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Preface

Sen-ri no michi mo ippo kara.

Even the journey of 1000 miles begins with thefirst step.

Japanese Proverb

Whydid we write this book?
We felt we had something useful to say about making some powerful

technologies really work in business. These technologies have been motivated
by a variety of underlying reference disciplines such as biology, neurology, psy-
chology, statistics, and computerscience. Thefield of Artificial Intelligence (AJ)
provided a sort of glue in integrating the ideas from these underlying disci-
plines by comparing them in terms of their power for solving various types of
problems.

One motivation for writing the book was for business people who often
asked us to explain to them in simple terms how these technologies could be
used profitably in business. Technical books on AJ, decision theory, and statis-
tics are muchtootechnical or abstract for business people, while others are too
superficial to give them a good solid understanding of the technology. Clearly,
we neededto bring the technology down to earth without losing its essence.
This is one need we’vetried to fulfill. We’ve also provided detailed case studies
showing how someorganizations have utilized these technologies to improve
key business processes.

We also were motivated by technologists who understood the technol-
ogy well enough, but were unclear on how they could apply it to business
problems. How could they explain the techniques in a clear and simple way to
business people? Is there a methodology they could use to compare tech-
niques from a business standpoint? Are there classes of business problems
that map onto these techniques? These are the questions we’ve addressed for
the technologists.

In short, we’ve tried to reduce the sophisticated models to their essence,

and at the same time adopt a pragmatic businessorientation in describing when
and howto use them.

The modeling techniques on which wefocus in this book have emerged
over the last few decades: the symbolic approach(rules, case-based reasoning,

vii
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and fuzzy logic), the connectionist approach (neural nets), the evolutionary ap-
proach (genetic algorithms), and the inductive approach (machine learning). At
the same time database technology, “data warehousing”, and online analytical
processing (OLAP) are makingit easier to get at organizational data. This is
significant because the difficulty in fluid access to corporate data has been a big
barrier to data intensive decision support. Collectively, the tools that we de-
scribe in this book allow organizations to access, view, understand and manipu-

late their data more easily to make decisions. They are essentially a set of
“search engines” that can leverage organizational data.

These techniques derive their power only when more fundamental tech-
nologies are in place: telecommunications networks, database systems and desk-
tops. The figure below shows how these fundamental enablers have matured
over the last few years. With these enablers in place, organizations have an un-
precedented opportunity to harness the powerofintelligent search engines.

The figure also highlights one reason that previous attempts at exploiting
intelligent techniques were not altogether successful. The information infra-
structure was simply not mature enough. Computing power was expensive;net-
works were neither reliable nor did they provide adequate bandwidth.
Database technology was immature. Consequently, access to corporate data
was slow and limited. Finally, desktop technologywasstill in its infancy. Com-
puters were only available to those who had accessto special terminals and
knew the right commands. It doesn’t make sense to build a skyscraperstarting
with bricks. You’ve got to be able to construct larger subassemblies in order to
build useful systems quickly andeasily.

Maturity
Networks, .--*""

oo” ”
=~

   
 

1970 1980 1990 1996

FIGURE PREFACE.1 Technological Maturity
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But the primitive state of the infrastructure was only part of the problem.
Asthe figure shows, AI/search technology wasalso highly inadequate a decade
ago. People misperceived which types of problems computers could solve well
and which types they couldn’t. Early successes with expert rule-based systems
that could do pattern recognition, solve calculus equations, or play chessled re-
searchers to predict that machines with full human reasoning power were only
a decade away. Unfortunately, it turns out that solving equations and playing
chess, although very difficult for humans, happen to be activities that lend
themselves to clear algorithmic descriptions and thus are tasks that software
systems can be programmedto do quite well, as long as adequate computing
poweris available. On the other hand, recognizing faces and understanding
simple sentencesturns out to be very difficult for computers, even though most
human children do these things with no problem. Early AI programs had
tremendousdifficulties in situations where there were subtle distinctions or
ambiguousconditions.

And what about business applications of AI during the early days? Al-
though rule-based expert systems were the focus of most AI development,
businesses were unable to take advantage of this technology to as high a degree
as they had hoped. Why?

While most businesses have lots of data, most have only limited amounts
of the valuable expertise required to feed a rule-based system. Rule-based ex-
pert systems need human business experts to teach them about business. It can
be very expensive to have a highly paid expert spend months helping to de-
velop an expert system.Ironically, rule-based systems couldn’t capitalize on the
transaction data that businesses had in plenty. Instead, they required high-
priced expertise that businesses had in short supply.

A decadeago, other technologies such as neural nets werestill largely ges-
tational, having been prematurely stifled in their development because of harsh
critiques by some AI gurus. Genetic algorithms werea fringe phenomenon. Most
people hadn’t even heard of fuzzy logic. Machine learning was in its infancy.
Case-based reasoning hadn’t even been envisioned. All of these technologies
began to comeinto their own during the eighties and nineties.

We now have a muchricher bagoftricks at our disposal, whose effective-
ness can be realized using mature networking, database, and desktop tech-
nologies. Each one models a different aspect of human reasoning and decision
making. Each technique has a different objective and different character. Col-
lectively, these techniques offer the business community a broadsetof tools
capable of addressing problems that are much harderorvirtually impossible
to solve using the more traditional techniques from statistics and operations
research.

In what wayare the different characters of the techniques useful?
Someof the techniques,like rule-based expert systems and fuzzy systems,

are based on “top-down”representations of knowledge where a model devel-
oper gives a computer explicit expert knowledge about howto solve a problem.
For such models, problem solving involves designing systemsthat follow an en-
coded reasoning process. One can also use these as pattern recognition systems
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that sit on top of databases and monitor their data content, triggering alarmsor
other kinds of processing wheneverthe patterns are matched bythe data in the
database. Such systems can be extremely useful in attention focusing.

Other approaches like neural networks take a “bottom-up” approach.
These models are given no knowledge about how tosolve a problem. Instead,
neural networks themselves learn throughtrial and error how to build models.
Similarly, other machine learning algorithms take as input large amounts of
data and discoverrules or relationships that exist in the data. Given the explo-
sion of raw datain this electronic age, such techniquesare highly useful to busi-
ness organizations.

Another approach comes from the “evolutionary” natural selection
paradigm. Techniques that have emerged from this area, most notably genetic
algorithms, work by allowing various potential solutions to compete simultane-
ously for the chance to solve a problem.Survival of the fittest then determines
which solutions ultimately “bubble up” to the top. This approach has applica-
tions ranging from pattern discovery to combinatorial optimization.

Yet another problem solving approach based on “analogical reasoning,”
that is, using “similar” past situations and answersto solve problems. Models
developed with techniquessuch as case-based reasoning find solutions to prob-
lems by looking for similar problems that have been solved in the past and then
modifying the past solutions to these problems to accountfor differences be-
tween the past and presentsituations. This approach hasa highly flexible feel to
it, allowing new knowledge to be added incrementally to a system with addi-
tional experience. This approachis highly useful to organizations that deal re-
peatedly with variations of a problem, such as customerservices.

But technologiesare useless unless they are accompanied by a framework
that makes it easy to compare or combine them.In order to demonstrate the
practical usefulness of the technology, we have provided a business oriented
methodology for helping a decision maker systematically map techniques onto
problems. It involves a consideration of the organizational and technical issues
that are important in developing knowledge based systems. We have found the
methodology useful in our own work.In retrospect, whenever we used it, we
had greater success than when wedid not.

In describing our approach, we have alsotried to demystify the technol-
ogy. We explain the techniquesin such a wayasto give a thorough introduction
to their workings and application, while rooting this discussion in the reality of
the business world. Our treatmentis highly “visual”: All key concepts and ex-
amples are presented using highly descriptive graphics. The visual presentation
is also intended to makeit easier for technologists to communicate these ideas
with business people.

While our treatmentis “demystified,” it is nonetheless a thorough investi-
gation of the technology, designed to give the reader a working foundation for
understanding the techniques. Our goalis to put the readerin a position to un-
derstand how a technique can be applied, why it works, and what concerns
might arise as a result of its use. People seeking technical depth shouldn’t be
disappointed. |
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Onelast point. Intelligent systems don’t necessarily lead to moreintelli-
gent organizations. Technology provides the maximum leverage whenit is well
integrated into a well designed business process. To drive homethe practical
significance of the various techniquesthat wediscussin this text, one section of
the book is devotedto case studies. It contains seven extendedcase studiesil-
lustrating the application of each technique. The cases, drawn from various ap-
plication areas, demonstrate how each of the techniques covered in the book
was considered or applied in order to address a business problem, given the
context of the organization doing the development. The case studies discuss
whatthe business process looked like before andafter a system was introduced
and in what waysthat system strengthened the process. Ultimately, the true
benefit of smarter systems derives from their repeated application in a larger
business process.

Despite the usefulness of the methodology and the powerof the various
techniques we discuss, there are no magic bullets. There is no framework,
methodology, or technique that eliminates the need to thinkcritically, cre-
atively, and with curiosity about problems you aretrying to solve. Intelligent
systems are usually componentsof larger systems, and ultimately, organiza-
tions. We have written this book to help you integrate intelligent solutions
into your organization.Its goal is to empoweryouto increase your firm’s in-
telligence about howit deals with its customers, suppliers, and internal busi-
ness processes.
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CHAPTER

Information Systems
Past, Present, and Emerging

I know ofno commodity more valuable than information.

—Oliver Stone, spoken by Gordon Gekkoin the movie Wall Street

What a long strangetrip it’s been. ...

—Jerry Garcia

Thefield ofinformation systems (IS) has undergone dramatic changessince its incep-

tion several decades ago. In this chapter, we discuss how these changes haveaffected

business and how changesin business have affected IS. We explore a taxonomy for

understanding the various branchesofIS, and then briefly introduce the material that

follows in this book.

INTRODUCTION

Twenty years ago, the term information system in a business usually meant an elec-
tronic data processing system. The goal of such systems was to deal with large vol-
umes of commercial transactions quickly, with few errors, at low cost. The workhorse
of electronic data processing systems was a mainframe computer.

Information systems (IS) have come a long way sincethose early days. Main-
framesstill process the bulk of most business transactions and they have become
even faster. But the real growth area in IS has been in distributed systems. Unlike
mainframe systemsthat concentrate all their processing powerin a single large com-
puter, the processing powerin distributed systems is spread out across many smaller
computers and desktops.

Howdid this shift help businesspeople?
A key characteristic emerging from the trend toward distributed processing is

that computing has become much moreinteractive. Early mainframe systemspro-
cessed user requests in what was knownas batch mode. This meant that the user

m1
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ManagementInformation Systems

Transaction Processing Decision Support
Systems Systems (DSS)

Data-DrivenModel-Driodel-Driven DSS
DSS   
 

FIGURE 1.1 A Taxonomy of ManagementInformation Systems

The second class of information systems, decision support systems, includes
systems designed to support businesspeople and managers with decision-making.
DSSare used as part of a process where a humanis in the loop making the decision.
Whereasa transaction processing system handles routine daily activity, a DSS ty-
pically supports decisions that have longer-term implications and require some
human judgment. The need for human judgmentarises when a particular problem is
too “unstructured” for the DSS model to capture all the nuances of the decision-
making situation.

In the late 1970s and 80s, the term decision support system was used exclu-

sively for systems that used some sort of model into which data could befed to let a
user do “what if” and other kinds of analyses. An example is a modelthatlets the
managerofa retail sporting goods chain see the impact on profitability for a product
in response to various price changesfor that product. Such a system would have a
model that would relate the input (the price change) to outputs (revenues, cost of
Sales, and so on). Similarly, a DSS for a fund manager might let him or her vary
input parameters suchasthe volatility of interest rates and compute their impacts on
the value of a given portfolio.

These daysthe term decision supportis used rather generically, but it is useful

to think of DSSas being divided into two basic branchesor types. Thefirst type con-
tinues along the lines of the older DSS and involves primarily “model-driven” sup-
port systems. The value of such a system is largely in the quality of its model. Its
analysis capabilities are based on a strong theory or model, coupled with a good user
interface to make the modeleasy to use.

For example, the portfolio manager’s system might take in historical data
about an investment portfolio’s contents and use an econometric model to compute
and graph variables like the expected risk of the portfolio and how this risk varies in
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response to certain market parameters. The decision maker can use this system to
make a judgment aboutthe “goodness”of the portfolio based on the outputs of the
system and the investment objectives.

The second type of decision support systems are more “data-driven.” In such
systems, most of the value addedis in the data. The model is usually quite simple,
computing information like averages, totals, and maybe data distributions. The idea
is to allow the userto easily condense large amountsof data into a form thatis useful

to managethe business.
For example, a sales manager may want to know how muchofeach ofhis

products was sold by each salesperson in each region. He can then reward or mentor
salespeople according to the numbers,reassess the overall sales strategy, and so on.
The value of the system is largely in its ability to summarize large amounts ofdata.

With the maturing of networksand database technologies, data-driven decision
support is achievable to a much greater degree. Unlike the more traditional reporting
systems, the goal of such systemsis to free the user from painfully specifying the re-
quirements and then painfully waiting for months while they are coded. Rather, the
user decides in real-time how toslice through the data: by customer, geography,
time, and so on. This is a dramatic break from the traditional approach in which var-
ious pre-defined perspectives on the data would be coded into a system. The current
drive towards “data warehousing” reflects the growing importance of interactive
data-intensive types of decision support systems.

It is useful to think broadly about the “data” that feed a DSS. In mostcases,
such as the example above, the data come from a database system consisting of
structured transaction data. However, organizations are also swimming in data from
hundreds of different sources: newsstories, internal projects, group meetings, and so
on. Muchof this goes unseen despite the fact that there’s a lot of potential valuein it.
There is a huge requirement for decision support systems to make senseofthese di-
verse types of data.

You may be wondering about the dotted line on the bottom left of the figure
between transaction processing systems and model-driven decision support. This
highlights a hybrid kind of system, which is very much like model-driven DSS,in-
corporating a sophisticated model, but with one important difference: There is no
humanin the loop.

This type of system is used when the time required to makedecisionsis short
and/or the system makes equally good or better decisions than a human. This type of
system performs what you might think of as decision automation. Such a system
might sit on top of a transaction processing system and evaluate each potential trans-
action. If a potential transaction is approved, the data are passed onto the transaction
processing system. Otherwise the transaction is rejected. In such systems, the sophis-
tication of the DSS model enablesit to take over the judgmental part of the decision
process.

For example, a system that approvescredit card transactions mightbe fully au-
tomated, without a decision makerin the loop. In this sense,it is like a transaction

processing system,trying to determine whethera potential transaction is legitimate
or fraudulent. But its decision about legitimacy might be based on a complex model
that uses expert knowledge, more in the spirit of a decision support system. As busi-
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nesses become more “real-time” oriented and leverage their data in the process, they

will develop more of these kinds of systems that combine transaction data and com-
plex decision models.

In general, as the information infrastructure of organizations continues to ma-
ture and data quality and access improves, there is an increasing need for more so-
phisticated model-driven as well as data-driven types of decision support systems.

Putting such systems into place requires two things:

1. an understanding of the range of tools and techniques available to model business

problems

2. a business-oriented methodology for developing decision support systems

This book focuses on the two requirements simultaneously. In the next chapter,

wediscuss the central concept around which the methodologyis motivated. We pro-
pose that the central purpose of a decision support system is to increase the “density”
of relevant information that it presents to the user. We use the term intelligence den-
sity to refer to this concept.

Chapter 3 presents the methodology for operationalizing the conceptofintelli-
gence density. The methodology shows how you can map solutionsto the business
objectives and the constraints of a specific organization.

Chapters 4 through 10 focus on the techniques using the business-oriented
methodology of Chapter 3. To bring the methodology squarely into a business con-
text, we present an appendix of seven case studies from organizations. Each of these
cases shows how the methodology and techniques can be applied to analyzing prob-
lems andto finding effective solutions as painlessly as possible.
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Intelligence Density
A Metric for Knowledge

Work Productivity

I’m notinterested in developing a powerful [artificial] brain.

All I’m after is just a mediocre brain...

—Alan M. Turing

The major drag on performanceis the limited number of

hours in the day. You run outoftime.

—Jim Little, Morgan Stanley & Co.

Once upon a time there were two companies. Airhead Industries and Jetstream Un-

limited. Airhead and Jetstream manufactured and sold do-it-yourself PC computer
kits. They bothfaced a similar problem: A cursory analysis of their technical support
databases revealed that about 60% of the support calls they received from do-it-

yourselfers were passed on to engineering personnel because it took the technical

support staff too much time (usually more than 20 minutes) to assess and resolve the

problems. As a result, the engineering staffs of both organizations were overloaded.

In addition, the calls were proving to be a distraction to the engineering staff, whose

primary responsibilities involved product development, not support.. .

Airhead Industries elected to remedy its problem by doubling its technical sup-

port staff.
Jetstream, on the other hand, decided to analyze its database further andinter-

view its staff. Thefirm examinedits technical support database and corrected incom-

plete and erroneousrecords. Jetstream classified the types of support problems into
various categories, charting the relative frequency of each type. The firm’s IS depart-

ment interviewed engineering experts to ascertain how they dealt with various types of

problems. The engineering staff determined that most of the calls did not, in fact, re-
quire an engineer once the problem was properly identified. Unfortunately, most prob-

a 7/8
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lems were notidentified correctly. Jetstream formalized the expertise, categorizedits

problemsinto prototypical cases, and put this information into an interactive system

that was made available on-line to the technical support staff within a month. The vol-
ume ofJetstream’s transferred calls dropped to 5%... .

What can we make of the two companies’ approachesto solving their problems?
Airhead chose to treat a symptom.
In contrast, Jetstream’s solution is far more knowledge intensive than the Air-

head approach. Jetstream does a more thorough analysis of its database. It leverages
its highly skilled engineers’ expertise by collecting it, codifying it, and quickly mak-
ing it available to its less skilled support personnel. As an organization, Jetstream Un-
limited Jearns aboutitself and aboutits industry and customers.

Knowledge-intensive approachesto solving problemsare applicable to every in-
dustry. For example, consider a securities firm that uses intelligent systems to detect

patterns in historical price data so that its analysts can make better investment deci-
sions, or a mail-order companythat uses intelligent systems to analyze demographic
information to better target high-probability prospects, or a consulting company that
makes important facts about its past consulting engagements easily accessible and us-
able by its professionals around the globe. All of these organizations are knowledgein-
tensive: They transform raw data into something useful—knowledge—anddeliver the
knowledge to the part of the organization where it can be used mosteffectively.

What makesthis kind of transformation and delivery possible?

Skilled employees, of course. But skilled employeesare stretched for time, es-
pecially as the business environments in which they work become more complex.It
is almost impossible for any one employee to understand, evaluate, and act on all of
the information available in a practical amount of time.

Can computers help? Yes. But computers and networks are becoming a com-
modity. They are necessary just to enter the competitive arena. Increasingly, firms are
looking for higher value-added usesfor their computing infrastructure. Organizations
today need to be able to leverage the expertise embodied in their employees and
locked up inside their large stores of data. Much of the foci's now is on developing
smarter decision support systems. These systems need to increase the value of data
and allow organizationsto learn from them.

For example, consider a toy manufacturer with a large database of orders. The
fact that one of the firm’s customers, Toy Town, placed an order for 15 Messy Paint
kits is a relatively meaningless piece of data. To add value, the manufacturer’s DSS
might organize this and other pieces of data into a more informative format, say,
showingthe overall sales of Messy Paint kits in the Southwest region, and comparing
this to the other regions.

Alternatively, the DSS might look for patterns in the sales of products. Perhaps
the purchase of Messy Paint kits is accompanied bya purchase of Tidyboy Smocksin
83% of all cases. The toy manufacturer might then interpret this and other informa-
tion to decide that an effective campaign would be to package Tidyboy Smocks with

Messy Paint kits to reduce production and operations costs. Knowledge and action
are the results of this interpretation.

Asyou transform the raw materials from data to knowledge, yourability to use
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these new value-added materials to make useful decisions increases. The efficiency
and quality of the decisions your organization makes also increase by using these
more concentrated decision materials. In effect, the decision content of these materi-
als becomes more dense.

INTELLIGENCE DENSITY: A MEASURE OF
ORGANIZATIONAL INTELLIGENCE AND PRODUCTIVITY

Adding value to data enables an organization to “know more” about something—its

industry’s environmentor “terrain,” circumstances under whichits products do or
don’t sell well, the movements of its competitors, and so on.

An organization can increaseits intelligence in the same way that an army unit
gathers “intelligence” about the movementsof the enemy. A radar-tracking system or
a satellite-imaging system that tells a military unit about the enemy’s movementsis
providing intelligence. So is a monitoring system that analyzesthat satellite and radar
information and comesup with a useful summary.

In this book, weare not so concerned with making the computer“intelligent” in
the human sense as weare with using it to provide moreintelligent solutions. Statis-
tics, decision theory, and operations research all provide methodologies that are sim-
ilarly motivated and have been used extensively to build decision support models for
problems that can be described mathematically. Our focus on the less traditional
techniques in this book reflects their growing usefulness for less well-structured
problems, where traditional techniques tend to break down or require excessive
effort.

To characterize the intelligence provided by a particular analytic decision tool,
weusethe term intelligence density. Intelligence density (ID) is a heuristic measure
of the “army type” of intelligence. Think of it as the amountof useful “decision sup-
port information”that a decision makergets from using the output from some ana-
lytic system for a certain amount of time. In other words, how much of the book,

chart, status report, financial statement, or computer output do you have to examine
before you can make a decision of a specified quality; or, inversely, how quickly can
you get the essence of the underlying datafrom the output?

While there is no general method for measuring an amorphous concept such
as “the amount of decision support information,” there’s a useful concept in eco-
nomics of utiles or utility units. Utiles are simply units for comparing different
types of consumption(1.e., “one whiskey will give me the same amountof pleasure
as two vodkas’’).

Conceptually intelligence density can be viewed as the ratio of the numberof
utiles of decision-making power gleaned (quality) to the numberof units of analytic
time spent by the decision maker. Said another way, ID measures how manyutiles
per minute a particular output gives us.

Thus, if a decision maker can consistently make the same quality decisions and

come to the same conclusions after examining Source A for 3 minutes as he or she
could after examining Source B for 30 minutes, Source A can be said to have 10 times

the intelligence density as Source B. Similarly,if the time required to make a decision
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were fixed and unchangeable, and a decision maker madedecisions that were consis-
tently determined to be twice as good (by some qualitative or quantitative measure)
after examining Source X as those made based on SourceY, we could say that Source
X hadtwice the intelligence density as Source Y and we wouldpreferto useit for that
reason.

In effect, if an organization can either decrease the time spent making specific

decisions and doing specific analysis withouta loss of quality, or increase the qual-
ity of analysis performed in a fixed time frame, its resources can be used more

effectively.
Intelligence density is the postindustrial or information age equivalent of what

wethink of as productivity. Just as you can give a manufacturing organization a big-
ger factory or a faster die-casting machine, you can give a data-intensive organization
higher intelligence density materials thereby making its information systems and de-
cision making more knowledgeintensive.

An excellent metaphoris the phenomenonthat occurred in the financial indus-
try with the advent of the electronic spreadsheet. Prior to this innovation, a financial
analyst who wanted to, say, make projections about the impact of different sales
growth scenarios on a particular firm would (a) copy by hand the incomestatement,
balance sheet, and cash flow data into a ledger; then (b) perform the appropriate arith-

metic and accounting operations for a scenario; (c) repeat steps a and b for each sce-
nario; and,finally, (d) perform the analysis. The frustrating thing was that the brute
force calculations required to do the work in a, b, and c took the lion’s share of the
time, but the actual analysis ofthe end results, d, which took a much shorter time, was

what the analyst was really getting paid for!
With the advent of electronic spreadsheets, though, things changed. Now an an-

alyst can experiment with new scenariosas fast as they can be typed. Oncetheinitial
data are entered and the spreadsheetis set up (one time only), the analystis free to ex-
perimentextensively. All of the extra time that the analyst would have spent calculat-
ing ratios and adding columns by hand can now bespent doing analysis and making
better decisions. While many would consider a spreadsheetto be a rather primitive
tool compared to some of the ones wewill discusslater on, the spirit is the same: You
need tools that show you the important things quickly.

This metaphor of squeezing out the tedium and leaving the essenceis an impor-
tant componentof intelligence density. High intelligence density materials allow de-
velopers and decision makers to concentrate more of their time on the higher
value-added portions of their work, rather than worrying about the lower value-added

and more mundaneaspects. Those organizations whose members are able to take ad-
vantage of high intelligence density materials to produce, measure, and improvetheir
output have a competitive advantage.

Figure 2.1 shows how you can increasethe intelligence density of a firm’s raw
data. It is important not to forget that the data we are talking about are not necessarily
a bunch of numbersin a database but could be any oneof the various forms that data
might take in an organization.

The data by themselves are not very useful. The trick is to condense tiiem. This
meansthat you needtofirst figure out how to get at the data. For electronic data, this
means figuring out where they are located, how to query them, and so forth. For
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FIGURE 2.1 Steps for Increasing Intelligence Density

human expertise, this means figuring out who has the experiences you want to tap
into and howto contact them.

Once you get your hands on the data, you need to scrub them. This meansthat

you might have to deal with inconsistent or conflicting data, sloppy record keeping,
and so on. If you clean the data up, you can next integrate them with data from vari-
ous sources to build up a more complete picture of the business.

The problem with bringing together a lot of types of data is that there is usu-
ally too much detail. You get buried in the minutiae without being able to see the
bigger picture. To improvethe situation, you can transform the data into compound
or aggregate units. Statistics, ratios, totals and subtotals, trends, and so on.are all
examples of how you might wantto transform data to get a better picture of what
they mean.

But what if you want to do more than just look at the data and analyze them in-
teractively? What if you wantto learn about new relationshipsin the data or use auto-
matically the knowledge about the data to help solve business problems?

The next level of intelligence density boosting takes advantage of many of the
model-based approaches to DSS that we will discuss. In addition to using data-driven
systems to make examining your data easier, you can use them to generate data to
feed more sophisticated model-based DSS systemsthat discover new relationships in
data or apply knownrelationships in new ways.

What do we meanby learning from discovered relationships? Let’s go back to
Jetstream and Airhead. What’s the difference between the firms?
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Jetstream was able to reduce wait time on customercallsfrom an average of30

minutes to just under 5 minutes, thus increasing its customer responsiveness. In addi-

tion, the general quality of the responses has become much more uniform and of

highercaliber since the engineer’s expertise was made available on-linefor the tech-
nical supportstaff.

Furthermore, now only the most complex calls (about 5% ofthe total number of
calls) are passed on to the engineering department. As a result, the productivity of

that department has correspondingly improved. In fact, some of the calls they get in-
volve such sophistication that they are very useful for R&D! Since the engineers are

no longer overloaded with calls, they are able to concentrate more on the calls they
do get. Instances ofthe same caller repeatedly inquiring about the same error has de-
clined to about 25% of the original.

On an organizational level, Jetstream gained a rich understanding ofthe prob-
lem resolution process because, as part of the development of this project, it needed

to track, classify, and learn about the quality and quantity of its historical respon-
siveness. Jetstream is now able to predict better the volumeof calls it will get re-
garding various types of support problems, and how these problems relate to a

diversity offactorsfrom new productlines to seasonal usage. Jetstream is now able

to better plan staffing, new product releases, and research projects based upon this

knowledge.

Airhead, on the other hand, got eight new employees.

Consider again the steps that Jetstream took. Figure 2.2 shows how the firm
movedits data through each of the steps we’ve been discussing. Note how each of
Jetstream’s actions helped the firm moveupthe ladderof intelligence density. When
the firm finished its system, it not only hadtools to let its staff work moreefficiently,
it also understoodits business to a much greater degree.

MAKING THE RIGHT TRADE-OFFS

Getting to the right solution was far from easy for Jetstream. It forced the firm to de-
fine explicitly which business requirements were critical and which weren’t.It de-
mandedthat the firm understand the capabilities of the various modeling techniques.
Jetstream needed to pick solutions that covered the important business needs. The
firm needed to compare various approaches from a technological and businessper-
spective, analyzing the trade-offs amongthe different solutions.

Whatkindsof trade-offs?
For starters, Jetstream had to determine what was required from a businessper-

spective in order to make the support solution successful. For example, the accuracy
of the advice to Jetstream’s customers had to be high. Even though Jetstream’s old
way of doing things kept customers waiting, at least the clients were confident that
they would get pretty good advice at the end ofthe call. If the quality of advice from
the new system dropped, Jetstream would lose customers. That was unacceptable.

Likewise, the response time had to be quick. Jetstream’s managementdeter-
mined, for example, that it would be unacceptable for the support staff to keep cus-
tomers waiting for too long while the staff resolved problems. If the new system kept
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FIGURE 2.2 Jetstream’s Steps for Increasing Intelligence Density

the customer on hold for long periods of time, it would accomplish nothing over the
current way of doing things, at least from the customer’s perspective.

And what about the depth of advice the system was able to help provide? Cus-
tomers were used to engaging in a dialog with the expert, sometimessteering the con-
versation to other, possibly related subjects. An expert could deal with this. The
expert could explain the problem in simple English and explain how it could be fixed.
Would a sales rep using the new system havesufficient knowledge about customers’
problems to even describe the customer’s problem correctly to a computer system?
Could a system provide depth in its reasoning comparable to the expert? Could it jus-
tify why it was recommending particular action? That seemed important. In order
for Jetstream’s customers to feel comfortable with the support, they had to feel that
reps on the phone understood the dynamics of their problems and were confident
about the advice they were giving.

These factors, accuracy, response time, explainability, and others like them, are
the ultimate determinants of intelligence density. In developing and evaluating alter-
native solutions, an organization needs to ask how well a proposed course of action
meets the constraints specified for such dimensions.

We should underscore that accuracy, response time, and explainability were di-

mensions that Jetstream determined as being important. For an organization with





CHAPTER

The Vocabulary of
Intelligence Density

Now,ifthe estimates made before a battle indicate victory, it is because careful

calculations show that your conditions are morefavorable than those of

yourenemy;ifthey indicate defeat, it is because careful calculations show

thatfavorable conditionsfor a battle arefewer. With more careful calculations,

one can win; with less, one cannot. How much less chance ofvictory has one

who makes no calculationsatall!

—Sun Tzu, The Art of War

Thefollowing anecdote is told about a seasoned golfpro playing with three

youngerplayers on a difficult course. The pro had won afamous tournament on

the course thirty years earlier. When the group approached a particularly

notorioushole, one ofthe younger players asked the pro, “Thirty years ago,

whenyou shot a birdie on this hole, how did you doit?”

The pro replied, “See those trees over there? I hooked the ball over the

tops ofthose trees and onto the green.”

Each of the three young players tried to “hook the balljust over the tops of

those trees” and each had his ballfall squarely into the wood.

“Wait a minute,” said the last ofthe young golfers to the pro, “We’re all pretty

good strong golfers, and we couldn’t even come close! How were you able to

hook overthe sametrees thirty years ago?!?”

The pro smiled, “Thirty years ago, those same trees were a lot shorter.”

—Anonymous

Avalon said solemnly, “We are merely outlining the dimensions

ofthe problem, Mr. Washburn.”

“And doing it all wrong,” said Gonzlo.

—Isaac Asimov, ‘“‘Middle Name”

INTRODUCTION

1. A Case ofPoorly Defined Business Objectives and System Requirements:

A large bank commissioned the developmentof a system that would take
overthe back office function of processing letters of credit (LOC), which banks

m 15 @
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issue for commercial clients as guarantees of payment. The system was sup-
posed to categorize LOCsinto acceptable and unacceptable categories, depend-

ing on whether the letter had logical errors in it or exposed the bank to
unacceptablerisks.

A rule-based expert system' was developed and tested. The results of the
testing showedthat the system was accurate about 90% ofthe time. Atthe final
review meeting with top management, a senior business manager wanted a
“yes” or “no” answer as to whether the system should be deployed.

Noneof the businesspeople could give the managera straight answer.
All the manager got were conditional answers, which wasnotsatisfactory.

The meeting digressed into a discussion about the consequencesofthe errors.
Would the bank lose important business as a consequenceof the system’ser-
rors? What would be the average size of a loss due to an error? Should the sys-
tem be used in a decision support mode where all applications would be
scanned by clerks after being processed by the system? And so on.In effect, the
real definition of business objectives and hence the system’s accuracy require-
ments started only after the system had already been designed, implemented,
and tested! The bank had not adequately considered the system’s accuracy re-
quirements and their implications.

2. A Case ofBad Problem Formulation and System Inflexibility:

A national railroad company wanted to install an intelligent diagnostic
system onall of its locomotives. The system was supposed to enable the train
operator to diagnose and correct mechanical problems quickly.

A research team spent several man-years of effort interviewing experts
on how they diagnosed faults in locomotives. The experts described their rea-
soning sequentially: “first I check for traction; if there is traction, I check to
see if there’s a short; if there is a short, I throw open the switch to release trac-
tion and see if the short goes away;if it doesn’t go away, then I try and release

the brake . . .” The research team decided that the problem area was small (ap-
parently with only a few hundred symptoms), and the reasoning process
seemed clear and simple enoughforit to be specified literally as described by
the experts.

They used flowcharts showing the logic sequenceasarticulated by the ex-
pert. After a few monthsof interviewing experts . . . they werestill at it. Only
now, they found that each time the expert told them something new that the ex-
pert had neglected to mention earlier, they spent the whole day trying to figure
out how to modify the logic, and everyone endedup feeling uncertain about the
integrity of the knowledge at the end of the day! Their approach hadfailed to
consider adequately issues of scalability and flexibility.

A Case ofLow Scalability and High Complexity:

A trading firm wanted a system to predict foreign exchange movements.

The system was supposed to analyze the past patterns of exchangerates for var-

'This type of system uses pre-programmedrules of thumbto solve problems. Rule-based expert systemsare dis-
cussed in Chapter7.
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ious currencies and highlight those that looked likely to increase or decrease in
value significantly over the course of the month.

A research group chose a fuzzy logic-based system’ to do the task. Basic
trading rules were encoded and developed for the system. Using the basic rules,
combined with the manually interpreted information, early tests of the trading
system showed promising results.

However, when the system was actually scaled up to a realistic environ-
ment, it got more and more complicated. In the end the system could only pre-
dict accurately for the previous month, and only if experienced currencytraders
also input their opinions!

Whydid the system fail to produce useful results? Because the knowledge
representation, in this case fuzzy rules, couldn’t capture the range ofsituations
that affect exchange rates. The developers had to spend many hours interview-
ing experts and the resulting knowledge was far from complete and accurate.
The problem complexity didn’t favor a “top-down” approach. The research
group had not considered adequately the degree to which its system would need
to scale up from a simple prototypeto a practical system operating in a complex
environment.

DIMENSIONS OF PROBLEMS AND SOLUTIONS

How can you avoid having your projects end up like the ones above? Is there a

method you can follow that can ensure that you’re on the right path?
Wethink thereis.
The method needs to cover the problem requirements(like accuracy) without

overextending the organization’s resources (like developmenttime or cost). A good

solution does not compromise the problem requirements and does not overly
“stretch” the limits of the organization in doing so.

Other than the obvious things like immediate costs and benefits, what “dimen-

sions” should you considerin formulating and evaluating alternatives?
First, you need to satisfy model output guality requirements. A solution must

satisfy basic things like accuracy and response time. More generally, the quality of
the outputs should be adequate to meet your organization’s needs.

Second, you need to consider longer-term cost drivers. Like what it will cost

to maintain, extend, or modify the system. These types of constraints will help de-
termine how useful the system is in the long run. The system must be engineered
correctly.

Third, you need to ensure that the quality of the organization’s resourcesis suf-
ficient to undertake the proposed project. These dimensions deal with humanre-
sources and infrastructure.

 

"Fuzzy systems use rules expressed using linguistic variables like “hot” and “cold” or “inexpensive” and

“costly” rather than specific numerical values. Fuzzy systemsare explained in Chapter8.
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Finally, you need to ensure that the organization can support the logistical re-

quirements of the project. These considerations impact things like development
schedules and budgets.

Thefirst set of these factors, those dealing with model quality,is listed in Figure

3.1. They answerthe following questions:

¢ Does the system need to provide optimal solutions in terms of accuracy or “goodness”?

¢ Does the decision maker need to know howthe answerwasderived?

¢ Does the system provide responses within a reasonable amountof time?

 

e Accuracy
e Explainability
e Speed/Reliability of

Response Time   
 

FIGURE 3.1 Quality of Model

Business examples:
A bank needsa backoffice system that processes and classifies letters of credit into “ac-
ceptable” and “unacceptable” categories to be able to classify at least 85% ofthe letters
correctly to make business sense. (accuracy)

A mortgage application evaluation system must give some indication of whatfac-
tors it used to determine that a mortgage applicant scored poorly so that this can be ex-
plained to the applicant or be used as the basis of further inquiries by the mortgage
officer. (explainability)

A point-of-purchasecredit card fraud-detection system must be able to return the
results of its evaluation in under 5 secondssothatusing it will not overly inconvenience
store owners or cardholders. (response time)

The secondset of factors shown in Figure 3.2 relates to how well the solution is
engineered whenit is developed:

¢ Howflexible is the system in allowing the problem specifications to be changed?

¢ Howscalable is the system?

¢ Howeasily can the system be embedded into a larger system or the existing work flow
of an organization?

¢ How compactis the system?

¢ Howeasyis the system to use?

 

e Flexibility
e Scalability

e Compactness
e Embeddability

e Ease of Use    
FIGURE 3.2 Engineering Dimensions
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Business examples:
A system designed to rank financial investmentalternatives according to risk and return
needs to be updated overtime to allow for new investment instruments and financial
strategies. (flexibility)

A system that designs shipping routes for a cargo freight firm needsto be able to
generate good routes regardless of whetherthere are 10 or 200 cities being served, or 3 or
30 ships in the fleet. (scalability)

A system that aids marketing personnel in interviewing clients and suggesting
products needs to be compact enoughto beinstalled on a laptop computer and taken on
client calls. (compactness)

A system that determines how mucha client should bebilled for a particular
service based on information about the client must be able to share information with
the firm’s client information database andits current billing and accounting systems.
(embeddability)

The third set of factors listed in Figure 3.3 addresses issues relating to the re-
sources available in the organization required to attack the problem. These are orga-

nizational dimensions. They require you to assess the complexity of a problem, and
the amountof “work” you need to do to understand a problem, organize the data re-
quired to modelit, and modelit correctly:

Are there good, high-quality electronic data available?

Are there a /ot of electronic data available?

Is the organization far enough up the learning curve?

Howsubtle and easily understood are interactions between the problem variables?

 

e Tolerance for Noise in Data

e Tolerance for Sparse Data
e Learning Curve
e Tolerance for Complexity   
 

FIGURE 3.3 Quality of Available Resources

Business examples:

 

In developing a particular type of stock trading system using neural networks,’ develop-
ers estimate that they will need at least 60 monthsof accurate historical data, normalized
for stock splits, and so on. (tolerance for data sparseness and noise)

A consultant suggests that you need to develop a system using a genetic learning
algorithm for data mining. You have neverdone it before, which means you’ll need to
do a lot of background work and learning first and implement a small-scale prototype
system to understand how the GA would minethe data. (learning curve)

In talking to a portfolio manager about choosing securities to acquire or discard,
you find out that the managerfirst runs a simple test involving three financial parameters

*Artificial neural networks are systems that automatically “learn” relationships from raw data. The developer

only needsto tell the system howto learn, but does not need to put problem-specific knowledge into the system.

Artificial neural networks are explained in Chapter6.
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on all securities in the database, then additional tests involving two more variables, and

finally, a ranking phase based on preserving a specific profile of the overall portfolio.Is it
reasonable to decomposethe portfolio selection problem like this? (complexity)

Finally, the fourth set of factors shown in Figure 3.4 relates to the logistical
constraints within an organization:

¢ Whatis the access to experts, or conversely, how independentare you from them? In
particular, are experts readily available for advice and testing?

e Are the computing infrastructure resources adequate for the problem?

¢ What development time can the organization afford?

 

e Independencefrom Experts

¢ Computational Ease
e Development Time   
 

FIGURE 3.4 Logistical Constraints

Business examples:
In developing a stock-picking rule-based expert system, you needto realize that you
need access to an experienced traderfor at least 4 hours a week overthe course of sev-
eral months in order to specify the process by whichstocksare selected, and for validat-
ing the system’s results. (access to experts)

If you decide to use a genetic algorithm’ for data mining, you will have to load
hundreds of megabytes of data into memoryat one time; this will require access to a
very large mainframe or a massively parallel computer. (computational ease)

Basedoninitial discussions with experts, in developing a hybrid rule-based system
to spot exchangerate patterns, you estimate that the system will consist of roughly 500
rules, which will probably require 6 to 8 monthsto extract from experts, validate them,
and organize them to develop a production version of a system. (developmenttime)

THE STRETCH PLOT: A VOCABULARY FOR
REQUIREMENTS AND ANALYSIS

The interesting thing about the four sets of dimensionsis that they serve as a vocabu-
lary for expressing system requirements as well as for comparing solutions. In other
words, the vocabulary is a checklist of the objectives and constraints of the various
stakeholders in the organization—top management, users, and technologists. The vo-
cabulary helps you describe the problem and to compare how various alternatives
stack up in addressing requirements.

 

‘Genetic algorithms are systems that solve problemsbyusing a kind of “survival of the fittest.” They try many

different solutions and allow the better ones to survive. Genetic algorithms are explained in Chapter5.
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Interestingly, the dimensions of this vocabulary fall into the quadrants ofa plot,
as shown in Figure 3.5. We referto this as a stretch plot since in practice you end up
stretching some of the dimensions when making trade-offs on requirements or system
features.

The dimensionsin the top half of the stretch plot relate to the system itself and
reflect requirements of the end product being designed, while those in the bottom half
deal with the organizational environment in which the system will be developed and
used. The dimensionsin the left-hand quadrantsofthe stretch plot relate to quality is-
sues, whereasthose in the right deal with practical constraints in system development
and use.
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Together the dimensions form a “committee of critics.” Each of the committee

members has an ax to grind. Each is concerned with a separate aspect of the develop-
ment processor the organizational impact of the system. Eachcritic will try to influ-
ence the outcomeof the final product. Each of the critics must be satisfied to some
degree or another in order for the project to be a success.

The useful thing about such a committeeis that it forces you to considerearly in
the life cycle the set of issues you’ll have to deal with during the course of the sys-
tem’s development, use, and maintenance. Depending on how concerned you are
with the issues that each critic raises, you will weigh moreor less heavily its influ-
ence on the decisions that lead up to selecting a technique andstrategy for solving a

problem. The final system will be the result of careful consideration of these issues.
Asis often the case with committees, it will almost always also involve compromises.

For example, the end user of a customer support system (Say, a customer service

representative) might wantto be able to explain the diagnoses and recommendations of
a system easily to customers. The explainability critic would represent these demands.
But the user may also need the system to produce answers quickly, say within 30 sec-

onds, so that customers don’t have to wait a long time on the phone. The speedcritic

asserts itself to advocate this dimension. Taken together, these two critics might narrow
downconsiderably the range of techniques that you could use to build a system.

You can think of each technique and each problem as having certain rubbery
“shapes” that are determined bythe variouscritics. The ideal solution will match a
problem to a technique without allowing the competingcritics to stretch beyond the

snapping point. In other words, you musttry to match yoursolutions to the problem

without “stretching” the technique, the environment, or the requirements for the solu-

tion too much.

USING THE STRETCH PLOT

Howdid we decide on thecritics in the stretch plot?

Webasedthestretch plot on our own experiences and those of other informa-

tion systems professionals. What wetried to do was concentrate on the critics that
are most general to the broadest variety of problems and techniques. But the critics

we’ve described above are not exhaustive. In particular, critics like management
comfort, internal resistance to technology projects, and external marketability are

often important.
Fortunately, each of these would also fall into one of the four quadrants. [nter-

nal resistance, for example, would go into the lowerright quadrant: an organizational
constraint. The framework is robust enough to accommodate a wide variety of addi-

tional dimensions.
Are all critics created equally?

No, some are more equal than others. Not every critic is important for every
problem. For example, if you are involved in a project in which the data were plentiful
and of very high quality, the data quantity and data quality critics cease to influence
developmentdecisions (except that you may decideto rule in certain techniques you

might normally have excluded!).



The Vocabulary of Intelligence Density 23 &

So how do you know whetheror nota critic will be important?
You need to perform a stretch plot analysis. Each problem and each technique

has its own stretch plot “landscape.” You reveal the landscape by asking questions
about the problem or solution. For any given problem, you can look at the landscape

formed by your problem specification and see the importance ofeach critic. Figure
3.6 shows what such a landscape mightlooklike for a typical problem. The height of
a bar indicates its importance for the problem.

In this case, it was important that a solution have HIGH explainability. In con-
trast, scalability was not as important, and so you wouldtolerate any solution that

provided only LOW scalability.
Whatis happeningis that you are defining the boundaries of yoursolution. For

example, you would be moreinclined to rule out solutions that did not provide

HIGH explainability, but you would be less concernedif they did not have HIGH
scalability.

We’ve defined the dimensions in such a waythat if the value required for a
critic is HIGH,it is harder for a techniqueto satisfy it. For example,it is harder to

find techniques that satisfy HIGH explainability thanit is to find techniques that have
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FIGURE 3.6 An Example of an ID Profile for a Problem
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LOW explainability. Why? Explainability is always a desirable trait. All things being
equal, you’d rather haveit than not have it. By definition, HIGH explainability also
satisfies LOW explainability.

The upper half of the stretch plot of Figure 3.5 can be used to describe two

things: When you are talking about a problem,it describes what the system will pro-

vide to the organization. When youare talking about a potential solution technique,it
describes what is demanded by the organization (requirement). The more demanding

the organization is, the harder the problem becomesfor a technique. The challengeis
one of finding a solution that meets or exceeds the requirement.

The dimensions on the lowerhalf of the stretch plot give you the complement.

They describe what the organization provides, and how the technique stacks up on

that dimension. The ideais that the organization constrains the availability of factors,

and it is up to you to design a solution that makes the best of what you have:It satis-
fies the constraints.

The four types of dimensions are important to any systems developmenteffort.
In fact, as we mentionedearlier, you might want to define other dimensions for your-

self. Beware, however, that the meaning of some of the dimensions depends on the

problem context, while others are much more obvious.

For example, when people discuss scalability for a database, they are generally

concerned with how the database performs as the amountof data in it increases. Fac-
tors like storage space andthe time it will take to update the database after a new
piece of data is input are usually central to this discussion. However, when you con-

sider the issue of scalability for, say, an expert system, you are more concerned with
issues of knowledge engineering; for instance, how easy will it be to extract rules
from an expert as you scale from a dozen rules to several hundred? How will these
newrules interact with other rules? In this case, storage and time requirements neces-

sary to execute a larger system are secondary compared to the knowledge acquisition

bottleneck problem involved in maintaining the system.
Another property of the critics is that somecritics are technique specific (that

is, they favor or discourage certain types of techniques regardless of the problem at
hand) and some depend on both the problem and the technique (they will favoror

discourage certain techniques depending on the nature of the problem). This makes

life easier.
For example, let’s say that you are trying to classify mortgage applications into

good and bad risks. Assumethat you also wantto be able to explain to prospective
borrowers why they were or were not granted credit. The explainability critic be-
comes important.

Whatif you solved the problem using a neural network? While neural nets can
be very goodat classifying things, you also need to consider that neural networks are

generally unable to provide good explanations as to how they decide ontheclassi-
fications. On the other hand, rule-based systems are very good at explaining their
results.

In fact, what you will find is that neural networks are usually difficult to ex-

plain, while rule-based expert systems are almost always easily explained. Thus,the

explainability of systems developed using a certain technique tends to be independent
of the problem you’re solving. The explainability critic is largely problem indepen-
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dent. This is useful to knowsince it immediately suggests or rules out certain tech-
niquesif explainability is to be an important feature of a system.

In contrast, other critics can depend on the interaction between the problem and
the technique being considered. For instance, rule-based systems have fairly quick
development times for moderately sized problemsprovided there is a good theory for

how to solve the problem. This type of expert system does, however, require far more
time for complex, poorly understood systems. Neural networks, in contrast, do not
suffer as severely in this respect. On the other hand, as we will discuss, much of the
neural network developmenttime is often spent identifying the correct variables and
preparing meaningful input data for training and testing the net. This also takes time,
but in a different way.°

The point is that from the development speedcritic’s perspective, the right
choice of technique depends on the numberof variables, the quality and quantity of
data, the existence (or lack thereof) of a theory, and so on. Thusthe influence of the

development speedcritic varies both with respect to problem characteristics and tech-

nique.It is problem dependent.

SUMMARY

The preceding dimensions provide a concrete way of operationalizing the concept of
intelligence density. The checklist provides a handle for bringing to the surface the

important questions involved in imposing structure on an initially ill-defined prob-

lem. The framework makes explicit both the organizational and technical objectives

and constraints. It reduces the risk of getting trapped into developing a solution that

uses a favorite technique or an apparently obvioussolution that could turn out to be a

bad choice from a business standpoint.
In the next chapters, we describe a toolbox of techniques for solving problems.

Along with each technique, we present an analysis of its strengths and weaknesses

with respect to the stretch plot. In the case studies in the latter part of the text, we pre-
sent a series of cases that demonstrates how the stretch plot can be used in a practical
mannerto plan and solve real business problems.

 

‘Throughout this book we will discuss these features of techniques and explain why some techniques demon-

strate certain characteristics while others do not.
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Appendix to Chapter3:
Dimensions of Problems and Solutions

 

Intelligence Density Dimensions: Quality of System

Accuracy measures howclose the outputs of a system are to

the correct or best decision. Can you be confident that the errors

(results that are not accurate) are not so severe as to makethe sys-

tem too costly or dangerousto use?
Explainability is the description of the process by which a con-

clusion was reached. Statistical models explain the output to some

degree in the sense that each independentvariable influences or

“explains” the dependentvariable in that it accounts for somepor-

tion of the variance of the dependentvariable.

Other systems, where rule-based reasoningis involved, show

explicitly how conclusions are derived. Yet others, such as neural

networks, generate Opaque mathematical formulas. These are

sometimesreferred to as “black boxes” becausefor the user they
are the mathematical equivalent of the magician’s black box: Data
go in at one end and results come out the other, but you cannot
(easily) see the rationale behind the conclusion.

Responsespeedis the time it takes for a system to complete
analysis at the desired level of accuracy. Theflip side to this dimen-
sion is confidence in the sense that you can ask how confident you
are that a certain period of time, within which the system must pro-

vide an answer, will be sufficient to perform the analysis. In appli-

cations that require that results be produced within a specified time
frame, missing that time frame means that no matter how accurate
and otherwise desirable the results are, they will be useless in

practice.  
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How Well Is the System Engineered?

Scalability involves adding more variables to the problem or

increasing the range of values that variables can take. For example,

scalability is a major issue when you’re interested in going from a

prototype system involving 10 variables to one with 30 variables.

In early Al projects, it was not uncommonto find systems that

worked well for solving small problems (for example, do the pa-

tient’s symptomsindicate meningitis or hepatitis?) but broke down

whenthe problem size increased (given the full range of humanail-

ments, what is wrong with the patient?) Scalability can be a real

problem whenthe interactions among variables increase rapidly in

unpredictable ways with the introduction of additional variables

(making the system brittle) or where the computational complexity

increases rapidly. |

Compactness refers to how small (literally, the number of

bytes) the system can be made. Once a system has been devel-

oped and tested, it needs to be put into the handsof the decision

makers within an organization. It must be taken out into the field,

be that the shopfloor, the trading floor, or the ocean floor.

Compactness deals with the ease with which the system can

be encoded into a compact portable format, whether that be em-

bedding in a spreadsheet, coding into a computer language, or en-

graving on silicon chip. If a system is too “bulky” to be easily

embeddedin a format that makes it usable where and whenit is

needed, then the system itself may not be very useful.

Flexibility is the ease with which the relationships among the

variables or their domains can be changed,or the goals of the sys-

tem modified.
Most systems are not designed to be used once and then

thrown away. Instead they must be robust enoughto perform well

as additional functionality is added over time. In addition, many

of the business processes that you might model are not static

(i.e., they change over time). As a result, the ability to update a

system or to have the system adaptitself to new phenomenais

important.

Embeddability refers to the ease with which a system can be

coupled with or incorporated into the infrastructure of an organiza-

tion. In somesituations, systems will be componentsof larger sys-

temsor other databases.If this is the case, systems mustbe able to

communicate well and mesh smoothly with the other components

of the organizational infrastructure. A system that requires propri-

etary “software engines” or specific hardware will not necessarily

be able to integrateitself into this infrastructure.  
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Ease of use describes how complicated the system Is to use
for the businesspeople who will be using it on a daily basis.Is it an
application that requires a lot of expertise or training, or is it some-
thing a user can apply right out of the box?  
 

 

Quality of Available Resources

Tolerance for noise in data is the degree to which the quality
of a system, most notably its accuracy, is affected by noise in the
electronic data.

Tolerance for data sparseness is the degree to which the qual-
ity of a system is affected by incompletenessor lack of data.

The availability and level of detail of data and the accuracy are
central issues in choosing among different techniques.It is some-
times not possible for an organization to get hold of the data thatit
would ideally like to have in order to develop a system. The data
that the organization can get may not havethe level or types of in-
formation required, the data may not go backhistorically as far as
necessary, or may not provide as many data points as would be
ideal.

Tolerance for complexity is the degree to which the quality of
a system is affected by interactions among the various compo-
nents of the process being modeled or in the knowledge used to
model a process. Complex processes involve many, often non-
linear, interactions between variables. A prototypical example of
this is weather prediction. Weather systems involve thousandsof
factors such as temperature, topology, wind speed, and so on.
These variables all interact in very complex ways, which is why
long-term weather prediction ts virtually impossible.

The availability of knowledge about how to deal with the com-
plexity of the problem at hand makes the problem easier to model.
Lower complexity problemsare easier to model.

Learning curve requirements indicate the degree to which the
organization needs to experiment in order to becomesufficiently
competent at solving a problem or using a technique.  
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Logistical Constraints

Independence from experts is the degree to which the system
can be designed, built, and tested without experts. While expertise
is valuable, access to experts within an organization can be a logis-
tical nightmare and can be very expensive.

Computational easeis the degree to which a system can be im-
plemented without requiring special-purpose hardware or software.

Development speed is the time that the organization can af-
ford to develop a system or, conversely, the time a modeling tech-
nology would require to develop a system.   



CHAPTER

Data-Driven
Decision Support

... [C]ompanies today are manipulating data in the terabyte (onetrillion

bytes) to pedabyte (one thousandterabytes) range. If bytes were raindrops,

that would be enoughtofloat the QEII.

—Edgar F. Codd,etal.

“Data! Data! Data!” he cried, “I cannot make bricks without clay!”

—Arthur Conan Doyle, spoken by Sherlock Holmes

Ifwe are to have a reallyfast machine, then we must have our information,

or at least part of it, in a more accessibleform...

—Alan Turing

Managers need information retrieval that matches the speed of thought.

—Anonymous

The fundamentalinput to any intelligent system is some sort of data. Although com-
puters were originally developed to perform complex mathematical calculations, re-

searchers soon realized that they had tremendous potential for organizing data. But

fluid access to large amounts ofdata remained a problemfor most businessusers. Al-

though businesses stored lots of data, especially about their transactions, they rarely

made good useof them. With the maturing of network and database technology, this

has changed. Timely and accurate management information is becoming more of a

reality. This chapter describes a new wayof thinking about data and a new genre of

tools that are making this possible.

INTRODUCTION

Several years ago, it was estimated that the amount of electronic data in the world
was doubling every 18 months. By current standards, that estimate is probably far
too conservative. As a society, we’re awash in data not only because the volume of
what gets recorded electronically is exploding, but also because people’s accessto it

= 30 @
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is increasing at a tremendousrate. Businesses, researchers, and even casual homeIn-

ternet users, are experiencing intense “data overload.” That’s why there’s a dire

need, particularly in business, for systems that can find, summarize, and interpret
large amounts ofdata effectively.

Businesses are recognizing the value of data as a strategic asset. This is re-

flected by the high degree of interest in new technologies like “data warehousing,”
and “OLAP”systems that make use of these warehouses.

As the name implies, a data warehouseis a large-scale storage facility for data.
Like a conventional industrial warehousethat stores products from many different
sources, bringing the goods together in one place until they are needed, a data ware-
house stores data from many different databases until they are needed for business
decisions. And, like an industrial warehouse, a data warehouse makesit possible and

convenient to combine items from different sources into an integrated package.
OLAPsystemsare the tools that help decision makers actually package the various
data products in the warehouse anddeliver them as needed.

Whyare these types of systems useful from a business standpoint?
The current reality is that managers need to get information a lot faster if they

hope to run a businessintelligently. Suppose that as a sales managerofa line of copy-
ing machines, you have a hunch that your largest customersare the least profitable.If
your hunchis true, you’d like to alter your pricing and customer supportstrategies to
try to increase the profitability of these large clients.

Managers constantly want answers to such seemingly simple questions but
rarely get them in timeto be useful. There is generally a long time lag between the
point that a business managerhas a hunchora hypothesis that needs testing and the
point where an answeris retrieved. For many businessestoday, that just isn’t good
enough. Managers need “information retrieval that matches the speed of thought.”

So whatare the barriers to this information-rich world and why do you need
special systems to overcome them?

Businesses have long made use of transaction processing systems to manage
huge amounts of data relating to operations: billing, invoicing, and auditing. These
systems, in the language of our industrial warehouse metaphor, are like the individual
producers. These are mission-critical systems. They have to be accurate, fast, and reli-
able. Each is specialized for a particular problem and finely tuned to do what it does as
efficiently as possible. Each has its own format and structure. As a result, the data
recorded in most of these transaction processing systemsare not easily accessible to
other systemsandit is also not easy to look at the data in any way butthe prescribed
structure. A great deal of effort is still required to get useful information out of such
systems.

Another difficulty is that data access can be prohibitively expensive from a
computation time standpoint. Most transaction processing systems run on huge multi-
million dollar mainframe computers. These machines usually have large staffs and
special data centers that exist just to keep them running. As a result, mainframe com-
puter time is very expensive, and managementis under pressure to keep its usage
undercontrol. From an operations standpoint, most managers consider data access to
be simply a lower-orderpriority than billing customers.

But the expenseis not just the salaries of the data centerstaff. It can be measured
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in terms of time and inconvenience as well. Because of the complexity involved in
using most database systems,it is easy for a well-intentioned user to unwittingly issue

a query on a business database that will bog down the host computer. Such queries
could execute for days, weeks, or months! Imagine what would happenif yourbilling
system server were hit with such a query while it is generating invoices for the day.
Even if a user is experienced, some queries just take a long time, no matter what you

do. If you want to ensure that your operations go smoothly, providing users with ad
hoc data access can be a dangerousthing to do.

Furthermore, because manyof the applications that businesses need call for a
lot of computing powerandstorage space,it is not uncommonfor a single company’s
data to be spread out across many databases and many computers, sometimes even
across many states or countries. While this allows the firm to process data more
quickly, it makes it almost impossible for a single user to bring togetherpieces of data

from different operational areas of the business.
Finally, even simple queries on a single database often demand a level of pro-

gramming skill that most businesspeople do not have. The result: Managers submit
requests for reports to a department of programmers whothentry to bend the transac-
tion systemsinto shapesthat will satisfy the businesspeople.

The bottom line is that transaction processing systems cannotbe used very eas-
ily to do anything except processtransactions. Any other applications will tax them.
But users have a hard time accepting this.

Why?
At the same time that businesses have been developing powerful mainframe

computing architectures, software on the average user’s desktop has become increas-
ingly user friendly. This gives the average businessperson powerful data analysis and
modeling tools right on the desktop. Many of the decision models that users want to
play with can be implemented using simple spreadsheet or database software on a PC.

As a result, it is common to find users with individual models that are com-

pletely independentof the organization’s MIS department. What users are crying for
is data to feed into their powerful user friendly analysis tools. The lack of fluid access
to corporate data has limited the inroads of desktop computers in providing good
businesslevel information.

To be able to put decision data into the hands of more decision makers, busi-
nesses are turning to data storage facilities that allow users to manipulate data more
easily. The generic name for these types of systems is a data warehouse. Theidea be-
hind a data warehouseis simple: Siphon off and integrate data from various transac-
tion processing systems into a single separate place where the data can then be used
to feed a range of decision support applications. Typically, data warehouses contain
between 10 and 500 gigabytes or more of data from across an organization.

But oncethe data are collected, users still need an easy wayof digging through
them to get to the pieces they are interested in. OLAP systemslet users dothis.!
OLAP, which standsfor on line analytical processing, is supposed to make possible
“retrieval at the speed of thought.” These systems eliminate the pain of waiting
months for an application programmer to code up something and prayingthatit’ll be
what you need.

 

'Some OLAPsystems bypass a data warehouse altogether, accessing transaction databasesdirectly.
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THE ABCs OF DATA-DRIVEN DECISION SUPPORT

To appreciate what data warehousing and OLAPare all about, consider an ad hoc
kind of question that a sales manager might want to answer:

“Whatts driving sales in the Northeast region?”

This soundslike a simple question. It turns out, though, that most current infor-
mation systems would have a very hard time bringing the data together to answerthis
type of question on the fly. The data that the sales manager needsto see would usually
be spread over several database systems: billing, inventory, and personnel, for exam-
ple. These databases might be on different computers or even in different states. Fig-
uring out how to bring the data together and reconcile the different databases with
each other can be daunting.

But data problems are only part of the issue. The sales manager’s question is
also sufficiently open ended, sufficiently “human” one might argue, that it could
mean different things depending on how youinterpretit. Is the user looking for the
revenues of each of the top 10 products? Orthe profit per sale by salesperson in the
Northeast? Or the breakdown of revenues by city across the Northeast? Maybe the
sales manager can’t even be more specific about what he or she would really like to
see unless he or she sees an overall picturefirst!

The point is that the sales manager’s requirements are interactive. If you show
somedata, the sales manager will look at it and tell you more about what is needed.
There is a loop being created: The manager makes a request, gets the results, analyzes
the results, uses this new information to formulate another request, and so on.

This loop is not very satisfactory to users since there is always a bottleneck in
the loop: the request. A user needs to go through some arcane database system or pro-
grammerto get at the data. Data warehouses and OLAPsystemstry to unclog this
bottleneck.

So why doesn’t every company run out and build a data warehouse and OLAP
system?

It’s not that easy. For users, access is the whole issue with respect to data ware-
houses, but for an organization, it is only one part of the equation. Creating a data
warehouserequires serious business thinking since the content of the warehouse de-
pends on the kinds of questions users are going to want to answer with the data.

If the data warehouseis to feed a variety of applications, it must be defined from
a business-level perspective. This takes time and planning.It often means coordinating
different business units and inventorying the data assets that the entire firm possesses.

To put data warehouses and OLAPsystemsin perspective, let’s look at the
forces that have led usthere.

The Old Way

Let’s say that you are a large toy manufacturer. Every day, hundreds of orders for
hundreds of different toys and games comein to your firm and need to be processed,
tracked, and billed. Manually, this would require an army of clerical and administra-
tive staff.
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But in the 60s and 70s, this began to change. Mainframe computer technology

madeit possible for large businesses to organize their order processing and billing

electronically. These on line transaction processing (OLTP) systems came aboutin
part because of advances in computer hardware, and in part because of the develop-
ment of database software that ran on these new computers.

To make the access and organization of data easier, computer scientists devel-
oped database management systems (DBMSs). These systems were designed specifi-

cally to store, organize, and retrieve data quickly.” The early DBMSapproaches were
based on the indexed sequential access method (ISAM). ISAM databasesstoreall of

the data in a large file. In addition to the main data file, ISAM systems also created
separate files called indexes. Indexes sped data access tremendously.

Index files work the same waythat the index of a book works. The pagesofthis
book are arranged in a particular order: by the chapters, sub-chapters, and so forth.
But, if you want to find information about a particular subject, and you don’t know

which chapterit is in, you can use the index in the back of the book.
For example, if you want to find the part of this book that deals with the RETE

algorithm, you caneitherstart at the beginning of the book and keep reading until you
see the words “RETEalgorithm,” or you can look at the index and find out on which
pages in the book we mention the RETEalgorithm.In effect, an index helps map a
“value” such as RETEto a “physical location” on a hardware device much like the
page numberofa book.

For our toy example, Figure 4.1 shows how the toy manufacturing database
might store and index orders. In the figure, the index key for the first index is the

nameof the customer. The data are ordered by this key. To find where the records for
Funland Toysare, just look up the key “Funland Toys”in the Index-by-Customerfile.
Funland Toysis in database rows2, 11, and 15. Going back to the main datafile, you
can see that the record at row 2 is indeed an order from Funland Toys and it shows
that the store ordered 10 Messy Paint Kits on 12/1/96.

You could also print out a list of all customers that ordered 10 items or more by
using the Index-by-Quantity file. Just go downthelist until the quantity key is greater
than 10 and print out the record at each row indicated in the index after that. Indexes
let you changethe orderof the data, without actually sorting all of the data each time.
In effect, the data are simultaneously in the order of each of its indexesall the time.

(By the way,the data in Figure 4.1 can answer the question about what is driving
sales in the Northeast region. Unfortunately, ISAM systemsare not very goodatlet-
ting users discover the answers to questions like this. Can you see what’s driving

sales?)

 

*It turns out that sorting and searching data can be very complicated. In fact, developing efficient algorithms for

doing these things was what most early computer scientists spent much oftheir time thinking about. Being able

to search and sort quickly can mean the difference between an application that increases the efficiency of a pro-
cess twenty-fold, and one that is impractical for business purposes.

For example,let’s say that you had 1,000,000 orders from different toy and departmentstores in yourtoy
database. Let’s say that you had a really fast disk drive that could read or write 10,000 records per second. To
find a particular order could take 0.0003 seconds, a second and a half, or a minute and a half, depending on the

waythat youset up the search. If that doesn’t impress you, considerthat to sort all 1,000,000 orders by date

could take you 1% minutes, 23 minutes, or a staggering 3 years and 2 months depending, again, on how youset

up yourdata!
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Complete Data
 

  
 

 

 

DB_ROW DATE CUSTOMER REGION PRODUCT QUANTITY

1 12/1/96 Toy Town SE Mr. Snowman 10
2 12/1/96 Fun Land Toys NE MessyPaint Kit 10

3 12/1/96 Toy Town SE Messy Paint Kit 25
4 12/1/96 Joe’s House of Toys NE Death AvengerDoll 5
5 12/2/96 Toy Mania SE Mr. Snowman 10

6 12/2/96 Nutcracker Toys SE Puppet MakerKit 10
7 12/2/96 Joe’s House of Toys NE Puppet MakerKit 20
8 12/2/96 Toy Town SE Death Avenger Doll 20

9 12/2/96 Nutcracker Toys SE Mr. Snowman 10
10 12/2/96 Toy Mania SE Messy Paint Kit 5
11 12/3/96 Fun Land Toys NE Mr. Snowman 25

12 12/3/96 Nutcracker Toys SE Death Avenger Doll 20
13 12/3/96 Toy Town SE Puppet MakerKit 10

14 12/3/96 Joe’s House of Toys NE Mr. Snowman 25
15 12/3/96 Fun Land Toys NE Death AvengerDoll 5

Index by Customer Index by Quantity

CUSTOMER DB_ROW QUANTITY DB_ROW
Fun Land Toys 2 5 4

Fun Land Toys 11 5 10
Fun Land Toys 15 5 42
Joe’s House of Toys 4 5 15

Joe’s House of Toys 7 10 |
Joe’s House of Toys 14 10 2

    
 

   
 

FIGURE 4.1. A Toy ISAM Database and Two Indexes

ISAM represented a great step forward in storing and retrieving data. Most
early DBMSsused ISAM architectures. But ISAM wasnot without its problems. For
one, each index in a database needed to be updated any time a record wasaddedto
the database.? This meant that if there were 10 indexes, then each time a new record

was addedto (or deleted from) the database, each of the 10 indexes also needed to be

modified. This became more and more time consuming as the numberof records in a
database and the numberofindexesincreased.

Even more troubling, however, was that the designer of a database had to deter-

mine, before the database was everbuilt, how the users were going to need the data
arranged. In order to create indexes, a designer needs to specify which keys each
index will use. This is the same as the designertelling the user in which orders the
data can be arranged and by whichcriteria the database can be searched. This made
retrieval inflexible.

 

*This could be necessary sometimeseven if only a single field in a record was changed.
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A breakthrough came with the advent of relational database managementsys-
tems (RDBMS).Instead of storing all of the data in a single large file, RDBMS broke
up data into smallerfiles that made it easier to keep data consistent and to maintainit.
This is called data normalization.

To provide a flavor of normalization, consider our toy database. Notice that

every time a record for Nutcracker Toys showsup in Figure 4.1, the Region field is

always “SE.” This is a waste of space. Why? Because every Nutcracker Toysis al-
ways in the SE region. Even if that field weren’t stored in the database with each
record, you could find the region for all of the Nutcracker Toys records just by look-

ing it up once and copyingit ontoall of the records.
In recognition of this, instead of storing the fact that Nutcracker Toysis in the

SE region in every record, an RDBMSapproachcreates a separate database file or
table that maps each companytoits region. The orders table can then be smaller, con-
taining just the item ordered, the quantity, the customer name, and date.*

Whena user wantedto print out a complete listing like the one in Figure 4.1, he
or she would join the two tables. What this meansis that the user would tell the
RDBMSto look upthe region of the customerin every record in the orderstable. Fig-
ure 4.2 shows how this works. Note how the orders table is more compact now.

Although this might sound more involved, RDBMSwere a major advance in
data management. For one thing, much larger databases could now be constructed.
The region field was pretty small in our example, but imagine if you wanted to in-
clude addresses, phone numbers, contact information, and account numbers with

each record. In an ISAM system,this might mean adding separate fields for each item
and storing each of these long items with each record. If you had 5,000 orders from
Nutcracker Toys, you would have 5,000 copies of the address in the database (and
5,000 copies of the phone number,etc.).

With an RDBMSapproach, you could store the exact same amount of data with
only one copy of the address. In addition, this made it easy to change the address of
Nutcrackerif the customer moved. Instead of searching throughall 5,000 records and
making 5,000 changes (and updating indexesif necessary), you could just make one
changein the addressestable.

But more importantly, in addition to making data storage less redundant and
more efficient, RDBMS allowed users to tailor data more to their specifications.

Users could combine different tables to create views on the data that the designers of

the database had never imagined. Any table could be joined with any other related
table to bring together related information. (Of course,joins take time, but that wasn’t
an issue... at first.)

The powerful thing about such systems wasthat they provideda flexible “query
language” called SQL (structured query language) that allowed a user to write

database queries tailored to specific needs. Database queries could now be much
more involved and they could do much more complex things.

But there is no free lunch. Now in orderto get at the data, a user had to know
SQLin addition to knowing the structure of the database. This was fine for program-

 

*An RDBMSapproach to record orders would actually be implementeda little differently, but this example

serves to illustrate conceptually how RDBMSwork.
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Orders Table

DB_ROW DATE CUSTOMER PRODUCT QUANT
1 12/1/96 Toy Town Mr. Snowman 10
2 12/1/96 Fun Land Toys MessyPaint Kit 10

3 12/1/96 Toy Town MessyPaint Kit 25

4 12/1/96 Joe’s House of Toys Death AvengerDoll 5
5 12/2/96 Toy Mania Mr. Snowman 5
6 12/2/96 Nutcracker Toys Puppet MakerKit 10

7 12/2/96 Joe’s House of Toys Puppet MakerKit 20

8 12/2/96 Toy Town Death AvengerDoll 20

9 12/2/96 Nutcracker Toys Mr. Snowman 10
10 12/2/96 Toy Mania MessyPaint Kit 25
11 12/3/96 Fun Land Toys Mr. Snowman 25

12 12/3/96 Nutcracker Toys | Death AvengerDoll 20

13 12/3/96 Toy Town Puppet MakerKit 10
14 12/3/96 Joe’s House of Toys Mr. Snowman 25

15 12/3/96 Fun Land Toys Death AvengerDoll 5

Region Table

CUSTOMER REGION
Fun Land Toys NE

Join tables on Joe’s House of Toys NE
customer nameto get region ®- Nutcracker Toys SE

Toy Mania SE
Toy Town - SE   
  
 

FIGURE 4.2. A RDBMSApproach Which Eliminates Keeping Many Copies of the Region
Around for Each Customer

mers, but most managers didn’t know it and were unwilling to learn it. Even thoughit
was written to be easy to use, to most nontechnical people SQL looksthreatening. For
example, here’s an example of an SQL query that might show pending orders for a
particular product:

select count (*) from pending_orders_queue q, orders_main m

where q.sold_by_id=20010

and q.s_id = m.s_id

and m.s_type=152

and q.status_id =2

To write this query, a user had to know notonly the syntax of SQL, but also the
structure of the database (whichtables to join) and the details of each table (variable

names, etc.). While this was fine for database specialists, most managers and business-

people had a tough time with it.
But managersstill needed information. To get businesspeople the data they

needed many firms tried to understand and systematize senior managers’ data needs.
They then predefined the access paths data to the data the managers needed.
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These systems, known as executive information systems (EIS), were essentially

front-endsto traditional transaction oriented database systems.° They attempted to pro-

vide the right intelligence to the decision maker by predefining the types of infor-
mation a manager would typically want to see and putting it into an intuitive visual
format.

For example, instead of requiring the user to type the cryptic (to a non-

programmer) SQL query in the example above, an EIS mightlet the user choose
“Sales Status Update” from a menu,specify items of interest, and from there, the

system would make the appropriate translations for the database query. Figure 4.3
shows howthis might workconceptually.

The key thing to notice aboutEIS is that they represent a major step away from
using data to track transactions and toward using data to support decisions. Rather

than using the databaseto fill out invoices and track the status of a particular order,
EIS allow the userto ask, “How is John Smith doing on sales of games?” This was a

fundamentally new view of data. Now data were not only an audit trail but they were
also an input to managementtools.

EIS allow users to take transaction-level data that are far too detailed to be useful
to managers and aggregate them into more meaningful units. Instead of presenting in-
formation such as, “On 12/1/96, John Smith sold 15 units of the game Mr. Snowmanto

Toy Town,” EIS present summary information like, “John Smith has sold 25 units of

games,and 60 units of arts and crafts kits.”” Managers could use this summary informa-

tion to decide how well John Smith is doing, how well gamesales are going, and so
forth.

Even though EIS provided much better access to data for decision support, they
have someserious drawbacks. Since all of the database queries and reports are prede-

fined in the EIS,users are limited in the information they could derive from the data.If
a user wanted to see data organized along a criterion that didn’t fit into the pro-
grammedframework, new programming neededto be done. This took time and cost
money. EIS were,in fact, inflexible by design since the access paths were predefined.

Furthermore, these systems did not address a major drawback of using transac-
tion processing systems for decision support. Most EIS still required a lot of effort to
bring together data from disparate databases throughout the firm. For example,it
might be difficult (or impossible) to combine data aboutthe product sales of one sub-
sidiary with data from product sales of another since the two subsidiaries used differ-
ent databases and computers. Nonetheless, a manager might wantto do this to look

for corporate synergies among sharedclients.

Scrubbing, Transforming, Slicing and Dicing with
Data Warehouses and OLAP Systems

In response to the limitations of traditional EIS, a new approach to data access has
begun to emerge. This new approach involves data warehouses and OLAPsystems.

 

‘Technically most true EIS performed some type of rudimentary data aggregation and movedtransactions data

into an interim storage facility. However, a large class of DSS similarin spirit to formal EIS, did not do this. In
the business environment these DSS were often knownas EISaswell, thus blurring the line.
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Sales Status Update Form

 

Salesperson John Smith
 

 

Product Type GAME
 

 

Status PENDING      
 

Translate from fo database codes

 

John Smith = 20010
GAME = 152
PENDING = 2    

Plug codesinto predefined database query

 

select count (*) from pending_orders_queue gq, orders_main m

where q.sold_by_id = 20010

and q.s_id = m.s_id

and m.s_type = 152
and q.status_id = 2   
   
 

FIGURE 4.3. An EIS Provides User-Friendly Access to Data

These systems allow users to have flexibility and ease of use. Data warehousing
applications and OLAPsystems put more of the powerof data retrieval and synthesis
into the hands of business managers and decision makers.

A data warehouseis a database specifically designed to answerbusiness ques-
tions. It serves as a repository for many types of business data from manysources.

Data from these sources are transferred into the warehouse to make them easierto ac-
cess. Once the data are in the warehouse,they are extensively indexed and combined
for very fast access.

OLAPsystems are high-powered software front-ends and data manipulation
systemsthat sit on top of data. These systems are like very flexible EIS. Although we
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call them front-ends, they are usually a good deal more powerful than simple graphi-
cal user interfaces.

OLAPsystemsallow users to “slice and dice” data in almost any manner. Typi-

cally an OLAPsystem lets users select variables from a list, mix and match them, and
perform business-related operations on them very quickly. For example, most OLAP

systems allow a user to very simply convert individual records into regionaltotals,
quarterly totals, percentages, or annual growth.

If OLAP system users need more detail about somepiece of data, they can often

drill down into the data as well. For instance, while looking at the sales of Messy

Paint Kits by region, a manager may want to understand whythe Southeastregionis
doing so muchbetterthan the rest of the sales zone. The manager might drill down
into the region by customer and discoverthat a single large chain of department

stores in the Southeast has madea series of large orders for Messy Paint Kits. Or
maybe the manager drills down by salesperson and discovers that John Smith issell-
ing larger volumes than other salespeople. By drilling down into John Smith’s indi-
vidual sales, the manager may discoverthat John Smith has offered a discount that
makesthe items moreattractive to buyers without reducing profits very much. And

wouldn’t it be interesting 1f John Smith services that Southeastern chain of stores?
Andso on.

The key thing to note here is that the user has much more control than with
traditional EJS. An EIS dictates beforehand whatdata a decision makercan orcan-
not use and in what sequencethe user can see the data. OLAP systems allow the user
to dive into the data and explore them at levels of detail more appropriate for his or
her analysis. In most cases the user can get to the data, without resorting to special
programming.

An easy way to think about the differences between OLAP systems and data
warehousesis that data warehousesbringall of the data together from across the orga-
nization, and OLAPsystemslet you look at them and manipulate them interactively.

To understand how data warehousing and OLAPsystemswork,it 1s useful to
considerthe steps that data go through as they move from a collection of separate
OLTPdatabaseinto a single data warehouse and then through an OLAPsystem.

Figure 4.4 shows a rough schematic of how you can think about data ware-
houses and OLAPsystems. Keep in mind when youlookat the figure, though, that in
many systems several components may be wrapped up in one. For example, some

OLAPengines are also small data warehouses, and many data loaders incorporate
data transformers as well.

The figure shows how data movethrough five steps on their way into the data
warehouse.First the data are loaded from various remote data sources. As the data are
loaded, they must be converted to a commonformat, scrubbed to getrid of errors, and

transformedinto things like aggregates that are useful for analysis. Finally, the data
are put into the warehouse wherethey are indexed forfast access.

The data loader’s job is to handle the operational side of moving data from a par-
ticular data source into the warehouse. It handles information like determining
whetheror not there have been changesto the original data source and how the new

data should be added to the warehouse.It also determines how particularset of data
should be loaded. Doesa specific request need to be madeto a mainframe? Should a
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FIGURE 4.4 Data Warehouses and OLAP Systems

file be read from a local area network (LAN) server? Should a CD-ROM drive be

read? Andso forth. The loaderis usually also responsible for scheduling when these
activities will take place.

The data converter handles translating data to formats that are appropriate to the
data warehouse. For example, the data warehouse mightstore text in ASCII format,

but a mainframe computer might use EBCDICtostoreits files. The converter would
perform the conversion. Or a data vendor’s CD-ROM mightlist industry codes as
“FINANCE,” “MANUFACTURING,” “SERVICE,” “UTILITIES,” and “TRANS-
PORTATION,” but the data warehouse might use Standard Industrial Classification

(SIC) codes. This type of conversion would also be done by the transformer. Or one
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database might call a variable “prft_marg,” while anothercalls it “prof_mrg”’ and the

data warehousecalls it “profit_margin.” In order to be able to use the variable from
these three different sources, the transformer would need to map them all to a stand-

ard variable name.
The scrubber cleanses the data. What this meansis that it identifies and reme-

dies errors or omissions in the data. Missing values, for example, might be replaced

with a predefined code or a default value. If a character string is found in a field that

is supposedto be an integer, the record maybe flagged or discarded, oran errorre-
covery procedure might be executed.

Finally, the transformer performs aggregation and summarization. Forinstance,

all of the individual sales by John Smith might be summarized into a single variable
to make the information more meaningful or easier to access. Depending on the busi-
ness requirements, the detailed sale-by-sale information might also be included in the
warehouse.

It is important to note that data warehouses don’t generally need to be updated in

real-time. OLTP databases are designed for fast writing and record keeping. They are
constantly being updated with new information as it becomesavailable. In contrast,
data warehouses usually perform updates periodically during off-hours. Most data
warehouses cannotoperate effectively 1n real-time because they are not set up forthis.

On the other hand, data warehouses usually store historical information in a
much more accessible manner than OLTP systems. Using OLTP systems, you have to

do a lot of work to summarize informationhistorically and you need to perform com-
plicated operations to figure out when new records entered the database and for how
long older records were valid. Since data warehousesare used for decision support,
they usually do not flush out old data to make room for new data. Becauseofthis,
they are more easily able to capture historical trends in the data. And becausethe
warehouse 1s designed with business objectives 1n mind instead of transactions,
queries on them lead to more actionable answers.°

Oncethe data are in a warehouse, the OLAP server becomes important for an-

swering these queries. But how?
OLAPsystems let you explore data in ways that are decision oriented. For

starters, an OLAP system lets you perform varioustypes of “slicing and dicing” of
data easily and without defining beforehand what you will need to do. In other words,
you are able to view the data and get at them from manydifferent perspectives along
many different dimensions. But more importantly, the system gives you the entry
points into the data based on the characteristics of the data themselves. The system
wouldalso allow youto drill down into data to get to higher and higherlevels of de-
tail if that’s what you need. Finally, OLAP tools are usually fast and easy to use. You
can plow through megabytes or gigabytes of data without having to wait hours for
yourresults.

There are several different approaches to OLAPrepresentation, but the most

 

°To be technically correct, data warehouses typically contain data spanning about a year’s worth of history and

they usually aggregate the data to facilitate analysis. A similar type of database called an operational data store

is like a data warehouse butis typically used to store operational (not analytic) data for a period of only 30 days

or so and wouldn’t usually perform aggregation. The main purpose of the operational data store is to bring data

togetherin one place for convenience in reporting, and so forth. In practice both are often referred to as data

warehouses.
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common is a multidimensional approach to data storage. Figure 4.5 shows this
method of structuring the data. In OLAPterms this representation shows a matrix of
customer dimensioned on product. The blocks orcells are like records in the toy
database. A row ofcells is called a vector.

To see why a multidimensional approach1s so powerful, it is useful to consider
how complicated data manipulation can get without it. Let’s go back to our toy
database. This database only contains 15 records, but you can imagine that it contains

15,000 or 15,000,000 if you like.
How would you answerthe question,

“How many Mr. Snowman gameswere sold?”

Looking back at the database in Figure 4.1,’ you can see that, in this case, since

there is no index for product, you would have to run throughall of the records in the
database, totaling all quantities that corresponded to records with a productof “Mr.
Snowman.”This is not very efficient.

You might suggest adding an index for product. Let’s say that you dothat.
Nowyouask,

“How many Mr. Snowman gamesweresold on 12/2/97?”

Well, again, since there is no index on product and date, you have to examine
each record(orat least all of the Mr. Snowman records, assuming you made a product
index in the last step).

But the.problem here is that you don’t know in advance how you will want to
see the data. In the first case you looked at the dimension of product, in the second

case you drilled downa little bit and looked at product by date. You could just as eas-
ily have wanted to see product by customer or customerby date, and so forth. It de-
pends on what questions you need answered.

Ourtoy database has only a few columns, but most databases have many more.

Each can potentially become a dimensionof inquiry. It 1s impractical to try to antici-
pate every possible combination of dimensions and index your OLTP system on these
dimensions. Evenif this were possible, doing so would bring yoursystem to its knees.

Nowconsiderthe multidimensional OLAP approach shown in Figure 4.5.
The white cells in the figure are inputs to the OLAPserver. They represent the

atomic level or simple data elements. The shaded cells represent outputs. These are
the results of aggregating and transforming data.® Outputs are often formed by per-
forming operations on the vectors. For example, in the figure, the outputs are various
sub-totals and totals along different dimensions of the data. These were formed by
simply summingalongthe vectors.

In this example, the gray cells are a “count” of items sold. However, the gray

cells could result from applying other functions to the data such as average cost of

sold items, total revenues, and so on.’

 

’We will be using Figure 4.2 in this discussion for simplicity. Although Figure 4.1 represents an ISAM database,

similar reasoning to that which follows holds for RDBMSlike the one represented in Figure 4.2.

"In some systems these cells might be computed by and stored in the data warehouse. In others they would be

computed by the OLAPsystem.

°There could even be whole dimensions made up of measures (output cells) where one vector would represent

averages, one vector would represent totals, one vector would represent maximums,andso on.
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FIGURE 4.5 A Multidimensional OLAP Representation of Customer Dimensioned on
Product

Notice that depending on the question you are interested in answering you can

get the answer by simply going to the appropriate dimensionandselecting the correct
input or output cell. For example, to find the total number of Messy Paint Kits sold,
you just needto find the cell at the intersection of the vector Messy Paint Kit and the
total output vector.

Notice that for the customer dimension,the entry points into the data are “Fun
Land Toys,” “Joe’s House of Toys,” etc. In other words, every value of the customer
attribute that appears in the database is an entry point into the data. Think aboutthis.
You canliterally “see” every value of every attribute and dive into the data from any

of these values. With data that are continuous, like revenues, the system might group

it into various buckets or ranges.

The usefulness becomes even clearer when weadd the dimension of time. Con-
sider how many questions you can ask if you expand the matrix to a cubeas in Figure
4.6. Answering even a handful of the questions shownin the figure would require a
tremendous amount of programming in a traditional OLTP system. Furthermore,

some queries would take hours or days to execute.
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FIGURE 4.6 Hypercube data representations make it convenient to query data along any
dimension.

Something else becomes clear when you examine Figure 4.6. Earlier we spoke

of drilling downinto the data. Looking at the cube, you can see how this might work.
You mightstart in the bottom right by asking simply, “How many items were

sold?” Once you got this information, you might pop thatcell out to reveal the next
level of vectors. Let’s say you had a hunchthat overall sales were boosted bya large

numberof Messy Paint Kit sales. You might ask about the total numberof units of
Messy Paint Kits sold (the middle cell at the bottom). Now maybe you want to know
whysales of Messy Paint Kits were so strong. Perhaps you suspectthat sales to a par-

ticular client were particularly strong. You could check this by peeling away another
layer of cells to determine how many Messy Paint Kits were sold to a particular
client, say, Joe’s House of Toys (the middle cell near the top). If you werestill curi-
ous, you could peel away anotherlayerto see if a particular day wasa strong selling

day to Joe’s.
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But this is only one possible path of analysis. You could easily have had a
hunch that a certain date was a particularly strong sales date for all products. You
would start by asking aboutthe total sales on a particular day, say 12/2/97. From there
you could branch off in a variety of directions by spinning the cubeto the right place
and drilling to the appropriate cell.

If you have more than three dimensions,the basic principle is the same, you just
add another one to the representation. Vector and matrix operations work fine no
matter how many dimensions you add. Unfortunately, as will often be the case with
concepts wetreat in this text, it is very difficult to imagine what a four- orfive-
dimensional hypercubelookslike!

Most OLAPsystems have graphical userinterfaces that allow users to see data
both numerically and in a variety of graphical representations. For example, the sales

of a region might be shownin a table, as a series of bars on a bar graph,or as colored
patches on a mapof the United States. The user can drill down by pointing to the re-
gion of the screen for moredetail.

Figure 4.7 shows one waya typical OLAP system might represent the toy data
in our example on screen. Note how the data are shownin percentage terms. This
simple step makes the data much more meaningful. (Most RDBMS would have to
perform several queries and joins just to do that!)'° For more detail on the sales of
MessyPaint Kits in the Northeast region, the user might use the mouseto click on the

Messy Paint Kits region of the pie chart on theleft.
By the way, looking at the chart, you can probably figure out whatis driving

sales in the Northeast region. Fully 56% of the items sold are Mr. Snowmans.In fact
78% of the items sold are either Mr. Snowmansor Puppet Maker Kits. Death Avenger
Dolls and Messy Paint Kits are not very popularin the Northeast.

Contrast this with the sales in the Southeast where Messy Paint Kits are the
numberoneseller, with a 30% share of the quantity. In contrast, the Mr. Snowmans
and Puppet MakerKits that were so overwhelmingly popular in the Northeast only
get abouta third of the sales in the Southeast.

If you are a marketing executive for the toy manufacturer, you mighttry to fig-

ure out why Mr. Snowmanand Puppet MakerKits are so popularin the Northeastor,
conversely, why Messy Paint Kits and Death Avenger Dolls don’t seem to go over
very well.

Maybe the demographics of the Northeast region are such that the age levels of
the children tend to be lowerthan in the Southwestand also lower than the minimum
suggested age for the Messy Paint Kit. Maybe the Northeast has morereligious com-
munities that frown on aggressive toys like the Death Avenger Doll. And so on. This
could all have implications for how you market these and other products 1n the North-
east.

Onething is certain though. You now know whatis driving sales 1n the North-
east.

 

‘Evenif you did that, you have no guarantee that would be how you neededto see the data. The strength of

OLAPsystemsis that they let you try out many different hunches quickly to see which ones seem to payoff.
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FIGURE 4.7. An OLAPInterface showing percentage of sales by region and answering
the question, “What's driving sales in the NE?”

INTELLIGENCE DENSITY ISSUES

So whenis it a good idea to think about an OLAP/data warehousesolution?
Clearly, if you want to be able to look at several different databases at once,

combining their contents to make them more easily queried, a data warehouse might
be a good idea. Similarly, if you want to give users the ability to quickly slice and
dice data, OLAPsolutions can be appealing.

Because data warehouses combine data from manydifferent sources, aggregate
and scrub the data, they make it mucheasierto get at the data. In fact, even for stand-

ard database queries, some data warehouses experience one to two orders of magni-
tude increases in performance for queries.

But, as always,there 1s no free lunch. What data warehousing applications usu-
ally give up to get that high performanceis the ability to deliver real-time data. As a
result, users need to realize that the data they are basing their decisions on may be

several hours or days out of date. On the other hand, because the data have been

scrubbed, the data may be of higher quality than those in the transaction databases
that feed the warehouse. Missing values, nonsense characters, and incorrect data
types will often be corrected. These two factors balance each otheroutto a certain ex-
tent, but the user must be aware of the limitations of the data nonetheless.

In general, data warehouses need to be run on special-purpose computers, usu-

ally their own mainframe or network server. While this seemslike a big price to pay
for ease of access 1n the short term, in the long term, this arrangementwill save you a

lot of traffic on the transaction processing systems. Recall that most EIS and database

reports are run directly against an organization’s OLTP systems. This can cause
tremendousbottlenecks for those systems, so the cost may be worthit.
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Because of the high demand for computing power, developers have put a pre-

mium on efficient storage of data. To understand why this is so important, look back
to the first matrix we showed in Figure 4.5. Recall how not every cell in every row
had a numberin it. This made sense since not every customer ordered every item.
Imagineif there were 400 products instead of just four. Think about how muchspace
would be wasted storing blank cells if a customer had only ordered one item: The
vector dimensioning customer by product would waste 399 cells.

To get around this inefficiency, many data warehousing and OLAPsystemscre-
ate a special kind of hypercube that uses sparse matrices. A sparse matrix is like the
regular matrix shown in Figure 4.5, except that the empty cells are omitted. In other
words, rather than storing blank values in the emptycells, the entire storage location
is taken out of the matrix. These unused storage locations can then be used forstoring
otherdata.

Figure 4.8 shows what a sparsely populated hypercube might look like concep-

tually. Notice how the cubestill holds its shape and how the vectors’ outputcells

(darker shaded) still contain all of their values. This property allows the data to be

used as if they werestill stored in a complete hypercube, while at the same time sav-
ing a tremendous amount of space. For example, the cube of input cells shownin the
figure only requires about 60% of the storage space that would be required fora fully
populated matrix representation of the samedata.

Conversely, data that are redundant can be eliminated from representations as
well. For example,let’s say that the price of the Messy Paint Kit was $19.95. Since
the price does not change on a daily basis, every record for a Messy Paint Kit pur-
chase during the time when the price is $19.95 will have the exact same entry for
the price dimension. Again, imagine how many times $19.95 would occur over the

course of a month if 200 toy orders a day comein. This is the converse of the prob-
lem above. Rather than records not having data, every record has the same data.

Again this is wasteful. Most data warehouses and OLAPsystemsthat have func-

tionality for dealing with sparse matrices also can deal with this type of redundant

data. |
These types of innovations can greatly increase the amountof data that OLAP

systems and data warehouses can manipulate. Nonetheless, most of these systems

cannot approach the data storage and crunching power of OLTP systemsspecifically
designed to work on massive amounts of data. As more dimensions are added and
more data imported some systems begin to approach practical data limitations."

It is interesting to note that when wediscussscalability in most placesin this
text, we are specifically not talking about hardware and storageissues, but instead
about knowledge engineering issues. However, since data warehouses and OLAP
systems are more similar to DBMSthan to intelligent DSS systems, in this context
scalability shares a comparable meaning with traditional database systems.

 

"Many OLAPsystemsuse hierarchical representations for data to achieve sparse matrices. Say you had a di-

mension called product line containing each of yourfirm’s ten productlines. If the company had 100 products

total, you would need a 1000 cell hypercube (10 100=1000). By collapsing the products into the product-line

dimension you end up needing only 110 cells (100+10=110). The collapsing is usually done through aggre-

gation. Froma practical perspective many OLAPsystemstry to limit the numberof dimensions to about seven
orless.
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FIGURE 4.8 A Sparse Matrix Representation of the Toy Database

But, as we have discussed, OLAP systemsare also quite different than tradi-
tional DBMS.Ratherthan just looking at a static query, users can bend and mold their

data search to fit their exact needs. As the data or business changes, the user can re-

spond by changing hisline of inquiry orlevel of detail.
Because OLAPsystemsgive the userthis ability to dive into data and drill up

or down for more detail, the user can understand the data much better. OLAP

systems allow users to make the data speak for themselves. Rather than just getting a
summary of the data, a decision maker can also explore why the summary cameout

the wayit did.
Finally, you have to realize that the benefits of OLAP and data warehousing

do not comefor free. In order to understand which types of data to use and how to
organize it, you need to spend time with the people who understand the business.
These decision makers will tell you how they plan to use the data in the warehouse
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and what types of questions they will need answered. The organizationitself will
have to discover what types of data are available, where they are and what addi-
tional data elements might needto be collected to foster good decision making.

This can take some time. Addto this the need to set up an infrastructure to move

their transactional systems to a warehouse andthe need to configure new hardware
and it could take even longer. And don’t forget, you have to allocate time for the
maintenanceand training of support staff for the new systems. Nonetheless, you will
still probably experience a great increase over the turnaround time you might expect
if you were going to customize an EIS or create special reports for each user’s needs.

In summary, OLAPand data warehousing systemsstack up as follows:

 

 

 

 

 

 

 

 

 

 

 

Dimension OLAP/Data Warehouse But...

Accuracy Moderate Depends on how often data are updated
and how well they are scrubbed.

Explainability Moderate Usernavigates throughdata to find

explanation

Response speed High —

Scalability Moderate Dependson efficiency of data represen-
tation, use of sparse matrices, and
redundancy reduction

Compactness Low —

Flexibility High —

Ease of use High Needs good OLAPinterface

Independence from Moderate Needsto discuss uses to which data will

experts be put; needs to inventory data

Development speed Moderate Depends on complexity of existing

infrastructure and business uses of
data

Computing resources High Tends to reducetraffic on other core  business systems
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CHAPTER

Evolving Solutions
Genetic Algorithms

I have called this principle, by which eachslight variation, if useful,

is preserved, by the term Natural Selection.

—Charles Darwin

You can’t always get what you want...

but ifyou try sometimes, you just mightfind...

you get what you need.

—Mick Jagger

The genetic algorithm does implicitly whatis infeasible explicitly.

—John Holland

Optimization problemsinvolve finding one or a series of very good (optimal) solu-

tions from among a very large numberofpossible solutions. For certain problems,
powerful algorithms existforfinding these solutions using mathematical techniques.
However, in many cases, such as whenthere are trillions ofpotential combinations

and “poorly behaved”functions involved, mathematical techniques can break down.

A genetic algorithm (GA) solves problems by borrowing a technique from na-

ture. GAs use Darwin’s basic principles ofsurvivalofthe fittest, mutation, and cross-

breeding to create solutions for problems. Whatis particularly appealing about the

techniqueis thatit is robust atfinding goodsolutionsfor a large variety ofproblems.

GAs can be especially attractive since they do not require that you be able to describe
howtofind a good solution. The approachonly requires that you be able to recognize

a good solution when you See it. When it doesfind a good solution, the GA percolates

someof that solution’s features into a population of competing solutions. Overtime,

the GA “breeds” good solutions.
We start this chapter with a general discussion of optimization problems and

what makes some of these harder to solve than others. We then go on to discuss
GAs and show how they canbe usedeffectively to solve optimization problems.
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INTRODUCTION

In daily conversation, you often talk about doing things “efficiently” or choosing the
“best” option. For example,let’s say that it’s Saturday and you have to run someer-
rands. You’d like to go to the bank to get money, have lunch with a friend, buy a
Mother’s Day gift for your mother, go to the travel agent to makereservations for

your summervacation, and drop the dog off at the pet groomer. Let’s also assumethat

the different stops you have to makeare notall near each other.
Before you set out in the morning, you would probably try to plan out mentally

where you were going, and in what order. Your implicit objective would probably be

to minimize the time that you spend running around between errands. Nonetheless,

you would also haveto considercertain realities in your planning.
For instance, no matter how efficient it might be to go first to the restaurant

where you will meet your friend for lunch (it is closest), you cannot have lunch at
9:30 in the morning. Likewise, you cannot buy a gift for Mom until you go to the
bank to get money. And while you might be able to run all of your other errands be-
fore dropping Spot at the groomer, do you really wantto travel all over town with the
dog?

The schedule that you choose reflects your assessmentofthe realities of the sit-
uation, your own personal preferences, the amount of time and energy you have to
plan, and your opinionsas to what is mostefficient. Planning your daily scheduleis
an optimization problem in a microcosm: You knowthat there is an optimal, mostef-

ficient solution . . . if only you could findit.

OPTIMIZATION

The basic goal of optimization tasks is to figure out the best mix of components
(combination of elements, permutation of activities, set of values, etc.) for solving

some problem. “Optimal” is judged based on some pre-determined measure of good-
ness or fitness given someconstraints.

Said another way, optimization is the process of reducing the space of potential
problem solutions to one or a few of the best ones. Thecriterion for the goodness or
fitness of a solution is also a part of the problem, defined by you, and acts as a uni-
form measure for judging the quality of solutions.

Examples:
e Provident Investments, a portfolio managementfirm, wishes to choose portfolios of

financial instruments that will offer the highest yields, based on certain risk prefer-

ences and subject to various regulatory constraints.

e Ultima Systems, a computer manufacturer, has many types of computers with many
options and peripheral components. The firm wants to automatically generate com-
puter component configuration recommendationsbased upon userneedsand uses.

e ACMETransport, Inc., a shipping firm, needs to plan a delivery route that will mini-

mize the time and cost of the shipping, but at the same time, makedeliveriesto all 10
of its overseasclients.
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FIGURE 5.1. A Hilly Terrain of Possible Solutions

Optimization problems involve making decisions and formulating plansin situ-
ations where you have somesort of resource constraints: time, money, equipment,

personnel, etc. The goal of optimization techniquesis to try to make the best of such
imperfect situations by taking the fullest advantage of what resources, time, etc. you
have available.

Using a physical analogy, you can think of an optimization problem spaceas a
hilly terrain like the one shown in Figure 5.1. The valleys of the terrain represent the
worst solutions to a problem, and the peaks represent the best. An optimization
method seeks to identify the highest peak and climb it in as little time as possible.
Good methods need to avoid becoming stranded on top of a small hill or trapped in a
deep valley since this would only makeit harder to climb to the better peaks.'

To put it another way (and further extend our physical example), it might be
impossible to explore every inch of every mountain in the Alpsto find the highest.

 

'This is the general case in which weare trying to find an optimum value for some function orprocess.

In some cases (Chapter 6, for example), it is more convenient to think of the terrain as an “error space”in
which we want to minimize error and therefore seek out the valleys where the error is at a minimum rather

than the peaks. In practice, it is trivial to convert a maximization problem into a minimization problem and

vice versa.
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But unless you had a lot of time, it probably wouldn’t be a great idea to start

in an arbitrary valley and try to explore neighboring peaks oneat a time, on the
off chance that you would find the highest! Instead, you would befarbetter off if
you got into an airplane and flew over the whole region fora bit, surveying the
area. You could then drop downto explore the most promising (highest) looking

areas. This is essentially what optimization methodslike genetic algorithms seek
to do.

For example, consider again ACME Transport, the shipping firm. Let’s say the
firm had to make shipments to 10 different countries. Clearly, there are many routes
that an ACMEship can take to make even a small numberof deliveries? and some
will be better than others in terms of minimizing time and costs. For instance,it

makes more sense to go from San Francisco to London to Paris than it does to go

from London to San Francisco to Paris since the first route would use muchless fuel,

time, etc. The better route would be on a higher place in the problem terrain than the

second. The goal of the optimization processin this caseis to find the route for a ship
that best minimizesthe time and cost: the optimalroute.

You might be asking yourself why you couldn’t just try every solution and pick
the best one?

You might reason as follows, “ACMEcould just write a little computer pro-
gram to try all of the routes possible, and just pick the best! They could write the
program in a few hours and run it overnight.”

Good news... you would be right! Such a technique, called an exhaustive

search, would be guaranteed to find the right solution. (It generates and tests every
possible solution.) In fact, we would not even have to wait overnight. A very fast
computer could solve the problem described abovein a few minutes.

The bad newsis, if you were to increase the number of countries from 10 to

25, you would have to wait a little longer. Actually, you would have to wait a lot

longer. Specifically, if you had a very, very fast computerthat could construct and
evaluate, say, a million routes per second, and you had started the computer comput-

ing just aroundthe time that life began on Earth (about 4 billion years ago), then as
of today you would have evaluated just under one quarter of 1% of all the possible
solutions!?

Clearly, ACME would not want to take the exhaustive search approachif the
firm wantedto deliver any products on time.

The difficulty we have just illustrated is typical of what are known as NP-
complete problems. NP is shorthand for non-deterministic polynomial. What the term

meansis that the time required to solve a problem increases very, very quickly as a

 

If there were 10 customers andoneship, there would be 10! = 3,628,800 different routes possible.

‘Because there are 25! = 1.55 X 10” configurations and we can do one million (10°) evaluations per second,it

will take 1.55 X 10" seconds (25!/10°) to find the solution. Because there are 60 secondsin a minute, 60 minutes

in an hour, 24 hours in a day, and 365.25 days in a year, there are 60 X 60 X 24 X 365.25 = 31,557,600 seconds

in a year. In 4 billion years, there are 4 X 10° X 31,557,600 = 3.15576 X 10" seconds. Because wecalculated

that it will take 1.55 X 10'° seconds to completely solve the problem, we can calculate the percentage of the

problem that we can complete in 4 billion years as 3.15576 X 10'/1.55 X 10", which is approximately equal to

0.0023 or 0.23%.
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function of the number of elements in the problem.’ In ACME’scase this would
imply that the time required to solve the problem exhaustively would grow very
quickly with the numberof deliveries.

Whatthis means morepractically is that while such problems are usually man-
ageable for small numbers of elements, they quickly grow intractable if the number
of elements gets even slightly large. This, in large part, is why more efficient opti-
mization methods have been developed.

Optimization problems involve three components: a set of problem variables, a

set of constraints, and a set of objectives. To explore what each of these means, con-
sider how they apply to ACME.

To solve ACME’s problem, you can start by defining a set of problem variables
that describes various aspects of the problem. For the shipping firm, a variable might
be something like where to send a ship next, which crew and ship would be bestfor a
particular job, or the cost associated with sending a shipmentto a particularlocation.

Variables can be numbers, such as the number of products to be placed in the cargo
bay of a ship or the time a customer must wait for a delivery. Variables can also be log-
ical, such as the presence or absenceofa particular type of storage facility on the ship.

Constraints restrict the allowable values that a variable can have. Each can be
composed of expressions involving the variables you define as well as other constant
values. For example, you might wish to constrain the numberof ports visited by an
ACMEship, or the numberof tons of cargo it can carry. Here are three constraints

that might apply to ACME:

¢ Shipping costs must be less than 70% of fees charged.

¢ Customerwaiting time must be less than 90 days.

e If a customer does more than $ x of business with ACMEthen waiting time mustbe less
than 60 days.

Finally, you need objective functions that are used to evaluate the fitness of so-
lutions. Objective functions usually involve the minimization of some typeof re-

source usage (like time, fuel, or money), and/or the minimization of some undesirable

effect (risk of lateness, time wasted traveling with an empty cargo bay), and/or the
maximization of some benefit, such as profit or efficiency.

The following are possible objective functions for ACME:

¢ Overall delivery time is minimized.

¢ Overall profit is maximized.

 

*When wetalk about a particular problem being polynomial or non-deterministic polynomial what we meanis

that the numberof possible combinations to be considered in searching for solutions, and hencethe time it takes

to exhaustively search for a solution, is in some waya function of the numberof elements that make up a combi-
nation in the solution.

The simplest form of such a relationship is a /inear one. That meansthat if we doubled the numberofel-
ements (customers in our ACME example), we would expect the numberof evaluations (and the time) required

to find a solution to double as well.

On the other hand, sometimes a polynomial relationship exists. This meansthat the time would grow

faster than the numberof elements, perhaps growing at a rate proportional to the square of the numberofele-

ments. In this case, each time we doubled the numberof elements, we would increase bya factoroffour the

amountof time it would take to find a solution. Finally, non-deterministic polynomial problems exist for which

the time required to find solutions exhaustively grows evenfaster, as in the ACME example.
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e Ship fleet wear is minimized.

e Numberof repeated country visits is minimized.

The variables, constraints, and objective function used to describe an optimiza-

tion problem define the basic “geography” of the search space, and determine which

techniques might work. The objective function is the metric along whichsolutions are
ranked, andit, in effect, creates the hills and valleys.

For example, in Figure 5.1, there are two variables, so the search space has
three dimensions: the values of variable one (x), the values of variable two (y), and

the objective function’s value (z, the height) for every possible combination of x and
y. If we had more than two orthree variables, the search space would be harderto vi-
sualize, but the idea is the same.

The geography of the search space determines which optimization methods
are suitable for solving the problem. If the variables and function that define the
landscape are continuous(i.e., the z values in Figure 5.1 don’t jump sharply with
small changes in the x or y values), the solution space is continuousas in Figure

5.1.
Notice that there are no holes in the landscape andthat the landscape is smooth:

There are no plateaus, and there are no sharp points. As a result the high points in the

landscapeareall “continuously approachable.” If you’re standing at somepoint in the

landscape, you can “see” the slope in every direction from that point, and moveincre-
mentally up a hill until the slope levels off and no further improvementis possible.
This is what you do with calculus-based methods: Calculate the slope at every point in
the terrain. Of all these points, the interesting ones are those where the slope is zero.
These correspond to the peaksand troughs. The highest peak is the global maximum.°

But sometimesthe terrain is not continuous. For example, the two-dimensional

terrain in Figure 5.2 has “discontinuities.” If X and Y represent two products that are
being manufactured and sold, then a constraint such as “don’t make more than 50
units of X,” that is, X < 50, is a vertical line that imposes a sharp discontinuity in the
space as shown in Figure 5.2: Every solution in the areato the left of the vertical line
is legitimate, whereasthe areato the right is not.

A constraint such as “don’t make more than 75 units of Y” imposesa similar
boundary as shown.Finally, if it costs $A to make one unit of X and $B to make one
unit of Y, the constraint “ensure that the total manufacturing cost doesn’t exceed
$5000,” that is, pX + gY < 5000, represents a line (with slope —p/q) whichslices off
the search space at an angle (the slope) as shown in Figure 5.2.

_ The shaded region formed bythe intersection of the various constraints is called
the feasible region. That’s where the best solution will be found. If you think aboutit
a little, when X and Y havea positive sales price, the best solution will lie on one of
the “extreme points” labeled B, C, D, and E. With more variables, the search space

 

‘Using calculus, calculating slope requires differentiating the function. The derivative is then set to zero, which

tells us where the peaks or troughs are in the landscape. For example, the function x* — 4x? + 4x, when differen-

tiated, is 3x? — 8x + 4. This function gives us the slope of the landscape (for every value of x) corresponding to

the original function. Since we’re interested in the peaks, we want those x values where the slopes are zero.

Solving the equation 3x? — 8x + 4 =0 yields x=2 and x=2/3. Of these x=2/3 gives the higher value when substi-
tuted into the original function. It is the global optimum forthis simple function.
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FIGURE 5.2 A Linear “Discontinuous” Terrain of Possible Solutions

    
 

becomesharderto visualize, but the idea is the same. Thebest solution will alwayslie

at one of the extreme points.
Linear programmingis the most commontechnique used for solving such prob-

lems. The linear programming algorithm typically begins at the origin (A) and hops
from one extremepoint to another while the solution keeps improving. As long as the
surfaces are linear (that is, the constraints and objective function are linear), this

procedure is guaranteed to improve with every hop and find the best extreme point.
Linear programmingis a very popular technique since many of the problemsin the
businessor scientific world are linear or can be approximated as such.

But someterrains are not only discontinuous, they also have “holes” in them, or

areas where solutions do not exist. For example,if there were certain combinationsof
routes that ACMEcould not use due to regulatory reasons, these might be discontinu-

ities. Further, the constraints might be non-linear, involving ratios or products.It is
hard to navigate such a domain,let alone find the best solution. You don’t know the
shape ofthe terrain to start, and once you dostart, there’s often little or no informa-
tion aboutthe terrain that helps you figure out in which direction to move once you
start searching. These problems can be very tough.

This is where heuristic techniques such as genetic algorithms (GAs) excel. Un-

like many mathematical techniques, solution times with GAsare usually highly pre-
dictable. Also, solution time is usually not radically affected as the problem gets
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larger, which is not always so with the moretraditional techniques. The formulation
of the problem and thus the shape of the terrain can be more flexible: The constraints
and the objective function can be non-linear or discontinuous; GAs don’t find these
problems any moredifficult than the linear or continuous problems!

But you don’t get something for nothing.

Heuristic techniques cannot guarantee optimal solutions. Users must often set-
tle for “near optimal” solutions. These solutions, while usually not perfect, can suf-
fice for a broad range of problems. So, for example, using a heuristic optimization
method, ACME mightnot get the “perfect” schedule (the absolute shortest route).
Nonetheless, the schedules the firm does get will probably be very good and ACME
will get them quickly.

Thus there is a constant tug-of-war going on between the degree of optimality

achievable by using a particular technique (heuristic or numerical) and the opera-
tional advantages and disadvantagesof that technique.

Genetic algorithms are simple yet powerful optimization programs. Like neural
networks, genetic algorithms have their basis in biological theory. Whereas neural
nets take their foundations from neuroscience, GAsadapt the evolutionary concept of
survival of the fittest as their basis.

GAs were originally developed by computer scientist John Holland in the
1970s. Holland developed GAsas experiments to see if computer programs could
evolve in a Darwinian sense. It turns out, though, that GAsare also very useful for
solving classes of problems that were previously computationally prohibitive. GAs
have had especially good success in the area of optimization. What is most surprising
is that GAs achieve such powerwhile using only a few simple operations.

To understand the fundamentals of GAs, we turn to the basis for the genetic algo-
rithm: natural selection. In nature organisms have to solve a very simple problem:sur-
vival. Those organisms that solve the problem will flourish, and those that don’t won’t.

Imagine that there is a primitive evolving organism fighting for survival. We’Il
call this beast a krome. The kromeis constantly competing with many other kromes
for the same feeding grounds andto evade the same predators. There are two types of

kromes, black kromes and white kromes, which have varying degrees of intelligence
and physical prowess. Lastly, kromes, like their predators, feed only at night.

Different kromes will survive based on the compatibility of their attributes with
their environment. Since kromesare hunted by their predators at night, we would ex-
pect the dark-colored ones to have an advantage. The sameis true of kromesthat are
smart and can run fast. In fact, we can create a table of possible kromeattributes, and
rank each combination of attributes (Figure 5.3). Each type of krome represents one
solution to the “survival” problem.

Genetic algorithms also use a ranking process. GAsstart by creating an initial,
usually random set of guesses about how to solve a particular optimization problem.
The GAthen ranks each ofthese solutions by how well it solves the problem. The GA
removessolutions that do not seem to solve the problem well (“bad” solutions) from
the population. In their place, the GA creates new solutions, made by combiningbits
and pieces of the “good” solutions. Occasionally, a GA will make a random change
to one of the solutions, trying out somethingtotally new to see if the solution can be
improved upon. This process is repeated many times until a very good solution has
been found.
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FIGURE 5.3. A Rangeof Nature’s Solutions to the Kromes’ Survival Problem

For example, if you were trying to balance a portfolio of stocks, like Provident,
you might create a whole set of random portfolios, and then let each portfolio evolve.
At the end of the process, you could select the best (the “king of the jungle” in Port-
folio Land) and base youractual portfolio selection on it. On the other hand, to solve
a problem like ACMETransport’s, you could create a whole set of random shipping
routes and let them evolve, choosing the best route when the GA finished.

A genetic algorithm experiments with new solutions while preserving poten-
tially valuable interim results. If an experimental solution is not successful, it will be
ranked poorly and,in all likelihood, it will be discarded. On the other hand,if the ex-
perimental solution is good,it will be ranked morehighly, andits attributes will be
carried into the next “generation” for further refinement. Thus the GA keepsthe
“best” parts of solutions, and discards the less useful parts. Genetic algorithms are
able to search potentially huge and even discontinuous problem spacesefficiently by
using this approach.

THE ABCs OF GENETIC ALGORITHMS

So how do GAswork?
The smallest unit of a GA is called a gene. A generepresents a unit of informa-

tion in your problem domain. For example, if you were trying to balance a portfolio
of stocks for Provident Investments, the unit might be the percentage of the portfolio
given overto a particular stock; for ACME,the basic unit might be the nameofa city
in its deliverylist.
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A series of these genes, or a chromosome, represents one possible complete
solution to the problem.

 

Examples

For the portfolio problem, a chromosome mightlook like
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Interpretation/decoding: “Buy 3% of Stock A, 5% of Stock B,... etc.”
For a routing problem a chromosome mightlooklike:

New York — London - Paris .. . -— LA.

Interpretation/decoding: “Start in New York, proceed to London,
then to Paris... etc.”   
 

The key to GA’s poweris that the chromosomeitself does not do much of the
work in guiding a GA to a goodsolution. It can’t. The chromosomeitself doesn’t

even understand the problem! Notspecifically, anyway. The chromosome does not
“understand” the problem in the sensethat it doesn’t know the meaningit carries.

In order to make use of a chromosome,the GA, therefore, needs to decodeit

and determine how good a chromosome’ssolution is for a particular problem. The
GA makesuse of a special program module that does understand what a good solu-
tion to the problem lookslike. This moduleis called a decoder. The decoder converts
the chromosomeinto a solution to the problem. The decoder for ACME’s problem,

for instance, knows how to convert a chromosomeinto a shipping route.
Once decoded, another module called the fitness function determines which

chromosomesolutions are good and which are not very good. (Rememberthe objec-

tive function from our discussion of optimization? Thefitness function does the same
thing.) These two components, decoder andfitness function, are the only parts of the
GAthat actually understand the problem domain.

Whatthis meansis that you can change how yourank different solutions to the
same problem by keeping the same decoder, but changing how thefitness function
evaluates the solutions. Even more impressive is that you can use the same GAto
solve many different problems just by changing the decoderandfitness function. Fig-
ure 5.4 showsthe different modules of the GA.

There are many ways to represent and code chromosomes, but to make things
easier to understand in this chapter, we will use a very simple.coding for most of our
discussions. The simplest (and most commonly used) chromosome codinguses single
bits (1s or Os) to represent each gene. For the bulk of our discussions, we will use
chromosomesthat take the form of

1103101

in orderto describe solutions.
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FIGURE 5.4 Decoding a Chromosome

Wedothis for two reasons. First, these codings are simple to analyze, explain,
and understand. Second, and equally important, this simple coding format is robust
enough to solve a wide variety of very different problems.

Just to get familiar with the idea of encoding and decoding, consider how the
krome problem might be coded in a string of ones and zeroslike the one on the previ-
ous page.

In our example, shownin Figure 5.5, a krome’s color is encoded with one gene
and can take on one of two values, black or white. Speed is encoded with two genes
and can take on one of the four values of speed. Finally, intelligence can be coded
with three genes. Using this scheme, the chromosome ontheright of Figure 5.5,

1 1 0 1 O 1, would represent a white, slow, and dumb krome.

Nowconsider a couple of very different business problems shownin the follow-
ing box.® We can solve both using our simple genetic algorithm. Note how we don’t

need to change the GA, we only change the way in which weinterpret the meaning of.

each chromosome and how weevaluateits fitness. In this example, we considera
chromosomeconsisting of 20 genes, each coded asa single bit (0 or 1).

 

*Wepresent two very simple examplesforillustrative purposes. In actual practice, the usefulness of GAs over

other methodsof optimization for solving these problems would dependgreatly on the problem’s specific
details.
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FIGURE 5.5 Coding and Decoding Binary Chromosomes

In the simplified example in the accompanying box on the next page, only the
interpretation of the chromosome’s representation changes. As Figure 5.6 shows, the
same chromosomeis decoded differently by the GA, but only the interpretational
mechanism varies. In the first case, the chromosomerepresents a rule for predicting
the S&P 500. In the second, it represents the percentage of employees on the night
shift for a chemical manufacturer.

But remember that GAsdo notonly use a single chromosome. A GAcreates an
initial population of chromosomes(Figure 5.7). Each chromosomeis different. By

creating a diverse population instead of a single solution, the GA is trying many solu-
tions at once. After an initial random population is set up, the GA beginsan iterative
process of refining the initial solutions so that the better ones (those with higherfit-
ness) are morelikely to become the top solution.

The GA experiments with new solutions by combining andrefining the infor-
mation in the chromosomesusing three operations: selection, crossover, and muta-
tion. These operations produce in new chromosomes which form a new population.
Each new populationis called a generation.

During selection, the GA chooses “fitter” solutions to remain and multiply in

the population, but eliminates the poorer ones. During crossover the GAtakes useful
information about good solutions and shares it among other chromosomes. During
mutation the GA tweakssolutionsslightly in an attempt to improve them.
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PROBLEM 1: Variable Selection
Find the best subset of 20 variables to predict the stock market. That is, we wantto
know whichvariables we should use as inputs to a neural network model for exam-
ple, in orderto predict the S&P 500 a week into the future.

PROBLEM 2: Production Levels
Find the optimal percentage of employees a chemical manufacturer should have on
the night shift of a particular factory in order to maximize profit given a variety of
other factors such as overtime, electrical costs, demand, and so forth.

The profit of a given level of production at day or night is hard to optimize
since it increases and decreases many times as the numberof night workers moves
from zero to 100% of the total workers, and as different combinations of employees
are used on each shift. This profit behavior is described by a very complex and
poorly behaved (nonlinear, discontinuous) equation, f(x) where x is the numberof

employeeson the night shift.

PROBLEM 1: Solution
Decode/Interpret
1. Interpret each bit position as the presence (1) or absence (0) of one of the 20 vari-

ables. (Example: If bit 3 were 1, we would interpret that as meaning “include
variable 3.’’)

2. Construct a neural networkthat uses as input the variables indicated as present in
the chromosome.

3. Train the neural network for some prescribed period. Neural networksare dis-
cussed in Chapter6.

Evaluate
4. Evaluate the performance of the neural network based on predeterminedperfor-

mance measuresof prediction accuracy against the S&P 500.

5. The fitness of the chromosomeis proportional to performance.

PROBLEM 2: Solution
Decode/Interpret
1. Convert the chromosomeinto an integer x by interpreting it as a 20-bit-long bi-

nary number(i.e., a numberbetween 0 and 2” —1).

2. Divide x by the largest possible x value, 2” -1, to get a number between 0 and
1.0. Call this numberpercentOnShift.

Evaluate
3. Evaluate the value off(percentOnShift).

4. The fitness of the chromosomeis proportional to the value off(percentOnShift).   
 

As the GA progresses into later generations, you expect to see the averagefit-
ness of the population grow. The fitness increases as each new generation combines
the traits of the chromosomes in the previous generation, eliminating those chromo-

somesthat do poorly. That is, you expect that the solutions will get better toward the
end of the GA’s run.
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FIGURE 5.6 Alternative Decoding of a Chromosome

Color Speed Intelligence ‘Fitness

f+fol+{+f{o]s| 1 White Medium Dumb 40

fo[1fof1+]o]1| 2 Black Slow Dumb 43

ft{a]fofaf1fo 3 White Slow  VeryDumb 22

fo{ofo{1+]o]1| 4 Black Fast Dumb 71

f1{ol[1]jofofo 5 White Medium Very Smart 53

A population of Decoding of Evaluation of

chromosomes chromosomes chromosomes    
FIGURE 5.7. The Components of a GA
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If you envision the problem domain as a vast search-space with many hills and

valleys representing areas of good and badsolutions as in Figure 5.1, a GA allows
you to search manyof these areas at once. Figure 5.8 showsthe three-dimensional

landscape with a population of solutions. If this landscape were a graph of the sur-
vival space for kromes, each point on the x and y axes would represent one combina-
tion of two possible krome characteristics. On the other hand, if this were a graph of
the solution space of the portfolio balancing problem, each point on the x and y axes
would representa different series of weights for the stocks in the portfolio.

Thehills represent better solutions, and the valleys represent poorer ones. It would
be impossible to visualize the complete problem space for the kromessince there are
many more dimensions involved than we can show visually. But the idea is the same.

The graph in Figure 5.8a showsthe solutions in generation 0. Each dot repre-
sents a chromosomeorsolution to the problem. In this first generation, the GA basi-
cally generates some random solutions as a starting point. This is the initial
population. At generation 20 (Figure 5.8b), however, we see that more of the solu-

tions are hovering around the peaks. There has been a clustering around someof the
local maxima. This is because the GA hasdiscoveredthat these areas of the search
space hold more promise, and the chromosomesare concentrating on the peaks. Fi-

nally, in generation 50 (Figure 5.8c), we see that the population has, for the mostpart,
converged around the global maximum (the biggest peak). Nonetheless, note that
there are still instances of low-fitness chromosomesin the population. This is because
the GA is still experimenting with new solutions.

 

   
 

FIGURE 5.8a Population at Generation 0



Evolving Solutions 67 &

 

vais
Ay

we ,

|

PAYFERN
TRG
Mt
$5:

ill

    
FIGURE 5.8b Population at Generation 20
 

    
FIGURE 5.8c Population at Generation 50
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How do the poorersolutions get weeded out and how dobetter solutionsgetre-
fined and improved?

The operation of selection determines which chromosomeswill be carried on to
later generations. Selection is the process in which chromosomesare chosen to sur-
vive. A chromosomethatis not chosen “dies” andis not able to passonits traits to the
next generation.

A common form of selection is one where each chromosome’s likelihood of
being picked is proportionalto its fitness. This type of selection is called fitness pro-
portional selection. Thus, if chromosomeA is twice as fit as chromosomeB,it should

have twice the chance of reproducing.
One way to think about this is to imagine that when the GAselects a chromo-

some to reproduce,it selects it by spinning a roulette wheel on which each chromo-
somehasa slot. The size of the slot is proportionalto its fitness. Figure 5.9 showsthe
five kromes (from Figure 5.5), each with a slot on the roulette wheel. Chromosomes

with high fitness take up more space on the wheel, and therefore have a higherlikeli-
hood of being chosen on eachspin.

In Figure 5.8a we pointed out that there were a good numberofsolutions in the
“valleys” of the solution space. These represent low-fitness solutions. In ACME’s
routing case, these might have been routeslike:

New York — London —- Boston —- Paris - LA

Notveryefficient: a zigzag transoceanic route.
Whenthese chromosomeswere evaluated, they had low-fitness values, and thus

got small slots on the roulette wheel. They didn’t get picked to reproduce too often.
By generation 5, most of them have gone the way of slow dumb white kromes:
They’ve been dropped from the population.

Selection explains how badsolutions are weeded out, but it doesn’t explain how
good solutions are improved. Therefining process takes place as a result of two addi-
tional operators. Thefirst of these, crossover, involves the exchange of information
between twoselected chromosomes.

During crossover, two chromosomesbasically swap someof their information
gene for gene. In the example shown in Figure 5.10, the two chromosomes exchange
genes (crossover) after gene 2. Crossover allows the combination of the elements
within onesolution with those of another. This allows the GA to “share the wealth”

 

 

Mostlikely to be chosen Leastlikely to be chosen   
 

FIGURE 5.9 Roulette Selection of Chromosomes from a Population
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FIGURE 5.10 How Crossover Works

(or “spread the misery,” depending on whether a solution swaps componentsthat are
good or bad). In our krome example, a “good” crossover might be one in which a

smart kromecrosses over with a fast krome. Their “offspring” is likely to be a smart
fast krome whoisfitter than either parent.

An important point to consider, though,is that crossover can only rearrange in-
formation that is already in the population. For instance,if our initial krome popula-
tion did not contain any black kromes, then no matter how many genes we swapped,
we would still never get a black krome! (Each pair of chromosomes wouldjust be
trading the value “white” over and over again.)

To get around this problem, we need a wayto inject new traits into a GA popu-
lation. The other refining operator, mutation, does just this. The mutation operator
changesthe value of a gene from its current setting to a different one. In the example
below (Figure 5.11), the fifth gene from the left has been mutated. A GA can use mu-
tation to experiment with components of new solutions that may not have existed in
the current population by introducing new traits into the population. As in the biolog-
ical case, most mutations are more destructive than helpful. As a result, in GAs, as in

nature, mutation occurs very infrequently and randomly. However, occasionally a
highly beneficial change will occur. The effect of mutation is that it provides opportu-
nities for members of the GA population to jump from one area of the solution space
to another, thus exploring new areasin search ofbetter solutions.

These three operators, selection, crossover, and mutation,act to refine solutions

to problems very quickly. When combined with the decoding/evaluation module,
GAscan solve a very widevariety of problems.

 

 

tfolrfojols} Lxfofrfofata

Mutation point

Before After   
 

FIGURE 5.11 How Mutation Works
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To solve a typical problem, a GA creates chromosomepopulation of a particu-
lar size randomly. The GAthen evaluates each chromosomein this population andas-
signs a fitness to it. Selection, mutation, and crossover then take over, weeding out
and refining solutions. The whole processis then repeated over and overuntil a satis-
factory solution is found.It is often surprising to some people that this simple decode,
evaluate, select, crossover, mutate cycle, repeated over and over, is such a powerful
optimization technique.

But this general approach is not new. It has been around for about 4 billion
years.

INTELLIGENCE DENSITY ISSUES

So whenis it a good idea to use a GA?
In general, if you are working on a problem that lendsitself well to standard op-

timization techniques (the problem is well behaved) it is best to use them. On the
other hand, when youfind yourself in a situation where these mathematical methods

break downorare painfully difficult to use, a GA is often a good heuristic method.
The applicability of a GA versus another heuristic method, such as a rule-based

system or other heuristic methods, will depend on the nature of the problem, and

which of the intelligence density determinants are important. Very often a GA can
simplify the work required to solve a problem.In addition, you may wish to use a GA
even when there are mathematical methods available or even where you discover spe-
cial tricks that work well for a particular problem. A GA can sometimesprovide a
more flexible or more stable solution, even though it may take longer on average to

solve problems. Because GAsscour the problem terrain very efficiently, their re-

sponse time, even for complicated problems,is usually fairly quick andstable.
GAs form populations of solutions. Just the fact that the GA doesthis gives a

hint as to why GAsstack up well in terms of response time. By creating an array of
solutions, the GA is metaphorically stretching itself across the solution space in many
different directions at once. GAstry lots of solutions at the sametime.

But if this were all a GA did, it would be similar to a random search and not

much more powerful. In fact, the response time of the random search approach can be
very unreliable. Haphazardly wandering through the solution space, a random search
might stumble on a good solution quickly in somecases, but drift about aimlessly for
a much longer time in others. To get such high marks on response time, the GA’s
multi pronged search effort needs to be augmented by somethingelse.

It is.
Enter selection, crossover, and mutation. What these operations mean to a GAis

that it can quickly “distill” out the essential elements of a problem andits solution,
concentrating on the areas that have the biggest payoff. Recall what is going on here:
A GAis able to (1) try many solutions at once; (2) evaluate each of the solutions; and

(3) refine the better ones. To accomplish this refinement, GAs share information be-
tween the different solutions (crossover) and experiment with new solutions (muta-

tion). By experimenting with a range of solutions, the GA, early on, can determine
the areas of the entire solution space that seem most promising and explore them in
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more detail. The GA accomplishesthis distillation through the interplay of the three
operators.

To understand whyzeroing in on a solution tendsto be efficient and take a pre-
dictable amount of time, consider the following. Since a GA always follows the

samesteps, the amountoftimeit will take to find a solution will depend only on the
number of chromosomesin the population and the numberof generations you run.If
you know about howlongit takes to evaluate the fitness of a single chromosome,’
then you knowthatit will take that time, multiplied by the number of chromosomes
in a single generation, multiplied by the numberof generations. It will take approxi-
mately this amount of time any time you run the GA for that number of chromo-
somes and generations since it will always involve evaluating exactly the same
number of chromosomes.

It gets even better. Since every population is full of possible solutions, you are
usually guaranteed to find at least some kind of solution when the GA terminates. In
fact the solution will often be a very good one.

But how do GAs manageto consistently find such goodsolutions?
In an attempt to explain how GAssearch, Holland developed schema theory.

The crux of schematheory is that each chromosomein a GA,while only representing
a single possible solution, actually gives the GA information about many areas of the
search space at once. What this meansis that a GA only needs to evaluate a small
number of chromosomesto get information aboutlarge areas of the search space.

Consider the chromosomerepresenting the white, medium fast, very smart krome:

10100 0

While this chromosomeonly represents a single solution, there is bonus infor-
mation in the evaluation of the chromosome.In addition to its own fitness, the chro-

mosomeis also giving the GA information about many other possible chromosomes.
How?

Holland proposed a conceptcalled a schema which worksas follows. A schema
has the same length as a chromosome. However, each gene in the schema cantake on
the value of(in the case of a binary representation) O, 1, or a special value, *, where *

means “don’t care.” Consider the example below:

 

ACTUAL CHROMOSOME:
white, mediumfast, very smart krome: 1031000

SAMPLE SCHEMA:
All white kromes: 1 * * * * *
All mediumfast kromes: * O1%* * *
All very smart kromes: x* * * 0 0 0
All white very smart kromes: 1 * * 0 0 0

All mediumfast or veryfast kromes * QO * * * *   
 

7As we will discuss later, this can be where most of a GA’s timeis spent.
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The 1 in position 1 of the first schema means “white chrome’; it represents all
white kromes—slow, fast, dumb, smart, or otherwise. Likewise, the second schema

represents all medium fast kromes, and the third schema represents all very smart

kromes without regard to their other attributes.
The five schemata above are represented by our chromosomebecause in each

of the above schemathe values in the non- “don’t care” (*) positions in the template

match the value in the chromosome.In fact, since for any chromosome,each of the

Six positions on a template can take on oneof twovalues(either the corresponding
value in the chromosomeor *) there are 2° = 64 different schema being sampled by

each chromosome.In a sense, like the GA itself, each chromosome in a GA also

spreads its tentacles across many dimensionsofthe search space.
Lookingat it the other way, a single schema can also be matched not only by

the current chromosome, but by many other possible chromosomes in the population.
Sinceall of this matching goes on simultaneously, we say that it takes place in paral-
lel. This property of the GA is sometimesreferred to as implicit parallelism. It is im-
plicit because we get it without eventrying!

There’s another thing about schematheory that illustrates why GAs explore the

solution space quickly andefficiently.
Note that the third template has “don’t care” symbols for all positions except4,

5, and 6 (for which the values are all 0). What this says is: “This schema votesthat

the gene positions 4, 5, and 6 should be Os in the optimalsolution.”If bits 4, 5, and 6
in the actual optimal solution are, in fact, set to zero, then we would expectthat, all

things being equal, chromosomesthat match this schema (very smart kromes) would,
on average, be ranked higher (their votes would count for more) than those that do

not since their fitness will be higher than solutions that don’t match that pattern. If on
the other handthis pattern did not represent part of a good solution, we would expect
matching chromosomesto be ranked lower.®

But keep in mindthatin addition to testing the validity of the one schema that we
just discussed, the GA is also using this chromosometo test the validity of each of the
other 63 schemata represented by the chromosomein exactly the same manner. The
GA,withoutany special overhead, keeps track of how well different schemata perform
simply by selecting the chromosomesthat perform best. (Whatthis really meansis that
high-fitness chromosomes match the high-fitness schema). Over many generations,

chromosomessharingthe traits of high-fitness schemata should proliferate.
Butthere is no free lunch. Part of the price we payfor the quick convergence

and stable response time is lower levels of optimality in our results.

Looking back to Figure 5.8c, notice that the solutions are scattered about the
peaks. In mostcases, none of the solutions will hit the top of the peak exactly. This is
because the GA is only goodat finding high-fitness regions. In other words, the GA is

 

‘Actually, this would depend on the “deceptiveness” of the problem. Deceptiveness describes to what degree

high-fitness interim solutions will lead to the ultimate optimal solution. If the good interim solutions resemble

the final solution, then the problem is considered to have low levels of deception. However, if the optimum solu-
tion is very far away from the high-fitness interim solutions, then a problem is considered to be highly deceptive.

Note that in the case of finding the correct combinationfora lock, for example, there is only one solution

that will satisfy the problem. Every other solution, even those that haveall but one digit correct, are wrong. Fur-
thermore, there is no information in the “wrong” solution to tell a GA how far away the wrong guessis from the

right one, or how muchbetter one wrong guessis than another.
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very goodat identifying schemathat result in high-fitness solutions. However, you
need to realize also that while a GA canidentify the schemathat perform well, out of
all of the millions, billions, or trillions of chromosomesthat can relate to each schema

there is only one’ chromosomethatis the best solution to a problem.It is exceedingly
difficult to happen on that one optimal chromosomeduring a GA’s execution.

To think of it another way, humans have evolved to higher and higherlevels of
physical and mental ability. Despite this fact, it is almost unimaginable to hope that
any population of humans would yield a member with the raw intellect of an
Einstein, the humanity of a Mother Teresa, andthe agility of a Michael Jordan. Since
GAsessentially mimic the evolutionary process, we must accept the fact that the

solutions weget, like the humans in the world, will also generally be sub-optimal.
(Most humansstill have weak lower backs, a sign of sub-optimal engineering,and,

unlessit’s been removed, most of us have an organ in our bodiescalled an appendix
that seems to serve no purpose, a sign of wasted resources.)

A good sub-optimal solution does not meanthat the modelis a failure. Quite the
contrary. For many problems, near optimal solutions are good enough.Thisis as true
in natural evolution asit is in a GA.

In addition, a commonobservation of GAusers is that GAs produce very novel
solutions. Since at the end of a GA run, you havean entire population of alternative
solutions, users can often look at an array of good options. There are frequently one
or two, “Wow!I never would have thoughtof that one!” solutions in each population.

This is partly due to an attractive feature of the interplay between fitness func-
tions and GAs. You nevertell the GA how to solve a problem. For example, in our

portfolio example above, we do not provide the GA with a theoretical framework or
rules for selecting good combinations of stocks. We only give it a decoderanda fit-
ness function that provide feedback as to how gooda particular portfolio is and how
well the GA is doingat finding a solution. As a result the GA will try almost anything,
sometimes with surprising results.

Whatthis meansis that you can use a GA to solve problems that you don’t even

know how to solve! All you needto be able to do is describe a goodsolution and pro-
vide a fitness function that can rate a given chromosome.In essence you can Say to
the GA, “I don’t know how to build it, but Il know it when I seeit!”

Since you only need to be able to describe a good solution, not define how to get
there, GAs require low levels of access to experts. In cases where you can describe
easily the process of optimization, an expert system might be a good choice. But GAs
can be useful when you can only describe the quality of the result. For this reason,
GAscan be attractive when compared to expert systems in that they often do notre-
quire as much explicit knowledge about howto find an answerto a problem. GAsonly
need to know how to measure the goodnessofa solution (througha fitness function).

Even when you candescribe the rules and steps that you would use to solve an
optimization problem, there are cases whereit still could make sense to think about

using a GA. For example, while the rules describing a certain optimization process
might be commonsense, there might be hundreds of them to encode. Orthe rules
might be very dynamic, changing depending on the particular situation. There might
be lots of exceptions to the rules that makeit difficult to determine how to optimize
 

°Orin somecases,this may bea relatively small number.
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some process. In all of these situations, a GA can offer an alternative approach to

solving the problem.
By concentrating on the definition of a solution (defining the fitness function)

rather than on the process of formulating a solution, you can limit the drain on an or-
ganization’s expert staff considerably.

All this can also be a drawback, however, because GAsare themselvesblind to

the optimization process,it is difficult to determine why a GA producesa particular
solution. In fact, the level of explainability associated with genetic algorithmsisal-
most nil because the GA usesonly the fitness function to guide it toward a better so-
lution. Selection only looks at the fitness value for each chromosome without
knowing what the fitness means. Crossover and mutation work blindly on chromo-
somes, and they work the same way regardless of what the 1s and Os meanto the de-
coderandfitness function.

Since the only thing that ties a GA to a particular problem is the manner in
which the GA’s chromosomesare decodedandtheir fitness evaluated, to change what

the GAtries to optimize, you only need to change the way in which the GA decodes
and evaluates chromosomes. This is true not only when switching between different
problems,butit is also true when modifying the conditions of a single problem. AGA
has high levels of flexibility.

For example, let’s say that in the night-shift problem earlier we hypothetically
determined that we needed to ensure that the night-shift levels were always above
30% due to capacity issues. To accommodate this new constraint, we would need
only to adjust the scaling of our decoderso that it produced values between 0.3 and
1.0 instead of 0 and 1.0.

Since so much of the GA’s activity centers around the fitness function, many
things such as accuracy,scalability, and response time will depend on how thefitness
function works and therefore be problem specific.

For example, GAstend to be moderately scalable. By adjusting the length of the

chromosometo 30 instead of 20, we can easily expandthe variable selection problem
to one in which we examine 30 variables at a time. In fact, we are often able to scale
up quite nicely in this manner. However, this scalability is not without its limits. It be-
comes moredifficult for a GA to explore search spaces with very large chromosomes
for a variety of reasons. The longer the chromosome,the larger the population needs to
be since there are more potential combinationsof genes.

This is only part of the story however. For many problems, the evaluation of the
fitness function takes much longerthan the other generic GA operations of crossover,
mutation, and selection. This means that as you increasethe size of the population or
length of the chromosomesto be decoded and evaluated, the time required to execute
a GA will be dominated by the large numberof decodings andfitness evaluations,
and not by the GA operations.

In addition, the computer power required to evaluate the longer chromosomes

will also increase as the chromosomegets longer, since the fitness function will have

more decoding to do. In fact, the amount of computer time and memory requiredto ex-
ecute a GA will depend almost entirely on the complexity of the fitness function. This
has obvious consequences with respect to the speed of response time as well. Fitness
functions that require a large numberofcalculations or that run other programs or
access databases can be computationally intensive andasa result, higher speed orpar-
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allel computers are often called for. On the other hand, many complex but not compu-
tationally involved problems can be solved on a good, high powered desk top PC.

On a PC?
That’s right. GAs don’t do very complicated things from an algorithmic perspec-

tive. Rather, their power comesfrom their relative simplicity. In fact, if programmed from
scratch, GAsare usually reasonably sized programsthat are self-contained. This is very
convenient. It makes a GA a very compact optimizerrelative to, say, an expert system.

In addition, GAs tend to be embeddable. Depending on the problem being solved,
the elegance of a GA canvary greatly, but becauseofits relative simplicity, it is usually
possible to easily include a GA program as a module in other systems. This all depends
on whatthefitness function is doing in terms of accessing other programsor databases.

Matters get more complicated when youtry to assess the data requirementsof a
genetic algorithm. In general GAs are convenient since they do not require extensive
databases to run. However, for certain GA applications, the fitness function may need

to access and process an organization’s data. For these types of applications, data
quality and quantity are important.

What aboutthe people in your organization who mightbe involved if you were
going to develop a GA-based solution? Well, from a development standpoint, you
would be concerned about time commitments. Good news! The algorithms them-
selves are straightforward. A good programmercan develop an experimental GA in a
couple of days. Most of the work is in understanding the problem and formulating ap-
propriately, and determining a goodfitness function.

But what makes GAssoattractive to lay people is how easyit is to understand the
basic workings of the method. Everyone has hadhigh school biology. Everyone knows
who Darwin was. “Survival of the fittest” is a phrase used over and overin fields from
finance to football. The method works. It makes sense. People tendto likethat.

In summary,the profile of a GA lookslike this:

 

 

 

 

Dimension Genetic Algorithm But...

Accuracy Low to high —

Explainability Low to moderate —

Response speed Moderate to high Varies with respect to complexity of problem
 

Performance maybepoorerthan other

methods on “easy” problems
 

Scalability Moderate Bounded by length of chromosome and com-
puting resourcesavailable
 

 

 

 

Compactness Moderate —

Flexibility High Dependslargely on howthefitness function is

designed

Embeddability High Highly problem and software dependent

Ease of use Moderate —
 

Development speed Moderate to high —  
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CHAPTER

Simulating the Brain
to Solve Problems

Neural Networks

Put the problems before him and let him solve them himself. Let him know

nothing because you have told him, but because he has learneditfor himself.

Let him not be taught science, let him discoverit.

—Rousseau

Learning preserves the errors of the past, as well as its wisdom.

—Alfred North Whitehead

The idea ofparallel distributed processing. . . [is that] intelligence emerges

from the interactions oflarge numbers ofsimple processing units.

—David Rumelhart, et al.

Anartificial neural network (ANN) builds models by using a simple computer emula-
tion of biological neural systems. Neural networks attempt to “learn” patterns from
data directly, by sifting the data repeatedly, searchingfor relationships, automatically
building models, and correcting over and over again the model’s own mistakes. The

technique can derive good models even when the data are incomplete or noisy.

In this chapter, we discuss how neural networksdo this, and thefactors that can

determine whether a neural network approach will be an effective solution for a par-

ticular problem.

INTRODUCTION

Suppose you’re running a software developmentgroup. Oneof the things you need to
do is estimate how long a certain project is going to take to complete. But software
developmentis tricky since projects are very sensitive to things like the complexity of
the logic involved, the user interface, hardware, programmer quality, and so on.

a 7/78
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You’re an expert, though. You understand the process and knowpretty well how

various factors affect the quality of your product.
But that wasn’t always the case. There were plenty of earlier less than satisfac-

tory attempts when yourfirm first started developing new software. Over time, you
“homed in” on the right staff, and learned to adjust your deliverables depending on
the time allotted. And now, your expertise even allows you to do a pretty good job

with new types of projects that you have nevertried before.
What happened during your “learning” phase? Essentially, you learned about

the different things that can affect the quality of a project. You tried to deliver soft-

ware underdifferent sets of conditions. What you learned was not only that certain
combinations of inputs give you a certain result, but more importantly, how the vari-
ous inputs interact. In understanding these interactions, what you developed was

essentially a mental model for producing goodprojects. In other words, you general-

ized the data into a modelthat you can now use to deal with inputs you’ ve neverdealt
with before.

Whatdo data, generalization, and model have to do with learning howto esti-

mate software deadlines and quality?
Let’s make the example more concrete. Let’s say that you only considerthe size

of the project' and the time that you try to develop it in. Over the years, youtried var-

ious values of each of these and observed the quality of your result. Quality would be
based on cost and time. Each attempt provides a data point.

But a data point only tells you about what happened with a particular single
project. This is only useful if you need to repeat the exact same project under the

exact same conditions again. One or two data points are not enoughto really under-
stand how the process works.

Whenyou have enoughdata points, though, you can begin to see the more gen-
eral “shape” of the space. Figure 6.1 shows what this shape mightstart to look like
after experimenting with about a hundreddifferent projects of different sizes and with
various deadlines. The height of the bar indicates the quality of the finished product
in each case.

If you were to take a sheet of rubber and drape it over Figure 6.1, you would get
a continuous surface as shown in Figure 6.2.

This rubber surface is, in effect, a model. It is a generalization. Mostparts of
the rubber don’t touch any of the data points. But the surface can now be used to

handle inputs that were not part of the original data. The model has been “learned”

from the data. The surface in Figure 6.2 would allow you to predict the quality of the
product, even without knowing the details of the 100 individual data points that you
collected.

Now imagine including another changing variable, the numberof programmers,
as part of the data. And cost. Certainly these would help you makebetter forecasts of
the final product quality. Although it’s hard to visualize more than three dimensions,
the model becomes a complex multidimensionalsurface.

 

'This could be measured in terms of something like “function points,” which is a crude measure of the number

of input/output and logic functions that need to be implemented.
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The larger the set of input variables, the more complex the resulting surface or

model. In fact, these surfaces can become very complexasthe variables interact with
each other. Nonetheless, an expert is able to build such mental models and often un-
derstand these complex processesintuitively.

Neural networkscan also build such models from data. They have been dubbed

universal approximators, because they can often uncover and approximaterelation-
ships in many types of data. Even though an underlying process may be complex,a
neural net can approximateit closely if it has enough data points from which to con-

struct the type of multidimensional surface that we’ ve been talking about. Neural nets
help computers “learn from experience.”

Neural networks werefirst theorized as early as the 1940s by twoscientists at

the University of Chicago (McColloch and Pitts). Work was done in the mid-1950s as
well (McCarthy, 1956; Rosenblatt, 1957) when researchers developed simple neural

nets in attempts to simulate the brain’s cognitive learning processes. Since then neu-
ral nets have been, at various times, the subject of both great interest and skepticism

in the research community.
In the last decade or so, neural nets have been reexamined and are againattract-

ing considerable attention, this time not only in academia, but in business and finance
as well. Neural networks have been found to be very good at modeling complex
poorly understood problems for which sufficient data can be collected. They can
sometimesfind better solutions to problems than might be achievedusingtraditional
Statistical, numerical, or other types of methods.

Artificial neural nets (ANNs) are simple computer programsthat build models
from data bytrial and error. The conceptis pretty straightforward: You show a piece
of data to a neural network. The net predicts an output, in this example, quality. The

net then compares its guess with the actual correct value, which you also present to
the network.

If the ANN’s guessis right, the net does nothing.If it is wrong, however, the

network analyzesitself to try to figure out how to adjust someinternal parameters
so that it can makea better prediction if it sees similar data again in the future. The
second piece of data is then presented to the network, and it goes through the same
predict-compare—adjust process again. And so on.

Getting the parameters right, though, can be tricky. For example, when the neu-
ral net sees the secondpiece of data and makesits adjustments, it might “undo” some
of the adjustments that it made whenit saw thefirst piece of data! Because ofthis, the
net must make manypassesoverthe data set, trying to reconcile whatit learns about
the data in each pass. Overtime, if everything goes well, the net should converge on a
good model of the process.

For example, Figure 6.2 is the actual output surface producedby a neural net-
work that was trained many times on the data from Figure 6.1. Note how thereare es-
timates for every point along the data surface even though the data only cover about
100 of those points.

Examples:

¢ Asian Business Trading (ABT) is an exporting firm that deals primarily with Japan
and Hong Kong. ABT would like to develop a modelto help it predict the direction of
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exchangerates so that the firm can better hedge its contracts. The firm will use histor-
ical data about the direction of the currency rates to drive its system.It is the firm’s
hopethat the system will be able to discover patterns of movementin the data that are
predictive of directions of the market.
Virtual Realty is a real estate firm that wishes to develop a modelto assess property
values based on features of the properties. The firm has a good database of past prop-
erties that it has sold and of the characteristics of each property. The firm hopesto
build a model anduseit to get quick estimates of new properties.
Herigel Target Marketing (HTM)hasa database full of direct marketing information
about products and the demographicsof the target groups that consumethese prod-
ucts. HTM wouldlike to find a way to leverage these data to pinpoint the mostlikely
prospects for future campaigns.

THE ABCs OF NEURAL NETWORKS

The principles that underlie neural network technology are based loosely in biology.
In biological terms, our nervous systems (including our brains) consist of a net-

work of individual but interconnected nerve cells called neurons. Neurons can re-
ceive information from the outside world at various points in the network. For
example, when you walk into a bright room, the neurons in your eyes register the lev-
els of light in the room; when the doctor taps your knee with a rubber mallet, the neu-

rons in yourknee register the sudden impactof the mallet.
These pieces of information (the bright light, the mallet hit) are called stimuli.

The stimuli are processed by your brain and nervous system. The information travels
through the network by generating new internal signals that are passed from neuron
to neuron. These newsignals ultimately produce a response.

For example, after the nerves in your eye receive the “bright light” stimulus, the
raw input is processed by your brain and then new signals are passed back to the
nerves in your eye. These new signals make your pupils smaller. Or, after the doctor
hits your knee with the rubber mallet, information from the nervecells in your kneeis
processed andtheresult is (af you are healthy) a “knee-jerk” response.

A neuron passes information on to neighboring neuronsbyfiring or releasing
chemicals called neurotransmitters. A simple way to think about neurotransmitters is

that they actlike little bursts of electricity that go from one neuronto the next in order
to transmit information. The connections between neuronsat which these transfers
occurare called synapses.* Conceptually, the more important a particular stimulusis,
the larger the burst will be at the synapse.

There is an important biological fact that is also useful for understanding how
ANNswork.It turns out that when information is received by a nerve cell at one of
the synapses, the information can either excite the cell, or it can inhibit the cell. If the

receiving cell is excited, it will fire when it gets the input and pass the information on
to other neuronsin the area. On the other hand,if the receiving cell is inhibited,it will

 

?Neurotransmitters are, in fact, chemicals that are released at the synapse. Oncereleased, neurotransmitters en-

courageorinhibit electrochemical reactions in surrounding neurons.
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not fire, in effect damping the impact of the information. What each nervecell is
doing is processing the raw inputbut passingit on only if it is important.

This makes sense. When you walkinto a bright room,it is useful for the neu-
rons that close your pupils to be excited and pass on the information, but it would not
be very useful for the neurons that cause a knee-jerk response to also fire. (Imagine
what would happen when you walkedinto a bright room if the “bright light” informa-

tion, in fact, made its way to both your pupils and your knee!)
Synaptic connections can be strengthened (learning) or weakened(forgetting)

over time and with experience. Throughthis process you can establish new responses
to stimuli, modify old ones, or remove unused onesall together. In fact, with constant

practice, many actions requiring thoughtinitially can be relegated to the level of re-
flexes. Think about what happens whenthecarin front of you suddenly stops short.
You slam on the brakes of your own car without thinking. This reflex occurs even
though, at one time, you hadto learn how to drive.

To bring all of these concepts together concretely, consider another example.

What happens whena child learns how to throw ball into a basket? Atfirst, her per-
formance might be very poor. The neural connections needed to throw the ball accu-
rately are relatively weak. However, each timethe child throwsthe ball, she observes
the result and tries to adjust for errors. This time she used too muchstrength. That
time she aimed too far beyond the basket. Anothertime shelet go of the ball toolate.
Each time she notices one of these mistakes and feeds this information back. She
makesslight adjustments, some conscious, some unconscious, to the way she throws
the ball. This adjustment processis similar to the adjustmentin the strength of con-
nections between neurons.

In fact, if she practices long enough, she will be able to hit the basket from an-
gles and locations that she has never even practiced before. This meansthat her learn-
ing was robust enoughto allow her to generalize her experiences.

It’s useful to note that although the child was able to develop good ball throw-

ing skills, she would probably not be able to explain the physics, partial differential
equations, or dynamicsof air turbulence associated with the skill. She has, in essence,

developed a reflexive command of the skill. Her ball-throwing methodologyis a
“black box” that approximates the laws of physics associated with throwing the ball
without any knowledge aboutthe actual physics.

Howdoesall this biology tie back into allowing computers to learn? What is a
neural network in computer terms?

Like its biological counterpart, an artificial neural network simply involves a
system of neurodes (or nodes) and weighted connections (the equivalent of synapses)

inside the memory of a computer. Nodesare data storage locations, like variables in a
program,or cells in a spreadsheet. A node is analogous to a biological neuron, but

muchsimpler.
In artificial neural networks, nodes are typically arranged in layers, with the

connections running between layers. Figure 6.3 shows what a simple neural network
might look like conceptually. The balls represent nodes and the lines represent the
connection weights.

In principle, the artificial neural network operates in the same wayasthebio-
logical model on whichit is based. Data are fed into the net, the data are processed in-



 

Simulating the Brain to Solve Problems 83 MI

Le,
guesses

 

output layer

  hidden layer internal processing

input layer data

FIGURE 6.3. A Simple Neural Network

 

 
 

ternally based on the strength of inter-neurode connections or weights, and a result is
output.

You will notice Figure 6.3 shows how the neural network is divided into lay-
ers. By convention the layer that receives the data is called the input layer, and the
layer that relays the results of the neural network out of the net is called the output
layer.

The internal layer, where intermediate internal processing takes place,is tra-
ditionally called a hidden layer. You might think of the hidden layer as being hidden
from the outside world, unlike either the input layer (which takes information from
the outside), or the output layer (which passes information on to the outside).

Although Figure 6.3 only shows one hidden layer, there can be, and often are, more
than one.’

Howdoesthis architecture help neural networks solve problems?
To understand howan artificial neural network learns how to guessaccurately,

you have to understand how the weights in the networkaffect its output. Learning, for
neural networks, involves adjusting these weights.

But before we get to how an ANN adjusts its weights, it is first useful to under-
stand what happens when data are inputinto a networkthat has already learned about
a problem. So for now, we will start by ignoring the issue of how the network actually
learns about a problem and concentrate instead here on howit applies whatit has
learned, once its weights have been adjusted properly.

 

*It is also possible to construct a primitive neural net containing no hidden layers. The early neural networks

were configured in just this fashion.
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To do this, we need to look a little more closely at the individual neurodes

within a neural net to understand how they pass information among themselves. Fig-
ure 6.4 shows a more detailed schematic of an individual neurode.

Neurodes can only do a few simple things. Each neuron essentially collects a
bunchof data (inputs), then takes stock of whatit has collected, and processesthein-
formation. The neurodethen passesthe result of this collection and analysis process
on to the next layer. If there are no additional layers, the neurode’s output informa-
tion becomesthe output of the neural network—its answer.

In the figure, each of the lines feeding into the neurodeis a connection from the
lower layer. The “body” of the neurode is divided into two functional sections. The
lower section combinesall of the inputs that feed into the neurode. The upperportion
takes this sum and calculates the degree to which the sum of the input is important.

The output produced then forms the input to the nextlayer.
To follow how the data get transformed from raw input into the node’s output,

start at the bottom of Figure 6.4. The neurodefirst multiplies each input by the con-

nection weight leading into it. The weights are shown as lines feeding into the
neurodein Figure 6.4. The thickness ofa line is proportional to its weight. The hol-
low line signifies a negative weight. A weight determines how important a given
input will be in contributing to the output of the neurode. More important inputs will
have bigger weights and less important ones will have smaller weights. All of the
weighted inputs are added together in the neurode.

Next comesthe “taking stock” phase. This taking stock occurs when the weighted

 

 

 
 

   
     

 

  
Sum up

weighted inputs  

Inputs from lowerlayer   
  
 

FIGURE 6.4 The Inside of a Neurode. The thickness of each input is proportionalto its

weight. A solid denotes a positive weight and an unfilled one a negative weight.
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FIGURE 6.5 How the Sum ofInputs Affects the Output of a Neurode. Notice how therate

of changeof the output is non-linear across the input range.

sum is processed by the second half of the neurode. The sum is converted into an output
value using a function referred to as a transferfunction.‘

What’s the purpose of the transfer function? Whynot just pass the summedin-
formation on? The transfer function serves as a kind of “dimmer” switch for turning
the neuron on andoff, depending on the input to the neuron. Thetransfer function de-
termines to what degree a given sum will cause a neurodetofire.

You can see from looking at Figure 6.5 that the transfer function’s value will be

high (excited) when the sum ofthe inputs is large and positive (a lot of important pos-
itive signals are passed into the neurode from the lower nodes), and the value is low

(inhibited) when the sum is large and negative.
Becausethe function is usually S-shaped (sigmoidal), it adds non-linearity to

the neural network. Whatthis meansis that the output of a node will increase or de-
crease at different rates in different parts of the input range. Asa result, the rate of
changeof a neurode’s output dependson the “region”in which the nodeis operating.
The behavior of the node, its output, is therefore non-linear.

So how do you build up more complicated functions?
That’s where the hidden layers come in. By combining several layers of simple

sigmoidal functions, the neural network essentially builds up more complicated curves.
By combining these curves a neural net can approximate more complex shapes.

Figure 6.6 shows an example ofthis. In each case, the transfer function is the

same, but the numberof hidden nodes andthe values of the weights leading into each
node are different. Notice how very different curves can be constructed using these
simple units. In this case, we used only one input. In most problems, though, there
would be several inputs which would create even more complex surfaces.

 

“In the preceding example, we have chosenthe logistic function as ourtransfer function. This function is defined
for all values of the sum and the functional value ranges from 0 to 1. Note that the function is approximately

zero when the sum of inputs is large and negative, approximately one when the sum is large and positive, and

exactly 0.5 (the midpoint) when the sum is zero. Another popularfunction is a radial basis function, whichis

shapedlike a bell curve.
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FIGURE 6.6 Hidden layers allow neural networks to approximate different functions.

The remarkable thingis that a collection of these very simple non-linear neu-
rodes connected together can bend and twist in response to input data to approximate
very complex non-linear functions. It turns out that many practical problemsas di-
verse as credit card fraud prediction and financial market behavior are inherently
non-linear. Neural nets can be suitable for such problems.

At this point you might be thinking, “So far, so good, but westill haven’t learned
how the neural network adjusts itself! How doesit actually learn from the data?”

To illustrate this part of the process, called training the neural network, let’s

reconsider Asian Business Trading (ABT), the import-export firm, that is interested
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FIGURE 6.7 Coding Exchange Rate Movements as 1s and Os

in predicting the dollar/yen exchangerate based on historical data. Figure 6.7 shows
how the yen/dollar movement might be coded using zeros and ones.°

A 1 in the leftmost position indicates that, four days ago, the dollar closed
higher than it opened against the yen. A 0 in that position would indicate that the dol-
lar closed loweron that day. Likewise a desired output of 1, in the rightmost position,
would bea prediction that the dollar will move higher, and an output of 0 would be a

prediction that the market will move lower. The lowerpart of the figure shows the
input record to the neural net. In this case, the input record says that four successive
days of an increase resulted in a drop the following day.

Suppose we want to makea prediction based on four previous days’ worth ofdata.
In the example in Figure 6.7, the input would be {1,1,1,1} and the output would be0.

Let’s use the very simple neural network shownin Figure 6.8 to see what hap-
pens inside the net when a data record is presented. To keep things simple, there is no
hidden layerin this net.

Now,let’s say that you have just presented the above data to the net: The values
of this input are all 1s, and that actual desired output is 0. That is, ABT’s data record

indicates that the network should guess the value 0 when presented with four 1s as
input. How can the neural networkdo this?

Think about what has to happen inside the neural network in order for the out-
put to be 0. Working backwards from the output node, you can see from Figure 6.9
that in order for the output of the nodeto be low,the transfer function (the top half of
the node) must be low. This will only happen when the weighted sum intoit,its input,

is small.
In order for the weighted sum to be small, the weights into the neurode must act

to decrease the sum, on average. For the net to produce the correct output, we could

expect to see relatively large negative weight values between each of the input nodes

and the top node (Figure 6.9, top), since this configuration will achieve an output of
Q. Thus, in order to “learn” the

 

*We do not recommendthat you use this very simple model to forecast exchangerates!
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FIGURE 6.8 A Very Simple Neural Network with No Hidden Layer. The numbersstate
that if the inputs to each neurodeare 1 the output should be 0.

1iii-7 0

record, the net must adjust each of its weights so that they are large and negative.
If instead you wanted the network to learn the pattern

tTiiili-tl

where the network output were 1 when presented with the 1 1 1 1 input, the weights
should be relatively large and positive, and thus increasing, on average, the weighted
sum (Figure 6.9, bottom).

A more interesting case occurs if you have to determine the weights to model a
problem involving the two patterns

0011-75 0 (Pattern 1)

and

1100-4 1 (Pattern 2).

Here, just setting all of the weights to large positive or large negative values
won’t work since each pattern is made up of mixedsignals.

In this case, the net must adjust its weights so that, on average, they cause the
weighted sum to be increased when Pattern 1 is presented, but they cause the
weighted sum to decrease when Pattern 2 is presented. A little thought showsthat you
can do this easily enough bysetting the weights on the first two inputs to large nega-
tive values, and the weights of the other two inputs to large positive values. This1s
shownin Figure 6.10.
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FIGURE 6.9 Changing the weights of a neural network changesthe output.

Note that if we had set all weights to either very small positive or very small
negative values (representing very weak connections) the result would be to produce
a weighted sum of approximately 0 no matter what the inputs were. This is because
all of the input would be weighted by very small values and,as a result, all of the in-
formation would be whittled away.

Whenthe input sum is around 0, the output of the neural net would be about
0.5. Since the value 0.5 is located equally between 0 and1, this output gives us very
little new information.It 1s the electronic equivalent of shrugging shoulders. The
small values of the weights have, in effect, caused all of the information to be sup-
pressed or ignored bythe net.°

°This is why, incidentally, neural network weights are often initialized with very small randomvalues before
they are trained.
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FIGURE 6.10 A More Involved Example of Setting Weight Values to Get Desired Output

In orderto get the weights set up the way you want, so that the net producesac-
curate output, you train the network by presenting it with sample data. To train the
net, you would first set all of the connection weights to small random values, essen-
tially creating a “blank slate.” You would next give the neural net a single record or
observation of data, which the net processes, and then uses to guess at an answer, as
wejust described.

Since the network has not beentrained yet and the weights aren’t set correctly,

you would expectthe first guess to be pretty bad, andit usually is. But this is still use-
ful. Rememberthat the child was able to use the information about her misses to help
her throw better next time. The neural network can also learn from its mistakes. In
fact, the first thing that a neural network in training mode does whenit finishes proc-
essing a data record is to compare the result of its calculations with the desired, cor-
rect output.
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If the network result matches the desired output, the network does nothing.If,
however, the result does not match, the neural network needs to find out whereit

went wrong. You know from the previousdiscussion that the values of the weights, in
large part, determine the output of a given neural network. So it makes sense that the
neural network should attemptto train itself by adjusting its weights, and it mustad-
just the weights so that, on average,it brings its own output morein line with the de-
sired results. Said another way, the neural network must adjust its weights in such a
waythat the error of its output is minimized.

To do this, neural networkstrain themselvesin a series of steps:

Step 1: The network makes a guess based on its current weights and the
input data.

Step 2: The net calculates the error associated with the output (at the out-
put node). For example, if the desired output were 1, but the network output
were 0, the error would be +1, based on the difference between 1 and 0.

Step 3: Thenet determines by how much and in whatdirection each of the
weights leading in to this node needs to be adjusted.
How?
This is accomplished by calculating how mucheachof the individual weighted

inputs to the node contributedto the error, given the particular input value. So, for ex-
ample, if a node’s output were too small, the net might need to concentrate on (thatis,
increase) small or negative weights that lead up to that node. In essence the network
feeds back the information about how well it’s doing to the neurodes in the net, and
wherepossible problems mightbe.

Step 4: The net adjusts the weights of each node in the layer according to
the analysis in the previous step. For example, in the case where the output was
too small, the neural network will try to increase the values of the positive
weights since that would make the weighted sum larger. This would bring the
output closer to 1, which is what you wantin this case. Similarly, the neural net
should also try to decrease the size of the negative weights (or even make them
positive).

Step 5: The net repeats the process by performing a similar set of calcu-
lations (Step 1—Step 3) for each node in the hidden layer below it. But since
you cannottell the net what the desired output of each of the hidden nodes
should be (they are internal and hidden), the neural network does a kind of
sensitivity analysis to determine how large the error of each of these nodesis
and by how muchto adjust the weights that feed into them. (For more details
on this process, see the Appendix at the end of this chapter.) This pattern of
checking errors and adjusting weights is continued for each hidden layerin
the network.
The net repeats the above guess—feedback—adjust process using each of the

cases in the data, (often many times) until the network is donetraining. At this point
the network can be tested to determine how accurate its output1s.

Earlier in this text, we discussed how optimization problems can be viewed as
landscapes in which the peaks are the best solutions, and the valleys are the worst

ones. The job of an optimization method 1s to search across the landscape andtry to
find the high peaks where the good solutionsare.
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You can picture a neural network’s error as a similar type of landscape, where

the dimensions of the space would be represented by the neural network’s weights.
The peaks and valleys are the errors corresponding to those weights, peaks being high
errors and valleys low errors. But the optimization problem in the neural network’s
case is to adjust the internal weights to minimize the amountof errorin the output.
Since the neural net is trying to minimizetheerror, it is trying to settle in a valley rep-
resenting a low-errorsolution.

The neural network therefore seeks out the valleys in this space. You can visual-
ize this adjustment process as one in which the weightsettings of the neural network
are bouncing around, trying to find optimal values. Figure 6.11 shows a graphical
representation of an error space. Note how the weight value “bounces”’ down toward
a minimum asthe neural network adjusts its weights.

The mannerin which the neural network actually finds weight settings is called

its learning method. Learning methods or learning paradigms can beclassified
broadly into those involving supervised learning and those involving unsupervised
learning.

The particular paradigm we have been discussing up until now is called back
propagation (backprop), because the errors between the desired output and the net-
work output are passed back or propagated back through the network in orderto ad-
just the weights.

However, this approach to training and using neural networksis only one of
many learning paradigms. Supervised learning paradigms (such as backprop) work
by presenting the neural network with input data and, along with these input data, the
desired correct output results. The network makes an estimate and then comparesits
output with the desired results. This information is used to help guide the networkto
a good solution. In essence, the network is being “supervised’”’ by an unseen mentor

who showsthe net how the answer should look and where the net might be making
mistakes. While backprop is the most commonsupervised learning paradigm, there
are numerousothersas well.

On the other hand, neural networks being trained using an unsupervised learning
paradigm are only presented with the input data but not the desired output results. The
networkclusters the training records based on similarities that it picks up from the data.

One wayto think about how this clustering worksis to imaginethat you pre-
sented some strangers with a stack of photographsof different scenes and asked each
person to classify them. Without any foreknowledge of what wasin the stack of pho-
tographs, one person might group things based on the types of photographs(color,
black and white), another might group the photos based on the various types of scenes
(outdoor scenery, indoor scenes,portraits, etc.), and a third person might group the
photos based on the types ofactivities (sports, business, entertainment, etc.). Each
grouping would make sense from a certain perspective, and we might discoverinter-
esting relationships among the photos by seeing how eachperson arranged them.

A neural network trained in unsupervised learning mode is similar to the
stranger. In such a case, the network is not being supervised with respect to whatit
is “supposed”’ to find. Instead, it is being left to its own devices to discover possible
relationships. In unsupervised learning, the network seeksto find similarities among
the different data records. With this type of learning, certain portions of the network
tend to specialize or respond to different dimensionsof the data.
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FIGURE 6.11 How a Neural Network Finds Good Weight Settings

An application in which unsupervised learning is often used is that of direct
marketing. Herigel Target Marketing, the company mentioned earlier might use a
neural net to develop such an application. HTM would start by feeding large amounts
of demographicdata into a neural network and then allowingit to train unsupervised.
A portion of the network mightfind patterns in incomelevels, while another might
find patterns in education levels of target clients, still a third might look at ages. That
is, the network seeks to combine these 1n such a way so as to form clusters of records
that are similar along these dimensions.’

By combining these different features, a neural network can come up with
clustering that highlight similarities among various data records. While many of the
clusters will be easily identified (middle-aged college graduates or single parents,
for example), others might represent sets of relationships that were unknown and
thereby show new waysof lookingat the data.

 

"The relationships that unsupervised learning neural nets find are very often much more complicated than these.
In fact, one of the challenges in using unsupervised approachesis in trying to interpret the dimensionsalong

which membersofa cluster are similar.
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The clustering will vary depending on the contents and distribution of the data.
By examining howclusters are formed, the staff of HTM mighttry to identify clusters
of cases where a marketing campaign wasor wasnot successfulto try to determine
which factors and relationships are significant in this respect. Alternatively, they

might try to use the trained neural network to classify new target clients for an up-
coming campaign, possibly eliminating those whofall into clusters that had low hit
rates in the past. By using this information, HTM would then save the expenseof ap-
proaching low-likelihoodclients.

INTELLIGENCE DENSITY ISSUES

So, whenis it a good idea to use a neural network?

One of the main advantages to using a neural network approach to a problem
over some other knowledge-based approachessuchas rule-based systems or fuzzy
systems is that you don’t need as muchdirect input from domain experts. This can be
good for several reasons. The most basic reason is that in somefields it just may not
be possible to speak with an expert since no onereally understands in detail the pro-
cess that you are trying to model.

But, even when you have experts, it may be very expensiveto get accessto their
time. A top bond trader who spends 2 hoursa day talking to a knowledge engineer
could be costing his company millions of dollars. Even if you can get the access you
need, experts can sometimes havea very difficult time articulating and formalizing
their expertise.It’s instinctive. The benefit of using a neural networkis that as long as
you have appropriate data, a neural net can often find useful patterns in them without
requiring an expert’s judgment.

In fact, neural networks excel at mapping relationships onto data that are noisy
and incomplete. This is a huge plus since whenyoutry to model real-world problems,
high-quality data are a luxury that is rare. More often than not, the data that are avail-
able are noisy, poorly distributed, and spotty. Neural networkscan often deal with this
kind of data better than manystatistical and AI methods.

How?
Each of the various computing units (neurodes) attacks a small portion of the

problem. Since each node looksat the data from different angles, a neural network
can often reconstruct what missing or corrupt data “should” look like andfill in the
blanks based on the data available. The neurodesinteract in such a way asto provide
many checksof the data from many different perspectives.

This also makes neural networksvery flexible. In fact, for processes that do not
undergo drastic fundamental changes, updating a neural network can be as simple as
just retraining the net with newer data or with the addition of a few new variables.

On the other hand, this doesn’t mean you can just dump data into a neural net
and hope for the best. Before neural network technology got wide exposure in busi-
ness, proponents and software vendors often claimed that users of neural networks
did not have to be concernedatall with data quality and content. However, experi-
ence has borne outthe fact that the approach of just gathering any old sample data
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into an informational “paper bag,” shaking it, and then dumpingthe data into a neural
network and hoping for the best tends not to produce goodresults.

While neural nets are theoretically capable of approximating a wide range of
mathematical and logical functions, the reality is that you usually need to spend a
good deal of time inspecting and pre-processing your data prior to training a neural

network. While you cannot usually control the amount of noise in the data you get,
you can help the neural net “understand”the data better. In fact this is where many
users of neural networks spend mostoftheir time.

Steps as simple as developing ratios and differences can improve tremendously
the ability of a neural network to learn. For example, giving a neural network the ratio
of sales and profits rather than giving the net the individual variables sales and profits

will save the network the time and trouble of having to figure out the relationshipitself.
Butratios and differences are just the tip of the iceberg. By putting some work

into understanding, massaging, and manipulating the data, you help ensure that the
bulk of the neural network’s training time will be devoted to finding the more inter-
esting relationships in the data that you don’t know about, rather than mapping simple
relationships that you already do.

In addition to filling in the blanks in missing data, the multiple node architec-
ture of neural nets buys you other benefits. Recall that each node is also equipped
with a non-linear transfer function. The neurodes are groupedinto layers, and infor-
mation is passed between neurodesand layers via connections. This architecture al-
lows neural nets to model complex, highly non-linear relationships, by modeling
many local dimensions simultaneously.

_ Since each nodeacts as an internal processorthat models a small piece of the
problem, it makes sense, then, that more complicated problems can be solved with
more hidden nodes. By the same token, when youincrease the numberof hidden lay-
ers in a neural network, you increase the ability of the network to use the results of

neurodesin the lowerlayers, and for those neurodes to interact. Some complex prob-
lems that are not solvable with a small set of nodes are easily solved if the numberof
nodes and hidden layersis increasedto facilitate this interaction.

As a result of these features, in general, neural networks are usually very good
at interpolation and classification of types of problems and are often able to mimic
exceptionally well the subtleties of a process.

The fact that you can easily add layers and nodes to a neural network also
meansthat neural network models can often be expanded to deal with more complex
or larger problems, providing there are sufficient data and timeto train the neuralnet.
It is usually fairly easy to add new variables to a neural network, or to present another
1000 or 2000 training examples, without goingto a lot of additional trouble.

Butall of these benefits do not comefree.
There are drawbacks to having too many hidden nodes. The larger the number

of hidden nodes, the more time will be required for training. (Each node hasa set of
weights associated with it. Each set of weights must be adjusted during each training
pass.) And, the larger the numberof nodes, the more data will be required to prevent
overfitting, or “memorizing” the data (we’ll get to that in a second . .).

In addition, the more complicated the network becomes,the less likely it is to
find good solutions. This is due to the fact that when you increase the numberof neu-
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rodes, you increase the numberof interactions between neurodesin each layer. This
can makeit difficult for the network to “settle down”to find a good set of weights
since an adjustment to one weight might have unforeseen effects on other weightset-
tings in the network. When you increase the numberof weights, you also increase the
size and dimensionof the search space.

The search space?
Rememberwetalked about the weight adjustment process of a neural net being

like a ball bouncing downa hill. The different combinations of weight values form a
very hilly terrain or search space (each weight being one axis of the space). The more
the weights, the larger the dimensions of the terrain. The degree to which the neural
network is able to scourthis terrain to find good combinations will determinein large
part how accurate it is. This comes downto howefficiently the network sets its weights.

If the network adjusts the weights too gradually (tiny bounces), training it can
take a long time since in each iteration the paradigm coversonly little pieces of the ter-
rain. The neural networkis also less likely to explore fully all of the geography in the
terrain. Considerthat if the networkis in a valley, but that valley is not optimal, the net-

work would needto effectively climb out, little by little, from the current valley before
it could moveinto a different area of the weight space where better solutions are found.
However, in order to move up, the network would need to worsen its performance by
moving away from the current valley. In essence it would need temporarily to increase
the overall network error. Since the network generally tries to adjust weights so as to
movein the direction that decreases the error, the end result is that the network will tend

not to leave whatevervalleysit starts settling in, even if there are better ones around.
Onthe other hand, if you makethe learning rate large, the neural network will

tend to train too quickly. It will tend to bounce around the weight space, exploring
many possible weightings, possibly jumping over peaksin the process and landing in
valleys other than the one in whichit started. However, because the steps it takes are

actually “leaps” it may not be able to settle down to an optimal set of values. Figure
6.12 shows this phenomenon.

Fortunately, there are some very good methodsfor helping neural networkstrain

well and avoid these pitfalls. Unfortunately, in addition to this adjustment process,
other factors, such as the numberof nodes and layers, the quality of the data, and the

complexity of the problem canall impact performance in a problem-specific sense.
There are many choices to make when you design a neural network: the number

of hidden layers, the number of nodesin each layer, the various data and variables to

use, and the settings of network training parameters (such as learning rates). As a re-
sult, it’s usually necessary to develop several networks and experimentwith different
topologies and parameters(like the size of the bounces). This experimentation time can
add up. Compoundingthis is the fact that, as we discussed, the collection, analysis, and

pre-processing of data can also consumea lot of time. Since data must often be pre-
pared differently for each of the various runs in a neutral network development
cycle, the combination of pre-processing and training can take significant time. All
of this takes experience and patience.

Yet muchofthis depends on the nature of the problem,the data available, and
the type of computers being used. Depending on the complexity of the network,vol-
ume of data, the power of the computer hardware available, and the type of neural
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FIGURE 6.12 Too big a step in the learning rate parameter can prevent a neural network
from finding good weightsettings.

network, training times can range from several minutes to several hours to several
days per network. This has implications as to the type of computer hardware you
might need. While a large number of problems can be solved easily on a PC, others
might require high-powered workstations, parallel processing computers, or special
purpose neuro-computing hardware.

Paradoxically, the fact that neural networks are excellent at finding subtle rela-
tionships in observational data can also be a drawback. Since the neural network
scours the data, looking for any possible relationship to exploit, it can find patterns in
the data that are not even relevant to the problem. Because of this, neural networks
sometimeslearn the patterns in the noise, not the patterns in the data.

There is a somewhat notorious example of this phenomenonfrom the field of
military research. A research team wastrying to develop a neural network model to
distinguish between photographs in which there were combattanks and those pho-
tographs in which there were none. The team took twosets of photographsof vari-
ous scenery: Oneset of scenes had tanks in the pictures, and oneset did not. The
team converted these images into machine-readable format, fed these data into a
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neural network, and let the net train. To everyone’s delight, after the network was
trained, it did a surprisingly good job at discriminating between the twosets of pic-
tures. However, when a newset of photographs wasused, the results were horrible.
Atfirst the team was puzzled. But after careful inspection of the first two sets of
photographs, they discovered a very simple explanation. The photos with tanks in
them wereall taken on sunny days, and those without the tanks were taken on over-
cast days. The network had not learned to identify tank like images; instead, it had
learned to identify photographs of sunny days and overcast days.

This little story highlights a major drawback. Theresults of processing inputs
are opaque. This stems in part from the fact that the original knowledge is not coded

in an explicit form. Rather, ANNsare highly non-linear functional equations and
mappings. The result is that it is difficult to understand which variables caused what
behavior in a neural network. While mathematical and operational methods do exist

for the analysis of neural networks, the methodsare fairly involved and canbeless
than satisfying. In addition, unlike moststatistical modeling methods,it can be diffi-
cult to say, even generally, which variables are significant in what respect.

While the tank spotting case above is extreme,it is not uncommonfor neural
network users to get very good results on training data, but get poorer results in real

practice. In the tank example, the results were skewed partially due to the waythat
the data for the problem were gathered. However, in somecases, even if the data are
quite accurate, a network can be “over trained.” This can occur when the network

spends too muchtime training on a specific set of data that is not large or representa-
tive enough ofthe process. Asa result, the network identifies idiosyncratic patterns in
the data. In essence,it picks up on andstarts to modellittle clues that are particular to
specific records in the training data, but are not particular to the underlying processit-
self. Nonetheless, these little clues aid the network in getting the right answers with
the training data, and, as a result, the network’s error decreases and the performance
seemsto be getting better. In essence, the net comesup with a surface that exactly fits
the training data, even the noisein it. This overtraining often occurs whena netis al-

lowed to train for too long on a particular set of training data, or when there are not
enoughtraining data to support the size of the network.

The same problem occurs if the data do not adequately sample the range ofin-
puts that the net will have to deal with in practice. That is, not only do neural net-
works needlots of data to train well,® but the data must be distributed in such a way
that most of the interesting features of the process being modeledare reflected in the
sample data. Remember, neural nets basically interpolate. If the points between
whichit must interpolate are missing, it will perform badly.

One waythat people minimizethe risk of overtraining is by monitoring closely
the performance of the neural network as it trains. A secondset of “test data”, such as
the set in Figure 6.13, is usually kept separate and used for periodically checking how
well the network guesses on the test set versus how well it does on the training set. By
doing this, you can determine whether the networkis learning the process or simply the
 

One rule of thumb is that ANNs usually require that there be at least an order of magnitude of more training
cases than there are connection weights, so the more variables, hidden nodes, and output nodesthere are in a

neural net the more data is required. Moreover, additional data are often required since it is usually desirable to

partition the data so that models can betested.
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FIGURE 6.13 Out of sample testing on data is not used to train a neural network.

noise. Since the test data cannot be used by the network to adjust its weights, the net-

work cannotlearn the peculiarities of the test data. It can only use the informationthatit
has learned from the training data. If the net has, in fact, learned about the process, then

the accuracy onthe test set should be comparable to the accuracy onthe trainingset.
On a day-to-day basis, most applications that take advantage of neural network

technology incorporate the neural net into some larger system, be that a trading sys-
tem, process control system, or a database system.

This is easy to do. Neural networkstypically evaluate to simple algebraic equa-
tions. If you wanted to, for example, you could write the equation for the schematic
of the neural networkin Figure 6.9 as follows:

sum = (weight, X input,) + (weight, X input,) +

(weight, X input,) + (weight, X input,,)

output = f(sum)
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wheref(sum) is the transfer function.? A more complex neural network would involve
more equations, but they would take essentially the same form as the one above.

This makes the trained neural network both a small program andeasily inte-
grated into other systems. A trained neural network can be evaluated using the same
relatively small numberof basic mathematical steps. For example, the equation above
can always be evaluated using exactly four additions, four multiplications, and one
evaluation off. While larger nets require many more evaluations, the numberfor a
particular neural net does not change.Asa result, neural networks tend to havere-
sponse timesthat are fast andreliable.

To summarize, neural nets stack up as follows on the various intelligence den-
sity dimensions:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimension Neural Network But...

Accuracy High Needs comprehensive training data

Explainability Low Some mathematical analytic methodsexist
for doing sensitivity analysis

Response Speed High —

Scalability Moderate Depends on complexity of problem,
availability of data

Compactness High —

Flexibility High Needsrepresentative training data

Embeddability High —

Ease of use Moderate —

Tolerance for complexity High —

Tolerance for noise in data Moderate-High Preprocessing is useful in dealing with
noise

Tolerance for sparse data Low —

Independence from experts High —

Development speed Moderate Depends on understanding of process, on

computerspeed, and learning paradigm

Computing resources Low to Moderate Scale with respect to amount of data and

size of network. Trained ANN needs
little computing resource to execute  
 

 

*Readers familiar with traditional statistical methods might notice that if we make the transfer function linear
(output = f(sum) = sum + constant), the equation for an individual neurode now bears a close resemblance to

the model produced bythat of a technique called regression analysis (OLS regression):

y= Bo + Bix: + Bx, + BX; +4 BXs.

In fact, if we replace each weight with a B and each input with an x, we get an identical equation to within a con-

stant. Furthermore, most neural networks employ an additional input node, called a bias, which takes no actual
data, but acts only as a constant.
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APPENDIX TO CHAPTER6:
The Back Propagation Algorithm

The back propagation algorithm seeks to minimizethe error term betweenthe actual
output of a neural network and the desired or target output as presented in a training
data record. Throughoutthe course of this discussion, we will assumethatthe transfer
function of the neural network is the logistic function, defined in Eq. 6.3.

To adjust the weight, w,, from a given node, n,, to the current node, ,, we up-

date w, as follows:

Wii a ty) = Wir + (A)(ew,)(1); (Eq. 6.1)

where A is the learning parameter, the subscript ¢ refers to the numberof timesthe
network has been updated, and ew,, defined more fully below, is the sensitivity of
node n; to a changein the weight w,. The term ew,will be calculated differently de-
pending on whether 7, is an output nodeor a hidden node.

Before we determine how to calculate the middle term (ew,) of Eq. 6.1, we

should review how a neural network arrives at its output values.
Recall that the total input to a neurode can be described as:

5 =) Wy (Eq. 6.2)

wheres; is the sum ofall inputs to the neurode, n; is the output from the ith node of the
previous layer, and w,is the weight of the connection betweenthe ith nodeof the pre-
vious layer and the current node.
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This output is then transformed using a non-linear squashing function (such as
the logistic function shownin Eq. 6.3, below) to yield the total output, n,, of node j:

!
"= Toa” (Eq. 6.3)

To determine the overall error for a single pass of the neural network:
1. We calculate the (RMS)error, E, for the output layer as follows:

- 5 s(n, - dy (Eq.6.4)
output

whered; is the desired output for output node/.
Once we have the error term for the entire network, we can begin to adjust the

weights. Some higher-level mathematics are required for adjusting the connection

weights. However, if we are clever enough in how wechooseourtransfer function
(Eq. 6.3), we can ensurethatit is easily differentiable, and that the mathematics will
therefore simplify nicely.

For the remainder of this appendix, we will present the mathematics such that
those interested in the full details of the derivations can follow them. However, those

less familiar with partial differential equations canstill follow the discussion by look-
ing to the last line (numbered) in every set of equations, which represents the simpli-
fied equations. In practice, the simplified equations are most commonly used for
implementing neural networks.

2. We next calculate the error term eo for each output node. Whatweare trying
to determine is how muchthe error term changes with respect to a changein each out-
put node.In other words, weare trying to see how mucheach node’s error contributes
to the overall error of the network:

OF
E0,; = ——

On, ’

E0, = (n, — d,). (Eq. 6.5)

3. We now need to determine how muchtheerror changesas wevary the input
to a given output node. To do this we need to see how the result of Eq. 6.4 would
changeif the total input to the node (the sum in Eq. 6.2) were changed:

OF
Es, =,

OS;

OE dn,
Es; = = —,

On; ds,

és; = €0n,1 — n). (Eq. 6.6)

4. We next calculate how muchto adjust the weight, w,, from a given node on
the layer below the currentlayer, n,, to the current node, n;:
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OF
ews = >

i

aE ds
emi as. dw,’

EW; = &S/N,. (Eq. 6.7)

5. Now wecan continue this operation on nodesin the lowerlayers by allowing
the nodes on the lowerhidden layers to play the role of the output nodes in Eq. 6.6
and Eq. 6.7. We must sum all of the contributions of inputs to the errors of the hidden
nodes in the lower layers, however. In addition, we will calculate the error of the hid-

den node by examining how theerror of nodes above the node change with respect to
changes in the node. Thus, in the following equation, note that the variables sub-
scripted with aj are variables from the layer above the current layer. As a result, they
will have been calculated already. The variable eh will take the place of variable eo in
Eq. 6.6. Now, eh maybe calculated as follows:

, _ oe.
Eh, = an,”

OE Os;

eh, = 2 ds, On,’

Eh, = » ESW;. (Eq. 6.8)

J

In this mannerthe error is propagated backwardrecursively through the entire
network and all of the weights are adjusted so as to minimize the overall network
Crror.



CHAPTER

Putting Expert
Reasoning in a Box

Rule-Based Systems

Like all Holmes’s reasoning, the thing seemed simplicity itself

when it was once explained.

—Arthur Conan Doyle, The Memoirs ofSherlock Holmes

Learn to reasonforward and backward on both sides ofa question.

—ThomasBlandi

In place ofbrute-force search we have now substituted a combined

system ofsearch and “reason.”

—Herbert Simon

Rule-based systems (RBS) are programs that use preprogrammed knowledge to solve
problems. RBS grew outofthe field of logical theorem proving as a way of establish-
ing the truth or falsity of particular assertions. Typically, an RBS stores heuristic
problem solvingfacts in a special database called a rule base. Thefacts are generally
stored in the form of “IF-THEN”rules. The RBS can use these rules as they are
needed to solve problems when presented with data. In this chapter we discuss RBS
and the ways in which they can be usedto solve a variety ofbusiness problems.

INTRODUCTION

You can view muchof problem solving as consisting of rules, from the commonsense
“Tf it’s too warm, lower the temperature,” to the technical “If the patient appears to
have pallor, then he must have an excessofbilirubin in his blood or be in shock;and,if

there’s an excess ofbilirubin in the blood, then administer drugs to lowerit.”

= 104 @
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Ofall the situations you can think of, whether they involve planning, diagnosis,
data interpretation, optimization, or social behavior, many can be expressed in terms
of rules. It is not surprising, then, that for several decades rules have servedasa fun-

damental knowledgerepresentation schemein Artificial Intelligence.
A rule-based system (RBS) is a model that expressesall of its knowledgein

terms of explicit rules. It is appealing to have all of a system’s knowledge described
in terms of a uniform structure, a rule. Uniformity of the building blocks is appealing.
It makesit easier to understand, implement, and maintain a large system.

Rule-based systems have been built in a variety of problem domains. Much
early work was done in medicine. MYCIN, an early expert system developed in the
mid-70s that diagnosed blood infections, expressed all its problem-solving knowl-
edge with rules. INTERNIST, a more comprehensive project encompassing all of in-
ternal medicine, also represented a lot of its knowledge about associations among
symptomsand diseasesasrules.

Researchers also built rule-based systems in the engineering arena. The most fa-
mousof these, XCON,developed in 1979, was andis still used by Digital Equipment
Corporation to configure VAX computers. XCON’s knowledgeconsists of thousands
of rules gleaned from engineers that specify how the various computer components
needed to satisfy a customer’s computing needs should be configured.

Following the successes in medicine and engineering, rule-based systems saw
a fair amount of action in the 80s. DuPont adopteda strategy of encouraging end
users to develop their own small applications, typically consisting of a few dozen
rules. Other organizations developed more complex applications that supported a
core business process. Cooper and Lybrand, one of the “Big 6” accounting firms, de-
voted a considerable amount of effort to developing Expertax, an expert system
aimed at providing large clients with tax advice. Peat Marwick, another Big 6 firm,
used an expert system to help auditors with audit planning; it used client and indus-
try data to flag client accounts that might have a high degree of risk associated with
them.

Whatkinds of problems lend themselves to an RBS approach? In business, ad-
ministration is often rule based. Accounting andtax practices are also inherently rule
oriented. More generally, in business and engineering, systems that raise alarms or
enforce quality control tend to involve rules. On the other hand, design problems tend
to be harder to expressas rules, particularly when a significant amountofcreativity is
required.

Examples:
e AutoCare, a chain of auto service centers, would like to develop a system that would
allow its mechanics to more quickly diagnose mechanical problems in customers’
cars. While there are specialists in repairing various types of cars, very few know how
to repair all types of cars. AutoCare hopesto collect the knowledge that these experts
have and makeit available to theirentire staff.

e HPC Consulting has a very complex billing structure that has resulted from a long se-
ries of contracts with clients. The structure is different for each type of contract, de-
pending on which primary services were previously offered, which additional services
are currently being offered, whetherthe client is part of a larger organization that also
has a contract with HPC, etc. The consulting firm wants to develop a system that will
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help it make its billing practices more consistent, understandable, and accurate, but
also allow the firm to make changesas newservicesare offered.

e CreditBankis a retail bank that does a fair amountof lending to individuals. The firm
would like to do a better job of screening loan applicants. The bank hopesto develop a
system to flag potentially risky applicants for closer analysis by bank officers. The
bank needsthe system to indicate which areas of the applicant’s profile may be cause
for concern.

THE ABCs OF RULE-BASED SYSTEMS

The basic units of rule-based systemsare rules. Rules take the form “Tf X, then Y.” In
such a rule, X is typically a description of somesituation and Y is someaction or con-
clusion.' The idea is that by using enough of these rules, you cover the scope of the
reasoning that an expert uses in a particular problem area.

What do we mean by “cover the scope of reasoning”? Let’s elaborate a little on
CreditBank’s loan application example.

Suppose CreditBank has data on the credit history of its customers. It also ob-
tains customer employmenthistory. CreditBank’s objective is to assess each cus-
tomer’s degreeofcredit risk.

To keep things simple, assume that a loan officer describes two variables:

credit history and employmentstability. The officer describes them as being very
high, high, medium, low, or very low. Healso describesriskiness using the same five
categories.

Figure 7.1 showsthe relationship betweenthese variables and risk. The heights
of the bars in the figure indicate the levels of risk corresponding to different combi-

nations of credit history and employmentstability. With risk also broken downinto
five categories, Figure 7.1 would contain 125 cubes. This region is called the prob-

lem space. Each cubeis essentially a rule. In other words, a rule “samples” a region
of the problem space. For example, wecan think of the bar in the leftmost square as
the rule:

IF employmentstability is very low
ANDcredit history is very low
THENcredit risk is very high.

The rules that describe a particular domain are called a rule base or a knowledge
base.

What did we do in this figure? Essentially, we categorized credit history, em-

ployment history, and risk into buckets between very low and very high and ex-
pressed relationships between these buckets.

Experts do this kind of abstraction all the time as a way of reducing the com-
plexity of the problem space. For example, to a physician, high fever might mean
temperatures between 102 and 108 degrees Fahrenheit. The doctor would also ex-

'This is a rough interpretation. X could also be a conclusion and Y could be facts that need to exist for the con-
clusion to be justified. In general, the meaning of the rule can vary, depending on the application.
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FIGURE 7.1 A Discontinuous Terrain Showing Levels of Risk for Different Combinations

of Liquidity and Income Levels. Blank cells indicate undefined regions.

press knowledge in terms of high or low fever, swollen glands, heavy discoloration,

and so on, whichare essentially qualitative abstractions. Similarly, for a loan officer,
high income might mean between $80,000 and $200,000 per year, and so on. Again,

the officer’s reasoning would be described in terms of these abstractions.
Abstraction simplifies thinking about the relationships among variables by re-

ducing the combinations you have to worry about. Of course, the categories must
be natural and enable the right distinctions to be made. If the categories are too
coarse, you’re likely to miss important distinctions. If they’re too fine, you end up
having to consider a large numberof combinations, many of which don’t makeuse-
ful distinctions.

In general, knowledge is expressable as rules under the following conditions:
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1. The problem variables are naturally expressible in terms of categories or intervals
(“buckets”) that are used in expert reasoning.

2. A rule covers a combination of inputs that will be encountered in practice—it actually
“samples”a significant part of the problem space.’

3. The rules tend to be non-overlapping and sample the problem space comprehensively.

For example, consider the CreditBank example in more detail. CreditBankis a
community lending institution. CreditBank has been making consumerloans for
many years. Over the years, CreditBank has collected a significant amount of demo-
graphic and financial data on people who have had accounts, applied for loans,etc.
The bank collected much of these data on paper and later converted them into elec-
tronic form. The data are not complete and some records have items missing.

The basic objective of the bank is to make loans to people whoare likely to

repay them. How would CreditBank develop a rule-based system to classify potential
loan applicants into risk categories?

For starters, CreditBank would need to round up someofits experienced loan
officers and ask them to identify the variables that are important in the lending deci-
sion.

After a few rounds of brainstorming,let’s say, CreditBank’s experts come up
with the following variables they considered important in order to make a lending
decision:

¢ numberof years of credit (a number)

° goodnessofcredit history (a category, like very low, low, medium, good, and very good)

¢ numberof years of unemployment(a number)

° profession (a category, like engineer, lawyer, doctor,etc.)

Next, they would begin to identify the rules. Here’s an example of one that re-
lates the numberof years of credit to degree of credit history:

 

credit-history-rule:

If X has had credit for less than 3 years

X’s credit history is very low   
 

 

*Mathematically, one can say that a rule expresses a mapping between domainsofvariables.
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The part before the “then” is referred to as the condition part of the rule or the
left-hand side (LHS), and the part after the “then” as the action part, or the right-hand

side (RHS).

How canthis rule be used?
CreditBank’s rule-based system can usethe rule in two ways.First, suppose the

system is processing a client named Mr. Cash. If the data indicate only 1 year of
credit history, the system would draw the conclusion that Cash’s credit history is very
low. In this case, the data about Cash’s credit history triggered the LHS ofthe rule,
causing the action in the RHS to be executed. Whena series of rules is executed in
this way, it is referred to asforward chaining.

On the other hand, suppose the system movesonto another potential customer,

Mr. Bumm,for whom there happens to be no data on years of credit. As a default

strategy, in the absence of information, the system might hypothesize that Mr.
Bumm’scredit history is very low.

Now the RBS would try to support or refute its above hypothesis. To do this,it
mustfirst support or refute another hypothesis, that Bumm hashad credit for less than
3 years. When a series ofrules is involved in this way, it is referred to as backward
chaining. In this mode the RBS must use otherrules and the data that are available to
check the validity of the hypothesis. In essence, the RHSof the rule becomesthe hy-
pothesis that is to be proved by finding evidenceto satisfy the LHS ofthe rule.

To see how chaining works, consider the following additional rule:

 

high risk-rule-1:

If X’s credit history is very low

AND

X has been unemployed for more than half of his adult years

YY
X is a high credit risk   
 

In this case, if the system were to try and show that Bummis a highcredit risk,

it would haveto first show that the credit history is very low and that Bumm has been
unemployed for at least half of his adult years. In order to prove the very low credit
history, the system would need to usethefirst rule (the credit-history rule). In effect,
the system needs to chain backward throughtherules until it gets enough facts to ver-
ify its original goal, that Bumm is a high-credit risk. In contrast, using forward chain-
ing, an RBS would match the LHS ofthe rule and work toward a conclusion, making

whateverinferencesit could until it had enough facts to reach a conclusion.
The point aboveis that one can reason forward or backward with the same set of

rules. The rules just represent pieces of knowledge. How therules are usedis flexible
and is also referred to as the control strategy.
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The control strategy adopted depends on the “shape” of the problem space.If

you need to acquire information abouta situation very selectively’ it makes sense to
backward chain, asking very focused questions with a goal in mind. On the other
hand,if lots of data are readily available, it might make more sense to work forward

from the data, making whateverinferences are possible and seeing “whatthe datatell

you.”
Sometimes it makes sense to employ both types of reasoning alternatively:

Make whateverinferences are possible based on available data, select a plausible
goal based on whateverdata were available, and gather additional data to proveit.

The simplest kind of rule-based system consists of three components as shown
in Figure 7.2:

° arule base

° working memory

° a rule interpreter

The rule base containsall the system’s rules. For instance, the two rules Credit-
Bank’s experts identified would gointo the rule base.

Working memory Storesinitial facts (data) and intermediate conclusionsor hy-

potheses. The role of working memory is similar to that of a person’s short-term
memory.

The last component of an RBSis the interpreter. The interpreter consists of a
kind of pattern matcher that recognizes which rules apply, given the current contents
of working memory. Once the system identifies these rules, a selector determines
whichofthe rules to actually invoke orfire. By fire, we mean that the rule is pro-
cessed. The actual execution of the rules for Cash’s and Bumm’s cases was done by
the interpreter.

A match occurs whenthere exists a piece ofdata in working memory that is an
instance ofthe pattern expressedin the rule.

For example, “Cash has been unemployed for three-fifths of his adult years” is
an instance of the pattern “X has been unemployed for more than half of his adult
years”: The variable X in the pattern matches the individual Cash in the data, and

more than half in the pattern matchesthe three-fifths in the data. The match is shown
in Figure 7.2.

Figure 7.3 shows how the interpreter works. The steps are as follows:

1. Rules are matched againstthe data.
This is referred to as the recognize part of the cycle. When a rule is matched by the data,
it is instantiated, meaning that an instance of the pattern expressed in the rule has been
found.* During the match phase of the cycle, the interpreter collects all the instantiated
rules. It puts these into a “bag,” referred to as the conflict set-(don’t forget this term,it’s
important). If no matches occurat all, the system is done andit halts.

 

“For instance, there are 3000 possible questions that you could ask, butit is feasible to ask, perhaps 50 at most in
orderto arrive at a conclusion.

*A rule could be instantiated several times in one cycle if it matches many data items. For example, risk-cate-
gory-rule could match the data for Joe as well as others in the database who have been unemployed for more

than half their adult years. In this case, there would be multiple instantiations of the rule that would result from
doing the pattern matching.
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FIGURE 7.2. An Example of Pattern Matching
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FIGURE 7.3. The Recognize—Act Cycle

2. The interpreter selects one instantiatedrule.
In effect, it looks into its bag and picks outthe rule that should be fired next.

3. The selected ruleisfired.
The actual firing of the selected rule is knownas the act part of the cycle. By firing the
selected rule, the interpreter is allowed to “do its thing,” which usually results in working
memory being modified, or in input/output. If the selected rule happenstotell the system
to stop, the system grinds to a halt. Otherwise, it goes back to step 1 andstarts all over.
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FIGURE 7.4 Contents of Working Memory over 2 Cycles for Mr. Cash. The data thatfire
the rules are in boldface.

The sequenceof steps 1 through 3 is referred to as the recognize—actcycle.
Figure 7.4 shows a couple of cycles of the system (rule firing and changesin

working memory) with Cash’s data, which are as follows:

1. Cash is 25 years old.

2. Cash has 1 yearof credit history.

3. Cash has been unemployed for three-fifths of his adult life.

The labels 1, 2, 3, 4, and 5 associated with the facts are time stamps indicating
when the data item was created (so, “Cash is 25 years old” was createdfirst, etc.).
Each downward arrowindicatesa rule firing.

Figure 7.4 shows the contents of working memoryoverthe two iterations. The
system has inferred two new facts. At each step the system holds on to its new con-

clusions, which can be useful in further inference.* In this example the system comes
to a halt with five facts in working memory.

Oneofthe advantagesofrules is that they makeit possible to “see”the relation-
ships between facts and conclusions. To show how,let’s make the above example a
little more realistic by introducing the following four rules about risk assessment:

 

*In this example, working memory grew.It can also shrink if data are removed from working memory.
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profession-rating-rule: If X is an engineer, doctor, orlawyer THEN X belongsto a high paying profession

high-earnings-rule-2: {f X is a successful business owner THEN X hashigh earnings

high-earnings-rule-1: {f X belongs to a high paying profession THEN X hashigh earnings

low risk-rule-1: lf X has high earnings THEN Xis a low credit risk 
 

The six rules are shown in Figure 7.5. The network, also knownas an inference
net, showsthe relationships among observations, intermediate inferences, and con-

clusions. The top part of the network showsthe tworules we walked throughearlier,
and the bottom part showsfour new rules that deal with low risk cases. These four
rules are listed in the box above.

Whatis the difference between an inference net such as the one above and a de-
cision tree? Why notspecify the logic in an application using a decision tree instead
of bothering with rules?

Onedifference has to do with how well you understand the problem at the time
you Start codifying the expert’s knowledge. If an expert can articulate clearly and
without muchtrial and error the sequence of steps involved in reaching a conclusion,
and if these will not need modification, then a decision tree might in fact be an appro-
priate representation.

However, if parts of the expert’s knowledgeare tacit, they may not emerge for
some time. In such cases, the decision process cannotbe articulated completely and
accurately up front. For such problems,especially if a significant numberof variables
and conditions (more than a dozen orso levels in the tree) are involved, a decision

tree can be a bad idea.
Why?

Asa decision tree gets large, it becomesdifficult to make changesto it. This is
because to understand whya certain point is reached in a decisiontree,it is necessary
to consider how one gets there. You end up examining a large part of the tree to un-
derstand the consequences of making modificationsto the logic. As long as the num-
ber of variables andlevels in the tree is small, the task of making modificationstoit is
manageable. However, the complexity of updating a decision tree rises exponentially
as the levels in the tree increase.

Another difference is that a decision tree incorporates two kinds of information
about the problem—decisions and events—and information on howto arrive at them.
In essence, the control knowledge, which is whattells you how (the order in which) to

do things,is part of the decisiontree.
In contrast, the inference network in Figure 7.5 specifies the relationships

among facts and conclusions but says nothing about how it should be traversed. Thus,
there’s no control information in the inference network,“just the facts.’’ You can tra-

verse the net in any direction, beginning anywhere within it. Since it does notincor-
porate any control information, it tends to express knowledge in self-contained
“chunks,” separate from the information about how these chunkswill be used. As a
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FIGURE 7.5 An Inference Network

consequence,this kind of representation is better suited for incremental specification
of knowledge. Whena newrule is specified, you don’t need to be concerned with
where in some predetermined sequenceofsteps it will be used. Rather, the rule inter-
preter figures this out during problem solving.°®

 

*While decision trees are at least possible for some problems involving classification, such as credit risk deter-

mination, they are not even feasible for problems involving whatis referred to as a large search space. Chessis
typical of such a problem:It has been estimated that a tree of possible moves for chess would have about 10'
branches. It doesn’t make sense to build a decision tree for such a problem because enumerating all possible
moves is not feasible. (Remember that in the GA chapter, we analyzed how long it would take to evaluate

1.55 X 10% items. We saw that we wouldeasily run into problems.)

Yet, it is quite reasonable to specify a few dozen rules designed to recognize board configurations and

make moves. Such a system wouldn’t need to mapoutto all possible sequences of moves from the beginning for

every possible chess game. Instead, it could have rules for opening moves, intermediate board configurations,

endgamestrategies, etc. It could then mix and match these rules depending on the context, without having to

specify beforehand the exact sequence of play from the first move. This gives you tremendousflexibility over
the branching logic approach.It allows you to use your expert knowledge dynamically as opposed to forcing

you to structureit rigidly.
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Intuitively, this separation of what you know and how youuseit is appealing.
Afterall, there are many things you know that turn out to be useful in unexpected
ways, depending on the context. On the other hand, when you acquire a new piece of
knowledge, you don’t need to determine immediately the ways in which it will be
used.

One of the implications of separating the what from the how is that a rule-based
interpreter has a choice in every cycle as to whichrule it should fire. An RBS makes
the decision about whichrule to fire at “run time” as opposed to being specified be-
forehand. This is a natural consequenceof the separation of the what and the how:If
you’re not going to specify the decision process (the how), the system mustfigure it
out. If several possible rules are matched by the data in working memory in each
cycle, the system mustselect oneto fire. To illustrate how selection works in a rule-

based system, we will rerun the reasoning process for Cash, with the followinginitial
facts:

1. Cash is 25 yearsold.

2. Cash has 1 year of credit history.

3. Cash has been unemployed for three-fifths of his adult years.

4. Cash is a doctor.

In this case, to begin with, either credit-history-rule or profession-rating-rule
can fire. If credit-history-rule fires, Cash ends up with a very low credit history. Not a
good sign. On the other hand, using the samepiecesofdata, ifprofession-rating-rule
fires, Cash belongs to a high paying profession. Right away, you can see that you
would come to very different conclusions about Cash depending on the order in
which the system selects rules to fire. Figure 7.6 shows the two possible outcomes.
You can see that by ordering rule firings differently, you can end up with very differ-
ent behaviors from a system.

So, how should a rule-based system decide which instantiation to select? Inter-

estingly, the choice of which ruleto fire can itself be viewed as a rule-based problem:
We can apply another type of rule, a meta rule, to decide whichruletofire.

One common metarule is to favor rules that match the most recent data. In the
example shownin Figure 7.6, the profession-rating-rule would win since it matches
the most recent fact, number4.

But why does it make sense to use recency of data as the meta rule? Oneratio-

nale is that when a system has a choice between using inferences maderecently ver-
sus those made earlier, the most recent ones focus on a more immediate goal that
should be addressed instead of letting a system’s attention bounce around betweenre-
cent and older goals. By focusing on the most recent facts, reasoning does not get
“distracted” by older facts, but is directed at the tasks or goals on top of the agenda.
Inference is focused in this respect by recency.

But there could be other meta criteria. For example, why not give precedence to
more specific rules, that is, ones with a larger number of conditions on the left-hand
side? In our example, risk-category-rule-1 is the most specific since it has two condi-
tions on the left-hand side whereasall others have only one.

A justification for this strategy could be that a highly restrictive left-handside,
if matched, indicates that a highly specific condition has been matched from which a
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FIGURE 7.6 The order in which rules are processedaffects the results.

valuable conclusion might be derivable. It should therefore be derived as soon as pos-
sible. In this case, reasoning is focused by specificity.

The two meta-rules above, recency andspecificity, are independent of the prob-
lem area we’re dealing with. That’s good and bad.It is good becauseit is a general
Strategy. It is bad becauseit ignores problem-specific information.

An example of a problem-specific meta rule would be “give precedenceto rules
that deal with high credit risk.” If the system used this risk-averse meta rule, it would

indicate that when in doubt, the system should turn down people for credit! Another

example, say for a medical consultation system, might be “ask the physician for lab
test data before requiring him to provide his own judgmental data aboutthe patient.”

You might be wondering whether there’s any reasonto restrict ourselves to two
levels of rules. There isn’t! We can have meta meta rules and so on. Figure 7.7 shows
that a rule-based system, in general, consists of layers of rules.

A two-layered system where one layer expresses domain knowledge and the
other layer how to apply the knowledge is commonly used. In systems that use more
than two layers, the basic idea is that as you go higher, the meta rules becomesimpler
and more general, until at somelevel, the choice is trivial. For example, in a medical

diagnostic system, a meta meta rule might be “ask for data that are routinely available
before data that require invasive procedures.” Similarly, for a credit risk scoring sys-
tem a rule at this level could be something like “gather data about the client that are
the least expensive to acquirefirst.” At the lowest level, you would haverules like the
six generated by CreditBank’s experts.

In summary, a rule-based system consists of layers of rules—atleast two layers.
Each layer expresses a specific type of knowledge.This layering is appealing in thatit
partitions knowledge into modular chunksthat can be maintained somewhatindepen-
dently of each other.
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FIGURE 7.7 A rule-based system consists of layers of rules

INTELLIGENCE DENSITY ISSUES

So, whenis it a good idea to consider using a rule-based system?
Let’s reflect a little about how we answered this question for genetic algo-

rithms. Recall that a GA is good for problems where you can specify a globalcrite-
rion that helps us recognize good solutions, but where you’re not able to specify any
knowledge about how to solve the problem. A rule-based approach makessensein ex-
actly the opposite situation, when you can specify with confidence several small,
selfcontained pieces of knowledge that indicate what conclusions to draw or actions
to take in specific situations. At the same time, you are not required to specify a clear-
cut global criterion to guide your search for solutions.

For example, you’d expect an experienced loan officer to be able to tell you
about interpreting information regarding loan applicants and arriving at a conclusion
about their creditworthiness. The loan officer might have several strategies for ana-
lyzing the data. While he might not be able to describe the process algorithmically,
chancesare that the loan officer would be able to articulate small pieces of the rea-
soning process.

On the other hand,it might be very difficult for the loan officer to give you a
single measure of “goodness” to apply to all loans. To analyze a particular case, the
loan officer would invoke the right pieces depending on the data. This is the essence

of rule-based reasoning: It is data driven, meaning that the reasoning process is
guided by the data instead of requiring the complete decision processto be laid out
completely a priori.
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A rule-based approach is worth considering when you have experts who are
able to specify with a high degree of confidence what they do in specific situations.
Thetrick for the model builderis to extract as much knowledgeas possible in as short

a period of time as possible. This knowledge is then turnedinto rules. Theserules, in
turn, must cover the problem area comprehensively so that there are no inappropriate
“holes” in its knowledge base. Good coverage usually happens when experts have
been solving a problem for a long time andretain heuristics that have proved useful in
generating the best solutions. For such problems, we can be more confident about the
quality of the solution.

If a problem is “decomposable,” where the interactions among variables are
limited and experts can articulate their decision process with confidence, a rule-based
approach is a good candidate and a system mayscale well. In contrast, if the problem
is one with a large numberof subtle interactions among numerically valued variables,

the complexity of the problem increases. For such problems, it becomes increasingly
impractical to conduct knowledge acquisition and extract meaningful rules. Such sys-
tems, like the weather or financial markets, are referred to as “complex systems.”In
trying to analyze them, experts begin to find it difficult to articulate confidently the
large numberof interactions among the variables. For such problems, a rule-based
approach doesn’t scale well, simply because knowledge engineering becomes the
bottleneck.

In fact, scaling up rule-based systems from a dozen or so rules to hundreds of

rules can be a very illuminating, if unpleasant, ordeal. In general, experience thus far
suggests that about 60 to 70% ofthe time taken to develop rule-based systemsis spent
on knowledge acquisition! Often, this is because of interactions amongvariablesthat
only begin to emerge as a system scales up.

One wayto cut down the knowledge engineering part of the process is to use
whateverhistorical data are available on the problem. For example, CreditBank had

data available on its customers. Could it glean these data to try to come up with some-
thing useful? The answer, surprisingly, is yes. In a later chapter, we will discuss tech-
niques available called machine-learning algorithms that take a set of data and come
up with rules that reflect the choices present in the data.

Perhaps the most important reason for considering an expert system approachto
a problem is that an RBS approach seeks to behave like an expert. It exhibits the
“feel” of an expert. What are the mostvaluable things about having access to a human
expert for consultation?

Gooddecisions, of course. However,it’s not just the accuracy of the decisions,

but the ability to back them up. An expert usually provides a justification for a con-
clusion, a hypothesis, a test, and so on. In addition, an expert also questions the valid-
ity of existing facts or brings hypotheticals into the picture. The expert ponders
alternative scenarios and so might say, “I think under the circumstances, X, the most

likely conclusion is Y, but if an additional fact, say F, were present, hmm, the more

likely conclusion might be P.”
Explanation and hypothetical reasoning (or what-if analysis) are perhaps the

two most compelling reasons for adopting a rule-based approach. That a system can
apparently reason about how changesaffect an existing solution and provide explana-
tions for its decisions can add significant comfort value for the user.
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But explanation and hypothetical reasoning comeata cost.

First, you have to understand the problem area much better than you can with a
black box approach like a neural network; you haveto extract all kinds of problem-
solving knowledge. This takes time and effort. Second, from a computational stand-
point, you incur a lot of overhead in terms of memory and reasoning machinery. To
see why,let’s see how explanation works.

The kind of explanation and hypothetical reasoning we describeis referredto,
for obvious reasons, as “reason maintenance” (and sometimes as “truth mainte-

nance’). A reason maintenanceor truth maintenance system can be a separate module
that “plugs into” a rule-based system.

The most primitive kind of explanation is an audit trail of a system’s reasoning.
Whatis an audit trail for a rule-based system?

Consider the inference network of Figure 7.5. Problem solving using such a net-
work involves determining which parts of it have been “excited” for the case under
consideration. For example, when we ran Cash’s data through ourrule baseit told us
that Cash is a low credit risk. If we wanted to know why Cash wasclassified as a low

credit risk, we trace back through those parts of the network that were “excited” by
the rule applications.

In Cash’s case, he was a low risk because: we determined that he had high earn-
ings; this in turn wasjustified by the fact that he belonged to a high paying profession.
Figure 7.8 outlines the reasoning. The solid black circle stands for a justification. The

system justifies the conclusion “Cash is a low credit risk” by the fact that “Cash has
high earnings”is valid, and the fact that we believe low-risk-rule-1 to be a valid rule.

Eachjustification is indicated bya solid black circle.
Now how aboutthe truth maintenance and hypothetical reasoning? What would

happenif weretracted either low risk-rule-1 or the fact that Cash has high earnings?
Clearly, Cash would cease to be a low credit risk. Unless, of course, there were other

reasonsto believe that Cash is a low creditrisk.
Oneof the interesting things to note about Figure 7.8 is that the validity of the

rule itself is questionable. That is, you can question facts as well as rules in doing a
what-if analysis. Experts do this all the time. That is, not only do they question facts,
but also the general applicability of the rule. After all, rules are usually heuristics, not

axioms. Questioning the validity of rules “broadens” the set of possibilities in the
analysis.

Weshould point out that facts can be justified in many ways. Figure 7.9 shows
such a scenario where we used anotherrule, which states that if someonehasassets
that exceed five times their loan amount, then he or sheis a low credit risk (we’ve

called this low risk-rule-2). And Cash is assumed to have cash and securities that add

up to overfive times the loan amount. Notice that the conclusion has two justifica-
tions, indicated by the twosolid black circles feeding into it.

You can imaginethat if a system maintains the kinds of dependency networks
sketched out above, it can do fairly sophisticated kinds of what-if reasoning with
ease. For example, what happens if we find out that Cash is only an intern and not a
doctor? Easy. Wejust “gray out” that fact. What happens as a consequence? Well,
the fact that “Cash belongs to a high paying profession” goes out of the window.

Whenthat happens,the fact “Cash has high earnings” isn’t valid anymoreeither.
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The net result, shown in Figure 7.10, is that the conclusion “Cash is a low credit

risk” loses one ofits justifications. Butit’s still valid since it still has one justifica-
tion intact.

Networks such as the above can also be extended to handle contradictions. In
such cases, the status of some facts or rules must be adjusted to getrid of the contra-

diction. Some truth maintenance systems let you work with multiple contradictory
situations at the same time, which is handy for exploring multiple perspectives simul-

taneously.
As we mentionedearlier, all of this comes at a cost. Other than the knowledge

engineering cost, such systems tend to be space and time intensive. Keeping around
justifications requires lots of memory. Even more importantly, computing the status
of all facts every time a new inference is made is a computationally intensive process.
With more than a few hundredfacts in working memory,the status assignments algo-
rithms can grind for a long time in order to check for contradictions and find ways of
resolving them.

Another operational issue to consideris that rule-based systems are usually not
compact, especially when you compare them to neural nets or GAs. Furthermore,
each rule in an RBS expresses a small piece of knowledge explicitly. Each rule typi-
cally encodes knowledge about one small step of the problem-solving process. To

cover a reasonably complex problem domain, you usually need a fair number of
rules. In addition, you need the rule-interpreter and working memorysectionsaspart
of your system for doing the pattern matching at run time. This makesrule-based sys-
tems somewhatharder to embedinto other systems.

Flexibility is a tricky issue in rule-based systems. Consider what makestradi-
tional systems inflexible. For the mostpart, it is the large number of complex interac-
tions between the various pieces of software. Because of this, making small changes
can force you into doing a lot of analysis to ensure that you’re not introducing un-
wantedside effects.
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FIGURE 7.9 A Dependency Network Showing Two Supports for a Conclusion

In contrast, think about how an RBS’s rules “interact” in solving problems:
through working memory.That is, no rule “calls” another. Rather, rules are “invoked”
by the interpreter depending on what shows up in working memory. This makes a
rule-based system flexible in the sense that when you add a rule you don’t need to
consider whetherit will “call” other rules or be called by them. Rather, a rule is stated
without regard to how it will be used. Remember, there’s a separation between the

what and the how.
Havingsaid that, however, the reality is that the rules are often specified with

the conflict resolution strategy in mind (the how). As long as a rule set is not very
large (i.e., fewer than a hundredrulesorso), this isn’t a serious problem. However, as
a rule base becomeslarger, getting the system to exhibit the behaviorit is supposed to
becomes harder to do by simply tweaking the rules. After a few rounds of tweaking,
the content of rules begins to diverge from what the expert might havestated. In fact,
the real danger can often begin when a modelerstarts resorting to “tricks” to make the
right rules fire at the right time. Over time, this can becomeincreasingly difficult to

orchestrate, and the modularity of the system can be compromised.
These difficulties can be lessened if the rule base is kept as small as possible. Fur-

thermore, if a problem is decomposable, the rule base can also be decomposedinto in-
dependentrule sets, which reduces the danger of unforeseen interactions. Experienced

developers also tend to develop the rules themselves without considering unnecessarily
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the conflict resolution strategy. This reduces the dangerthat tricks will come back to
haunt a developer.

The following table summarizesthe intelligence density issues for rule-based

systems:

 

Dimension RBS But...
 

Explainability High
 

Response speed Low to Moderate Slowsif data are rule-basedor if data

are too large; tendsto get a lot
slower with sophisticated explana-
tion capabilities
 

 

 

Scalability Moderate Good for decomposable problemsbut

poor for complex problems with a
large numberof variable interac-

tions

Compactness Low —

Flexibility Moderate Highfor smaller rule bases, but de- creasesas rule base gets larger 
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Dimension RBS But...

Embeddability Low —

Tolerance for complexity Low —

Independence from experts Low —

Speed of development Moderate to High The speed is high for prototypes and

small rule bases, but tends to get

lowerfor large rule bases  
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APPENDIX TO CHAPTER7:

How Rete Works

Rule-based systems typically handle pattern matching involving about a thousand
working memory elements and rules withoutdifficulty. This is because there’s a clever
way of doing pattern matching that does not require iterating over working memory in
each cycle. The algorithm, well known as the Rete algorithm, makesuseof the fact
that the contents ofworking memory changeonly a little after each rule application.

Becauseof this, it makes more sense to think about what change has occurred
in working memory (and hence the conflict set) after each cycle, instead of comput-
ing the entire contents of working memory from scratch each time. Specifically, the
Rete algorithm figures out which instantiations from the previous cycle will notfire
in the next cycle, and which newinstantiations that did not fire previously will fire in
the current cycle.
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The Rete algorithm avoids doing the pattern matching from scratch in each

cycle by maintaining an internal representation thattells it the state of each rule in a
cycle. It does this by recording which working memory elements have matched each
of the conditions of each rule. Specifically, it stores with each condition a list of
working memory elements that match it as shown in Figure 7.11. The lists are up-
dated whenever working memory changes. For example, when a new datum enters
working memory,the interpreter finds all patterns that match it and adds the datum to
their lists; when a datum is deleted, it deletes it from their lists. When all the condi-

tions of a rule have data that match them,the rule is instantiated. Likewise, when a

previously instantiated rule ceases to be matchedby the current data, it is removed
from the conflictset.

To figure out whethera rule is now instantiated or ceasesto be instantiated, the

Rete algorithm keeps a counter for each rule corresponding to the numberof con-
ditions in the rule. Each time a condition is instantiated, that is, a working memory
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element matchesit, the counter is decremented. When the counter reaches zero, the

rule is instantiated. Likewise, when a zero value becomespositive, it meansa rule
that was instantiated in the previous cycle is no longer instantiated. This is how the
Rete algorithm is able to compute changes to the conflict set rather than computing
it from scratch each time. In effect, by saving information about the state of each

rule (i.e., whether it is completely or partly matched) in each cycle and figuring out
what changed from the previouscycle, the interpreter can avoid figuring out the con-
flict set from scratch after each cycle.



CHAPTER

Dealing with
Linguistic Ambiguity

Fuzzy Logic

We think in generalities, we live in detail.

—Alfred North Whitehead

True genius resides in the capacityfor evaluation of uncertain,

conflicting and hazardousinformation.

—Winston Churchill

As complexity rises, precise statements lose meaning and

meaningful statements lose precision.

—Lotfi Zadeh

Fuzzy logic is a method of reasoning that allowsfor partial or “fuzzy” descriptions of
rules. The power offuzzy logic comes from the ability to describe a particular phe-

nomenaorprocess linguistically and then to represent that description in a small num-
ber of very flexible rules. The knowledge in a fuzzy system is carried both in its rules
and in fuzzy sets, which hold general descriptions of the properties ofphenomena.

In this chapter, we introduce fuzzy logic and show howit can be used to build
fuzzy systems. We then discuss how and when these systems make sense for solving

business problems.

INTRODUCTION

Sometimesrules are clear-cut. If your income is above a certain amount, you fall into
a specific tax bracket. If you’ ve committed more than two movingviolationsin a year,
then your license is revoked. If you have an M.D., you can practice medicine.If a

= 126



Dealing with Linguistic Ambiguity 127 @

payable account has been outstanding for more than 120 days, then send the case to a
collection agency. Bureaucratic and accounting systemsare full of exceedingly clear-
cut rules (no matter how inappropriately they might sometimesbe applied).

But more often than not,it’s difficult to describe things in terms of hard, black-
and-white distinctions. Language, our primary means of communication, is anything
but precise. We talk about strong people, intelligent people, green vegetables, highly
leveraged companies, medium-sized companies: All of these adjectives are approxi-
mations weuse to categorize things.

Categorization provides a simple means of expression.It lets us state things in
general termsand interpret these generalizations depending on context. For example,
we might believe implicitly that “highly paid” is upwards of $100,000 per year. This
is a generalization. But even though a woman who made $102,000 and a woman who
made $190,000 would both be considered highly paid, the latter is clearly so to a
greater degree. And what of the person who makes $99,900 a year? Isn’t that person
also highly paid? Fuzzy logic supports reasoning about these kindsofsituations. It is
based on gradationsinstead of sharp distinctions.

It is not hard to think of dozens of examples wherethis kind of reasoning ap-
plies. If someone referred to Yamamoto, who could lift 215 Ib., as strong, we would
tend to agree completely'; if Yamamoto could lift 80, we might be willing to go along
with the description but be somewhatless convinced; if Yamamoto were only able to
lift 25 lb., we would probably disagree if someonecalled him strong.

The kinds of categorizations that we’ve been discussing do not have precise
boundaries. Rather, these categories encompass a range or Sensitivity of values;

highly paid, for example, encompasses a range of values. And each ofthe values that
we consider “highly paid” belong to the category of “highly paid” to a degree ranging
from 0 to 100%.For instance, $500,000 a year is certainly more “in” that category
than $80,000.

The “truth” of these statements varies like a dimmer switch, where completely
off is O% agreement, and completely on is 100% agreement, with an infinite number

of gradations in between.
Thinking about the world in terms of “degrees of membership” in categories

has a natural appealto it since you can express many problemseasily in fuzzy terms.
For example,it is easy for a train operator to say “If the station is near, I begin to slow
the train,” where near and slow are inherently fuzzy notions. Similarly, a process con-
trol operator of a blast furnace might say somethinglike “If the temperature is declin-
ing rapidly, then I let in a quick blast of oxygen.” Again, declining quickly and quick
blast are fuzzy concepts used to state generalizations. If we asked these operators to
be more specific, we probably wouldn’t get too far. Or we might end up with a very
large set of very complex but exact rules that collapse like a house of cards when
changes need to be made to them.

Interestingly, fuzzy logic has found an amazing degree of applicability in con-
sumer electronics and engineering applications. Vacuum cleaners, washing machines,
and image stabilization in camcorders are a few such examples. In particular,

 

'A panel of Olympic class weight lifters, however, might not consider anything below 300 “very strong.” We

will talk about how to deal with these kinds of “relativistic” issues later in the chapter.
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Japanese researchers have been instrumental in demonstrating the practical use of
fuzzy logic in these areas. They have shown their appreciation of the technique and
the profits it has generated by awarding the Hondaprize, a most prestigious award in
Japan, to Lotfi Zadeh, the inventor of fuzzy logic.

Until recently, however, fuzzy logic had probably led to many moreintelligent
machinesthanto intelligent software systems. Lately, this gap is beginningto narrow.
Given the impressive array of applications to machines, it is natural to ask whatit is
about the technique (or these problems) that has led to these successful applications.
And equally important, for what kinds of business problems is fuzzy logic a good
candidate?

Examples:
e The Global Bank,a large international bank, would like to create a system to monitor
potential investment opportunities. Because the bank deals in many emerging mar-
kets, however, there are often little data on the assets and markets in which the bank

invests. These markets are sometimes quite complex and a model would be useful.
The bank has several economists and traders who have a good deal of global trading
experience.
Data Quick is a data vendor. The firm supplies market data on a wide variety of com-
mercial products and services to its clients. The firm would like to develop a data-
base that would allow its customers to perform morenatural queries. For example,
Data Quick would like to allow customers to do things like search for all cosmetic
products that have sales volumes about the same as MoisturePlus in the areas near
Chicago.
William Tell Direct Marketing has a large database of client market information about
a large number of consumer products. The firm would like to know whetherthe
amount of moneytheir clients are allocating to promoting each of their products in
each marketis appropriate. The firm hopesto rely on its marketing team’s experience
in developing a model.

THE ABCs OF FUZZY LOGIC

Weshould begin with a clarification: Fuzzy logic does not mean vague answers.
As you might imagine, controlling the stability of a video camera is anything

but vague: A vaguely stabilized image wouldn’t do a camcorder much good. The
Same is true of controlling a steel plant: Temperatures, pressures, and flow rates are
all precise, quantitative things. Control requires precise answers, such as “introduce
2.3 cc of oxygen per second,” not vague statements like “introduce some oxygen
slowly!” And imagine a foreign exchange prediction system that said to sell some
dollars pretty soon!

Fuzzy logic only implies that the reasoning processis stated in terms of approx-
imations. However, this approximate reasoning is applied to precisely stated (numeri-
cal) inputs, and producesprecise numerical outputs.

The termfuzzy logic originated in the early 1960s when Lotfi Zadeh introduced
the concept of a “fuzzy set.” Zadeh reasoned that most things in life do not fall
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cleanly into one “crisp” category or another (hot-cold, high-low, fast-slow,etc.). In
fact, Zadeh contended, many phenomena belong to several categories at the same
time, and the categories can even appear to be mutually exclusive on the surface.

To understand what fuzzy rules are, it makes sense to begin with “regular,”
“crisp” rules. Take the example of CreditBank from the previous chapter, which dealt
with years of unemploymentand credit risk. Suppose the bank’s experts articulated
the two rules:

IF years-of-employment is LONG
THENcredit-risk is LOW

IF years-of-employment is NOT LONG
THENcredit-risk is HIGH

To make use of these rules, you need to determine what LONG means. Let’s say
that you decide that LONG means15years.

Suppose you have a database of clients and you wish to separate them into low
and high risk categories for car loans. You comeacross Bill Borrower’s data. Bill has
been employed for 14 years, 11 months, 3 weeks and 6 days (1 day shy of 15 years).
Youfire yourrules...Bill fails and you send him on his way.

Don Debtor has also applied for a car loan. Don’s employmenthistory shows
that he has been employed for 15 years and 1 day. Don walks out with a newcarloan.

What happened here? Two applicants with essentially the same employment
history have applied for loans. Because Don was employed for 2 days more than Bill,
your rule indicated that Don wasable to get a loan (he was of “LOW?”credit risk),

and that Bill was not (he was of “HIGH”credit risk). But you know that the employ-
ment histories of the two menare almost identical. Bill has suffered because in this
case yourrules weretoobrittle (crisp). According to the two rules above,reality must
be broken up into only “black” and “white” or LONG and NOT LONG.

Whatis unnatural in the above exampleis that we are trying to deal with inher-
ently fuzzy concepts in a crisp way.

Precisely what do we mean when weusethe terms crisp and fuzzy? Figure 8.1
shows the concepts LONG and NOT LONGascrisp sets of values. The numbers 15
and 30 define the boundaries of the set LONG, which meansthatall values in the in-
terval [15,30] belong to the set, whereas those outside this range do not. Similarly
values in the set [0,15] belong to the set NOT LONGandthoseoutside this range do
not.

Figure 8.1b shows whatis referred to as the membership functionforthe set
LONG.Whatit showsis that numbers in the range 0 to 15 years have 0 membership
(FALSE)in the set LONG whereas those between 15 and 30 have complete member-
ship of 1 (TRUE). In crisp sets, membership of an objectin a setis either O or1.

Consider another example. Suppose Data Quick, the market data vendor, has a

user who wants to find medium-sized companiesin a large database. Say the user de-
fines medium-sized companiescrisply as companies having sales between $25 and
$75 million. Is there a significant difference between a company with $24.5 and one
with $25 million in sales? Not really, but the former would not show up if you
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queried the database for medium-sized companies. If you make the boundary $24
million, the $23.5 million companygets excluded. And so on.

Fuzzy logic provides a methodology for dealing with “gray” areas that involve
concepts such as LONG, MEDIUM,andotherslike them. By allowingsets to have

“fuzzy boundaries” rather than sharp ones,rules tend to be moreflexible, compact,

and intuitive for modeling complicated processes whose components are not simply
black and white.

Howdoesthis work?
Zadeh proposedthat the degree to which a given object or phenomenonfalls

into different categories, as defined and quantified via the membership function, need
not be an “all or nothing”step function as in Figure 8.1b. Rather, membership can
range continuously between 0.0 and 1.0, where 0.0 indicates no membership, or
FALSE,and 1.0 indicates total membership or TRUE,and all other values indicate
some intermediate degree of membership.

Figure 8.2 showsa fuzzy set for MEDIUM-sized companies.It is fuzzy in the
sense that there are no sharp boundaries wherethe set ends. The boundariesof the set
fall off gradually. Instead of companies being MEDIUM or NOT MEDIUM,any
company belongsto the set, with a value between O and 1 indicating the extent to
whichit belongs.

The degree of membership in Figure 8.2 is depicted by the shading: A company
with sales of $50 million is a prototypical medium-sized company, with membership
of 1. The degree to which a companybelongsto this set begins to taper off on either
side of $50 million. At $25 and $75 million, the membership dropsto 0.

Whatthis means,is that the concept of medium applies moststrongly to compa-
nies that have sales of exactly $50 million, and the conceptis less strongly applicable
as you move away from that value. Figure 8.3 shows the membership function for
medium-sized companies. In this case, membership increases linearly between $25
and $50 million and declineslinearly after that.

Figure 8.4 summarizes someof the differences between crisp and fuzzy sets.
Concepts such as small, medium, and large are described in terms of gradationsin-
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FIGURE 8.3. Membership in a fuzzy set: A company with 50 million in sales has complete
membership (of 1); degree of membership declines on either side of $50 million.

stead of sharp boundaries. The boundaries betweensets are gradual, not dramatic.It

is equally simple to define sets such as SOMEWHAT SMALL, PRETTY LARGE,
NOT VERY HIGH, SORT OF LOW,etc.

It’s also worth noting that, unlike fuzzy sets, crisp sets provide you with no sen-
sitivity to the closenessof a particular value to the prototypical value. Thus, in your

crisp set medium company example, you had no real way of knowing that $25 million
wasat the very edgeof the set while $50 million wasright in the middle of it. As you
can see in Figure 8.4, a fuzzy set provides this information naturally; even though
$24.5 million has 0 membership in the set MEDIUM,$25 million is very close to O as
well. Thus there’s very little difference between them.

The fact that we think in terms of linguistic approximations (such as HIGH and
LOW, LARGE and SMALL) andthe fact that we have ideas about the extent to
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FIGURE 8.4 How MembershipsDiffer in Crisp and Fuzzy Sets

which these concepts apply to various object makeit possible to create powerfulrules
using fuzzy sets. A single fuzzy rule is applicable in a large numberof situations to
different degrees, depending on the context.

The natural consequence ofthis in practice is that the right-hand side (RHS)or
action part of a fuzzy rule gets applied or executed only to the degree that the left-

hand side (LHS) or condition part is true.
This makes sense. Consider the followingrule.

IF years-of-employment is LONG
THENcredit-risk is LOW.

When we were discussing crisp rules, we decided that LONG meantgreater
than 15 years (Figure 8.1). The action (RHS) part of the rule (“credit risk is LOW’)

was only established to the extent that the conditional (LHS) part wastrue. If the LHS
were false, then the RHS wasnotestablished and did not apply. Since the rule was a

crisp rule, the memberships were always 100% or 0%,so the rule was always“on”or
“off.” There were no gray areas.

In contrast, with fuzzy sets, if membership in the set LONGfor years of em-

ploymentis 0.8, then the associated credit risk would be LOW to degree 0.8 as well.

In a few moments, wewill see how this actually happens. At this point, the important
thing to realize is that fuzzy rules apply to ambiguous categories in an intuitive man-
ner. Just like in the case of Yamamoto the weightlifter, you are able to use a particu-
lar concept in your reasoning depending on howstrongly a fact (object) agrees with
(is a memberof) your view of that concept(a fuzzyset).

If you believe strongly that the concept applies to a situation, then you rely
more heavily on the concept in your reasoning. If you believe less strongly, you rely
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on the conceptless. In effect, fuzzy sets and fuzzy rules allow you to reason about

gray areas using a simple numerical scheme.
To understand howall of this comes together, we need to describe how infer-

encing works using fuzzy rules and howit differs from inferencing using crisp
rules.

Consider William Tell’s problem from the beginning of the chapter. The mar-
keting firm is trying to develop a system to help it identify clients whose products
may be overmarketed or undermarketed in various regions. Specifically, the firm
would like to know whethertheir clients are allocating appropriate amounts of money
to promotion.

Whyis this a complex decision? First, William Tell needs to know how each
product has been “behaving”in the market. By behaving, we mean a number of
things. How well established is the product? Has its market share been going up or
downlately? How have promotions impacted sales volumein the past? How have
others’ promotions impacted the sales volume? And so on. How can a system in-
form the decision maker about how many promotion dollars to allocate to each

product?

Let’s say that William Tell has consulted its marketing experts and they give
the following high level reasoning for understanding market behavior and promotion
decisions:

Well, ifyou’ve got a high margin, price sensitive product, promoting that productvia
ads, displays,etc. is likely to have a high impact on sales volume. Ifthe volume impactis
high, it’s a good candidatefor allocation ofpromotion dollars.

But you also want to promote products more heavily when they’re relatively new
in order to increase market awarenessand to establish market share...

For simplicity, we'll restrict ourselves to the small subset of variables andrela-
tionships described by the expert above. Of course, in reality several other variables
can also impact promotion decisions.

Let’s define somerules and a few fuzzy sets based on the expert’s reasoning.
Thefirst rule: If a product is new, then a client should spend more moneypro-

motingit.

 

new-product-rule:

product is NEW

promotion should be HIGH    
In order to use this rule, we need to define the fuzzy sets that it references. The

expert might have described the concept of “new”as being less than 9 monthsold.
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The fuzzy sets NEW for product and HIGH for promotion might be described as
shownin Figures 8.5 and 8.6. In fact, since we will be referring to various levels of
promotion we also define MEDIUM for promotion and LOW for promotion as
shownin Figure 8.6.

The next three rules express the relationship between price sensitivity and pro-
motion. Highly price sensitive products should be highly promoted, and so on:

 

low-price-sensitivity-rule: medium-price-sensitivity-rule: high-price-sensitivity-rule:

the price sensitivity the price sensitivity the price sensitivity

of a product is LOW of a product is MEDIUM of a product is HIGH

THEN THEN THEN

promotion should promotion shouldpromotion should be LOW be MEDIUM be HIGH   
 

Price sensitivity could be measuredusing historical data, perhapsasthe ratio of

the percentage change in volumeper percentage changein price lagged by an appro-
priate time period.

Figure 8.7 shows the meaning of the above rules graphically. As the figure

shows,each rule defines a “fuzzy patch.”

To keep things simple, we will focus on the middle patch, which correspondsto
the medium-price-sensitivity-rule. You can see that depending on the value of the
input, the rule applies with different intensity levels. For example, if price sensitivity
is 2.5, the system applies the MEDIUM rule with maximumintensity. This happens
since the degree of membership in the set MEDIUMfor2.5 of price sensitivityis 1.

 

Membership
in the
fuzzy set
NEW

 0.3 |~=i  
 

234 360

Days since product wasintroduced   
 

FIGURE 8.5 The Fuzzy Set NEW Product. 225 days has membership 0.3 in the fuzzy set.
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You can also see that an input value between 1 and 2 falls into an overlapping
fuzzy patch (LOW and MEDIUM), meaningthat values in this range have member-
ship in both sets. As a result, both rules (low-price-sensitivity and medium-price-
sensitivity) will fire with intensities corresponding to their respective memberships.

This is all well and good, but you might be wondering whether the aboverules
are oversimplistic. Maybethe rule that says that if price sensitivity is high then pro-
motion should be high is too naive and does not capture the various complexities in-
volved in determining promotionlevels.

In a sense the rule doesn’t. But it isn’t supposed to, at least not all byitself.
Rather, each rule expresses an influence, providing a “tug” toward the final answer
that is, in effect, a combination of each of these individual tugs.

To understand this, let’s work our way through the consumerproducts example.
(Remember, William Tell is trying to figure out what percentage of estimated sales
should be allocated to promotion of each product.)

Assumethat based on an analysis of the database, William Tell generates sum-

mary data about each product as shownin Figure 8.8.
Let’s work out the answer for product ABC.
Product ABC has an age of 234 days. Looking this value up in the set NEW (see

Figure 8.5), you can see that it maps to a membership of 0.3. In other words, this
productis not considered very new from a promotional perspective.

Applying new-product-rule (“IF product is new THEN promotionis high’),
you can infer that the promotion for ABC should be HIGH to degree 0.3. (Recall that
you only apply a rule to the degree that its LHS, the “IF” part, is true.) That means
that you will only apply the new-product-rule to the degree 0.3.

To accountfor the fact that new-product-rule does not apply fully, you need to
cut downits influence. If the rule were 100% true, you would fully apply the fuzzy
set HIGH for promotion expense. Sincethis is not the case though, you need to cut

the HIGH part of the set NEW for down to 0.3 ofits full force. Thus, instead of ap-
plying the whole HIGHset, you only apply the first 0.3 of it. (Figure 8.9, top, shows
this. The influence of HIGH is shownas shaded.)

Likewise, for product ABC theprice sensitivity of 3 has membership 0.6 in the
set MEDIUM.Applying medium-price-sensitivity-rule (“IF price_sensitivity of a

 

 

 

     
 

      
 

Name Age Price Sensitivity Margin Volume %

ABC 234 | 3 | 0.2 40

PQR 580 3.75 0.3 12

XYZ 185 5 0.4 20
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FIGURE 8.8 Database Records Showing Summary Information for Each Product
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FIGURE 8.9 The Composite Region from Applying the Two Fuzzy Rules

product is medium THEN promotion should be medium”’), the promotion expense
should be MEDIUMto degree 0.6 (Figure 8.9, middle).

To figure out what all of this means to William Tell, you need to look at the

fuzzy set that was formed bythe application ofthe first two rules. The bottom part of
Figure 8.9 showsthis set. It is called the consequentfuzzy regionsince it is a region
that is formed as a consequenceof the application of the fuzzy rules. This region is a
“combination” of the two individual regions on the top right of the figure.

Note that the contribution of the set HIGH for promotion expenseis signifi-
cantly smaller than that for MEDIUM,whichtakes up a muchlarger area. This makes
sense, since MEDIUM wasmore “strongly” established than HIGH.It therefore tugs
the final result more towarditself.

In this example, there was only one rule applicable for MEDIUM and HIGH.It
fired to the degree 0.6. However, there could have been several rules, which could
also have fired based on other data.

Suppose wehad anotherrule that also referred to MEDIUM for promotion, but
it had only fired with a strength of 0.4. Which value would we now choose for
MEDIUM,0.6 from thefirst rule or 0.4 from the second? A little thought should con-
vince you that 0.6 would make moresense. In general we should take the maximum
membership of the results of each of the rules.

Why?
The basic reasoning is that when you combinetherules, you let the truth of the

“truest” rules dominate.
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To understand whythis makessense, consider the following example, this time
combining two crisp rules:

birth-rule

IF a manis born in America

THENheis an Americancitizen

marriage-rule
IF a man marries an Americancitizen

THENheis an Americancitizen

Assume a man is unmarried and that he was born in Little Rock, Arkansas. Fir-
ing the rule birth-rule you establish that the man is a U.S. citizen. However, when

you fire the marriage-rule, you cannot establish anything new based onthis rule
since the membership of the LHS is 0. When you combinethe results of these two
rules, do you determine that the manis a citizen? Of course you do. Even though the
marriage-rule could not be applied, you know that you can maketruthful statements
aboutthe citizenship of the man.Theresult of all of this is that you determine that the
man’s membership in “American citizen” is equal to the maximum membership ofall
of the rules relating to citizenship thatfired.

Now let’s get back to our marketing promotion example because westill
haven’t nailed down how much William Tell’s client should spend on promoting
product ABC.To finish out the example, however, we’ll add anotherrule into the pic-

ture: Promotion should be LOW for products that are HIGH margin and have HIGH
sales volume:

 

high-margin-high-volume-rule:

the margin of a product is HIGH, AND

the volume of a product is HIGH

>
the promotion should be LOW   
 

To apply this rule, you need to note that product ABC’s membership in HIGH
margin is 0.3 and its membership in HIGH sales volume is 0.6. To what degree
should promotion be LOW?

This depends on how you combine the two memberships contained in the LHS.
One generally accepted method is to assume the “weakestlink in the chain”principle,
whichsaysthat the “composite membership”of the LHS is the minimum of the mem-
berships of all of the conditions on the LHS.In this case, this membership would be
0.3. Thus promotion would be LOW to degree 0.3.
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Again, this makes sense. The right hand side (RHS)oraction part ofa ruleis

only executed to the degree that the left-hand side (LHS) or condition part as a whole
is true. Think about the followingcrisp rule:

IF the car has gas
ANDthecar has an engine
THENthecar will run.

Assumethat we have a car with a full tank of gas but no engine. Note that the
first part of the LHSis true (membership = 1). But the secondpartof the rule is false
(membership = 0). The overall result is that the RHS will not fire. Said another way,
in evaluating the rule, we chose the minimum truth from the LHS and applied that to
the RHS.

In summary, we take the minimum value when computingthe intensity of the
LHSof the rule since no condition can be stronger than its weakest link. We take the
maximum value when multiple rules establishing the same consequent havefired.
This inferencing and combination schemeis called MIN-MAX combination, andis
one of the most commonly used methods of combination.

Now we’refinally in a position to determine exactly how muchto spend on pro-
moting each product. Atthis point, it is actually straightforward. Since each of the
fuzzy rulestries to “shift the balance” of the consequent fuzzy region, we determine
the outcome by “balancing” the consequent fuzzy region.

In technical terms, we calculate the center of gravity, the point at which the re-
gion would balance, of the fuzzy set. This operation, which converts a composite

fuzzy set to a crisp value,is called defuzzification. There are many methodsfor doing
this, but the one we just described, called the centroid method (or the gravity
method), is one of the most common.’ Figure 8.10 shows an example of centroid de-
fuzzification.

Based on the simple analysis of our toy system, William Tell would see that

8.58% of product ABC’s estimated revenue should be spent on promotion.
You may have noticed that we have been doing somethinga little sneaky. In our

first example, the values of ABC lined up exactly on the boundaries of fuzzy sets.
This meant that each value only had one (non-zero) membership in one fuzzy set. As
a result, only one of our rules everfired for each variable. We have yet to show a case
where a variable’s value occurs between two fuzzy sets. This would necessitate firing
more than one fuzzy rule dealing with the same variable.

Let’s look at the next example from our database, product PQR.Since the basic
inferencing is similar to the ABC case, we won’t go throughit all. Instead, we’ll just
look at price sensitivity whose value is 3.75. Examining Figure 8.11 you can see
3.75 has a membership of 0.2 in the set MEDIUM forprice sensitivity, but 3.75 also
has a membershipof 0.4 in the set HIGH for price sensitivity. Whatthis tells you is
that 3.75 is more HIGH than MEDIUM.

 

This method basically comes downto taking a weighted average ofall of the possible values of promotion ex-

pense. The weighting is done based on the degree of membership in the consequentfuzzy region. The more the

rules added weightto a particular value (the “truer” the rules supporting it were) the moreinfluenceit is given in

dictating the output.
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FIGURE 8.10 Defuzzifying the Consequent Fuzzy Region

Turning back a few pagesto ourprice sensitivity rules, you can see that there is
a rule for cases where the price-sensitivity is HIGH and another rule for whenit is
MEDIUM.Which rule do you use? The answerhighlights the flexibility of fuzzy
logic: BOTH!

Wealready know that we are going to apply the RHSofa rule to the degree that
the rule’s LHSis true. It becomes a simple matter now to apply the MEDIUMrule to

the degree that 3.75 is MEDIUM for price-sensitivity (0.2) and to apply the HIGH
rule to the degree that it is HIGH (0.4). We canseethis in Figure 8.11.

It’s easy enough to see the dynamics of what is happening when youfire the

rules for price—-sensitivity, but what are the implications of this? What doesthe abil-
ity to apply several similar rules buy you?

Think about what happensas price-sensitivity moves from 3.0 to 4.0. At 3.0,
the only rule governing the behavior of the system is the MEDIUMrule. As you
move from 3.0 to the right, the effects of the MEDIUM rule gradually decrease, and
the HIGHrule starts to have an effect as well. Finally, as you move past 4.0, the

MEDIUMrule stops having any impact and all of the behavior is controlled by the
HIGHrule.

What this means conceptually is that the behavior of the system changes gradu-
ally and smoothly. There is no sudden jump from a MEDIUMvalue to a HIGH value.
Using only two rules and a few fuzzy sets, you have accounted for a very wide variety
of possible system inputs. This is what we meant earlier when wesaid that fuzzy rules
are powerful: A single rule applies to a variety of situations, but the degree to whichit
applies depends on the context.
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FIGURE 8.11 Two Rules, High- and Medium-Price-Sensitivity Rules Firing Simultaneously

This is also one way of thinking of how a person might apply knowledge about
price sensitivity to the problem in similar circumstances. A person might weightfeel-
ings about medium values and high values and come up with somesort of mix that
was appropriate in the context of the situation.

As we have been running through our example, we have been implicitly taking
advantage of another property of fuzzy sets. All of the fuzzy sets we have been using
have been context sensitive. For example, the set NEWforAge was a set ranging from

0 to 360 days. The designer of the fuzzy set determinedthat this was the appropriate
set to describe a “new” product in the marketing database.

However, consider how different the set NEW mightlook if it were instead de-
scribing NEWfor NewsStory. In the later case the set might range between O and 2
days. Or what about the case ofNEWfor Species ofAnimal. In this case, the fuzzyset
might have boundaries at 100,000 years and 1.5 million years. When you build fuzzy
reasoning systems, the implicit assumption is that the sets are context sensitive con-
taining knowledge about the characteristics of the various concepts you wish to ma-
nipulate. The rules, therefore, do not need to describe what New meansin a given

context, becausethe sets already “know”this.
Finally, we need to clarify one more point. There is often confusion regarding

the distinction between fuzziness and probability. The two concepts have much in
common. Both deal with uncertainty. Both are measured on continuousscales that
range from 0 to 1. However, there are also some fundamentaldifferences between
fuzziness and probability.
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To understand what these differences are, consider a deck of ordinary playing
cards. Let’s assume you want to perform an experiment where you draw a card at ran-
dom from this deck. You want to know the probability of drawing a high card, where
a high card is either a jack, queen, king, or ace. For a standard deck,the probability is
16/52 or about 30%.

Once you have drawnthe card, you can look at it and you can knowforcertain
whatthe value of the card is. Let’s say that you have drawnthe nine of hearts. At this
point, there is no uncertainty about the outcome of our experiment, in terms of
whether you will draw a specific type of card or not. You have already drawnit. That
is, the probabilistic componentof the uncertainty is no longer present.

Fuzziness seeks to answera different type of question abouta different type of
uncertainty. You can look at the nine of hearts in your hand andask the question, “TJs

this a-high card?” Note that this does not have anything to do with the probability of
the card being high, since we already knowthe card’s value. Rather, fuzziness asks to
what degree is the nine of hearts high? If you rate the highness of the cards linearly
on a scale of 1 to 13, the highness might be 9/13. If, on the other hand, you assumed
that only the picture cards and the ace are high, then the nine of hearts’ degree of
“highness” would be 0.

To further drive this point home, consider the probability of drawing any heart
from the deck (0.25). Then you might ask “to what degree is this (the probability of
drawing a heart) LOW?” The answer might be that the probability of drawing a
heart, 0.25, is LOW to the degree 0.65, say. The actual probability of drawing a heart
is clear, but our evaluation of the degree to which this probability 1s LOW is subjec-
tive. That is what fuzzy logic deals with: the degree to which something has a prop-
erty, not the probability that it has that property.

INTELLIGENCE DENSITY ISSUES

So, whenis it a good idea to use fuzzy reasoning?
It’s worth asking why fuzzy logic has proved to be a tremendoussuccessin con-

sumerelectronics and industrial control applications. What properties of the tech-

nique makeit suitable to these problems? What can welearn from these successes in
order to understand when fuzzy reasoning is a good approachto try?

The nice thing aboutrules as a whole is that they allow youto state relation-
ships very generally and compactly, as associations. On the other hand, they do not
require you to be as precise as, say, mathematical models. Whyis that a good thing?
Recall Zadeh’s commentfrom the beginning of the chapter:

As complexity rises, precise statements lose meaning and meaningful statements lose
precision.

Whatdoes it mean for a system to become complex? Complexity arises when
variables begin to interact in non-linear ways. For example, in an automobile,fric-

tion increases non-linearly with speed. So does the amountof fuel required. So does
wind resistance. Likewise, in weather prediction, the relationships among wind
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speed, sunlight, temperature, humidity, etc., tend to be highly interactive and non-
linear. Chemical reactions, aircraft dynamics, etc., tend to involve highly non-linear

(or discontinuous) relationships amongvariables. The sameis true for financial mar-
kets: variables such as interest rates, currency rates, commodity prices, etc., interact

in a large numberof ways.
The bottom line is that the overall behavior of such systems is complex. Some-

times, you can describe this behavior mathematically in termsof differential equa-
tions. Sometimes you cannot. Fuzzy logic provides another, more intuitive and often
more flexible, way to describe these behaviors.

Rules are approximations, but they’re simple. And fuzzy rules can offeran at-
tractive tradeoff between accuracy, compactness, and scalability. Think back to the
rule-based chapter, where we discussed the fact that experts use abstraction as a way
of simplifying the problem domain.The abstraction consists of categorizing variables
into intervals, where the intervals actually stand for something meaningful, like high
fever.

Fuzzy rules generalize the concept of categorization since an object belongsto

any set to a certain degree; if something absolutely does not belongto set, the de-
gree of membership is 0. So, for example, high fever doesn’t have to be defined
crisply as being between 102 and 108 degrees Fahrenheit; rather, any temperature is
high, just to a greater or lesser degree.

This property makes fuzzy rules highly compact. A single statement can cover

a wide variety of situations and process dynamics.It also gets around the problems
that rule-based systems have with borderline cases. In fuzzy systems, there is no
such thing as a borderline case. As objects move between sets their membership de-
clines in the first set and increases in the next. The netresult is that fuzzy systems
tend to be more accurate than rule-based systems when continuously valued vari-
ables are involved.

Fuzzy rules also let you break down a complex system into “local” pieces.
These local pieces, when taken collectively, can then model the domain ofinterest.

So, for example, a rule that says “if you push the acceleratora little, the speed will in-
crease a little” focuses on a local region of behaviors, in this case,a little accelera-
tion, and little increase in speed. By expressing enoughrules and covering enough
intervals using meaningful categories, you can coverthe range of behaviorsof inter-
est, however non-linear they might be. Figure 8.12 shows how, in principle, enough
fuzzy rules, each of which defines a “fuzzy patch,” can model a highly non-linear
relationship.

You might have realized that the ability of fuzzy rules to approximate non-lin-
ear functions makes them sound very similar to neural nets. In a sense, neural nets
and fuzzy systems are twosides of the same coin. They both attempt to approximate
non-linear relationships that characterize complex systems. But they do it in very dif-
ferent ways. Neural nets make sense when you have accessto lots ofdata and you’ re

not in a position to articulate relationships among variables with confidence.In fact,
when you’ vegotlots of data of reasonable quality, neural nets will generate the non-
linear relationships that “fit” the data.

Fuzzy rules makesensein just the opposite type of situation: where you don’t
have lots of data, but you do have experts who are able to describe pieces of the
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FIGURE 8.12 A schematic of how a large numberof fuzzy patches can approximate non-

linear relationships.

behaviorin terms of rules that cannot be disputed. This enables you to makeuse of
expertise in the problem area, expertise that is the result of trial and error and diffi-
cult or impossible to model mathematically. If you’ ve got access to expertise that
can help you achieve accurate results, it makes sense to use it! Rules, and espe-
cially fuzzy rules, make this expertise usable.

The fact that you represent knowledgeexplicitly with fuzzy rules also provides
a degree of comfort to the user. One of the major drawbacksof a neural network is
that the knowledge is implicit in the network;it is hard to understand the mechanics
underlying its decisions. Fuzzy systems have muchgreater face validity. You can pe-
ruse the rules and assure yourself that they make sense.

From Figure 8.12 you can see that fuzzy reasoning can produceaccurate results
as long as you can define a sufficient number of fuzzy sets and rules. As the figure
shows, the larger the numberofsets, the more accurately the system reflects the true

relationship among variables. Of course, this also increases the complexity and de-
creases the robustness of the system. Increasing the numberof rules also makesit
more difficult to modify the system.
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Another interesting aspect of fuzzy systems is that knowledgeis distributed be-
tween two parts of the systems:the rules, and the fuzzy sets. If a system produces an
incorrect answer, the cause can be either a rule or the fuzzy sets it uses. We have
already talked about the fact that fuzzy rules tend to be very general. If they make
sense, chances are that you’ll spend most of your timeeliciting information from ex-
perts on the boundaries of the fuzzy sets and tweaking them until they produce the
right answers.

Think back to the William Tell example we used in the last section. The rules

were quite evident from the two small paragraphs. The real action was in deciding

how many fuzzy sets we needed, their boundaries, and their shapes. But this tends to
be muchless complicated than the knowledge engineering processin crisp rule-based
systems in which every case needsto be explicitly treated. It also makes fuzzy sys-
tems much more compact.

It is a far simpler knowledge engineering exercise than that required to build
rule-based systems.

At this stage you might be wondering why anyone would wantto usea tradi-
tional rule-based system.It turns out that for problemsthat involve a lot of branching
decisions fuzzy systems can be moredifficult to use, for example, problemsthat in-
volve manyrules of the type:

IF <something is true>
THEN<doset of actions A>

ELSE <doset of actions B>

Rules like this tend to lend themselves very naturally to a crisp reasoning
system. For instance, an expert system that advised lawyers about which legal
statutes applied in different situations would probably involve crisp reasoning since
a statute either applies or it doesn’t. Crisp concepts are less easily expressed in a
fuzzy environment.

On the other hand, you can often express rules that deal with the qualities and
attributes of objects in the problem domain more easily in terms of a few fuzzyrules
instead of many detailed crisp rules. An expert system that predicted foreign ex-
change prices might be an example of this. The concepts involved in currency trad-
ing, as high, declining, andfavorable, etc., are all somewhat vague in nature and span
ranges of meanings.

Fuzzy reasoning offers an attractive tradeoff between accuracy and compact-
ness. The technique encourages you to expressrelationships in terms of simplerules,
each of which providesits own little “tug.” This modeling method ensures that the
overall result will be an aggregation of these smaller influences. If you can ensure
that each of the smaller influences makes sense (expresses an accurate relationship),
you can be confident that the overall result will be accurate.

At the same time, the system is not as computationally intensive as standard
rule-based systems. Since the numberofrules is typically relatively small, the effort
required for pattern matching and evidence combination is lowerthan with traditional
expert systems. For this reason, the response timeis typically very fast.

Furthermore, rememberthat wesaid that all objects belong to their correspond-
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ing fuzzy sets to varying degrees. What this meansis that a fuzzy system fires all of
the fuzzy rules each time you execute the fuzzy system.’ The natural result ofthisis
that, in addition to being fast, the response time for fuzzy systems tends to be very

stable.
Fuzzy reasoning sacrifices some explanation for accuracy, reliability, and com-

pactness. Since degrees of memberships of objects in sets is the end result of a pro-
cess of massaging numbers into an average (such as a centroid), you can’t really
identify why an inference was made as easily as you can with rule-based systems.
There is no conceptof ajustification for a fact as in rule-based systems. Rather, incre-

mental changes in inputs produce smooth changesin outputs instead of discontinuous
ones. So you can easily see how outputs change in response to inputs, but not neces-
sarily why.

While it is possible to see which rules influenced the output of a fuzzy system

most heavily (as measured by the compound membership of the LHSand the corre-
sponding magnitude of the fuzzy sets on the RHS), this tends to be less satisfying
than the crisp line of reasoning that might be produced by a rule-based system,or the
highlighting of similar cases that might occur in a case-based system.

Fuzzy systems deliver someof the goals of many symbolic knowledgerepre-
sentations (rule-based systems, case-based systems,etc.) in that fuzzy logic allows

you to add knowledge incrementally to a system without thinking about how the
knowledgewill be used. In this respect, they are highly scalable. Rememberthat one
of the drawbacks of rule-based systemsis that people often specify rules with the
conflict resolution strategy already in mind. This leads to tweaking ofthe rulesto get

the system to behavecorrectly. Over time, tweaking rules artificially just to get them

to fire at the right time erodes the modularity of the knowledge base. That’s whyrule-
based systems aren’t always as scalable as they’re supposed to be. You can’t do these
kindsof tricks with fuzzy systems even if you try. There’s no question ofgetting rules
to fire at the right time—all the rules relating to a particular conceptfire simultane-
ously. (Flip back a few pagesto Figure 8.11.)

The fact that you can truly specify small pieces of knowledge without regard to
how the system will use them makes fuzzy systems well suited for modeling complex
or changing systems. It makes such systemsscalable and flexible in that adding new
rules is natural and unlikely to have completely unforeseen consequences.

However, this simultaneousfiring of rules can also have a downside as you add

more and more rules. A phenomenonthat can negatively impactscalability is often
referred to as “saturation” of fuzzy sets. This means that a fuzzy set gets so full of in-
ferences that the consequent fuzzy regions are overloaded. The endresult is that the
system loses the information provided by fuzzy rules and the entire fuzzy region bal-
ances on its center point (Figure 8.13).

To understand how this occurs, consider that the more rules that we add that

deal with, say, HIGH for promotion expense, the morelikely it is that one of them
will be satisfied to a high degree. The MIN-MAX and centroid methods suffer from
the fact that you take only the maximum of each fuzzy set when you apply them to

 

*Certain fuzzy systems, however, take advantage of optimization methodsthat eliminate the needto fire rules

whose consequencewill not affect the outcome.
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FIGURE 8.13 A Saturated Fuzzy Region for Promotion Expense.

the consequent fuzzy region. And therefore, given enough variables and enough
rules, eventually every set could besatisfied to a high degree. Fuzzy systems design-
ers often get aroundthis by sub-dividing concepts and incrementally approaching the
output of interest.*

Finally, fuzzy systems tend to be moderately embeddable, although not always
to the same degree as neural nets or genetic algorithms. As with rule-based systems,

you still need an interpreter for doing the pattern matching and evidence combina-
tion at run time. However, because much of fuzzy inference involves lots of lookup

type operations(i.e., looking up the membership of an object in a fuzzy set, looking
up the value associated with a particular fuzzy membership function, etc.), re-
searchers have developed techniques to make fuzzy systems both more compactand
more embeddable.

A fuzzy associative map (FAM)is one example of this. A FAM replaces the
rules of a fuzzy system with a simple table that maps the LHS ofa rule to the RHS.
By doing this the need for rule interpreters can be greatly reduced. There hasalso re-
cently been a good dealofactivity in the area of fuzzy chip design. Fuzzy chips allow
fuzzy rules and sets to be embeddedin their architecture making fuzzy systems very
compact and portable.

In summary, the table that follows shows how fuzzy systems look in terms of
the dimensionsofthe stretch plot:

 

*Alternative combination and de-fuzzification methodscan also be used. The product-sum method is an example
of a combination method in which consequentsets are added together and then re-normalized during de-fuzzifi-

cation. Consider the following two cases: A: a fuzzy set that has had, say, three LOW rules and one MEDIUM

rule satisfied to a medium degree; and B: a fuzzy set that has had only one of the LOW rules and the one

MEDIUMtulesatisfied to a medium degree. The product-sum method would interpret the outcome of conse-

quent fuzzy set A as lowerthan that of consequentset B.
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Dimension Fuzzy System But...

Accuracy High Need to be able to describe fuzzy sets and
rules in enough detail to “cover” domain

Explainability Moderate No “chain”of reasoning, but rules andrela-

tive influence of each rule are visible

Response Speed High —

Scalability Moderate Dependsonability to control fuzzy set satu-

ration by limiting the numberofrules that
have similar RHS

Compactness High —

Flexibility High —

Embeddability Moderate Dependsonrule structure and inferencing

mechanism

Tolerance for complexity High Dependson ability to decompose problem

into smaller sets of variables; ability to
describe relationshipslinguistically

Ease of use Moderate —

Independence from experts Moderate Still need well-understood general heuristics

and expert availability to tune fuzzy sets

Developmentspeed Moderate Dependson understanding of process; on

complexity of process

Computing resources Low ——
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Solving Problems
By Analogy

Case-Based Reasoning

It was déja vu all over again.

—Yogi Berra

Few things are harder to put up with than the annoyance ofa good example.

—Mark Twain

The key to understanding must be...an organization of the new information

in such afashion as to seemtoforget the unimportant material and to

highlight the important material.

—Roger Schank

Case-based reasoning (CBR) is a problem-solving approachthat takes advantage of
the knowledge gainedfrom previous attempts to solve a particular problem. A record
of each past attempt is stored as a case. The collection of historical cases, the case
base, then becomes the model. When a CBR system solves a problem, rather than
starting from scratch, it searches its case base for cases whoseattributes are similar
to the problem thatit is being asked to solve. The CBR system then creates a solution
by synthesizing the similar cases and adjusting the final answerfor differences be-
tween the current situation and the ones described in the cases. As the case base
grows, the accuracy of the system should improve.

In this chapter, we introduce the concepts thatform the foundation of CBR. We
look at how it differsfrom some other approaches, and how and whenit makes sense
to consider CBRfor a particular problem.
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INTRODUCTION

Think aboutthe last time you went to a new supermarket. Even though you had never

been in the store, you probably found your way around pretty easily. Why? Because
you’ve beenin other supermarkets. For instance, you know that the household goods
would be separated from the food products, and that the meat section would probably

be along the back of the store. You were able to apply that experience to the new su-
permarket. You did not need to study the layout of the new supermarketin detail to
learn how to get around.

Or think about how you might pack for a vacation. Chances are you would

compare it to previous vacations. Are you going to Europe, Asia, the U.S., or the
Caribbean? How will this vacation be similar to the others you’ ve taken in terms of
duration? Climate? Did you take the right quantity and variety of clothes last time?
Will you have problems with the language?

Rarely do you solve a problem from scratch. Instead, what you often do, loosely
speaking, is compare the current situation with previous ones and judge which of
them are most similar. You rememberprevious experiencesand then look for connec-
tions. You see what’s different about the current situation, make adjustments, and
fashion a newsolution.

But what defines a “situation” or an “experience”? What makestwo similar?
In broad terms, you can think of an experience as a “bundle of attributes.” A

case. For example, a 4-day vacation to Puerto Rico might be a case ofa trip, as would
a 2-week European holiday. Relevant attributes to describe each vacation might be
weather, language spoken,the geography, and the duration ofstay.

Attributes don’t all play exactly the same role. Some of them describe the “situa-

tion” but others describe an “action” or a “solution” or a “result.” For example, a con-
struction company might want to know the amountthe firm should bid for a particular
contract based onattributes such asstyle, architecture, completion time, and so on. The

result part of the case would bethe price of the bid and whether the bid was won or
lost. A collection of bids would be a “case-base.” The case-base could be usedto find
cases similar to the one for which the companyis interested in makinga bid. After find-
ing one or a few similar cases, an expert could make adjustments to the bid in orderto
accountfor the differences.

The processof finding similar cases and making adjustments to account for the
differences between them is called case-based reasoning (CBR). Typically, the ad-
justments are madeto the solution part of a case dueto the differencesin the situation
part, but the reasoning could well proceed the other way, that is, you could fix the re-

sult and ask whatsituation could /eadto it. This distinction is similar to the forward
and backward chaining in rule-based systems. Just like you can use a rule to reason
forward or backward, you can use a case to make adjustments to the solution or to the
situation.

Oneof the big benefits of case-based reasoningis thatit lets you solve problems
without having to work out the solution from scratch each time. It encourages you to
make good use of your past experiences. By looking at previously solved problems,
you avoid having to encode rules describing how the details of each problem affect
the proposed solution.
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Recall that a rule-based system builds custom-madesolutions each time,first
breaking the problem downinto smaller pieces, solving each piece, and then reassem-
bling the result. CBR, on the other hand, takes an entire completed solution template
and modifies it to accountfor differences. The case is, in a sense, an “off-the-shelf”

solution to a particular instance of a problem. In somesituations this can result in a
tremendoussavings in time andeffort.

Anotherbenefit is that CBR gives you a better chance of improving perfor-

mance overtime. A rule-based system cannot“learn” from its mistakes. If an RBS
proposesa solution that is unsatisfactory, it has no way of changing its behavior next
time a similar situation arises. It is destined to repeat its mistakes over and overuntil
you add to or modify the rules in the rule base. A CBR system, on the other hand,

keeps track of new cases and oferrors that old cases produced. As a result, CBR sys-
tems tend not to produce the sameerrors over and over.

Examples:
e Foundation Construction is a contractor that specializes in public construction pro-
jects. Foundation has a database of information aboutbids and projects which the firm
has participated in. The firm wouldlike to use this information to help draft bids in the
future. While many jobs share similar attributes, they are always unique.

¢ Global Consulting has a worldwidestaff of thousands. The firm encourages new con-
sultants to meet with other associates during engagementsin order to encourage dis-
cussions and experience sharing. Dueto rapid growth and internationalization of the
firm, knowledge of experiences is becoming more and moredistributed. The firm
would like to provide associates with a wayof finding examplesof similar engage-
ments and using them to help form strategies.

e WorkWare is a software manufacturer, specializing in business software. The firm
wouldlike its help desk staff to be able to respond more quickly and accurately to cus-
tomer questions. The firm keeps a record of each call that is reported and hopesthat
these can be usedto helpits staff.

THE ABCs OF CASE-BASED REASONING

So, what exactly is a case?
Simply put, a case is a collection of attributes. Together, the attributes describe

a scenario involving a situation and an action orsolution.
Let’s consider the example of Foundation Construction. Say that the firm spe-

cializes in bridge design. A bridge construction companyneeds to makecritical de-
sign decisions early in the design process based on specifications such as the purpose
of the bridge, length, volumeof traffic the bridge is supposed to handle, the geology
of the location, the horizontal clearance andthe vertical clearance required, and the

numberof lanes. Each bridge that the company has designed in the past would have
values for these attributes. The attributes make up what we’re calling the “situation”
part of the case.

Figure 9.1 shows fragments from two cases using three of the attributes men-
tioned above: length, numberof lanes, and horizontal clearance. _

Specific design choices lead to specific outcomes. For example, the vibration
of the bridge depends on the material from whichthe bridge is made,the length, and
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FIGURE 9.1 Fragments of two cases. Sticks represent attributes for specifying a bridge.

For numeric attributes, the length of the stick is proportional to the value of the numeric
attribute it represents. Collectively, the attributes specify a “situation.”

so on. Other “outcome”properties of the bridge are the deflection in the middle (the
less bowed the span of the bridge, the better), and resistance to earthquakes (higher
is better). Similarly, cost is another outcome that depends on a numberof related
factors. These outcomeattributes make up the “solution” part of the case as shown
in Figure 9.2.

Figure 9.3 describes a “complete”case. It indicates the outcome (shown in the
center sphere) corresponding to the situation as specified by the design decisions (in
the little spheres).

In order to be able to deal with a wide variety of situations, it is useful to collect
many different types of cases. A collection of cases is called a case base. Each case1s
a snapshotof the solution space.It represents one particular combination ofattributes
and one particular set of outcomes. The morecasesin the case base, the more com-
plete the coverage of the solution space.

Storing cases is well and good, but how can youuseall this information?

In order to make sense out of a large numberof cases, you need to develop a
way to “remember”or recall them at the appropriate time. You needto be able to re-
trieve them in the same waythat people remembertheir past experiences. For exam-
ple, a doctor whoseesa set of symptomscan often recall the few most pertinent cases
where patients had similar symptoms. The doctor then weighs the cases based on
their similarities with the current symptoms.
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attributes:

e midspan deflection=10 ft
e vibration=low

® quake-resistance=high
e cost=$20 million

   

  

     

   
FIGURE 9.2. The “Solution” or “Action” Part of a Case. In this figure, the solution part of
the case is represented by attributes in the sphere.

Thetrick is to look only at the few cases that give you the mostinsight into what-
ever problem youare trying to solve at a particular time. In this way, the system can pro-
vide the decision maker with information that maximizes the decision-makingability.

To find useful information in the cases, a CBR system sends a probe into the
case-base. The probe describes the situation you’re interested in matching. A probe
consists of a subset of the attributes, either situation or outcome, that is used to de-
scribe a state of affairs.

For example, the bridge construction firm might be bidding on a bridge for a
highway. The firm might be interested in finding cases that are “similar” to bridges
that are used for auto traffic; are of medium length; are three lanes wide; have a con-
crete deck; and that cost under 20 million dollars.

These specifications can be represented as a probe as shownin Figure 9.4. No-
tice how youare trying to find cases that match both situation (auto traffic, medium
length, four lanes, concrete deck) and outcomeattributes ($20 million). In CBR,for

probing purposes,all attributes are created equally.
At this point, you might be wondering whether CBRis any different than a

simple database query or an OLAPsystem. While there are similarities between exe-
cuting a database query and a case-base probe, there are some important differences
that have practical implications. These differences, which we will discussin detail in

the next pages, relate to how smart the judgmentof similarity is, and what a CBR
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FIGURE 9.3. A Complete Case Consisting of a “Situation” and a “Solution” Part. This
case describes a particular bridge.

system does with the casesit finds. In fact, it is these differences that make CBR
such a powerful modelingtool.

To appreciate these differences, consider first what a CBR system does with re-
trieved cases.

Oncethe probehits similar cases, the system can use the cases in oneofa vari-
ety of ways. On one end of the spectrum,the initial probe might only serve as an
entry point for similar cases. The user would be moreinterested in browsing the case-

base with the objective of finding something interesting. The consultants in the
Global Consulting example might use their system that way to let associates find
cases of similar consulting engagements.

In this model, a consultant would makean initial rough cut with the probe,
use the information in the retrieved cases to construct a new probe,find morecases,
examine them for interestingness, modify the probe, and so on. The user would
be collecting further information from matched cases, successively refining the

search.
By using the intelligent matching features of case-based reasoning, systems

can be used in a modethat can be thoughtof as “intelligent browsing.” This process
is shown in Figure 9.5. Notice that the probe has four situation attributes. The
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FIGURE 9.4 A “probe”is a kind of query which is used to find “close” cases.

“matching and retrieval” component of the system finds a numberof cases. Each
case includes not only thoseattributes that are in the probe butall of the attributes in
the case. These are shownbythe solid black spheres. These new attributes can then
be used to construct a new probe, and the matchingprocessis repeated until the user
finds whathe or she wants.

In browsing mode, a CBR system doesn’t necessarily do much with there-
trieved cases. In fact, even thoughit is acting much smarter than a database system in
how it retrieves cases, the system is acting very similarly to a database or OLAPsys-
tem, with respect to what the system does with retrieved cases.

(Later on, we will describe how CBR systems judge the similarity of a case to
the probe. The similarity judging process is much moreintelligent in a CBR system
than with a database system. This is what makes the CBR system more powerful than
a typical database or OLAPsystem, even for browsing.)

On the other end of the spectrum, though, a CBR system behaves muchdiffer-
ently. The system finds cases that are similar to the specified probe, as above, but in-
stead of just presenting the cases to the user, the system automatically makes
adjustments to the “solution” part of the closest cases found. These adjustments take
into account the differences between the situation part of the current problem (the
probe) and the situation part of the retrieved cases. The system synthesizes the results
into a new solution.
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FIGURE 9.5 Case-Based Reasoning. A case fragment can be usedasa probeto find sim-

ilar cases in a case base.

In the bridge example above, the system might find cases mostsimilar to the
probe and modify their costs and performance properties using some specified formu-
las and rules. For example, it might add $50,000 to the cost for every 10 additional

feet of length per lane. Or, it might compute the deflection by interpolating between
values obtained from casesthat “bound”the currentone.

So, if a 1000-foot bridgein the case base hasa deflection of 20 feet and another

that is 1500 feet long has a deflection of 25 feet, the system might be designedto as-
sumethat a 1200-foot bridge will have a deflection between 20 and 25 feet. Alterna-
tively, the system might calculate deflection using a specific engineering formula
based on othervariables like width and so forth.

But we also said that CBR differs from database systems in the way that simi-
larity is judged for retrieval. The important point to keep in mindisthatit is a contin-
uous metric, not an all-or-nothing match as in database systems, that is, a query like
“all customers where zip = 10010”or “all customers with purchases > $500.” Instead,
CBR matchesare graded by howsimilarthey are to the probe.

For CBR,similarity depends on the type of attribute we’re comparing.If an at-
tribute is numeric, the similarity for that attribute might be calculated fairly simply,
say as the difference between the caseattribute value and the probeattribute value.

As an example, look at the top part of Figure 9.6. In this example, suppose you
are trying to probe for a bridge with two towers. With this probe, A, the case of a
bridge with three towers (Bridge B) is more similar to the probe than is the case of a
bridge with four towers (Bridge C).
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But what if you were concerned about both the numberof lanes on the proposed
bridge (in this case, one) and the numberof towers (two)?

Bridge C has one lane, but four towers. On the other hand, Bridge D has two
towers, butfour lanes. And what about B with three towers and three lanes?

Now, determining whether B, C, or D is closer to A has gotten a little more
complicated. Some of the bridges match better on the numberof towers, but others
match better on the numberof lanes. Similarity must now be based on a combination
of attributes. Closeness now dependson how heavily you weighthe variousattributes
in making the comparison.

Let’s say you considered the match on the numberof lanes to be a lot more im-
portant than on the numberof towers. This might be the case when the highway that
connects to the bridge being designed has a fixed numberof lanes, say, one, that can-

not be changed. You would be much moreinterested in cases where the number of
lanes wascloser to one. For the sake of the example, let’s say that a match on the
numberof lanes was five times more important than that on the numberof towers.

The bottom part of Figure 9.6 showshowsimilarity might be calculated for this
example. We have a probe being comparedto three cases, B, C, and D (sameasin the

above example). The top part of the figure shows distances where the twoattributes
are weighted equally. You can see that case C is “closest” to the probe. However, in
the lower part of the figure, where closeness on lanes is far more important than
closeness on towers, the more importantattribute is, in effect, stretched.

The effect is that even a slight difference in values between the case and the
probe onthis attribute results in a much larger distance. In other words, the probe be-
comes more Sensitive to this attribute in computing similarity. In this scenario, case C
is closer to the probe than caseB.

But how can you decide how the attributes should be weightedin thefirst
place?

One wayis to specify the importance ofthe attributes a priori, based on your
intuition or expertise. This is what is often done in practice. However, while this intu-

itive approach works well for some attributes, it’s a cumbersome and inflexible
methodif you’ve gota lot of attributes. You would like the system to havethe intelli-
genceto assign the appropriate importanceto attributes, depending on what you’re
probing for and the contents of the case base.

But how?
We’ll show you one general approach, variations of which are also used in

practice. To see how it works, suppose each bridge in the case base wereclassified
as having high, medium, or low maintenance expenses and you wanted to predict the
maintenance expense of a new bridge that you are proposing. Let’s assume that
maintenance depends, amongotherfactors, on the length of the bridge and the num-

berof lanes.
You can design a probe that automatically uses these two attributes to find good

cases. Figure 9.7 showsa scatter plot of cases plotted on these twoattributes. The “X”
indicates the probe.

The probe describes a four-lane bridge that is 450 feet long. That’s the descrip-
tion of the bridge that you wantto evaluate. In the figure, the number oflanes is
shownin the vertical shaded bar, and the length is shown in the horizontal bar. Look-
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FIGURE 9.6 What is “similarity” with numeric attributes? The top figure shows four
cases, plotted on two oftheir attributes. In the top figure, A and B are closest. In the bot-
tom figure, similarity on the numberof lanes attribute has been considered five times as
important as that on the numberof towers attribute. In effect, this “stretches” the hori-
zontal axis fivefold. Now,C is closest to A.

ing at the lanes attribute, we see that there are three cases where maintenanceis low,

one whereit is medium,and three whereit is high.
It looks like when the numberof lanesis four, that attribute doesn’t provide

much discriminatory powersince it is difficult to tell what the outcome variable,

maintenancecost, is going to be just by looking at the numberoflanes.
On the other hand, note that 80% of the bridges around 450 feet in length had

high maintenance costs associated with them. In other words, the length attribute
provides more discriminatory powerin this situation, that is, when it is about 450
feet.
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FIGURE 9.7 Cases Plotted in Terms of Length and Numberof Lanes

A similar analysis can be applied acrossother attributes. The objective of the
analysis is to assign weights dynamically to the attributes based on their discrimina-
tory poweras they apply to the case under consideration, the probe. The weights are
assigned in proportion to the discriminatory powerofthe attributes for the case under
consideration.

Once you know howto weighta particularattribute, the last step is to use those
weights to calculate the distance between a probe and a case. A popular algorithm for
determining the distance between cases is the nearest-neighbor algorithm. This

method worksby calculating the geometric distance betweena case and the probe, as
we showedin Figure 9.6.

Nearest neighbor works well for situations in which attributes represent nu-
meric values. But what do you do for symbolic attributes such as deck type and tower
type? Howcloseis a “pre-cast deck”to a “cast-at-site deck?”

It’s a lot harder to measure. However, one method for dealing with such at-

tributes is to represent set/subset relationships among the values ofthe attribute. For
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example, the set of bridges with concrete decks is a subset ofall bridges with decks.
Likewise, pre-cast and cast-at-site are subsets of concrete decks. For such attributes
weend with a class hierarchy like the onein Figure 9.8.'

Howis similarity computed for this type of attribute? Well, you can seethat if
bridge A hasa pre-cast deck, B hasa cast-at-site deck, and C hasa steel deck, B is
more similar to A than C since A and B have concrete decks. Thatis, they have a com-

mon parent. The higher up the commonparent, the larger is the distance between the
probe and the case. CBR systemsuse a type of nearest-neighbor algorithm that deals
with symbolic attributes by heuristically quantifying the distances that attributes have
from the commonparent.

The matching componentof a case-based reasoning system employs a combi-

nation of the nearest-neighbor for numeric attributes and “symbolic” nearest-neighbor
similarity calculations. “Distance computation” modules do not necessarily have to
use straightforward mathematical calculations, though. These modules can take many
forms: statistical models, a rule-based system, a neural network, etc. In other words,
judging similarity can itself be viewed as a knowledge-based activity. For example, in
adjusting the cost of constructing a concrete deck bridge versus a steel deck bridge, a
CBR system might employits own rule-based model of the world of construction ma-
terials. Such an RBS, for example, would be able to reason about the design modifi-
cations that would be required to use concrete and about the quantities of concrete
needed to execute these modifications.

In concluding this section, we should clarify one general point about similarity:
Asthe numberofattributes becomes large, computing similarity becomes very (very)
hard. It is generally not a good idea to use a naive distance computation method such
as one that computes the value differences for all attributes and adds them up. This
will almost invariably provide bad results.

Why? There are two important reasons. Oneis that when manyattributes are in-
volved, the amountof data you haverelative to the entire space ofpossibilities is very
small. This makes sense. As you increase the numberofattributes, your space of pos-

sibilities explodes. The upshotof this is that you cease to have a representative sam-
ple.” If you don’t have a representative sample, chances are a new case will not have
any similar casein the case base. In other words,to find a similar case you end up ex-
trapolating rather than interpolating. Interpolation is generally safe. Extrapolation is

usually risky.
The second reasonis that with a large numberofattributes, it is more likely that

a data point will not have any other data point nextto it, but instead, will be closer to
one of the edges (the dimensions). Again, to find a neighbor you can end up doing ex-
trapolation instead of interpolation.

The upshot ofall this is that you have to be clever about matching cases in a
high-dimensional space. One way of doing this is by letting the context determine

 

‘Appendix A (on object representations) describes in more detail how hierarchies like this might be developed

and work.

Jerome Friedman summedupthereasonforthis as follows (clarifications are in parentheses): “the topology of

a high dimensional space (manyattributes) is very different from that of a low dimensional space.In a high di-

mensional space any sample (case base) is too small. Also, in a high dimensional space, a data point (a case)is

likely to be closer to an edge than itis to anotherdata point.”
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FIGURE 9.8 Caseattributes can be hierarchical. The attribute deck is defined in terms of
the hierarchy above.

whichattributes to use in computing similarity. The method we described in Figure 9.7
is one where the “neighborhood of the case” is used to determine the discriminatoryat-
tributes. The scheme wedescribed is a simple way of implementing this basic idea.’

INTELLIGENCE DENSITY ISSUES

So whenis it a good idea to use CBR?
To understand when CBR makessense,it is worth asking why casesare used so

widely in instruction. Why have weused them in this book?
There are a numberof reasons that people like to use cases to explain things.

Cases transform abstract concepts into real images. Seeing a concept in use enhances
your understanding of it. Having seen cases, you get a better sense of what solutions
work underdifferent conditions. You can formulate and solve future problemsbetter
and faster. A case provides someinherently useful information because of how it or-
ganizes information and accessesit.

But there’s another reason why cases are popular, especially in areas such as
business and policy analysis. There are no clear-cut theories in these areas. Rather, a
case provides a “representative example,” or more practically, a good starting point

 

*For pointers to other approaches, see the Trevor and Hastiearticle listed in the suggested readingsat the end of
this chapter.



m 162 Chapter 9

from which to begin the search for a better or more detailed solution. It forces you to
consider explicitly the similarities and differences between different situations in a
Structured way, along the attributes that are used to describe the cases. At the same
time, it provides a degree of open-endednessto the exercise, allowing us to think cre-
atively about newsolutions.

Jt is important to underscore the fact that CBRis, at least conceptually, quite

different from database querying. CBR is used to solve a problem, not answer a
query. For example, you might use a CBR system to figure out how much you should
pay a potential employee. This isn’t a query itself. Remember, the system first gener-
ates a query-like event such as “find me peoplethat are similar to this employee.” The
similarity criterion used in doing this kind of search must be highly flexible. In CBR

systems the similarity metric is adjustable.
But CBR systems also provide a hook for plugging in the logic needed to

modify the action part of the matched cases. The logic can be a simple formula, or
something more complex, like an expert system or a neural network. For example,
coming up with a ballpark estimate for the cost of a project might involve a simple
linear interpolation. On the other hand, making a gourmet dish might involve a
fairly elaborate sequenceof steps, a plan, to do it right. Modifying such a plan to
take into account a new ingredient might require another plan to take into account
the properties of the new ingredient. It could require a significant amountof do-
main knowledge: The ingredient adjusting module could be an expert system in its
ownright.

By enabling such knowledgeto be pluggable into a CBR system,the action
modification part of the CBR system can be as sophisticated as necessary. In
essence, a CBR system provides an open-ended “shell” into which other systems can
be integrated. .

CBR systems also enable navigation. This is useful when the user wants to
browse a complex domainin a focused manner.In suchsituations, the user might not
have a specific question at the outset of the interaction. Instead, the user might want
to specify somesituation and find additional information for that situation that might
be useful for subsequent probing. For example, the user might specify a profile for a
client and want to know whatadditional information is “typically” associated with
the specified profile. This additional information can be usedto direct further brows-
ing as we showedin Figure 9.5. In this mode the CBR system becomesa decision
Support tool.

Whatcharacteristics about a problem might make CBR a candidate approach?
Or, conversely, whenis it advantageous to use CBR overother techniques?

CBRis useful when there are discontinuities in the relationships between vari-
ables. That is, a relationship might hold between variables but only within some range
of values. A CBR system can enable a user to uncoverthese discontinuities. For exam-
ple, the size of a company, measured in terms of variousratios of asset andliability

types, might be one determinantof financial strength for small companies but not as

important for very large ones. In other words, strength might increase with size, but

only up to a point. A well designed case-based reasoning system canfigure this out.

While CBR handles discontinuities well, it does not work as well when the
complexity of the interactions among problem variablesrises. In other words,the in-
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fluence of variables on the solution should be moderately separable, not highly inter-
active as in very complex systems.

Whenyou havelots of subtle interactions among continuous valued variables,
cases are not likely to sample an adequate part of the solution space. Also, if the
classes of cases are not easily separable, as shownin Figure 9.9, it becomes harder
to find discriminating criteria among them, and finding meaningful “neighboring”
solutions becomes moreof a hit-or-miss kind of thing: Small changesin the similar-
ity criterion can causesignificant changesin the result, the matched cases. This hap-
pens in situations where the relationships among variables cease to be monotonic
(for example, if income increasesinitially with education but then drops as educa-
tion level increases).

CBRalso works best when an approximatesolution is better than noneatall.
The flip side of the coin is that the quality of output of a CBR system degrades
smoothly. Unlike rule-based systems which degrade badly in areas not covered by the
rules, a case-based system will almost always give you something, howevercrude.

And the better the case base, the better that somethingis. For this reason, the better

the quality of the data, the better the chances of a good match.
Case-based systemsalso turn out to be highly scalable and flexible since they

are typically built with the expectation that cases will be addedto the system over
time and that this will enhance the scope and accuracy of the system. If new variables
or attributes are added to the system, however, older cases that do not have them will

 

 
   
 

FIGURE 9.9 Classes That Are Hard to Separate
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not be part of similarity matches on thoseattributes. This can be avoided if the new
attributes are also addedto old cases.

Because a CBR system allows you to add a case when the system makesa mis-
take, it is less likely to make the same mistake twice. Contrast this with rule-based

systems. If an RBS reachesan incorrect conclusion, the only wayto fix it is to modify
the rules. This can be a highly time-consuming and painful exercise requiring an ex-
pert’s time andeffort. In contrast, with a case-based system, the process of using a

CBR system can result in the generation ofa new case. The next time the system en-
counters a situation where it failed previously, it is more likely to find the new case

instead of the old one that didn’t work. However, you have to be careful not to be too

liberal about adding new cases, otherwise the case base can grow quickly and the

cases will overlap redundantly. You should ensure that there is in fact no old casethat
matchesthe situation of interest before adding a newcase.

The improvementover time in performance in CBR systems comeswith only a
modest reliance on experts. In other words, the knowledge-engineering componentof
the system developmentlife cycle is small, as long as there is an adequate quantity
and quality of cases to get started. The role of the expert is in designing the structure
of the case and in providing heuristics or rules that can be used in determining simi-
larity and adjusting cases.

On the other hand, in the absence of a good database of cases, the burden of
constructing the cases by interviewing experts can be time consuming. For example,

if your firm is a service organization wanting to leverage your past experience, it is
useful to have this experience recorded in a form that is directly usable. A database
containingall calls with detailed descriptions of the problem andits resolution would
provide a good starting point in defining the structure of a case. It is then easy to use
experts to validate cases that you construct for them instead of requiring them to help
you build the cases from scratch.

It is worth pointing out, however, that even if cases need to be constructed from
scratch and you don’t need morethan a few dozento getstarted, the effort involved in
doing so is significantly lower than the knowledge-engineering effort required in
building rule-based systems. It is generally easier for experts to recapitulate stories
than it is to providerules.

For example, a real estate appraiser would havelittle difficulty remembering
the salient aspects of cases of high-value homes. Likewise, a construction engineer

would probably recall fairly easily those projects where major plumbing problems
occurred. These experts might have a much hardertimetelling you rules than abstract
relationships among variables involved in the cases. In other words, cases can be
more natural “units of knowledge”than rules.

Expertsalso havethe ability to retrieve relevant cases rapidly. One popular the-
ory is that experts employ effective indexing schemes. Whena caseis recorded, the
expert somehow indexesit using a set of attributes; the more important and multi-
faceted the case, the larger the numberof indexesthe expert is likely to use to record
the case. These indexesserve as “handles,” making retrieval fast. If the case is not
richly indexed, chances are that the expert will have to “think harder” to remember
the details. In other words, the expert would have to search more.

This makes sense. When you record an experience in your mind, you are seldom
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thinking about how that experience will be used later. However, if the experience
seemslike an “important” one in some way, chancesare that you will unconsciously
record more aspects of it than for a seemingly incidental event. If that seemingly inci-
dental event turns out to be important, you’ll have to search your memory even harder
to dredge upits details.

With case-based systems, you usually have to make the decision about which
attributes to use for indexing when designing the case base, although there is nothing
to prevent you from adding additional indexing attributes later. This decision must be
based on prior experience with the problem domain.

In a library system, for example, commonly used indexesare author,title, and
subject. If for some reason you wantedto doretrievals based on the numberofpages,
you’d be out of luck. Without an index for this attribute, it is simply infeasible to per-
form such a search. The analogy applies to current-day CBR systems, whose success
ultimately depends in large part on how appropriately you index thecases.

To what extent is CBR opaquelike a neural net or transparentlike a rule-based
system?

Think about how similarity is judged. Isn’t that a black box? To someextent,it
is. Afterall, taking a weighted average of distances for each attribute and aggregating
it into a numberintroduces a degree of opacity into similarity judgment muchlike
neural nets do in attaching weight to links between nodes.

On the other hand, however, a matched case doesstand for an explanationin it-

self as long as the user understandsthe similarity metric. A CBR system says “here’s
a solution that can be applied to your situation, because it worked in a situation simi-
lar to yours.” The closer the example to the current situation and the clearer the simi-
larity judgment, the more comfort associated with the explanation. And you canget a
feel for how closely the solution matches the probe by examining the distances be-
tween the probe and the cases that were used to build the solution.

A CBRsystem does not present the user with an audit trail of a reasoning pro-
cess. It gives cases. The user must examine the matched casesand their solutions and

judge whetherthey are appropriate for the current situation. For example, the CBR
system might say something like “For this set of symptoms, in 27 cases operation X
was successful andin three cases it resulted in complications.” This is an empirical or
evidentiary kind of explanation.It is driven by the data. The better the quality of the
cases, the better the quality of the explanation.

In contrast, a rule-based system provides a much more abstract or theory-
based kind of explanation. As we saw in the RBS chapter, an explanation in an RBS
results from an instantiation of the rules. As rules fire, inferences are made, and
chains of inferences ultimately link outputs (like conclusions) to inputs(like facts).
To get the most out of this kind of explanation, the user must understand the basis

for the rules.
In summary, a CBR system is both transparent and opaque. The similarity

judgmentpart can be cloudy,like a neural network. On the other hand, the matched
examplesare natural units of knowledgethat are explicit and provide an empirical
depth to the explanation, kind of like an RBS.

The intelligence density issues can be summarized according to the following
table:
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Dimension CBR System But...

Accuracy Moderate to High Improves over time as more cases
are added

Explainability Moderate Transparencyof the system is lim-

ited by how opaquethe similarity
judgmentmetric is

Response Time Moderate to High Depends on numberof cases, com-

plexity of matching, adjustment
algorithms, and efficiency ofin-
dexing scheme

Scalability High —

Compactness Low to Moderate Dependson the implementation; en-

tire case base is required for exe-
cution

Flexibility High —

Embeddability Moderate —

Tolerance for Complexity Moderate Good fordiscontinuities, but less
useful when the interactions

among variables become non-
monotonic and complex

Tolerance for sparsenessof data Moderate Depends on the numberofvariables
and complexity of the problem

Tolerance for noise in data Moderate If case baseis large, individual

anomalies will not affect match-

ing and adjustment as much

Independence from experts Moderate to High Need expert input to develop match-  ing, adjusting techniques
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Deriving Rules
from Data

Machine Learning Algorithms

 

 

In ourdescription ofnature the purposeis not to disclose the real essence

of the phenomena but only to track down, sofar as possible, relations

between the manifold aspects ofour experience.

—Niels Bohr

We should be careful to get out ofan experience only the wisdom thatis in it—

and stop there; lest we be like the cat that sits down on a hot stove-lid.

She will never sit down on a hot stove-lid again, and that is well;

but also will she never sit down on a cold one any more.

—Mark Twain

[On inductive learning:] Los Angelenos know that one hot high pollution

day isfollowed by another. Doctors know that elderly heart attack

patients with low blood pressure are generally highrisk.

—Breimanetal.

Machine learning algorithms create rules and rule-trees by searching through data

for statistical patterns and relationships. The algorithms use information aboutthe
distribution of the data to try to cluster records into specific categories. Machine
learning algorithms can be particularly attractive since, in addition to providing

good models for prediction and classification, they also abstract clear rules from

data. This can help explain the process that generated the data. This type ofanalysis
can in itselfbe a valuable businesstool.

In this chapter we explore a particular class of machine learning algorithms
called recursive partitioning algorithms, and we discuss whatfactors can make them
good solutionsfor certain problems.
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INTRODUCTION

Suppose your company hada databaseof sales data. Lots of sales data. How could
you go aboutusing this database to help figure out an effective marketing strategy?

You’d be interested in knowing aboutthe statistical averages and distributions
of the variables in order to get a basic feel for what the data showed. These kinds of
Statistics provide a thumbnail sketch of large amounts of data. They are the first step
in increasing the intelligence density of the data.

The problem with a thumbnail sketch is that it’s just a sketch. In order to go be-

yondthis you need to probe the data. You might think about doing somespecialized

queries such as: “Show me how many widgetbuyersalso bought doo-hickies within a
weekof their widget purchase.” You might even use an OLAPsystem to dive into the
data and follow up hunches.

But the problem with doing queries is that you have to already have some idea
of what you are looking for before you start. You have to have a hunch, for example,
that there’s somerelationship between buying widgets and buying doo-hickies.

Whatif you don’t have those hunches, though? What you really need thenis a

way to query the data intelligently so that you can uncoveruseful relationships among
the variables quickly; relationships that you might not have knownevenexisted.

This is where machinelearning algorithms can help you.
While database queries answerthe question, “What are the data that match this

pattern?” machine learning algorithms answer the question, “What is the pattern that
matches these data?’ Machine learning (ML) employssearch heuristics to uncover

interesting and systematic relationshipsin data.
Wediscussed how neural networksprovide one wayof finding relationships be-

tween inputs and outputs. The relationships in a neural net are not explicit; they are
implied in the weights among neuronsandthe transfer functions of the neurons.

We also discussed how rule-based systems encode knowledge in explicit

chunksof expertise called rules. These rules must be elicited from experts and en-
coded manually.

The machine learning algorithms we describe in this chapter learn from data

like neural networks, but attempt to find explicit rule-like relationships among the
variables, like rule-based systems.

Figure 10.1 shows where machine learning algorithmsfit in the intelligence

density increasing process. The first step, as shown in the figure, is to specify the
problem: What are you trying to find out? What are the relevant variables? How
should the data be prepared?

Once the data set has been prepared, the machine learning algorithm takes this
selected data as input and producesa set of rules that describes how certain variables
(dependent variables) are related to other variables (independent variables). You can

view this relationship as a decision tree, a rule, a chart, an equation,etc. It is a high-
level distillation of the data, or a model of the problem. The challenge for the ma-
chine learning algorithm is to focus its statistical analyses so that the interesting
relationships bubble up to the surface as fast and as clearly as possible.

Two of the techniques we discussed in earlier chapters can be used as machine
learning techniques,that is, to produce models from data. Genetic algorithms, for ex-
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Dependent

Variable

Independent variables Bought

Xl K2 X3 K4 K5-~= xX6 Widget

37 2 NY 0.8 4 low Yes

32 1.3 LA 0.7 5 high No

44 1.5 NY 0.9 8 high No

37 0.3 NY 0.8 9 high No

28 0.6 CHI 0.6 2 low No

29 1.1 NY 0.6 3 high Yes

) 33 2 NY 0.8 2 low Yes

45 15 LA 0.4 7 high No

22 0.3 CHI 0.5 5 high No

Raw : 33 2 NY 0.8 4 low Yes .

Data Specification 28 |06 LA |06|71]| high No Machine
34 109 NY |03 6] low Yes earning
27 0.3 NY 0.9 2 high Yes

33 0.6 NY 0.1 4 low Yes

45 09 CHI 0.7 5 high No

NW 33 2 LA 0.6 8 low Yes

22 1.8 NY 03 21] high Yes a
36 0.3 NY 0.1 5 low Yes

44 0.1 NY 0.9 4 high No

0.3 NY 0.6 2 low Yes

: Jeel   
 

FIGURE 10.1. The tree toward the right provides a compact interpretation of the data.

ample, can be used to represent patterns. These can be matched against a database,
evaluated for “goodness,” modified through mating with other patterns, which are in

turn evaluated, and so on, until interesting patterns are produced.' Neural networks
also produce models that are “learned” from data, storing the learned patterns asrela-
tionships between weights. There are also many other types of machinelearning algo-
rithmsthat use logic, Baysian probabilities, fuzzy logic heuristics, and so forth.

In this chapter we focus on another class of machine learning techniquescalled
recursive partitioning algorithms. Recursive partitioning algorithmssplit the original

data into finerand finer subsets (recursively), resulting in a decisiontree, like the one

on the right of Figure 10.1. The tree is a compact explanation of the data. Given the
data in Figure 10.1, the tree would tell us the profile, if one exists, of the typical wid-
get buyer. For example, it might show that most widget buyers live in New York and
are less than 35 yearsold.

The tree is a useful abstraction of the data. It can be used forclassification, pre-
diction or estimation. The decision tree in Figure 10.2a is used forclassification. The

 

'A special type of genetic algorithmcalled a classifier system is often used for genetic machine learning. Classi-

fier systems work bycreating populations of messaging units that communicate amongeach otherto make pre-

dictions or classify data. The messaging units compete to be able to classify a piece of data, with the most

successful onesgetting the classification.
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FIGURE 10.2a A Classification Tree hb A Regression Tree

nodesat the tips of the tree designate categories into whichthe casesthat trickle down
the branchesare classified.

The tree in Figure 10.2a showsthe rule “JFAge is less than 35 and Residence =
New York THEN widget buyer.” This type oftree is called a classification tree. The
decreasing size of circles toward the right indicates the decreasing numberofcases of

data that fall into each successivecluster.
On the other hand, when the dependent variable is continuous, like an em-

ployee’s income, you’re usually interested in estimating or predicting its value. Fig-
ure 10.2b shows such an example. In this tree, each branch partitions off a subset of

the data and the last node indicates the value of income for that subset of the data.
The tree in Figure 10.2b showsthe following types of rules: “JF Residence = New

York and ageis less than 35 then Income is $40K on average with a standard devia-
tion of$5K.” More generally, the tree tells us that average incomesare higher in New
York, and that, within New Yorkers, incomesare higher for people above the age of
35. When the dependentvariable is continuous, the decision tree is called a regres-

sion tree.

The two best known and perhaps most widely used recursive partitioning ma-
chine learning algorithms are called [D3 (and its successor, C4.5) and CART’? Theal-
gorithms both try to create clusters like the ones shown in Figure 10.2. The goal of

the algorithms is to makethe clusters at the nodes purer and purer by progressively

reducing the “disorder” in the original data.
The search heuristics used in ID3 are based on concepts from information the-

ory: The algorithm tries to reduce the information disorder (called entropy) in each

cluster of a data set through a series of successive splits on the independentvariables.
This technique is used to create classification trees.

The CART family of algorithms, on the other hand, is a natural extension of
statistical techniques such as regression, factor analysis, and cluster analysis. CART

 

°CARTstands for Classification And Regression Trees.
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algorithmstry to reducethe statistical disorder (or variance) of the data at each clus-
ter and separate the clusters as much as possible by maximizing the distance be-
tween them. CART can produce both the classification and regression type trees
shownin Figure 10.2.

Examples:
¢ Victory Loan Corp. makesover$3 billion in home equity loans a year. The firm hopes

to be able to convert its large database of borrowerprofiles and loan performanceinto a
competitive advantage by developing a modelto predict loan default and delinquency.
Widgitco Inc. makes a variety of novelty items. The firm would like to be able to pre-
dict which types of customersare likely to purchase various products by looking at the
demographic data associated with its mail order sales database. The firm hopesthat its
sales force can also use this information to determine how to better market novelty
items.
Bull Bear Investments has a database of trades for each of its bond traders. The invest-
ment bank wouldlike to use these data to understandits traders’ successful and unsuc-
cessful transactions. The firm is hoping to determine what combinations of market
conditions andtrading strategies led to good versus badtrades. The firm’s goalis to
determine whatits most successful traders do to be successful.

THE ABCs OF MACHINE LEARNING

Let’s look a little more closely at the snapshot of data shown in Figure 10.1. The de-

pendent variable on the far right columnis binary: a yes or a no. It describes whether
one of Widgitco’s customers bought a widgetor not. In this case, the independent
variables represent demographic information. The dependentvariable could also be
ordered (high, medium, low) or numeric. Likewise, the independent variables can be

of any type.

The question in this problem is the following: How can Widgitco divide up the
original data along the independentvariables so that the cases form clusters where
each cluster contains predominantly a YES or NO as the response?

Take a look at Figure 10.3. The leftmost cluster in the figure showsonly the de-
pendent variable from the data set in Figure 10.1. The crosses and circles denote the
yes and no responses. The objective in building a tree is to determine whichstrategic
questions we can ask aboutthe othervariables that will separate the original data into
homogeneous groups in as “simple” a way as possible. Simple means getting the

most useful discrimination of the data by asking the fewest questions. In Figure 10.3,
the tree discriminates by splitting on two variables, residence and age.

But how did the algorithm decide to split on these two variables and how didit
determine the boundaries forthe splits?

In order to answerthis question, you first need a way of measuring the degree
of “impurity” or “disorder” in a set of data. With such a measure you have a yardstick
for comparing the impurity of clusters generated by alternative splits. Then all you

need to do is find which split results in the largest reduction in impurity.
To understand what we mean when wesay “disorder,” think about whata disor-

derly group of people is like. When you think of a disorderly group of people, you
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FIGURE 10.3 ML algorithm attempts to split up the data (examples) into more homoge-
neous subsets (cross = yes,circle = no).

probably think of a mob of individuals each doing their own thing. In a sense,this is

what disorderly data are. It is a collection of data in which each data recordis differ-
ent from thosein the cluster.

Clearly, the more disorder there is, the harderit is to interpret the meaning of

the cluster or to describe it simply. For example, in your marketing strategy, it is
clearly more useful to know (and easier to describe) that a particular cluster of cus-
tomers (from a certain city, for instance) all bought widgets than it is to know thatthe
same group had 50% widget buyers and 50% non-widget buyers.

To get a clearer picture of how data can be “purified,” look at the rightmost

cluster at the bottom of Figure 10.3. Whatis its disorder? Intuitively, you can see that

since all the data in this cluster are uniform (all circles), the disorderis 0: It is as pure

as you can get. What aboutthe cluster on the far left? It seems much more impure
since there are almost an equal numberof circles and crosses (9 and 11). Knowing

that a customeris in the leftmost cluster doesn’t tell you much about the propensity to
buy widgets or not.

There are many ways to quantify this intuitive feeling about impurity. For expe-
diency, we’ll skip a lot of the details of how the math is actually done. However,if
you want a deeper understanding of how impurity is computed, see the appendix to
this chapter. It describes one approach for measuring the impurity of a sample. The
approach is motivated by a field of mathematics called information theory and in-

volves a concept knownasentropy. (If the details don’t interest you, skip the appendix
and just assumethat there are formulas for determining howpure a cluster of data is.)

The one detail that will makeit easier to understand how these algorithms work

is that entropy uses a function called a logarithm to calculate impurity.’ The math

 

*The expression log,(-) is just a function like, say, a square root. The function log,(x) = y is the solution forthe

equation 2’=x. For example, since 2°=8, log,(8) = 3. Tables exist for looking up the logs of most numbers.
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ends up showingthat the highest possible impurity fora cluster that contains K possi-

ble outcomesorcategories is log,(K) bits,* which is just the numberofbits it takes to

describe K categories in a computer.
For example, if there were two categories, “YES” and “NO,” you could code

the two categories with a single bit in a database; either 1 for records in category
“YES”or 0 for records in category “NO”:

NO QO, or

YES 1.

Likewise if there were four categories A, B, C, and D, you could codeall four using
twobits:

A OO,

B Ol,

C 10, and

D 11.

Andso forth.

This is exactly what the entropy formula shows: Whenthere are two equally

likely outcomes, “YES” or “NO,” the maximum entropy possible in the data is
log,(2) or 1 bit. With four equally likely outcomes, the maximum impurity is log,(4),

or 2 bits, with eight outcomesit is log,(8), or 3 bits, and so on. This makessense.

Whenthere is maximum entropy, you don’t save anything. Youstill need exactly the
same numberof bits to describe a category in a cluster as you would withoutany in-

formation about whichclusterit is in.
With no information content, you need the full numberof bits to describe each

category. If you have someadditional information, though, you can actually describe
the data in the cluster with fewer bits. For example, if you knew that a cluster con-
tained only categories A and C instead of all possible categories A, B, C, and D, you
could use only 1 bit to describe the possible outcomesof that cluster instead of 2 bits.

There is maximum disorder in data whenthere is an equal probability of each
category, and minimum disorder, 0, when all the cases belong to a single category.
Knowing this simple relationship will makeit a lot easier to follow the discussions in
the rest of the chapter.

Figure 10.4 showstwoclusters of the sales data with different amounts of disor-
der. In cluster A, which correspondsto the original data, there are 11 widget buyers
and 9 non-widget buyers. The probability that a customer picked at random will be-
long to the widget buyer class is therefore 11 out of 20 (0.55) and the non-widget
buyeris 9 out of 20 (0.45).

The impurity of this data set computed using the entropy formula in the ap-
pendix is 0.993 bits. How pureis this? Since there are two possible outcomes (widget

 

‘The units of impurity are bits. Bits are like binary choice questions. The numberof bits can be viewedas the

numberof binary choice questions necessary on average to identify the category of a case picked at random

from a data sample.
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FIGURE 10.4 TwoClusters with Different Degrees of “Disorder”

buyer/non-widget buyer), the maximum possible impurity when there are two possi-
bilities involved is 1 bit (log,(2) = 1), so this data set is almost as impureas it could

be. (The maximum possible impurity of 1.0 would occur when the two outcomes
were exactly equally likely.)

Now supposethat wetake a subset of the original data, namely all those who do
not live in New York. This subset has one widget buyer and six non-buyers. The im-
purity associated with this cluster is much lowersince it consists predominantly of
non-widget buyers (6 out of 7 cases).

Using the entropy formula in the appendix, Cluster B’s impurity is only 0.207.
The reason that cluster has such a low impurity is because just knowing that a person

is in Cluster B tells you a lot about whetherhe waslikely to have been a widget buyer
or not. (Chancesare he wasn’t!)

Figure 10.5 shows how impurity is removed from the data. ClusterA is the orig-
inal data. The top nodeafter the first split is Cluster B. The first split is on variable
X3. What doessplitting the data this way buy you? Lookat the resulting data clusters
moreclosely.

The first cluster that results from this split has 7 cases and 6 of them are yesre-
sponses. The second data set has 13 cases and 10 of them are no responses. Intu-
itively, it seems like a pretty good split since both of the new clusters seem much
purer than the previousone.

In fact, you’ve already computed the impurity of the first cluster (Cluster B in
Figure 10.4). It has an impurity of 0.207 bits. Using the formula in the appendix, the
other half of the split has an impurity of 0.506 bits.

A nice feature of entropy is that the total entropy of two clusters is just the sum
of the entropy of each one. You can add the two impurity measuresto get the total im-
purity of the data after the split:

0.207 + 0.506 = 0.713

Rememberthat the original sample (onthe far left of Figure 10.5) had an impu-
rity of 0.993 bits. How muchbetter is the new split at increasing purity? We say that
the gain from this split is the difference between the original total entropy and the
total entropy after the split (0.993 — 0.713 = 0.280bits).
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FIGURE 10.5 How “Impurity” is Removed from the Data. The objective is to partition

some independentvariable that maximizes information gain.

The second split (on the second sub-sampleat the bottom) splits the data into
clusters where the variable X1 (age) is less than or equal to 35, and greater than 35.

The gain from this secondsplit is 0.133 bits.
Looking at these data from a business perspective, identifying these splits is a

good start for the marketing team at Widgitco since it shows that New Yorkers over

the age of 35 have a pattern of buying widgets, but that the team might need to focus
more on customers outside of the New York area as well as on younger New Yorkers.

To get another perspective on whatthis splitting is actually doing, look at Figure
10.6. A split is basically a line drawn perpendicular to the axis of a variable. The dotted
vertical line labeled “Split 1” partitions the data on either side of 0.5 for the variable
X2. Likewise, the dotted horizontal line splits the first sub-sample in Figure 10.4 into
the “pure” one with seven no responses(labeled 2) and one with two no responses and
three yes responses(labeled 3). It is difficult to visualize how the splitting would look
if you includedall of the variables (there would be many dimensions), but it works
identically.

 

‘Wearrived at an overall impurity of 0.580 by splitting one cluster to get two new ones with impurities of 0 and

0.373, and leaving the other untouched with an impurity of 0.207.
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FIGURE 10.6 The recursive partitioning algorithm drawslines that are perpendicular to

an independentvariable’s axis.

By now you are probably wondering how thepartitioning algorithm decides
whereto split the data at each point. This is actually very simple: Most algorithms
test all possible splits on all possible independent variables. They then compute all
the resulting gains in purity, and pick the split that maximizes the gain. This is done
over and over again on eachresulting cluster (recursively) until a tree is built. In prac-
tice, the more sophisticated algorithms implementa variant of picking the split that
maximizes gain. This makes sense since it meansthat each split will be as efficient as
possible at increasing the gain.

For example, the algorithm that produced the tree in Figure 10.5 determined
that the variable X3, whensplit on the value NY, gave the highestgain ofall possible
splits on the variables in the data. Furthermore, oncethe data weresplit at X3, the

new cluster formed by all of the NY records could be further purified. The algorithm
did this by testing all of the variables again, but only using the data in the new clus-
ter. This time the algorithm determined that X1 was a good discriminator when di-
vided at 35.

But how muchsplitting is appropriate? Figure 10.7 shows twodifferent parti-
tionings of the widget sales data. The one on the right contains just one split, which
still leaves a good deal of impurity in the resulting clusters. The one on the left con-
tains seven splits, where ultimately each resulting partition is pure.

Which oneis better?
The approach on the right with just one split seems somewhatcoarse: Afterall,

the two resulting sub-samplesare still quite impure. On the other hand, in the ap-
proach ontheleft, there seem to be too manysplits: The model has become very

complicated. When a model is very complicated, in addition to being hard to under-

stand, another problem maycreep in: overfitting the data.

Wediscussed overfitting when we talked about neural networks. Whatoverfit-
ting meansis that the algorithm doesa great job of finding a modelthatfits the data
on which it wastrained (also referred to as in sample or training data), but in the

field, the model will probably perform badly on newdata it hasn’t seen before (on out
ofsample data).

The problem arises because, like a neural network, the ML algorithm may have
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FIGURE 10.7 The extremecaseof overfitting is one where each data point hasits ownter-

minal node. Underfitting means that the algorithm has not become meaningfully specific.

inadvertently picked up on details in the data that are characteristic of the training
sample, but not of the actual problem being modeled.It is easy to “overtrain’” MLal-
gorithmsand neural nets so that they perform really well on training data but badly on
data they haven’t seen before.

One common wayof avoiding overfitting, especially when data are limited, is
to do whatis referred to in statistics as cross-validation. What this meansis that you
break up the training data into several parts, say 10, and useall but one of these parts

to build the model. You can then usethe leftover part for testing. By doing this sev-
eral times and varying which of the parts you pick for training andtesting, in effect,
you can test the splits on several different combinations of the training andtesting
data.

For example, with 10 parts, 9 of which are used for training and 1 fortesting,
there is a total of 10 combinationsof training and testing data sets. Cross-validation
helps you get more mileage out of the data when the quantity of available quality data
is limited. This technique is useful in many modeling situations, machine learning or
otherwise.

Besides careful testing procedureslike cross-validation, ML algorithms them-
selves can be engineered to minimize overfitting. To protect against overfitting,
the algorithm must construct a model that generalizes the data “just the right
amount.” Typically, the more complex a tree becomes, the more likely it is that
some overfitting has taken place. On the other hand,if it becomes too simple,it will

be inaccurate.
Figure 10.8 is typical of what happensto the accuracy of a modelon out of sam-

ple data as the model size increases. As the figure shows, the error rate of the model
initially decreases as you add moresplits, but starts increasing after a point. Thetrick

is to find the optimum numberofsplits, that is, where the error rate on out of sample
data will be the minimum.

So how can yougetto “right-sized” trees? There are two possible waysto con-
trol the size of a tree. The algorithm could limit the numberofsplits it exploresasit is
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FIGURE 10.8 The Relationship between Tree Complexity and Error Rate

building a tree, stopping whentheyget to be too many.Alternatively the algorithm
could try all of the splits possible and grow the complete (overfitted) tree, and then
Selectively “prune back” the useless branches,that is, the ones that increase the error

rate on the out of sample data.
It turns out that deciding when to stop while going forward (constructing the

tree) is very hard to do. On the other hand, researchers have found that constructing
the entire tree first and pruning it results in much morerobusttrees.

The process of growing and then pruning the tree is shownin Figure 10.9. First,
a highly overfitted tree is constructed. Then the tree is iteratively pruned, and with
each pruning,the error of the pruned tree is computed. (The most heavily pruned tree
would end up with 0 splits and contain just the original data.) The rightmosttree in
Figure 10.9 corresponds to the best overalltree.

The “right” size depends on certain parameters that you set before the ML algo-
rithm starts building the tree. These parameters describe things like how complex a
tree you are willing to tolerate, and the allowable error (or conversely, accuracy). In

machine learning, there is a constant trade-off between simplicity and accuracy.
This brings us back to what we mean by “simplicity.” One way to view simplic-

ity is that the clusters should be derived based on as few splits as possible. This
makesthe results easier to interpret. To appreciate this point, consider the two follow-
ing, alternative partitions of the data:

1. “If X3 is NY then customeris a widget buyer.”

2. “If X1 greater than 35 and X4is less than 0.3 or greater than 0.8 then customeris a non-
widget buyer.”

All other things being equal, the first rule provides a simpler explanation for the
dependent variable. Another way of lookingatit is that rule 1 tells you directly vari-
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able X3’s role in determining widget buyers. In rule 2, the roles of the variables are

somewhatlessclear.

The fewer the questions (splits), the more understandable the output. Accord-
ingly, an algorithm needs to find the questions that “weed out the impurity” from the
data set using the fewest numberof splits. The parameters we mentioned can help
control the numberof splits by imposing penalties on the evaluations of more com-
plex trees.

To end up with a tree that reflects a user’s trade-off between accuracy and com-
plexity, many algorithms include a penalty factor that you can adjust. This factor
handicapsthe tree on a per node basis.

So, for example, if the penalty term were set to 0, it would mean that complex,

hard to interpret trees would not be penalized. This type of treatment might make
sense in applications where you’re interested in the accuracy of the tree more than
anything else. On the other hand, if the penalty factor were greater than 0, and you
were to examine two trees with equal impurity values but different numbers of

nodes,the tree with the smaller number of nodes would be favored. These types of
trees would be more useful for interpreting data in a database. By varying the inter-
play between the penalty factor and the accuracy, you cantailor a tree to your spe-
cific needs.

Oneother item before we conclude this section. So far we’ ve focused on classi-
fication trees where the dependent variable was categorical: yes/no. The techniques
that we have been discussing for measuring disorder in data clusters would work
equally well if instead of the two classes (bought widgets/didn’t buy widgets) we had
four classes (bought widgets/bought doo-hickies/bought widgets and doo-hickies/
bought nothing), and so on.

But you’ve probably been wondering what happens when the dependentvari-

able is not categorical but continuous, like income. The regression tree corresponding
to this type of problem was shownin Figure 10.2b. For such problems, the notion of a
“pure” partition doesn’t really exist since there is an infinite number of values possi-
ble for the dependentvariable (it is continuous). So, what do you measure in orderto
determine how tosplit the tree?

With continuous data, it makes more sense to think in termsof a cluster’s aver-
age value and its “dispersion.” In statistical terms, these are quantified by parameters
such as the mean (or median) and standard deviation (or absolute deviation) of the

cluster. Data clusters with a wide range of values will have a wide dispersion andthis
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will be indicated by a large standard deviation. A cluster containing both very high
and very low incomes would be an example of this. On the other hand,if the values
are all close to each other (fairly homogeneous), the standard deviation would be
quite small.

Despite the fact that you are measuringthe dispersion differently for continuous
variables than you did for the categorical variables, the objective in both casesis ex-
actly the same: Keepsplitting the data into more and more homogeneousclusters.
However, you need a slightly different way of measuring impurity and gain. Specifi-
cally, you want to develop clusters where the average value in each clusteris as far

away from that of the other clusters as possible, and the dispersion of values within
each cluster is as small as possible.

Figure 10.10 shows whatthis means(no punintended). Thefirst split shows the
meansof the two resulting sets whose averagesare on either side of the original one.
The secondsplit is similar. As we move towardthe right, the resulting distributions of
the dependent variable become successively tighter and their averages move farther
apart. As in the discrete case, the best tree is the one for which the error on out of

sample data is minimized.
Figure 10.11 showspart of a decision tree constructed from a customer database

containing approximately 2000 records, one per customer for a software company

that sells packaged PC software. The dependentvariable in this case is the total an-
nual sales made to the customer.® There were approximately 30 independent variables
in the data. The partitioning algorithm found only three of these variables to be rele-
vant for classifying customers: the numberof users in the customer’s organization,
the numberof inquiries they made about the products they purchased, and the number
of productlicenses they purchased.

Figure 10.11 showsa tree built from the data. The tree was built using CART

and, since the dependentvariable (sales) is continuous, the clusters are identified by

the average sales of each customerand the dispersion (standard deviation) of this es-
timate. Lower dispersions mean that you can be more confidentthat the results are
near the average. The averages and standard deviations are shownin the boxesrepre-
senting the actual clusters.

INTELLIGENCE DENSITY ISSUES

So, whenis it a good idea to use recursive partitioning machine learning algorithms?
A strong point in favor of these algorithms is explainability. We mentionedear-

lier that you’re not always interested in the most accurate tree, especially when your
objective is not prediction but interpretation.

The best way to illustrate this is through an example. Thetree in Figure 10.11
while not completely overwhelming, is not easy to interpret. If we expanded the top
branch further, there would have been six additional nodes.In practice, it is possible

to end up with trees with hundreds of nodes. Such large trees are usually quite diffi-

 

*This tree was constructed using actual data and the CARTalgorithm. The dependentvariable, sales, is continu-

ous. The real variable names have been disguised as havethe values.
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FIGURE 10.10 How Partitioning Works with a Continuous-valued Dependent Variable.

Whenthe dependentvariable is continuous, the algorithm attempts to split up the data

(examples) into more homogeneoussubsetsthat are far apart from each other.

cult to understand. If the objective is to get an overall interpretation of the data, it is
often worth sacrificing accuracy for parsimony.

Now,take a look at Figure 10.12. This tree shows what happened when we
specified that we were willing to accepta slightly less accurate but simpler tree than
the one in Figure 10.11. This tree provides an easy to interpret snapshotof the data.

Essentially, it splits the original data into four types that could be classified into a
2 by 2 matrix: large customers who makea large numberof inquiries, large customers
who make a few inquiries, and, likewise, small customers making large and small

numbersof inquiries, respectively.
The nice thing about the classification in Figure 10.12 is that its simplicity

makes it more actionable. It makes the dividing lines between the categories easier to
interpret. In other words, the rules that the tree in Figure 10.12 implies are more con-
cise and intuitive than the one in Figure 10.11. Users can understand and use the out-

put moreeasily.
Butthis ease of interpretation does not comefor free. We also mentionedearlier

that there is a trade-off between explainablility and accuracy. The more explainable
the tree becomesthe less accurate it will tend to be.

To understand exactly why, consider Figure 10.13, which showsthesales data
again. The dotted lines show howthe data were partitioned by the algorithm: Each
split inserts a surface (in Figure 10.13, a line) that 1s parallel to one of the axes and
perpendicular (or orthogonal) to the others. As a result, the outputs are very rule-like
and easy to interpret.
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Contrast this with how a neural net might partition the data (the heavyline). In
general, neural nets are more powerful approximators since they can constructarbi-
trarily complex, non-linear partitions around the data. However, this extra power

comes at a price: reduced explainability. Partitioning algorithms, on the other hand,
while usually more interpretable, cannot divide data as subtly. In fact, these algo-
rithms need many morepartitions to describe the same data.

Another way of contrasting the techniquesis to think in terms oftheirabilities
to handle interactions among the variables, what we call the problem complexity.
Again, Figure 10.13 is an interesting illustration of the limited ability of recur-

sive partitioning techniques to deal with some types of complex interactions among
variables.

Essentially, while recursive partitioning works by splitting one variable at a
time,’ neural nets are much more multivariate in character: They can model subtle
and complex interactions among variables.

While recursive partitioning algorithms can, to some degree, model complex

problem domains, they do this by “adding up” manylinearsplits, rather than as is the
 

‘Some implementations of machine learning algorithms, notably some implementations of CART,allow for

multivariate splits that are linear combinations of variables, but these techniques become very slow underthese

circumstances. Thetrees are also muchharderto interpret.
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FIGURE 10.12 A Simplified Decision Tree

case of neural networks and fuzzy logic, fitting smooth surfaces over a multidimen-
sional space.

For example, consider what a recursive partitioning algorithm would have to do
to represent a relationship between two variables, say a simple ratio of x/y. Let’s sim-
plify the problem a bit and assume x could only take on the three values 1, 2, and 3,
and y could only take on the same three values. To describe this very simple relation-
ship, the algorithm would have to create a tree that looked like the one in Figure
10.14.

This tree is pretty complicated when you consider that it only describes a very
simple function.with only two variables and seven possible values. Furthermore,it
would be very difficult to know, by lookingatthe tree, that the tree actually described
the x/y function.

Like neural networks, recursive partitioning techniques “learn” from data, so
you might expect the need for expert consultation to be low. However, our experience
is that experts can and do needto getfairly involved in interpreting the outputs, sepa-
rating outputs that make sense from the coincidences. More importantly, the process
of discovering relationships is an iterative one as we showedin Figure 10.1: Outputs
from one run generate insights used for the next run. Experts can play a significant

role in this iterative exercise. For this reason, the dependence on experts can befairly
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FIGURE 10.13 The split used by an ML algorithm is very different from the way in which
a neural net might construct a surface aroundthe data.

substantial; however, it is still far lower than it might be for developing a rule-based

system.
Becauserecursive partitioning techniques basetheir splits on general properties

of the data, they perform best when there is abundant data. Otherwise, the results can
be unstable: Running the algorithm by tweaking the parameters (such as complexity
and error rate) can yield very different trees from one run to another. It is hard to
be confident about the results when there’s no stability between different runs of the
algorithm.

The nice thing about recursive partitioning algorithms, however, is that they are
also fairly robust even with noisy data. The reason for this is that since the splitting
happensat key points on individual variables, it is more unlikely to be affected by a
few values being erroneousthan if the technique lookedatall of the variables at once.

For instance, say you had a database of sales data and oneof the records was
entered incorrectly so that instead of reading “$100”it read “$1,000,000.” If you took
the average of these, which is what manystatistical methodslike regression do, you
might end up with very skewedresults.

On the other hand, if you instead calculated the median (middle value) of all of

the records, the erroneous record would not have much influence, since the median

only calculates a splitting value in the data.It splits the data so that there are an equal
number of records with values above the median and below it so the bad record
would only move the median at most one notch up. Recursive partitioning algorithms
are similarly robust with respect to erroneous valuessincethey toorely on splitting

data sets. Even more importantly, outliers or noisy values tend to get split off into
their ownclusters.

The fact that recursive partitioning algorithms learn from data makes them
fairly adaptable. Like neural networks, these algorithms can be reapplied if condi-
tions change. For example, if the demographics of a sales region shift or the prof-
itability of a type of customer base changes, a new decision tree can be developed by
taking the new data and building a newtree. Of course, sufficient new data about the
process mustbe available to dothis.
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FIGURE 10.14 A Very Complex Tree. It describes z = (x/y) when x and y can only take on

values of 1, 2, and 3. If x and y took on more values, the tree would become much more

complex.

In addition, as the numberof variables in a problem increases, recursive parti-

tioning algorithms are able to adapt by increasing the numberand diversity of the

splits in a tree. What this meansis that the algorithmsscale nicely. The downside of
this increase in splits is that the trees become more and more “bushy,” which makes
them harderto interpret.

Recursive partitioning algorithms are surprisingly fast in terms of response
time. Once the tree is developed, finding out which cluster a new piece of data be-
longs to is usually just a matter of a few comparisons (one for each split until you get
to the cluster). Since in most cases you only need to follow one branchofthe tree, the
number of comparisonsis usually quite small.

The fact that the tree is just a set of comparisons makesit easy to encode com-
pactly since the rules themselves define the model and noothertype of inference en-
gine is required. This fact also makes ML-producedtrees easily incorporated into
larger systems.

The intelligence density considerations can be summarized as follows:
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Dimension ML Algorithm But...

Accuracy Moderate to High Depends on parametersettings to ad-

just for trade-off between tree size

and accuracy; overfitting must be

controlled

Explainability Moderate to High Depends on parametersettings to ad-

just for trade-off between tree size
and accuracy

Response speed High —

Scalability Moderate to High Time to build tree increasesas data
sets get large

Compactness Moderate —

Flexibility High Dependson availability of data repre-
senting changes in process

Embeddability Moderate to High —

Tolerance for complexity Moderate Some complexity can be captured but
only through increasingly compli-
cated trees

Tolerance for noise in data Moderate —

Tolerance for sparse data Low —

Development speed Moderate Depends on understanding of process;
on computer speed and memory

Tolerance for independence Moderate Users may wishto have expert audit
from experts developed rules

Computing resources Moderate Scale with respect to amount of data
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APPENDIX TO CHAPTER10:

Entropy as a Measureof Disorder

In information theory, the concept of measuring the “amount of information” con-
veyed by a message formsa central theme.

For example, if you were to tell a friend the numberthat would definitely win
the state lottery tomorrow, there would be a Jot of information associated with this
message. Why? Because there are many, many numbers that might win the lottery,
but only one that will definitely win.*

The qualifier definitely is an importantone: If the lottery number above has a
50% chance of winning as opposed to being a sure bet, the amount of information
would be reduced byhalf. If it has the same chance of winning as any other number,
the amount of information reducesto 0.

On the other hand, if you were to rush overto your friend and tell him that the

sun would definitely rise tomorrow, the information content of this message would be

very low: It’s a highly likely event and the message is unnecessary. Even without
your message, your friend knowsthat the sun will rise. Unlike the case of the lottery
number where you are singling out a specific numberas very different from all other
numbers, in the rising sun case youare nottelling your friend anything interesting
that distinguishes tomorrow from every other day (whenthe sunrises).

In the same way that you might send a message to yourfriend aboutthe lottery, ML
algorithms send messagesto users by indicating in which cluster a piece of data belongs.
As we’ve discussed, the goal of many machine learning algorithmsis to increase the in-
formation content in data by segmenting the data into more and more definite categories.

In essence, ML algorithms allow users to play a game of 20 questions with the
data to try to narrow a piece of data downto a particular category.

To understand how this works, you need to first see how to measure how much
“information” you get by knowingthat a piece of data belongs to a certain category.
Once you can do that, you can determine how muchinformation you have about a
piece of data’s category when you knowthat a piece of data is in a particular cluster.
This is a measure of how pure a given clusteris.

In information theory, the formula for measuring the amountof information in
data (measuredin bits) is based on the probability of receiving the message (classify-
ing the data as belongingto a particular category) given all of the other messages
(categories) you could have gotten.

The measureessentially tells you how many bits (1s and Os) you would need to
uniquely describe every possible category. Data involving very complicated mes-
sages (lots of possible categories) would require many bits, while simple ones need
fewer. Another way to think about this is that this formula measures how hard it
would be to guess the message if you were nottold it.

While the actual formulais a littlke more complicated, you get a good intuitive
feel for how the measure works by thinking of the information content as a simple

 

8Say you were entering a lottery in which you had to match five numbers and there were 50 possible numbers

from which you could choose. Of the 2,118,760 numbers you could choose, only one would be definitely the

winner. Such a message would be a very rare occurrence.
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probability. The value of the message will be higher if the probability of getting the
message is lower. Thus, you can crudely value the information content as the proba-

bility of not getting the message, or 100% minus the probability of the message. You
would expectsignals for very likely events (the sun rising) to need a low amount of
information to describe them (100% — 99.99999999%)andsignals for extremely im-
probable events to need highlevels of information to describe them.

It turns out that for theoretical reasons which we won’t go into here, a better

measure of the information required to code a messageis

—log, (p), (Eq. 10.1)

where p is the probability of a message’s occurrence.’
Thus, for a message about events occurring that have a probability of 1 (the sun

rising tomorrow), the amountof informationis 0 bits since,

—log, (1) = 0.

In other words, you don’t need to bother sending the message.

Likewise,if the probability were 1/2, the amountof informationis 1 bit (-log,
(O.5)), and so on.

At the other extreme, as the probability approaches 0,as in the lottery case, the

amountof information grows muchlarger.
Forinstance, for a lottery in which you have to choose the correct combination

of five numbers from a possible 50, there are 2,118,760 possible combinations.

Therefore, the probability of guessing the correct numberis

2.118.760 = 0.00000047,

so the information content of a correct signal (the winning number) is

—log,(0.00000047) ~ 21.

That single message contains about 21 bits of information, since it eliminates all of

the other (losing) numbers.

If you had a machinelearning algorithm that could somehowclassify yourlot-
tery pick as a winnerora loser, it would be very valuable, and this is reflected by the

very high information content.
How can you use knowledge about the information content of a particular cate-

gory to determine how muchdisorderthere is in one ofthe clusters formed by an ML

algorithm?
Information theory uses the term entropy to describe the information contentin

a Cluster of data. A high degree of entropy implies a low amount of information in the
cluster of data. The formula often used to measure entropy is based on information

content formulaslike Eq. 10.1.
To think of this another way, entropy measures, on average, how much addi-

tional information is needed to identify the category of a piece of data once you know

 

"Rememberthat the function log,(x) = yis the solution for the equation 2” = x.
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it is in a particular cluster. This type of analysis essentially answers the question,“Tf I
know a customeris in this cluster, how certain am I that he is a widget buyer?” The
more mixed the cluster is, the harderit is to answerthis question, and the more addi-

tional information you need.
Entropy is described as:

H =~>, plog,(p), (Eq. 10.2)

where p; is the probability of the 7” message occurring in a particular cluster.
Notice that the information provided by each category in a cluster is weighted

by its representation in the cluster. Therefore, if a cluster is evenly dispersed with dif-
ferent categories, each will be weighted similarly. On the other hand,if the distribu-
tion is weighted heavily toward one category, that category influences the entropy
more.

This average number, the entropy, is a measure of disorder. The higher this
numberis, the more information you need to describe the cluster. The more informa-
tion you need to describe the cluster, the less certain you can be of what the cluster
contains.

An easy wayto see this is that Eq. 10.2 would go to 0 as the probability of a sin-
gle category got close to 1. What this meansis that the most valuable type of cluster

is the type that has only a single category in it. The disorder in this cluster is 0, and its
entropy would correspondingly be 0.





APPEN DI X

Saving Time and
Money Using Objects

The beginning ofwisdom is the definition of terms.

—Socrates

For, ofcourse, the true meaning ofa term ts to befound by observing

what a man does with it, not what he says aboutit.

—P. W. Bridgeman

INTRODUCTION

The notion of software systems as being composedof “objects” was introduced in the
early 1970s. The AI community referred to these as frames. In the 30s, cognitive psy-
chologists had used a similarnotion, called schema, to describe how we mentally rep-
resent real-world objects or abstract concepts.

The schemaball, for example, would describe something round shaped, smooth
surfaced, and so on. The italicized wordsare the attributes that make up the structure
of the object. The values, such as round and smooth help us describe the “state” of an

object.
Whyis it useful to understand objects?
The answeris simple. Systems will continue to become more sophisticated and

complex. In order to keep a lid on complexity, the building blocks of these systems,
which can be viewed as “software parts,” will have to be transparent and malleable.
This means that developers need to be able to pick up a software part that someone
else created, modify it to fit their own needs, and add it to a system that they are
building—all without needing to worry about howthe part is built or the details of
how it works. That’s what objects bring to the table.

One way objects promote malleability is by making the building blocks of the
system similar to the thing being modeled. The software part should have the same

attributes as the thing it represents in the program. To describe an electrical circuit,
for example, the software objects would represent things like transistors, power sup-

plies, connectors, and so on. Objects in a naval fleet might represent thingslike heli-
copters, aircraft carriers, jets, marine crafts, and so forth. These software objects

should behave in the context of the program in the same waythat their real-world
counterparts behave in the real world.
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In reality, there’s a trade-off between how malleable and pluggable an objectis

on the one hand,and its value added on the other. This makes sense. Instead of think-

ing about software, think about an automobile for a moment. You mightthink of an

auto part at the level of a gear or a bearing. Such parts would be highly pluggable:

Many automobiles would be able to use them. On the other hand, gears and bearings

don’t really do much by themselves. In contrast, if the auto part were an engine or an

entire body for a specific car model, it would help the manufacturer build quickly the
type of car that used these complex parts; however, the parts wouldn’t be usable in

other car models.

In the world of software, businesses confront this basic trade-off. On the one

hand, low-level parts such aslists, arrays, dialog boxes, and other types of graphical

user interfaces are highly generic and reusable. However, there’s a limited bang for
the buck at this level. That’s why many organizationsare trying to get to the next

level and build “business objects” where the value addedis high. Figure A.1 illus-
trates this basic trade-off.

To see why objects are useful, considerthe characteristics that drive costs in the
existing software infrastructure:

1. A lot of software is redundant. The same data structures and subroutines, adjusted
slightly, are replicated in many systems.

2. Software systems are invariably too opaque and brittle. Making changes and maintain-
ing them costs too much.

3. Too often, software takes longer to develop than it should.

Objects are appealing because they addressthe three cost drivers directly.
Think first about redundancy and opacity.

Most systems have commonlow-level functionality. It is hard to come across a
system that doesn’t sort things orstore thingsin a list,’ yet most programmers rewrite
the sorting logic and list structures over and over again with slight variations. All of

this leads to a tremendous amountof redundancy.
The costs of redundancy add up in two ways.First, it’s a waste of time and

money to do things overagain if you don’t have to. Whyreinvent the wheel? But far
more significantly, making changes and improvements to these systems requiresa lot

more effort. Each time you want to change a sorting routine, you haveto find all the

different versions of it. Once you find an occurrence of the routine, you haveto figure
out whatlittle twists it has that might make it different from other sorting routines.
The object concept, on the other hand, promotes a centralization of modular and

reusable parts. They can be maintainedin one place and application programmers can
dip into the parts warehouse wheneverneeded.

 

'For example, the two PC applications that you probably use most both store data in lists and have sorting rou-

tines. Spreadsheets store data in lists that are organized into a sheet, and allow users to sort data in a numberof

ways. Word processorsstore the letters and words of a documentin lists and, although you mightnotrealizeit,

wheneveryou use the spelling checker you are using a sorting routine to organize the spell check. By the way,

wheneveryouopena file by selecting from a list of files, you are using a sorting routine to putthe files in alpha-

betical order, and you are probably storing the file namesin a list. These routines and structures show up every-

where.
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FIGURE A.1_ The Trade-off between Reusability and Value Added

   
 

Second, many systemsare highly opaque. The logic and data structures are con-

voluted, especially if the programs have been modified overtime. It’s hard enough
for a person to understand a well-designed piece of software written by someoneelse

(or even written by themselves several years earlier), but making sense of enigmatic
“spaghetti code” is a nightmare. It’s usually less risky to leave it alone if it works

rather than to try to modify it.
Opaquenessis caused by interaction among pieces of software at a low level. In

part, this happens as a consequenceof separating the procedural part of a system, the
logic or behavior, from the data part of the system. Making changesto proceduresor
data is a tricky business since procedures call each other and share data. A small

change to a data structure could mean changing all subroutine that use that structure

...1f you can identify them.
How do objects help you overcome this convolution?
The object paradigm promotes modularity and transparency by providing “self-

sufficient” building blocks called classes. A class is the definition of how an object
will act and store data. In a very loose sense,the class is the mold, and the objectis
the part it creates.

In object-oriented terms, objects are instances of a class. In a class, data (like
traditional data structures) and behavior definitions (like traditional subroutines) are

wrappedinto a single unit. The set of behaviors of the class formsits interface. All in-
stances of a class, objects, inherit the data structures and behaviorfrom the class.

For example, let’s say you definea financial class called stock. You will need to
define places to hold data such as price, volume, etc. Calculating the volatility of a

stock would be part of its behavior. IBM, Apple, Motorola, etc. are all objects that be-

long to the class stock and the samevolatility calculation would be inherited by them.
This makessense. If you know howto calculate the volatility for IBM, you probably
know howto calculate the volatility for all stocks that are like IBM.

Furthermore, the data and behaviorare notvisible to otherparts of the software.

Rather, the system only deals with an object (requesting it to behave a certain way or
to show its data) through its interface. How the behavior is implemented is wrapped
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up within the object. Figure A.2 shows the basic idea behind the conceptofa class.
Figure A.3 showsa class called Account, like a bank account.

The accountobject has two data storage locations, one for the balance, and one
for the customerid. It also has two types of behavior associated with it: withdrawal
and deposit. Programs using the object would increase or decrease the balance by
using the services of the object (withdrawal and deposit), but they would not be able
to directly modify the balance.

While it might seem odd that “hiding”internal details makes things moretrans-
parent, it makes a lot of sense. For example, bonds and stocks might be two common

types of objects in a financial trading system. Each object would havea price and,for

each object, you could compute standard things like volatility of prices, annualre-
turn, and so on. The internals about how return is calculated would be hidden within

each type of object. (Fixed rate bonds make periodic fixed interest payments whereas
stocks may or may not make dividend payments.)

The thing to note is that a programmer whouses the object doesn’t have to
worry about howthe return is calculated. The programmerjust accesses the informa-
tion through the object’s interface. It’s up to the object to figure out howto calculate

return. The fact that the details are hidden actually makes it easier to see what the

overall system is doing.
It also makes systems more stable to changes. Tomorrow,if you replace the

logic involvedin calculating stock returns with a more accurate orefficient method,it

will not affect any otherpart of the system.
Why?

The system only deals with the interface. If you changethe internals ofa class,it
shouldn’t affect the interface. In other words, an object’s interface tells you everything
about whatit represents and about what kinds of things you can do with it. Objects are
the knowledge equivalent of one-stop shopping. This property of “encapsulating” or
“hiding” the details of objects promotes modularity and transparency.

This explains how objects can be less opaque than traditional programming ap-

proaches, but what about malleability?

Object classes can be organized into class hierarchies. The nice thing abouthi-

erarchies is that they allow you to modify an object to make it more specific to your
needs. As we mentioned, objects that are instances of the lower classes would inherit
data and behaviorfrom the higherclasses.

Let’s say that you have a generic checking account object (whichis itself a spe-
cial case of the generic account object). Since the account object has a balance and a
customer ID, the checking accountwill inherit this as well. (In object-oriented terms

we would say that a checking accounthasan IS A relationship with account. In other
words, a checking account“is a” account.)

In addition, you might add the behaviorto “write—check” which would allow a
customer to write a check against the checking account. The savings account class
wouldn’t have this feature, but it would have “calculate—interest’”” behavior. If, a few

years later, you started offering NOW and Checking Plus accounts, you could allow
them to inherit the behavior of checking accounts, but also add additional data and
behaviorthat are specific to NOW accounts. Figure A.4 showsa class hierarchy of
different types of accounts.
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Class Behavior

(Methods)

Class Structure

(Attributes)

FIGURE A.2. The Anatomyof a Class
Attributes are used to describe the structure of a class. Methods describe things that can

be done to all membersof the class.

Withdrawal

Account:

customerid

balance

Deposit

FIGURE A.3 A Class Called Account
Its structure is described in terms of customer id and balance. The two things you can do

to any account are make withdrawals and deposits.

So interfaces make objects pluggable and transparent, and hierarchies make
them malleable. Now think aboutthe last driver of costs in software development: de-
velopmenttime.

Since objects are malleable and pluggable, the object paradigm encourages you
to build or buy reusable libraries of objects. Why build it from scratch when you can
buy it off the shelf? If object class libraries have been thoroughly tested, buying ob-
ject libraries speeds development tremendously.

But object hierarchies also help you think about and structure problems more
naturally and logically. As we showedin Figure A.4, class libraries are arranged in
logical hierarchies with the most general things at the top and specific things at the
bottom. This lets you more easily build up the structure of a system.

There’s a real parsimony associated with organizing the building blocks in

terms of hierarchies: Lowercategories “inherit” information from the more generic
ones. Software works the same way. Organizing the building blocks into a hierarchy
and allowing developers to dig into this toolbox gives them tremendous leverage.
Software development becomes moreof a process of gluing prefabricated parts to-
gether, occasionally adding on new branchesto a hierarchy.
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FIGURE A.4. An ISA Hierarchy
In this example, there are two types of accounts, checking and savings. Checking Is fur-
ther specialized into NOW and CheckingPLUS. An object that belongs to the class NOW

Accountalso belongs to Checking Account and Account.

Interestingly, hierarchies bring together all three of the benefits of objects. As
wejust discussed, they allow rapid development. As we showedearlier, they allow
malleability. Finally, object hierarchies reduce opacity. They allow you to understand

very easily how related objects differ from each other. Essentially, an object that in-

herits the properties of another object says to a programmer, “I am exactly like that

other object except for these explicit differences.” For example, the only thing that
makes a checking account object different from an account object is that it has
“write—check” behavior. This makes determining how software has been modified
much simpler.

Of course, nothing comes for free. One of the major impediments to object-
based systemsis that people are still getting used to thinking in terms of objects. On
the face ofit, the idea is deceptively simple. In reality, however, many systemsthat

are supposed to be object based end up lookinglike traditional systems that just hap-

pen to be programmedin an object-oriented language such as C++’. Most peoplestill
struggle with thinking through a complex design in object-oriented terms. A high
level of skill is required to do good object-oriented development in C++. Currently,
these skills are scarce and expensive.

 

*And as many people would argue, C++, the industry standard, is not a “pure” or the best implementationof the
object concept.
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A CASE

It’s worthwhile to look at a brief example of an object-oriented toolkit that shows the

powerof the object approach. Whatis interesting aboutthis caseis that it involves the
design of the techniques we’ve discussed in this book in terms of objects.

Moody’s Investors Service, a Wall Street firm specializing in fixed income
analysis, is now using an object-oriented library that was developedprivately by one
of the authors of this book. Moody’s now hasaccessto an object-oriented “toolbox”
for modeling complex problems. This toolbox is called ENIGMA (ENvironmentfor
Investigation and General Modeling Applications).°

What does ENIGMAdoand whyis it useful?
At Moody’s, the ability of analysts to understand and evaluate the credit issues

surrounding institutions and industries benefits from the use of quantitative tools
from the fields of statistics, mathematics, finance, and AI. Developing these analytic
tools, especially when they involve complex mathematics, neural nets, genetic algo-
rithms, etc., can be a time-consuming complicated process, since many times devel-
opers need to combineseveral of these methods to solve a problem.

For example, a developer might wantto use a genetic algorithm to select the

variables that produce the best predictions for a neural network model, as wedis-
cussed earlierin the text.

Although this sounds easy conceptually, getting all of the data and the GA and
the neural network programsto talk together using a standard procedural language
can be difficult. This is especially so when a developer wants to experiment with sev-

eral different approaches to see which solution might be most effective. This trial-
and-error process can be time intensive and costly.

Moody’s uses the object library to try out modeling ideas quickly. Each type of
tool is an object class. ENIGMAcontains neural network objects, fuzzy set objects,
fuzzy rule objects, genetic algorithm objects, graphical visualization objects, and var-
ious types ofstatistical and financial modeling objects.

Any type of basic object (neural network, genetic algorithm, etc.) can be glued
together by creating it as an instance of an existing object class. So, instead of creat-
ing a specialized program to implement a back-propagation neural network, and a
specialized program for choosing variables using a GA, a developercan create an in-
stance of a neural network object and an instance of a GA object and then tweak each
one to makeit fit his needs. The two objects would then be stitched together with

some additional programming.

How would a developer do this using ENIGMA?
What the developer wants to do, in this case, is create a genetic algorithm to

experiment with andtest out different neural network models. The hopeis that the
genetic algorithm will use its optimization powerto select a very goodset of vari-
ables for the neural network. In order to do this, the system needs to let a GA create

different neural networks and evaluate their performance based on how well they
predict, using a set of variables that the GA’s chromosomeselects.

 

‘Portions of ENIGMA were implemented by Spencer Kimball of the Computer Science Departmentat U.C.

Berkeley.
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A developercould start by defining the fitness function of the GA. Since the
goal would be to decide which variables produce the best predictions from a neural
network,the fitness function would needto be able to decide which variables a par-
ticular chromosome recommends. It would then train its individual neural network
using these variables, and evaluate the performanceof that individual neural network.
In other words, each chromosomewill have its own neural network and each one will

train its net using its subset of the variables.
The GA would needto create a population of chromosomes,each representing a

possible set of variables (columnsin the data). The GA’s fitness function would de-
code each chromosomeby convertingit into a set of variable recommendations. (For
example, a 1 in position 3 of the chromosome might mean include variable number3

and a 0 in position 4 would mean exclude variable 4.) The fitness function would then
use the selected variables to train its individual neural network. Since the neural net-
workis a self-contained object, it only takes a single line of code to includeit in a fit-
ness function (whichis itself an object).

Once the neural network has been trained, the GA would test it using hold-out

data, and the prediction error term would be passed backto the GA asthe fitness of
the chromosome. The lowerthe error of the network using the variables selected by
the chromosome,the higherthe fitness of that chromosome. This process would be
done for each chromosomein the population and repeated in each generation until the
GAhalted.

Comparedto the use of traditional procedural programming,the flexibility and
speed of the object-oriented environment is much moreefficient. It is also a lot more
flexible than trying to patch together tools from different vendors. As a result,
Moody’s is able to develop and test new modeling approaches more quickly than in

the past. Furthermore, approaches that would have been considered too costly can
now be explored.
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Al Software Products

The following is a list of vendors of software products for experimenting with and de-
veloping Al-based applications. In addition to the products listed here, there are ex-
tensive libraries of public domain software and applications available at many
university internet sites. We recommendthat the reader explore these as well. (We
haven’tlisted these since the Website and ftp addresses change frequently.)

Wehave only listed a few of the many vendorsin each category. Someof the
vendors produce more than one productas well. For a variety of reasons, we have not
commentedon or reviewed the individual products, although their quality and robust-
ness do vary considerably. This appendix is provided as an aid and does notrepresent
an endorsementfor any of the products listed. We have attempted to present informa-
tion whichis timely and accurate at the time ofthis publication.

Data Warehouse / OLAP

(Many major DBMS vendors

now offer some form of data

warehousing functionality. In

addition, the companies listed

below are a few of those that

offer specialized data ware-

housing and OLAPsolutions.)

CrossTarget

DimensionalInsight, Inc.

111 South Bedford Street

Burlington, MA 01803

(617) 229-9111

DSS Agent and DSS Server

MicroStrategy, Inc.

8000 Towers Crescent Drive

Vienna, VA 22182

(703) 848-8600

Essbase

Arbor Software

1325 Chesapeake Terr.

Sunnyvale, CA 94089

(408) 727-5800

Light Ship Suite

Pilot Software

One Canal Park

Cambridge, MA 02141

(617) 374-9400

PLATINUM Repository

PLATINUM Technology

1815 South Meyers Rd.

Oak Brook Terrace, IL 60181

(708) 620-5000

Redbrick Warehouse VIP

Red Brick Systems

485 Alberto Way

Los Gatos, CA 95032

(408) 399-3200

Genetic Algorithms

Evolver

Axcelis Corp.

4668 Eastern Ave. N.

Seattle, WA 98103

(206) 632-0885
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GeneHunter

Ward Systems Group,Inc.

Executive Park West

5 Hillcrest Drive

Frederick, MD 21702

(301) 662-7950

GenSheet

Inductive Solutions, Inc.

380 RectorPI.

New York, NY 10280

(212) 945-0630

Neural Networks

BrainMaker

California Scientific Software

10024 NewtownRd.

Nevada City, CA 95959

(916) 478-9040

Neural Network Toolbox

The Math Works,Inc.

24 Prime Park Way

Natick, MA 01760

(508) 653-1415
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NetSheet

Inductive Solutions, Inc.

380 RectorPI.

New York, NY 10280

(212) 945-0630

NeuralWorks Professional

NeuralWare,Inc.

202 Park WestDr.

Pittsburgh, PA 15276

(412) 787-8222

NeuroShell 2

Ward Systems Group,Inc.

Executive Park West

5 Hillcrest Drive

Frederick, MD 21702

(301) 662-7950

Rule-based Systems

Exsys Professional

Exsys,Inc.

1720 Louisiana Blvd N.E.

Alburquerque, NM 87110

(505) 256-8359

Level5 Object

Information Builders, Inc.

503 Fifth Ave.

Indialantic, FL 32903

(800) 444-4303

Nexpert Object

Neuron Data

156 University Ave.

Palo Alto, CA 94301

(415) 321-4480

Fuzzy Systems

CubiCalc

HyperLogic Corporation

Suite 210

1855 E. Valley Pkwy.

Escondido, CA 92027

(619) 746-2765

Fuzzy Logic Toolbox

The Math Works,Inc.

24 Prime Park Way

Natick, MA 01760

(508) 653-1415

fuzzyTECH

Inform Software Corp.

2001 Midwest Rd.

Suite 100

Oak Brook,IL 60521

(708) 268-7550

TILShell

Togai InfraLogic

Distributed in the US by:

Ortech Engineering Inc.

17000 El Camino Real #208

Houston, TX 77058

(713) 480-8904

Case-based Reasoning

CBR Express

Inference Corp.

550 N. Continental Blvd.

El Segundo, CA 90245

(800) 322-9923

Esteem

Esteem Software,Inc.

2016 Belle Monti Ave.

Belmont, CA 94002

(415) 596-9275

Induce-It

Inductive Solutions, Inc.

380 RectorPI.

New York, NY 10280

(212) 945-0630

Machine Learning

CART

Salford Systems,Inc.

5952 Bernadette La.

San Diego, CA 92120

(619) 582-7534

C4.5

Morgan Kaufman Publishers

2483 Old Middlefield Way

Suite 103

Mountain View, CA 94043

(415) 578-9911

S-PLUS

Statistical Sciences

1700 Westlake Avenue N.

Suite 500

Seattle, WA 98109

(800) 569-0123

SYSTAT

SPSS,Inc.

444 North Michigan Ave.

Chicago, IL 60611

(312) 329-2400
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General Reading
The followingis a list of books that are geared toward the general reader. Some are

classics in the AI field, some are histories of AI or related topics, and someareinter-

esting discussions of related topics like decision making or evolution.
The level of these worksvaries considerably, but all are geared toward theintel-

ligent layperson and avoid technical discussions and mathematical treatments, favor-
ing instead intuitive presentation of material. We have enjoyed reading each of the
texts listed here for different reasons and each has been rewarding.

Calvin, W. H., The Ascent of Mind: Ice Age Climates and the Evolution of Intelli-
gence, Bantam Books, NY: 1990.

Campbell, J., The Improbable Machine: What New Discoveries in Artificial Intelli-

gence Reveal About the Mind, Touchstone, NY: 1990.

Casti, J. L., Searching for Certainty: What Scientists Can Know About the Future,

William Morrow & Company, NY: 1990.

Crevier, D., Al: The Tumultuous History of the Search for Artificial Intelligence,
Basic Books, NY: 1993.

Dawkins, R., The Blind Watchmaker: Why the Evidence ofEvolution Reveals a Uni-

verse Without Design, W. W. Norton & Company, NY: 1987.

Franklin, S., Artificial Minds, MIT Press, Cambridge, MA: 1995.

Gleick, J.. Chaos: Making a New Science, Penguin, London: 1987.

Hodges, A., Alan Turing: The Enigma, Vintage, London: 1992.

Hofstader, D. R., Godel, Escher, Bach: An Eternal Golden Braid, Vintage, NY:
1989.

Kahneman, D., P. Slovic, and A. Tversky, Judgment Under Uncertainty: Heuristics

and Biases, Cambridge University Press, NY: 1982.

Levy, S., Artificial Life: The Questfor a New Creation, Pantheon Books, NY: 1992.

Lewin, R., Complexity: Life at the Edge of Chaos, Macmillan, Toronto: 1992.

Minsky, M., The Society ofMind, Simon and Schuster, NY: 1985.

Penrose, R., The Emperor’s New Mind: Concerning Computers, Minds, and the Laws

ofPhysics, Penguin, London: 1989.
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Simon, H.A., The Sciences of the Artificial, MIT Press, Cambridge, MA: 1969.

von Neuman, J., The Computer and the Brain, Yale University Press, New Haven,

CT: 1958.

Waldrop, M. M., Complexity: The Emerging Science at the Edge ofOrder and Chaos,
Simon and Schuster, NY: 1992.
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Case Studies

The following appendix contains a collection of seven cases taken from the experi-
ences of businesses that have successfully applied the techniquesin this book.

Eachof the cases is analyzed using the frameworkthat we presentedin thefirst
three chapters. The cases assume that you already understand something about the

techniques used and the frameworkitself.
The cases were written based on our own experiences, discussions with ourcol-

leagues, and published reports describing details of some of the work. We used the
framework in interviewing developers and analyzing their work while we were writ-
ing the cases.

The main point we hope to convey is not that the approaches that these organi-
zations took are the ones that should be used by developers in other situations. There

is no one “right” approach. Rather we hope to showthat each organization and prob-

lem is different and as such requires a unique perspective.
Whatis interesting about the cases 1s the way in which each organization uniquely

crafted a solution thatfit its needs, and the waythese solutions changedits business.

 CASE

Quality Control and

Monitoring of Suppliers
Kaufhof AG, Germany

 

THE ORGANIZATION

Kaufhof AG was founded in 1868, and is a large German “superstore” chain.

Kaufhof’s stores are somewhatsimilar to very large U.S. department stores. Unlike

American departmentstores, however, Kaufhof has a much broaderrange of products
and services, carrying goods extending from foods and delicacies, to clothing, to
durable goods, and to service bureaus providing services like travel planning.

Typically, these stores are located in the heart of large metropolitan areas. Not
long ago, the firm also expanded into the territories of the former East Germany. In
addition, Kaufhof has recently acquired Horton, one of the other major German de-

partmentstore chains. Prior to the acquisition, Kaufhof maintained 93 stores, but with
the addition of Horton’s outlets, Kaufhof now boasts 164 departmentstores.
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Kaufhof handles very large volumes of merchandise, so muchso that the firm
maintains 16 of its own warehouses on the outskirts of major Germancities. Manu-
facturers deliver orders directly to these warehouses. The warehouses themselves
then route and deliver orders to specific stores. The logistics involved in this distribu-
tion system can become very complex and Kaufhofhasrecently re-engineeredits lo-

gistical infrastructure to cut costs and improveefficiency.
Logistical managementis critical to Kaufhof’s continuing operation. In view of

the very large numberof items that the stores must stock, the firm cannot afford to
spend too much onstorage and shelf space. Kaufhof prides itself on the high quality

of its goods and services. This meansthat the firm must continually monitorthe qual-
ity of suppliers and products in order to ensure against quality problems. With thou-
sands of suppliers, this can be very time and labor intensive.

Inspection and quality control are where intelligent systems cameinto play at
Kaufhof.

THE PROBLEM

Kaufhof deals with a total of about 14,000 suppliers. Each day these suppliers make
over 7,000 deliveries to each warehouse. That means on an average day, the company

receives about 112,000 deliveries. The superstore chain employsa staff of quality as-
surance personnel whose job it is to ensure that the merchandise meets Kaufhof’s
standards.

Individually checking the quality of each delivery is very time consuming and

labor intensive. As a result, the firm wanted to develop a system that would reduce
the labor involved in quality control.

However,this can be tricky. The severity of an error can sometimesbe difficult
to assess. For example, let’s say the firm ordered 100 pairs of black socks. There is a
difference between a delivery that contains 96 black socks, and one that contains 100
blue socks or 100 white socks. Depending on thestore, the time of year, etc. one type
of error might be far less severe than the other. Or consider a shipmentof fine china
in which one of the sets has a chipped cup.

Kaufhof wanted to develop a system that would allowits inspectors to concen-
trate on the more risky shipments, thus reducing, overall, the need to examine each

shipmentas it camein to the warehouse.
While there are legal reasons why firms do not report headcount reductionstatis-

tics in Germany, Kaufhofestimates that its savings in labor would be about propor-
tional to its savings in capacity. In other words, doubling the numberof shipments
inspected per hour would be expected to free up the labor involved by abouthalf.

Kaufhof wanted complete control over the quality of the goods on the shelves
of its retail outlets. Currently, testing all shipments results in about a 1% errorrate. In
other words, 1% of the shipments accepted are later found to be erroneous.

The factors that help determine whethera deliveryis likely to be bad interact in
complicated ways, though. Affecting the shipments are such thingsas:

¢ the nature of the items being delivered. Some items are more proneto errors and break-
age than others. Crystal, for example, is riskier to ship than blue jeans. But what about

powertools?
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¢ the past performance of the supplier. Certain suppliers havebetter internal quality con-
trol, shipping practices, and so forth than others.

¢ the recent performance trends ofthe supplier. Suppliers’ performancesare non-station-
ary: They change overtime as new management practices are introduced by suppliers,
and their own input quality and client bases change. In addition to looking at overall
historical experience with the supplier, it is important to consider more recent trendsin
performance.

¢ the size of the order. Largercash value orders poserelatively larger risks to a retailer, so
the size of the orderis important for assessing the risk potential of a shipment.

Kaufhof decided that the proposed system needed to be adaptable enough to
deal with new products, new suppliers, and new types of quality control policies. Fur-

thermore, it had to be convenientfor use in a warehouse. Kaufhof currently employed
an inventory control system by which workers could scan bar-coded labels on each

box that arrived at the warehouse. It would be nice if the new inspection advising sys-
tem madeuseofthis procedure.

The problem of inventory quality control is a common one. In Germany, as
elsewhere, there are typically three approaches to inspection and quality control: no-
inspection, the brute-force approach, and the threshold approach.

The policy of no inspection is simple: The retailer depends on the supplier for
all quality control and just accepts all orders without checking them.

The brute-force approach is also simple. A company checks every shipment for
damage and accuracy. Needlessto say, this is very costly and reduces the speed with

which orders can be processed and passed on to outlets. This, in turn, increases inven-
tory carrying costs and the amountof time that goodssit on warehouseshelves.

The threshold approachisless costly. It involves checking orders that are larger
than a certain cash “threshold” value. Smaller orders are passed without inspection.
This approachis less than desirable for several reasons. First, erroneous smaller ship-
ments will always be passed on to the stores, thus necessitating correction further
downstream with associated costs, or worse, resulting in dissatisfied customers. Sec-

ond, as suppliers gain more experience dealing with a retailer, the suppliers may dis-
coverthe threshold point, and therefore take less care in preparing shipments oflesser
value.

Brute-force is attractive since it ensures that very few bad shipments makeit
through to the store shelves. On the other hand, the threshold approachis attractive
since it is much less time intensive.

Kaufhof decided to try to combine the two methods. The firm needed a system
that could allow an inspector in the warehouseto scan the label of a shipment and,
based on the factors discussed above, determine howlikely it was that testing would
find a problem in the shipment. Shipments that had high-risk scores would be in-
spected by hand, and those shipments with sufficiently low scores would be passed
without inspection.

In order to evaluate a system, Kaufhof decided to use as a benchmark the error

rate obtained when brute-forcing the shipments (1%) versus when using the system.
If the system’s performance weresufficiently close to the performance obtained by

the brute-force method, then Kaufhof would considerthe system successful and roll it
out on a largerscale.
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Since Kaufhof wanted to match the accuracy of the brute-force testing method,
the system would need to be very reliable. A 1% errorrate is a pretty high standard.

Althoughthe firm had data about orders that had been processed,it did not have
any data about which orders were historically bad. What this meant wasthat there
would need to be a fair amount of interplay between the system designers, the pur-

chasing department, and the quality assurancestaff in order to understand the process
better. This would necessitate explaining what factors of the model would produce
which types of behavior so that the experts could perform “tweaking.” Furthermore,
over time, users of the system would need to make changesto reflect new products,

inspection policies, and so forth, so the flexibility would need to be fair. This waspar-
ticularly true since most users would not be very familiar with the technology.

Since Kaufhof wanted to incorporate the new system into the current inventory
control system, any new quality control system would need to “work and play well”
with the inventory system. It also had to be able to deliver very fast responses so as
not to disrupt the workflow at the warehouses.

Finally, nobody at Kaufhof could articulate, exactly, the rules of thumbthat
should be used for spotting potentially risky shipments. What this meant wasthat
much work would have to be done developing the rules. But the rules themselves
would not be exact. There would be ambiguities involved and no one knew exactly
how all of this fit together in risk assessment. Any system would haveto be able to
deal with this domain.
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 CASE

Workflow Monitoring and Improvement

for Rapid Customer Service
U S WEST Communications, Englewood, Colorado

 

THE ORGANIZATION

U S WEST,Inc.is a provider of domestic and international telecommunications,

cable and wireless networks, directory publishing, and interactive multimedia ser-

vices. U S WESTwasformedin 1982 as a result of the divestiture of Bell Telephone.
The break-up separated local and long-distance telephoneservices into distinct busi-
nesses. The parent company, AT&T, continued to provide long-distance services but
the local telephone business was divided into seven regional companies, of which
U S WESTwasone. Today, U S WESThas about 61,000 employees and revenues of
almost $11 billion.

U S WEST Communications is one of the two major groups owned by U S
WEST. U S WEST Communications provides commercial and residential telecom-
munications services to customers in 14 states in the West and Midwest. The firm ser-
vices 25 million customers from Washington to Montana.

U S WEST Communications considersitself to be a leader in technology, ac-
tively introducing Internet-based services, SingleNumbercalling, and other innova-
tive offerings. The firm has generally sought to use technology to improve service to
its clients. In the highly competitive telecommunications industry, service is one of
the only ways that providers can compete. U S WEST Communications has re-
sponded with such service-oriented programs as temporary loansof cellular phones
for customers awaiting out of the way land-line connections and CustomChoice, a
calling plan that allows small businesses to lock in current phone rates for an ex-
tended period of time.

THE PROBLEM

U S WEST Communications wants to excel in service. The firm has the eventual
goal of being able to deliver phone service within an hour. The firm would like to be
able to connect a new customer account so quickly that minutes after the customer
finishes placing his or her order, the customerhasa dial tone and fully connected
service. To do this, U S WEST needsto be able to accurately track and monitorits

installation processat all levels from regional managers to quality assurancestaff to

computer system administrators.
This might seem like it should be easy in today’s computerized business en-

vironment. But it is more involved than it sounds. U S WEST Communications
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processes 15 million orders from 14 states each year. Each order passes through an

elaborate series of steps on its way to completion. Even simple orders involve eight
separate mainframe computer systems. More complicated orders interact with even
more systems. Each of these systems was developed independently, and each hasits
own quirks and data storage conventions.

In the early 1990s U S WEST Communications realized that in order to be able
to achieve its one-hour goal, it would need to be able to understand and analyzeits in-
stallation process to a much higher degree than the current myriad of computersys-
tems and databases allowed. The firm was having a difficult time even following the
processing of a single order through the complex system.

U S WESTneededto better understand its process from customer contact to
service delivery and billing, and to use its process data on an ongoing basis to moni-
tor and streamlineits installation process. Why wasthis a challenge?

First, the existing computerinfrastructure to support the business process was
sprawling. As you might imagine,installing and billing for 15 million orders a year
involves some pretty powerful computing. In fact, U S WESThad over 30 different
computer databases and programsto handle the various aspects of the process. ‘Trying
to understand these data was a nightmare due to such thingsas:

¢ data being divided across many systems. This made it impossible to perform a simple
query to unite different data elements if they were stored on different machines.

¢ multiple hardware and operating platforms. Some computers were IBM mainframes
running MVS, some were Amdahl mainframes running more UNIX,etc.

e multiple DMBS environments. Someof the data were stored in IMS and DB2 databases,

some in Sybase or Oracle databases, some in Informix, and so on.In fact, U S WEST

had most major DBMSvendors represented somewhereinits infrastructure!

different data naming and representation. Since each system was developedseparately,
the same variable, say “order—date” might have a different name in each database or
might be represented differently.

U S WESTwashaving a hard time understanding its processes because it was
having a hard time understanding its data. It wasn’t measuring anything aboutits cur-
rent process, so it was hard to improve anything in a well thought out manner.

Second, the problems weren’t all technical. In addition to the many mainframe
programsthat processinstallations, an order can also go through numerous manual

interventions. These typically happen when an order“drops out” of the system. Drop-
outs happen if the specifications of a service request are incompatible with the data
available in the systemsor with the businessrules for installations.

For example, an order might drop out for something as simple as an erroneous
customeraddress that doesn’t match an address in the U S WESTswitching database,

or something moresubtle like a customer who requests CallerID in an area whereitis
not available.

Orders that drop out are routed to clerks who then manually correct the order
and then resubmit it. In addition to being slow and expensive, it makesit difficult to
know wherein the system a particular order is at any given time.Is it in the process-
ing queue of one of the mainframes? Is it being transmitted between mainframes?
Hasit dropped out onto the desk of a clerk in one of the regional offices? Maintaining
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a high level of customerservice in this environmentis exacting because you’re meas-
ured by failures, not successes: Even a low proportion of failures can damage reputa-
tion and makea service function look bad.

What U S WEST Communications wanted to do was understand the entire pro-
cess better so that businesspeople and units could respond quickly to snagsor recur-

rent inefficiencies in the installation process. By being able to monitor and identify

rough spots, the firm hoped to be able to direct resources dynamically to where they
were needed, when they were needed. Eventually, the organization hoped to reduce

the amountof manualintervention by identifying trouble spots in the order process.
The problem wasthat the current data systems werenottalking.
To address this, US WEST needed a wayto be able to determine, for any given

recurrent installation problem, what was causing delays. The firm wanted to be able to

diagnose, on an ongoing basis, whether new training was required, whether new soft-

ware needed to be written, whether a computer system was malfunctioning, whether

particular personnel or groups needed closer monitoring or more resources, and so on.
U S WESTdecidedthat it needed an easy to use, fast system to allow line busi-

nesspeopleat all levels of the organization to access data about problemsin the instal-
lation process and analyze the data to determine the causes of the problems. The
people responsible for making these decisions need to be able to understand the data
as they evolve. The system would needto allow users at many different locations in
the firm to access data from manydifferent sources.

How would the system be used?
Managers whousethe system needto be able to track trendsin data to better

understand the business process. They need up-to-date data, although not necessarily

in real-time. Managers are also seeking explanations for the problemsthat they iden-

tify in the data and needto be able to understand them in orderto figure out remedies.
A manager mightbeinterested in lookingat the installations by region one day,

and the technicians byinstallation time the next. The system would therefore need to

be able to adapt to the changing needsof uses or changing dynamicsof the data. Sim-
ilarly, a user needed to be able to follow up hunchesquickly and easily as one discov-
ery led to anotherin the data, requiring a fast response. Since so many people would
be using the system, it had to be designed in such a wayasnotto put a drain on the
computing infrastructure of the firm, but U S WEST wanted to develop a solution
without adding more hardwareif possible.

Finally, since there would be many different types of businesspeople using the
system and each would havehis or her own needs, the MIS group needed to be able to
develop the system without taking upa lot of the user community’s time. The systems
also needed to be developedfairly quickly to meet the overflowing user demand.
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 CASE

Help Desk Task Scheduling
Moody’s Investors Service, New York

 

THE ORGANIZATION

Founded in 1909, Moody’s Investors Service specializes in the credit analysis and
rating of fixed incomesecurities and the analysis of international financial markets.
Moody’s bondratings (Aaa, Aa],etc.) are well known by investors, who use them to
aid in the evaluation of the credit quality of various financial instruments.

While Moody’sis primarily a financial service firm, the company is constantly
expanding its computer workstation, database, and widearea networkfacilities. This
expansion is essential due to the vast amounts of information that must be collected,
interpreted, and synthesized with the experiences and judgment ofanalysts around
the world to form the firm’s credit opinions. New in-house software packages are

constantly being developed andrefined, third-party software packages and on-line
services are introduced regularly, database enhancements are implemented almost
daily, and sophisticated econometric modeling and research take place continually.

This environmentnecessitates a broad computational infrastructure capable of sup-

porting such activities.
Like many large organizations with large computer user bases, Moody’s has an

in-house support group to aid in resolving technical problems. In addition, it has a
“help desk” where users can report problems, and, in somecases, get help in resolv-
ing those problems over the phone.

The scheduling of problem servicing in the help desk area will form the focus of
this case study.

THE PROBLEM

Moody’s objective was simple. The firm wanted to increase the efficiency with which
computer problems were resolved. It realized it has become virtually impossible for
an employeeto function well without having a computer running. One wayto ensure

that people spent less time idly waiting for their machines to be repaired wasto effec-
tively prioritize, schedule, and route problems.

Typically in a help desk environment problemsare processedin a series of

stages. Users usually contact the help desk with a specific problem. If the contact per-
son at the help deskis able to, he or she tries to resolve the problem over the phone.
Unfortunately, in many cases, this is not possible. The more complex or time-con-
suming problemsare forwarded to other specialists who visit the user site directly.

Moody’s problem was not one of developing a powerful diagnostic system that
could be used to resolve problems, but a dispatching system, such that the right peo-

ple were sent to fix the various problems. The challenge facing the help desk admin-
istrator is to effectively allocate tasks to personnelso that the loss of value by the firm



Case Studies 211 @

due to computer down time is minimized. But this alone won’t ensurethat the internal
customers are happy. The administrator also needs to be concerned with minimizing
dissatisfaction on the part of users due to the timeliness of support.

This might sound easy, but in practice it is complicated by numerousissues. The

help desk administrator (HDA) needsto considerthe priority of the various tasks in the
help desk queue. Is a problem a severe one that seriously prevents a user from doing

his or herjob,oris it a less serious problem that is more of an inconvenience? The ad-

ministrator must also consider how long it will take to resolve a particular task and
how this impacts the help desk’s ability to service other users. The ability of the vari-
ous customerservice representatives (CSRs) to perform the various tasks will also im-
pact schedule design. All things being equal, it makeslittle sense to have a highly

experienced technician perform a relatively simple task while a more complex task re-
mains undone becausethe other (idle) technicians do not have the skills to perform it.

On top ofall of this, the administrator also needs to consider the amountof time

that a given task has been outstanding. The longer a problem, even a minorone,is

outstanding, the more dissatisfied a user will be.

Moody’s help desk was facing a problem common to help desks. The volume
of tasks and the task distribution system was such that it was very difficult to priori-
tize, schedule, and distribute tasks efficiently. This was dueto the large numberof
tasks, the large numberof CSRs, the varying capabilities of CSRs, and the very wide

variety of task types. In addition, simple, low-priority tasks would tend to get post-
ponedin favor of higher-priority tasks. The result was that these low-priority tasks
would be put off indefinitely, sometimes until users were ready to give up.

At the time Moody’s was scheduling tasks in a basically ad hoc manner. After
tasks were entered into the tracking system, a paper “job ticket” was printed. The job
ticket described the task, the time of the call, and had other related information about

the user and problem. This job ticket was then inserted into one of a group of folders
in a central area in the help desk. The folders were broken out by broad categories of
tasks. The administrator, along with CSRs, would periodically check the various fold-
ers and try to determine whichtasks to do next. A CSR would then take a task ticket
and visit the user. The help desk wasrarely in a position to be able to tell users when

they would be addressed.

Finally, the administrator did not have a clear sense of how loaded the CSRs were,

or how balanced the loads were across CSRs. Determining how many problems were
left unattended at the end of each day was also a time-consuming exercise. In other
words, the administrator was notin intimate “touch” with the situation on the front-line.

This system had worked well enough when the numberof tasks and CSRs was
small, but as the scope of the help desk grew, it becameincreasingly difficult to come
up with efficient scheduling that took all of the factors above into consideration.

The help desk administrator now needed a tool to help with the scheduling and
routing of tasks to technicians. The system hadto:

¢ be able to provide outputs that could be usedto tell users when their problems would be
addressed. In order to accomplish this, the system needed to produce good schedules
that were efficient.

¢ be able to assess task priorities based on severity of the problem, numberof people af-
fected, etc., and also be able to make adjustments dueto various circumstances. The sys-



m™ 212 Appendix D

tem would also need to know aboutthings like CSR availability and CSR skill sets, and
also be able to generate good estimates of how long it would take to resolve a particular
problem.

integrate with Moody’s other databases and database systemsthat were already in place
for logging and tracking help desk problems. Moody’s had already invested in the de-
velopmentof a system that allows help desk personnelto access a gooddeal of informa-
tion about a caller when calls reached the help desk.

be flexible enough to allow new types of task definitions to be inserted into the system
and to accommodate changesin personnel, training,etc.

also be flexible enoughto let the help desk administrator modify the solutionsit gener-
ated. For example, if a certain department was working on a tight schedule, the adminis-
trator needed to be able to giveits jobs priority.

be able to generate and reevaluate schedules quickly since new tasks are constantly
flowing into the help desk. The developers estimated that the system mustbe able to
generate good solutions in under 15 minutes and do so consistently.

not take CSRs or the administrator away from their work for any extended period of
time during development. Since the help desk is a very busy place, the administrator
could not spare the resources to undertake a protracted developmentproject.

be developedfairly quickly.

Moody’s decided to measure schedule goodness based on the numberof hours
of down time each schedule cost the organization. Schedules that resulted in large
amounts of down time would be considered bad while those that produced fewer
hours of lost time would be considered good.

Over time, Moody’s also expected that the number of employees wouldincrease,
causing an increase in the numberof help desk calls and a corresponding increase in

the number of CSRs. The system needed to be able to accommodate reasonable
growth ofthis sort. Furthermore, the help desk staff would be maintaining the system

going forward, so a very complicated system would notbe useful in the long run.
The administrator would need good schedules, but the schedules did not have to

be “perfect.” This is both because of the nature of the help desk domain, and because
of the fact that there would be oversight on the part of the administrator and CSRs.
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 CASE

Financial Market Analysis and Prediction
LBS Capital Management, Clearwater, Florida

 

THE ORGANIZATION

LBSis a managementinvestmentfirm. LBS began managing investment capital with
Al-based technologies in late 1986 because it believed that conventional approaches
to money managementwere having an increasingly difficult time meeting or exceed-

ing benchmarks. Further, it believed that the new generation of modeling techniques
such as neural networks hadthe ability to capture significant non-linear cause and ef-

fect relationships for use in forecasting when marketand security price behavioris
dominated by non-linearity.

LBS manages about $600 million in assets, primarily in stocks and mutual
funds, for both institutional and individual investors. This includes a Fortune 100

pension fund anda large international bank, makingit one of the largest firms in the
country managing moneywith cutting-edge AI technology.

While LBS usesa variety of the technologies mentioned in this text to per-
form tasks ranging from macro-economic analysis to portfolio optimization, the
focus of this case study will be LBS’s efforts to create tools that the firm hopes will
help better predict the performance of the individual financial instruments in the
firm’s portfolios.

THE PROBLEM

Simply stated, LBS’s objective is to maximize the return on the assetsit invests for its
clients while minimizingtheir risk exposure. LBS,like many other asset management
enterprises, believes that a key ingredient to successful investing is timing. LBStries
to determine whether the marketis providing any signals about howitis likely to be-
have in the intermediate term (1.e., a few months), and bases investment decisions on

these signals. For LBS,it is not enough just to know which securities to purchase. In
order to be successful, the asset managementfirm must also know when to buy and
sell the securities.

LBSbelieves that these objectives can be achieved by providingits financial
professionals with insight into the financial markets. LBS feels that it can do this
through a combination of high-quality analytic tools, highly efficient computer engi-
neering, and market-savvy analysts.

LBSis a small firm comprised of a core group of financial analysts, computer
scientists, and portfolio managers. While the firm’s analytic staff spend a good deal
of time perusing balance sheets, studying market patterns, and so on to better under-

stand factors that influence financial markets, the firm also utilizes tools to help make
better investment decisions.
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LBS is unique in that it is one of only a few firms using AI technology,
combined with statistical and financial analysis, as a primary means to manageits

portfolios.
In a field where even a slight advantage can mean millions and any additional

market insight can be profitable, LBS continuesto search for better tools for evaluat-
ing investmentscenarios.

Butit is extremely difficult to find consistent tools that model financial markets
well. These markets are complex and only partially understood. Prediction, even in

the short term, is a very difficult exercise. The problem of developing a system to es-

timate future prices is daunting becausefinancial processes are generally character-
ized by high levels of non-linearity and complexity, making them hard to model. The
amount of data available to an analyst is overwhelming. Furthermore, financial mar-
kets are constantly evolving so models mustadaptto these changes.

LBS’s system neededto reflect these factors:

e The system needed to be able to quickly incorporate knowledge about a domain that
often defies explicit definition. The financial domain is characterized by broad micro-
economic and macroeconomicrelationships among many complex and often poorly
understood variables. Furthermore, on a day-to-day basis, random shocks, crowd psy-
chology,and short-lived trends influence financial markets in complex ways.It is not
unusual to have widely varying interpretations of the data from different experts even
after the fact. Even expert traders sometimes have difficulty explaining what general
principle led them to makea specific trade.

e The system neededto be able to deal with and analyze complexdata. As a result of the
interactions among several different market forces, financial markets can exhibit highly
non-linear and highly complex behavior.

¢ The system neededto be able to deal with the large amounts of economic and financial
data that are generated daily.It is difficult or impossible even for the most skilled expert
to assimilate this amountof data accurately and consistently. In the words of one experi-
encedtrader, “Even the smartest of us is not as smart as the market. In order to make

sense of the data, we havelittle choice but to turn to the computer.”

¢ The system needed to be able to adapt quickly over time. Financial markets are highly
non-stationary: They often change rapidly over time. A trading strategy that workedin a
bull market will probably not fare as well in a bear market. But evena strategy that
worked well in last year’s bear market might not do so well in this year’s bear market.
Markets evolve and adaptto different forces over time.

Thus, LBS’s research group searches for solutions that highlight possible mar-
ket opportunities so that analysts could focus more thoroughly on understanding

these situations. In essence, LBS wanted modelsto sift through the volumesofdatait
has and highlight the more interesting relationships. LBS wantedto increasetheintel-
ligence density in marketdata.

Initially, LBS experimented with a variety of objectives for its models. Over
time, however, the objective became more focused: to have a system provide recom-

mendations on individual stocks.
The tool needed to provide insight into the direction and magnitude of price

movements over time. LBS felt that correctly choosing a time horizon for prediction
was an importantfacet of setting up the problem. On one hand, makingpredictions in
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the very short term is hard dueto the high levels of noise and unpredictable factors
(i.e., random effects) that are present in financial markets. Paradoxically, however,

choosing too large a horizon is equally meaningless due to the high numberof uncon-

trollable large scale exogenousfactors (politics, economic policies, etc.). For these

reasons, LBS determinedthat a meaningful horizon was a windowofabout 12 weeks.

LBS decided to evaluate each stock relative to a fixed market indicator, such as

the S&P 500 since the market index provides a general standard of market perfor-
mance. That is to say LBSis an “active” managerthat seeks to outperform the mar-
ket, as opposed to a “passive” managerthat indexesits portfolio with the market and

seeks only to match the market’s performance.

LBS wanted to be able to integrate the results of the analysis into its then cur-
rent analytic processes and produceresults in reasonable time. The accuracy and con-
sistency of a system would be used as a measure of system goodness. In orderto

makethis realistic, though, LBS would use simulated trading systemsto test the mod-

els. Models were then also tested (or validated) by back testing overseveral historical

years to determine how they would have performed. (This validation process takes
into accountthingslike realistic transaction costs, etc.) Models that recommended

buying stocks in volumesthat were not obtainable or conducting so manytradesthat
transaction fees wiped out profits would not be considered successful.

To be useful to LBS, the system needed to be able to interpret and analyze large
amounts of market data and “update its view of the world” frequently and easily.It
needed to continually be able to access and assess economic and market data from a
variety of sources and, using these data, indicate those stocks that were “likely” to be
winners, and those that were more “likely” to be losers over the next 12 weeks.

LBS’s data wereplentiful, although not necessarily clean. Errors can enter data
as a result of a numberof problems such as errors that occur when downloading,er-
rors in how the data are recordedat the source, and so forth.

LBSdid not need the system to make specific point predictions for prices on a

specific date but needed it only to provide the decision makerwith estimatesof a se-
curity’s upside and downside potential. On the other hand, since a decision maker
(typically a portfolio manager) would be interpreting the results of a prediction, it
would beusefulif the model could offer someinsightinto its analysis. It was also im-
portant that the system fit smoothly into LBS’s workflow and current modelingtools.
To do this, the system also needed to interface smoothly with the financial databases
where the market data are stored.

Since LBS wasinterested in a 12-week time horizon, the decision maker was not

going to be under second-by-secondreal-time pressure to make investmentdecisions

so the firm felt that the system need notfunction in real-time. On the other hand, since

there would be thousands ofsecurities to analyze, the system did needto be able to
perform the analysis on each individual security in a reasonable amountoftime.

The system also needed to be able to be expanded to accommodate additional

securities and input factors, which are expected to be added overtime. To be practi-

cal, the model would also needto be flexible enough to accommodate new market
trends, new typesof data, and portfolio objectives.

The types of processes that LBS planned to model were highly complex with
manysubtle interactions. Accordingly, LBS felt that given the inherent uncertainty in
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the domain,it would be difficult for an expert to specify all relevant knowledge accu-
rately. In addition, LBS thought it would be best to take upaslittle of the firm’s ex-
pert traders’ time as possible. Expert time is valuable; each hour away from market

analysis or trading can cost real dollars. Furthermore, and more important, LBS had

found that it could be somewhatdifficult for their expert traders and analysts to artic-
ulate their expertise, especially since the rules are complex and continually evolving.
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 CASE 

Customer Support
Compag Computer Corporation, Houston, Texas

THE ORGANIZATION

Compag Computer Corporation is a major Fortune 500 company that manufacturesa
range of personal computer systems. It established itself as a major player in the
portable computer hardware marketin the early 1980s, and has continued to offerin-
creasingly powerful laptop and high-end products since then. The company founded
its reputation as an aggressive price competitor in the mid-1980s by wresting away a

big chunk of the PC market from IBM,the then dominantplayer in that market. Over
the last few years, however, Compaq has in turn been the target of intense price com-

petition by smaller companies such as Dell Computer and AST Research.
In the face of intense price competition and commoditization in the hardware

arena, computer companies have beentrying to differentiate themselves on other
fronts besides price. Superior customerservice is an area that has become more and
more important to companies whose products are becoming increasingly commodi-
tized. Improving customer support, where customers include both dealers and end
users, is one of Compaq’s majorstrategic objectives.

Compag started by providing product support at the dealer level. This has now
been extendedto the retail level.

This case deals with a hugely successfulintelligent system developed by Com-

paq to addressits customers’ support needs.

THE PROBLEM

Modern computing systems are complex machines with thousands of microcompo-

nents, network protocols, and hardware/software interfaces. Providing effective on-

line service for these devices can be a daunting task. It requires that customer support
engineers gather information about a customer’s problem,enterthe call into a logging

system, analyze the customer’s data, resolve the problem, and deliver the solution.
In analyzing the data and resolving the problem, the engineer makesuse of

whateverresourcesare at his disposal: personal expertise, manuals and other infor-
mation sources, and other support engineers.

Effective customerservice also requires customer supportstaff to have a highly

versatile set of skills: good listening and analysis skills and the tenacity to track,
solve, and “close out” the customer’s problem.

Providing effective support for Compaq customersis particularly challenging
for additional reasons:
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e The range of products that the companyoffers is increasing, requiring a wider breadth
of expertise for support. Support staff face an increasing variety of questions. Thereis
no “typical” request. In effect, the problem domain is a movingtarget.

The networking environment is becoming increasingly complex with players such as
Novell, Microsoft, Banyan, and networks into which Compaq’s products mustintegrate.

This Third-party hardware and software widen the scope of the problem domain. Thus,
in addition to being a moving target, the domain is also widening.

¢ Becauseof the diversity and evolution of the problem domain, few support staff ever ac-
tually encounter the full range of problems. There are few “go to” people in the organi-
zation who can guarantee correct solutions for all problems. Rather, expertise is
distributed across the entire supportstaff.

Compaq realized that it faced an explosion in the numberand variety of cus-
tomercalls given its growth rate and introduction of new products. It was apparent
that unless something was done,the staff would need to grow dramatically, thereby
increasing support costs. The alternative was to somehow reduce the numberofin-
coming calls and to reduce the time taken to resolve a call, and to achieve this while
still maintaining a high quality of service.

Compag thoughtthat an intelligent support system mightbe a solution. Thesys-
tem would need to be able to provide expert diagnosis and recommendationsto users.
Butthis was not so simple:

e To be successful any system would need to be able to bring together pieces of knowl-
edge from disparate places in the organization. While as an organization Compaq knew
how to resolve most problems, the information wastoo distributed. No one individual
had the expertise to troubleshootall products.

e The system neededto be able to handle the large and changing array of models, prod-
ucts, and configurations that Compaq produced. As client needs change, so do Com-
paq’s products. As the market changes, Compaq’s products are integrated with a more
and morediverse range of third-party systems.

e Users needed to be able to find solutions quickly. Furthermore,if a particular type of
problem had neverbeen seen before, users neededto be able to get guidance as to where
they might look for a solution.

e The system would haveto be accessible to many different employees at different loca-
tions. In addition, it would need to be accessible to remote users, such as dealers.

A system that addressed these goals would not only keepthe size of the support
staff under control, but equally important, it would enable the staff to resolve prob-
lems without requiring deep knowledge aboutall problem areas.

In 1989, the service departmentstarted by installing a call-logging system. This
provided a mechanism by which the company could record information about prob-
lems and their resolution. It also provided the necessary first step in ensuring better
service quality: the ability to “close the loop” on each problem.

The next step was to build moreintelligence on top of the call-logging system.
Given the nature of the domain, it was important that the new system beeasily

expanded since Compaq expected that the system’s domain of expertise would have
to grow overtime. It would also have to allow new kinds of problems to be added
easily without affecting the system’s current behavior.
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Most types of problemscould be categorized quite easily into relatively non-in-

teracting categories: hardware, network, software, and general information such as

care and maintenance. Even problems involving interactions (such as the inability to
print because of incorrect device driver software) could be identified with a specific
category. On the other hand, trying to untangle a complicated network of third-party
hardwareand software still made the problem non-trivial.

The requirementthat the system get the user into the ballpark and not perform
exact diagnoses suggested that while the system would have to do some degree of
pattern matching, this could berelatively crude. It would, however, be important to
providethe user with good navigational capabilities for searching the knowledge base
for similarities. In other words, low-to-modest accuracy wasacceptable as part of the
system’s first cut; the user could then honein onthe right problem.

Nevertheless, the user needed to be able to have confidencethat the system was
in fact focusing on the right problem, so someindication of whya solution was ap-
propriate would be helpful. Also, speed was important: The system should help the
support staff get to the right ballpark with as few questions as possible, typically less
than five. Also, the problem should be resolved in a few minutes over the phone with-
Out requiring the userto call back again.

Finally, the reality of help desksis that clients are often unable to describe their
problemsaccurately. Accordingly, the system would haveto be able to accommodate
inexact input. Similarly, clients rarely provide all relevant information, which would
require the system to operate with partial descriptions of problems.
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 CASE

Pattern Directed Data Mining of

Point-of-Sale Data
A.C. Nielsen, Chicago

 

THE ORGANIZATION

A.C. Nielsen is a division of the Dun and Bradstreet (D&B) corporation. While

Nielsen is perhaps best knownforits ratings of television shows,it is in the “informa-
tion business”in a variety of areas. In particular, it collects point-of-sale data in su-
permarkets, which Nielsen stores in a very large database called SCANTRACK.It
also collects a variety of other data related to buying behavior: demographic (house-

hold) data with buying behavior, television viewing-related data, magazine subscrip-
tion data, etc. Nielsen’s strategic goal is to eventually integrate these databasesinto
whatit calls “one source,” which can provide comprehensive analyses of products,
markets, and consumers.

In the late 1980s, Nielsen began to experience strong competitive pressures
from its main rival, the Information ResourcesInstitute (IRI). IRI had introduced a

system called Coverstory, which performed a very rudimentary analysis of scanner
data from supermarkets. It was rudimentary in the sensethat it only provided simple
graphsof share changes,and a boilerplate text and layout into which computed num-
bers were plugged.

While rudimentary, Coverstory filled a crucial market need. Nielsen had no
such system.

THE PROBLEM

Nielsen’s objective was to package analyzed data andsell the information to buyers,
such as supermarkets. Buyers derive tremendous value by knowing how products or

product categories performed last week, last month, last quarter, or last year in a par-
ticular region such as a borough,city, state, or nationally. More generally, they need
various kinds of summaries of the data, by product or product category, or by market.
These analyses can be in terms of variables such as volume, marketshare, price, pro-
motion, and so on. Essentially, the analyses boil down to running standard queries

against a database.
Butthere’s a lot more in the data that can be gleaned by people who have expe-

rience in the consumer products industry. Because of their experience, they know

what to look for. An organization such as Nielsen has several such people, who can
eyeball various kinds of reports and come up with a story that is not apparentto a less
experienced person. This experience is based on products or markets. An expert
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would just “know” that New Yorkers are more price sensitive to sourdough bread
than Californians; if the expert saw a price increase in both states and volume de-
clined in New York, this would be consistent with his rule. On the other hand, if vol-

ume did not decline in New York after a price increase, this would raise a flag,

causing the expert to dig further in orderto find the reason for the anomaly.
Nielsen’s strategic objective was to leverage its expertise in consumer products

and markets by makingit available to its sales representatives. With this knowledge,
the representatives would have an “expert in the box” focusingtheir attention to inter-
esting consumption activity in the marketplace. Based on this information, the sales
rep could fashion an appropriate sales pitch for the customer.

Nielsen’s objective, then, was to understand how experts analyzed sales data,

package this expertise into a system, and makeit available to its sales reps across the
country.

There were several key organizational and logistical issues that shaped Nielsen’s
approach to the developmentof the system:

e The system should provide a significant advance over IRI’s Coverstory, otherwise
Nielsen would merely be playing catch-up. Marketing representatives felt that Cover-
story lacked the intelligence as a decision aid on two fronts.

e The first had to do with the look and feel of the system which made people feel it was
a reporting system more than an “intelligent decision aid”’:all of its reports, regardless
of product or context, looked identical. It used a standard boilerplate, where numbers

were simply pluggedin. If you’d seen one report, you’d seen them all.

e The real drawback of the boilerplate approach wasits limited ability to emphasize dif-
ferent things about different products or markets, including how the results were pre-
sented. As a consequence,it waslimitedin its ability tofocus attention on the relevant
data. As a simple example, Nielsen experts felt that text (bullets, paragraphs), graphs,
charts, spreadsheets, etc., could be used judiciously depending on what turned out to
be interesting in the data. In this way, it would provide more customized and varied
reports that would prove to be more useful forsales reps.

¢ The system should work with the “lowest common denominator” database,that is, on
data that existed for every Nielsen customer. The objective here was to provide a service
to every Nielsen client in order to maximize market coverage, and not caterto clients
selectively.

e The system should not require any new databasesor database technology, but work with
Nielsen’s existing databases. The costs associated with building a new platform to sup-
port the sometimes idiosyncratic needs associated with advanced technology were not
deemed economical.

e The system should provide high-quality outputs that would be usableasis by sales reps.
In order to accomplish this, the system should use vocabulary that is commonly used by
the sales reps. Also the reps should not have to invest time in analyzing and interpreting
the outputs. Rather, they should allow the rep to put together a clear and unambiguous
story for the customer.

e The system should bedistributable to sales reps across the country and it should run
on low-end personal computers of the day since this constituted the installed base in
the company. The objective was to allow the sales reps to access the central database
over phonelines and have the system on their personal computers analyze the data
and produce “the right reports,” showing exceptional market activity and possible rea-
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sons for this activity. The marketing experts also felt that the reports should be pro-
duced in under 5 minutes (not counting printing time) in order to be acceptable to the
user base.

e last but not least, the system had to be developed in six months. Top management
wanted the system to be unveiled at the Food Marketing Institute (FMI) convention on

May 5, 1991. It was late in November 1990 that the project, initially referred to as
Nielsen Performance Exception Review (NPER), was approved. No prototypesor ex-
perimental versions were affordable in order to verify requirements: Nielsen needed the
full-blown system within 6 months, otherwise the project would bea failure.

The overall objective was to have a system that could provide a user, the sales
rep, a comprehensive answerto the question: What is happening in the marketplace?

To the extent possible, the system would also provide the user with outputs that di-
rectly or indirectly point to the reasons for the observed marketactivity.

While the overall strategic objectives (i.e., catch-up and leapfrog IRI in the
marketplace) and logistical constraints (system should run on a PC-XT) werecrisply
defined at the outset of the project, the specific outputs the system was expected to

produce were less apparent to the experts and technologists. In particular, would the

system use a numerical schemelike probabilities to perform its analysis and present

results? For example, would the systems say things like “‘there’s strong evidence that
X caused Y?” With such outputs, would the users then want to know why there was
strong evidence as opposed to weak evidence? What would constitute strong, weak,
etc.?

Nielsen decided that it was unwise to expect a system to provide meaningful
probabilities or strengths of associations between variables, but that the outputs
would be somewhat coarse. The domain was not well enough defined nor was the
data adequately detailed or complete to support conjectures of this sort. The conclu-
sion: Keep it simple—provide outputs that show exceptional market activity with
commonly used concepts such as market share, volume,distribution, promotion, and
price. Accompanying such reports would be associatedfactors that could directly or
indirectly explain the observed marketactivity.

For example, a chart showing unusual sales volume changes of products be-
longing to some product category might be accompaniedby charts showingshifts in
the promotional activity for the same products, and charts showing changesin pric-
ing. The idea wasthat such outputs would focus attention on these areas, makingit
easy for the sales rep to piece together the story behind the numbers.

Nielsen also felt that the problem domain wasfairly decomposable, with lim-
ited interactions among the problem variables. Analysis of different categories of
products could be done reasonably independently. For example, promotion and sales
data for carbonated beverages have nothing to do with market share analysis for de-
tergents. So, even though the sales database might have millions of records, it could
be sliced into segments that could be analyzed independently.

Nielsen also felt that while the problem domain was not particularly complex,it
was hard to nail down rules that would apply universally across products or markets.
For example,it is well known that price has an impact on volume(in economicsthisis

referred to elasticity). However, elasticity varies across products: People might be
much moresensitive to price for carbonated beverages than for cereals. Besides this
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sensitivity might vary across regions, even seasons. Similarly, while distribution and
price are related to market share in general, a competitor's distribution and price might
be more weakly related to your share. Knowing about these kinds of subtle variations
amongthe variablesis one of the sources of expertise in the consumerproducts area.

For these reasons, the experts felt that the system had to be specified in a way
that allowed it to be “parameterized.” So, while one could safely state that promotion
would affect volume,the specifics of the relationship had to be parameterizable so
they could be altered to specific circumstances.

The logistical constraints were clear. The speed of development had to be high.
This was a hard constraint. The system simply had to work at the end of six months;
there was no time for prototypes and experimentation. The system would also be

critically dependent on access to expert knowledge. Fortunately, top management
was committed to providing access. Nielsen also felt that these were high quality ex-
perts who would be able to articulate their strategies in evaluating marketdata.

Since the system had to producedirectly usable output, it had better put things
on the report that had a high chance of being related. Even thoughthe sales rep
would construct a story aroundthereports, the output information had to bereally
high quality for the rep to do so quickly andeasily. So, even though the system was-
n’t required to provide cause-effect explanationsperse, its explainability had to be
high in the sense that the rep could look at the output and be confident about con-
structing explanations from it. On the other hand, the system wasn’t required to be
highly accurate in specifying which of the pieces of data were more important than
others in explaining some unusual marketactivity: The sales rep could dothat. In
other words, it only had to be moderately confident that two things wererelated in
order to display them along with its reasons. The speed of response had to be high
since the rep would only be willing to wait a few minutes forit; the response time
also had to be highly predictable. Again, this was a hard constraint.

The system also had to be highly embeddable into existing systems such
as databases and word processors. Finally, the system had to be moderately
flexible in allowing users to change certain parameters of the system, for exam-
ple, to tell it that a certain market was about twice as sensitive to a promotion as
another. This was because it was impossible to state the relationships between
variables precisely.

The market data were felt to be of high quality since Nielsen put in a lot of ef-
fort in ensuring high data quality at the source. Finally, one of the most importantdi-
mensions, the problem variables werefelt to be relatively independent.
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 CASE

Improving Personnel Dispatching
NYNEX Inc., New York

 

PREFACE

The following case study is somewhatdifferent from the others we presented. The
other cases focus primarily on howa particular type of system solved a problem.This
one emphasizes the learning process that one organization is going throughin trying

to make improvementsto an existing knowledge-based system.In trying to make im-

provements, the organization is learning aboutthe limitations of its existing customer
support process and the complexity of the problem, and how these can be better ad-
dressed. The goal is ongoing process improvement.

THE ORGANIZATION

NYNEX cameinto existence as the result of the divestiture of Bell Telephone in

1982, which separated the long-distance and local telephone service into separate
businesses. Following the divestiture, AT&T retained the long-distance business and
Bell Labs (the research arm of the original company), whereas the local telephone
business was spun off into seven regional companies. New York Telephone and New
England Telephone were two such regional companies, which later became NYNEX
New York and NYNEX New England, respectively. NYNEX is the parent company
of these two companies. NYNEX currently employs about 60,000 people.

Like many technology companieswith a large customerbase,a critical business
process for NYNEX is customerservice. Telephone lines break down all the time.
Given the central role that telephones play in our lives, telephone outages are a nui-
sance for residential customers and simply unacceptable to businesses. Customers
want them fixed immediately. While more reliable technologyis the ultimate objec-
tive, a more pressing short-term goal for the telephone companyis to fix these prob-
lems more cost effectively by doing a better job of understanding the nature of the
problem and the skills required to resolveit.

THE PROBLEM

NYNEX handles about half a million customer reported troubles each month across
55 service centers. Out of an employee base of approximately 60,000, about 50% are
devoted to maintenance and repair. Erroneous maintenancecalls are costly. In fact, it
is estimated that a 1% reduction in dispatching errors contributes to an annual savings
of approximately $3 million dollars.

What happens when a customercalls the telephone company with a problem?
First, a service representative collects information from the customerandinitiates elec-
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trical tests on the customer’s line referred to as the mechanized loop test (MLT). The

MLT system was designed by and is maintained by AT&T. Results from this test,
whichconsist of between one and two dozen readingsof voltages, currents, resistances,

etc., and some analysis, are put into a “trouble report” that is sent to a maintenance
administrator (MA). Based on this report, the MA makesa high-level diagnosis about

where a technician must be dispatched or whether additional data need to be collected.
After a problem is fixed, the technician whofixesit enters a four-digit code that

best describes the resolution or what was doneto fix the problem. This information

goes into a database.
A large part of the repair problem is determining wherein the network path to the

customer’s site the problem lies. There are four possible actions:

¢ dispatch to distribution wiring

e dispatch to the cable

e handle in the central office

e or do furthertesting

A wrong decision is very costly: Sending a technician to the wrong place can blow
awaya significant portion of the day, which is why a small improvementin this part of
the business processresults in such huge savings. Also, given the sheer volumeofcalls

handled, even smaller improvements throughbetter dispatching add upto large savings.

In 1990, the NYNEX Science and Technology center implementeda rule-based

expert system to determine the location of malfunctions for problems reported by
customers. Specifically, the expert system was designed to perform the job of the
MA.It focuses on the “local loop,” which connects the customerto the central office.
Like the MA,the system determines roughly where the problem lies and the type of

technician required to fix it. It does so based on expertise that is programmedintoit
in the form ofrules. A rule is of the following form:

IF Voltage (across X) > Thresholdl
AND Voltage (across Y) < Threshold2

THENDispatch to cable

wherethe voltages are taken across specific parts of the line and the thresholds define
boundariesthat distinguish between normal and pathological states of the system.

The expert system handles about a third ofall calls across 55 service centers.
While it is hard to measure specifically how accurate the expert system is, ballpark
estimatesrate it at between 60 and 70%. While these results are not bad, NYNEXfelt

that there was significant room for improvement.
On the surface this seemslike a straightforward problem.Therules, in general,

were performing well. Improving the system just required makingthe rules more ac-

curate! And the problem involves measurements and a simple theory relating the
measurements. In other words, the domain has structure, which can bearticulated

clearly by people familiar with it.
Butthis turns out to be difficult.
Why?First, measurements meanslightly different things depending on the geo-

graphic location. “High voltage” in rural Maine is quite different from Manhattan. Rec-
ognizing this problem, the designers of the expert system allowed for customizing the
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system by defining certain parameters, which were to be tweakedbylocal experts de-
pending on their geographical area. But this ended up beinga lot harder than anticipated.

One problem is that different experts have slightly different ways of diagnosing
problems. Even with an identical set of measurements, different experts might disagree

abouttheir interpretation. Because the process of arriving at a conclusionis different, an
expert at one location might not be totally comfortable with the reasoning processof an

expert at a different location. Tweaking rule parameters is therefore not as natural to the
experts as the designers had hoped it would be. The expertise just isn’t standard enough.

The second problem is that the domain is inherently non-stable. A year ago, a

set of readings that would have been considered normal might now seem pathological

because the equipment on the line has become moresensitive. With the constant
change in equipment, such as FAX machines, modems, and newtelephones,inter-

preting readings can be a creative exercise with ample room for judgment. Because of
this, rules require continuous monitoring and tweakingto be accurate. This is time

consuming andpainful.
Last but not least, the quality of the data is bad. Measurementerrors creep into

the data when the measuring deviceitself isn’t working correctly! When this happens,
you end up with a bad set of data. Unless you know exactly when the device began to
malfunction, you have no wayof finding and throwing outthe bad data. There are
even more serious problemsat the human end, whenthe technician enters the diagno-
sis. We’ ll discuss this in more detaillater.
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Chapter Key Words
and Discussion

Questions

CHAPTER 1: INFORMATION SYSTEMS:
PAST, PRESENT, AND EMERGING

Key Words

information system decision support system data driven DSS
electronic data processing knowledge-based system decision automation

system transaction processing
distributed systems system
batch mode model driven DSS

Questions

I. Whatare the differences between transaction processing systems and decision support
systems? What are the differences between model driven DSS and data driven DSS?
Whatare decision automation systems, and how dotheyfit into the picture?

. Whyhas so muchattention been focused on DSS recently? How has the businessenvi-
ronment changed to makethis necessary? How has technology changed to makethis
possible?

Whydo youthink “what if” analysis has becomeso important to businesses? Think of
three business problemsand describe how a “whatif” decision support tool might work.
Whattypes of things would the “what if” models in the system need to be able to do?

How mightdata driven DSS workusing a database of newsstories andpressreleases?
How about model driven DSS? What makes decision support based on text different
from decision support based on numerical data?

. Why do youthink that artificial intelligence techniques that emulate reasoning pro-
cesses are useful for some types of decision support? When mightthey notbe useful?

a 227
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CHAPTER2: INTELLIGENCE DENSITY:
A METRIC FOR KNOWLEDGE WORK

Key Words

knowledge intensive intelligence density intelligence

Questions

1. Why do organizations need sophisticated DSS to find new relationships in data? Why

2.

can’t smart businesspeople just look at the data to understand them?

Intelligence density focuses on two concepts: decision quality and decision time. De-
scribe situations where you might be willing to trade quality for time and vice versa. Are
there other factors that you might be concerned aboutas well?

The British mathematician Alan Turing wasa central figure in the developmentofdigi-
tal computing machines and oneofthe earliest to propose that machines might be pro-
grammedto “think.” In his 1950 paper, Computing Machinery and Intelligence, he
proposed a guessing gametest of machineintelligence that later evolved and became
knownasthe “Turing Test.”

Briefly, the test works as follows: A judgesits in a room in front of a computerter-
minal and holds an electronic dialog with two individuals in another room. One of the
“individuals” is actually a computer program designed to imitate a human. According to
the test, if the judge cannot correctly identify the computer, the machine can be said to
be intelligent since it is in all practical respects carrying on an intelligent conversation.
Turing’s prediction was:

. ..1n aboutfifty years’ time it will be possible to programme computers. . . so
well that an average [judge] will not have more than a 70 percent chance of mak-
ing the right identification after five minutes of questioning.

How doesthis definition of intelligence differ from the conceptof intelligence we use in
defining intelligence density? Is Turing’s definition of intelligence more orless ambi-
tious than the intelligence density concept? Why or why not? Whyare both concepts
important?

. If you were entering an organization for the first time and you had been charged by the
CIO with increasing the intelligence density of the firm, where would you begin? What
types of research would you do within the organization? How aboutoutside research?
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CHAPTER 3: THE VOCABULARY OF
INTELLIGENCE DENSITY

Key Words

accuracy flexibility independence from experts
explainability embeddability computational ease
response speed ease of use development speed
scalability tolerance for noise in data
compactness tolerance for complexity

Questions

1.

2.

Whyis a unified framework useful in developingintelligent systems?

In what waysare the dimensionsofthe stretch plot different for intelligent systems than
they are for traditional systems?

Whatotherattributes might you include if you were developing a system for a univer-
sity? A Wall Street firm? A municipal government?

CHAPTER4: DATA DRIVEN DECISION SUPPORT

Key Words

data warehouse table matrix
OLAP join to dimension (data) on
transaction processing EIS cells

OLTP drill down (into data) vector

index (of database) data loader hypercube

relational DBMS data transformer Sparse matrix
query language scrub (data)

Questions

l.

2.

How do data warehousing applications differ from traditional transaction processing
systems? What are the advantagesto using a data warehouse for DSSapplications?

Many large organizations already have formidable computing infrastructures, large
database managementsystems, and high-speed communications networks. Why would
such organizations wantto spend the time andeffort to create a data warehouse? Why
not just take advantage of the infrastructure already in place?

. What are the key components of the data warehousing process? What function does
each serve?

. “OLAPis just a more elaborate form of EIS.” Do you agree with this statement? Why or
why not?
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5. How doesthe hypercube representation makeit easier to access data? Whyisit difficult
to create a hypercube-like structure in a traditional OLTP system?

6. For which types of business problems would you consider using an OLAPsolution? For
which types of problems wouldit be inappropriate? Why?

CHAPTER 5: EVOLVING SOLUTIONS:
GENETIC ALGORITHMS

Key Words

genetic algorithm (GA) objective fitness function
optimization NP-complete population
exhaustive search linear programming selection
search space gene mutation
variable chromosome crossover
constraint decoder schema

Questions

1. Over the last 20 years, we have had considerable success with modeling problems using
the principle of “reduction” and “linear systems” where complex behavioris the “sum
of the parts.” In contrast, some people assert that systems such as evolution ofliving or-
ganisms, the human immune system, economic systems, and computer networks are

“complex adaptive systems” that are not easily amenable to the reductionistic approach.
Explain the above in simple English. Provide an example of a system thatis the sum of
its parts and onethatisn’t.

. Do you think that building computer simulation models using genetic algorithms can
help us understand complex adaptive systems? If so, what properties of genetic algo-
rithms makethis possible?

Whatis the meaning of “building blocks” in complex systems? What do youthink are
the building blocks of the neurological system? How about a modern economic system?
Howdothese building blocks interact to produce synergistic behavior? How do genetic
algorithms model the idea of building blocks? How do they modelthe interactions
among building blocks?

. What role does mutation play in a genetic algorithm? What about crossover? How
would you expect a genetic algorithm to behaveif it uses no crossoverand a high muta-
tion rate?

. For what types of problems would you consider using a genetic algorithm? Why?

6. Explain the following statement: “A genetic algorithm takes ‘rough stabs’ at the search
space, which is whyit is highly unlikely to find the optimal solution for a problem.”
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CHAPTER6: SIMULATING THE BRAIN
TO SOLVE PROBLEMS: NEURAL NETWORKS

Key Words

(artificial) neural net (ANN) connection weight learning paradigm

interpolate input layer unsupervised learning
extrapolate hidden layer supervised learning
neuron output layer back propagation
synapse transfer function overtrain
fire (a neuron) sigmoid overfitting
neurode (node) train (a neural network)

Questions

1. To what extent do you believe that artificial neural networks come close to how the
brain actually works? In answering this question,try to focus on the similarities and dif-
ferences between the two.

Many businesspeople say that they are not comfortable with using neural nets to make
business decisions. On the other hand, they are much more comfortable using standard
statistical techniques. Why do youthink this is the case? In what waysis or isn’t this a
valid concern?

. For what types of business problems would you use neural networks instead of standard
statistical techniques? Why?

. What is meantby the term overfitting? When do neural nets exhibit this phenomenon?

. What properties of neural networks enable them to model nonlinear systems?

6. In not more than three sentences, give an example of a nonlinear system, showing what
makesit nonlinear. What properties of neural networks enable them to model nonlinear
systems? Suppose the transfer function of neuronsin a neural networkis linear. Doesthis
mean that the network will not be able to model nonlinear systems? If it would be able to
model nonlinear systems, what are the advantagesof using a nonlinear transfer function
such as the sigmoid function for neurons?

CHAPTER 7: PUTTING EXPERT REASONINGIN A BOX:
RULE-BASED SYSTEMS

Key Words

rule-based system (RBS) control strategy instantiate
rule rule base recognize—act cycle
LHS working memory inference network

RHS rule interpreter meta rule
backward chaining fire (a rule)
forward chaining match (a rule)
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Questions

l. All of the AI techniques we discuss in this text have unique methodsfor representing
knowledge. How is the way that a rule-based system represents knowledge different
from the approach used by a neural network? From a decision tree?

. What is the difference between a rule and a meta rule? Why do you need meta rules?
Should rules and meta rules be independent from each other? Why or why not?

. Whatis forward chaining? What is backward chaining? In which situations would back-
ward chaining be useful? In which situations would forward chaining be useful? Can the
methods be combined?

. In manyplaces in this book, we talk about dimensionsofthe stretch plot. It is often said
that rule-based systemsare not very scalable. Is this true? Why or why not? How does
the meaning ofscalability differ between a rule-based system and, for example,a tradi-
tional database system?

. Whatis the “recognize—act cycle?” What are its major components? Whatis the differ-
ence between the working memory and the rule base? How doesthe cycle allow rule-
based systemsto “reason” and “draw conclusions”?

. For which types of business problems might a rule-based approach be useful? Which
characteristics of rule-based systems make them well suited for these problems? Can
you think of problems for which it might not work as well? Why would an RBS not be a
goodsolution in these cases?

CHAPTER8: DEALING WITH LINGUISTIC AMBIGUITY:
FUZZY LOGIC

Key Words

fuzzy logic fuzzy boundary defuzzification
fuzzy set consequent fuzzy region gravity method
crisp rule rule combination saturation (of fuzzy sets)

membership function MIN-MAX

Questions

1. Is there any difference between fuzzy reasoning and probability theory? Can fuzzy reason-
ing be modeled in terms of probability theory? Illustrate your answer with an example.

. Why do youthink there are so many applications of fuzzy logic in engineering and so
few in business?

For which types of business decision problems might you consider fuzzy logic? Why?

. How does fuzzy reasoning differ from the type of reasoning used in standard rule-based
systems? Are there things that standard RBS can do that fuzzy systems cannot? How
about things that fuzzy systems can do that standard RBS can’t? Discuss each.

“Fuzzy logic gives fuzzy answers.It is not useful for modeling problemsthat require an
exact result.” Is this statement true? Defendorcriticizeit.

. “Fuzzy systems partition knowledge into knowledgeaboutthe characteristics of objects
and the rules that govern the behavior of the objects.” Explain this statement. Whyis

this useful?
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CHAPTER 9: SOLVING PROBLEMS BY ANALOGY:
CASE-BASED REASONING

Key Words

case-based reasoning case base discriminatory power
(CBR) probe (into case base) nearest neighboralgorithm
case browsing (a case base) discontinuity

attributes (of a case) similarity metric monotonic

Questions

1. What is the conceptual basis and motivation for case-based reasoning?

2. What does it mean for businessesto “learn” about their customers, suppliers, or internal
processes? To what extent can they do so through case-based systems?

3. Many problemsinvolve finding the “nearest neighbor” to a particular datum. The natural
candidates for solving such problems are case-based reasoning, rule-based systems (fuzzy
or crisp), and neural networks. Under what conditions would you favor each of them?

4. “Good indexingis vital to creating a CBR system.” Do you agree with this statement?
Whyor why not?

5. For which types of business problems would you consider CBRto be a good solution?
Why?

6. Consider these twostories:

e John wanted to buy a newdoll for his daughter. He walked into a departmentstore.
John did not know wherethe toy department wasso heaskedtheclerk at the informa-
tion desk for help. She told him to go up the escalatorto the left. John was able to find
the departmentand buythe doll.

Mary neededto get to a meeting in San Francisco. She set out from LA at 8:30 but
soon realized that she was unsure ofthe best route to take. She pulled off the highway
and opened her glove compartmentto look at her road map of California. After check-
ing the route, she pulled back onto the road and went on her way.Shegotto her meet-
ing on time.

Howarethese twostories similar? Howis this type of similarity different from the type
discussed in the construction example? How might you represent them as casesin a
CBRsystem for problem solving?

CHAPTER 10: DERIVING RULES FROM DATA:
MACHINE LEARNING

Key Words

machinelearning CART gain (in purity)

recursive partitioning (data) cluster cross-validation

dependentvariable entropy prune(atree)
independentvariable variance orthogonal
classification tree (data) split
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Questions

1. Whatis meantby the term machine learning? Whatisit that recursive partitioning types
of machine learning algorithms “learn?” Howis it similar or different from what neural
networkslearn?

If you run a recursive partitioning algorithm on set of data several times, would you
expect it to produce exactly the same outputs each time? How abouta neural net? Ex-
plain your answer.

Given a dataset with independent variables X,, X,, ... X, and a dependentvariable Y,
would a recursive partitioning algorithm be able to discover a pattern such as: “IF X,is
less than X, then Y is high?” Why or why not? Would a neural net be able to learn such
a pattern?

. Whatare the advantages and disadvantages of recursive partitioning algorithms com-
pared to neural networks? To rule-based systems?

Forwhat types of problems would you consider using recursive partitioning algorithms?
For example, would you use them to model complex adaptive systems where the inter-
actions amongthe different parts of the problem produce complex behavior? Why or
whynot?

. Suppose you havea large dataset where each “record”or “data point” can be described in
terms of hundreds of attributes. You are not sure about which variables to include as
inputinto a recursive partitioning algorithm because you’re not sure which ones will turn
out to be important in “explaining” the dependent variable. Would it be a good idea to
simply include all the attributes of the data and let the algorithm figure out whichones
are important? Why or why not? If it is not a good ideato includeall attributes, how
would you go about winnowing down the numberto inputinto the learning algorithm?
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Access databases, 74
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defined, 27

of fuzzy system, 148
of genetic algorithm, 75
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181, 186
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Algorithms, 34
Artificial intelligence techniques, 2
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Attribute deck, 161
Attributes, 151-53, 156, 165
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discriminatory power, 158, 159
in high-dimensional space, 161
numeric, similarity, 157, 158

symbolic, 159
Audit planning, 105
Audit trail, 119

Back propagation algorithm, 101-3
Back propagation (backprop), 92
Back-propagation neural network,

197
Backward chaining, 109, 110, 150

Batch mode, 1-2
Bias, 100

Birth-rule, 138
Business requirements, 12

C
C4.5 learning algorithm, 170, 176

Call-logging system,case study,

217-219
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Case, 150
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tem, 149-66
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tem, 162
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dimensionsand limitations, 166

discontinuities, 162, 163

discriminatory power, 158, 159

errors not produced repeatedly,
15]

intelligence density issues, 161—66
matching and retrieval compo-

nent, 154—57, 160, 165
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153-54

Case studies

Kaufhof AG, 203-206

U S West Communications,

207-209

Moody’s Investors Service,

210-212

LBS Capital Management,
213-216

Compaq Computer Corporation,
217-219

A. C. Nielsen, 220-223

NYNEX Inc., 224—226

Categories (intervals), 106-8

Categorization, 127
Cells, 43, 46, 48

input, 48
vectors’ output, 48

Centroid method (gravity method),

139, 146

Chromosome, 61, 68-74, 198

coding and decoding binary, 63
decoding/interpretation, 61-65
meaning of, 62

population of, 63, 65

Classes, 193, 194

account, 195

attributes to describe structure of,

195

Class hierarchies, 194, 195, 196

Classification tree, 170, 171

Classifier system, 169

Clustering, 92-94, 170-72, 178,
184-85. See also Split

dispersion, 180
entropy, 187-89

Combination scheme, 139

Committee ofcritics, 22
Commonparent, 160

Compactness, 18, 19, 27
of case-based reasoning, 166
defined, 28

of fuzzy system, 148

of genetic algorithm, 75
of machinelearning algorithm,

185, 186
of neural networks, 100

of OLAP/data warehouse, 50
of rule-based systems, 122

Compag Computer Corporation,
customersupport case study,
217-219

Complexity, 142. See also Tolerance

for complexity
Complex systems, 118

Computational ease, 20
defined, 29

Computing resources
of fuzzy system, 148
of neural networks, 100
of OLAP/data warehouse, 50

Conflict resolution strategy, 122
Conflict set, 110, 124, 125

Connection weights, 83
Consequentfuzzy region, 137

Constraints, 58, 59
of optimization problems, 56, 57

Context independentcriterion, 26

Context sensitivity, 141
Control knowledge, 113
Control strategy, 109, 110

Cost drivers, longer term, 17

Coverstory system, 220, 221
Crisp

rule-based systems, 145
rules, 129, 132, 138, 145
set, 130, 131, 132

Crossover, 63, 68-69, 70, 74
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207—209

Customer support, Compaq Com-
puter Corporation case study,
217-219

Customer support system, 22

D
Data, 10, 77—80, 82. See also Toler-

ance for data sparseness
disorderly, 172, 174, 176, 187-89

feeding a decision support sys-
tem, 5

historical, 81, 134

normalization, 36

overfitting of, 176, 177

overload, 31

point, 78, 80, 161

redundant, 48

in sample, 177

storage, 42—43
training, 176

underfitting, 177

Databasefile, 36

Database management systems
(DBMSs), 34, 35, 48-49

U S WEST Communications case

study, 208
Database query, 38
Databases, 5, 32, 36-37, 47, 75, 169

analysis of, 8

case-based reasoning vs., 155, 156

data-driven decision support sys-
tem, 33

Moody’s Investor’s Service case
study, 212

for pattern directed data mining of
point-of-sale data, case study,

221
U S WEST Communications case

study, 208
Database software, 32
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Data-driven decision support, 30-51
Data warehouses, 5, 32, 33, 41-43,

47-51
AI software products, companies

and addresses, 199

converters for, 41

defined, 31

function, 31, 39

loadersfor, 40, 41

OLAPsystemsvs., 40

scrubbing, transforming,slicing
and dicing, 38-46

Deceptiveness, 72
Decision automation, 5

Decision support information, 9
Decision support mode, 16
Decision Support Systems (DSS),

2-3, 38
data-driven,4, 5, 6, 11, 33-46
developing smarter, 8
model driven, 4—5, 11

Decision theory, 9
Decision tree, 113-14, 168-70,

181-83
complex, 185

complexity vs. error rate, 178
optimal, 180, 181, 182

overfitting, 178, 179

Decoder, 61, 62, 73, 74
Defuzzification, 139, 147
Dependency network, 119, 120, 121

Developmentspeed, 25
defined, 29
of fuzzy system, 148
of genetic algorithm, 75
of machine learning algorithm,

186
of neural networks, 100
of OLAP/data warehouse, 50

Diagnostic system,intelligent, 16
Discontinuities, 57, 58, 107

case-based reasoning, 162
“Distance computation” modules,

160
Distributed systems, 1
Drilling down into the data, 45—46
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E
Ease of use, 18, 28

defined, 28, 29

of fuzzy system, 148
of genetic algorithm, 75
of neural networks, 100

of OLAP/data warehouse, 50

Electronic spreadsheets, 10-11

Embeddability, 18, 19, 27, 75
of case-based reasoning, 166
defined, 28

of fuzzy system, 148
of genetic algorithm, 75
of machine learning algorithm,

186
of neural networks, 100

of rule-based systems, 123

ENIGMA(Environmentfor Investi-

gation and General Modeling

Applications), 197
Entropy, 170, 172-73, 187-89
Entropy formula, 173, 174, 189
Error space, 54, 92

Executive information systems
(EIS), 38, 39, 47-48

customization of, 50
OLAPsystem vs., 40

Exhaustive search, 55
Expertax, 105

Expert system, 24, 25, 75, 105,

145
genetic algorithmsvs., 73

Explainability, 12-14, 18, 22-24,
26, 74

of case-based reasoning, 166
defined, 27

of fuzzy system, 148
of genetic algorithm, 75
of machinelearning algorithm,

180, 181, 182, 186
of neural networks, 100

of OLAP/data warehouse, 50
of rule-based systems, 122

External marketability, 22
External sources, 41

Extrapolation in case-based reason-
ing, 160, 161

See also Interpolation
Extreme points, 57, 58

F

Feasible region, 57
Financial market analysis and pre-

diction, LBS Capital Manage-
ment case study, 213-216

Firing, of rule, 81, 111, 112, 121, 165

fuzzy logic, 146
Fitness criterion, 53
Fitness function, 61, 64, 73-75, 198
Fitness proportional selection, 68
Fitness values, 68

Flexibility, 16, 18, 19, 27
of case-based reasoning, 163, 166
defined, 28

of fuzzy system, 148, 210
of genetic algorithm, 75
of machine learning algorithm,

186
of neural networks, 100
of object-oriented environment,

198
of OLAP/data warehouse, 50
of rule-based systems, 120, 121,

122
Forward chaining, 109, 150

Fuzziness, 141, 142

Fuzzy associative map (FAM), 147
Fuzzy boundaries, 130
Fuzzy chips, 147
Fuzzy logic, 126-48, 183

origin, 128-129
reasoning processstated in ap-

proximations, 128
rule-based systemsvs., 146

Fuzzy logic-based system, 17

Fuzzy membership function, 147
Fuzzy patch, 134, 135, 136, 144
Fuzzy region, 147
Fuzzy rule, 135, 137, 139, 141,

143-47



application of, 132-33
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Fuzzy set, 126, 128-35, 139-41,

144-47
degree of membershipin, 131
saturation of, 146

Fuzzy set objects, 197
Fuzzy system, 143-47

AI software products, companies
and addresses, 200

dimensionsand limitations, 148
intelligence density issues in,

142-48
neural networksvs., 94

G
Gain, 180

Gain ratio, 180

Gene, 60, 74

in schema, 71

Generalization, 78, 127

Generation, 63

Genetic algorithm (GA), 52-76,

120, 147, 168-69

AI software products, companies
and addresses, 199

basic process, 60—70
basic unit, 60

dimensionsandlimitations, 75

history and development, 59

intelligence density and, 70-75

neural networksvs., 59

operators, 63-71
profile of, 75
ranking process, 59
refining process, 63-70
to select variables for a neural

network model, 197—98

solution time, predictability of,

58-59

Genetic algorithm objects, 197
Genetic learning algorithm for data

mining, 19, 20

Global maximum, 54, 57, 66

Goodnesscriterion, 53
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Graphical user interfaces, 2, 46

Graphical visualization objects, 197
Guess-feedback-adjust process, 91

H
Hardware, special purpose neuro-

computing, 97

Help desk task scheduling, case
study, 210-212

Heuristic optimization method, 59
Hybrid rule-based system, 20
Hypercube, 46

data representations, 45, 49
using sparse matrices, 48

ID3 learning algorithm, 170
Implicit parallelism, 72
Impurity of clusters, 171-76, 180
Independence from experts, 29

of case-based reasoning, 164,

166
of fuzzy system, 148
of machine learning algorithms,

183
of neural networks, 100

of OLAP/data warehouse, 50
of rule-based systems, 123
tolerance for, 183

Indexed sequential access method
(ISAM), 34, 35, 36

databases, 34, 35, 43

Indexes, 34, 35, 40, 43

of case-based reasoning, 164—65
Industry codes, 41

Inference network, 113, 114

Inferencing, 133, 139, 146, 147

Information ResourcesInstitute

(IRI), 220-22
Information Systems (IS), 1-6

defined, 1

Information theory, 172
Inhibition, 81

Inputs, 43
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Inspection advising system,
203-206

brute-force approach, 205, 206
threshold approach, 205

Instantiation, 110, 111, 115, 124,

125, 165
Intelligence density (ID), 6-14

of case-based reasoning, 161-66

compared to productivity, 10, 12

determinants of, 12-14
dimensions of, 27-29

in fuzzy systems, 142-48
genetic algorithms and, 70-75
Jetstream’s steps for increasing,

13
machinelearning algorithm is-

sues, 180-86
a measure of organizational intel-

ligence and productivity, 9-12
neural networks and, 94-101

OLAP/data warehouseissues,
47-50

profile for a problem, example of,
23

requirements, 14

in rule-based systems, 117-23

steps for increasing, 11
vocabulary of, 15-29

Intelligent diagnostic system, 16
Internal resistance to technology

projects, 22
INTERNIST, 105
Interpolation, 98

in case-based reasoning, 156, 160,
16]

Interpreter, 110, 111, 120, 125, 147

ISAM.See Indexed sequential ac-
cess method (ISAM)

Justification, 119, 120, 146

K
KaufhofAG, Germany,case study,

203-206
Knowledge-base, 106

Knowledge-based systems (KBS),
2-3

Knowledge component, 24

Knowledge workers,3

L
Landscape,Stretch Plot, 23

LBS Capital Management case
study, 213-16

Learning curve, 19

requirements, 29

Learning method, 92
Learning paradigms, 92
Letters of credit (LOC) processing,

15-16, 18
Linear programming,2, 58

algorithm, 58
Logarithm, 172
Logistical constraints, 20, 29

Logistical requirements, 18
Logistic organizational constraints,

14

Machine learning algorithms, 118,

167-89
dimensionsandlimitations, 186
intelligence density issues, 180-86
overtraining, 177

for NYNEX personneldispatch-
ing case study, 224—26

Machine learning (ML), 168

AI software products, companies
and addresses, 200

Mainframe, 1-2, 31, 32, 41

for data warehouse, 47

Management comfort, 22

ManagementInformation Systems
(MIS), 4, 32

department, US WEST Commu-

nications case study, 207—209
taxonomyof, 3-6

Matching,pattern, 110-11, 115, 120,

123-24, 147



Mathematical optimization, 3
Maximization problem, 55, 56

Membershipfunction, 129, 130
Meta metarule, 116
Metarule, 115, 116

risk-averse, 116
Minimization problems, 55—57
MIN-MAX combination, 139, 146
Model, 78, 80-81, 88

developmentof, 81
Moody’s Investors Service case

study, 210-12
Mortgage application evaluation

system, 18
Multidimensional approach, 43
Multidimensional surface, 78, 80
Mutation, 63, 69, 70, 74
MYCIN,105

Natural selection, as genetic algo-
rithm basis, 59

Nearest neighboralgorithm, 159-60,

163

Network server, for data warehouse,

47

Neural network models, 95, 197,

198

Neural networks (nets), 19, 25, 64,

77-94, 120, 147, 169, 183

adjusted weights, 88-91
advantagesto use of, 94
AI software products, companies

and addresses, 199-200

basic principles, 81-94
data partitioning, 182

dimensions and limitations, 100

error determination, 92, 96, 101-3

finding good weightsettings, 93

fuzzy rules vs., 143

genetic algorithmsvs., 59

hidden layer, 83, 86, 88, 91,

95-96

input layer, 83

intelligence density and, 94-101
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learning rate parameter, 97
machinelearning algorithm vs.,

184
output layer, 83
over-training, 98, 99, 176

pre-processing, 96—97
programs, 197
responsetimes, 100
sensitivity analysis, 91

training of, 86-87, 91, 94-96

Neurodes, 82-84, 87, 91, 94-95

input sum andits effect on output,
85

schematic of, 84
Neurons, 81, 82
Neurotransmitters, 81
Nielsen, A. C., pattern directed data

mining of point-of-sale data
case study, 220-23

Nielsen Performance Exception Re-

view (NPER), 222

Nodes, 82-84, 87, 91, 94-95, 101
hidden, 96, 103

Noise. See Tolerance for noise in data
Non-deterministic polynomial (NP)-

complete problems, 55-56

NYNEX,Inc., personnel dispatch-
ing case study, 224—26

O
Objective functions, 56-59

fitness function vs., 61
Objectives, of optimization prob-

lems, 56, 57
OLAP. See entries beginning with

On line analytical processing
OLSregression, 100
On line analytical processing ap-

proach, multidimensional, 43,

44
On line analytical processing/data

warehouses

dimensionsandlimitations, 50
intelligence density issuesof,
47-50
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sion support systems, 31-33,

41-43, 46-51
AI software products, companies

and addresses, 199
case-based reasoning vs., 155

data warehousesvs., 40

defined, 31, 39
interface, 41, 47

scrubbing, transforming,slicing
and dicing, 38-46

server, 41, 42, 43

slicing and dicing of data, 40
users drilling down into data, 40

Online transaction processing

(OLTP) systems,34, 43, 44,

47-48
databases, 40, 41, 42

Opaqueness, 193, 194, 196
Operational data store, 42

Operations research,2, 9
Opportunity Explorer (OE), 250
Optimization, 53-60

basic goal of tasks, 53

defined, 53
Optimization problems

components involved, 56
genetic algorithmsto help solve,

52
Optimization problem space, 54
Organizational dimensions, 19

P

Parallel processing computers, 97

Partitioning algorithms, 182

Pattern directed data mining of
point-of-sale data case study,
220-23

Penalty factor, 179
Personnel dispatching improvement

case study, NYNEXInc.,

224-26
Point-of-purchasecredit card fraud

detection system, 18
Polynomialrelation, 56

Population, solutions in, 73
Portfolio selection problem, 19-20

Pre-processing, 96
Probability, 141, 142
Probe, 153-59, 165

Problem, dimensionsof, 24, 27—29

Problem resolution process, 12

Problem space, 106, 108
Problem specific requirements, 14,

17
Product-sum method, 147

O
Quality control and monitoring of

suppliers case study, 203-205
Quality of model, 18
Quality requirements, output, 17
Query language, 36—37

R
Radial basis function, 85
Random search approach, 70
Real-time, 5, 42, 47
Reason(or truth) maintenance sys-

tem, 119, 120

Recency, 115, 116

Recognize-act cycle, 111, 112
Recursive partitioning algorithms,

167, 169-70, 184-86, 254—55
usefulness, 180

Regions,fitness, 72
Regression analysis, 100
Regression tree, 170, 171

Relational database managementsys-

tems (RDBMS),36, 37, 43, 46
Resource constraints, 54

Resources available, 19

quality of, 19
Response speed, 26

of case-based reasoning, 166
of fuzzy system, 148

of genetic algorithm, 75
of machine learning algorithms,

185, 186
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object-oriented environment, 198

of OLAP/data warehouse, 50

of rule-based systems, 122
Responsetime, 12—13, 17-18, 70,

72, 74, 145. See also Response

speed

RETEalgorithm, 34, 123-25
Reusability, 193

Rule

action part (right-hand side
(RHS)), 109, 132, 139

condition part (left-hand side
(LHS)), 109, 132, 139

in machine learning algorithms,

168

Rule base, 104, 106, 110, 111, 121

Rule-based systems (RBS), 16, 25,

70, 104—25, 150-51

AI software products, companies
and addresses, 199-200

case-based reasoningvs., 163,

164

components, 110

data-driven, 117

defined, 105

dimensionsand limitations, 122

intelligence density issuesin,

117-23

machine learning algorithm vs.,
183

neural networksvs., 94

problem variables and category

set-up, 106-17
selection, 115

Rule interpreter, 110-11, 114, 120,
125, 147

Rule-trees, 167

S
Scalability, 16, 18-19, 23-24, 27,

48—49, 74

of case-based reasoning, 163, 166

defined, 27-28

of fuzzy system, 148
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of genetic algorithm, 75
of machine learning algorithm,

186
of neural networks, 100
of OLAP/data warehouse, 50
of rule-based systems, 122

SCANTRACK,220
Schematheory, 71, 72, 191

Search space, 96
genetic algorithm, 54, 57-58, 66,

71-72, 74
large, 114

Selection, 63, 68-70, 74
in rule-based system, 115

Sensitivity, 131
Sensitivity of node, 102

Simulation models, 3

Skewingof results, 98
Software development, 77-78,

199-200
Software engines, proprietary, 28
Software systems, saving time and

money using objects, 191-98
Solutions, evolving, 52—76
Solution space, 54, 57, 66, 152

of case-based reasoning, 163

Solution surface, of neural network,

79
Solution time, 58-59
Sparse matrices, 48
Specificity, 116
Speed, 22
Speed of development, rule-based

systems, 123

Split, 174-78, 181-82, 184-85
Spreadsheetsoftware, 2, 32
Squashing function, non-linear, 102
Statistical and financial modeling

objects, 197

Statistics, 9
Status assignments algorithms, 120

Step function, “all or nothing,” 130
Stimuli, 81
Stock, 193
Stock-picking rule-based expert sys-

tem, 20
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Stretch Plot, 20-22, 147
analysis, 23

dimensions on, 24

use of, 22-26
Structured query language (SQL),

36-38, 217
Supervised learning paradigms, 92
Synapses, 81, 82

7

Taking stock phase, 84
Telephoneinstallation case study,

211-19
Tolerance for complexity

of case-based reasoning, 166
defined, 28
of fuzzy system, 148
of machinelearning algorithms,

182, 186
of neural networks, 100
of rule-based systems, 123, 188

Tolerance for data sparseness

of case-based reasoning, 166

defined, 28

of machinelearning algorithm,
186

of neural networks, 100

Tolerance for independence from
experts, of machine learningal-
gorithms, 183. See also Inde-

pendence from experts
Tolerance for noise in data, 97, 100

of case-based reasoning, 166

defined, 28

of machine learning algorithm,
186

of neural networks, 100

Transaction processing system,3, 4,

31-32, 38
Transfer function, 85, 100, 102

linear, 100

of neural network, 101-3

non-linear, 95

Truth maintenance system, 119, 120

U
Undefined regions, 107
Universal approximations, 80
Unsupervised learning paradigms,

92, 93
U S WEST Communicationscase

study, 207-209
Utiles (utility units), 9

V
Value-added materials, 9, 193

Variables, 64

continuous-valued dependent,
181

in decision tree, 113

problem, 56, 57, 108

Variance, 171

VAX computers, configuration of,
105

Vector, 43

Visualization, 66

Weight, 101, 102
adjustmentof, 95
adjustment process, 97

Weighted connections, 82-84,
88-92, 99, 101

Weighted sums, 88-92
Weight space, 96
Workflow monitoring and improve-

mentfor rapid customerser-
vice, case study, 207—209

Working memory, 110-12, 120-21,

123-24
Workstations, 2

high-powered, 97
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