes more difficult for a GA to explore search spaces with very large chromosomes
for a variety of reasons. The longer the chromosome, the larger the population needs to
be since there are more potential combinations of genes.

This is only part of the story however. For many problems, the evaluation of the
fitness function takes much longer than the other generic GA operations of crossover,
mutation, and selection. This means that as you increase the size of the population or
length of the chromosomes to be decoded and evaluated, the time required to execute
a GA will be dominated by the large number of decodings and fitness evaluations,
and not by the GA operations.

In addition, the computer power required to evaluate the longer chromosomes
will also increase as the chromosome gets longer, since the fitness function will have
more decoding to do. In fact, the amount of computer time and memory required to ex-
ecute a GA will depend almost entirely on the complexity of the fitness function. This
has obvious consequences with respect to the speed of response time as well. Fitness
functions that require a large number of calculations or that run other programs or
access databases can be computationally intensive and as a result, higher speed or par-

Evolving Solutions 75 W

allel computers are often called for. On the other hand, many complex but not compu-
tationally involved problems can be solved on a good, high powered desk top PC.

On a PC?

That’s right. GAs don’t do very complicated things from an algorithmic perspec-
tive. Rather, their power comes from their relative simplicity. In fact, if programmed from
scratch, GAs are usually reasonably sized programs that are self-contained. This is very
convenient. It makes a GA a very compact optimizer relative to, say, an expert system.

In addition, GAs tend to be embeddable. Depending on the problem being solved,
the elegance of a GA can vary greatly, but because of its relative simplicity, it is usually
possible to easily include a GA program as a module in other systems. This all depends
on what the fitness function is doing in terms of accessing other programs or databases.

Matters get more complicated when you try to assess the data requirements of a
genetic algorithm. In general GAs are convenient since they do not require extensive
databases to run. However, for certain GA applications, the fitness function may need
to access and process an organization’s data. For these types of applications, data
quality and quantity are important.

What about the people in your organization who might be involved if you were
going to develop a GA-based solution? Well, from a development standpoint, you
would be concerned about time commitments. Good news! The algorithms them-
selves are straightforward. A good programmer can develop an experimental GA in a
couple of days. Most of the work is in understanding the problem and formulating ap-
propriately, and determining a good fitness function.

But what makes GAs so attractive to lay people is how easy it is to understand the
basic workings of the method. Everyone has had high school biology. Everyone knows
who Darwin was. “Survival of the fittest” is a phrase used over and over in fields from
finance to football. The method works. It makes sense. People tend to like that.

In summary, the profile of a GA looks like this:

Dimension Genetic Algorithm But...
Accuracy Low to high —
Explainability Low to moderate —

Response speed Moderate to high Varies with respect to complexity of problem

Performance may be poorer than other
methods on “easy” problems

Scalability Moderate Bounded by length of chromosome and com-
puting resources available

Compactness Moderate —

Flexibility High Depends largely on how the fitness function is
designed

Embeddability High Highly problem and software dependent

Ease of use Moderate —

Development speed Moderate to high —

B 76 Chapter5

Suggested Reading

Belew, R. and L. Booker, ed., Genetic Algorithms: Proceedings of the Fourth In-
ternational Conference, Morgan Kaufmann, San Diego, CA: 1991.

Davis, L., ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY: 1991.

Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, NY: 1989.

Holland, J. H., “Genetic Algorithms,” Scientific American, July 1992, pp 66-72.

Holland, J. H., Adaptation in Natural and Artificial Systems, MIT Press, Cambridge,
MA: 1992.

Simulating the Brain
to Solve Problems

Neural Networks

Put the problems before him and let him solve them himself. Let him know
nothing because you have told him, but because he has learned it for himself.
Let him not be taught science, let him discover it.

—Rousseau

Learning preserves the errors of the past, as well as its wisdom.
—Alfred North Whitehead

The idea of parallel distributed processing. . . [is that] intelligence emerges
from the interactions of large numbers of simple processing units.

—David Rumelhart, et al.

An artificial neural network (ANN) builds models by using a simple computer emula-
tion of biological neural systems. Neural networks attempt to “learn” patterns from
data directly, by sifting the data repeatedly, searching for relationships, automatically
building models, and correcting over and over again the model’s own mistakes. The
technique can derive good models even when the data are incomplete or noisy.

In this chapter, we discuss how neural networks do this, and the factors that can
determine whether a neural network approach will be an effective solution for a par-
ticular problem.

INTRODUCTION

Suppose you’re running a software development group. One of the things you need to
do is estimate how long a certain project is going to take to complete. But software
development is tricky since projects are very sensitive to things like the complexity of
the logic involved, the user interface, hardware, programmer quality, and so on.

m77 .

B 78 Chapter6

You’re an expert, though. You understand the process and know pretty well how
various factors affect the quality of your product.

But that wasn’t always the case. There were plenty of earlier less than satisfac-
tory attempts when your firm first started developing new software. Over time, you
“homed in” on the right staff, and learned to adjust your deliverables depending on
the time allotted. And now, your expertise even allows you to do a pretty good job
with new types of projects that you have never tried before.

What happened during your “learning” phase? Essentially, you learned about
the different things that can affect the quality of a project. You tried to deliver soft-
ware under different sets of conditions. What you learned was not only that certain
combinations of inputs give you a certain result, but more importantly, how the vari-
ous inputs interact. In understanding these interactions, what you developed was
essentially a mental model for producing good projects. In other words, you general-
ized the data into a model that you can now use to deal with inputs you’ve never dealt
with before.

What do data, generalization, and model have to do with learning how to esti-
mate software deadlines and quality?

Let’s make the example more concrete. Let’s say that you only consider the size
of the project' and the time that you try to develop it in. Over the years, you tried var-
ious values of each of these and observed the quality of your result. Quality would be
based on cost and time. Each attempt provides a data point.

But a data point only tells you about what happened with a particular single
project. This is only useful if you need to repeat the exact same project under the
exact same conditions again. One or two data points are not enough to really under-
stand how the process works.

When you have enough data points, though, you can begin to see the more gen-
eral “shape” of the space. Figure 6.1 shows what this shape might start to look like
after experimenting with about a hundred different projects of different sizes and with
various deadlines. The height of the bar indicates the quality of the finished product
in each case.

If you were to take a sheet of rubber and drape it over Figure 6.1, you would get
a continuous surface as shown in Figure 6.2.

This rubber surface is, in effect, a model. It is a generalization. Most parts of
the rubber don’t touch any of the data points. But the surface can now be used to
handle inputs that were not part of the original data. The model has been “learned”
from the data. The surface in Figure 6.2 would allow you to predict the quality of the
product, even without knowing the details of the 100 individual data points that you
collected.

Now imagine including another changing variable, the number of programmers,
as part of the data. And cost. Certainly these would help you make better forecasts of
the final product quality. Although it’s hard to visualize more than three dimensions,
the model becomes a complex multidimensional surface.

"This could be measured in terms of something like “function points,” which is a crude measure of the number
of input/output and logic functions that need to be implemented.

Simulating the Brain to Solve Problems 79 m

F100
- 90
- 80
- 70
- 60

50 £
- — [1]
40 &
o 30
- ; 20
- 10
LY = . 0
27 o5 _ ! =
Time 28 2 19 - - o s
17 15 12 1 ize
FIGURE 6.1 Quality as a Function of Time and Size
e {— 90.0
80.0
7 - 70.0
TR KKK - 60.0
205/ 7 XX
//f/féj{/{}‘%@";‘ - 50.0
DY, 300
7, "4 X 7\
- 20.0
- 10.0

FIGURE 6.2 The Solution Surface of a Neural Network

m 80 Chapter6

The larger the set of input variables, the more complex the resulting surface or
model. In fact, these surfaces can become very complex as the variables interact with
each other. Nonetheless, an expert is able to build such mental models and often un-
derstand these complex processes intuitively.

Neural networks can also build such models from data. They have been dubbed
universal approximators, because they can often uncover and approximate relation-
ships in many types of data. Even though an underlying process may be complex, a
neural net can approximate it closely if it has enough data points from which to con-
struct the type of multidimensional surface that we’ve been talking about. Neural nets
help computers “learn from experience.”

Neural networks were first theorized as early as the 1940s by two scientists at
the University of Chicago (McColloch and Pitts). Work was done in the mid-1950s as
well (McCarthy, 1956; Rosenblatt, 1957) when researchers developed simple neural
nets in attempts to simulate the brain’s cognitive learning processes. Since then neu-
ral nets have been, at various times, the subject of both great interest and skepticism
in the research community.

In the last decade or so, neural nets have been reexamined and are again attract-
ing considerable attention, this time not only in academia, but in business and finance
as well. Neural networks have been found to be very good at modeling complex
poorly understood problems for which sufficient data can be collected. They can
sometimes find better solutions to problems than might be achieved using traditional
statistical, numerical, or other types of methods.

Artificial neural nets (ANNSs) are simple computer programs that build models
from data by trial and error. The concept is pretty straightforward: You show a piece
of data to a neural network. The net predicts an output, in this example, quality. The
net then compares its guess with the actual correct value, which you also present to
the network.

If the ANN’s guess is right, the net does nothing. If it is wrong, however, the
network analyzes itself to try to figure out how to adjust some internal parameters
so that it can make a better prediction if it sees similar data again in the future. The
second piece of data is then presented to the network, and it goes through the same
predict—compare—adjust process again. And so on.

Getting the parameters right, though, can be tricky. For example, when the neu-
ral net sees the second piece of data and makes its adjustments, it might “undo” some
of the adjustments that it made when it saw the first piece of data! Because of this, the
net must make many passes over the data set, trying to reconcile what it learns about
the data in each pass. Over time, if everything goes well, the net should converge on a
good model of the process.

For example, Figure 6.2 is the actual output surface produced by a neural net-
work that was trained many times on the data from Figure 6.1. Note how there are es-
timates for every point along the data surface even though the data only cover about
100 of those points.

Examples:
* Asian Business Trading (ABT) is an exporting firm that deals primarily with Japan
and Hong Kong. ABT would like to develop a model to help it predict the direction of

Simulating the Brain to Solve Problems 81 H

exchange rates so that the firm can better hedge its contracts. The firm will use histor-
ical data about the direction of the currency rates to drive its system. It is the firm’s
hope that the system will be able to discover patterns of movement in the data that are
predictive of directions of the market.

Virtual Realty is a real estate firm that wishes to develop a model to assess property
values based on features of the properties. The firm has a good database of past prop-
erties that it has sold and of the characteristics of each property. The firm hopes to
build a model and use it to get quick estimates of new properties.

Herigel Target Marketing (HTM) has a database full of direct marketing information
about products and the demographics of the target groups that consume these prod-
ucts. HTM would like to find a way to leverage these data to pinpoint the most likely
prospects for future campaigns.

THE ABCs OF NEURAL NETWORKS

The principles that underlie neural network technology are based loosely in biology.

In biological terms, our nervous systems (including our brains) consist of a net-
work of individual but interconnected nerve cells called neurons. Neurons can re-
ceive information from the outside world at various points in the network. For
example, when you walk into a bright room, the neurons in your eyes register the lev-
els of light in the room; when the doctor taps your knee with a rubber mallet, the neu-
rons in your knee register the sudden impact of the mallet.

These pieces of information (the bright light, the mallet hit) are called stimuli.
The stimuli are processed by your brain and nervous system. The information travels
through the network by generating new internal signals that are passed from neuron
to neuron. These new signals ultimately produce a response.

For example, after the nerves in your eye receive the “bright light” stimulus, the
raw input is processed by your brain and then new signals are passed back to the
nerves in your eye. These new signals make your pupils smaller. Or, after the doctor
hits your knee with the rubber mallet, information from the nerve cells in your knee is
processed and the result is (if you are healthy) a “knee-jerk” response.

A neuron passes information on to neighboring neurons by firing or releasing
chemicals called neurotransmitters. A simple way to think about neurotransmitters is
that they act like little bursts of electricity that go from one neuron to the next in order
to transmit information. The connections between neurons at which these transfers
occur are called synapses.> Conceptually, the more important a particular stimulus is,
the larger the burst will be at the synapse.

There is an important biological fact that is also useful for understanding how
ANNSs work. It turns out that when information is received by a nerve cell at one of
the synapses, the information can either excite the cell, or it can irhibit the cell. If the
receiving cell is excited, it will fire when it gets the input and pass the information on
to other neurons in the area. On the other hand, if the receiving cell is inhibited, it will

*Neurotransmitters are, in fact, chemicals that are released at the synapse. Once released, neurotransmitters en-
courage or inhibit electrochemical reactions in surrounding neurons.

B 82 Chapter6

not fire, in effect damping the impact of the information. What each nerve cell is
doing is processing the raw input but passing it on only if it is important.

This makes sense. When you walk into a bright room, it is useful for the neu-
rons that close your pupils to be excited and pass on the information, but it would not
be very useful for the neurons that cause a knee-jerk response to also fire. (Imagine
what would happen when you walked into a bright room if the “bright light” informa-
tion, in fact, made its way to both your pupils and your knee!)

Synaptic connections can be strengthened (learning) or weakened (forgetting)
over time and with experience. Through this process you can establish new responses
to stimuli, modify old ones, or remove unused ones all together. In fact, with constant
practice, many actions requiring thought initially can be relegated to the level of re-
flexes. Think about what happens when the car in front of you suddenly stops short.
You slam on the brakes of your own car without thinking. This reflex occurs even
though, at one time, you had to learn how to drive.

To bring all of these concepts together concretely, consider another example.
What happens when a child learns how to throw a ball into a basket? At first, her per-
formance might be very poor. The neural connections needed to throw the ball accu-
rately are relatively weak. However, each time the child throws the ball, she observes
the result and tries to adjust for errors. This time she used too much strength. That
time she aimed too far beyond the basket. Another time she let go of the ball too late.
Each time she notices one of these mistakes and feeds this information back. She
makes slight adjustments, some conscious, some unconscious, to the way she throws
the ball. This adjustment process is similar to the adjustment in the strength of con-
nections between neurons.

In fact, if she practices long enough, she will be able to hit the basket from an-
gles and locations that she has never even practiced before. This means that her learn-
ing was robust enough to allow her to generalize her experiences.

It’s useful to note that although the child was able to develop good ball throw-
ing skills, she would probably not be able to explain the physics, partial differential
equations, or dynamics of air turbulence associated with the skill. She has, in essence,
developed a reflexive command of the skill. Her ball-throwing methodology is a
“black box” that approximates the laws of physics associated with throwing the ball
without any knowledge about the actual physics.

How does all this biology tie back into allowing computers to learn? What is a
neural network in computer terms?

Like its biological counterpart, an artificial neural network simply involves a
system of neurodes (or nodes) and weighted connections (the equivalent of synapses)
inside the memory of a computer. Nodes are data storage locations, like variables in a
program, or cells in a spreadsheet. A node is analogous to a biological neuron, but
much simpler.

In artificial neural networks, nodes are typically arranged in layers, with the
connections running between layers. Figure 6.3 shows what a simple neural network
might look like conceptually. The balls represent nodes and the lines represent the
connection weights.

In principle, the artificial neural network operates in the same way as the bio-
logical model on which it is based. Data are fed into the net, the data are processed in-

Simulating the Brain to Solve Problems 83 m

T S T

guesses

T

output layer

T

hidden layer internal processing
input layer data

FIGURE 6.3 A Simple Neural Network

ternally based on the strength of inter-neurode connections or weights, and a result is
output.

You will notice Figure 6.3 shows how the neural network is divided into lay-
ers. By convention the layer that receives the data is called the input layer, and the
layer that relays the results of the neural network out of the net is called the output
layer.

The internal layer, where intermediate internal processing takes place, is tra-
ditionally called a hidden layer. You might think of the hidden layer as being hidden
from the outside world, unlike either the input layer (which takes information from
the outside), or the output layer (which passes information on fo the outside).
Although Figure 6.3 only shows one hidden layer, there can be, and often are, more
than one.’

How does this architecture help neural networks solve problems?

To understand how an artificial neural network learns how to guess accurately,
you have to understand how the weights in the network affect its output. Learning, for
neural networks, involves adjusting these weights.

But before we get to how an ANN adjusts its weights, it is first useful to under-
stand what happens when data are input into a network that has already learned about
a problem. So for now, we will start by ignoring the issue of how the network actually
learns about a problem and concentrate instead here on how it applies what it has
learned, once its weights have been adjusted properly.

*It is also possible to construct a primitive neural net containing no hidden layers. The early neural networks
were configured in just this fashion.

B 84 Chapter6

To do this, we need to look a little more closely at the individual neurodes
within a neural net to understand how they pass information among themselves. Fig-
ure 6.4 shows a more detailed schematic of an individual neurode.

Neurodes can only do a few simple things. Each neuron essentially collects a
bunch of data (inputs), then takes stock of what it has collected, and processes the in-
formation. The neurode then passes the result of this collection and analysis process
on to the next layer. If there are no additional layers, the neurode’s output informa-
tion becomes the output of the neural network—its answer.

In the figure, each of the lines feeding into the neurode is a connection from the
lower layer. The “body” of the neurode is divided into two functional sections. The
lower section combines all of the inputs that feed into the neurode. The upper portion
takes this sum and calculates the degree to which the sum of the input is important.
The output produced then forms the input to the next layer.

To follow how the data get transformed from raw input into the node’s output,
start at the bottom of Figure 6.4. The neurode first multiplies each input by the con-
nection weight leading into it. The weights are shown as lines feeding into the
neurode in Figure 6.4. The thickness of a line is proportional to its weight. The hol-
low line signifies a negative weight. A weight determines how important a given
input will be in contributing to the output of the neurode. More important inputs will
have bigger weights and less important ones will have smaller weights. All of the
weighted inputs are added together in the neurode.

Next comes the “taking stock” phase. This taking stock occurs when the weighted

~CO ~+CO

Sum up
weighted inputs

Inputs from lower layer

FIGURE 6.4 The Inside of a Neurode. The thickness of each input is proportional to its
weight. A solid denotes a positive weight and an unfilled one a negative weight.

Simulating the Brain to Solve Problems 85 B

“Yes!" “Not" "Umm...I"

Large positive sums (inputs) Large negative sums Sums near zero
result in high output from nodes result in low output from nodes result in mediocre output from nodes

FIGURE 6.5 How the Sum of Inputs Affects the Output of a Neurode. Notice how the rate
of change of the output is non-linear across the input range.

sum is processed by the second half of the neurode. The sum is converted into an output
value using a function referred to as a transfer function.

What'’s the purpose of the transfer function? Why not just pass the summed in-
formation on? The transfer function serves as a kind of “dimmer” switch for turning
the neuron on and off, depending on the input to the neuron. The transfer function de-
termines to what degree a given sum will cause a neurode to fire.

You can see from looking at Figure 6.5 that the transfer function’s value will be
high (excited) when the sum of the inputs is large and positive (a lot of important pos-
itive signals are passed into the neurode from the lower nodes), and the value is low
(inhibited) when the sum is large and negative.

Because the function is usually S-shaped (sigmoidal), it adds non-linearity to
the neural network. What this means is that the output of a node will increase or de-
crease at different rates in different parts of the input range. As a result, the rate of
change of a neurode’s output depends on the “region” in which the node is operating.
The behavior of the node, its output, is therefore non-linear.

So how do you build up more complicated functions?

That’s where the hidden layers come in. By combining several layers of simple
sigmoidal functions, the neural network essentially builds up more complicated curves.
By combining these curves a neural net can approximate more complex shapes.

Figure 6.6 shows an example of this. In each case, the transfer function is the
same, but the number of hidden nodes and the values of the weights leading into each
node are different. Notice how very different curves can be constructed using these
simple units. In this case, we used only one input. In most problems, though, there
would be several inputs which would create even more complex surfaces.

“In the preceding example, we have chosen the logistic function as our transfer function. This function is defined
for all values of the sum and the functional value ranges from 0 to 1. Note that the function is approximately
zero when the sum of inputs is large and negative, approximately one when the sum is large and positive, and
exactly 0.5 (the midpoint) when the sum is zero. Another popular function is a radial basis function, which is
shaped like a bell curve.

m 86

Chapter 6

0.8

06t

0.4
0.2

0.2
04 ¢
-06 ¢+
-08¢

— 3 node hidden layer w=(-0.5, 1, -0.5;1,1,1) —4 node hidden layer w=(3,-0.5, 1, -0.5; 0.25,1,1,1)

FIGURE 6.6 Hidden layers allow neural networks to approximate different functions.

The remarkable thing is that a collection of these very simple non-linear neu-
rodes connected together can bend and twist in response to input data to approximate
very complex non-linear functions. It turns out that many practical problems as di-
verse-as credit card fraud prediction and financial market behavior are inherently
non-linear. Neural nets can be suitable for such problems.

At this point you might be thinking, “So far, so good, but we still haven’t learned
how the neural network adjusts itself! How does it actually learn from the data?”

To illustrate this part of the process, called training the neural network, let’s
reconsider Asian Business Trading (ABT), the import-export firm, that is interested

Simulating the Brain to Solve Problems 87 m

Dollar / Yen spot close

4 days ago 3 days ago 2daysago Yesterday Today Next day

!\leural net 1 1 1 1 0
input record

FIGURE 6.7 Coding Exchange Rate Movements as 1s and Os

in predicting the dollar/yen exchange rate based on historical data. Figure 6.7 shows
how the yen/dollar movement might be coded using zeros and ones.*

A 1 in the leftmost position indicates that, four days ago, the dollar closed
higher than it opened against the yen. A 0 in that position would indicate that the dol-
lar closed lower on that day. Likewise a desired output of 1, in the rightmost position,
would be a prediction that the dollar will move higher, and an output of 0 would be a
prediction that the market will move lower. The lower part of the figure shows the
input record to the neural net. In this case, the input record says that four successive
days of an increase resulted in a drop the following day.

Suppose we want to make a prediction based on four previous days’ worth of data.
In the example in Figure 6.7, the input would be {1,1,1,1} and the output would be 0.

Let’s use the very simple neural network shown in Figure 6.8 to see what hap-
pens inside the net when a data record is presented. To keep things simple, there is no
hidden layer in this net.

Now, let’s say that you have just presented the above data to the net: The values
of this input are all 1s, and that actual desired output is 0. That is, ABT’s data record
indicates that the network should guess the value 0 when presented with four 1s as
input. How can the neural network do this?

Think about what has to happen inside the neural network in order for the out-
put to be 0. Working backwards from the output node, you can see from Figure 6.9
that in order for the output of the node to be low, the transfer function (the top half of
the node) must be low. This will only happen when the weighted sum into it, its input,
is small.

In order for the weighted sum to be small, the weights into the neurode must act
to decrease the sum, on average. For the net to produce the correct output, we could
expect to see relatively large negative weight values between each of the input nodes
and the top node (Figure 6.9, top), since this configuration will achieve an output of
0. Thus, in order to “learn” the

*We do not recommend that you use this very simple model to forecast exchange rates!

B 88 Chapter6

output layer

input layer

FIGURE 6.8 A Very Simple Neural Network with No Hidden Layer. The numbers state
that if the inputs to each neurode are 1 the output should be 0.

1111->20

record, the net must adjust each of its weights so that they are large and negative.
If instead you wanted the network to learn the pattern

1111->1

where the network output were 1 when presented with the 1 1 1 1 input, the weights
should be relatively large and positive, and thus increasing, on average, the weighted
sum (Figure 6.9, bottom).

A more interesting case occurs if you have to determine the weights to model a
problem involving the two patterns

0011 —> 0 (Pattern 1)
and
1100 — 1 (Pattern 2).

Here, just setting all of the weights to large positive or large negative values
won’t work since each pattern is made up of mixed signals.

In this case, the net must adjust its weights so that, on average, they cause the
weighted sum to be increased when Pattern 1 is presented, but they cause the
weighted sum to decrease when Pattern 2 is presented. A little thought shows that you
can do this easily enough by setting the weights on the first two inputs to large nega-
tive values, and the weights of the other two inputs to large positive values. This is
shown in Figure 6.10.

Simulating the Brain to Solve Problems 89 B

Negative Weights
0

?

output layer

input layer
1 1 1 1
Positive Weights
t 1
output layer
c F i ‘ 1414141 =
input layer

FIGURE 6.9 Changing the weights of a neural network changes the output.

Note that if we had set all weights to either very small positive or very small
negative values (representing very weak connections) the result would be to produce
a weighted sum of approximately O no matter what the inputs were. This is because
all of the input would be weighted by very small values and, as a result, all of the in-
formation would be whittled away.

When the input sum is around 0, the output of the neural net would be about
0.5. Since the value 0.5 is located equally between 0 and 1, this output gives us very
little new information. It is the electronic equivalent of shrugging shoulders. The
small values of the weights have, in effect, caused all of the information to be sup-
pressed or ignored by the net.®

This is why, incidentally, neural network weights are often initialized with very small random values before
they are trained.

B 90 Chapter6

?

output layer

m
\/-—ﬁa

0+0+1+1 =2

input layer

?

output layer

-1-1+0+0=-2

input layer

FIGURE 6.10 A More Involved Example of Setting Weight Values to Get Desired Output

In order to get the weights set up the way you want, so that the net produces ac-
curate output, you train the network by presenting it with sample data. To train the
net, you would first set all of the connection weights to small random values, essen-
tially creating a “blank slate.” You would next give the neural net a single record or
observation of data, which the net processes, and then uses to guess at an answer, as
we just described.

Since the network has not been trained yet and the weights aren’t set correctly,
you would expect the first guess to be pretty bad, and it usually is. But this is still use-
ful. Remember that the child was able to use the information about her misses to help
her throw better next time. The neural network can also learn from its mistakes. In
fact, the first thing that a neural network in training mode does when it finishes proc-
essing a data record is to compare the result of its calculations with the desired, cor-
rect output.

Simulating the Brain to Solve Problems 91 B

If the network result matches the desired output, the network does nothing. If,
however, the result does not match, the neural network needs to find out where it
went wrong. You know from the previous discussion that the values of the weights, in
large part, determine the output of a given neural network. So it makes sense that the
neural network should attempt to train itself by adjusting its weights, and it must ad-
just the weights so that, on average, it brings its own output more in line with the de-
sired results. Said another way, the neural network must adjust its weights in such a
way that the error of its output is minimized.

To do this, neural networks train themselves in a series of steps:

Step 1: The network makes a guess based on its current weights and the
input data.

Step 2: The net calculates the error associated with the output (at the out-
put node). For example, if the desired output were 1, but the network output
were 0, the error would be +1, based on the difference between 1 and 0.

Step 3: The net determines by how much and in what direction each of the
weights leading in to this node needs to be adjusted.

How?

This is accomplished by calculating how much each of the individual weighted
inputs to the node contributed to the error, given the particular input value. So, for ex-
ample, if a node’s output were too small, the net might need to concentrate on (that is,
increase) small or negative weights that lead up to that node. In essence the network
feeds back the information about how well it’s doing to the neurodes in the net, and
where possible problems might be.

Step 4: The net adjusts the weights of each node in the layer according to
the analysis in the previous step. For example, in the case where the output was
too small, the neural network will try to increase the values of the positive
weights since that would make the weighted sum larger. This would bring the
output closer to 1, which is what you want in this case. Similarly, the neural net
should also try to decrease the size of the negative weights (or even make them
positive).

Step 5: The net repeats the process by performing a similar set of calcu-
lations (Step 1-Step 3) for each node in the hidden layer below it. But since
you cannot tell the net what the desired output of each of the hidden nodes
should be (they are internal and hidden), the neural network does a kind of
sensitivity analysis to determine how large the error of each of these nodes is
and by how much to adjust the weights that feed into them. (For more details
on this process, see the Appendix at the end of this chapter.) This pattern of
checking errors and adjusting weights is continued for each hidden layer in
the network.

The net repeats the above guess—feedback—adjust process using each of the
cases in the data, (often many times) until the network is done training. At this point
the network can be tested to determine how accurate its output is.

Earlier in this text, we discussed how optimization problems can be viewed as
landscapes in which the peaks are the best solutions, and the valleys are the worst
ones. The job of an optimization method is to search across the landscape and try to
find the high peaks where the good solutions are.

B 92 Chapter6

You can picture a neural network’s error as a similar type of landscape, where
the dimensions of the space would be represented by the neural network’s weights.
The peaks and valleys are the errors corresponding to those weights, peaks being high
errors and valleys low errors. But the optimization problem in the neural network’s
case is to adjust the internal weights to minimize the amount of error in the output.
Since the neural net is trying to minimize the error, it is trying to settle in a valley rep-
resenting a low-error solution.

The neural network therefore seeks out the valleys in this space. You can visual-
ize this adjustment process as one in which the weight settings of the neural network
are bouncing around, trying to find optimal values. Figure 6.11 shows a graphical
representation of an error space. Note how the weight value “bounces” down toward
a minimum as the neural network adjusts its weights.

The manner in which the neural network actually finds weight settings is called
its learning method. Learning methods or learning paradigms can be classified
broadly into those involving supervised learning and those involving unsupervised
learning.

The particular paradigm we have been discussing up until now is called back
propagation (backprop), because the errors between the desired output and the net-
work output are passed back or propagated back through the network in order to ad-
just the weights.

However, this approach to training and using neural networks is only one of
many learning paradigms. Supervised learning paradigms (such as backprop) work
by presenting the neural network with input data and, along with these input data, the
desired correct output results. The network makes an estimate and then compares its
output with the desired results. This information is used to help guide the network to
a good solution. In essence, the network is being “supervised” by an unseen mentor
who shows the net how the answer should look and where the net might be making
mistakes. While backprop is the most common supervised learning paradigm, there
are numerous others as well.

On the other hand, neural networks being trained using an unsupervised learning
paradigm are only presented with the input data but not the desired output results. The
network clusters the training records based on similarities that it picks up from the data.

One way to think about how this clustering works is to imagine that you pre-
sented some strangers with a stack of photographs of different scenes and asked each
person to classify them. Without any foreknowledge of what was in the stack of pho-
tographs, one person might group things based on the types of photographs (color,
black and white), another might group the photos based on the various types of scenes
(outdoor scenery, indoor scenes, portraits, etc.), and a third person might group the
photos based on the types of activities (sports, business, entertainment, etc.). Each
grouping would make sense from a certain perspective, and we might discover inter-
esting relationships among the photos by seeing how each person arranged them.

A neural network trained in unsupervised learning mode is similar to the
stranger. In such a case, the network is not being supervised with respect to what it
is “supposed” to find. Instead, it is being left to its own devices to discover possible
relationships. In unsupervised learning, the network seeks to find similarities among
the different data records. With this type of learning, certain portions of the network
tend to specialize or respond to different dimensions of the data.

Simulating the Brain to Solve Problems 93 B

Weight values that
result in higher errors

g

Actual weight value

Error surface for different neural network weights

FIGURE 6.11 How a Neural Network Finds Good Weight Settings

An application in which unsupervised learning is often used is that of direct
marketing. Herigel Target Marketing, the company mentioned earlier might use a
neural net to develop such an application. HTM would start by feeding large amounts
of demographic data into a neural network and then allowing it to train unsupervised.
A portion of the network might find patterns in income levels, while another might
find patterns in education levels of target clients, still a third might look at ages. That
is, the network seeks to combine these in such a way so as to form clusters of records
that are similar along these dimensions.’

By combining these different features, a neural network can come up with
clustering that highlight similarities among various data records. While many of the
clusters will be easily identified (middle-aged college graduates or single parents,
for example), others might represent sets of relationships that were unknown and
thereby show new ways of looking at the data.

"The relationships that unsupervised learning neural nets find are very often much more complicated than these.
In fact, one of the challenges in using unsupervised approaches is in trying to interpret the dimensions along
which members of a cluster are similar.

B 94 Chapter6

The clustering will vary depending on the contents and distribution of the data.
By examining how clusters are formed, the staff of HTM might try to identify clusters
of cases where a marketing campaign was or was not successful to try to determine
which factors and relationships are significant in this respect. Alternatively, they
might try to use the trained neural network to classify new target clients for an up-
coming campaign, possibly eliminating those who fall into clusters that had low hit
rates in the past. By using this information, HTM would then save the expense of ap-
proaching low-likelihood clients.

INTELLIGENCE DENSITY ISSUES

So, when is it a good idea to use a neural network?

One of the main advantages to using a neural network approach to a problem
over some other knowledge-based approaches such as rule-based systems or fuzzy
systems is that you don’t need as much direct input from domain experts. This can be
good for several reasons. The most basic reason is that in some fields it just may not
be possible to speak with an expert since no one really understands in detail the pro-
cess that you are trying to model.

But, even when you have experts, it may be very expensive to get access to their
time. A top bond trader who spends 2 hours a day talking to a knowledge engineer
could be costing his company millions of dollars. Even if you can get the access you
need, experts can sometimes have a very difficult time articulating and formalizing
their expertise. It’s instinctive. The benefit of using a neural network is that as long as
you have appropriate data, a neural net can often find useful patterns in them without
requiring an expert’s judgment.

In fact, neural networks excel at mapping relationships onto data that are noisy
and incomplete. This is a huge plus since when you try to model real-world problems,
high-quality data are a luxury that is rare. More often than not, the data that are avail-
able are noisy, poorly distributed, and spotty. Neural networks can often deal with this
kind of data better than many statistical and AI methods.

How?

Each of the various computing units (neurodes) attacks a small portion of the
problem. Since each node looks at the data from different angles, a neural network
can often reconstruct what missing or corrupt data “should” look like and fill in the
blanks based on the data available. The neurodes interact in such a way as to provide
many checks of the data from many different perspectives.

This also makes neural networks very flexible. In fact, for processes that do not
undergo drastic fundamental changes, updating a neural network can be as simple as
just retraining the net with newer data or with the addition of a few new variables.

On the other hand, this doesn’t mean you can just dump data into a neural net
and hope for the best. Before neural network technology got wide exposure in busi-
ness, proponents and software vendors often claimed that users of neural networks
did not have to be concerned at all with data quality and content. However, experi-
ence has borne out the fact that the approach of just gathering any old sample data

Simulating the Brain to Solve Problems 95 ®

into an informational “paper bag,” shaking it, and then dumping the data into a neural
network and hoping for the best tends not to produce good results.

While neural nets are theoretically capable of approximating a wide range of
mathematical and logical functions, the reality is that you usually need to spend a
good deal of time inspecting and pre-processing your data prior to training a neural
network. While you cannot usually control the amount of noise in the data you get,
you can help the neural net “understand” the data better. In fact this is where many
users of neural networks spend most of their time.

Steps as simple as developing ratios and differences can improve tremendously
the ability of a neural network to learn. For example, giving a neural network the ratio
of sales and profits rather than giving the ne<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>