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! L"l!erceptmn, th’eg. emerges as that relatively primitive,
partly autonomous, institutionalized, ratiomorphic subsystem of cognition
which achieves prompt and richly detailed orientation habitually concerning
the vitally relevant, mostly distal aspects of the environment on the basis
of mutually vicarious, relatively restricted and stereotyped, insufficient
evidence in uncertainty-geared interaction and compromise, seemingly
following the highest probability for smallness of error at the expense of
the highest frequency of precision." ----- From "Perception and the
Representative Design of Psychological Experiments," by Egon Brunswik.

"That's a simplification. Perception is standing on the side-
walk, watching all the girls go by." ----- From '""The New Yorker'",
December 19, 1959.
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PREFACE

It is only after much hesitation that the writer has reconciled him-
self to the addition of the term '"neurodynamics' to the list of such recent
linguistic artifacts as ""cybernetics', '"bionics'', '"autonomics", '"biomimesis",
"synnoetics', ''intelectronics', and ''robotics''. It is hoped that by selecting
a term which more clearly delimits our realm of interest and indicates its
relationship to traditional academic disciplines, the underlying motivation of
the perceptron program may be more successfully communicated, The term
'perceptron'', originally intended as a generic name for a variety of theoretical
nerve nets, has an unfortunate tendency to suggest a specific piece of hardware,
and it is only with difficulty that its well-meaning popularizers can be persuaded
to suppress their natural urge to capitalize the initial "P'". On being asked,
"How is Perceptron performing today?" I am often tempted to respond, '"Very
well, thank you, and how are Neutron and Electron behaving?"

That the aims and methods of perceptron research are in need of
clarification is apparent from the extent of the controversy within the scientific
community since 1957, concerning the value of the perceptron concept. There
seem to have been at least three main reasons for negative reactions to the
program. First, was the admitted lack of mathematical rigor in preliminary re-
ports. Second, was the handling of the first public announcement of the program
in 1958 by the popular press, which fell to the task with all of the exuberance and
sense of discretion of a pack of happy bloodhounds. Such headlines as "Franken-
stein Monster Designed by Navy Robot That Thinks" (Tulsa, Oklahoma Times)
were hardly designed to inspire scientific confidence. Third, and perhaps most
significant, there has been a failure to comprehend the difference in motivation
between the perceptron program and the various engineering projects concerned
with automatic pattern recognition, "artificial intelligence", and advanced computers.

For this writer, the perceptron program is not primarily concerned with the inven-
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tion of devices for "artificial intelligence', but rather with investigating the
physical structures and neurodynamic principles which underlie ''natural
intelligence'. A perceptron is first and foremost a brain model, not an inven -
tion for pattern recognition. As a brain model, its utility is in enabling us to
determine the physical conditions for the emergence of various psychological
properties. It is by no means a ""complete' model, and we are fully aware of
the simplifications which have been made from biological systems; but it is,

at least, an analyzable model. The results of this approach have already been
substantial; a number of fundamental principles have been established, which
are presented in this report, and these principles may be freely applied,
wherever they prove useful, by inventors of pattern recognition machines and
artificial intelligence systems.

The purpose of this report is to set forth the principles, motivation,
and accomplishments of perceptron theory in their entirety, and to provide a
self-sufficient text for those who are interested in a serious study of neuro-
dynamics. The writer is convinced that this is as definitive a treatment as can
reasonably be accomplished in a volume of managable sise. Since this volume
attempts to present a consistent theoretical position, however, the student
would be well advised to round out his reading with several of the alternative
approaches referenced in Part I. Within the last year, a number of comprehen-
sive reviews of the literature have appeared, which provide convenient jumping-
off points for such a study.®

The work reported here has been performed jointly at the Cornell
Aeronautical Laboratory in Buffalo and at Cornell University in Ithaca. Both
programs have been under the support of the Information Systems Branch of the
Office of Naval Research -- the Buffalo program since July, 1957, and the Ithaca

*

See, for example, Minsky's article, '"Steps Toward Artificial Intelligence",
Proc. I.R.E., 49, January, 1961, for an entertaining statement of the views of
the loyal opposition, which includes an excellent bibliography.

vi
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program since September, 1959. A number of other agencies have contributed
to particular aspects of the program. The Rome Air Development Center has
assisted in the development of the Mark [ perceptron, and we are indebted to
the Atomic Energy Commission for making the facilities of the NYU computing

center available to us.

A’'great many individuals have participated in this work. R. D. Joseph
and H. D. Block, in particular, have contributed ideas, suggestions, and
criticisms to an extent which should entitle them to co-authorship of several
chapters of this volume. I am especially indebted to both of them for their
heroic performance in proofreading the mathematical exposition presented here,

a task which has occupied many weeks of their time, and which has saved me from
committing many a mathematical felony. Carl Kesler, Trevor Barker, David
Feign, and Louise Hay have rendered invaluable assistance in programming the
various digital computers employed on the project, while the engineering work

on the Mark I was carried out primarily by Charles Wightman and Francis Martin
at C.A.L. The experimental program with the Mark I was carried out by John
Hay. In addition to all of those who have contributed directly to the research
activities, the writer is indebted to Professors Mark Kac, Barkley Rosser, and
other members of the Cornell faculty for their administrative support and encourage -
ment, and to Alexander Stieber, W. S. Holmes, and the administrative staffs

of the Cornell Aeronautical Laboratory and the Office of Naval Re search whose
confidence and support have carried the program successfully through its

infancy.

Frank Rosenblatt
15 March 1961
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PART I

DEVELOPMENT OF BASIC CONCEPTS
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1. INTRODUCTION

The theory to be presented here is concerned with a class of
" brain models'" called perceptrons . By ''brain model" we shall mean
any theoretical system which attempts to explain the psychological function-
ing of a brain in terms of known laws of physics and mathematics, and known
facts of neuroanatomy and physiology. A brain model may actually be cons-
tructed, in physical form, as an aid to determining its logical potentialities
and performance; this, however, is not an essential feature of the model -
approach. The essence of a theoretical model is that it is a system with
known properties, readily amenable to analysis, which is hypothesized to
embody the essential features of a system with unknown or ambiguous
properties -- in the present case, the biological brain. Brain models of
different types have been advanced by philosophers, psychologists, biologists,
and mathematicians, as well as electrical engineers (c.f., Refs. 17, 31, 33,
54, 59, 61, 74, 91, 105, 109). The perceptron is a relative newcomer to this
field,having first been described by this writer in 1957 (Ref. 78). Perceptrons
are of interest because their study appears to throw light upon the biophysics of
cognitive systems: they illustrate, in rudimentary form, some of the processes
by which organisms, or other suitably organized entitites, may come to
possess ''knowledge" of the physical world in which they exist, and by which
the knowledge that they possess can be represented or reported when occasion
demands. The theory of the perceptron shows how such knowledge depends

upon the organization of the environment, as well as on the perceiving

system.

-3.
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At the time that the first perceptron model was proposed, the
writer was primarily concerned with the problem of memory storage in
biological systems, and particularly with finding a mechanism which would
account for the "distributed memory" and "equipotentiality" phenomena found
by Lashley and others (Refs. 48, 49, 95). It soon became clear that the
problem of memory mechanisms could not be divorced from a consideration
of what it is that is remembered, and as a consequence the perceptron became
a model of a more general cognitive system, concerned with both memory and

perception..

A perceptron consists of a set of signal generating units (or
"neurons') connected together to form a network. Each of these units, upon
receiving a suitable input signal (either from other units in the network or
from the environment) responds by generating an output signal, which may
be transmitted, through connections, to a selected set of receiving units. Each
perceptron includes a sensory input {i.e., a set of units capable of responding
to signals emanating from the environment) and one or more output units, which
generate signals which can be directly observed by an experimenter, or by an
automatic control mechanism. The logical properties of a perceptron are

defined by:

1. Its topological organization (i.e., the connections among

the signal units);

2. A set of signal propagation functions, or rules governing

the generation and transmission of signals;

3. A set of memory functions or rules for modification of

the network properties as a consequence of activity.

-du

— o — ' [——— . .
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A perceptron is never studied in isolation, but always as partof a
closed experimental system, which includes the perceptron itself, a defined
environment, and a control mechanism or experimenter capable of applying
well -defined rules for the modification, or "reinforcement” of the perceptron's
memory state. In most analyses, we are not concerned with a single percep-
tron, but rather with the properties of a class of perceptrons, whose topolo-
gical organizations come from some statistical distribution. A perceptron,
as distinct from some other types of brain models, or "nerve nets", is usually
characterized by the great freedom which is allowed in establishing its
connections, and the reliance which is placed upon acquired biases, rather

than built-in logical algorithms, as determinants of its behavior.

Because of a common heritage in the philosophy, psychology,
physiology, and technology of the last few centuries, there are bound to be
similarities between the points of view and the basic assumptions of the
theory presented here, and of other theories. The writer makes no claim to
uniqueness in this respect. In particular, the neuron model employed is a
direct descendant of that originally proposed by McCulloch and Pitts; the
basic philosophical approach has been heavily influenced by the theories of
Hebb and Hayek and the experimental findings of Lashley; moreover, the
writer's predilection for a probabilistic approach is shared with such theo-

rists as Ashby, Uttley, Minsky, MacKay, and von Neumann, among others.
This volume is divided into four main sections. Part],
commencing with this introduction, attempts to review the background,

basic sources of data, concepts, and methodology to be employed in the

study of perceptrons. In Chapter 2, a brief review of the main alternative

-5-
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approaches to the development of brain models is presented. Chapter 3
considers the physiological and psychological criteria for a suitable model,
and attempts to evalute the empirical evidence which is available on several
important issues. Sufficient references to the literature are included through-
out these chapters so that the reader who requires additional background in
any of the areas discussed can use this as a guide for further reading. Partl
concludes with Chapter 4, in which basic definitions and some of the notation
to be used in later sections are presented. Parts II and III are devoted to a
summary of the established theoretical results obtained to date. In these
sections, the strategy will be to present a number of models of increasing
complexity and sophistication, with theorems and analytic results on each
model to indicate its capabilities and deficiencies. Wherever possible,
established mathematical results will be presented first, followed by empirical
evidence from simulation and hardware experiments. Part II (Chapters 5
through 14) deals with the theory of three-layer series-coupled perceptrons,
on which most work has been done to date. These systems are called "mini-
mal perceptrons''. Part III (Chapters 15 through 20) deals with the theory of
multi-layer and cross-coupled perceptrons, where a great deal still remains
to be done, but where the most provocative results have begun to emerge.
Part IV is concerned with more speculative models and problems for future
analysis. Of necessity, the final chapters become increasingly heuristic in
character, as the theory of perceptrons is not yet complete, and new

possibilities are continually coming to light.

Part ] (except for the chapter on definitions) is entirely non-
mathematical. In Part II, and most of the remainder of the text, familiarity
with the elements of modern algebra and probability theory is assumed, and

-6-
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should be sufficient for most of the material. In several proofs in Part II,

and to a greater extent in Part mI, analytic methods are employed, assuming
knowledge of the calculus and differential equations; an elementary acquaintance
with differential geometry would also be useful. Symbolic logic is not required
here, but the student will find it necessary for reading much of the ancillary
literature in the field.

Several appendices are included which may prove helpful for
cross-referencing equations, definitions, and experimental designs which
are described in different chapters. Appendix A is a list of all symbols used
in a standard maner throughout the volume. Appendix B is a consolidated
list of theorems and corollaries. Appendix C lists the principal equations
used in the analysis of performance,and basic quantitative functions. Appendix
A contains a summary of the experiments used for testing and comparing
different perceptrons. These experiments are referred to by number,

throughout the text, and are described in detail as they are first introduced.

-7-
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2. HISTORICAL REVIEW OF ALTERNATIVE APPROACHES

2.1 Approaches to the Brain Model Problem

There are at least two basic points, which are fundamental to a
theory of brain functioning, on which most of the present-day theorists seem
to be in agreement. First is the assumption that the essential properties of
the brain are the topology and the dynamics of impulse-propagation in a net-
work of nerve cells, or neurons. This has been contested by a few theorists
who hold that the individual cells and their properties are less important than
the bulk properties and electrical currents in the cortical medium as a whole
(c.f. Kohler, Ref 45). The "neuron doctrine', however, has now been
accepted with sufficient universality that it need not be considered as an
issue in this report (Bullock, Ref.11}). It will be assumed that the essential
features of the brain can be derived in principle from a knowledge of the
connections and states of the neurons which comprise it. Secondly, there is
general agreement that the information-handling capabilities of biological
networks do not depend upon any specifically vitalistic powers which could
not be duplicated by man-made devices. This also has occasionally been
questioned, even today, by such neurologists as Eccles (Ref. 18) who
advocate a dualistic approach in which the mind interacts with the body.
Nonetheless, all currently known properties of a nerve cell can be simulated
electronically with readily available devices. It is significant that the
individual elements, or cells, of a nerve network have never been demons-
trated to possess any specifically psychological functions, such as "memory",
"awareness'', or "intelligence’. Such properties, therefore, presumably

reside in the organization and functioning of the network as a whole, rather
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than in its elementary parts. In order to understand how the brain works, it
thus becomes necessary to investigate the consequences of combining simple
neural elements in topological organizations analogous to that of the brain.
We are therefore interested in the general class of such networks, which

includes the brain as a special case.

While there is substantial agreement up to this point, theorists
are divided on the question of how closely the brain's methods of storage,
recall, and data processing resemble those practised in engineering today.
On the one hand, there is the view that the brain operates by built-in
algorithmic methods analogous to those employed in digital computers, while
on the other hand, there is thk view that the brain operates by non-algorithmic
methods, bearing little resemblance to the familiar rules of logic and mathe-
matics which are built into digital devices (c.f. von Neumann, Ref. 105). The
advocates of the second position (this writer included) maintain that new funda-
mental principles must be discovered before it will be possible to formulate an
adequate theory of brain mechanisms. It is suggested that probabilistic and
adaptive mechanisms are particularly important here. This does not mean
that the actual biological nervous system is strictly one type of device or
the other; the issue concerns the matter of emphasis, as to whether the brain
is primarily a more or less conventional computing mechanism, in which
statistical or adaptive processes play an incidental and non-essential role,
or whether the brain is so dependent upon such processes that a model which
fails to take them into account will find itself unable to account for psycho-

logical performance.
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These two points of view are associated with two basically
different procedures for studying the mechanisms of the brain and for the
development of brain models. The first procedure will be called the mono-

typic mddel approach; it amounts to the detailed logical design of a special-

purpose computer to calculate some predete rmined "psychological function'
such as the result of a recognition algorithm, or a stimulus transformation,
which is postulated as a plausible function for a nerve net to calculate. The
physical properties of this computer are then compared with those of the

brain, in the hopes of finding resemblances. The second procedure will be

called the genotypic model approach. Instead of beginning with a detailed

description of functional requirements and designing a specific physical
system to satisfy them, this approach begins with a set of rules for genera-
ting a class of physical systems, and then attempts to analyse their perform-
ance under characteristic experimental conditions to determine their common
functional properties. The results of such experiments are then compared
with similar observations on biological systems, in the hopes of finding a
behavioral correspondence. It is the purpose of this chapter to review the
historical development and current status of these two alternative 'philo-

sophies of approach' to the brain model problem.

2.2 Monotypic Models

In the monotypic model approach, the theorist generally begins
by defining as accurately as possible the performance required from his
model. For example, he may specify a data processing operation, an

input-output or stimulus-response function, or a remembering and
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regenerating operation. In one typical model, the system is required to
normalize the size and position of a visual image, and to compare functions
of this normalized image with certain stored quantities required for identifi-
cation (Ref. 71). Given a description of the required performance in
sufficiently precise terms, the theorist then proceeds to design a computing
machine or control system embodying the required function, generally limiting
himself to the use of a set of modular switching devices which are analogous
to biological neurons in their properties. It is this last constraint which
distinguishes the nerve net theorist from any other designer of special
purpose computers confronted with the same problem. It is hoped that a
network which consists of neuron-like elements, and is capable of computing
the required functions, will be found to resemble a biological nerve et in its

organization and the computational principles employed.

While the simulation of animals, saints, and chessplayers by
animated machines and clockwork devices goes back many centuries, the
idea of constructing such.devices out of simple logical elements with neuron-
like properties is a relatively recent one, and received its first impetus from
two sources: First, Turing's paper '"On Computable Numbers', in 1936, and
the subsequent development of stored-program digital computers by von
Neumann and others during the 1940's (Refs. 12, 100)gave rise to an
impressive family of *universal automata', capable of executing programs
which would enable them to perform any computation whatsoever with only
the simplest of logical devices being employed as ''building blocks'. Second,
the Chicago group of mathematical biophysicists which grew up about

Rashevsky after the publication of his "Mathematical Biophysics" in 1938,
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(Ref. 73) began to investigate the manner in which "nerve nets' consisting of
formalized neurons and connections might be made to perform psychological
functions. Householder, Landahl, Pitts,and others made notable contributions

to this effort during the late 1930's and early 1940's (Refs. 35, 69, 70).

In 1943, the doctrine and many of the fundamental theorems of this
approach to nerve net theory were first stated in explicit form by McCulloch
and Pitts, in their well-known paper on "A Logical Calculus of the Ideas
Immanent in Nervous Activity"”. The fundamental thesis of the McCulloch-
Pitts theory is that all psychological phenomena can be analyzed and understood
in terms of activity in a network of two-state (all-or-nothing) logical devices.
The specification of such a network and its propositional logi¢ would, in the
words of the writers, "contribute all that could be achieved' in psychology,
"even if the analysis were pushed to ultimate psychic units or 'psychons’,
for a psychon can be no less than the activity of a single neuron... The 'all-
or-none' law of these activities, and the conformity of their relations to
those of the logic of propositions, insure that the relations of psychons are
those of the two-valued logic of propositions.' (Ref. 57). Despite the
apparent adherence to an outdated atomistic psychological approach, there
is an important contribution in the recognition that the proposed axiomatic
representation of neural elements and their properties permits strict logical
analysis of arbitrarily complicated networks of such elements, and that
such networks are capable of representing any logical proposition whatever.
As von Neumann states in a summary of the McCulloch-Pitts model,

(Ref. 103) "The 'functioning' of such a network may be defined by singling

out some of the inputs of the entire system and some of its outputs, and
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then describing what original stimuli on the former are to cause what ultimate
stimuli on the latter...McCulloch and Pitts' important result is that any
functioning in this sense which can be defined at all logically, strictly, and
unambiguously in a finite number of words can also be realized by such a

formal neural network."

A great variety of subsequent models have made use of this
axiomatic representation, which we now refer to as the '"McCulloch-Pitts
neuron''. As stated in the original paper (Ref. 57), the basic assumptions in

this representation are:

" 1. The activity of the neuron is an 'all-or-none'

process.

2. A certain fixed number of synapses must be
excited within the period of latent addition in
order to excite a neuron at any time, and this
number is independent of previous acitivy and

position on the neuron.

3. The only significant delay within the nervous

system is synaptic delay.

4. The activity of any inhibitory synapse absolutely

prevents excitation of the neuron at that time.

5. The structure of the net does not change with time."
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These postulates are such as to rule out memory except in the form of
modifications of perpetual activity or circulating loops of impulses in the
network. Any non-volatile memory, such that the functioning of the network

at a given time depends upon previous activity even though a period of total
inactivity has intervened, is impossible in a McCulloch-Pitts network.
However, a McCulloch Pitts network can always be constructed which will em-
body whatever input-output relations might be realized by a system with

an arbitrary memory mechaniem, provided activity is allowed to persist in
the network.

Later writers, notably Kleene (Ref. 43) have considered in
more detail the kinds of events which can be represented by networks of
McCulloch-Pitts neurons. The only important limitation is that events
whose definition depends upon the choice of a temporal origin point, or
events which extend infinitely into the past, may not be representable by
outputs from finite networks. Any event which can be described as one of
a definite set of possible input sequences over a finite period of time can be
represented. In particular, any events which might conceivably be recognized
by a biological system can be represented by outputs of networks of McCulloch-

Pitts neurons.

In later papers by Pitts and McCulloch (Ref. 71) and by
Culbertson (Refs. 16, 17) specific automata designed to perform actual
"psychological' functions such as pattern recognition, have been described.
Culbertson, in particulan has carried out such designs in explicit detail for
a large number of interesting problems. The approach which he advocates
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is expounded in his 1950 work on "Consciousness and Behavior' as

follows:

""Neuroanatomy and neurophysiology have not yet developed
far enough to tell us the detailed interconnections holding
within human or animal nets...Consequently, ... we cannot
start with specified nerve nets and then in a straightforward
way determine their properties. Instead, it is the reverse
problem which always occurs in dealing with organic behavior.
We are given at best the vaguely defined properties of an
unknown net and from these must determine what the structure
of that net might possibly be. In other words, we know, at
least in a rough way, what the net does (as this appears in
the behavior of the animal or man) and from this information
we have to figure out what structure the net must have...Our
investigation passes through two stages. In the first stage--
the behavioristic inquiry--we ignore the inner constituents,
i.e., the nervous system and its activity, and concentrate
our attention instead on the observable relations between the
stimuli affecting the organism and the responses to which
these stimuli give rise...This makes the second stage--the
functional inquiry--possible. Here, as Northrop says, we
concentrate our attention on the inner (throughput) consti-
tuents of the system and point out the ways in which the
receptor cells, central cells, and effector cells could be
interconnected so that the input and output relations...would
be those discovered in stage 1."

While such a program can hardly be criticized on logical grounds,
it appears pragmatically to have fallen short of the proposed goals. Starting
rather suddenly, with the development of automata theory in the late 1930's,
the ready applicability of symbolic logic brought this approach to early
mathematical sophistication. After the first flood of proposed models,
further progress has been disappointingly trivial, and returns seem to be
diminishing rapidly. The promised biological "explanations' have been
particularly lacking. In this writer's opinion, there are at least five main

reasons for this:
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(1) There is a lack of sufficiently well defined psychological
functions as a starting point. The approach requires
essentially full knowledge of input-output relations for the
behavior of an organism, and such knowledge is not

available for any biological species.

(2) Constructed solutions generally show poor correspondence
to known conditions of neuroanatomy and neuroeconomy;
the numbers of neurons required often exceed those in
biolagical nervous systems, and the logical organization
generally requires a precision of connections which
appears to be absent in the brain. In some cases, a
single misconnection would be sufficient to make the

system inoperable.

3) The models fail to yield general laws of organization.
A monotypic model is in general overdetermined,
corresponding at best to a biological phenotype,
rather than a species as a whole; its specification in
the form of a detailed '"wiring diagram' frequently
misses essentials in a plethora of detail. Unique
solutions for the proposed functions are generally
lacking and an enormous variety of models can be
generated which appear to solve the same problem
equally well. Therefore, unless the system is actually
tested against its biological counterpart, nothing is
gained by a detailed construction of the model except a
further confirmation of an existence theorem which is

already well established.
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(4) The models lack predictive value. Once a particular
model has been proposed, further analysis can reveal
little that is not included in the functional description
with which we began.

(5) The models are not biologically testable in detail.
Specific connections cannot be traced with sufficient
precision in nervous tissue to say whether or not a
particular wiring diagram is exactly realized. Conse-
quently, the models are fated to remain purely specu-
lative unless histological techniques are improved to

a highly improbable degree.

In the foregoing, we have concentrated on the line of models
which have attempted to represent the brain as a symbolic logic calculator,
in which events of the outside world are represented by the firing or non-
firing of particular neurons. It is in these models that rigorous mathematical
treatment has been most successfully achieved. Not all monotypic models
are of this variety, however. Field theorists such as KS8hler have taken
exception to the idea that psychological phenomena can be represented in
this fashion. KBhler, arguing for an isomorphic representation of perceptual
phenomena, asks (Ref. 46): "How can a cortical process such as ihat of a
square give rise to an apparition with certain structural characteristics, if
these characteristics are not present in the process itself? According to
Dr. McCulloch, this is actually the case. But if we follow the example of
physics, we shall hesitate to accept his view. In physics, the structural
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characteristics of a state of affairs are given by the structural properties

of the factors which determine that state of affairs... Situations in physics
which depend upon the spatial distribution of given conditions never have
more, and more specific, structural characteristics than are contained in
the conditions'. While Kihler's own model is not generaly considered
plausible today, his criticism is a significant one, and a number of theorists,
such as Lashley (Ref. 50) MacKay (Refs. 55,56) and Green (Ref. 28) have
been concerned with possible forms of representation of perceptual informa-
tion which. would preserve the intrinsic structural features of the perceived

event rather than meiely assigning an arbitrary symbol to it.

The main line of monotypic models, although failing to provide
a satisfactory brain model, has left us a number of important analytic tools
and concepts, including the McCulloch-Pitts neuron, and the theorems
concerning the existence of networks representing arbitrary functions. For
the actual design of plausible organiszations, however, the genotypic approach

appears to hold more promise.

2.3 Genotypic Models

In the monotypic approach, the properties of the components,
or neurons, which comprise the networks are fully specified axiomatically,
and the topology of the network is fully specified as well. In the genotypic
approach, the properties of the components may be fully spetified, but the
organisation of the network is specified only in part, by constraints and
probability distributions which generate a class of systems rather than a
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specific design. The genotypic approach, then, is concerned with the
properties of systems which conform to designated laws of organization,

rather than with the logical function realized by a particular system.

This difference in approach leads to important differences in
the types of models which are generated, and the kinds of things which can
be done with them. In the case of monotypic models, for example, the
propositional calculus is applicable and probability theory is poorly suited
to the analysis of performance, since a single fully deterministic system is
under consideration which either does or does not satisfy the required
functional equations. In dealing with genotypic models, on the other hand,
sumbolic logic is apt to prove cumbersome or totally inapplicable (even
though, in principle, any particular system which is generated might be
expressed by a set of logical propositions). In the analysis of such models,
the chief interest is in the properties of the class of systems which is
generated by particular rules of organization, and these properties are
best described statistically. Probability theory therefore plays a promi-
nent part in this approach. A second major difference is in the method of
determining functional characteristics of the models. In the monotypic
approach, the functional properties are generally postulated as a starting
point. In the genotypic approach, they are the end-objective of analysis,
and the physical system itself (or the statistical properties of the class of
systems) constitutes the starting point. This means that psychological
functions need not be determined in full detail before setting out to construct
a model, and, indeed, it is hoped that such models may help in answering

open psychological questions.
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While the monotypic approach arose rather suddenly with the
advent of modern computers and control system theory, and rapidly advanced
to a high level of mathematical sophistication, the genotypic approach has
been much more gradual in its development, and has not yet developed all
of the mathematical tools required to deal adequately with its problems.

The genotypic models have been influenced less by the engineering sciences,
and more by physiology and neuroanatomy. The descriptive anatomy of the
nineteenth century laid the groundwork for modern studies of localization of
function in the brain,and neurologists such as John Hughlings Jackson noted
the apparent plasticity of the system -- the ability of neighboring regions to
take over the function of damaged areas. Pavlov and others speculated about
possible mechanisms for adaptive modification of the central nervous system
in the early part of this century, and various hypotheses for the deposition of
"memory traces" were of interest to psychologists and physiologists alike.
The doctrine of equipotentiality, propounded by Lashley (Ref. 49), went even
further in claiming complete interchangeability of most parts of the cerebral
cortex, and evidence for "distributed memory" which suggested that ""traces'
must be more or less uniformly dispersed throughout the cortical tissue
began to accumulate. All of this neurological evidence engendered a picture
of the brain as a relatively undifferentiated structure, capable of undergoing
radical reorganization by means of unspecified adaptive mechanisms, and
showing only gross anatomical equivalence from one individual to another.
While recent work on localization (Refs. 51, 65, 66, 94, 108) has shown
some surprisingly precise mapping of functions, modern morphological
investigations (Refs. 8, 52, 93) have borne out the apparently statistical
organization of the "fine structure' of neurons and their interconnections.

It now seems reasonable to suppose that while there are many constraints
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on the organization of neurons in the brain, which are undoubtedly essential
to the system's functioning, these constraints take the form of prohibitions,
biases, and directional preferences, rather than a specific blueprint which
must be followed to the last detail. In order words, there are enormous
numbers of functionally equivalent systems, all obeying the same rules of
organization, and all equally likely to be generated by the genetic mechanisams

of a particular species.

While the neurologists mentioned above had a great deal to say
about the observed and hypothetical organization of the brain, they were not
concerned with the construction of models in the sense of detailed theoretical
systems from which precise deductions could be made. Psychologists and
philosophers, more willing to indulge in speculation, were the first to attempt
detailed conjectures on the maturation of psychological functions in systems
which might justifiably be called "brain models’. Hebb (Ref. 33) and Hayek
(Ref. 32), following the tradition of James Stuart Mill and Helmholtz, have
attempted to show how an organism can acquire perceptual capabilities
through a maturational process. For Hayek, the recognition of the attri-
butes of a stimulus is essentialy a problem in classification, and his point
of view has inspired Uttley (Refs. 101, 102) to design a type of classifying-
automaton which attempts to translate the approach into more rigorous
mathematical form. Hebb's model is more detailed in its biological
description, and suggests a process by which neurons which are frequently
activated together become linked into functional organizations called
"cell assemblies' and '"phase sequences' which, when stimulated, corres-

pond to the evocation of an elementary idea or percept. While Hebb's
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work is far more complete in its specification of a "model" than most
preceding suggestions along this line, it is still too programmatic and too
loose in its definitions to permit a rigorous testing of hypotheses. It should
be considered more as a description ot what a satisfactory model might
ultimately look like than as a fully formulated model in its own right. None-
theless, it comes sufficiently close to a detailed specification so that
Rochester and associates, using an IBM computer, were able to propose
enough of the missing detail to put the cell assembly hypothesis to an
empirical test (Ref. 77). Unfortunately, with a theory so loosely specified,
the inconclusive results of the IBM experiments carry little weight in
evaluating Hebb's original system. Milner, in a recent paper (Ref. 58) has
attempted to update the Hebb theory, and it may be that his model can be
more readily translated into analyzable form, although this has not yet been
done.

It is interesting that one of the first applications of probability
theory to brain models is due to Landahl, McCulloch, and Pitts, appearing
in 1943 along with the McCulloch-Pitts symbolic logic model (Ref. 47). In
this paper, the topology of the network is still assumed to be a strictly
deterministic, fully known organization, but impulses are assumed to be
propagated with known frequencies but with uncertainties in their precise
timing. A theorem is stated which permits the substitution of frequencies
for symbols in the logical equations of the network, in order to obtain the
expected frequency with which different cells will respond. This statistical
treatment is related to the work of von Neumann (Ref. 104) on the proba-

bility of error in networks with fallible components.
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The first systematic attempt to develop a family of statistically
organized networks, and to analyze these in a rigorous fashion by means of
a genotypic approach seems to have been due to Shimbel and Rapoport, in
1948 (Ref. ‘92). Starting with an axiomatic representation of neurons and
connections, similar to that of McCulloch and Pitts, a network is character-
ized by probability distributions for thresholds, synaptic types, and origins
of connections. A general equation is then developed for the probability that
a neuron at a specified location will fire at a specified time, as a function of
preceding activity and parameters of the net. This is applied to a number of
specific classes of networks to determine the possibility of steady-state
activity, and changes in the firing distribution with time. This work is a
forerunner of a number of stability studies (e.g., Allanson, Ref. 2) which

are still of interest.

The use of a digital computer by Rochester and associates was
mentioned above in connection with Hebb's model. Simulation of a statistically
connected network to investigate possible learning capabilities was first
carried out successfully by Farley and Clark in 1954 (Ref. 10). Although
mathematical analysis was not attempted in either the Farley-Clark or the
Rochester models, they illustrate a convenient method of axiomatizing a
network (by means of a computer program) to a degree which makes the
investigation of hypotheses possible. While none of these experiments led
to very sophisticated systems, they are of considerable historical interest,
and the mechanism for pattern generalization proposed by Clark and Farley

(Ref. 15) is essentially identical to that found in simple perceptrons.
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Statistical models of various types have been proposed during the
last decade. In particular, the models of Beurle, Taylor, and Uttley (Refs. 6,
99, 101, 102) are of interest as attempts to analyze models with a clear
resemblance to the organization of a primitive nervous system, with receptors,
associative elements, and output or motor neurons. Mareover, in some of
these models, environments of sufficient complexity to permit the repre-
sentation of visual and temporal patterns (albeit of a very primitive type)
are included in the analysis. Minsky (Ref. 59) has also devised and analyzed

several models capable of learning responses to simple stimuli.

A contribution of considerable methodological significance was
Ashby's "Design for a Braip", in 1952 (Ref. 3). While Ashby's work (despite
its title) does not specify an actual brain model in our present sense, it
develops the rationale for an analysis of closed systems which must include
the environment as well as the responding organiam and rules of interaction
as the object of study. Ashby's fields of variables correspond closely to
our concept of "experimental systems'' which will be defined in Chapter 4.
In addition to his conceptual contribution, which is concerned with the
general approach to be used rather than with a specific model, Ashby has
demonstrated in a number of experiments how statistical mechanisms can

yield adaptive behavior in an organism.

While the genotypic approach has found favor among many

biologists, it is by no means universally accepted. A typical criticism is
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voiced by Sutherland (Ref. 97) in connection with Hebb's system:

"When Hebb's theory was first put forward, it was hailed
as showing how it might be possible to account for behavior
in terms of plausible neurophysiological mechanisms...
However, a moment's reflection shows that, if he is right,
what he has really succeded in doing is to demonstrate

the utter impossibility of giving detailed neurophysiological
mechanisms for explaining psychological or behavioral
findings. According to Hebb the precise circuits used in
the brain for the classification-of a particular shape will
vary from individual to individual with chance variation

in nerve connectivity determined by genetic and matura-
tional factors... Different individuals will achieve the
same end result in behavior by very different neurological
circuits... If Hebb's general system is right, it precludes
the possibility of every making detailed predictions about
behavior from a detailed model of the system underlying
behavior."

While objections such as this seem to stem from a misunderstanding
of the possibility of obtaining seemingly deterministic phenomena from a
statistical substrate (as in statistical mechanics) the above argument is bols-
tered by many findings which suggest complicated hereditary mechanisms
for the analysis of stimuli in "instinctive' behavior. The work of Sperry
and Lettvin has already been cited in connection with the mechanisms for
precise localization of connections which seem to exist in the brain. Our
conclusion is that the biological system must employ some mixture of
specific connection mechanisms and statistically determined structures;
just how much constraint is present in the genetic constitution of the brain is

an open question.
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On most of the specific points of criticism raised in connection
with monotypic models, the genotypic approach seems to fare much better.
Detailed psychological functions are not required as a starting point. Detailed
physiological knowledge of the brain would be helpful, but even a rough para-
metric description enables us to start off in the right direction, and present
models have a considerable way to go before they have assimilated all of the

physiological data which are available.

Since this approach begins with the physical model rather than the
functions which must be performed, it is easy to guarantee its conformity in
size and organization to the general characteristics of a biological system.
Most important is the fact that this approach appears to be yielding results of
increasing significance and interest, and the models frequently suggest
progressive lines of development from simple first approximations to more
sophisticated systems. In the application of the genotypic approach to per-
ceptrons, a number of laws of considerable generality have been discovered,

as will be seen in subsequent chapters.

2.4 Position of the Present Theory

The groundwork of perceptron theory was laid in 1957, and
subsequent studies by Rosenblatt, Joseph, and others have considered a
large number of models with different properties (Refs. 7, 30, 31, 40,
41, 76, 79, 80, 81, 82, 84, 85, 86). Perceptrons are genotypic models,
with a memory mechaniem which permits them to learn responses to

stimuli in various types of experiments. In each case, the object of
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analysis is an experimental system which includes the perceptron, a defined
environment, and a training procedure or agency. Results of such analyses
can then be compared with results of comparable experiments on human or
animal subjects to determine the functional correspondence and weaknesses
of the model. A number of specific psychological tasks and criteria, which
will be discussed in the following chapter, are used for the comparison of

different systems.

Perceptrons are not intended to serve as detailed copies of any
actual nervous system. They are simplified networks, designed to permit
the study of lawful relationships between the organization of a nerve net, the
organization of its environment, and the "psychological' performances of which
the network is capable. Perceptrons might actually correspond to parts of
more extended networks in biological systems; in this case, the results
obtained will be directly applicable. More likely, they represent extreme
simplifications of the central nervous system, in which some properties are
exaggerated, others suppressed. In this case, successive perturbations and

refinements of the system may yield a closer approximation.

The main strength of this approach is that it permits meaningful
questions to be asked and answered about particular types of organization,
hypothetical memory mechanisms, and neuron models. When exact .
analytic answers are unobtainable, experimental methods, either with
digital simulation or hardware models, are employed. The model is not
a terminal result, but a starting point for exploratory analysis of its

behavior.
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3. PHYSIOLOGICAL AND PSYCHOLOGICAL CONSIDERATIONS

In the last chapter, a methodological doctrine was proposed,
which undertakes to evaluate classes of brainlike systems by comparing
their performance with that of biological subjects in behavioral experi-
ments; by gradually increasing the sophistication and varying the axio-
matic constraints which define the experimental systems, it is hoped that
models which closely resemble the biological prototype can ultimately be
achieved. In this chapter, the desiderata for a satisfactory brain model
are considered in more detail, from the standpoint of physiology and
psychology. What are the parametric constraints, functional properties,
and performance criteria which must be met, in order to achieve a model

which is a plausible representation of the brain?

The following discussion comes under three main headings:
(1) established fundamentals; '(2) current issues; and (3) the design of
experimental tests of performance. It is not our purpose to review all of
the relevant background in biology and psychology, but rather to highlight
those points which bear most directly upon the present undertaking, and
to suggest certain areas in which investigations might provide decisive
evidence for or against some of the models which we shall propose. It
will be noted that no attempt has been made to distinguish specifically
"psychological" or specifically "physiological" problems in the following
sections. Such distinctions are not only arbitrary in a number of the
cases, considered, but also tend to obscure the fact that we are interested
in all of these problems because of their relevance to brain models, rather

-29-

Google



than to psychology or physiology per se. In this discussion, attention
will be concentrated on the level of complexity which seems most commen-
surate with that of the proposed models. Psychological material on psycho-
neuroses, or on attitude formation, for example, while it might be brought
to bear on the evaluation of some future models, is hardly likely to be
relevant at this time. On the physiological side, we are chiefly concerned
with the overall organization of the nervous system, its microstructure,
and conditions for impulse transmissions; we are less concerned with
details of neurcanatomy and neurochemistry, although such data may
become important in more sophisticated models, where a closer correlation

with the biological system is sought.

3.1 Established Fundamentals

3.1.1 Neuron Doctrine and Nerve Impulses

It was only during the first decade of this century that a strong
case was developed for regarding the neuron as the basic anatomical unit
of the nervous system. The demonstration that this is the case rests largely
upon the work of Ramon y Cajal (Ref. 14). Since Cajal's time, a great variety
of neurons, differing in size, numbers of dendritic and axonal processes, and
the distribution of these, have been described by neuroanatomists (Refs. 8,
52, 93). Today it is generally accepted that in virtually all biological species,
the nervous system consists of a network of neurons, each consisting of a
cell body with one or more afferent (incoming) processes, or dendrites, and

one or more efferent (outgoing) processes, or axons. The axons branch into
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small fibers which may make contact with, but remain separate from the

surface membrane of cells or dendrites upon which they terminate. Neurons
are generally divided into three classes: (1) sensory neurons, which generate
signals in response to energy applied to sensory transducers, such as photo-

receptors or pressure sensitive corpuscles; (2) motor neurons, (or effector

neurons) which transmit signals to muscles or glands and directly control

their activity; (3) internuncial neurons, (or associative neurons) which form

a network connecting sensory and motor neurons to one another. The brain,
or central nervous system, is made up almost entirely of neurons of this

last type.

The actual signals carried by these neurons may take one of
several forms. Until recently, it was supposed that all information in the
nervous system was represented by a code of all-or-nothing impulses,
corresponding to on-off states of the neurons. A sufficient input signal was
supposed to trigger the receiving cell directly into emitting a spike potential,
which was transmitted without decrement from the receiving region of the
dendrites to the cell body, and out along the axon to the terminal endbulbs,
where it might or might not succeed in triggering later cells in the network.
In a recent review (Ref. 11) Bullock has pointed out that this view has been
largely supplanted by a far more complicated picture. While it is true that
the transmission of signals over long distances is generally accomplished
by means of all-or-nothing spike propagation along the axons of nerve cells,
the spike impulse is not a direct response to impulses which arrive at the

dendrites, and may originate at a point which is separated by a considerable
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distance from the site at which incoming impulses are received. Essentially,
the currently accepted concept is that the dendritic structure and cell body
jointly act as an integrating system, in which a series of incoming signals
interact to establish a pre-firing state in a region at the base of the axon,
from which impulses originate. If this pre-firing state reaches a threshold
level (presumably measured by membrane depolarization) at a point within
the critical region, a spike potential is initiated, and spreads without decre-
ment along the axon. The interactions which may occur in the cell body and
dendrites, however, involve potential fields in which the effects of impulses
received at a given point spread over the surrounding membrane surface in

a decrementing fashion. These effects may be graded in intensity, depending
on frequency of impulses received, and the state of the receiving membrane
at the time. Successions of impulses arriving at the same synapse can
sometimes cause an increase in the sensitivity of the receiving membrane
(facilitation) and can sometimes cause a progressive diminution in sensitivity
(Ref. 11). There is evidence to suggest that different local patches of surface
membrane are differently specialized, and respond in different ways to
impulses received, even within the same neuron. Some of these regions
appear to act as sources of internally generated signals, which may lead

to spontaneous activity of the neuron, and the emission of spike impulses

without any input signals from outside the cell.
Two main types of synapses are recognized: excitatory and
inhibitory. It is generally assumed, although it has not been proven, that

a single neuron is either all excitatory or all inhibitory, in its effect upon

post-synaptic cells. It remains possible, however, that the individual
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synaptic endings are specialized, some of them releasing a depolarizing
transmitter substance {excitatory endings) while others release a hyper-
polarizing substance (inhibitory endings). A single synapse, so far as
is known, remains either excitatory or inhibitory, and is incapable of

changing from one to the other.

The nerve impulse itself is a basically non-linear response to
stimulation. It is supported by energy-reserves of the axon by which it is
transmitted, rather than by a propagation of energy from the sources of
excitation. The nerve impulse is manifested by a moving zone of electrical
depolarization of the surface membrane of the neuron, the exterior of which
is normally 70 to 100 millivolts positive relative to the interior. This zone
tends to spread along the axon due to ionic currents which tend to break
down the potential difference between the interior and exterior of the
neuron, until the membrane is repolarized by metabolic processes (see
Eccles, Refs. 18, 19 ). The resulting "spike potential’ takes the form of
an electrically negative impulse (measured relative to the normal surface
potential of the membrane) which propagates down the fiber with an average
velocity of about 10 to 100 meters per second, depending on the diameter

of the fibers (c. f., Brink, Ref. 9).

The arrival of a single (excitatory) impulse gives rise to a
partial depolarization of the post-synaptic membrane surface, which
spreads over an appreciable area, and decays exponentially with time.
This is called a local excitatory state (1.e.s.). The l.e.s. due to
successive impulses is (approximately) additive. Several impulses

arriving in sufficiently close succession may thus combine to touch off
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an impulse in the receiving neuron if the local excitatory state at the base
of the axon achieves the threshold level. This phenomenon is called

temporal summation. Similarly, impulses which arrive at differeat points

on the cell body or on the dedrites may combine by spatial summation to

trigger an impulse if the 1.e.s. induced at the base of the axon is strong

enough.

The passage of an impulse in a given cell is followed by an

absolute refractory period during which the cell cannot be fired again,
reg;rdlesl of the level of input activity. This is equivalent to an infinite
threshold during this period. The spike potential and absolute refractory
period last about 1 millisecond. Finally, there is a relative refractory
perjod which may last for many milliseconds after the initial impulse.

During this time, the threshold gradually returns to normal, and may
even fall to somewhat below its normal level for a time. While the
response of a cell to a single momentary stimulus, such as an electrical
pulse, is markedly non-linear (the amplitude of the generated impulse
being quite independent of the amplitude of the triggering signal) the
effect of a sustained excitatory signal, in many cases, is to evoke a
volley of output spikes, the frequency of which may be roughly propor-
tional to the intensity of the stimulus over a wide range. This is parti-
cularly true of sensory neurons, where the frequency of firing may be
used to determine the intensity of the stimulus energy with considerable

accuracy.
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The general picture of the nervous system, then, is one of a
large set of signal generators, each having one or more outputs, on which
nerve impulses may appear. These impulses may vary in frequency, and
to some extent in amplitude, but seem to carry information mainly in a
pulse-coded form. The signal generators themselves are decision elements
of a most intricate type; each one makes its decision to initiate an output
impulse according to a complicated function of the series of signals received
at each of its synapses or receptor areas, as well as its own internal state.
In a brain model, a neuron of this complexity would tend to make the system
unintelligible and unmanageable with the analytic and mathematical tools
at our disposal. Simplifications will therefore be introduced, as in the
manner of the McCulloch-Pitts neuron; but it should be remembered that
the biological neuron is considerably more complicated, and may incorporate
within itself functions which we require whole networks of simplified neurons

to realize.

3.1.2 Topological Organization of the Network

The human brain consists of some 1010 neurons of all types.
These are arranged in a network which receives inputs from receptor
neurons at one end, and conveys signals to the effector neurons at the
output end. Different sensory modalities -- vision, hearing, touch,etc. -~
communicate with the central nervous system by way of distinct nerve
bundles, which enter it at different points. Each of these modalities,
after passing its information through a network of cells which respond

more or less exclusively to stimuli from that modality, eventually contri-
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butes to a common pool of activity in the "association areas’ of the central
nervous system (CNS). Output signals originate either from the parts of
the CNS which are specific to a particular modality (for example, the
pupillary reflex mechanism) or from the common activity areas (as in
speech). Final outputs may go through a series of stages in which motor
patterns or sequences are selected, and detailed coordination is regulated.
From these motor control regions, feedback paths re-enter the association
areas and sensory integration areas, so that the possibility of an elaborate

servo-mechanism for the control of motor activity exists.

While this general picture holds true for most biological
organisms, there is considerable variation both in gross and detailed
anatomy, from species to species and individual to individual. In under-
taking to design a first order approximation to this structure for use in a
brain model, we will begin with a network consisting of a single array of
sensory units, a layer of association units, and a single effector, or
response unit. In later models, more complicated structures will be
considered. Even the simplest models, however, are capable of showing
a surprising similitude to the functional properties of the brain. It seems
reasonable, therefore, to regard the complications of neuroanatomy in the
various species as elaborations of a basically simple schema, which is to
be found throughout. This basic plan of organization is illustrated in

Figure 1.
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The distribution of cell types and connection patterns has been
studied by Lorente de N3, Sholl, Bok, and others (Refs. 8, 52, 93). A
typical cell in the cerebral cortex receives input connections from some
hundreds of other cells, which may be located in widely scattered regions,
but its output is more likely to be transmitted to a relatively localized
region. Cells which receive sensory input signals are likely to have a
restricted field of origins in a sensory surface, such as the retina or
the skin.

The mapping of the frog retina into the brain has been studied
by Lettvin (Ref. 51) who finds a rather precise topographic mapping, in
which several different types of information are represented in different
layer..‘ This topographic mapping is established genetically despite
the fact that the fibers which transmit the information from the retina
are apparently completely "scrambled" in the optic nerve. Moreover,
experiments by Sperry (Ref. 94) and more recently by Lettvin (Ref. 51)
show that if the optic nerve is severed and allowed to grow together again,
the fibers which originally transmitted to a particular terminal location will
tend to reconnect to that same terminal location, with surprisingly little
loss of precision. This points to a highly specific neural organizing
capability, which must be taken into account in considering admissible
types of constraints for a brain model. In the mammalian brain, each
sensory modality appears to be represented by an orderly topographic
mapping analogous to that just described. Auditory stimuli, for example,
are mapped into a region which is organized according to pitch; tactile

stimuli are mapped according to body location, and so forth. Similarly,

See also Section 3.1.4.
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the motor neurons are organized, in the cerebral cortex, in an ordered
arrangement which is topologically similar to the organization of the

muscles which are controlled.

In contrast to the highly specific regional organization in the
gross anatomy of the sensory projection areas of the cortex, the detailed
microstructure of the network appears to be essentially random, governed
only by directional gradients and preferences, and statistical distributions
of fiber lengths for various types of cells (see Sholl, Ref. 93). In the
human nervous system, it appears that the most specific and constrained
topological organizations are to be found in the sensory and motor systems,
while the intervening association network of the CNS is less tightly
controlled in its organization, presumably depending more on learning
and adaptive modification to establish the required pathways and linkages.
The degree of precision in establishing the topological organization of
neurons in even the most highly constrained reflex mechanisms is probably
far less than that in most artificial data processing devices, and must retain
a certain degree of randomness wherever the number and density of
connections is appreciable. Unfortunately, no data are available which
would indicate the complexity of topological constraints which correspond
to the highly complex inherited behavior patterns which are known to
exist in many species. Since the nature of such constraints is unknown,
we shall avoid gratuitous assumptions about them, as far as possible.

In the development of brain models, it will be our general strategy to start
out with minimally constrained networks, and examine the consequences of

introducing particular types of constraints, one at a time.
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3.1.3 Localization of Function

Ever since the brain was first credited with the control of
psychological activity, attempts have been made to delineate separate
functions for its different parts. In the last century (largely under the
influence of Gall) this took the form of an assignment of ''mental faculties'
such as intelligence, combativeness, amativeness, and religiosity, to
special regions of the brain. As techniques for the study of functional
anatomy improved, this gave way to a concept of organization into sensory
tracts, motor tracts, and association tracts. The functional organization
which was revealed has been most firmly established in the case of sensory
and motor tracts, where a particular position in the brain is correlated with
a particular sensory locus, or a particular set of muscles whose activity it
controls. An excellent review of sensory and motor mapping can be found
in Ruch (Refs. 88, 89). More recently, a finer breakdown in the localization
of sensory functions has been demonstrated by Lettvin and associates (Ref. 51).
Four distinct types of information, involving distinct aspects of the visual
stimulus (contrast, curvature, movement, and dimming of illumination) have
been shown to be mapped into four distinct layers of the tectum of the frog. »
This suggests localization of analytic functions, of a sort which has been

suspected but not previously demonstrated.

In dealing with the so-called '"association areas'' of the cerebral
cortex, and with other parts of the brain which are not clearly related to
sensory data processing or motor coordination, something of the old
treatment in terms of "mentgl faculties'" still remains; specifically,

centers have been found which are commonly attributed with primary
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responsibility for temporary and permanent memory, for emotional behavior,
for speech recognition and 'speech production, and (in the frontal lobes) for
the integration of complex goal-directed activities. The lack of clear opera-
tional tests for such capabilities has been a hindrance to progress in such
functional mapping, and the results are considerably more ambiguous than

is the case with sensory and motor functions. A discussion of current
evidence on brain localization with respect to these "higher faculties" is
found in Pribram (Ref. 72). Much of the recent work is concerned with the
localization of tracts which influenc.e motivation, alertness, and conscious-

ness in the organiesm (Refs. 1, 22, 38, 64, 65).

One feature which is of particular importance for brain models
is the apparent plasticity of localization in the "association areas' (or
"intrinsic systems"™, to use the terminology advocated by Primbram) in
contrast to the relatively fixed and irreplaceable character of the sensory
and motor tracts. Loss of function, due to destruction of association cortex,
is apt to be transient, with adjacent areas taking over the function after a
pex;iod of readaptation. Jackson, in his classic studies of the motor cortex,
(Ref. 36) observed that even here localization is not rigid and absolute, and
that a certain amount of flexibility exists, permitting the functions of damaged
tissue to be taken over by neighboring areas. The sensory projection areas,
on the other hand, appear to be indispensible to perception; destruction of
the optical cortex leads to permanent blindness in an area corresponding to
the location of the lesion, and similar phenomena are to be found in other
sensory modalities. Thus, the extreme hypothesis of equipotentiality

advocated originally by Lashley (Ref. 49), (who observed that cortical
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ablation appeared to produce a general deficit in performance proportional

to the amount of cortex extirpated, rather than eliminating specific memories
and abilities) has been modified in the direction of relative localization,
which is quite strict for certain sensory functions, and comparatively weak
and readily modified . for more complicated control functions, thinking and

memory.

A trather different approach to localization is suggested by the
histological studies of cortical tissue, initiated originally by Brodmann, and
pursued more recently by Lorente de N& and Sholl (Refs. 52, 93). The
"gytoarchitectonic areas" which have been described in these studies differ
in their microstructure and detailed organisation, and attempts have been made
to relate such differences to the function of the cortex in which they occur.

To date, this approach has not led to particularly significant results, although
in principle it may ultimately suggest the essential organizational properties
which must be incorporated into a brain model.

At the primitive level of organization to which our models will
aspire at this time, current data on brain localization are of only secondary
interest. The main features of the brain still seem to be adequately
described by the general topological structure shown in Fig. 1. The
"central integration and control network" indicated in the diagram is known
to possess some important internal demarcations in higher arganisms, but
the precise functions of these parts and their interrelations is still largely
speculative. In simpler brains (crustacea, for example) the gross
organization is probably no more complex than indicated by the diagram;
and it seems likely that in general it is the fine structure, rather than the

gross anatomy, which determines the functional properties of the network.
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3.1.4 Innate Computational Functions

There is no doubt that mechanisms of considerable complexity,
sufficient for perceptual tasks and the control of organized behavior, can
be created by genetic control of growth and maturation. This is most
dramatically evident in the instinctual patterns of insects (for example,
the well known communication system of bees, and the frequently cited
behavior patterns of carpenter wasps), but is also clearly present in
vertebrates (e.g., the spawning behavior of salmon, and the migratory
behavior of birds, as described in Ref. 90). Recently, Gibson and Walk
have furnished clear experimental evidence for the innate perception of
depth in mammals (Ref. 24). All of these phenomena require "built-in'"
control mechanisms, of a rather intricate sort. In the cases just cited,
these built-in mechanisms are not known in any detail. A number of more
elementary functions have been discovered, however, which provide some
picture of the types of "computational mechanismse' which are likely to

exist throughout the central nervous sytem.

The stimuluse analyzing mechanisms discovered by Lettvin and
associates for frog vision have already been mentioned? In these studies, it
is found that certain ganglion cells in the frog retina respond only to contours
or strong contrast gradients within their sensory field; others respond only to
convex images; others to moving boundaries; and still others to a general
dimming of illumination over their entire field. Each of these four cell types
transmits its information to a distinct layer of the frog's tectum, where its

position is mapped topographically. Thus, one layer represents a contour

Other visual analyzing mechanisms have recently been demonstrated by
Hubel and Wiesel (Ref. 113) in the cat's cortex (see Chapter 23).
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map, or outline drawing of the stimulus field, another represents a location
map for small convex objects or corners, a third represents movement

vectors, and a fourth indicates regions of dimming illumination.

At the motor-control end of the nervous system, a number of
reflex arcs and servo-control systems have been analyzed. The pupillary
reflex, for example, has been analyzed as a typical servomechanism by
Stark and Baker (Ref. 96). A considerable amount of work has also been
done on the cerebellar servomechanisms which regulate muscular action
under the control of cortical decisions and kinesthetic feedback information
(c.f. Ruch, Ref. 89). It is probably safe to assume that similar closed-loop
control systems, employing familiar servomechanism principles, are
employed throughout the central nervous system for such purposes as
controlling level of activity, preventing runaway excitation phenomena
(such as occur in epileptic seizures), and regulating sensitivity to selected

aspects of the sensory input data.

It is worth noting that most of the specific computing mechanisme
used in muscular control appear to be of an analog variety, rather than digital;
they make use of intensities and frequencies of activity for the direct control
of servo-systems, rather than computing a control formula from encoded
data and then generating the control signal required. The stimulus analyzing
mechanisms found by Lettvin, however, constitute a sort of digital code, in
which stimulus properties are represented by presence or absence of signals
from particular neurons. It seems likely, as von Neumann has observed
(Ref. 105) that the brain makes extensive use of both digital and analog
principles in its operation, and it appears that both types of devices may

be genetically determined.
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An interesting example of theoretical speculations on possible
computational functions employed in shape discrimination in the octopus can
be found in Sutherland (Ref. 98). Sutherland reviews several alternative
theories, and presents evidence in support of his own conjecture that the
octopus responds to an analysis of the horizontal and vertical dimensions
of the stimulus measured along all possible cross-sections. No attempt is
made, however, to tie the computational process to a particular neurological

structure, or to indicate a mechanism which might carry out the indicated

operations.

3.1.5. Phenomena of Learning and Forgetting

Thus far, we have concentrated on the anatomical and physio-
logical features of the nervous system which appear to be basic for the
design of a brain model.. We now turn to some of the behavioristic and

psychological functions which a brain model should be able to demonstrate.

Phenomena of retention and adaptation in organisms have been
studied in a variety of experiments, varying greatly in their design. In
traditional usage, "memory'" experiments have been concerned more with
the retention and recall of experience, while ""learning' experiments are
concerned with the acquisition and modification of behavior. Both types of
investigation, however, are concerned with lasting modifications in the state
of the organism, and in complicated problems (e.g., those involving
"insight"') one tends to merge into the other; accordingly, all of these

experiments will be considered together in this discussion.
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Quantitative studies of learning and memory in psychology
stem from the classical experiments of Ebbinghaus, in 1885, on the learning
and retention of nonsense syllables. Using himself as a subject, he obtained
learning and forgetting curves, and demonstrated many of the phenomena of
recognition and retention which have interested psychologists ever since.
Related phenomena have been studied by Bartlett (Ref. 5 ) using more highly
organized material. A second type of experiment, the conditioned reflex
experiment, first employed by Pavlov, is characterized by the association
of an existing response to a new stimulus, which did not evoke the response
prior to the conditioning procedure. A third type of experiment, employed
originally by Thorndike and recently studied extensively by Skinner and
others, is concerned with the learning of a pattern of behavior which is
instrumental to the solution of a problem, or which satisfies a drive.
Where such problem-solving behavior appears to depend in a crucial way
upon a ''cognitive restructuring' of the situation, or the formation of a new
“"concept', we have an experiment in "insight" or '"concept formation'", as

in the studies of the Gestalt psychologists.

It is possible that these three types of experiments are actually
demonstrating fundamentally different mechaniems of learning. The first
deals with recognition and recall of previous perceptual experience; the
second is concerned with the generalization of responses from initial
stimuli to new stimuli by virtue of temporal association; the third is
concerned with the discovery and establishment of problem-solving behavior.
Still other experiments deal with such phenomena as short-term memory

span, acquisition of needs and motives, attitude formation, perfection of a
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motor skill, or learning to make fine perceptual judgements. Undoubtedly,
the same physiological processes are tapped in many of these tasks; on the
other hand, attempts at subsuming all of them under a set of general "laws

of learning" does not seem to be particularly helpful for our present purpose.
From the standpoint of brain model construction, it seems safest to regard
each type of learning experiment as a distinct problem, with its own variables
and rules of behavior which we hope that our model will duplicate under
equivalent experimental conditions. The main value of such psychological

experimentation, then, is to provide us with a set of ''calibration experiments",
by means of which a model can be compared with known organisms under well
defined conditions. The reader who is unfamiliar with the literature of
learning experimentation will find the reviews by Hilgard, Brogden, and
Hovland (in Ref. 112 ) particularly helpful.

In a number of experiments, attempts have been made to find
the actual physiological correlates of the learning or memory phenomenon.
Notable among these are the experiments of Penfield (Ref. 68), who finde
that electrical stimulation of selected points on the cortex may evoke long
and vivid sequences of past experience, apparently with hallucinatory clarity.
John (Ref. 39) has recently reviewed experiments in cortical conditioning, and
reported a number of interesting results of his own, which suggest that
memory may involve modification of the connections between the deep centers
of the brain stem and the cerebral cortex, with the reticular formation playing
a particularly significant role. The experiments of Olds (Refs. 64, 65, 66)
on the reinforcing effects of electrical stimulation applied to certain points
in the hypothalamus and adjacent structures suggest that these may be
involved in the motivational aspect of learning. Such experiments, which
have only recently become possible through the improvement of electro-
physiological techniques, are likely to become increasingly valuable as

guides to theory construction.
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3.1.6 Field Phenomena in Perception

Early studies of perception were largely concerned with the
absolute question of what perceptions are made of; such studies were
concerned with range and sensitivity of sensory abilities, measurement of
limits and thresholds, and the detailed dissection of sensory stimuli into
fundamental components. Such studies form the main subject matter of
classicial psychophysics. In psychology, they gave rise to an atomistic
approach (reaching its utlimate expression in the work of Titchener) in
which it was proposed that any phenomenon of perception could be accounted
for by a proper compounding of sensory elements, each of which retains its
own identity, like a piece of tile in a mosaic. During the last few decades,
largely under the influence of the Gestalt psychologists, studies of perception
have turned from the question of the constituents of perception to the question
of the conditions under which a given perception occurs. It is now generally
accepted that what is perceived depends not only upon the properties of the
stimulus object, or image, which is recognized, but upon the organization
of the entire sensory field in which it is embedded. This is true not only

in vision, but in other sensory modalities as well.

The field phenomena which have been studied include the effects
of contrast, figure-ground organization, frames of reference, depth perception,
size constancy, and illusions. The reader is referred to Koffka (Ref. 44 )
and Gibson (Ref. 26 ) for detailed discussion of these topics. For present
purposes, the most important implication of this work is that a physical
model for a perceiving system must permit the interaction of all elements
in a spatially organized field. It is not sufficient simply to detect sets of

elements which represent a '"pattern'; the perception of a pattern, and the
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interpretation of it, depends in a fundamental way on metric relationships

to other sense data from the same modality, and correlations with sensory
data from entirely different modalities. The perception of a line as "upright",
for example, depends on its observed angles relative to visual standards of
"uprightness'', such as the corners of a room, and also upon the gravity
senses and kinesthetic data which provide a frame of reference for "up"

and "down'. The decision that two disjoint patches of illumination represent
parts of the same object rather than different objects depends upon their
contrast or resemblance to the field structure around them, as well as on
their relationship to one another. It is possible (as Gibson has suggested)

that recognition is never achieved, in biological systems, by the representation
of a particular receptor configuration, but only by the representation of sets

of relations (angles, ratios, etc.) as its elementary_data. If this is the

case, a suitable set of analyzing mechanisms, capable of measuring such
variables must be included in the pre-recognition tracts of a brain model.

As our models gain in sophistication, it is, in fact, becoming increasingly
apparent that such analyzing mechanisms are essential for purposes of

efficiency and economy of design.

The perceptrons to be considered initially will not possess
intrinsic field-organization properties. With the introduction of cross-
coupled systems, such properties begin to emerge. An evaluation of
these systems by means of typical "Gestalt perception experiments' has
barely begun at the present time, but represents one of the most important

tasks to be undertaken.
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3.1.7 Choice-Mechanisms in Perception and Behavior

Selective attention and "set" are fundamental phenomena in
the control of psychological activity. They indicate mechanisms for
choosing between alternative courses of action, or points of view, and
play a logical role analogous to the selection of different branches in a
"flow diagram" of a digital computing routine. Attention and psychological
set are largely determined by the situational context in which behavior
occurs, and by the current ''goals' or '"purposes'' of the organism, which
may be thought of as choices of a superordinate sort, under which sub-
decisions are made to select particular modes of activity. For example,
an individual who is set to 1dok for a word in a dictionary will be most
attentive to the sequence of letters in boldfaced type, while someone who
is looking for torn pages will probably be unaware of the particular letter
combinations, and someone who is simply scanning the volume to look for
pictures is apt to notice neither the spelling nor the condition of the

pages.

The importance of set, or attitude, for learning has been
emphasized by Hebb (Ref. 33), but choice mechanisms of this type have
rarely been incorporated in the detailed design of theoretical brain
models. In purely logical models of behavior, they play a considerably
more prominent role -- for example, in Tolman's learning theory, and
in Newell and Simon's models for problem solving behavior (Refs.. 62, 63),
selective choice-mechanisms are specifically designated. In a brain
model, it is clear that such phenomena must be closely related to the

problem of ""temporary memory", since the set under which the brain
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is currently operating must be represented by a temporarily stable, but
nonetheless readily altered, state of the system, capable of modifying
processes which go on while it persists. It seems likely (although un-
supported by any direct evidence) that pools of neurons connected by
reverberating circuits may be important set-maintaining devices in the
nervous system, exerting their influence on the brain as a whole by
means of a widely distributed barrage of sub-threshold excitation or
inhibition. The plausibility of such mechanisms will be considered in

more detail in a later chapter.

3.1.8 Complex Behavioral Sequences

The discussion of psychological sets and choice mechanisms
brings us to a consideration of even more highly organized behavior and
thought patterns, such as the steps taken in performing an arithmetic
computation, or driving to work, or performing a piece of research.

All of these activities represent orderly sequences of decisions and action,
and can be considered, as Newell and Simon have suggested, as programs
to be performed. In some cases, these programs are highly stereotyped,
and determined by rigid rules; in other cases, they employ chance
mechanisms and heuristic procedures. Much of the classical psychological
literature on problem solving and insight is relevant to this second class

of programs, while a rat running a maze might be considered an example
of the first type. As in the case of selective attention and set, these
problems have not been dealt with in detail by any brain models proposed

to date, but it seems likely that at this level the brain and the computer

begin to approach a common meeting ground. Problems of memory span,
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storage, and sequence control are present in both types of systems, and
many of the logical problems confronted in '"heuristic programming"
(Refs. 60, 62, 63 ) seem to be direct translations from human problem-
solving experience to the language of computing machines. This does

not mean that the physical structure of a brain model must ultimately
resemble that of digital devices, but rather that the same basic logical
organization -- a memory for programs, a memory for data, and a
mechanism for the sequential performance of a given program -- must be
available. The '"programs'' themselves presumably take the form of
sequences of selective sets, or bias states, arranged in a heirarchical
manner, so that sub-operations are performed under the control of a
""master set" or "'master program'' which determines the overall plan of
activity. While the detailed properties of such systems must necessarily
remain speculative at the present time, we shall see that such a concept
is compatible with the organization of perceptrons not too far removed

in complexity from those which we are now capable of analyzing.
3.2 Current Issues

While the discussion of the preceding section has attempted
to stick to a relatively conservative and uncontroversial rendition of
physiology and psychology as it applies to the brain model problem, it
is clear that in the last pages we have been drawn into increasingly
speculative and uncertain areas of discourse. In this section, an
attempt will be made to highlight a number of issues which seem most
salient in determining the fate of various brain models, and which are

not answerable at the present time outside the realm of speculation.
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Of necessity, a physical model will have to take a stand on most of these
issues, and it is possible that by investigating the logical consequences of
such a stand, a decision as to the plausibility of various alternatives might
be made; the brain model approach has a chance, here, of providing answers
which empirical studies have so far been unable to discover. In any event,
the decision taken on these issues represent the points at which a brain

model is most vulnerable to future attack, as new evidence is uncovered.

3.2.1 Elementary Memory Mechanisms:

The status of current information on basic memory mechanisms
in the nervous system has been reviewed recently by Burns (Ref. 13). Most
brain models employ some memory hypothesis, but evidence as to the nature
of actual physiological mechanisms which might be involved is almost
totally lacking. It is generally agreed, simply on the basis of definition,
that whatever we call ""memory' involves a modification of neural activity
in the central nervous system or its output signals, as a function of
exposure to previous events or ''experience'. In some models, this
modification has been attributed to persistent activity in closed loops of
neurons, but most theorists are now agreed that, while such a memory
mechanism might account for ''short term memory", and might play a
significant role in the establishment of more permanent memory traces,
there must also exist a non-volatile memory mechanism (e.g., a
structural or chemical change) which can outlast periods of neural in-
activity, and is relatively insensitive to transient activity in the nervous
system (see Hebb, Ref. 33, pp. 12-16). The nature of this memory trace

mechanism, it is generally agreed, must be such as to facilitate the use
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or selection of neural pathways which have been active at the time of the
"remembered" experience or behavior, and virtually all specific models
assume that it takes the form of a facilitation of connections between sources
of excitation and responding neurons in the motor system or CNS. In
making such an assumption, the influence of the conditioned reflex model,
which suggests that sensory neurons become coupled to association neurons,
by which they are connected to motor neurons, is clearly evident. An
alternative position, in which the preferred pathways ''win out" by surviving
deteriorative changes in unused pathways, rather than by active facilitation,
has not been explored to any significant degree, but appears to be logically
similar to its potentialities.

Granting that the memory mechaniem takes the form of some
means of selecting particular patterns of activity in preference to others,
depending upon the input or current state of the nervous system, particular
physiological models include: (1) mechanisms for reconstituting past activity
states of the entire CNS or a major portion of it; (2) mechanisms for selecting
particular output channels as a function of current activity or sensory inputs.
The specific mechanisms proposed generally fall into one of the following

four categories:

(1) Extracellular influences and modification of the neural medium:

This has been proposed by KShler (Ref. 45), Bok (Ref. 8), and others, who
assume that, if a "structural trace' is present at all, it is not 1aid down in
specific neurons, but in the surrounding medium, where it is capable of
modifying activity in nearby neural tracts. The possible form that such

a mechanism might take has never been specified in detail, and the approach

is generally discounted by current theorists. The motivation for such a

Google



hypothesis comes in part from attempts at preserving the isomorphism
between a spatially distributed memory trace and spatially organized

visual events, as in Kbhler's system. While it is not implausible to assume
that the surrounding medium participates in the memory trace structure,

it seems likely that such interaction between medium and neurons wou1§

be highly localized, probably influencing only a single neuron or synaptic
junction, rather than forming a widespread organized structure independent
of the neurons themselves. If such a position is accepted, then whatever is
left of this approach can be subsumed under one or another of the remaining

neural modification mechanisms.

(2) Threshold Modification: The hypothesis that the threshold

of an active neuron may be reduced as a consequence of the activity, thus
making it more likely that this cell will respond to future stimuli, has
frequently been proposed as a possible memory mechanism (c.f., Taylor,
Ref. 99 ). If we take the '"threshold', in its conventional sense, to mean
the degree of membrane depolarization or the level of input excitation
which will cause the neuron to discharge, regardless of the particular
synapses involved in the transmission of excitation, then this model

meets two main objections: first, the sensitivity which is acquired is non-
specific, making it more likely that the cell will respond to any input, rather
than just those which were effective at the time that the memory trace was
established; second, after a long history of activity, we would expect the
thresholds of all neurons to be reduced to a minimum level, unless some
recovery mechanism exists. If such a recovery mechanism does-exist,

memory will tend to be lost as a consequence, and it. must be shown that
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the rate of forgetting would not vitiate the value of the system. Occasionally,
the concept of ""threshold reduction' seems to be used in the sense of an
increase in specific sensitivity of a neuron to a particular afferent fiber.

In this case, the threshold reduction mechanism becomes indistinguishable

from a synaptic facilitation mechanism, which is considered below.

(3) Strengthening of active neurons: Eccles (Ref. 18), Uttley
(Ref. 102), and Rosenblatt (Ref. 79) have proposed models in which the

output signals of a frequently active neuron gain in strength or effectiveness,
affecting all terminals alike. This model retains the specificity of response
of a neuron (unlike the threshold reduction model) but increases its power

to activate the neurons which follow it in series. If the output signal from

a neuron goes to a single destination only, this is equivalent to a model which
strengthens particular synaptic connections. If the output goes to a number
of different locations, however, there is a lack of spetifitity in the channel-
selection properties of this mechanism, which must generally be offset by
auxiliary hypotheses. In Rosenblatt (Ref. 79) it is shown that by means of a
suitably organized feedback mechanism, a particular output channel can be
selected through a statistical bias. The feedback guarantees that these cells
which are reinforced all have at least one ''desirable" output connection, the
other connections being distributed at random among a large number of
alternative terminal neurons, each of which consequently receives only a
fraction of the total reinforcement applied. While such a model is shown

to be logically workable, the specific feedback connections required make

it physiologically implausible, and it remains less efficient than a model

in which specific synapses, rather than total neurons, are selected for

modification.
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(4) Modification of selected synapses: This model has been
employed by Culbertson (Ref. 17), Hebb (Ref. 33), and others, and is

employed in most current perceptron models. The mechanism takes account
of the correlation of activity between an afferent synapse and the efferent
neuron, augmenting the strength of the synaptic ending (or, equivalently,

the sensitivity of the sub-synaptic membrane) if the correlation is positive,
and, in some cases, diminishing it if the correlation is negative. The

actual physiological process by which such a correlation might occur is
obscure, but the logical advantages of such a mechanism are clear. Hebb
has proposed that actual synaptic growth might occur, improving the contact
between the transmitting and receiving neuron. While Eccles has considered
possible synaptic growth mechanisms in some detail (Ref. 18 ) there is little
evidence to support this conjecture. A possible biochemical mechanism has
been proposed by this writer (Ref. 83), which assumes that large molecules
used as catalysts for the production of transmitter substances in the endbulb
must originate from the nucleoplasm of the post-synaptic cell, and that the
exchange of these molecules is facilitated by membrane depolarization and
periods of activity in both cells. An alternative possibility, in which the mem-
orymechanism is entirely contained within the post-synaptic cell, is

that a persistent sensitization of the subsynaptic membrane in the neigh-
borhood of an active synapse occurs, given the hypermetabolic state which
follows activity. The facilitation of a neuron's response to repeated sub-
threshold signals which has been reported by Bullock (Ref. 11) indicates

that a localized persistent effect of the sort hypothecated does exist; it
remains to be shown that the subsequent firing of the neuron may serve

to ""stamp in'", or fix in a more permanent manner, the temporary sensi-

tivity which has been observed.
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The evaluation of a particular memory hypothesis must depend,
at this stage, upon its logical power when employed in specific brain models,
as well as its physiological plausibility. The mechanismse which are consi-
dered in this report have been selected for their simplicity and their demons-
trated ability to yield interesting behavioral results. They suggest plausible
directions in which to look for a physiological mechanism, but it remains
possible that the actual mechanisms employed by the brain may be of a drasti-
cally different sort. It is fundamental to this approach, that any lasting
change in the system, whatever its physical form, may act functionally as a
memory trace. It seems likeiy that there is not a single memory mechanism,
or even only two memory mechanisms at work in the brain, but rather a
great number of dynamic processes, ranging from temporary facilitation
and fatigue effects to permanent structural changes, all of which contribute
in some way to the observed psychological phenomena called '"memory".
Among these processes, it is likely that one or two play an .outstanding role,
but likely candidates have not yet been found, and in the meantime, it seems

wise to retain an open mind on the entire question.

3.2.2 Memory Localization

There is hardly any more agreement on the question of where
memory traces are to be found (in the gross anatomy of the nervous
system) than there is on the question of what they consist of. Lashley
(Ref. 49) was largely responsible for the emphasis on ''distributed memory"'
among many theorists over the last few decades, and Sperry (Ref. 95) has
contributed a2 number of experiments which indicate that the residual
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effects of learning must be widely dispersed throughout the brain. On the
other hand, Penfield (Ref. 68) has shown that specific recall may be evoked
by stimulation of specific selected points in the cerebral cortex, E. R. John,
in a model which is supported by a certain amount of experimental evidence
(Ref. 39), proposes that the memory traces are distributed between the
thalamus and cortex, involving reverberating circuits and feedback loops
between these two regions rather than being localized in one or the other of

them.

The question of localization is of less importance for a functional
model of the brain than is the question of mechanism; as long as we assume
that it is the network topology, rather than the actual anatomical position of
neurons, which is important in determining the brain's logical properties,
there is no reason for requiring that a brain model resemble the biological
system in its spatial organization. The indirect implications of the different
theories of localization are of considerable importance, however. For one
thing, the view that the brain contains its memories in a widely dispersed,
intermingled form, suggests a mechanism in which the same cells parti-
cipate in a great variety of different, and perhaps totaly unrelated, memory
organizations. A model whi¢h can separate distinct memories from such a
multiply overwritten system will be quite different in character from one in
which each remembered event is stored in its own distinct location. For
another thing, the apparent complexity of memory-sites which may interact
in the recall of a single experience or association (as emphasized in John's
work) impresses us with the possibility that human memory may be a
product of a number of related processes and mechanisms, perhaps
acting in a complex sequence of cause-and-effect, rather than a simple

correlation of inputs and outputs.
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Again, we are stuck with the necessity of simplifying for
lack of detailed knowledge. While it is likely that memory and recall in
the human nervous system involves the coordinated activity of several parts
of a complex structure, we will attempt, at the outset, to see what psycho-
logical properties can be duplicated by a system in which memory is located
in a single set of connections, with a minimum of structural differentiation.
As perceptrons are elaborated into more highly structured models, the
question of which connections should be allowed to participate in memory

processes will be reconsidered, and alternative systems will be investigated.

3.2.3 Isomorphism and the Representation of Structured Information

Lashley, Kdhler, Greene, MacKay, and others (Refs. 28, 45, 50,
55, 56, 110) have dealt with various aspects of the problem of isomorphism
between the representation of an event in the central nervous system and the
physical structure of the event in the outside world. In the naive isomorphism
of Kbhler, it is required that the representation in the brain should actually

have a spatial structure resembling the thing that it represents; in the more

sophisticated form advocated by Greene, it is sufficient that the represen-
tation should have a logical structure (not necessarily spatial in its physical
manifestation) which permits it to be broken apart, dissected, and reassembled
by suitable manipulations or attention-directing processes, in a way which is
related to the parts, surfaces, or aspects of the real-world phenomenon.

While some such structural representation seems to be inescapable in

human perception, thinking, and imagery, the exact form that this might

take is again almost totally unknown. This is essentially the problem of
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determining the code employed by the brain in its representation of
perceptual phenomena. We know that the code is one which enables us to
recognize parts, relations, symmetries, and other organizational features
which might be lost in a completely arbitrary representational system {(such
as a code which assigns binary symbols, in sequence, to all stimuli, and
then lists all of those which are to be considered as ''similar''). We also
know that there are parts of the brain (the sensory projection areas) in
which actual spatial organization of stimulus patterns is retained. We do
not know, however, how far the representational code must go in the
direction of spatial isomorphism in order to account for the organizational
properties of experience. As usual, we shall begin with a simplification
which assumes an unstructured coding, but it seems likely that this will have
to be abandoned in order to deal with problems of figural representation,
perception of relations, and other ''gestalt problems'. An attempt will be
made in this report, however, to show that the required structuring for
some of these problems may be acquired by adaptive processes and need

not superficially resemble the phenomena which are represented.

3.2.4 Adaptive Processes in Perception

Much of the theoretical work on brain models (Hebb, Hayek,
etc.) has been concerned with processes by which compqu perceptual
organizations can be "built up' out of sensory fragments, by a process
of learning or association. Consequently, the question of adaptability,
or modifiability, of perception is of paramount importance as a guide in
model construction. The history of this problem has recently been

reviewed by Hochberg (Ref. 34). Studies of 'perceptual learning' have
P P g
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been concerned (1) with the organization of given perceptual elements
into "concepts', or "kinds of objects'", and (2) with the modification of the

perceptual elements or "impressions'' themselves.

(1)The first type of experiment is concerned with the discrimi-
nation, rather than the ""appearance'' of stimuli. It is clear that much
recognition and discrimination, as in the learning of speech sounds in a
new language, is highly dependent upon learning. Such processes typically
involve differentiation, rather than synthesis of complex patterns out of
readily identified parts. Another, important part of perceptual concept
formation is concerned with associating, or classifying readily discrimin-
able patterns or symbols having the same significance (such as a Roman,
italic, and script form for the letter "A'"). (2) On the other hand, there
are a number of studies concerned with attempts at modifying the seemingly
intrinsic "appearance' of the stimulus itself. Such experiments are not
concerned with refinements in discrimination or assignment of appropriate
names to stimuli; they are concerned with re-structuring the sensory data
at a considerably more "primitive' level. Such experiments include
studies of figural aftereffects (Ref. 25), ambiguous figures (Ref. 107)
the effect of memory upon color perception (Ref. 10), and the various
experiments performed with inverting prisms to determine whether a
human subject could learn to perceive normally with an inverted retinal
field. Work with animals reared in darkness and exposed to the light
for the first time in various test situations has been reported by Riesen
(Ref. 75 ) and Gibson and Walk (Ref. 24) have conducted experiments with
infants and newborn animals to determine whether depth perception is
possible prior to learning. Other data have been collected by von Senden for
congenitally blind human subjects to whom sight is restored by surgery
(Ref. 106).
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In general, the conclusions of this work seem to indicate that
while recognition, in the sense of being able to discriminate and assign an
appropriate name to an object, is largely dependent upon experience, the
"subjective appearance'' of a stimulus is relatively inflexible, and in some
species, at least, may be innately given by the structure of the nervous
system. Sperry's work with frogs, for example, in which the optic nerves
are cut and then allowed to rejoin with the eyeballs inverted, suggests that
no amount of relearning can compensate for so drastic a change (Ref. 94)
and the Gibson-Walk experiments support the assumption of a highly
developed sense of depth perception in many mammals from birth. To a
much lesser degree, modification of visual images by experience is
possible; generally, this takes the form of persistent field interactions
(as in figural aftereffects) rather than a basic reorganization of perceptual
experience. The extent to which perception might be organized by adaptive
processes is currently unknown, and this is one of the main areas in which

theoretical brain models may prove helpful to psychology.

3.2.5 Influence of Motivation on Memory

In psychological learning theories, it is commonly assumed
that a '"drive' or "motive' must be present in order for an animal to
learn. Conditioned reflex experiments, on the other hand, frequently fail
to show any relationship between the '"motivation state'' of the animal and
the learning process. Speculation about the role of motivation in perceptual
learning has also been quite extensive, and a number of experiments have
been performed, to test the learning of perceptual discriminations or
related tasks on the basis of ""mere repetition' as opposed to directed

learning. In these experiments, it is often hard to distinguish between
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"attention" and "'motivation'', and the results are generally inconclusive.
It seems that a certain amount of ""incidental learning' does indeed occur,
which is not directly relevant to the goal or task of the subject at the time;
the actual degree of motivation, reward 6: punishment, or 'reinforcement"
that may have been involved, however, is impossible to ascertain in any
absolute way. For the brain model problem, it is important to note that
there are some learning situations, at least, in which "reward and punish-
ment' can be used to control the acquisition of new responses; whether or
not this is universally the case, and the actual physiological mechanisms
involved, remain open questions at this time. It should be remembered,
however, that any brain model which relies on the intervention of an outside
agent or experimenter to direct the learning process is implicitly taking a
stand on this issue. A possible compromise is found in the approach of
Ashby (Ref. 3) where the brain is described as a complex homeostatic
organization, in which particular “crucial variables'' are capable of
triggering random changes in organization if they exceed critical limits;
stabilization of behavior, in such a system, is not a result of learning
from reward, but is due to the cessation of disruptive changes which occur
when the system makes a mistake. The main difficulty in making use of
this approach is in guaranteeing that changes are sufficiently specific and
well-directed so that the organism achieves its new behavior pattern in an
economical and relatively direct fashion, rather than going on a random
walk through all possible alternatives before arriving at the required

solution.
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3.2.6 The Nature of Awareness and Cognitive Systems

While it has been relegated by many theorists of the realm of
philosophy or semantics rather than science, the question of the nature of
consciousness or awareness keeps recurring in the literature. Current
physiologists and psychologists represent the whole range of philosophical
positions on this subject. For Eccles (Ref. 18 ) there is a conscious
"mind" which controls the body by acting upon the nervous system. For
Penfield and Jasper, awareness is a state of the nervous system involving
heightened sensitivity and improved coordination, under the control of the
centrencephalic system, and particularly the reticular formation (Ref. 38 ).
John (Ref.- 39) suggests that ""awareness may be a property arising from
the process of 'cortico-reticular resonance''. For Culbertson (Ref. 17),
consciousness is a property of trees of causal relations which tie together
the events of the external physical world and the neural events in the
brain. Lotka (Ref. 53) has suggested that we look to the world of molecular
events for an explanation, and that consciousness involves particular

unstable states of molecular or atomic particles.

To this writer, it seems likely that the question of the ''nature
of awareness' can be bypassed, in much the same way that we bypass the
question of the ''nature of perception", by concentrating on the experimental
and psychological criteria which may be used to distinguish the actual
phenomena in question. When a subject reports that he is '"conscious'' or
that he was recently ''unconscious'', we are led to believe him or djs-
believe him on the basis of his behavior, and what he is able to report

about the content of his '"experience' at the time in question. From an
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operational point of view, the fact of ''consciousness'' is closely connected
with the accessibility of information and its ability to influence overt
behavior; it is, in fact, meaningless to say that an individual is '"conscious'
unless there is something that he is conscious of. The questions which can
be asked concerning this phenomenon in a theoretical brain model (where we
are not free to assume any intrinsic similarity of processes to those in the
human brain) are questions of what can be discriminated, "seen", "attended
to", or "remembered" under specified conditions. All that we can say,

in the last analysis, is that the system acts as if it were conscious, leaving
the question of the actual existence of consciousness in the system for

metaphysicists to consider.

Systems which represent information internally, in such a way
that it can be utilized for the control of certain kinds of responses (such as
running, thinking, or talking) will be called cognitive with respect to the
realm of information which is represented and the class of responses which
this information controls. Note that this term is used in a relative, rather
than an absolute sense. Thus the representation of information in the form
of an image on the retina is not sufficient to permit us to say whether or
not the organism is cognitive with respect to its visual environment; we
must also demonstrate that this information is accessible to the organism
for the control of some specified set of responses. We might say, for
example, that a man who automatically stops for a red light, but is
unable to state afterwards why he stopped is cognitive with respect to
red signals at the level of overt motor -responses, but not at the level

of verbal recall. Conversely, an unskilled pianist may be cognitive with
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respect to errors in his performance at the verbal level, but not at

the motor control level. We use the term cognitive, then, to indicate

that knowledge of some realm of information is accessible for the control
of some specified class of responses. This usage permits us to reserve
judgement on the definition of such phenomena as perception and awareness,
and still to recognize a class of psychological phenomena involving the

accessibility of information, with which we shall be concerned.

3.3. Experimental Tests of Performance

The purpose of a theoretical brain model is to demonstrate
how psychological phenomena can arise from a physical system of
known structure and functional properties. In the preceding sections of
this chapter, we have reviewed the physiological data which suggest the
general form of the model, and the psychological data against which its
performance must be measured. We now turn to a more specific consi-
deration of the psychological tests which might be applied to a brain model
in order to evaluate its performance, and to compare alternative systems

with one another.

3.3.1 Discrimination Experiments

In the simplest type of experiment which can yield psycholo-
gically significant information about a system, two distinct stimuli are
presented to the model, which is required to respond differentially to
them. In the general case, it is not necessary to limit this experiment

to two specific stimuli or sensory patterns; two or more classes of
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patterns may be employed, each class consisting of "similar" patterns,
such as squares, or triangles, or various sizes and styles of the letter ""A".

This experiment may be performed either to look for spontaneous discrimi-

nation by the system, in the absence of intervention or guidance by the

experimenter, or to study forced discrimination in which the experimenter

attempts to teach the system to make the required distinctions. In a
learning experiment, a perceptron is typically exposed to a sequence of
patterns containing representatives of each type or class which is to be
distinguished, and the appropriate choice of response is ''reinforced"
according to some rule for memory modification. The perceptron is then
presented with a test stimulus, and the probability of giving the appropriate
response for the class of the stimulus is ascertained. Different results will
be obtained, depending on whether or not the test stimulus is chosen to
correspond identically to one of the patterns which were used in the

training sequence. If the test stimulus is not identical to any of the training
stimuli, the experiment is not testing ''pure discrimination', but involves
generalization as well. If the test stimulus activates a set of sensory
elements which are entirely distinct from those which were activated in
previous exposures to stimuli of the same class, the experiment is a test
of ""pure generalization'. The simplest of perceptrons, which will be
considered initially, have no capability for pure generalization, but can

be shown to perform quite respectably in discrimination experiments
particularly if the test stimulus is nearly identical to one of the patterns

previously experienced.
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3.3.2 Generalization Experiments

As indicated above, a pure generalization experiment is one
in which the brain model, or perceptron, is required to transfer a selective
response from one stimulus (say, a square on the left side of the retina)
to a '"similar' stimulus which activates none of the same sensory points
(a square on the right side of the retina). Generalization of a weaker sort
may be demonstrated if we simply require the system to transfer a
response to members of a class of similar stimuli, which are not necessarily
disjoint from the one which has been seen (or heard or felt) before. As in
the case of discrimination experiments, it is possible to study either

spontaneous generalization, in which the criteria for similarity are not

supplied by an outside agency or experimenter, or forced generalization,

in which the experimenter's concept of similarity is '"taught'' by means of
a suitable training procedure. Some of the most significant problems in
brain mechanisms concern generalization phenomena, and particularly
the meaning of "similarity" for a particular kind of system. In common
with a number of other theorists (e.g., Pitts and McCulloch, Ref. 71),
this writer will assume that similarity is primarily determined by a
group of transformations which stimuli may undergo in a particular
physical environment. In the normal physical environment, for visual
stimuli, this would include rigid motions, rotations, size changes,
projective transformations, certain types of distortions or continuous
deformations, and changes in color or contrast. A number of more
subtle forms of, similarity (as in styles of architecture, gestures and
mannerisms, etc.) are presumably due to association of events into
classes at a higher level of organization than we are concerned with at

this point. It should be noted, however, that a perceptron which is taught
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to form arbitrary classes of stimuli might be expected to generalize

along completely arbitrary or abstract dimensions, ''similarity of style"
being as legitimate a candidate for a basis of classification as "similarity

of shape". In the simple perceptrons, we will find that ''pure generalization'
does not occur, although an apparent generalization of responses to stimuli
which share many sensory points with those previously experienced can be
demonstrated. In this report, this weak form of generalization will be
considered under '"discrimination phenomena', the term ''generalization"
being reserved primarily for cases in which mechanism for recognizing

actual similarity, rather than a rough approximation to identity, is involved.

3.3.3 Figure Detection Experiments

In the experiments considered above, two or more kinds of
stimuli are always employed, in order to avoid the trivial case in which
the desired response is automatically evoked by any stimulus that might
occur. Since it is assumed that at each moment of time exactly one
stimulus is present, these experiments represent a '"forced choice"
situation, in which the brain model is obliged to give one of several
positive identifications in response to whatever it ''sees'. Such experi-
ments have their counterparts in animal and human experimentation,
and permit the study of an important class of psychological problems,
involving simply structured situations. An alternative approach, which
has been less studied to date, is to give the system the task of searching
for a particular figure in a sensory field which may or may not contain it.
In this case, the system is asked to discriminate between 'figure present"

and "figure absent", and is typically only instructed in the recognition of
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one figure at a time. If the figure appears as a solitary object in an
otherwise empty field, the task is a relatively trivial one. If the figure
appears against a background, or as part of a complex of other patterns,
the problem takes on a new aspect of complexity. In the most important
case, this experiment permits us to study figure-ground organizing
tendencies in a perceptron, by presenting it with embedded, or ambiguous
figures which can be recognized as representing one thing if the field is
appropriately structured, and a different thing if the field is structured
differently. The Gestalt properties of ''good figure'' are supposed to
determine the preference of a human observer to perceive one or another
of the possible figures in such a field. Detection experiments per mit us
to compare the preferences and rules of ''good figure' in a perceptron
with those of human subjects, in controlled situations. Perceptrons
considered to date show little resemblance to human subjects in their
figure -detection capabilities, and gestalt-organizing tendencies. In Part IV
of this report, some speculations concerning the development of such

properties in more sophisticated perceptrons will be presented.

3.3.4 Quantitative Judgement Experiments

Another type of experiment with which little work has been
done to date involves the estimation of quantitative properties of stimuli
(size, distance, position,etc.) by perceptrons. It will be seen that simple
perceptrons are capable of learning to represent stimuli by a continuously
variable '""analog' type of response. No work has been done to date, however,
to investigate such questions as the generalization of quantitative judgement

to new stimuli, or the accuracy which can be achieved in specific cases.
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For more advanced systems, an important problem which must ultimately
be faced is that of "perceptual constancies': the tendency in human subjects
to perceive size, color, or other metric properties of a stimulus in terms
of the "actual" physical properties of the object rather than its projection
on the retina. A man, for example, is perceived to be about six feet tall
regardless of whether his retinal image subtends one degree or fifteen
degrees, and a dish appears to be circular in form regardless of whether
its retinal imag@ is a true circle or an elongated ellipse. It has been
demonstrated in many psychological experiments that such phenomena

are not based simply on familiarity with the particular objects involved;

a completely unfamiliar form, seen in normal physical space, is perceived
correctly, in terms of its ''true' physical properties, except under

exceptional circumstances (c.f. Gibson, Ref. 26).

3.3.5 Sequence Recognition Experiments

.In the above experiments, it has been assumed that the stimuli
are fixed, temporally invariant patterns. Analogous problems exist,
involving discrimination, generalization, figure detection, and metric
estimation for time-varying, or sequential patterns of all sorts. While
static organization problems reach their greatest degree of complexity
in the visual modality, temporal organization becomes comparably
complex in the auditory field. Speech recognition is one particularly
important case to be investigated. Problems include not only the
recognition of particular movements, or sequences, but the segmentation
of movement and sound patterns into figural units, words, or phrases as
well. The recognition of sequences in rudimentary form is well within the
capability of suitably organized perceptrons, but the problem of figural
organization and segmentation presents problems which are just as serious

here as in the case of static pattern perception.
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3.3.6 Relation Recognition Experiments

In a simple perceptron, patterns are recognized before
"relations’; indeed, abstract relations, such as '" A is above B'" or 'the
triangle is inside the circle'' are never abstracted as such, but can only
be acquired by means of a sort of exhaustive rote-learning procedure, in
which every case in which the relation holds is taught to the perceptron
individually. At the present time, the main hope for the abstraction of
relations seems to lie in systems which are capable of executing a
sequence of observations, according to a predetermined plan, in which
first one member of the related pair is observed and then the other, the
relationship between them being determined by the sequence of '"experience'
during the shift of attention from the first to the second. The problem of
relation recognition is, at the outset, more complex than those previously
considered, since it requires, by its very nature, the ability to recognize
and attend selectively to at least two distinct "parts'' of a total organization,
specifying, for example, which part is larger and which smaller, or which
part is "outside" and which "inside''. The hypothesis that relation recogni-
tion involves a sequence, or program,of observation means that it must
make use not only of figure organization capabilities (to separate the
"parts'' referred to) but of sequence recognition and sequential control
capabilities as well. The actual experiments by which relation recognition
can be detected must involve at least two components (such as square and
triangle) which can be shown in such a way as to exemplify the relationship
or not. In an ideal experiment, the system would be trained to recognize
the relation by a number of examples with stimulus patterns or "parts'

which do not resemble or intersect (in their retinal location) the test
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patterns which are employed in evaluating the performance. If the perceptron
can then indicate correctly, for entirely new stimuli, whether or not the
relation holds, it will be considered that the relation has been abstracted

by the system.

3.3.7 Program-Learning Experiments

The learning of sequences of behavior is the counterpart on the
response side of the problem of seque.ce recognition. The problem has
been discussed in detail by Lashley (Ref. 50). It requires, as a starting
point, the ability to form ''selective sets'", which introduce a bias to give
one of several alternative responses to a given: stimulus. A capability of
this sort has been shown to exist, to some degree, in relatively simple
perceptrons, provided there is a feedback path from the response units to
the association system (Ref. 79). To date, little has been done to study this
capability in a quantitative fashion, but some of the heuristic arguments will
be reviewed in Chapter 23. One of the most important applications of such
a capability is in the control of the sequential activity involved in recognition
of relations, and the '"perceptual exploration' of a sensory field. Related
phenomena, in which this capability plays a central part, are the sequential
control of speech, thinking, and complex behavior patterns. The represen-
tation of problem solving activity in the human by heuristic programs has
been studied by Newell, Shaw, and Simon (Refs. 62, 63), and it seems
likely that many of their results might be transferred to a perceptron

which is capable of program controlled activity.
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3.3.8 Selective Recall Experiments

While most of the experiments described above involve "memory"
in the sense of a change in behavior as a consequence of experience, they do
not, in general, require substantive recall, of the sort which is displayed
when we describe a person who we saw yesterday, or the location of furni-
ture in a house where we lived last year. In selective recall experiments,
the system is required to produce on demand information relevant to a
particular time, place, or subject. This involves a particular case of
"selective set'' mechanisms, and can probably be demonstrated in most

systems which are capable of program-controlled behavior.

3.3.9 Other Types of Experiments

In addition to the experiments considered above, we might
ultimately wish to consider experiments in abstract concept formation,
the formation and properties of a ''self concept", creative imagery, and
other higher-order psychological phenomena. At the present time, these
problems seem sufficiently remote from the capabilities of present
perceptrons that we need not consider them further here. Also relegated
to the future is the consideration of such psychological phenomena as
perceptual illusions, figural aftereffects, and related phenomena, even
though these have been considered primary in some of the brain models
hitherto advanced. It is this writer's belief that these phenomena are so
likely to depend on inessential details of brain organization, at almost any
level of complexity, that it would be a mistake to try to rest the case for

or against a particular model on a demonstration that it can duplicate a
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particular kinds of perceptual illusion. It seems more important, at this
stage, to account for '"veridical perception'' than for its occasional failures,
particularly since these are currently demonstrable in a single species only,

and may lack any generality whatsoever.

3.3.10 Application of Experimental Designs to Perceptrons

The designs considered above have been discussed as if they
were actual '"flesh and blood" experiments, performed with real physical
systems. In the study of perceptrons, it is not always practical or necessary
to carry out such experiments in reality; the important thing is that an analysis
of a given model should always be carried out in terms of an experimental
design which is specified in sufficient detail so that it could be carried out

if the system were actually constructed.

In practise, three main methods are employed in the study of

perceptrons:

(1) Mathematical analysis, in which a stimulus environment,

the rules for stimulus presentation and for the modification of the perceptron's
memory state are clearly specified. The object of such analysis is, in
general, to determine the probability of correct performance, or the proba-
bility of achieving a given performance criterion, for a specified class of

systems.

(2) Digital simulation, in which the perceptron, its environment,
and the memory modification rules are all represented in a digital computer

program, which carries out the required operations of an experiment in
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step-by-step fashion, calculating the response of every neuron and capnection
in the perceptron, and measures the performance of the system. Such a
program, repeated for a sufficient sample of perceptrons in a class, yields
much the same type of information as is obtained from a mathematical
analysis. It has the advantage of being free from all approximations (which
may be necessary in some analyses) but is less likely to yield important
insights into the lawful relations which characterize a class of systems.
Simulation programs are most valuable as an exploratory device, and for

the study of systems of such complexity that an exact mathematical analysis

is impossible.

(3) Study of physical models, involving the actual construction

of a hardware device, and the performance of the indicated experiments. At
present, little is to be gained from the study of actual physical models which
cannot be learned from the other two methods, but as successive models grow
in size and complexity, and as means are found for the inexpensive construction
of electronic models, this method becomes increasingly important. Its main
virtue is the flexibility and adaptability of a hardware perceptron to new types
of learning experiments and procedures, and the ability to use ordinary
physical objects and environments as stimuli, which would otherwise involve
a great deal of time and expense in computer programming. The physical
model itself, however, is apt to be less flexible than a simulated system,

and is best suited for '"case studies' of a single representative system,

rather than statistical studies of a class of systems.

In most of the experiments considered in this report, (which
are listed in Appendix D) human performance capabilities are sufficiently

well known to permit us to draw conclusions about possible comparisons
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between perceptrons and biological systems without further study. In

some of the proposed experiments, however, (e.g., the figure organisation
experiments described in 3.3.3) additional data may be required on human
performance in order to obtain a base-line for the quantitative evaluation of
perceptrons. Thus it seems likely that in the near future, a program in
experimental psychology with human and animal subjects may be a necessary
adjunct to the evaluation of our brain models. When this occurs, the models
are, in effect, being used as predictive devices, capable of generating data
(probably grossély inaccurate at the outset) which have not yet been actually
observed in human subjects. The ultimate test for a brain model, from the
standpoint of psychological validity, is an experiment of this type, in which
the model correctly predicts phenomena which have yet to be discovered in

biological systems.
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4. BASIC DEFINITIONS AND CONCEPTS

This chapter is devoted to basic definitions of terms which will
be used throughout the report. It is recommended that the reader familiarize
himself with this terminology in a general way, on first reading, and refer
back to this chapter when the terms are reintroduced in the subsequent text.
A list of standard symbols will also be found in Appendix A.

4.1 Signals and Signal Transmission Networks

The following definitions, which are not specific to perceptrons,

are likely to be helpful:

DEFINITION 1: A signal may be any measurable variable, such as a
voltage, current, light intensity, or chemical concentration.

A signal is typically characterized by its amplitude, time,

and location.
DEFINITION 2: A signal generating unit is any physical element, or device,
capable of emitting a signal. The output signal of the unit

«; will be represented by the symbol u?.

DEFINITION 3: A signal generating function is any function which defines

the amplitude of the signal emitted by a signal generating

unit.
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DEFINITION 4: A connection is any channel (e.g., a wire or nerve fiber)
by which a signal emitted by one signal generating unit
(the origin) may be transmitted to another (the terminus).
A connection c, ; is characterized by its origin and
terminal units ( «; and «, , respectively), and by a

*
transmission function which determines the amplitude

- of the signal induced at the terminus as a function of the
amplitude and time of the signal generated by the origin
-

unit.  This signal will be symbolized by <;; (¢).

DEFINITION 5: A signal transmission network is a system of signal generating

units, linked by connections.

4.2 Elementary Units, Signals, and States in a Perceptron

A perceptron (which will be defined in the next section) is a
signal transmission network containing three types of signal generating
units: sensory units, association units, and response units. These units
all have signal generating functions which depend on signals originating
elsewhere in the network, or else externally, in an outside environment.

The signals upon which the generating function of a unit depends are called

In previous reports, the term 'transfer function' has been used for
this characteristic. Since '"transfer function' has a somewhat different
meaning in control system theory and elsewhere, it is avoided here, and
the term '"'transmission function' is preferred.
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the input signals to that unit. These units are defined here in a sufficiently
general manner as to include biological neurons as a special case. We shall
be chiefly concerned, however, with models which employ simplified versions

of such neurons.

DEFINITION 6: A sensory unit (S-unit) is any transducer responding to
physical energy (e.g., light, sound, pressure, heat,
radio signals, etc.) by emitting a signal which is some
function of the input energy. The input signal at time ¢
to an S-unit 4; from the environment, W, is symbolized
,c:,‘- (t) . The signal which is generated by .4; at time
¢ is symbolized .4: (¢)

DEFINITION 7: A simple S-unit is an S-unit which generates an output
* . *
signal 4; = + / if its input signal, £,  exceedsa

given threshold, 6; , and O otherwise.

DEFINITION 8: An association unit (A-unit) is a signal generating unit

(typically a logical decision element) having input and
output connections. An A-unit 2; responds to the
sequence of previous signals c‘{/- received by way of

input connections c;; , by emitting a signal a.; (t) .

DEFINITION 9: A simple A-unit is a logical decision element, which
generates an output signal if the algebraic sum of its
input signals, o¢; , is equal or greater than a threshold
qua!;tity. 6 >0 . The output signal a; is equalto #/
if a¢; 26 and O otherwise. ﬁ__a._Z}: +/ , the unit

is said to be active.
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DEFINITION 10: A response unit (R-unit) is a signal generating unit
having input connections, and emitting a signal which is
transmitted outside the network (i.e., to the environment,
or external system). The emitted signal from unit 7,
will be symbolized by #; .

DEFINITION 11:A simple R-unit is an R-unit which emits the output
r"=+/ if the sum of its input signals is strictly

poesitive, and %=~/ if the sum of its input signals
is strictly negative. If the sum of the inputs is zero,
the output can be considered to be equal to zero or
indeterminate. (A physical unit which oscillates in
response to a zero signal would have the required
properties.)

DEFINITION 12:Transmission functions of connections in a perceptron

depend on two parameters: the transmission time of the

connection, Z;; , and the coupling coefficient or value

of the connection, 27; . The transmission function of
a connection &;; from u«; to w«; is of the form:

c,-'j (t) = fErzj(t}, u.;'(t-t‘;j)] . Values may be
fixed or variable (depending on time). In the latter

case, the value is a memory function.

DEFINITION 13:The activity state of the network at time ¢ is defined

by the set of signals, u; » emitted by all signal

generating units at time ¢
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DEFINITION 14: The memory state of a network is the configuration of

values associated with all (variable valued) connections

at a specified time.

DEFINITION 15: The phase space of a network is the space of all possible
memory states, for a given network. In general, if there
are N variable-valued connections in the network, the phase
space may be represented by a region in Euclidean N-space,
each coordinate corresponding to the value of one connection.
The memory state of the system at any specified time can
be characterized by a point in this phase space, and the
history of the system by a directed line, or path, followed
by this point.

DEFINITION 16: The interaction matrix for a network of S, A, and R units

is the matrix of coupling coefficients, vy for all pairs
of units, &; and «; . If there is no connection from

u; to u; , vy; is defined as zero. Specifying an
interaction matrix ie equivalent to specifying a point in

the phase space.

4.3 Definition and Classification of Perceptrons

DEFINITION 17: A perceptron is a network of S, A, and R units with a
variable interaction matrix ¥ which depends on the

sequence of past activity states of the network.
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DEFINITION 18: The logical distance from unit «; to «; is equal to the
number of connections in the shortest path by which a

signal can be transmitted from «; to u;

DEFINITION 19: A series-coupled perceptron is a system in which all

connections originating from units at logical distance o
from the closest S -unit terminate on units at logical

distance J£+/ from the closest S -unit.

DEFINITION 20: A cross-coupled perceptron is a system in which some

connections join units of the same type (S , A or R )
which are at the same logical distance from S -units, .

all other connections being of the series-coupled type.

DEFINITION 21: A back-coupled perceptron is a system in which at least

one A or R unit at a distance J, from the closest
S -unit is the origin of a connection back to an S -unit
or to an A -unit at a distance d, < of, from the closest
S -unit; i.e., this is a system with feedback paths from
units located near the output end of the system to units

closer to the sensory end.

It should be noted that the above definitions are not exhaustive;
they are intended to designate certain generic classes of perceptrons with
which we shall be concerned. The initial models to be considered are of the

type specified by the following definitions:
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DEFINITION 22: A simple perceptron is any perceptron satisfying the

following five conditions:

1. There is only one R -unit, with a connection
from every A -unit.

2. The perceptron is series-coupled, with connections
only from S -units to A -units, and from A -units

to the R -unit.

3. The values of all sensory to A -unit connections

are fixed (do not change with time).

4. The transmission time of every connection is

either zero or equal to a fixed constant, 7~

5. All signal generating functionsof S , A , and R
units are of the form u;*(t‘) = f(o¢; (¢)) . where
o¢;(t) is the algebraic sum of all input signals

arriving simultaneously at the unit «;

DEFINITION 23: An elementary perceptron is a simple perceptron with

simple R- and A - units, and with transmission functions
L #*
of the form .0;;(¢) = u; (¢ -T)vy;(¢).

Perceptrons can be represented graphically in several different
ways. In particular, frequent use is made of three types of diagrams, which

will be called network diagrams, set diagrams, and symbolic diagrams.

Depending upon the level of specificity required, any one of these diagrams

may be used to represent the same system. The three types of diagrams
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are illustrated in Figure 2. The network diagram shows each connection
and signal unit individually; the arrows indicate the direction of signal
transmission through the connections. The set diagram represents all
S-units as a single set, connected to the sef of A -units {or association
system) which is represented by a Venn diagram, the subsets of which

are connected to different R-units. Set diagrams of this general type are
found to be particularly useful as an aid to analysis. The symbolic diagram
for this same perceptron merely indicates the kinds of connections which
exist, namely, Sto A, A to R, and S to S. The perceptron illustrated
would be called a three-layer perceptron, cross-coupled at the sensory

layer.

NETWORK DIAGRAM

SET DIAGRAM or > DIAGRAMS OF SAME SYSTEM

SYMBOLIC DIAGRAM :’)

— A R

Figure 2 PERCEPTRON DIAGRAMS
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4.4 Stimuli and Environments

DEFINITION 24: A stimulus is any non-zero set of input signals, ‘,C:,; (¢) ,
to the S -units attime ¢ . If there are N, sensory
units in the retina, then a stimulus can be characterized by
a vector of N, elements, representing the signal to each

S -unit as an element of the vector. The condition in
which all input signals are equal to zero is not considered

a stimulus unless otherwise specified.

DEFINITION 25: A stimulus world (or environment ) is any set of stimuli,
defined for a specified S-unit set. The stimulus world
will be symbolized by W. The number of different stimuli
will usually be denoted by »

DEFINITION 26: A stimulus-sequence world (or stimulus-sequence

environment) is any set of stimulus sequences, each
consisting of an ordered series of stimuli from the set W .
(For example, if the image of a printed word is a stimulus,
and W consists of all words in a dictionary, then the

set of all English sentences would comprise a stimulus -

sequence world.)

4.5 Response Functions and Solutions

DEFINITION:27: A response function is any assignment of R -unit output

signals to stimuli in W . For a simple perceptron, the

response function R(W) is a vector of » elements,
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DEFINITION 28:

DEFINITION 29:

DEFINITION 30:

( &, R;,--+) Ry )indicating the value of the
response for each of the stimuli, §,, §,,..., 5, in

the environment.

A classification is an equivalence class of response
functions. Two response functions are considered
equivalent if their corresponding elements agree in

sign. For any perceptron with one simple R -unit, a
classification, C(W) , divides i into two classes:

a positive class consisting of all stimuli for which ri=41,
and a negative class, consisting of those stimuli for which

r=-1 .

A response-sequence function is an assignment of sequences

of R -unit output signals to stimulus sequences in a
stimulus-sequence world. This is a generalization of the

concept of a response function to include a time dimension.

A solution to a response function (or classification) is said
to exist for a given perceptron if there is a point in the
phase space of the perceptron such that the response R2;
(specified by the function) will occur if the stimulus § H

is shown, for all §; in W .

4.6 Reinforcement Systems

DEFINITION 31:

A reinforcement system is any set of rules by which

the interaction matrix (or memory state) of a per-

ceptron may be altered through time.
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DEFINITION 32: A reinforcement control system is any system or
mechanism external to a perceptron which is capable

of altering the interaction matrix of the perceptron in
accordance with the rules of a specified reinforcement
system.

DEFINITION 33: Positive reinforcement is a reinforcement process in

which a connection from an active unit «; which
terminates on a unit «, has its value changed by a
quantity 4v;;(¢) (or at a rate vy / 4t ) which

agrees in sign with the signal uf (t)

DEFINITION 34: Negative reinforcement is a reinforcement process in

which a connection from an active unit «,; which
terminates on a unit «; has its value changed by a
quantity Av;; (t) (or at a rate dv; J'/ ot ) which

is opposite in sign from u.} (¢) .

DEFINITION 35: A monopolar reinforcement system is a reinforcement

system in which the values of all connections terminating
on aunit «; remain unchanged at time ¢ unless « f(t)

is strictly positive.

DEFINITION 36: A bipolar reinforcement system is a reinforcement

system in which the values of connections are subject
to change regardless of whether the output of the
terminal unit is positive or negative.
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DEFINITION 37:

DEFINITION 38:

Alpha system reinforcement is a reinforcement system

in which all active connections .; ¥ which terminate on
some unit u; (i.e., connections for which wf (t-r) %+ 0)
are changed by an equal quantity A1v;; (t)=p or

at a constant rate while reinforcement is applied, and
inactive connections ( u} (¢t-T) = 0) are unchanged at
time ¢ . A perceptron in which o¢ -system reinforce-

ment is employed will be called an oac -perceptron. The

reinforcement will be called quantized if the change is a

fixed quantity (|42 -l?l) or non-quantized if the value may
change by an arbitrary magnitude.

Gamma system reinforcement is a rule for changing the

values of the input connections to some unit, whereby all
active connections are first changed by an equal quantity,
and the total quantity added to the values of the active
connections is then subtracted from the entire set of
input connections, being divided equally among them.

Such a system is said to be conservative in the values,

since the total of all values can neither increase nor

decrease. The change in vy is equal to
; ,wu (t)
Bvpi(t) = (@, (t)- - 7
v
where ;. (¢)= 1 if  w](t-T)#0, O otherwise;

A, = number of connections terminating on « L/

# = reinforcement quantity (typically + 1 or 0).
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Additional reinforcement rules, and variations of the above,
will be presented as required. The above terminology has been standardized

in previous work on perceptrons, and represents the systems on which most

analysis has been done. In most of the cases to be considered, the reinforce-

ment control system employs one of three training procedures, defined as

follows:

DEFINITION 39:

DEFINITION 40:

DEFINITION 41:

A response-controlled reinforcement system ( R -controlled

system) is a training procedure in which the magnitude of

X  is constant, and the sign of 7 is entirely deter-
mined by the current response, 7~* , regardless of the
current stimulus, S . In general, unless otherwise
specified, this term implies that the reinforcement is
always positive (i.e., the sign of 7 agrees with the
signof r ¥, ina simple perceptron).

A stimulus-controlled reinforcement system ( S -controlled

system) ie a training procedure in which the magnitude of

¥ is constant, and the sigh of » is determined
entirely by the current stimulus, S , and a pre-
determined classification, C(W) ; the current response
of the perceptron does not influence either the sign or

magnitude of 7 .

An error-corrective reinforcement system (error

correction system) is a training procedure in which

the magnitude of 7 is O unless the current response
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of the perceptron is wrong, in which case, the sign of

7 1is determined by the sign of the error. In this
system, reinforcement is O for a correct response,
and negative (see Definition 34) for an incorrect response,
or, more generally, % = £(R"- ") where R isthe
required response, »* is the obtained response, and ¥
is a sign-preserving monotonic function, such that
£(0) = 0.

In previous reports (Refs. 41, 82 )the R -controlled system
has been referred to as a ''spontaneous learning system', since the
perceptron evolves in an autonomous fashion, uninfluenced by the '"correct-
ness" of its outputs. The reinforcement control system requires no
information from the environment in order to control the changes in the
memory state of the perceptron. The § -.controlled system has aleso been
referred to as a "forced learning system', since the r.c.s. imposes a
predetermined classification on the perceptron's responses, without taking

the actual responses of the system into account at any time.

4.7 Experimental Systems

DEFINITION 42: An experimental system is a system consisting of a

perceptron, a stimulus world, W , and a reinforce-
ment control system. The reinforcement control

system may be an automatic regulating device (e.g.,

a thermostat) or a human operator, capable of respond-
ing to the responses of the perceptron and the stimuli in
the environment by applying the appropriate reinforcement

rules, altering the memory state of the perceptron.
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Figure 8 EXPERIMENTAL SYSTEM WITH A SIMPLE PERCEPTRON
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Figure 4  GENERAL EXPERIMENTAL SYSTEM
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The basic organization of an experimental system with a simple
perceptron is shown in Figure 3. A more general system, in which the
perceptron may be of any variety, and where the output of the perceptron
is capable of modifying its stimulus environment, is illustrated in Figure 4.
A comparison with Figure 1 should indicate the basic similarity between the
perceptron, in a general experimental system, and the biological nervous
system. Analyses of perceptron performance always postulate an experi-
mental system, involving, as a minimum, the components shown in Figure 3.
The reinforcement control system can be considered a specialized part of
the environment, in its relation to the perceptron, although it might actually
be built into the same physical mechanism as the perceptron itself. In an
R - controlled system, the information channel shown from W to the r.c.s.
is non-functional, while in an S -controlled system the information channel
from W to the r.c.s. is non-functional, and in an error-correction system,
both channels are essential for reinforcement control. In digital simulation
programs, the r.c.s. is the part of the program concerned with reinforcing
the simulated perceptron, while in experiments with hardware systems it is

generally a human operator.

An experiment involves an experimental system, a training
procedure, and a procedure for testing the perceptron, or measuring its
performance. A number of typical psychological experiments, which are
of interest for perceptrons, were outlined in Chapter 3, and some of

these will be analyzed in the following chapters.
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5. THE EXISTENCE AND ATTAINABILITY OF SOLUTIONS IN
ELEMENTARY PERCEPTRONS

The perceptrons to be considered in Part II all consist of
three layers of units connected in series, with the topology S—+ A —+R.
In the following chapters, it will be seen that tliese perceptrons are
capable of learning any set of responses which we might care to have them
make to a universe of stimuli. Their main deficiencies are a lack of ability
to generalize their performance to new stimuli or new situations where ti:ey
have not been explicitly taught and a lack of ability to analyze complex

environmental situations into simpler parts.

The first perceptron model to be considered in detail is the
elementary o< -perceptron. In this chapter, we shall examine the intrinsic
ability of such systems to realize solutions to classification problems,
including several theorems concerning the relationship of the size of the
system to the existence of solutions, and the possibility of attaining such
solutions by different training procedures. The term 'solution' is used in
the sense of Def. 30, in Chapter 4. Most of these results were first presented
in Ref. 86.

5.1 Description of Elementary oc¢ -Perceptrons

Elementary o¢-perceptrons were defined in Chapter 4, as a
subclass of simple perceptrons, in which S-units send connections to
A-units, and the A-units all send connections to a single R-unit, no

other connections being permitted, and all connections having equal trans-
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mission times, 7 . Without loss of generality, = can be taken to be
zero, and this assumption of instantaneous transmission will be made-
whenever we deal with simple perceptrons, unless otherwise stated. The
A-units and R -unit in all elementary perceptrons are of the simple type,
i.e., they have a threshold, & , (equal to zero in the case of the R -unit)
and emit a signal only if the input signal, oc , is equal or greater than &
The connections from S§ to A -units have fixed values, and the connections
from the A-units to the R -unit have variable values, which depend on the
history of reinforcements applied to the perceptron. The connections, in an
elementary perceptron, all have the transfer function (assuming 7" to be

zero).

c}:- (2) = u} () vy (¢)

In the oc -system, which is to be considered initially, the reinforcement

rule takes the form

Pif x(t)26
O otherwise

dv;; () = wl(2)y -{
In an elementary perceptron, where the only variable connections occur
from A -units to the R -unit, the simplified notation 2/; will generally
be taken to mean the value of the connection from unit a; to the R -unit.
The basic parameters with which we shall be concerned in this chapter are
the number of S -units, A, , and the number of A -units, Ng .
Without loss of generality, we can assume the A sensory units to be
situated at points in a two-dimensional field, or "retina', and regard the
input stimuli as patterns of illumination on the retina. A typical system
of this type is illustrated in Figure 5.
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—» OUTPUT SIGNAL
+l OR -I

Figure 5 NETWORK ORGANIZATION OF A TYPICAL ELEMENTARY PERCEPTRON

5.2 The Existence of Universal Perceptrons

Most of the theoretical results obtained to date for elementary
perceptrons are concerned with experiments in which a classification of an
environment, C(W) , is taught to the perceptron by some training proce-
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dure. The first theorems to be considered deal with the question of whether
a solution to such a classification problem exists, or might exist, for a
given perceptron. To begin with, the following theorem shows that the
organization of an elementary perceptron is sufficient to permit the
construction of a 'universal system', for which a solution exists for every
possible classification, C(W) . Perceptrons constructed in this manner

are generally not very interesting as brain models, but the theorem indicates
the wide range of possible behavior which might be obtained from such

systems.

THEOREM 1; Given a retina with two-state (on or off) input signals,
the class of elementary perceptrons for which a
solution exists to every classification, C(W) , of

possible environments W/ , is non-empty.

PROOF: Since it is sufficient to show the existence of such a perceptron,
we proceed by construction. Let there be one A -unit for every possible
stimulus configuration on the retina. Consider stimulus S; and its
corresponding A -unit, @; . Let @; have an oxcitator); connection
(value equal to + 1 ) originating from every "on' point in §; , and an
inhibitory connection from every "off'' point in S; , and let its threshold
be equal to the number of excitatory connections. Then there will be one
and only one A -unit responding to every possible stimulus, and no
A-unit. responds to more than one stimulus. (We say that a; "responds'
to §; if a‘?-ﬁ O .) Now consider any stimulus world, i , defined on
the retina, and a corresponding classification, (W, , which associates

a positive or negative classification with each stimulus, S; ,in W .
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In order to realize the classification, it is only necessary to set the
value of the connection from a; equal to + 1 if the class of S; is positive,

or - 1 if the class of §; is negative. Q.E.D.

While this solution is clearly uneconomical and of little practical
interest, it is sufficient to show that there are no '""special cases' of
classifications which have no solution, at least for a retina of binary elements.
If the inputs to the S-units are capable of taking on more than two values,
then a more elaborate construction (e.g., one which separates each combination
of input values to a different set of A-units) would be required. It is left to
the reader to satisfy himself that a system with less ""depth'’ than an elementary
perceptron (i.e., one in which S-units are connected directly to the R -unit,
with no intervening A-units) is incapable of representing a solution to every

C(W) » no matter how the values of the connections are distributed.

5.3 The G-matrix of an Elementary o¢ -Perceptron

In practice, the cases of interest are those in which each
stimulus activates some set of A-units, and each A-unit is likely to
respond to a great many different stimuli in W . In order to deal with
such systems, the concept of a G-matrix has been found to be particularly
helpful, and this will now be defined. The definition given here is suffi-
cient for elementary perceptrons, and will be generalized in a later

chapter to permit us to deal with more complex systems.
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DEFINITION: Consider a (simple) perceptron, and a stimulus world, W ,
consisting of » stimuli. Then the matrix

9w 912 =° 91
G2y 922 *°" 9an

Int Ing *** Inn

consists of elements 9‘-‘,- called generalization coefficients. Each

element, 9i; o is equal to the total change in value ( ¥ A4 ) over
all A-units in the set responding to S; if the set of units responding to
SJ- are each reinforced with, )7 equ:l to I/A/‘ (where AN, is equal to
the number of A-units in the system). For simple perceptrons and a

given environment, & is fixed for all time.

If we are dealing with a particular o¢ -perceptron, where

Avy = a:(t)-v , we have

Jij = “ij
where 5‘ T the proportion of A-units which respond both to S;
and S; .

If we are dealing with a randomly selected member of a class. of perceptrons,
5‘- . is a random variable, and we have the equation for the expected
value of 9 .
Egy = Qj
where @; ;= the probability that an A -unit in a given class of
perceptrons responds to both stimuli, S; and S;

With 7 = I/Na we have a ''normalized G-matrix". For some purposes
it is convenient to take » =/ , in which case the "unormalized G-matrix"
is equal to A, times the normalized matrix defined above.
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For the oc¢ -system, 9 is simply a measure of the inter-
section of the sets of A-units responding to §; andto § HE and is
equivalent to a ''set intersection matrix'. 6 is always symmetric for
an alpha system. In any elementary perceptron (at a given time & )
the net input signal to the R-unit from the set of A-units responding to
stimulus S; will be called «; and is given by

U, = X (S;) =9, Xy # gig gt ooo + gup %y (5.1)
where ;ZJ = the amount of reinforcement applied to the system, over all
*
appearances of .S:, prior to time # . In matrix form, the vector &«

of signals «; from all stimuli S; in W is given by

u = 6x (5.2)

where X is a vector of elements x; defined as above.

5.4 Conditions for the Existence of Solutions

In general, if we are given the rules of organization of a
perceptron and some classification, £(W), it is by no means easy to
say whether or not a solution to (| W) exists for the perceptron in question.
The following theorems deal with the existence of such solutions from
several different points of view. We first define the bias ratio of an A -unit

as follows:

DEFINITION: Given a classification, C(W), the bias ratio of an A-unit,

@; , is defined for any set of stimuli in W as 0;70;- » where n;*=

number of stimuli in the set which are members of the positive class C* and
which activate a; ; »;” =number of stimuli in the set which are members

of the negative class C~ and which activate a; .

* It is assumed here that all initial 7, = 0.
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THEOREM 2: Given an elementary perceptron and a classification
C(W) , the following conditions are necessary

but not sufficient for a solution to C(W) to exist:

i) Every stimulus must activate at least one A -unit;

ii) There should be no subset of stimuli containing at
least one member of each class, such that in the
union of the responding A -unit sets, every A -unit
has the same bias ratio (with respect to the stimuli
of the subset).

PROOF: We first prove that the conditions are necessary. Condition i)

is obvious. The proof that condition ii) is necessary is as follows:

Assume there is a subset violating this condition. Let « ;=
input signal to 2 generated by stimulus § FE Then summing the values of
all such signals from stimuli of the positive class in this subset, we have
(since violation of ii) requires that n‘o'yn‘-' is constant for A -units

responding to stimuli in this subset).

+ +

Lu=Untv =2=Y nw =2 o
S‘;GC' é ¢ ¢ ¢ SJ‘C-

Thus the sum of the R -unit input signals for stimuli of the positive
class must have the same sign as the sum of the R -unit input signals
for stimuli of the second class. But then one of the sums must disagree
in sign with the sign of the class, and therefore, one of its components
(i.e., one of the w; ) must disagree in sign with the class, indicating
that at least one stimulus must be classified incorrectly.
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To show that these conditions are not generally sufficient,
consider the following example: Let there be five stimuli, and four A -units.

The A -units activated by each stimulus are:

S; activates «,

S5, activates a,

S3 activates a; and a,

S, activates a,,a, , and a,

S5 activates q,, ¢, , and o,

Let the positive class consistof S, , S, , and S, , and the negative
class consist of S, and S, . Then the bias ratios for a, and a, are
not the same as for a2, and a, . Also, there exists no subset with
stimuli from each class, with equal bias ratios for all A -units. The
values of 2, and a2, must be positive, and the sum of the values of 2
and a, must also be positive,to obtain the required the required classifi-
cation for the members of the first class. But then it is clear that either
S, or Sy must be classified incorrectly, which proves that conditions i)

and ii) are not luﬂicient.*

In the next theorem we make use of the symbol ¢ to denote
a signal vector, such that the element «; agrees in sign with the
classficiation of S; in c(W) . Sucha signal vector will evoke the
correct response for each stimulus in W . Two such vectors which
agree in the signs of their elements are said to be in the same orthant

(generalized quadrant, in » dimensions).

In Theorem 9, a necessary and sufficient condition, closely related
to the above, will be presented.
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THEOREM 3: Given an elementary oc¢ -perceptron, a stimulus world i ,

and any classification ¢(W); then in order for a solution
to C(W) to exist, it is necessary and sufficient that there
exist some vector « in the same orthant as C(#) , and
some vector X such that Gx =y .

PROOF: The proof would follow trivially from Equation (5.2) and the
definition of « , were it not for the possibility that a solution might
exist involving some unique assignment of values to the A-R connections,
which could not be attained by any reinforcement vector, X , defined as in
Equation (5.1). It will be shown, therefore, that if a solution exists, in the
form of any assignment of values to A-R connections, an equivalent solution

must exist corresponding to the reinforcement of each stimulus, S; , by an

amount x; . For brevity, throughout the following discussion, we will speak
of “the value of an A -unit" in place of ""the value of the connection from an

A -unit to the R -unit". The following definitions and notation will be used:

, 1 if the A -unit a; responds to S,
a;(s;) =

0 otherwise

A isan n by N, matrix, in which the element q,; = c;(s‘-).

A solution to a classification problem is said to exist if there is some
distribution of values over the A -units which enables the perceptron to

perform the discrimination; i.e., there exist vectors »» and «
that

such

Av = u

-106-

Google



Consider the matrix AA’ . The c',jth element of this matrix (say A;; )is
; af (5)) al(s;) = A;;

But the (un-normalized) & -matrix for an o -system, expressed in
terms of the above functions,; lids elements,

9 = ; g (S;) @4 (s;)

8o that the matrix € = AA’. Note that this shows that & is either

positive definite or positive semidefinite.
We then have, for any vector X , such that z’A =0

1) ZA =0 = 2'AA’'= X6 =0

2) X6 =0 =>X'6x " XAAX = (XA, XA) =0 => XA =0

Hence, the rank of 6 = rankof A , since any vector X which is in

the left null space of G is also in the left null space of A ; therefore the
left null spaces of 6 and A are identical. Since the rank plus the
dimension of the null space is equal to the dimension of the domain, 6 and

A must be of the same rank.

But the columns of & are linear combinations of the columns of
A , hence the space spanned by the columns of & is identical with the
space spanned by the columns of A4 .
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Since Av is a linear combination of the columns of A , the
existence of 2~ and « such that A+ =« implies the existence of a vector
» suchthat Gx =« . Thus, if a solution exists, there is a solution to
the equation Gx =« , so that the condition of the theorem is necessary.
But it is also sufficient, since « by definition represents a solution
vector. Q.E.D.

COROLLARY 1: Given an elementary perceptron and a stimulus world W ,

Then if G is singular, some C(W) exists for which

there is no solution.

PROOF: Each C(W) requires a solution vector in a different orthant, and
the set of all C(W) , for a given W , requires solutions in every possible
orthant. But if G is singular, it maps the entire space into a hyperplane,
and this plane must fail to intersect certain orthants. Consequently, the
classifications ( (W) which are represented by vectors in these orthants

have no solution.

COROLLARY 2: Given an elementary perceptron, if the number of stimuli

in W is n > AN, , there is some C(W) for which no

solution exists.
PROOF': From Theorem 3 and Corollary 1, it is clear that there will
be some C(W) which has no solution if and only if G is singular. 6

has the same rank as the matrix A ; but A is an n by N, matrix,
implying that A , and therefore 6 has rank < n .
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COROLLARY 3: For any elementary perceptron, as the number »n of
stimull in W increases, the probability that a randomly
selected classification, C(W) , has a solution approaches
zero (where (C(W) is chosen from a uniform distribution

over the possible classifications of W ).

PROOF: From Corollary 2, as » increases beyond the number of A-units

in the perceptron, there must be some C(W) without a solution. At the same
time, increasing 7~ increases the set of possible classifications in proportion
to 2”7 . Butowing to a theorem by R. D. Joseph and Louise Hay (Ref. 41,
Appendix ), the number ~(r) of classifications which have solutions is no
greater than 2[("0' ') + (n;/)f'----f(::,,):l where 7 < N, is the rank of the
G-matrix. Therefore, the upper bound of the probability of selecting at random
one of the classifications which has a solution diminishes with n(r,)/.z" which

goes to zero as » goes to infinity.
Several additional tests for the existence of solutions, which are
of practical utility in diagnosing small systems, will be found in Theorems 9

and 10, at the end of this chapter.

5.5 The Principal Convergence Theorem

In the preceding section, the existence of solutions to classification
problems in an elementary perceptron was considered, but nothing has been‘
said about the ability to achieve such a solution by a training procedure. In
this section, we consider the ability of an elementary oc -perceptron to learn
the solution to a classification C(W) under an error correction procedure.

The following theorem is fundamental to the theory of perceptrons.
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A general definition of an error correction procedure was given
in Definition 41, in Chapter 4. We now define in detail two specific forms of
this procedure, as they apply to the elementary oc¢-perceptron.

Consider some classification, C(W). Let

+1 if stimulus S; is to be in the positive class
A=
-1  if stimulus S; is to be in the negative class

where ¢ = /;...49n.

In order to obtain the most general conditions for the following theorem, a

non-quantized error correction procedure is defined as follows: No response

will be considered correct unless the magnitude of the input signal to the
R-unit (u«;) is greater than ¢ , and the sign of «; agrees with o;

for the current stimulus. (This corresponds to an R-unit with a threshold

of o ,» or for the special case where ¢ = 0, it corresponds to a simple
R-unit.) If no error occurs for stimulus S; (i.e., 0, u; > & )no
reinforcement occurs; but if an error does occur a quantity 7 = o, 4x;

is added to the value of each active A-unit, Ax; (the number of units of
reinforcement) being just sufficient to bring the magnitude of the signal «;
past the threshold level, ¢ , tothelevel ¢ >0 . Ina quantized
correction procedure, the identical rules apply, except that 7 = 0, Ax; =+ },

Ax; representing a single unit of reinforcement.
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THEOREM 4: Given an elementary ¢« -perceptron, a stimulus
world W , and any classification ¢(W) for which a
solution exists; let all stimuli in W/ occur in any
sequence, provided that each stimulus must reoccur
in finite time; then beginning from an arbitrary initial
state, an error correction procedure (quantized or
non-quantized)will always yield a solution to C(W) in
finite time, with all signals to the R-unit having magni-
tudes at least equal to an arbitrary quantity ¢ 2 0.

*

PROOF: The matrix A is defined as in Theorem 3, so that a;; = a;(.f;) .
We recall that AA' = G . We also define the ma trix B8 such that
b, = 4 a.; (S;) : the matrix # = AB8’; and the diagonal matrix O
such that o = d;; 0; . Note that OO = I, DA =8, and H =DG D.

We first consider the non-quantized error correction procedure.
In this case, no reinforcement is applied unless an error occurs; if an error
does occur (when ,o0:;u; £ ¢ )the quantity ,o; Ax; (Ax; > 0) is added
to the value of each active A-unit, Ax; being chosen so that the input to
the response unit is exactly ;€ (€ >d). It will be shown below that

sucha Ax; exists.

The proof of this theorem (which was first published by Rosenblatt in
Ref. 86) has undergone a number of modifications. The original treat-
ment was insufficient to prove the theorem in a rigorous fashion;
subsequent forms have been due to Block, Joseph, Kesten, and others;
and the present proof owes much to each of these. An interesting
alternative approach, with a slightly modified reinforcement procedure,
has recently been proposed by Papert (Ref. 67) who attempts to shorten
the demonstration and avoids use of the G-matrix. Unfortunately, there
are several logical errors in Papert's argument, the correction of which
would tend to lengthen his demonstration.
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It has been noted previously that the space spanned by the columns
of G is the same as the space spanned by the columns of A (the rank of
G being equal to the rank of A ). Consequently, for any N, -vector V ,
there is an /7 -vector Z such that AV=(GZ.

An arbitrary initial state for the perceptron is represented by an
Ng -vector V° of values for the A-units. Let Z° be a correspondirg
n -vector. Let Z be the /, -vector whose { th component, 2. , is
equal to the total quantity of reinforcement given in all previous corrections

for stimulus S; , i.e.,
= Z p:; 4x; (summing over all previous corrections).

Let U = 62°+ 6Z = 6(2°+2Z) = GD(X°+X) where X°=DZ° and
X = DZ . The ithcomponentof v, w;

3

, would be the input to the
R-unit if S; were to occur at the present time. Let W = DU . This
equation can be written

W= H(X°+X)

where a negative .« (or more precisely, « : £ ¢ ) represents an error.

The x; are always non-negative, and this will be understood for the

remainder of the proof. We now define A/ as the maximum diagonal element,
h;; +»of H . We also define the function of the » -vector Z

”
K(z) = 2'HZ - 26 ), 3

i=/
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We then obtain the following results:

1) The existence of a solution means that there is an A, vector v* such
that for all /

Za}(s;)v}' - wf
J

where «/> 0. In matrix form BvT=w".

2) Consider X'4X for all X suchthat | X| =/ (and of course x; >0 ).
X’'HY = (x'B)(X'B)’ sothat X'HX > O . Suppose X'HX =0 ;then XB =0
Clearly X'W*> 0 ,but X'W*= x'8vV*=0. This contradiction shows

that X‘'HX >0 on this closed, bounded set, so that there exists a minimum

oc > 0 suchthat X'4x > oc||x|? for all X for which x;2 0 for all ¢

Note that M 2> o¢ > O as a consequence. Note also that g¢.. = ;s 2 a > 0.

3) Xx; < v/A Mxl (Schwarz's inequality)
and |X'HY°| € JIHX°| - lIx]| = & hx| (Schwarz's inequality)

4) K (X°+X) - K(X°)

K(X)+ 2X'HX®

cclxl?- 2eymixl - 24 )x1

v

s - (4+erm)?
o
AK(X°+X)
Lol T 2 2up -
3) 2x; wi = 2€
and j:" = h; >0 . This latter relation proves the contention at
3
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the beginning of the proof that Ax; 2 O exists. Specifically, we have
ey

hi¢

ax; =

6) A correction is made for S; onlyif .« < & . Denote the change in A
when this is done by 44 , and by subscript O the conditions before the

correction.
Xiot AX; €
AK(X%+X,) = 2/(%'-6') dx; = 2/;{7(‘«5--6) dw;
¢
Xio “o
€
= Gae)”
i
Ao
2
e (=€)
hii
2
< (e-0)
M

7) From 4) and 6) we conclude that the maximum number of corrections

is

N o< M(l+€/n_)2
- oz(e-d)
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8) Inparticular, if X°=0 and ¢ =0 (corresponding to a perceptron with
a simple R-unit and no initial reinforcement) then £ = j| #x°|| = 0 and
the bound becomes » A/ .

This proves the theorem for the case of the non-quantized
correction procedure, since N is finite, implying that the process arrives
at a solution in finite time. For the quantized case, we have the condition
that Ax; is always 1 when a correction occurs (the vector X representing
the numbers of unit corrections for each of the » stimuli). For convenience,
we take the case where o' =0 and € =M =(9;;),,, - Then in step 6)
we have:
Zig# ! X0t
6a) AK(X°+X,) = 2 (wi-M)dx; = 2 [awi,thii(z;-x;,)-M]dx;
Z Z0
1

= 2w, % Mz‘f-—-u-(x

= 2(;0?, —Alf'-gfi)

£ - M

*
7a) From 4) and 6a) we have that the maximum number of corrections is

2
N g (REMIT)"

xM

An alternative bound, found by H. Kesten, is Lmy( 20, ar; 2+ hi; )
This under some circumstances represents a sh‘rper bound; nonetheless,
both bounds are generally quite poor, as estimates of the actual number
of steps.
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8a) This upper bound is again minimized when X°=0 8o that 4= I HX°I =0.
The bound is then 7~ M/oc

This completes the proof of the theorem for the quantized case.

Q.E.D.

COROLLARY : Given an elementary perceptron, a stimulus world W ,
and any classification C(W) ; then if a solution to C(W)
exists, the set of possible solutions to C(W) has positive

measure over the phase space of the perceptron.

PROOF: From the proof of the theorem, we know that if a solution exists,
there is a strictly positive vector X such that HX = P (where £ isa
strictly positive vector). Let Y be any »n -vector; then ||HY|| < 5 |vll
where b is the absolute value of the maximum eigenvalue of # , or the
normof A4 . Let ,u-”"."" #; > 0 , and let 6‘-/.4/(b+'). Let U

be in the € -sphere around X , i.e., U =P+Y where [V|< € . Let
Z = HY , and let 5 = mex 3. S |Z|| = Hrl < be;— < 4. Then

P * ¥ 2 «w-& >0
HU = H(U+Y) = P+2Z
Therefore, ~U is strictly positive, and ¢/ is an alternative solution.
This means that there is a cone of vectors including X which maps
into the region which contains £ , any such vector representing an equiva-

lent solution. Since the volume of this cone has positive measure over the

phase space, the corollary follows.

-116-

Google



5.6 Additional Convergence Theorems

The theorem in the previous section deals with convergence to a
solution state in an o« -perceptron, trained by the error correction procedure.
In this section, it will be shown, first, that a weaker form of correction
procedure can also be guaranteed to yield a solution; secondly, that
reinforcement procedures in which the magnitude of 57 does not depend on
whether or not the current response is correct cannot, in general, be relied
on to converge to a solution. If a solution state does occur in such a system,

it will be shown that it is apt to be unstable except under special conditions.

DEFINITION: A random-sign correction procedure is one in which some

quantity of reinforcement is applied to the perceptron when an error occurs,
and zero reinforcement is applied when the response is correct. The sign
of 77 is chosen at random, with an equal probability of being positive or

negative, regardless of the response of the perceptron.

THEOREM 5: Given an elementary o¢ -perceptron, with a finite
number of memory states, a random-sequence stimulus
world W , and any classification C(W) for which a
solution can be reached from the starting point by some
reinforcement sequence, then a solution will be obtained
in finite time with probability 1 by means of a random-

sign correction procedure.
PROOF: The random-sign correction procedure consists of a random
walk in which each step corresponds either to a step of the required

correction process, or a step in the reverse direction. In the course of

this process, the vector « (defined in connection with Theorem 4) will
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eventually reach some attainable trapping state with probability 1. But the
only trapping states are in the solution space. Consequently, a solution

will be obtained in finite time.

In Chapter 4, (Definition 40) an S-controlled reinforcement
system was defined as a training procedure in which the magnitude of » is
constant, regardless of the current response of the system, the sign of »
being chosen to agree with the sign of the clfui.ﬁca.tion of the current stimulus,

S:; ,in C(W) . Unlike the methods considered previously in this chapter,
this is not a correction procedure; i.e., the magnitude of reinforcement does
not depend on the occurrence of an error, and only the sign of the required
response is taken into consideration in determining what reinforcement
should be applied. In the following analysis, a solution will be called stable
if, in a given experimental system, all future memory states will also
satisfy the conditions of a solution, no matter how long the experiment

continues. A systern employing a correction procedure, since it receives

no further reinforcement once a solution state is achieved, is inherently
stable. The following theorem shows that this is not the case for an

S -controlled system.

THEOREM 6: Given an elementary X -perceptron, a stimulus world W ,
and some classification (W) for which a solution exists,
a solution can sometimes be achieved by an S -controlled
reinforcement procedure. However, such a solution cannot
be guaranteed for an arbitrary stimulus sequente; and may be
unstable if it occurs.

PROOF: We will first consider a case in which a stable solution does occur,

for the type of experimental system specified by the theorem. Let W consist

of two stimuli, S, and S5, . Let S’ activate some set of A-units, A, ,
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and let S, activate a disjoint set of A-units, A, . Let C(W) assign S,

to the positive class and S, to the negative class. Regardless of the

sequence and relative frequency of S, and S, , it is clear that each
occurrence of §, will augment «, in a positive direction, while each
occurrence of S, will make «, increasingly negative. Since the intersection
A,, is assumed to have gero measure, there will be no interference between
the two stimuli, so that the acquired solution will remain stable no matter how
long the process continues. This example proves the first part of the theorem.
Let us now consider the case of intersdcting A-unit sets. Suppose S; activates
two units, @, and a, , while S, activates units 2, and a, (the unit a,
responding to both stimuli). If the frequencies of §, and S, are equal, their
effect on @, will tend to cancel, and a solution with Y positive, 2, negative,
and 177, equal to gero will tend to occur. As the sequence continues, the magni-
tudes of 7; and 7; will tend to increase without bound, so that the solution
will become increasingly stable as time goes on. Suppose, on the other hand,
that S, occurs with ten times the frequency of §, . In this case, a, will

gain ten units of positive value for every unit of negative value received from
S, » so that v will tend to increase in a positive direction at nine times

the rate that i, progresses in a negative direction. Thus the net signal, «, .
transmitted to the R-unit in response to S, , which is equalto 25 + 2,
will clearly become strongly positive as time goes on, resulting in an
erroneous classification of S, . Even if the initial state of the perceptron
was a solution state (e.g., v; = #/, vy -1, 7 O ) it is clear that

the S-controlled procedure will quickly destroy the existing solution, which

is therefore unstable. Q.E.D.*

H. D. Block has pointed out that, while a solution to C(W) can not be guaran-
teed with a random stimulus sequence, nonetheless if a solution exists then
there exists some S-sequence which will guarantee a solution with S-controlled
reinforcement. In particular, if 6z = « is a solution, then the occurrence of
S; with frequency f; = |z| (for all { ) will guarantee a solution.
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In the example considered above, it is clear that a frequency bias,
in which the stimuli of one class are much more frequent than members of the
other class, can strongly prejudice the perceptron to always give the response
associated with the more frequent class, in an S-controlled system. Sucha
problem would exist,for example, in trying to teach a perceptron to distinguish
the letters "E'" and "X'" occuring with their normal frequency in English text.
Even if all stimuli occur with equal frequency, however, a similar effect
exists if there is a size bias, in which the stimuli in one class activate
more S-points (or illuminate a larger area of the retina) than the other class.
As will be seen in the following chapter, larger stimuli generally tend to
activate more A -units than smaller stimuli, and in the limiting case, the set
of A-units responding to a smaller stimulus may be entirely contained within
the set responding to a larger stimulus. Suppose for example, that 5,
activates units e, and a, while 52 only activates o 5 - A solution which
classifies S, positively and S, negatively clearly exists (e.g., let 2, = +5
and 7, = -1 ) but if the stimuli occur alternately, «, will tend to become
increasingly positive, while u©, tends to oscillate about zero. The reader
can satisfy himself that (starting with O values) a quantized error correction
procedure yields a stable solution to this problem after five stimuli.

In the case of R-controlled reinforcement procedures (Definition 39
in Chapter 4) it makes no sense to talk about the probability of convergence to
solution for an arbitrary classification, C(W) , since the required classi-
fication plays no part whatever in determining either the sign or the
magnitude of the reinforcement. As will be shown later, it may happen
that an R~controlled reinforcement system leads to the acquisition of an
interesting stable response function by a perceptron, but this cannot

generally be guaranteed, and any classification which is achieved is necessa-
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rily one which is selected by the perceptron, rather than by the experi-
menter. The interesting questions concerning such systems deal with the
types of classifications to which they converge, for different kinds of
environments. In particular, we will be interested in any systems which
tend to form classifications on the basis of some concept of stimulus
"gimilarity". It will be shown in later chapters that elementary perceptrons
do not, in general, tend to form classes on this basis except under special,
and highly restrictive, environmental conditions, but that cross-coupled
perceptrons appear to have a striking capability for such ""spontaneous

organization'.

In the preceding theorems, only perceptrons employing alpha
system reinforcement have been considered. The remaining two theorems
consider two departures from this model. The first demonstrates that an
even weaker form of reinforcement than that'in. the random-sign cofrection
procedure can guarantee a solution in finite time, provided it is employed in
a correction procedure, in which the application of reinforcement depends

upon the occurrence of response errors. We define a random perturbation

correction procedure as a reinforcement process in which, if an error occurs,

reinforcement is applied to the active A-units, as in the o¢ -system, except
that the magnitude and sign of # are both chosen independently and
separately for each reinforced connection in the system, according to some

probability distribution.

THEOREM 7: Given an elementary perceptron with a finite number
of memory states, a stimulus world W, and a classi-
fication C(W) for which a solution can be reached
from the starting point by some reinforcement sequence,
then a solution can always be obtained in finite time by

means of a random perturbation correction procedure.
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PROOF: The reinforcement process is a random walk, which (for the

given conditions) will eventually take the representative point of the system

to every attainable point in phase space. Since the number of points is assumed
to be finite, a solution must be reached in finite time.

Of the three reinforcement procedures which have been shown
to guarantee solutions in elementary perceptrons (error correction, random-
sign correction, and random perturbation correction procedures) the first
is clearly the strongest, and can be expected to converge most rapidly. The
random perturbation procedure will converge most slowly, since it must
hunt through a large domain of the phase space of the system before achieving
a satisfactory terminal state, and is not guided during this process by any
directional constraints. In this respect, it shares many of the difficulties
of Ashby's homeostat (Ref. 3); but it shares the virtue of the homeostat as
well, that if the solution space is attainable, it will utlimately arrive at a
solution no matter how complicated its functional representation may be.
The random sign and random disturbance procedures may prove to be of
interest in biological models, since the only information required for the

control of reinforcement is whether or not an error has occurred.
In practice, it will be seen that a gamma system (Definition 38,
Chapter 4) generally works at least as well and sometimes better than an

alpha system. Nonetheless, the following theorem indicates that this
system lacks the true universality of the alpha system.
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THEOREM 8: Given an elementary 7' -perceptron, a stimulus
world W , and a classification C(W) , it is possible
that a solution to (C (W) exists which cannot be ‘
achieved by the perceptron.

PROOF: Let each A -unit be activated for at least one stimulus in W ,
and let each stimulus activate a disjoint set of A-units. Let the classification
function (W) be one which assigns every stimulus to the same class, either
positive or negative, A solution clearly exists, if the values of all connections
are positive (or negative, as required by the classification). But if the initial
state of the system is one in which all values are zero, or of the wrong sign, a
solution can never be achieved by the gamma system, since a solution requires
that the total value of each set A, of units responding to 5; , and
consequently the total value over the entire A -set, should agree in sign

with the classification. In the gamma system this is impossible, since the
injtial sum of the values is constant. The conservative property of the gamma
system gives it one degree of freedom less than the alpha system, making it
impossible to achieve a solution to such problems unless at least one surplus

A -unit (which does not respond to any stimuli) exists.

The two remaining theorems were proposed by Joseph (Ref. 42),
and establish useful diagnostic procedures for determining the existence of
solutions in both alpha and gamma system perceptrons. As in Theorem 3,

the activity function of the A -unit @; is defined as

1 if a, is active for SJ-

*
a; (5;) =
0 otherwise
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For any » -vector, X , with components X4 o the bias number of a-

with respect to X is defined as

n
bi(X) = ), 24 @] (S4)
£=1

This quantity is clearly related to the bias ratio (defined in 5.4)if X is
taken to be the class-assignment vector for the » stimuli. We will denote
by X* any »n -vector X whose components x; do not disagree in sign with
the required classification, C(w) , i.e., X; 20 if S; is in the positive
class, and X < 0 if 5; is in the negative class. x* will denote a

vector in which the inequalities are strict (no zero components).

THEOREM 9: Given an ¢ -perceptron, and a classification C(W) , a
necessary and sufficient condition that the error correction
procedure reach a solution (in finite time, with arbitrary
starting point) is that there exists no non-zero X *  such
that 4, X% =0 forall (.

PROOF': For conveneince, an un-normalized G-matrix will be assumed.

For such a matrix,
» *
9,4 = nja = 2 al(5;)al(54)
]

where n:4 is the number of A-units in the set responding to both S ; and S,

Hence, for any » -vector X ,
. #
X'GX = Z X; %4 954 -Z z;xg a(5;) ai’(54)

Jy C;Jv 4
But

2
Z'[bl.(x)]z = Z [ZIJ- a.;(SJ-)} = Z x; x4 af(Sj)a;(S,‘)

iy, 4
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Hence  x'6x = ) [4; (x)]z

If the condition of the theorem holds, then X'6X¥ #(0 for
x=x% , X% 0 . Butfrom the proof of Theorem 4, it can be shown
that X’6X 2 a||x|’for X = X* , where @ >0. Then the proof of the
correction procedure in Theorem 4 applies, and a solution exists, so that

the stated condition must be sufficient.

If the condition does not hold, then there is a non-zero X*
such that X’Gx =0 .. Since G is positive semidefinite, this implies that
X'6 =0 . Thus, X is orthogonal to all the columns of G , and hence

to any linear combination of the columns of G . Since for an arbitrary
vector Z , GZ is a linear combination of the columns of G , GZ is
orthogonal to X . X% cannot be orthogonal to any vector ¢/ in which
the signs of all «; agree with C(W), and hence it follows that there cannot
exist vectors 2 and ¢/ suchthat G6Z = .. This means that there
exists no solution to the classification problem, so the condition given must

be necessary. Q.E.D.

COROLLARY: For an oc -system, the condition that there exist no
non-zero vector X% such that b:;X* =0 forani
is equivalent to the condition that there exist Z and
v such that GZ = / (where ¢ is in the same orthant
as C(W)). Alternatively, this condition is equivalent
to X'6X+ 0 for all non-zero X* .
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THEOREM 10: Given a 2 -perceptron, and a classification C(w), a
necessary and sufficient condition that the error correction
procedure reach a solution (in finite time) is that there
exists no non-zero X* such that b; x* = ¢
for all ¢ .

PROOF': For the 3" -system, the normalized G matrix consists of

elements
/ ¢ !/
9ia = nia = 7 nina = D al(s)) a{(sa) - 7= L @f(5;) an(sa)
¢ &h

It is readily seen that G is symmetric. For any » -vector X , X'GX
is given by

’

X6X =) x; x4 9;a
Jo

D % xg ai(S;) al(se)- '/v’: D% x4 al(s;) af(5e)

"’Jr‘ hyiry,k

We now define b'(X) as
b)) = —— ) b (X)
Ny &

From this, we see that

2
Z; [6:00 - 6%x]) = Z: [6:000) - w, [N—'a Z b; (X)]

/
= Z x; xq4 al(S;) al(54)- =~ )i x; x4 al(S;) ap(54)
Y Na j=iia
" 1 8sdy
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Hence X'6X = Z [b;()() - b’(X)]z .

R

From this it follows, first of all, that G is positive definite or positive
semidefinite, as was the case for the oc-system. Secondly, it is seen
that X'GX¥=0 ifandonlyif 4;(X)=.c forall { . The proof now

proceeds exactly as in Theorem 9.

COROLLARY: Fora 7 -system, the condition that there exists no
non-zero vector X¥* such that b; X* = o for
all ¢ is equivalent to the condition that there exist Z
and U suchthat G6Z = { (where {/ is in the same
orthant as C(W) ).

In practice, it is often possible to show that a given perceptron
does not permit a solution to a given classification problem by substituting
the classification vector itself, C(W) , for the vector X* in the above
theorems, and computing the 4; . If these turn out to be zero for all
A -units, then no solution exists for either the alpha or gamma system. If
they are a constant other than zero, a solution. may exist for the alpha
system, but not for the gamma system. If they are not all identical, then
a solution may exist for either system. While it is sufficient to take the
components of X* to be integers, the vector with all components x; = £/

1

is not always sufficient. For example, if the a;(s‘- ) matrixis (1 1 1

the 5; will all be anihilated by X = (1, -2, 1), butnotby X = (7,-1,1).
The condition for the o¢-system is equivalent to the requirement that there
should be no vector in the same orthant as (W) which is orthogonal to the

linear manifold spanned by the activity vectors of the A-units.
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6. Q-FUNCTIONS AND BIAS RATIOS IN ELEMENTARY PERCEPTRONS

Thus far, we have been mainly concerned with the general

""qualitative' properties of elementary perceptrons. In the present chapter,
the groundwork for a quantitative analysis of their performance will be
presented. In the theorems of Chapter 5, it was shown that the existence
and attainability of solutions, in an elementary perceptron, depends strongly
on the properties of the G -matrix. Each element of this matrix, ¢, S
is a measure of the generalization of reinforcement from stimulus S ; o 5
This generalization coefficient, 97 varies with the measure of the set of
A -units which respond jointly to S; and § ;- Until now, the actual
quantitative measures of these sets have not been taken into consideration,
and only the formal properties of the matrix G have been considered. The

@ -functions, which are introduced in this chapter, represent the probabili-
ties that an A -unit in a specified class of perceptrons will respond to a
particular stimulus, or will respond jointly to a designated set of stimuli.
These Q -functions not only determine the expected values of the generali-
zation coefficients, ¢ o but enter into the analysis of variability of

perceptron performance as well, as will be seen in the following chapter.

6.1 Definitions and Notation

The @ -functions, defined below, are always specific to a
particular class of perceptrons in which the origin point configurations of
the A -units have been selected according to some designated set of rules
from a specified S-set or retina. The functions @ are defined only for
, which are said to be active if the algebraic sums

simple A -units, a;

of their input signals, oc; , are equal to or greater than their thresholds,

[
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6; . For such A-units, Q represents the probability of drawing an
A -unit at random from the specified distribution which responds to each of

a specified set of stimuli. The notation employed is as follows:

@; = probability that an A -unit in a specified class of

perceptrons responds to stimulus §; .

QZJ' = probability that an A -unit in a specified class of
perceptrons responds to stimulus S; and also to

stimulus S5

Q..m = probability that an A -unit in a specified class of

perceptrons responds to each of the stimuli §;,S;,..

6.2 Models to be Analyzed

Three types of models will be considered which differ in the
rules by which connections are made between S-units and A -units. It turns
out that for the three cases, the distribution of input signals to the A -units
is expressed in terms of binomial, Poisson, and normal random variables,

respectively. These models are therefore named binomial ,Poisson, and

Gaussian models.

6.2.1 Binomial Models

In a binomial model the input signal, o¢; , received by
unit @; , is distributed as the difference of two binomially distributed
random variables. This model characterizes a type of perceptron in which

each A -unit receives a fixed number of connections from the "retina',
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(s) BINOMIAL MODEL, WITH x =8, ¢ =2

S INPUT CONNECTIONS
TO EACH A-UNIT, WiTH
RANOOM ORIGINS

00000000

$-UNITS A-UNITS

(b) POISSON MODEL, WiTH CONSTRAINED ORIGINS

(&= S
o
0999
5 OUTPUTS FROM ogoo 8
EACNS-UNIT, 9089
WiTH RANDOM Q9009¢ o
TERMINATI0KS 909o
oo o
o
S s-unTs A-UNITS
(c) POISSON MODEL, WITH RANDOM ORIQINS
o +
0o
%900 -y O
8898 I—r—r 3
000 o o
0o go = o
Q0 8
00 =
(4 = o
s-UnITS 1 A-UNITS

ORIGIN AND TERMINAL POINTS
CHOSEN AT RANDOM FOR EACN
CONNECTION

Figure 6  ILLUSTRATION OF TYPICAL S TO A-UNIT CONNECTIONS (ARROWHEADS
INDICATE RANDOMLY SELECTED TERMINATIONS). IN GAUSSIAR MODELS,
THE VALUES OF THE CONNECTIONS (SHOWN HERE AS £ /) ARE NORMAL
RANDOM VARIABLES.
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consisting of exactly x "excitatory" and y "inhibitory'" connections. Each
of the excitatory connections has the value +l1, and each inhibitory connection
has the value -1. The threshold, 9@ , is assumed to be fixed for all A -units.
The origins of the connections to an A-unit are selected independently, with
uniform probability, from the entire set of S-units (or retinal points).
Specifically, a set of equiprobable origin configurations can be constructed
ae follows: Let there be 7 connections, numbered from 1 to ¥ . Let the
S-units be numbered from 1 to A, . Then the set of all possible sequences
of ¥ integers, each having a value inthe range /< n £ N, corresponds
to the complete set of A-units. In this model, the number of distinguishable
A-units possible for a retina of A, points is (N“‘ ;x - 1)(”‘ *y'-' - ’) *.

In the binomial model, @ functions do not depend on the number
of sensory units, but on the fraction of them which are illuminated. A variation
of this model has been analyzed in Ref. 79, where the additional constraint is
introduced that no two connections to a single A -unit can originate from the
same S-unit. It has been shown that for moderately large numbers of S-units,
this model is practically indistinguishable from the true binomial model

described above.
6.2.2 Poisson Models

In a Poisson model, o¢; is distributed as the difference of
two Poisson-distributed random variables. In this model, it is assumed
that the number of 'input connections to an A -unit is not fixed, but is a
random variable. The model corresponds to one of two situations, the

equations for the Q -functions being identical for both:

The derivation of this formula can be found in Feller, Ref. 21, page 52.
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(1) In the constrained origin model, each S-unit emits a fixed number of

output connections, consisting of ¥, excitatory, and ﬂy inhibitory connections
{with values +1 and -1, respectively). Terminal points are selected at random
from a set of N, A-units. For the model to hold exactly, A, and N,
should both be infinite, the ratio NA/Na being a parameter of the system.

For finite A, and A, , the model remains a close approximation.

(2) In the random origin model, a set of /, excitatory and Ny inhibitory
connections are each independently assigned an origin and a terminus at
random, from a set of S-units and A-units, with uniform probabilities. In
this case, for the model to hold exactly, the numbers N, ., N, and A,
should all be infinite, with -N"—A;NL being a parameter of the system;
as in the previous case, however, the model is a close approximation for

finite systems.

In the Poisson model, for Case (1), the number of possible A -
units is (Y, + 1) Na (7)9 +1) Mo . For Case (2), the number of
possible A -units is (Ny+ l)N‘ (Ny +1) Ne | The binomial model, the
constrained-origin Poisson model, and the random-origin Poisson model
yield increasingly large sets of possible A-units, for the same numbers of

S-units, A-units, and connections.

6.2.3 Gaussian Models

In the Gaussian case, o¢; is distributed as the difference
of two normally distributed random variables, i.e., o¢; is normally
distributed. While both of the above cases converge to a Gaussian model
as the number of input connections to an A -unit becomes large, we shall
be concerned here with a model in which the number of connections remains

finite, but the valuea of the connections are normally distributed.
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6.3

Analysis of Q;

For both the binomial and Poisson models, (; , the probability

that an A-unit is activated by stimulus S; , is given by the probability that

the total input signal of is equal to or greater than the threshold, @&

Specifically,
(6.1)
Emax E-6
Q= D Pla) =), Pu(E) (D) =), ), PelE) B,(X)
=8 £-I20 E=@ I=0
where

¥ for binomial model
I3
mez | oo for Poisson model

P, (E) = probability that exactly E of the excitatory connections
to an A-unit originate from active S-points.
Py( I) =  probability that exactly I of the inhibitory connections

to an A -unit originate from active S-points.

For the binomial model,

Py(E) = X)R;E r-r;)* "€
o©) = (2) R (1-2;) 6.2

Py(1) = (;)e;’(f-e,-)"z

where #; = fraction of retinal points (S-units) activated by stimulus S,

For the Poisson model,

(E-Z)E -R: X
P (E) = —+L21 ., t
2(E) E! € (6.3)
(e _)z 8.7
p,I) = __9_lZ_ e Y
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expected number of excitatory input connections

N|
]
b3
N
N
‘s
1

where
to an A -unit.

expected number of inhibitory input connections

<
n
RS
<
>
»
"

to an A -unit.

P(x¢) for the Poisson model can be expressed alternatively by
the following identity {pointed out by Prof. H. D. Block):

Plx) = P{le-i) =a} . e""'(i*?)(gl)“/’,“(”; 77)

Where Z,(x) is a Bessel function of an imaginary argument, given by

2 (3)7
I,(x)= = = (TP, (ix)
o yz__:,‘, P

The use of this equation makes it possible to compute @ -functions
for the Poisson model by hand, with the aid of tables of Bessel functions (c.f.,
Ref. 37, pp. 224-233).

For the Gaussain model, equation (6.1) requires an additional
factor representing the distribution of value for each of the connections.
Specifically, if the absolute values of both excitatory and inhibitory connectione
are distributed with mean .. and standard deviation o , we have

Emaz Imﬂl °
@ =2, 2 Pu(E) P(X) ] $(Dgyr)dD
E=0 I=0 (6.4)
D=6
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where
, ! (Bt )2

_ e

21 o,

¢(DE'1) =

Mp = E#—I

of =(€+1)e?

Pz(E) and Py (I) , in equation {6.4) are given either by (6.2) or (6.3),
depending on whether the number of input connections to an A-unit is fixed

(as in the binomial model) or random (as in the Poisson model).

Figures 7 and 8 show representative families of curves for Q:
as a function of £; , for the binomial and Poisson models, respectively.

Note that both models are very similar in their basic characteristics.

Specifically:

1. In all cases, for R; <.5 and X 2 y , @, increases monotonically
with 2,

2. For purely excitatory models (y = 0) @; goesto 1.0as R;

approaches 1.0. (Figures 7a and 8a).

3. For models with 6> x-y, Q; goes to zero as &; approaches 1.0.
(Figures 7b and 8b).

4, For xz =y , @; tends to remain invariant except for very small or
very large values of A; . The range over which Q; tends to
remain constant is increased if the number of connections becomes
large (Figs. 7c and 8c). In the limit, with small 6 and large X
and y , @; approaches .5 for all values of R; except 0 and 1.
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L Keeping x fixed, then for small & , Q; is generally greater
for the binomial model than for the Poisson model. For large &, @;

is greater for the Poisson model.

6. For the binomial model, Q; = O for x <& while for the Poisson
model, Q; =0 onlyif Z=0.

6.4 Analysis of Q;;

()

is the probability that an A-unit is activated by each of

two stimuli, S; and §; . For both the binomial and Poisson models, Q:;

can be expressed by the equation:

@y =
where 6 =
E} =
£ =
t'c =
1} =
I; =
I . =

Google

{6.5)
P (E;, E;, E.) PV(I"' IJ-,I‘)
Et+ET T 20
E+E-I;-I .20

threshold of A-units

number of excitatory connections originating from points
illuminated by S; but not by S;

number of excitatory connections originating from points
illuminated by S; 'but not by S;

number of excitatory connections originating from points
common to S; and S;

number of inhibitory connections originating from points

{iluminated by S; but not by SJ-

number of inhibitory connections originating from points
illuminated by S; but not by S;

number of inhibitory connections originating from points

common to 5; and 5,,'
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The point sets involved in the analysis of Q; ; are illustrated in Figure 9.
For the binomial model, the required probabilities are given by the multi-

nomial equations:

x! E , E; E X-£-E-E
P . . = 2 StAa Vet e(1-A-A .~ t v T«
e (€0 E;,EL) ETETE (B E-E)1 A HAYCTE(1-A-A;-C)
-16.6)
! Ir. I:_I - -I:-
8T 1, 1) = P aiagete(r-a - c) T R

LILILI(y-T~L;-L)

where C = proportion of retinal points illuminated both by S; and S; i

P
"

R; - C where R; is the proportion of retinal points illuminated

by S; .

>
(]

R; - € where £; is the proportion of retinal points illuminated
by 5;

_ For the Poisson model (where X and y are the expected numbers of

excitatory and inhibitory connections to an A -unit),
-1 XA, \E XA £ -XC,_ &,
RUE; £ E) = (B EjtE D) "o T RAD ¢ TIRA V- THRC)E (g 4
- —gA T A L ~yC_ T,
BT 1, L) = (D11 1.0) e Y (ga; ) e Y (GA) Y e Y (5) <

As in the case of Q; , the Gaussian model for Q"j requires
an additional factor representing the normal distribution of connection values.

The components of the input signal, o&¢ , which originate from the unique

S-units in §; , the unique points in § H and from the common retinal
set are designated 0; ., O; , and O, , respectively. By analogy to
(6.4),
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o; = (&-1;)

% = (5-5)

o, =(&-1)
sp, = Eppe = Ipse
=(Ep+Ip)a’

P(0yp) = ¢(D£-p,.t,a) ; defined as in (6.4).

Then,

= Z, PX(E;'DE./"E‘)P,(I",IJ‘,I‘) (6.8)

‘I
{,,r 71 ‘n »I‘}
o0 [ oo

d(0.) $0;) 4(0;) 4B, &0; d0;

f=-00 D;=0-0, 0;=0-0,
For some purposes, the distribution of the input signals, o¢; , and o, , is
of interest. The joint probability, AP(e«;,e¢;) , is given by

(e Z B (E E E)PY(T;, 15, L, )/¢(~:-q,)¢(-‘.;-0;)40: (6.9)
Y AL LS

It should be noted that Q; » Q,; is a special case of these equations, for

0= - e

which A; = AJ- = C . Tables of Q;’j for binomial and Poisson models

have been published in Ref. 87.

Figures 10 and 11 illugtrate the quantitative properties of Ui
as a function of C , the measure of the intersection of stimuli $; and Sj

on the ""retina'". For convenience of representation, Q; ; is actually plotted
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as a function of the relative intersection (or proportional intersection), C / R,

R; and R; being equal for all cases shown. Note that for C/R =/ ,

v
Q:; = @;; = @ - The main features of these curves are:
1. In all cases, Q;; increases monotonically with C
2. For large 6 , Q.‘j tends to remain close to zero, except for

stimuli which approach perfect identity ( C/R close to 1.0).

3. For large values of R , Q:; tends to accelerate more rapidly

as C approaches 1.

4. For the binomial model, Q;J- for disjoint or well separated stimuli
( C » 0 )mayhave a maximum with respect to & . This effect

is not found in the Poisson model. (Figs. 10c and llc.)

5. For equivalent parameters, Q"j tends to show a sharper ''shoulder"

in the binomial model than the Poisson model.

The second of these properties is an important factor in
determining the discriminative capability of a perceptron. It is shown best

in terms of the conditional probability, Q.-’ j » that an A-unit which responds

to §; also responds to §; . Q"IJ is equal to QZJ/QJ , and is shown for
several typical cases in Fig. 12. Note that for large values of @ , the
probability that an A -unit responding to § 7 responds to a second stimulus,

S.

. » is virtually zero, unless the stimuli approach perfect identity. The

difference between the binomial and Poisson models is shown most clearly
in Figures 12(a) and 12(b). Figure 12(c) demonstrates that the conditional
probability depends only slightly on stimulus size. Additional curves for
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these functions can be found in Refs. 79 and 80.

In analyzing the gamma system, it will be seen that the
conditions under which Q‘-J- - q; QJ are of particular interest, since. for
the gamma system the expected value of 9 is zero for such conditions.
In the binomial model, Q; ;- Q; Q if C =R; RJ- . This condition
will tend to be met if the stimuli are randomly chosen sets of S -points,
the expected intersection of any two such sets being equal to the product of
the measures of the sets. It can readily be seen that under these conditions,
the probability that an origin point which is in Sj is also in §; is the same
as the probability that an origin point which is not in SJ- happens to be in §;
in other words, the probability that the origin of a connection is in SJ- does not
depend on whether or not it is in S; and consequently the response to S;
is independent of the response to §; , yielding Q; i Q;Q; - In the Poisson
model, however, Q.‘j =-q; Ql- only if C= O (i.e., for disjoint stimuli) since
the connections received from any disjoint subset of S-units are independent

of connections (or signals) from any other subset.

6.5 Analysis of Q4

In the following chapter, it will be seen that the expected responses
of a simple perceptron can generally be determined from the functions Q;
and Q;j . The variability of performance in a class of perceptrons, how-
ever, will be seen to depend on the joint probability, Q; 4 that an A -unit
responds to each of three stimuli, §; , S; - and Sq - The equations are a
straightforward generalization of those employed in the last section for @
Specifically, there are now seven excitatory and seven inhibitory signal

components to be considered:
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E, =

<
]

£q =

™
"

E.‘ =

Eija

_excitatory signal from S-points responding to S;

Excitatory signal from §-units responding to S;
but not to SJ' or Sg

excitatory signal from S-units responding to § j
but notto §; or S‘

excitatory signal from S-units responding to S,
but notto §; or §;

excitatory signal from §-units responding to S;
and §; but not Sg

[3
and S§4 * but not S;

excitatory signal from S-points responding to SJ-

and §4 but not §;

excitatory signal from S-points responding to all

three stimuli.

Inhibitory components are defined analogously. This yields the equation:

Qja = 2 PulELE;, 608 Eu o Ei) By Ui T;. T Ty Lo L g Fija)

where

;26
«; 20
g2 6

o =E v E; +Eq v Eig~ 1 -1 -L - Ty
«; = £ + E‘J +E4* Eij‘- -1 "I‘-J‘IJ“"I"J-‘

g Eqt Eiq v Eqt By~ T~ Tiy-Ly-Iiiy
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The multinomial and Poisson probabilities employed in (6.10) for the
binomial and Poisson models, respectively, are obtained by extension
of (6.6) and (6.7), with appropriate measures for the various double and

triple intersections among the stimuli.

6.6 Bias Ratios of A -units

Bias ratios were defined in Section 5.4 as the ratio of the
number of stimuli in the positive class to the number of stimuli in the
negative class, which activate an A-unit. In Theorem 2, it was shown
that there must be some variation in the bias ratios of the A-units in a
perceptron, if a solution to a given classification is to exist, and Theorems 9
and 10 showed that the closely related ''bias numbers' yield necessary and
sufficient conditions for solutions. Clearly, the distribution of bias ratios
depends on the probabilities Q; jem that the A-units will respond to
various possible sets of stimuli, §; , ) 1 oeer Spy o Rather than undertake
a detailed analysis of bias ratios, empirical data are presented for a typical
case, to illustrate how we might expect the '"'responsiveness' of A-units to
different classes of stimuli to be distributed. These data were obtained by
a Monte Carlo procedure, in which 10,000 A -units were tested on a digital

computer to determine to how many stimuli of each class they responded.*

The program, was written by A. Geoffrion, for the Burroughs 220
computer at Cornell University.
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The "retina'' consists of a 20 by 20 mosaic of S-units , and the stimuli con-
sist of 4 by 20 bars, placed vertically or horizontally on the retina, in all
possible positions. The retina is assumed to be toroidally connected, so

that bars placed near one edge of the field may re-enter at the opposite

edge. Thus, there are twenty possible horizontal bars (the positive class)
and twenty possible vertical bars (the negative class). This universe will

be used as a standard one in 2 number of learning experiments.to be

analyzed in the following chapten." Table 1 shows the number of A -units
out of 10,000 responding to each possible combination of N+ horizontal bars
and N~ vertical bars. An A-unit which responds to 4 horizontal and 6 vertical
bars, for example, is tallied in the 5th row and 7th column of the table. Each

A -unit had five excitatory and five inhibitory connections, and a threshold of 2.

For stimuli which are more similar to one another (in terms of
possible intersection of S-sets) than horizontal and vertical bars,- we would
expect to find the A -units less well distributed, and a greater concentration
around the diagonal. One would also expect that in a universe in which the
stimulus classes are less symmetric in their properties, the distribution
of A-units would be less symmetric than that shown in Table 1. Table 2
illustrates both of these features. In this case, the "positive' class
consists of 4 by 20 horizontal bars, just as before; the '"negative'' class,
however, consists of a set of 6 by 20 horizontal bars. Again, there are
twenty members of each class, but the maximum intersection possible between
stimuli of the positive and negative class is much greater than before, and the

size difference introduces an asymmetry which was not previously present.

i
The toroidal retina has the convenient property of being unbounded and

isotropic, with a finite surface. Any relations which hold for a set of
stimuli projected onto the retina hold equally well if all stimuli are
displayed by any combination of horizontal and vertical translations.
This model (with Born-von Kirmén boundary conditions) is easier to
analyze than a spherical retina which has similar properties.
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TABLE |

JOINT DISTRIBUTION OF 10,000 A-UNITS, WITH RESPECT TO NUMBERS OF

HORIZONTAL BARS AND NUMBERS OF VERTICAL BARS TO WHICH THEY RESPOND

N'
(HORIZONTAL BARS)

BN EDN - O

% x 20 AND 6 x 20 HORIZONTAL BARS TO WHICH THEY RESPOND

(]

o 7

'

: =

N* 3 18

(v x 20 BAR3) ¥ !
5 (]

] 0

7 )

s 0

Google

36
724
250

2
507
572
19

(VERTICAL BARS)

TABLE 2
JOINT DISTRIBUTION OF 10,000 A-UNITS, WITH RESPECT TO NUMBERS OF

L]

b Fel
308
38!
343

N
(6 x 20 sAR3)
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While the joint distributions illustrated here are not of great
utility in analyzing perceptron performance, they provide considerable
insight into what takes place within the association system when a perceptron
learns a classification of stimuli. Units situated on the diagonal (i.e., units
which respond equally to both classes of stimuli) are essentially ""duds'’; they
contribute little to a discrimination, and are as likely to be reinforced
positively as negatively. A-units which have a strong bias towards one class
or the other, however, (those situated in the upper right or lower left corners
of the tables) are useful '"discriminators''. In learning a classification, the
perceptron relies on combinations of such units, transmitting large-valued

signals, to establish a bias towards the proper class when a stimulus appears.
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7. PERFORMANCE OF ELEMENTARY o¢c -PERCEPTRONS IN
PSYCHOLOGICAL EXPERIMENTS

So far, only the formal properties of elementary perceptrons
have been analyzed, without regard to particular experimental situations
or procedures. We are now ready to begin a quantitative analysis of the
performance of these systems in "psychological" experiments, i.e.,
experiments in which the procedures and observations are analogous to
those which might be performed on a biological organism. A number of
such experiments were defined in Part I, Section 3.3. In this chapter, we

shall be chiefly concerned with discrimination experiments (c.f., Section 3.3.1),

since the capabilities of elementary perceptrons are largely limited to this
category. Before going'on to other types of systems, however, we will
consider what kinds of behavior might be expected of an elementary
system in generalization experiments, figure detection experiments, and
other problems which were discussed in Chapter 3. The analysis of
discrimination experiments which is reported here is basically similar to
that which was originally presented in Ref. 79. The former models have
been substantially simplified, however, and the analysis has been made

more rigorous, thanks largely to the work of R. D. Joseph, (Ref. 41).

7.1 Discrimination Experiments with S-controlled Reinforcement

The first problem to be analyzed is that of a discrimination
experiment in which the perceptron is presented with a sequence of stimuli
from an environment, W , and is reinforced for each stimulus in the
sequence in accordance with a predetermined classification, C(W) , with

the reinforcement control constant, )/ , taking the sign of the required
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response. The perceptron is then shown a test stimulus (S;) and the

response to this stimulus is determined. The measure of performance for

a class of perceptrons (characterized by the parameters N, , 6 , x , and

y for a binomial model or by N_‘/Na » 6 , X , and i for a Poisson model)
is the probability that a perceptron from the specified class will give the
correct response to S, after having been ''trained" with the specified

sequence of stimuli.

7.1.1 Notation and Symbols

the ; th stimulus in the environment

SJ. =

o = +1if 5; is in the positive class

J -1 if SJ- is in the negative class

. th :
. 1 if the {  A-unit is active for SJ’ Sgr---» and Sy
a.‘-(jl..z) =
0 otherwise

Qa..x = Ea’(;4..x) = probability that a’(;4..z) =/

(as defined in Chapter 6)
T = duration (number of stimuli) of the training sequence

value of the connection from the ¢ th A -unit after the

v (T)
training sequence

Cip(2) = &lm(x,T) = a(z)v;,(T) = signal received by the
R-unit on connection ;.
when test stimdlls S, is
shown after the éruining
sequence. The time 7 will
be understood unless other-

wise specified.
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Uy = oz,’.[(r) -Z;c‘-:,(z) = total input to the response unit when S, is shown
¢
after the training sequence. For present purposes,
the symbol «, will be used, as in Chapter 5. Time

7 is understood unless otherwise specified.

In terms of these symbols, the reinforcement rule for a quantised
oc -system, with S -controlled reinforcement, can be represented by the

following expression for the change in 2, when stimulus S ;s shown:

Avip = B (] (])

7.1.2 Fixed Sequence Experiments: Analysis

The first case to be considered is that of a fixed training sequence,
in which a definite sequence of stimuli (S, , S,,..., S; )is shown to the
perceptron. In a later section, random training sequences will be considered.
The fixed sequence consists of a fixed (though not necessarily equal) number
of showings of each stimulus. For «¢-perceptrons, the order of occurrence
of these stimuli does not affect the results. All values <, are assumed to
be zero initially. The following analysis and theorem follow the treatment
of Joseph (Ref. 41).

If a given perceptron is shown a training sequence, it will place
a test stimulus- S, in the positive class if ., is greater than zero, and in
the negative class if ., if less than zero. For the given perceptron,

training sequence, and test stimulus, «, is a determinate number.
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Over the class of perceptrons, however, «, is a random variable.

In order to determine the probability that a perceptron from the specified
class will classify S, correctly, we must know the probability that «,
has the correct sign. In order to obtain a conservative bound on the
probability of correct response to S, , without making any assumptions
about the distribution of ¢ z Joseph makes use of the Tchebysheff
inequality, which states that for any random variable 3 with mean .

. 2
and variance ~ ,

Prob {3>0}2/-——2/,72— if >0
s

1

Prob {3<O}2/-W if <0

Consequently, if the ratio ,u.z(u.z)/a‘ 2(4.4.1) can be made arbitrarily large,
the probability that «, for a randomly selected perceptron will agree in
sign with its expected value over the class of perceptrons can be made
arbitrarily close to l*. It thus becomes important, first of all, to know

whether or not the expected value of «, has the proper sign.

2
Joseph, has pointed out that if the one-sided inequality Pr{yz-u2/}< ;,—o:,‘r
is used in place of the two-sided inequality A, {|3-.x|2/} < o2,
slightly sharper bounds may be achieved, i.e.,

P"{3>o}"-ﬁﬂ-’7‘sj- if >0
b {30}t e i m<o

In the range of interest, this additional sharpness is insighificant..
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DEFINITION: Sx will be called a positive stimulus (with respect to a

class of perceptrons, an environment, classification, and training sequence)

if the expected value of «_, agrees in sign with the assigned class of 5,
In terms of the symbols introduced above, S, is a positive stimulus if
zoz * E(“‘Z) >0

The expected value of «, for an o¢ -perceptron (assuming
that all A-R unit connections start out with zero value) is obtained as
follows. Let p; = the number of times stimulus §; occurs in the
training sequence, divided by 7 , the total number of stimuli in the
sequence (i.e., the proportion of the training sequence which is 5; ).
Then the value of the connection from unit @; at the end of the training

sequence will be (since the magnitude of »  is taken to be 1)
»
Vip = T), 5P 2l () (7.1)
v

where the sum is over all stimuli in W . Consequently, summing over all
A-units, the input signal to the response unit when the test stimulus Sz

occurs will be

u,=r;;gi}c;’(;z)-;c§(z} (7.2)

The expected value of «, is therefore given by

S5 T ein)

LY AL E ()
4

Eu.x

L% %
(7.3)
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From the above definition, it follows that S, is a positive stimulus (and

will tend to be correctly classified) if
Zv A Py F; Qx>0
J

From Equation (7.3) it is clear that £«, increases linearly
with N, . Let us now consider the variance of «, . This is obtained

from the equation:

a—’(u.,) -Z r‘(c‘-',. (z))+z: ; cov. [c,':.(x), cflf(l):l (7. 4)
K [

For the conditions currently being considered (an o¢ -system with a
predetermined training sequence) the only source of variability in ,c:, (=)
is in the selection of the origin point configuration of the unit @; . But if
we assume (as in all models thus far considered) that the A-units are all
chosen independently from a distribution of admissible origin configurations,
the covariances will all be zero, and a"(c;:.(z)) does not depend on ¢
Therefore, the general equation (7. 4) reduces to

2
o (uyg) = N (cip (x)) = N, [Ec,-‘:. (0 - £2c8 ()] 7. 5)

(See Rosenblatt, Ref. 79 , pp. 82-83, for a more detailed algebraic

discussion of this equality). Now, for an of -system,

»
cip () = T2 46 4] (G0)
and

F
ar =712} ; 2 Pa B Paal(iAx)
J

This yields, for the required expected values in (7.5),
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2
£a i@ = 11T 400 B P Gian
and Jj 4

Ele.ff(z) a 722;4.,‘&& Qx Quz
J

Substituting in (7.5) and simplifying, this yields

fz(uZ) = Nﬁrz;; ﬁjﬁ,‘ e P‘ (Qj‘l - ij 0‘1) (7 6)

Note that the variance depends on QJ-‘ xz » While the expected value depends
only on @Q;y . This variance, like the expected value, is of the order of

Ng . We are now in a position to prove the following theorem (due to
Joseph):
THEOREM: Given a class of elementary oc¢ -perceptrons, a finite

stimulus world W , a classification C(W) , and a
training sequence; then for every € > 0, there exists
an ANp(€) such thatif AN, > N, () , the probability
of selecting a perceptron which will correctly identify
the class of every positive stimulus will be greater

than /- €
PROOF: From the Tchebyscheff inequality, we have seen that if )
pa(u;)/l %(ug) can be made arbitrarily large, the probability

that &, will agree in sign with its expected value over

the class of perceptrons will approach unity.
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It has also been demonstrated (Equations 7.3 and 7.6) that both . (uy)

and o"(u.,‘) are of the order of A, ; therefore, }‘2(“‘)/0, (uy)

will be of the order of No- . Thus, for each positive stimulus, S, .,

the probability that w, agrees in sign with £« can be made arbitrarily
clost to 1 by choosing A, sufficiently large. Suppose there are n stimuli
in W . Then, for the Jth positive stimulus there exists a quantity N; (e)
such that if A, > N; (e) , the probability of selecting a perceptron
which fails to correctly identify S; will be less than e/n . If we let
No(€) = mex N () , the condition required by the theorem is satis-
fied. Q.E.D.

From Equations (7.3) and (7.6), it is seen that for a given set
of stimulus frequencies P the ratio ,u:/o' 2 does not depend on T
Thus any number of repetitions of the same training sequence can occur
without affecting the performance of the system. Since ,u"/o” varies
linearly with /Vo. , the normalized ratio N—'" ,uyo’ 2 forms a convenient
measure for the comparisan of different perceptron models. Some numerical

values for typical cases will be considered in the following section.

While the above analysis permits us to obtain a rigorous lower
bound for the probability of correct identification of S, by a randomly
selected perceptron, it does not actually yield an estimate of this probability.
In order to estimate the probability of correct identification of §, , it will
be assumed that «, is normally distributed. The justification for this
assumption was discussed in Rosenblatt, Ref. 79, and subsequent analysis

has shown that the approximation is very close, even for perceptrons with a
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small number of A-units. Assuming a normal distribution, we have for

the probability of a positive response to S

P = P(rx]5z) =¢G§f—(%iﬁ) (7.7

Z x32
where §(Z) = 7}’7-/c-? odz

Note that the above equations do not depend on whether: the
perceptron is constructed according to the binomial model, Poisson model,
or any other other model, so long as the A-units are selected independently
of one another. The performance does depend on the Q@ -functions, however,
which will be different for different models. From equation 7.3 it is clear
that any stimulus S, will tend to be clas sified correctly if the average value

of sz for SJ- in the same class as S_ is greater than the average value

of Q;x for S; in the opposite class i:om Sx - (If the frequencies £;
are not all equal, each sz must be multiplied by its appropriate frequency
in obtaining these averages.) From the analysis of @ -functions in the
preceding chapter, it is clear that this condition will generally be met if
the stimuli of each class have large intersections with one another (on

the retina) while stimuli from opposité classes have small intersections
with one another. The ideal situation would consist of two disjoint clusters
of stimuli, located in different parts of the retinal field, each cluster
representing one class. In order to discriminate two stimuli reliably
(i.e., to assign them to opposite classes) it is desirable that Qij for
the two stimuli should be small, and particularly that the conditional

probabilities Q"U and 0_;,; should be as small as possible. Figure 10,
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in the last chapter, shows that this condition can readily be met if the
stimuli have a small intersection with one another, but becomes increasingly
difficult to meet as the intersection increases. This figure also shows that
a binomial model is better suited to the discrimination of similar stimuli
than a Poisson model, where Q‘-l J is apt to be relatively large even

for disjoint stimuli.

7.1.3 Fixed Sequence Experiments: Examples

The environment which was considered in the last section of
Chapter 6, involving twenty horizontal bars and twenty vertical bars on a
20 by 20 toroidally connected retina is a convenient one to use for a
""calibration experiment', by which different classes of perceptrons can
be compared. In particular, consider the following discrimination

experiment:

EXPERIMENT 1: Given a perceptron with 400 sensory points arranged in

a 20 by 20 toroidally connected array, or "retina', let W consist of the
twenty possible 4 by 20 horizontal bars, and the twenty possible 4 by 20
horizontal bars, Let C(W) be a classification which assigns every
horizontal bar to the positive class, and every vertical bar to the negative
class. Show every bar in /f to the perceptron exactly once (or in a
sequence with A

v
the perceptron is reinforced with S -controlled reinforcement. Then

equal for all stimuli). During this training sequence,

select one of the bars, Sz , and determine whether the response is

correct, according to C(W) .
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Table 3 shows the performance ratios, « 2/(2 , for a 100
A -unit binomial model a¢ -perceptron, with various combinations of the
parameters X and ¥ (6 =2 in all cases ) . The parameters x« 3,
y=1 , @ =2, appear to be optimum for this experiment, as can be
seen from the table. (Increasing the threshold results in a definite drop
in performance.) Figure 13 shows the performance of several binomial
and Poisson model perceptrons as a function of A, , computed from
Equation (7.7). The top curve shows the performance of the optimum
(binomial) system. A comparison of the other two curves illustrates the

relatively poor performance of the Poisson model on this particular problem.

It should be emphasized that the parameters found to be optimum
in this experiment will not‘neceuarily turn out to be optimum in other
environments, or other classifications. In general, it appears that as the
classes of patterns to be discriminated become more ''similar", (i.e., as
the maximum possible overlap between stimuli from opposite classes
increases) the optimum number of connections to an A -unit and the optimum

value of & tend to increase.

A more difficult classification of the same dichotomy has been

studied in the following experiment:

EXPERIMENT 2: With the same environment as in Experiment 1, number

the horizontal and vertical bars consecutively according to théir pasition on
the retina. Let the classification C(W) place all even numbered bars in
the positive class, and all odd numbered bars in the negative class. The

training and testing procedures are identical ta Experiment 1.
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TABLE 3

PERFORMANCE RAT 108 (i‘.,.‘(:_&,’.) FOR 100-A-UNIT ELEMENTARY ov-PERCEPTRONS

(BINOMIAL MODEL) FOR EXPERIMENT | (HORIZONTAL/VERTICAL BAR DISCRIMINATION,
FIXED SEQUENCE). © =2 IN ALL CASES.

X (WUMBER OF EXICITATORY CONNECTIONS PER A-UNIT)

2 3 . 3
) 2.47% 2.830 1.540 .93

y ' 2.063 2.912 2.108 1.3%9

2 1.708 2.808 2.479 1.773

(womser OF 4 1.408 2.592 2.670 2.1%0
":::"':';"’::s . 1.153 2.320 2.708 2.4
- ‘° i Y 2.006 2.630 2.579
R A-UNIT) ,767 1.m 2.473 2.638
7 .623 1.523 2.271 2.608

TABLE §

PERFORMANCE RATIOS FOR 100-A-UNIT ELEMENTARY oc-PERCEPTRONS
(BINOMIAL MODEL) FOR EXPERIMENT 2. © = 2 IN ALL CASES.

X (NUMBER OF EXCITATORY CONNECTIONS)

2 3 L) 5
() .350 N26 .828 2

[ .368 .502 436 .363

y 2 .382 551 .526 451
(wumper OF 3 .350 .578 .596 .533
INNIBITORY & .333 .588 648 .605
CONNECTIONS) s .310 578 .o .66%
6 .285 .858 .690 707

4 .268 .529 . 688 738

-165-

Google



In this case, the two most similar bars to any test bar (those
which overlap it by 3/4 of its area on either side) are invariably in the
opposite class. Nonetheless, all stimuli may be positive stimuli under
these conditions, with a suitable choice of parameters. Table 4 shows the
ratio /4-2/6’2 for a 100 unit system in this experiment. Figure 14 shows the
performance of a perceptron with the same parameters as before (x=3, ¢y =/,
6 =2) on this experiment, and also with the best parameters found to date
(x=5, y=7, 6+2). These parameters are the best set for ¥ < § and ys7.,
but are probably not optimum, as it seems likely that a further increase in
both ¥ and ¢y would yield a further improvement in performance.

7.1.4 Random Sequence Experiments: Analysis

For the analysis of the performance of perceptrons trained
with random stimulus sequences, it is convenient to make use of an

unnormalized G-matrix (see footnote, page 75), where )7 =7 instead of

1/N“ . For such a matrix, in the O¢ -system, ¢;; = the number of

units active for both S; and SJ' , Or

9i; = ; ¢:("i) (7.8)

The mathematical properties of the unnormalized G-matrix are no different

from those discovered for the normalized matrix, in Chapter 5.

In a2 random sequence experiment, the training sequence is
assumed to consist of a series of 7 etimuli, in which each stimulus in

the series is selected independently of the others. The probability of
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selecting stimulus §; for the tth position in the sequence is p . ,
forall ¢ . We willlet m» ;- the number of times stimulus § , occurs
in the training sequence. The random vector /7 = (m,, m,..m,) will have
a multinomial distribution with 7 trials and probability vector

; - (p,, Pz""'ﬁn) . The training sequence selected is assumed to be
independent of the particular perceptron selected for a given experiment.
At the end of the training sequence, the input to the R-unit in response to
a test stimulus S, will be

ix = T 50
J

- 2L 2 amieiGn)
i J
Therefore, the expected value over perceptrons and training sequences is

E(uyg) = T”oZ_MZiP.; @iz (7.9)
J

which is of the order of 7 A, . Note that this is identical to equation (7.3).

The variance over both perceptrons and training sequences is

given by

o‘l(uz) - Z.rfz('"i 91.1')*2-;;«.’1"" cov. (mj 9x/ ' ™4 924 )
J J A
=) [£(m]) £(s%;) - £%(m}) E£%(94,)]
K

QOIS [60m; ma) E(o.; 9240 - EOm;) Emg) Elgj) E(944)]

(7.10)
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For the components of the multinomially distributed vector m  we have

E(mj) = Tp;
2 2
E(m;%) = T(T-1) p;* + T p;

E(nb-m‘) =2 T(7-1) P; P4

Let n.-j oz ™ number of A-units active for stimuli §; , .g yeee2 Sx .
The symbol ~ over a subscript will be used to denote negation (e.g.,

njz = the number of A-units active for stimulus Sj but not for S‘ H

ng = n; - ;A ). From equation 7.8, it is clear that for the o< -system,

ni; o= 9ij Now, any set of »n’s which is exhaustive (every A-unit counted
in at least one »,: ), and such that each A-unit is counted in no more

than one n if..z ¢ will have a multinomial distribution. From this it

follows that
E(gx;) = NoQye
E(9e;%) = Na(Na-1) @ix? + Na@;y
E(9x; 9x48) = El(njut + 72 )(njpy + njaz)]
® E(ngx) +ECy g nigr )+ E(ni gy n7as) + Enjfix 75as)
"NoaQitx * NalNa-1) [Qiun® * Qaz (Qix - Qaz)
# Qax Q™ Qax) * @i~ Q)@ ~Qias)]

- ”‘OJ-" + N‘(Na- l) Qil 0‘1
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Substituting in (7.10), this yields

o (ug) = TN, ,,Z 7%z [(Na-' Qg+ ']

U ; 2504 £ 2 [T-D@iux - (T M= Qy Q] (711
J

The variance of w«, is therefore on the order of TN: + T'N. , at
maximum. Since the square of the mean is on the order of T‘N: » the
ratio ,a-yef‘ becomes indefinitely large as A, and T both increase,

and the Theorem stated in Section 7.1.2 is seen to hold for random training
sequences of sufficient length, as well as fixed sequences. As the length of
the training sequence, 7 , increases, the relative frequencies m‘-/r will
approach the probabilities £ and the performance of the system will
approach the performance in a fixed sequence experiment. As A, goes to
infinity, the ratio /4.7(‘ approaches

2
2
’[JZ.% i QJ!]/; #i iz

7.1.5 Random Sequence Experiments: Examples

As a '"calibration experiment' for comparing different
systems, the horizontal vs. vertical bar discrimination problem is parti-
cularly conveniént. The random sequence version of the experiment is as

follows:
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EXPERIMENT 3: For the same conditions and classification as Experi-

ment 1, show the perceptron a random sequence of horizontal and vertical
bars, each bar occurring with equal frequency ( p; = 1/40 for all bars).
During this training sequence, S-controlled reinforcement is used, and the
performance of the perceptron for an arbitrary bar, S, , is then deter-

mined as before.

Figure 15 shows the performance of binomial model ¢ -perceptrons of
three different sizes on this problem, as a function of the length of the
training sequence ( 7 ). The parameters X , g , and @ are the optimum
values (3, 1, 2) found in Section 7.1.3. Further increases in AN, will not

appreciably improve performance in this experiment.

The effect of a "frequency bias' on o -system perceptrons

is illustrated in the following experiment:

EXPERIMENT 4: The conditions and classifications are the same as in

Experiment 3, but the horizontal bars occur four times as frequently as
the vertical bars; i.e., r= 0¥ for horizontal bars and .0f for vertical

bars.

Figure 16 shows the performance of a 100 A -unit system on this experiment.
The upper curve shows the probability of correctly identifying a horizontal
bar, and the lower curve shows the probability of correctly identifying a
vertical bar. The correct response to vertical bars is actually suppressed

as training increases, due to the greater frequency of horizontal bars. The
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| 10 100 1000
NO. OF TRAINING STINULI (7)

Figure 15 PROBABILITY OF CORRECT INDENTIFICATION OF TEST STIMULUS BY BINOMIAL
o/ -PERCEPTRONS IN EXPT. 3 (RANDOM SEQUENCES)
(x=38, y=1, 6=2)

L_L LI

HORIZONTAL BAR (p= .04)

=.01)

| 10 100 1000
NO. OF TRAINING STIMULI (T)

Figure 16 PROBABILITY OF CORRECT IDENTIFICATION OF TEST STIWLI IN EXPT. 4.
BINOMIAL o -PERCEPTRON WITH #,= 100, X = 3, ¢ = é=2.
P: = .04 FOR HORIZONTAL BARS; ,0! FOR VERTICAL BARS
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broken curve shows the mean performance on both classes, with test

stimuli drawn from each class with their appropriate frequencies. In the

following chapter, it will be seen that this performance can be considerably

improved ina 7 -system perceptron. It would also be improved for an
o¢ -perceptron if error correction training were employed instead of

S-controlled reinforcement.

7.2 Discrimination Experiments with Error Correction Procedures

The analysis and experiments in the preceding section deal with
S-controlled reinforcement experiments. In Chapter 5, Theorem 6, it was
shown that this procedure cannot be guaranteed to yield a solution to a
classification problem, even though a solution may exist, whereas an error
correction procedure will always yield a solution if any solutions exist. The
error correction procedure would therefore seem to be the method of choice
in training a perceptron to discriminate between two classes of stimuli.
Unfortunately, the type of analysis which was carried out for S-controlled
experiments is not readily performed with error-correction experiments.
Consequently, all data on learning curves for error correction procedures
come from one of two sources: simulation on a digital computer‘. and
performance of actual experiments on the Mark I perceptron at the Cornell
Aeronautical Laboratory (Refs. 29, 30, 31).

Experiments performed by Carl Kesler on the Burroughs 220 computer
at Cornell University.
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Two main sets of experiments will be described here, the first
with binomial model o¢ -perceptrons, and the second with perceptrons

having additional constraints imposed on their S to A -unit connections.

7.2.1 Experiments with Binomial Models

The following four experiments have been performed with
binomial model perceptrons (having fixed numbers of sensory connections

to each A-unit, with origins located at random in the sensory mosaic):

EXPERIMENT 5: The environment of horizontal and vertical bars used

in Experiment 1 is employed, and the stimuli occur in fixed sequence, first
showing all horizontal bars in fixed sequence, then all vertical bars, and
repeating the sequence until perfect performance is achieved. The error
correction procedure is employed, and the performance is tested at the

end of each sequence.

EXPERIMENT 6: The same environment and training procedure is

employed as above, but the stimuli occur in a random sequence, with

Pi= 1/40 for each stimulus (as in Experiment 3).

EXPERIMENT 7: The environment consists of a set of triangles in all

possible positions on a toroidally connected 20 by 20 retina, and a set of
squares in all possible positions on the retina. The triangles and squares
each cover 80 of the 400 retinal points. The sequence is random, as in
Experiment 6, with r- 1/800 for each stimulus. (The set of possible
stimuli is generated by translations of a standard image; rotations are not

permitted. )
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RANDOM TRAINING SEQUENCE _ | 4/f

’ B -

-——

//, L

H
H
3
1
H
.

odpan

/ VS e
/$<
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Figure 17 PERFORMANCE OF BINOMIAL or-PERCEPTRONS IN EXPERIMENTS 5 AND 6
(MORIZONTAL / VERTICAL BAR DISCRIMINATION WITH ERROR CORRECTION
PROCEDURE). SOLID CURVES SHOW MEAN PERFORMANCE OF 25 PERCEPTRONS,
WITH Ny =300, x=38, y=1, =2
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/
'/'-:xn. 6 WITH N, =300, x=3, y =1, §=2
/

7 7/'/
A

EXPT. 7, WITH Ng=.300, X=6, y =%, 0=
, (MEAN OF 15 RUNS)

0 250 500 750 1000

NUMBER OF TRAINING STIMULI (T)

Figure 18 PERFORMANCE OF BINOMIAL oc -PERCEPTRONS IN SQUARE / TRIANGLE DISCRIMINATION
(EXPT. 7) COMPARED WITH HORIZONTAL / VERTICAL BAR DISCRIMINATION (EXPT. 6)
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EXPERIMENT 8: The horizontal/vertical bar environment is employed, as

in Experiment 6, with stimuli occurring in random sequence. A random
sign correction procedure is employed for training the perceptron (see

Definition, Section 5.6).

Figure 17 shows the results of Experiments 5 and 6, and includes
a theoretical learning curve for an S-controlled experiment for comparison.
The experimental curves show the mean performance for a set of 25 binomial
perceptrons with 300 A -units, and the optimum parameters (x =3, ¢y =/,

6 = 2 )found in the preceding section. The same 25 perceptrons were
employed in Experiments 5 and 6. It appears to be characteristic that a
random training sequence leads to a more rapid learning rate initially, but
is overtaken by the fixed sequence performance as the duration of training
increases. Note that in both cases, the error correction method yields

considerably better performance than the S-controlled method.

Figure 18 shows the mean performance of a set of 15 perceptrons
on Experiment 7. The parameters are N, =300 , x=6 , y=4% ,

6@ ~3 . These were the beat parameters tested, but are prbbably not
optimum. The learning curve for the horizontai/vertical bar experiment
(Experiment 6) is shown as a broken line for comparison. The slow learning
rate in this experiment is largely due to the large number of distinct stimuli
in the environment (800) compared to the number in the horizontal/vertical
bar environment (40). The increased number of stimuli means that a much
longer training sequence is required to guarantee a representative sample
of all stimuli, with a reasonably uniform coverage of the retinal field. A
further difficulty is introduced by the fact that the maximum overlap of a
square and triangle is much greater than the maximum overlap of a horizontal

and vertical bar, making the discrimination intrinsically more difficult.
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Figure 19 shows a comparison of the performance of 10
perceptrons on Experiment 8 with the performance of the same 10 perceptrons
on Experiment 6. In Experiment 8, the learning is not only much slower, but
the variability between perceptrons is greatly increased. Of the ten per-
ceptrons tested, two achieved perfect performance during the period of the
experiment, which was discontinued after 2000 training stimuli. Nonetheless,
each of the ten perceptrons would ultimately achieve perfect performance if
the experiment were continued (due to Theorem 5, Section 5.6). With the
directed error correction procedure, all ten perceptrons achieved perfect

performance within 300 training stimuli.

While the performance of an elementary perceptron with the
random sign procedure is clearly unsatisfactory for practical systems, it
should be noted that the existence of a consistent bias in the proper direction
still makes this a plausible component of a more reliable mechanism. If a
"majority mechanism' is employed (e.g., a threshold device which responds
to the difference of positive and negative signals from R -units)
to determine the '"majority vote'' of » such elementary perceptrons,
connected independently to the same retina, a highly reliable system would

result. The error probability of this system would be:

(n/2]

o= (&) ptCr-p)"*
A4d=0

when AP is the probability of correct response for a single perceptron

(as shown in Figure 19).
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While the actual learning curve for error correction experiments
cannot at present be stated analytically, R. D. Joseph has obtained an upper
bound for the number of corrective reinforcements that must be applied,
where a solution exists. In the proof of Theorem 4, Chapter 5, it was noted
that an upper bound for the number of corrective reinforcements can be

expressed in terms of the quantity oc , as follows:

2
¥ < glfM/lT) (7.12)

max — <M

where M = maximum diagonal element of the G-matrix,
o = minimum of the function F(x) = x'//z/llxllz (as defined for
Theorem 4, Chapter 5).
A = [[Hx®| (as in Theorem 4, Chapter 5).

For the case which is of primary interest here, the process
starts from the origin, sothat 4 = |#2°] « O . In this case, (7.12)

simplifies to

N, £ Mn/a:

max

7.2.2 Experiments with Constrained Sensory Connections

In all perceptrons considered thus far, connections from S-units
to A -units have had their origins randomly chosen from the set of all sensory
points, with equal probability. Such models will be called uniform input

distribution models (u.i.d. models). It has occasionally been proposed that

the performance of a perceptron might be considerably improved by the
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introduction of special constraints on the admissible origin point connections.
For example, the retinal connections could be made to resemble biological
systems more closely by assigning a ''retinal field'" to each A-unit, and
limiting its choice of origin points to S-units within this field. A similar
procedure would be to construct a network of connections by assigning a
center at random to each A-unit, somewhere on the retina, and selecting
connections from a circular normal distribution about this center. Such

systems will be called normal input distribution models (n.i.d. models).

Further constraints might lead ultimately to specialized A -units, whose
input configurations are specially designed to make them responsive to
stimuli of particular shapes, or configuration properties. We will consider
one further constraint in this section: the case in which the excitatory and
inhibitory connections to an A-unit are assigned distinct centers on the
retina, with origins selected from a circular normal distribution about

these centers. This will be called the divided input distribution (d.i.d.)

model. The n.i.d. model can be considered a special case of the d.i.d.
model in which the excitatory and inhibitory centers and dispersions are

identical.

In the general d.i.d. model, A-units are characterized by
seven parameters: X , v and 6 as before, the expected distance
between excitatory and inhibitory centers (£0), the standard deviation
of this distance ( 6°0 ), and the standard deviations of the normal proba-
bility distributions about the excitatory and inhibitory centers (7z and oy ).
A number of experiments have been performed with such models in an
attempt to discover what sort of improvement might be achi eved by an

optimum set of constraints on the sensory connections.
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Experiments 6 and 7 have been used for the study of constrained
input distributions. In the square/triangle discrimination experiment
(Experiment 7) the performance of the d.i.d. models never showed any
improvement over the original u.i.d. model. A large number of combi-
nations of X , ¢y , and  were tested with various distribution para-
meters, in an attempt to find the optimum system for X + ¢y £ /0
The best performance was obtained for a set of 15 perceptrons with x = § ,

y=4%,6=3, D=0 , oD =0 , 60X =7 ,and oy=7
This is equivalent to an n.i.d. model with the same centers for excitatory
and inhibitory distributions, and ¢ =7 . The performance of this system
did not differ from that of the equivalent u.i.d. model by more than 1% at
any point on the learning curve, and was within 1/4% of the u.i.d. performance
at most of the points tested. The same stimulus sequences were used for
both models in order to make conditions as closely comparable as possible.
These results suggest that for large but spatially concentrated stimulus
patterns, little advantage is to be gained in an elementary perceptron by

imposing radial constraints on the origin point configurations.

In the case of the horizontal/vertical bar discrimination
(Experiment 6) a slight advantage was found for the d.i.d. model for the
parameters x =/, y =9, 6=1 , ED=(2 , oD=2 ,ox=2 , oy=4%
On the basis of a number of simulation experiments, this appears to be
close to an optimum configuration for the d.i.d. model for this experi-
ment. Figure 20 shows the resuits obtained from 25 runs with these
parameters, compared with 25 u.i.d. models with optimum parameters
(x=3, y =1, 8 =2) using the identical training sequences. The
difference, although slight, appears to be statistically significant.
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Figure 20 COMPARISON OF OPTIMUM o./.o. AND u.i.d. MODELS IN HORIZONTAL / VERTICAL
BAR DISCRIMINATION (EXPT. 6). CURVES SHOW MEANS OF 25 RUNS
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The general conclusion from these experiments seems to be
that (for large stimuli) little is to be gained from special constraints which
affect only the dispersion, rather than the geometric form, of origin point
patterns in elementary perceptrons. A further variation of the model, in
which elliptical rather than circular distributions of origin points are employed
might be more sensitive to contours and directions of elongation in the stimuli,

*
No quantitative results are available on such a model at this time.

7.3 Discrimination Experiments with R-controlled Reinforcement

In an experimental system with R-controlled reinforcement
(Definition 39) the reinforcement control system receives information about
the outputs of the perceptron, but receives no information directly from the
environment. Such experiments are of interest in determining the "spon-
taneous organization' tendencies of perceptrons. It is readily seen, from
theoretical considerations, that the performance of an elementary o¢ -
perceptron in such experiments is unlikely to be of psychological interest.
In an oc -perceptron, all 9;; are generally greater than zero, so that
whatever response is associated to the first stimulus in a training sequence
will tend to generalize to all other stimuli in the environment. Conse-
quently, the perceptron, left to its own devices without any attempt to
change its responses, will tend to form a classification C(W) in which
all stimuli in W are either in the positive class or else all in the negative
class, with equal probability.**

*
See Section 23.1.2 for a reconsideration of this problem from the
standpoint of sensory analyzing mechanisms.

**In Ref. 82, such systems have been called ""Class C perceptrons'.
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Two special cases are of interest, in which it is possible for
a dichotomy to be formed with both classes non-empty. In the first case,
some of the 9ij coefficients are zero. This might occur in a system
with high thresholds on the A -units, so that some pairs of stimuli activate
no A-units in common. If §; and SJ- are two such stimuli, then if §;
is the first stimulus and SJ- is the second stimulus in the training
sequence, it is perfectly possible that one will become associated to a
positive response, and the other to a negative response. If these are the
only two stimuli, or if there is no positive generalization from any of the
stimuli which become associated to one class to the stimuli of the second
class, this dichotomy may be stable. In general, however, one class is
apt to become dominant, eventually pulling all stimuli into a single class
as before. The second case in which a dichotomy might be formed is that
in which the values are not initially all zero,but are distributed with some
connections negative and some positive. In this case, the generalization
from the first stimulus will not necessarily wipe out an initial bias in the

opposite direction, and it is possible that a dichotomy will be formed.

While it is possible for dichotomies to be formed in the special
cases mentioned above, there is little reason to suppose that such dicho-
tomies would ever be of interest to a human observer. If the stimuli are
uniformly distributed on the retina, or uniformly clustered about the
center of the field, the 9 coefficients which happen to be zero will
generally be unrelated to possible ''meaningful' classifications of the
stimuli, so that any division into two classes will tend to be random,
and unrelated to any concept of "intrinsic similarity' of the stimuli. Thus

it is clear that in an elementary O¢ -perceptron, psychologically meaning-
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ful discriminations can be achieved only under the control of an experi-
menter, or r.c.s. which is capable of evaluating the correctness of the
perceptron's responses according to some predetermined scheme. In the
7 -systems, which are considered in the following chapter, somewhat
more interesting performancesiinR-controlled experiments are likely to

occur.

7.4 Detection Experiments

In discriminatioh experiments, such as those considered in

the previous sections, the perceptron is required to give one of two responses
to designate which of two well-defined classes of patterns is present. It is
assumed that one of the two is always present, and that nothing else is

present which might confuse the picture. In detection experiments, a

single pattern, or class of patterns, is taught the perceptron as the ''positive
class', and anything else (such as noisy fields, arbitrary patterns, etc.) is
considered to belong to the ''negative class''. Moreover, the positive pattern
may appear with an admixture of background noise, irrelevant lines, or

other sensory material. While such detection experiments differ considerably
in their "psychological' character from discrimination experiments, from a
theoretical standpoint they represent a special case of discrimination experi-
ments in which the training and the two classes of stimuli are highly asymme-
tric, the positive class generally being smaller but more thoroughly trained
than the negative class. Two cases are of interest: detection in noisy
environments, and detection in organized environments. These are

considered separately in the following sections.
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7.4.1 Detection in Noisy Environments

A noisy environment will be defined as the product set of a
set of well-defined stimulus patterns (including an empty field as a stimulus)
and a set of '"'random noise patterns'' superimposed on the members of the
first set. The random noise patterns are generated by applying signals of
random polarity (positive or negative with .5 probability) to a randomly
selected set of S-units, chosen independently with probability £, . £, will
be called the noise density of the environment, and represents the expected
value of the proportion of S-points which emit random signals at any given

moment of time.

Note that a noisy environment is, in its entirety, a well defined
set of stimuli, with a probability P associated with each stimulus §; .
Such an environment consists of two classes: a positive class, in which one
of the "positive stimuli' (e.g., a geometric form) is present in combination
with one of the noise patterns, and a negative class, consisting of the noise
patterns alone, or the ""empty field'" stimulus with a noise pattern super-
imposed. The task of the perceptron is to distinguish between positive and

negative stimuli.

Let S, represent a test stimulus, selected from the positive
class. Then the probability of correctly identifying S, as a positive
stimulue in a random sequence experiment, with S-controlled reinforce-
ment, is given by equation (7.7), with £(,) defined by equation (7.9)
and o"(uz) defined by équation (7.11), just as in an ordinary discri-
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mination experiment. Similary, if §, is a noise-stimulus, from the
negative class, the probability of obtaining the correct (negative) response
is given by the complement of the probability obtained from equation (7.7).

Some special analytic features of this problem are worth noting.

For a binomial model, with a large retina and large association
system (so that all @ -functions and retinal intersections of noise patterns
can be assumed equal to their expected value) the intersection of a noise
pattern with any other stimulus will be equal to the expected value of this
inter.ection.* If we designate the noise patterns by §,, S,’,---,

and positive stimuli by §y, Sz’,---, then (as explained on page 146},

@n' = Qn@n’ and
@z = %

Let Sy and S,’ represent the same positive stimulus pattern with
different noise patterns superimposed. Then, if the noise density is
low, Qyx' ™ Qux = Qx . But Q@ >>Q,Q; . Therefore,
Qx’ >> Qxp » which means that the perceptron can be taught quite

readily to give the proper positive response to a test stimulus, S,

Actually, a; noise patterns have been defined, the intersection of a
pure noise pattern with a positive stimulus pattern will be slightly
less than the expected value, since some of the points which normally
are ""on'" for the positive stimulus will be turned "off" for the noise
pattern. The conclusions above hold rigorously if the noise patterns
are sets of positive signals only.
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The same conclusion does not hold for the identification of a negative

(noise) stimulus, however. In this case, the generalization from a previously
trained noise stimulus, S,/ to S, isequalto @,,= Q: (assuming

all noise stimuli to be eqdal in area to their expected value). But the
generalization from a positive stimulus is @y, = Q¢ Q, which is generally
greater than Q: » since the area covered by the positive stimulus with
noise superimposed is generally greater than the area of the noise stimulus
alone. Consequently, we would expect the positive response to tend to
generalize to the negative class as well, if both classes are represented

with equal frequency in the training sequence.

A slight modification of the perceptron should improve its
capability of distinguishing negative stimuli from positive ones. If the
R-unit is given a threshold greater than zero, it will tend to remain "off"
for the relatively weak signals coming from noise stimuli, but will go 'on"
(to its positive state) for the stronger signals coming from positive stimuli.
With this modification, however, the system is no longer an elementary
perceptron. An alternative procedure, which will improve the perfar mance
of an elementary perceptron, is to "overtrain'' the negative stimuli,
composing a stimulus sequence in which negative stimuli occur more
frequently than positive ones. In an error correction experiment, it
should be noted, this bias will be introduced automatically, regardless of
the stimulus sequence, so that a detection problem should be solved much

more readily than with an S-controlled system.
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7.4.2 Detection in Organized Environments

In an ""organized environment', where the background material
may closely resemble the stimulus pattern in its characteristics, detection
experiments take on some characteristics of special interest, psychologi-
cally. First of all, it should be noted that in attempting to distinguish a
pattern such as the letter "X'' against a background of lines occurring in
random configurations, the environment may include stimuli which are
fundamentally ambiguous in character, since patterns closely resembling
the letter "X", or even identical to it, might arise by a chance super-
imposition of straight lines. In such a case, the only reasonable test of
whether or not a pattern should be identified as an "X" would seem to be
the human criterion of whether it looks more like an X or more like a
random assemblage of line segments. While a similar problem might
arise, in principle, in the case of detection experiments in noisy fields, it
is less common there, except under extreme noise conditions. In the case
of organized fields, ambiguous organizations are more the rule of the day,
and the problem requires a different approach. In human perception, the
properties of ''good figure''are generally used to determine whether a
particular set of line segments is Been as a letter, or some other known
pattern, or simply as a random collection of unrelated components. Such
judgements are not possible, however, for elementary perceptrons. We

will return to the problem of figural organization in Part IV.

Treating the detection experiment simply as a special case of
a discrimination experiment, the same conclusions apply as in the case

of the noisy environment problem: it is possible, by exhaustively training
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the perceptron with the product set of positive stimuli and irrelevant
patterns to teach it to identify poeitive stimuli amidst extraneous material.
The learning is apt to be slow, however, and will generally fall considerably

short of what might be expected in a eimpler discrimination experiment.

Most of the experimental work done to date on detection
experiments has been carried out with the Mark I perceptron using a gamma
system for the memory dynamics. This work will be reviewed in the follow-
ing chapter, which deals with 7' -perceptrons, but similar results might

be expected with alpha systems.

7.5 Generalization Experiments

In the preceding experiments, it has been required that S,

should necessarily occur as one of the stimuli in the training sequence.
When the perceptron is tested with a stimulus which has not been previously
seen, a weak form of generalization is possible with elementary o -systems.
Clearly, if the intersection of Sx with some other stimulus in the same class,
Sy’ » which did occur in the training sequence, is large enough, .S‘z will
tend to evoke the same response as sz' . In this case, sz is correctly
recognized only because, within the limits of tolerance of the perceptron,
it appears to be identical, rather than merely similar to, the previously
seen training stimulus. Thus, generalization, for an elementary o¢ -perceptron,
is based on an-approximation to identity, rather than on similarity. Ina

""pure generalization'' experiment, as defined in Chapter 3, the perceptron
would be asked to recognize a pattern in a position where it does not

overlap any previously seen patterns of the same class. If such an
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experiment is performed with an oz -system, with a single class of

stimuli, the generalization will tend to be positive, due to the fact that Q; J

is never zero, for most systems, regardless of the relative positions of
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