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' "Perception, then, emerges as that relatively primitive,

partly autonomous, institutionalized, ratiomorphic subsystem of cognition
which achieves prompt and richly detailed orientation habitually concerning
the vitally relevant, mostly distal aspects of the environment on the basis
of mutually vicarious, relatively restricted and stereotyped, insufficient
evidence in uncertainty-geared interaction and compromise, seemingly

following the highest probability for smallness of error at the expense of

the highest frequency of precision." From "Perception and the

Representative Design of Psychological Experiments," by Egon Brunswik.

"That's a simplification. Perception is standing on the side
walk, watching all the girls go by." From "The New Yorker",

December 19, 1959.
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PREFACE

It is only after much hesitation that the writer has reconciled him
self to the addition of the term "neurodynamics" to the list of such recent
linguistic artifacts as "cybernetics", "bionics", "autonomics", "biomimesis",
"synnoetics" , "intelectronics", and "robotics". It is hoped that by selecting
a term which more clearly delimits our realm of interest and indicates its
relationship to traditional academic disciplines, the underlying motivation of

the perceptron program may be more successfully communicated. The term
"perceptron", originally intended as a generic name for a variety of theoretical
nerve nets, has an unfortunate tendency to suggest a specific piece of hardware,

and it is only with difficulty that its well-meaning popularizers can be persuaded
to suppress their natural urge to capitalize the initial "P". On being asked,

"How is Perceptron performing today?" I am often tempted to respond, "Very
well, thank you, and how are Neutron and Electron behaving?"

That the aims and methods of perceptron research are in need of

clarification is apparent from the extent of the controversy within the scientific
community since 1957, concerning the value of the perceptron concept. There

seem to have been at least three main reasons for negative reactions to the

program. First, was the admitted lack of mathematical rigor in preliminary re

ports. Second, was the handling of the first public announcement of the program
in 1958 by the popular press, which fell to the task with all of the exuberance and

tense of discretion of a pack of happy bloodhounds. Such headlines as "Franken
stein Monster Designed by Navy Robot That Thinks" (Tulsa, Oklahoma Times)
were hardly designed to inspire scientific confidence. Third, and perhaps most

significant, there has been a failure to comprehend the difference in motivation

between the perceptron program and the various engineering projects concerned

with automatic pattern recognition, "artificial intelligence", and advanced computers.

For this writer, the perceptron program is not primarily concerned with the inven-
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tion of devices for "artificial intelligence", but rather with investigating the

physical structures and neurodynamic principles which underlie "natural
Intelligence" . A perceptron Is first and foremost a brain model, not an inven -
tion for pattern recognition. As a brain model, its utility is in enabling us to
determine the physical conditions for the emergence of various psychological

properties. It is by no means a "complete" model, and we are fully aware of
the simplifications which have been made from biological systems; but it is,
at least, an analyzable model. The results of this approach have already been
substantial; a number of fundamental principles have been established, which
are presented in this report, and these principles may be freely applied,
wherever they prove useful, by inventors of pattern recognition machines and

artificial intelligence systems.

The purpose of this report is to set forth the principles, motivation,
and accomplishments of perceptron theory in their entirety, and to provide a

self-sufficient text for those who are interested in a serious study of neuro
dynamics. The writer is convinced that this is as definitive a treatment as can
reasonably be accomplished in a volume of managable size. Since this volume
attempts to present a consistent theoretical position, however, the student
would be well advised to round out his reading with several of the alternative
approaches referenced in Part I. Within the last year, a number of comprehen
sive reviews of the literature have appeared, which provide convenient jumping -
off points for such a study. *

The work reported here has been performed jointly at the Cornell
Aeronautical Laboratory in Buffalo and at Cornell University in Ithaca. Both
programs have been under the support of the Information Systems Branch of the

Office of Naval Research -- the Buffalo program since July, 1957, and the Ithaca
_
See, for example, Minsky's article, "Steps Toward Artificial Intelligence",
Proc. I. R. E. , 49, January, 1961, for an entertaining statement of the views of
the loyal opposition, which includes an excellent bibliography.
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program since September, 1959. A number of other agencies have contributed
to particular aspects of the program. The Rome Air Development Center has

assisted in the development of the Mark I perceptron, and we are indebted to

the Atomic Energy Commission for making the facilities of the NYU computing
center available to us.

A great many individuals have participated in this work. R. D. Joseph
and H. D. Block, in particular, have contributed ideas, suggestions, and

criticisms to an extent which should entitle them to co-authorship of several
chapters of this volume. I am especially indebted to both of them for their
heroic performance in proofreading the mathematical exposition presented here,
a task which has occupied many weeks of their time, and which has saved me from
committing many a mathematical felony. Carl Kesler, Trevor Barker, David
Feign, and Louise Hay have rendered invaluable assistance in programming the

various digital computers employed on the project, while the engineering work
on the Mark I was carried out primarily by Charles Wightman and Francis Martin
at C. A. L. The experimental program with the Mark I was carried out by John
Hay. In addition to all of those who have contributed directly to the research
activities, the writer is indebted to Professors Mark Kac, Barkley Rosser, and

other members of the Cornell faculty for their administrative support and encourage
ment, and to Alexander Stieber, W. S. Holmes, and the administrat ive staff s
of the Cornell Aeronautical Laboratory and the Office of Naval Re search whose
confidence and support have carried the program successfully through its
infancy.

Frank Rosenblatt
15 March 1961
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DEVELOPMENT OF BASIC CONCEPTS



I. INTRODUCTION

The theory to be presented here is concerned with a class of
" brain models" called perceptrons - By "brain model" we shall mean
any theoretical system which attempts to explain the psychological function

ing of a brain in terms of known laws of physics and mathematics, and known
facts of neuroanatomy and physiology. A brain model may actually be cons
tructed, in physical form, as an aid to determining its logical potentialities
and performance; this, however, is not an essential feature of the model-

approach. The essence of a theoretical model is that it is a system with
known properties, readily amenable to analysis, which is hypothesized to

embody the essential features of a system with unknown or ambiguous
properties --in the present case, the biological brain. Brain models of

different types have been advanced by philosophers, psychologists, biologists,
and mathematicians, as well as electrical engineers (c.f., Refs . 17, 31, 33,

54, 59, 61, 74, 91, 105, 109). The perceptron is a relative newcomer to this
field,having first been described by this writer in 1957 (Ref . 78). Perceptrons
are of interest because their study appears to throw light upon the biophysics of
cognitive systems: they illustrate, in rudimentary form, some of the processes
by which organisms, or other suitably organized entitites, may come to

possess "knowledge" of the physical world in which they exist, and by which
the knowledge that they possess can be represented or reported when occasion
demands. The theory of the perceptron shows how such knowledge depends
upon the organization of the environment, as well as on the perceiving
system.
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At the time that the first perceptron model was proposed, the

writer was primarily concerned with the problem of memory storage in
biological systems, and particularly with finding a mechanism which would
account for the "distributed memory" and "equipotentiality" phenomena found

by Lashley and others (Ref s . 48, 49, 95). It soon became clear that the

problem of memory mechanisms could not be divorced from a consideration
of what it is that is remembered, and as a consequence the perceptron became
a model of a more general cognitive system, concerned with both memory and

perception ..

A perceptron consists of a set of signal generating units (or
"neurons") connected together to form a network. Each of these units, upon

receiving a suitable input signal (either from other units in the network or
from the environment) responds by generating an output signal, which may
be transmitted, through connections, to a selected set of receiving units. Each
perceptron includes a sensory input (i.e. , a set of units capable of responding
to signals emanating from the environment) and one or more output units, which

generate signals which can be directly observed by an experimenter, or by an

automatic control mechanism. The logical properties of a perceptron are
defined by:

1. Its topological organization (i.e. , the connections among
the signal units);

2. A set of signal propagation functions, or rules governing
the generation and transmission of signals;

3 . A set of memory functions or rules for modification of

the network properties as a consequence of activity.
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A perceptron is never studied in isolation, but always as part of a

closed experimental system, which includes the perceptron itself, a defined
environment, and a control mechanism or experimenter capable of applying
well-defined rules for the modification, or "reinforcement" of the perceptron's
memory state. In most analyses, we are not concerned with a single percep
tron, but rather with the properties of a class of perceptrons, whose topolo
gical organizations come from some statistical distribution. A perceptron,
as distinct from some other types of brain models, or "nerve nets", is usually
characterized by the great freedom which is allowed in establishing its
connections, and the reliance which is placed upon acquired biases, rather
than built-in logical algorithms, as determinants of its behavior.

Because of a common heritage in the philosophy, psychology,
physiology, and technology of the last few centuries, there are bound to be

similarities between the points of view and the basic assumptions of the

theory presented here, and of other theories. The writer makes no claim to

uniqueness in this respect. In particular, the neuron model employed is a

direct descendant of that originally proposed by McCulloch and Pitts; the

basic philosophical approach has been heavily influenced by the theories of
Hebb and Hayek and the experimental findings of Lashley; moreover, the

writer's predilection for a probabilistic approach is shared with such theo

rists as Ashby, Uttley, Minsky, Mac Kay, and von Neumann, among others.

This volume is divided into four main sections . Part I,
commencing with this introduction, attempts to review the background,

basic sources of data, concepts, and methodology to be employed in the

study of perceptrons. In Chapter 2, a brief review of the main alternative
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approaches to the development of brain models is presented. Chapter 3

considers the physiological and psychological criteria for a suitable model,

and attempts to evalute the empirical evidence which is available on several
important issues. Sufficient references to the literature are included through
out these chapters so that the reader who requires additional background in

any of the areas discussed can use this as a guide for further reading. Part I
concludes with Chapter 4, in which basic definitions and some of the notation
to be used in later sections are presented. Parts II and III are devoted to a

summary of the established theoretical results obtained to date. In these
sections, the strategy will be to present a number of models of increasing
complexity and sophistication, with theorems and analytic results on each
model to indicate its capabilities and deficiencies. Wherever possible,
established mathematical results will be presented first, followed by empirical
evidence from simulation and hardware experiments. Part II (Chapters 5

through 14) deals with the theory of three-layer series -coupled perceptrons,
on which most work has been done to date. These systems are called "mini
mal perceptrons". Part III (Chapters 15 through 20) deals with the theory of

multi-layer and cross -coupled perceptrons, where a great deal still remains

to be done, but where the most provocative results have begun to emerge.
Part IV is concerned with more speculative models and problems for future
analysis. Of necessity, the final chapters become increasingly heuristic in
character, as the theory of perceptrons is not yet complete, and new

possibilities are continually coming to light.

Part I (except for the chapter on definitions) is entirely non-

mathematical. In Part II, and most of the remainder of the text, familiarity
with the elements of modern algebra and probability theory is assumed, and
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•hould be sufficient for most of the material. In several proofs in Part II,
and to a greater extent in Part III, analytic methods are employed, assuming
knowledge of the calculus and differential equations; an elementary acquaintance
with differential geometry would also be useful. Symbolic logic is not required
here, but the student will find it necessary for reading much of the ancillary
literature in the field.

Several appendices are included which may prove helpful for
cross-referencing equations, definitions, and experimental designs which

are described in different chapters. Appendix A is a list of all symbols used

in a standard manner throughout the volume. Appendix B is a consolidated
list of theorems and corollaries. Appendix C lists the principal equations
used in the analysis of performance, and basic quantitative functions. Appendix

A contains a summary of the experiments used for testing and comparing
different perceptrons. These experiments are referred to by number,

throughout the text, and are described in detail as they are first introduced.
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2. HISTORICAL REVIEW OF ALTERNATIVE APPROACHES

2.1 Approaches to the Brain Model Problem

There are at least two basic points, which are fundamental to a

theory of brain functioning, on which most of the present-day theorists seem
to be in agreement. First is the assumption that the essential properties of
the brain are the topology and the dynamics of impulse -propagation in a net
work of nerve cells, or neurons. This has been contested by a few theorists
who hold that the individual cells and their properties are less important than
the bulk properties and electrical currents in the cortical medium as a whole

(c.f . Kohler, Ref 45). The "neuron doctrine", however, has now been

accepted with sufficient universality that it need not be considered as an

issue in this report (Bullock, Ref. II). It will be assumed that the essential
features of the brain can be derived in principle from a knowledge of the

connections and states of the neurons which comprise it. Secondly, there is
general agreement that the information-handling capabilities of biological
networks do not depend upon any specifically vitalistic powers which could
not be duplicated by man-made devices. This also has occasionally been

questioned, even today, by such neurologists as Eccles (Ref. 18) who

advocate a dualistic approach in which the mind interacts with the body.
Nonetheless, all currently known properties of a nerve cell can be simulated
electronically with readily available devices. It is significant that the

individual elements, or cells, of a nerve network have never been demons

trated to possess any specifically psychological functions, such as "memory",
"awareness", or "intelligence". Such properties, therefore, presumably

reside in the organization and functioning of the network as a whole, rather
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than in its elementary parts. In order to understand how the brain works, it
thus becomes necessary to investigate the consequences of combining simple
neural elements in topological organizations analogous to that of the brain.
We are therefore interested in the general class of such networks, which
includes the brain as a special case.

While there is substantial agreement up to this point, theorists
are divided on the question of how closely the brain's methods of storage,
recall, and data processing resemble those practised in engineering today.
On the one hand, there is the view that the brain operates by built-in
algorithmic methods analogous to those employed in digital computers, while
on the other hand, there is the view that the brain operates by non-algorithmic
methods, bearing little resemblance to the familiar rules of logic and mathe
matics which are built into digital devices (c.f. von Neumann, Ref. 105). The
advocates of the second position (this writer included) maintain that new funda
mental principles must be discovered before it will be possible to formulate an

adequate theory of brain mechanisms. It is suggested that probabilistic and

adaptive mechanisms are particularly important here. This does not mean
that the actual biological nervous system is strictly one type of device or
the other; the issue concerns the matter of emphasis, as to whether the brain
is primarily a more or less conventional computing mechanism, in which

statistical or adaptive processes play an incidental and non-essential role,
or whether the brain is so dependent upon such processes that a model which

fails to take them into account will find itself unable to account for psycho
logical performance.
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These two points of view are associated with two basically
different procedures for studying the mechanisms of the brain and for the

development of brain models. The first procedure will be called the mono-
typic model approach; it amounts to the detailed logical design of a special-
purpose computer to calculate some predetermined "psychological function"
such as the result of a recognition algorithm, or a stimulus transformation,
which is postulated as a plausible function for a nerve net to calculate. The
physical properties of this computer are then compared with those of the

brain, in the hopes of finding resemblances. The second procedure will be

called the genotypic model approach. Instead of beginning with a detailed
description of functional requirements and designing a specific physical
system to satisfy them, this approach begins with a set of rules for genera

ting a class of physical systems, and then attempts to analyse their perform
ance under characteristic experimental conditions to determine their common

functional properties. The results of such experiments are then compared
with similar observations on biological systems, in the hopes of finding a

behavioral correspondence. It is the purpose of this chapter to review the

historical development and current status of these two alternative "philo

sophies of approach" to the brain model problem.

2 . 2 Monotypic Models

In the monotypic model approach, the theorist generally begins

by defining as accurately as possible the performance required from his

model. For example, he may specify a data processing operation, an

input-output or stimulus -response function, or a remembering and
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regenerating operation. In one typical model, the system is required to

normalize the size and position of a visual image, and to compare functions

of this normalized image with certain stored quantities required for identifi
cation (Ref . 71). Given a description of the required performance in

sufficiently precise terms, the theorist then proceeds to design a computing

machine or control system embodying the required function, generally limiting
himself to the use of a set of modular switching devices which are analogous
to biological neurons in their properties. It is this last constraint which

distinguishes the nerve net theorist from any other designer of special

purpose computers confronted with the same problem. It is hoped that a

network which consists of neuron-like elements, and is capable of computing

the required functions, will be found to resemble a biological nerve-net in its
organization and the computational principles employed.

While the simulation of animals, saints, and chessplayers by

animated machines and clockwork devices goes back many centuries, the

idea of constructing such. devices out of simple logical elements with neuron

like properties is a relatively recent one, and received its first impetus from
two sources: First, Turing's paper "On Computable Numbers", in 1936, and

the subsequent development of stored-program digital computers by von

Neumann and others during the 1940's (Ref s . 12, 100)gave rise to an

impressive family of "universal automata", capable of executing programs

which would enable them to perform any computation whatsoever with only

the simplest of logical devices being employed as "building blocks". Second,

the Chicago group of mathematical biophysicists which grew up about

Rashevsky after the publication of his "Mathematical Biophysics" in 1938,

-12-



(Ref. 73) began to investigate the manner in which "nerve nets" consisting of
formalized neurons and connections might be made to perform psychological
functions. Householder, Landahl, Pitts , and others made notable contributions
to this effort during the late 1930's and early 1940's (Refs . 35, 69, 70).

In 1943, the doctrine and many of the fundamental theorems of this
approach to nerve net theory were first stated in explicit form by McCulloch
and Pitts, in their well-known paper on "A Logical Calculus of the Ideas
Immanent in Nervous Activity". The fundamental thesis of the McCulloch-
Pitts theory is that all psychological phenomena can be analyzed and understood
in terms of activity in a network of two-state (all-or-nothing) logical devices.
The specification of such a network and its propositional logic would, in the

words of the writers, "contribute all that could be achieved" in psychology,
"even if the analysis were pushed to ultimate psychic units or 'psychons1,
for a psychon can be no less than the activity of a single neuron. . . The 'all-
or-none' law of these activities, and the conformity of their relations to

those of the logic of propositions, insure that the relations of psychons are

those of the two-valued logic of propositions." (Ref. 57). Despite the

apparent adherence to an outdated atomistic psychological approach, there

is an important contribution in the recognition that the proposed axiomatic

representation of neural elements and their properties permits strict logical
analysis of arbitrarily complicated networks of such elements, and that

such networks are capable of representing any logical proposition whatever.

As von Neumann states in a summary of the McCulloch-Pitts model,

(Ref. 103) "The 'functioning' of such a network may be defined by singling

out some of the inputs of the entire system and some of its outputs, and
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then describing what original stimuli on the former are to cause what ultimate
stimuli on the latter. . .McCulloch and Pitts' important result is that any

functioning in this sense which can be defined at all logically, strictly, and
unambiguously in a finite number of words can also be realized by such a

formal neural network."

A great variety of subsequent models have made use of this
axiomatic representation, which we now refer to as the "McCulloch-Pitts
neuron". As stated in the original paper (Ref . 57), the basic assumptions in
this representation are:

" 1. The activity of the neuron is an 'all -or -none'
process .

2. A certain fixed number of synapses must be

excited within the period of latent addition in
order to excite a neuron at any time, and this
number is independent of previous acitivy and

position on the neuron.

3. The only significant delay within the nervous
system is synaptic delay.

4. The activity of any inhibitory synapse absolutely
prevents excitation of the neuron at that time.

5. The structure of the net does not change with time."
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These postulates are such as to rule out memory except in the form of

modifications of perpetual activity or circulating loops of impulses in the

network. Any non-volatile memory, such that the functioning of the network

at a given time depends upon previous activity even though a period of total
inactivity has intervened, is impossible in a McCulloch-Pitts network.
However, a McCulloch Pitts network can always be constructed which will em
body whatever input-output relations might be realized by a system with
an arbitrary memory mechanism, provided activity is allowed to persist in
the network.

Later writers, notably Kleene (Ref. 43) have considered in
more detail the kinds of events which can be represented by networks of
McCulloch -Pitts neurons. The only important limitation is that events
whose definition depends upon the choice of a temporal origin point, or
events which extend infinitely into the past, may not be representable by
outputs from finite networks . Any event which can be described as one of
a definite set of possible input sequences over a finite period of time can be

represented. In particular, any events which might conceivably be recognized
by a biological system can be represented by outputs of networks of McCulloch-
Pitts neurons .

In later papers by Pitts and McCulloch (Ref. 71) and by
Culbertson (Refs. 16, 17) specific automata designed to perform actual
"psychological" functions such as pattern recognition, have been described.
Culbertson, in particular, has carried out such designs in explicit detail for
a large number of interesting problems. The approach which he advocates
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is expounded in his 1950 work on "Consciousness and Behavior" as

follows:

"Neuroanatomy and neurophysiology have not yet developed
far enough to tell us the detailed interconnections holding
within human or animal nets. . .Consequently, . . . we cannot
start with specified nerve nets and then in a straightforward
way determine their properties. Instead, it is the reverse
problem which always occurs in dealing with organic behavior.
We are given at best the vaguely defined properties of an
unknown net and from these must determine what the structure
of that net might possibly be. In other words, we know, at
least in a rough way, what the net does (as this appears in
the behavior of the animal or man) and from this information
we have to figure out what structure the net must have . . . Our
investigation passes through two stages. In the first stage--
the behavioristic inquiry- -we ignore the inner constituents,
i.e. , the nervous system and its activity, and concentrate
our attention instead on the observable relations between the
stimuli affecting the organism and the responses to which
these stimuli give rise. . .This makes the second stage --the
functional inquiry- -possible . Here, as Northrop says, we
concentrate our attention on the inner (throughput) consti
tuents of the system and point out the ways in which the
receptor cells, central cells, and effector cells could be
interconnected so that the input and output relations. . .would
be those discovered in stage 1."

While such a program can hardly be criticized on logical grounds,
it appears pragmatically to have fallen short of the proposed goals. Starting
rather suddenly, with the development of automata theory in the late 1930's,

the ready applicability of symbolic logic brought this approach to early
mathematical sophistication. After the first flood of proposed models,

further progress has been disappointingly trivial, and returns seem to be

diminishing rapidly. The promised biological "explanations" have been

particularly lacking. In this writer's opinion, there are at least five main

reasons for this:

-16-



There is a lack of sufficiently well defined psychological
functions as a starting point. The approach requires
essentially full knowledge of input-output relations for the

behavior of an organism, and such knowledge is not

available for any biological species .

Constructed solutions generally show poor correspondence
to known conditions of neuroanatomy and neuroeconomy;
the numbers of neurons required often exceed those in
biological nervous systems, and the logical organization
generally requires a precision of connections which
appears to be absent in the brain. In some cases, a

single misconnection would be sufficient to make the

system inoperable.

The models fail to yield general laws of organization.
A monotypic model is in general overdetermined,

corresponding at best to a biological phenotype,
rather than a species as a whole; its specification in

the form of a detailed "wiring diagram" frequently
misses essentials in a plethora of detail. Unique
solutions for the proposed functions are generally

lacking and an enormous variety of models can be

generated which appear to solve the same problem

equally well. Therefore, unless the system is actually
tested against its biological counterpart, nothing is
gained by a detailed construction of the model except a

further confirmation of an existence theorem which is
already well established.



(4) The models lack predictive value. Once a particular
model has been proposed, further analysis can reveal
little that is not included in the functional description
with which we began.

(5) The models are not biologically testable in detail.
Specific connections cannot be traced with sufficient
precision in nervous tissue to say whether or not a

particular wiring diagram is exactly realized. Conse
quently, the models are fated to remain purely specu
lative unless histological techniques are improved to

a highly improbable degree .

In the foregoing, we have concentrated on the line of models

which have attempted to represent the brain as a symbolic logic calculator,
in which events of the outside world are represented by the firing or non-
firing of particular neurons. It is in these models that rigorous mathematical
treatment has been most successfully achieved. Not all monotypic models
are of this variety, however. Field theorists such as Kohler have taken
exception to the idea that psychological phenomena can be represented in
this fashion. Kohler, arguing for an isomorphic representation of perceptual
phenomena, asks (Ref . 46): "How can a cortical process such as that of a

square give rise to an apparition with certain structural characteristics, if
these characteristics are not present in the process itself? According to

Dr. McCulloch, this is actually the case. But if we follow the example of
physics, we shall hesitate to accept his view. In physics, the structural
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characteristics of a state of affairs are given by the structural properties
of the factors which determine that state of affairs. . . Situations in physics
which depend upon the spatial distribution of given conditions never have

more, and more specific, structural characteristics than are contained in
the conditions". While Kohler's own model is not generaly considered
plausible today, his criticism is a significant one, and a number of theorists,
such as Lashley (Ref. 50) MacKay (Ref s . 55,56) and Green (Ref. 28) have

been concerned with possible forms of representation of perceptual informa
tion which. would preserve the intrinsic structural features of the perceived
event rather than merely assigning an arbitrary symbol to it.

The main line of monotypic models , although failing to provide
a satisfactory brain model, has left us a number of important analytic tools
and concepts, including the McCulloch -Pitts neuron, and the theorems

concerning the existence of networks representing arbitrary functions. For
the actual design of plausible organizations, however, the genotypic approach
appears to hold more promise.

2.3 Genotypic Models

In the monotypic approach, the properties of the components,
or neurons , which comprise the networks are fully specified axiomatically,
and the topology of the network is fully specified as well. In the genotypic
approach, the properties of the components may be fully specified, but the

organization of the network is specified only in part, by constraints and

probability distributions which generate a class of systems rather than a
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specific design. The genotypic approach, then, is concerned with the

properties of systems which conform to designated laws of organization,
rather than with the logical function realized by a particular system.

This difference in approach leads to important differences in
the types of models which are generated, and the kinds of things which can
be done with them. In the case of monotypic models, for example, the

propositional calculus is applicable and probability theory is poorly suited
to the analysis of performance, since a single fully deterministic system is

under consideration which either does or does not satisfy the required
functional equations. In dealing with genotypic models, on the other hand,

sumbolic logic is apt to prove cumbersome or totally inapplicable (even

though, in principle, any particular system which is generated might be

expressed by a set of logical propositions). In the analysis of such models,
the chief interest is in the properties of the class of systems which is
generated by particular rules of organization, and these properties are
best described statistically. Probability theory therefore plays a promi
nent part in this approach. A second major difference is in the method of
determining functional characteristics of the models. In the monotypic
approach, the functional properties are generally postulated as a starting
point. In the genotypic approach, they are the end-objective of analysis,
and the physical system itself (or the statistical properties of the class of

systems) constitutes the starting point. This means that psychological
functions need not be determined in full detail before setting out to construct

a model, and, indeed, it is hoped that such models may help in answering

open psychological questions.
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While the monotypic approach arose rather suddenly with the

advent of modern computers and control system theory, and rapidly advanced
to a high level of mathematical sophistication, the genotypic approach has

been much more gradual in its development, and has not yet developed all
of the mathematical tools required to deal adequately with its problems.
The genotypic models have been influenced less by the engineering sciences,

and more by physiology and neuroanatomy. The descriptive anatomy of the

nineteenth century laid the groundwork for modern studies of localization of

function in the brain, and neurologists such as John Hughlings Jackson noted

the apparent plasticity of the system -- the ability of neighboring regions to

take over the function of damaged areas. Pavlov and others speculated about

possible mechanisms for adaptive modification of the central nervous system
in the early part of this century, and various hypotheses for the deposition of

"memory traces" were of interest to psychologists and physiologists alike.
The doctrine of equipotentiality, propounded by Lashley (Ref . 49), went even

further in claiming complete interchangeability of most parts of the cerebral
cortex, and evidence for "distributed memory" which suggested that "traces"
must be more or less uniformly dispersed throughout the cortical tissue

began to accumulate. All of this neurological evidence engendered a picture
of the brain as a relatively undifferentiated structure, capable of undergoing

radical reorganization by means of unspecified adaptive mechanisms, and

showing only gross anatomical equivalence from one individual to another.

While recent work on localization (Refs. 51, 65, 66, 94, 108) has shown

some surprisingly precise mapping of functions, modern morphological

investigations (Refs. 8, 52, 93) have borne out the apparently statistical
organization of the "fine structure" of neurons and their interconnections.

It now seems reasonable to suppose that while there are many constraints
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on the organization of neurons in the brain, which are undoubtedly essential
to the system's functioning, these constraints take the form of prohibitions,
biases, and directional preferences, rather than a specific blueprint which
must be followed to the last detail. In order words, there are enormous
numbers of functionally equivalent systems, all obeying the same rules of

organization, and all equally likely to be generated by the genetic mechanisms
of a particular species.

While the neurologists mentioned above had a great deal to say
about the observed and hypothetical organization of the brain, they were not
concerned with the construction of models in the sense of detailed theoretical
systems from which precise deductions could be made. Psychologists and

philosophers, more willing to indulge in speculation, were the first to attempt
detailed conjectures on the maturation of psychological functions in systems
which might justifiably be called "brain models". Hebb (Ref . 33) and Hayek

(Ref . 32), following the tradition of James Stuart Mill and Helmholtz, have

attempted to show how an organism can acquire perceptual capabilities
through a maturational process. For Hayek, the recognition of the attri
butes of a stimulus is essentialy a problem in classification, and his point
of view has inspired Uttley (Refs. 101, 102) to design a type of classifying -

automaton which attempts to translate the approach into more rigorous
mathematical form. Hebb's model is more detailed in its biological
description, and suggests a process by which neurons which are frequently
activated together become linked into functional organizations called
"cell assemblies" and "phase sequences" which, when stimulated, corres
pond to the evocation of an elementary idea or percept. While Hebb's

-22-



work is far more complete in its specification of a "model" than most
preceding suggestions along this line, it is still too programmatic and too
loose in its definitions to permit a rigorous testing of hypotheses. It should
be considered more as a description ol what a satisfactory model might
ultimately look like than as a fully formulated model in its own right. None

theless, it comes sufficiently close to a detailed specification so that
Rochester and associates, using an IBM computer, were able to propose
enough of the missing detail to put the cell assembly hypothesis to an

empirical test (Ref . 77). Unfortunately, with a theory so loosely specified,
the inconclusive results of the IBM experiments carry little weight in

evaluating Hebb's original system. Milner, in a recent paper (Ref. 58) has
attempted to update the Hebb theory, and it may be that his model can be

more readily translated into analyzable form, although this has not yet been

done .

It is interesting that one of the first applications of probability
theory to brain models is due to Landahl, McCulloch, and Pitts, appearing
in 1943 along with the McCulloch-Pitts symbolic logic model (Ref. 47). In
this paper, the topology of the network is still assumed to be a strictly
deterministic, fully known organization, but impulses are assumed to be

propagated with known frequencies but with uncertainties in their precise
timing. A theorem is stated which permits the substitution of frequencies
for symbols in the logical equations of the network, in order to obtain the

expected frequency with which different cells will respond. This statistical
treatment is related to the work of von Neumann (Ref. 104) on the proba

bility of error in networks with fallible components .
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The first systematic attempt to develop a family of statistically
organized networks, and to analyze these in a rigorous fashion by means of
a genotypic approach seems to have been due to Shimbel and Rapoport, in

1948 (Ref . 92). Starting with an axiomatic representation of neurons and

connections, similar to that of McCulloch and Pitts, a network is character
ized by probability distributions for thresholds, synaptic types, and origins
of connections. A general equation is then developed for the probability that
a neuron at a specified location will fire at a specified time, as a function of
preceding activity and parameters of the net. This is applied to a number of
specific classes of networks to determine the possibility of steady-state
activity, and changes in the firing distribution with time. This work is a

forerunner of a number of stability studies (e.g. , Allanson, Ref. 2) which
are still of interest.

The use of a digital computer by Rochester and associates was
mentioned above in connection with Hebb's model. Simulation of a statistically
connected network to investigate possible learning capabilities was first
carried out successfully by Farley and Clark in 1954 (Ref. 10). Although
mathematical analysis was not attempted in either the Farley-Clark or the

Rochester models, they illustrate a convenient method of axiomatizing a

network (by means of a computer program) to a degree which makes the

investigation of hypotheses possible. While none of these experiments led
to very sophisticated systems, they are of considerable historical interest,
and the mechanism for pattern generalization proposed by Clark and Farley
(Rel. 15) is essentially identical to that found in simple perceptrons.
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Statistical models of various types have been proposed during the

last decade. In particular, the models of Beurle, Taylor, and Uttley (Refe. 6,

99, 101, 102) are of interest as attempts to analyze models with a clear
resemblance to the organization of a primitive nervous system, with receptors,
associative elements, and output or motor neurons. Moreover, in some of

these models, environments of sufficient complexity to permit the repre
sentation of visual and temporal patterns (albeit of a very primitive type)
are included in the analysis. Minsky (Ref. 59) has also devised and analyzed
several models capable of learning responses to simple stimuli.

A contribution of considerable methodological significance was

Ashby'e "Design for a Brain", in 1952 (Ref. 3). While Ashby's work (despite
its title) does not specify an actual brain model in our present sense, it
develops the rationale for an analysis of closed systems which must include
the environment as well as the responding organism and rules of interaction
as the object of study. Ashby's fields of variables correspond closely to

our concept of "experimental systems" which will be defined in Chapter 4.
In addition to his conceptual contribution, which is concerned with the

general approach to be used rather than with a specific model, Ashby has

demonstrated in a number of experiments how statistical mechanisms can

yield adaptive behavior in an organism.

While the genotypic approach has found favor among many
biologists, it is by no means universally accepted. A typical criticism is
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voiced by Sutherland (Ref . 97) in connection with Hebb's system:

"When Hebb's theory was first put forward, it was hailed
as showing how it might be possible to account for behavior
in terms of plausible neurophysiological mechanisms. . .
However, a moment's reflection shows that, if he is right,
what he has really succeded in doing is to demonstrate
the utter impossibility of giving detailed neurophysiological
mechanisms for explaining psychological or behavioral
findings. According to Hebb the precise circuits used in
the brain for the classification- of a particular shape will
vary from individual to individual with chance variation
in nerve connectivity determined by genetic and matu ra
tional factors. . . Different individuals will achieve the
same end result in behavior by very different neurological
circuits. . . If Hebb's general system is right, it precludes
the possibility of every making detailed predictions about
behavior from a detailed model of the system underlying
behavior . "

While objections such as this seem to stem from a misunderstanding
of the possibility of obtaining seemingly deterministic phenomena from a

statistical substrate (as in statistical mechanics) the above argument is bols
tered by many findings which suggest complicated hereditary mechanisms

for the analysis of stimuli in "instinctive" behavior. The work of Sperry
and Lettvin has already been cited in connection with the mechanisms for
precise localization of connections which seem to exist in the brain. Our

conclusion is that the biological system must employ some mixture of

specific connection mechanisms and statistically determined structures;

just how much constraint is present in the genetic constitution of the brain is
an open question. •
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On most of the specific points of criticism raised in connection
with monotypic models, the genotypic approach seems to fare much better.
Detailed psychological functions are not required as a starting point. Detailed
physiological knowledge of the brain would be helpful, but even a rough para
metric description enables us to start off in the right direction, and present
models have a considerable way to go before they have assimilated all of the

physiological data which are available.

Since this approach begins with the physical model rather than the

functions which must be performed, it is easy to guarantee its conformity in
size and organization to the general characteristics of a biological system.
Most important is the fact that this approach appears to be yielding results of
increasing significance and interest, and the models frequently suggest
progressive lines of development from simple first approximations to more

sophisticated systems. In the application of the genotypic approach to per-
ceptrons, a number of laws of considerable generality have been discovered,

as will be seen in subsequent chapters.

2.4 Position of the Present Theory

The groundwork of perceptron theory was laid in 1957, and

subsequent studies by Rosenblatt, Joseph, and others have considered a

large number of models with different properties (Ref s . 7, 30, 31, 40,

41, 76, 79, 80, 81, 82, 84, 85, 86). Perceptrons are genotypic models,

with a memory mechanism which permits them to learn responses to

stimuli in various types of experiments. In each case, the object of
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analysis is an experimental system which includes the perceptron, a defined
environment, and a training procedure or agency. Results of such analyses
can then be compared with results of comparable experiments on human or
animal subjects to determine the functional correspondence and weaknesses
of the model. A number of specific psychological tasks and criteria, which
will be discussed in the following chapter, are used for the comparison of
different systems.

Perceptrons are not intended to serve as detailed copies of any
actual nervous system. They are simplified networks, designed to permit
the study of lawful relationships between the organization of a nerve net, the

organization of its environment, and the "psychological" performances of which
the network is capable. Perceptrons might actually correspond to parts of
more extended networks in biological systems; in this case, the results
obtained will be directly applicable. More likely, they represent extreme
simplifications of the central nervous system, in which some properties are
exaggerated, others suppressed. In this case, successive perturbations and

refinements of the system may yield a closer approximation.

The main strength of this approach is that it permits meaningful
questions to be asked and answered about particular types of organization,
hypothetical memory mechanisms, and neuron models. When exact ,

analytic answers are unobtainable, experimental methods, either with
digital simulation or hardware models, are employed. The model is not

a terminal result, but a starting point for exploratory analysis of its
behavior .
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3. PHYSIOLOGICAL AND PSYCHOLOGICAL CONSIDERATIONS

In the last chapter, a methodological doctrine was proposed,
which undertakes to evaluate classes of brainlike systems by comparing
their performance with that of biological subjects in behavioral experi
ments; by gradually increasing the sophistication and varying the axio
matic constraints which define the experimental systems, it is hoped that
models which closely resemble the biological prototype can ultimately be

achieved. In this chapter, the desiderata for a satisfactory brain model
are considered in more detail, from the standpoint of physiology and

psychology. What are the parametric constraints, functional properties,
and performance criteria which must be met, in order to achieve a model
which is a plausible representation of the brain?

The following discussion comes under three main headings:

(1) established fundamentals; (2) current issues; and (3) the design of
experimental tests of performance . It is not our purpose to review all of
the relevant background in biology and psychology, but rather to highlight
those points which bear most directly upon the present undertaking, and

to suggest certain areas in which investigations might provide decisive
evidence for or against some of the models which we shall propose . It
will be noted that no attempt has been made to distinguish specifically
"psychological" or specifically "physiological" problems in the following
sections. Such distinctions are not only arbitrary in a number of the

cases, considered, but also tend to obscure the fact that we are interested
in all of these problems because of their relevance to brain models, rather
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than to psychology or physiology per se. In this discussion, attention
will be concentrated on the level of complexity which seems most commen

surate with that of the proposed models. Psychological material on psycho -

neuroses, or on attitude formation, for example, while it might be brought
to bear on the evaluation of some future models, is hardly likely to be

relevant at this time. On the physiological side, we are chiefly concerned
with the overall organization of the nervous system, its microstructure,
and conditions for impulse transmissions; we are less concerned with
details of neuroanatomy and neurochemistry, although such data may
become important in more sophisticated models, where a closer correlation
with the biological system is sought.

3 . 1 Established Fundamentals

3.1.1 Neuron Doctrine and Nerve Impulses

It was only during the first decade of this century that a strong
case was developed for regarding the neuron as the basic anatomical unit
of the nervous system. The demonstration that this is the case rests largely
upon the work of Ramon y Cajal (Ref. 14). Since Cajal's time, a great variety
of neurons, differing in size, numbers of dendritic and axonal processes, and
the distribution of these, have been described by neuroanatomists (Refs. 8,
52, 93). Today it is generally accepted that in virtually all biological species,
the nervous system consists of a network of neurons, each consisting of a

cell body with one or more afferent (incoming) processes, or dendrites, and

one or more efferent (outgoing) processes, or axons. The axons branch into

-30-



small fibers which may make contact with, but remain separate from the

surface membrane of cells or dendrites upon which they terminate. Neurons
are generally divided into three classes: (1) sensory neurons, which generate
signals in response to energy applied to sensory transducers, such as photo
receptors or pressure sensitive corpuscles; (2) motor neurons, (or effector
neurons ) which transmit signals to muscles or glands and directly control
their activity; (3) internuncial neurons, (or associative neurons) which form
a network connecting sensory and motor neurons to one another. The brain,
or central nervous system, is made up almost entirely of neurons of this
last type .

The actual signals carried by these neurons may take one of

several forms. Until recently, it was supposed that all information in the

nervous system was represented by a code of all-or-nothing impulses,

corresponding to on -off states of the neurons. A sufficient input signal was

supposed to trigger the receiving cell directly into emitting a spike potential,
which was transmitted without decrement from the receiving region of the

dendrites to the cell body, and out along the axon to the terminal endbulbs,

where it might or might not succeed in triggering later cells in the network.

In a recent review (Ref. 11) Bullock has pointed out that this view has been

largely supplanted by a far more complicated picture . While it is true that

the transmission of signals over long distances is generally accomplished

by means of all-or-nothing spike propagation along the axons of nerve cells,
the spike impulse is not a direct response to impulses which arrive at the

dendrites, and may originate at a point which is separated by a considerable
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distance from the site at which incoming impulses are received. Essentially,
the currently accepted concept is that the dendritic structure and cell body
jointly act as an integrating system, in which a series of incoming signals
interact to establish a pre-firing state in a region at the base of the axon,

from which impulses originate. If this pre-firing state reaches a threshold
level (presumably measured by membrane depolarization) at a point within
the critical region, a spike potential is initiated, and spreads without decre
ment along the axon. The interactions which may occur in the cell body and

dendrites, however, involve potential fields in which the effects of impulses
received at a given point spread over the surrounding membrane surface in

a decrementing fashion. These effects may be graded in intensity, depending
on frequency of impulses received, and the state of the receiving membrane
at the time. Successions of impulses arriving at the same synapse can
sometimes cause an increase in the sensitivity of the receiving membrane

(facilitation) and can sometimes cause a progressive diminution in sensitivity
(Ref, 11). There is evidence to suggest that different local patches of surface
membrane are differently specialized, and respond in different ways to

impulses received, even within the same neuron. Some of these regions
appear to act as sources of internally generated signals, which may lead
to spontaneous activity of the neuron, and the emission of spike impulses
without any input signals from outside the cell.

Two main types of synapses are recognized: excitatory and

inhibitory. It is generally assumed, although it has not been proven, that
a single neuron is either all excitatory or all inhibitory, in its effect upon
post-synaptic cells. It remains possible, however, that the individual
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synaptic endings are specialized, some of them releasing a depolarizing
transmitter substance (excitatory endings) while others release a hyper-
polarizing substance (inhibitory endings). A single synapse, so far as

is known, remains either excitatory or inhibitory, and is incapable of
changing from one to the other.

The nerve impulse itself is a basically non-linear response to

stimulation. It is supported by energy-reserves of the axon by which it is
transmitted, rather than by a propagation of energy from the sources of
excitation. The nerve impulse is manifested by a moving zone of electrical
depolarization of the surface membrane of the neuron, the exterior of which
is normally 70 to 100 millivolts positive relative to the interior. This zone

tends to spread along the axon due to ionic currents which tend to break
down the potential difference between the interior and exterior of the

neuron, until the membrane is repolarized by metabolic processes (see
Eccles, Refs. 18, 19). The resulting "spike potential" takes the form of
an electrically negative impulse (measured relative to the normal surface
potential of the membrane) which propagates down the fiber with an average
velocity of about 10 to 100 meters per second, depending on the diameter
of the fibers (c. f . , Brink, Ref. 9).

The arrival of a single (excitatory) impulse gives rise to a

partial depolarization of the post-synaptic membrane surface, which
spreads over an appreciable area, and decays exponentially with time.
This is called a local excitatory state (1 . e . s . ). The 1 . e . s . due to

successive impulses is (approximately) additive. Several impulses

arriving in sufficiently close succession may thus combine to touch off
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an impulse in the receiving neuron if the local excitatory state at the base
of the axon achieves the threshold level. This phenomenon is called
temporal summation. Similarly, impulses which arrive at different points
on the cell body or on the dedrites may combine by spatial summation to

trigger an impulse if the l.e.s. induced at the base of the axon is strong
enough.

The passage of an impulse in a given cell is followed by an

absolute refractory period during which the cell cannot be fired again,
regardless of the level of input activity. This is equivalent to an infinite
threshold during this period. The spike potential and absolute refractory
period last about 1 millisecond. Finally, there is a relative refractory
period which may last for many milliseconds after the initial impulse.

During this time, the threshold gradually returns to normal, and may
even fall to somewhat below its normal level for a time . While the

response of a cell to a single momentary stimulus, such as an electrical
pulse, is markedly non-linear (the amplitude of the generated impulse

being quite independent of the amplitude of the triggering signal) the

effect of a sustained excitatory signal, in many cases, is to evoke a

volley of output spikes, the frequency of which may be roughly propor

tional to the intensity of the stimulus over a wide range. This is parti
cularly true of sensory neurons, where the frequency of firing may be

used to determine the intensity of the stimulus energy with considerable

accuracy.
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The general picture of the nervous system, then, is one of a

large set of signal generators, each having one or more outputs, on which

nerve impulses may appear. These impulses may vary in frequency, and

to some extent in amplitude, but seem to carry information mainly in a

pulse -coded form. The signal generators themselves are decision elements
of a most intricate type; each one makes its decision to initiate an output
impulse according to a complicated function of the series of signals received
at each of its synapses or receptor areas, as well as its own internal state.
In a brain model, a neuron of this complexity would tend to make the system
unintelligible and unmanageable with the analytic and mathematical tools
at our disposal. Simplifications will therefore be introduced, as in the

manner of the McCulloch-Pitts neuron; but it should be remembered that

the biological neuron is considerably more complicated, and may incorporate
within itself functions which we require whole networks of simplified neurons

to realize.

3.1.2 Topological Organization of the Network

The human brain consists of some 10*^ neurons of all types.
These are arranged in a network which receives inputs from receptor
neurons at one end, and conveys signals to the effector neurons at the

output end. Different sensory modalities -- vision, hearing, touch, etc. --
communicate with the central nervous system by way of distinct nerve
bundles, which enter it at different points. Each of these modalities,

after passing its information through a network of cells which respond
more or less exclusively to stimuli from that modality, eventually contri
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butes to a common pool of activity in the "association areas" of the central
nervous system (CNS). Output signals originate either from the parts of
the CNS which are specific to a particular modality (for example, the

pupillary reflex mechanism) or from the common activity areas (as in
speech). Final outputs may go through a series of stages in which motor
patterns or sequences are selected, and detailed coordination is regulated.
From these motor control regions, feedback paths re-enter the association
areas and sensory integration areas, so that the possibility of an elaborate
servo -mechanism for the control of motor activity exists.

While this general picture holds true for most biological
organisms, there is considerable variation both in gross and detailed
anatomy, from species to species and individual to individual. In under

taking to design a first order approximation to this structure for use in a

brain model, we will begin with a network consisting of a single array of

sensory units, a layer of association units, and a single effector, or

response unit. In later models, more complicated structures will be

considered. Even the simplest models, however, are capable of showing

a surprising similitude to the functional properties of the brain. It seems
reasonable, therefore, to regard the complications of neuroanatomy in the

various species as elaborations of a basically simple schema, which is to

be found throughout. This basic plan of organization is illustrated in

Figure 1 .
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The distribution of cell types and connection patterns has been

studied by Lorente de N8, Sholl, Bok, and others (Ref s . 8, 52, 93). A
typical cell in the cerebral cortex receives input connections from some
hundreds of other cells, which may be located in widely scattered regions,
but its output is more likely to be transmitted to a relatively localized
region. Cells which receive sensory input signals are likely to have a

restricted field of origins in a sensory surface, such as the retina or
the skin.

The mapping of the frog retina into the brain has been studied

by Lettvin (Ref. 51) who finds a rather precise topographic mapping, in
which several different types of information are represented in different

*layers. This topographic mapping is established genetically despite
the fact that the fibers which transmit the information from the retina
are apparently completely "scrambled" in the optic nerve. Moreover,
experiments by Sperry (Ref. 94) and more recently by Lettvin (Ref. 51)

show that if the optic nerve is severed and allowed to grow together again,
the fibers which originally transmitted to a particular terminal location will
tend to reconnect to that same terminal location, with surprisingly little
loss of precision. This points to a highly specific neural organizing
capability, which must be taken into account in considering admissible
types of constraints for a brain model. In the mammalian brain, each
sensory modality appears to be represented by an orderly topographic
mapping analogous to that just described. Auditory stimuli, for example,
are mapped into a region which is organized according to pitch; tactile
stimuli are mapped according to body location, and so forth. Similarly,
—

See also Section 3.1.4.
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the motor neurons are organized, in the cerebral cortex, in an ordered
arrangement which is topologically similar to the organization of the
muscles which are controlled.

In contrast to the highly specific regional organization in the

gross anatomy of the sensory projection areas of the cortex, the detailed
microstructure of the network appears to be essentially random, governed
only by directional gradients and preferences, and statistical distributions
of fiber lengths for various types of cells (see Sholl, Ref. 93). In the

human nervous system, it appears that the most specific and constrained
topological organizations are to be found in the sensory and motor systems,
while the intervening association network of the CNS is less tightly
controlled in its organization, presumably depending more on learning
and adaptive modification to establish the required pathways and linkages.
The degree of precision in establishing the topological organization of
neurons in even the most highly constrained reflex mechanisms is probably
far less than that in most artificial data processing devices, and must retain
a certain degree of randomness wherever the number and density of
connections is appreciable. Unfortunately, no data are available which
would indicate the complexity of topological constraints which correspond
to the highly complex inherited behavior patterns which are known to

exist in many species. Since the nature of such constraints is unknown,
we shall avoid gratuitous assumptions about them, as far as possible.
In the development of brain models, it will be our general strategy to start
out with minimally constrained networks, and examine the consequences of

introducing particular types of constraints, one at a time.
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3.1.3 Localization of Function

Ever since the brain was first credited with the control of

psychological activity, attempts have been made to delineate separate
functions for its different parts. In the last century (largely under the

influence of Gall) this took the form of an assignment of "mental faculties"
such as intelligence, combativeness , amativeness, and religiosity, to

special regions of the brain. As techniques for the study of functional
anatomy improved, this gave way to a concept of organization into sensory
tracts, motor tracts, and association tracts. The functional organization
which was revealed has been most firmly established in the case of sensory
and motor tracts, where a particular position in the brain is correlated with
a particular sensory locus, or a particular set of muscles whose activity it
controls. An excellent review of sensory and motor mapping can be found
in Ruch (Reft. 88, 89). More recently, a finer breakdown in the localization
of sensory functions has been demonstrated by Lettvin and associates (Ref . 51

Four distinct types of information, involving distinct aspects of the visual
stimulus (contrast, curvature, movement, and dimming of illumination) have
been shown to be mapped into four distinct layers of the tectum of the frog.
This suggests localization of analytic functions, of a sort which has been

suspected but not previously demonstrated.

In dealing with the so-called "association areas" of the cerebral
cortex, and with other parts of the brain which are not clearly related to

sensory data processing or motor coordination, something of the old
treatment in terms of "mental faculties" still remains; specifically,
centers have been found which are commonly attributed with primary
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responsibility for temporary and permanent memory, for emotional behavior,

for speech recognition and speech production, and (in the frontal lobes) for
the integration of complex goal -directed activities. The lack of clear opera
tional tests for such capabilities has been a hindrance to progress in such
functional mapping, and the results are considerably more ambiguous than
is the case with sensory and motor functions. A discussion of current
evidence on brain localization with respect to these "higher faculties" is
found in Pribram (Ref . 72). Much of the recent work is concerned with the

localization of tracts which influence motivation, alertness, and conscious
ness in the organism (Ref s. 1, 22, 38, 64, 65).

One feature which is of particular importance for brain models
is the apparent plasticity of localization in the "association areas" (or
"intrinsic systems", to use the terminology advocated by Primbram) in
contrast to the relatively fixed and irreplaceable character of the sensory
and motor tracts. Loss of function, due to destruction of association cortex,
is apt to be transient, with adjacent areas taking over the function after a

period of readaptation . Jackson, in his classic studies of the motor cortex,

(Ref. 36) observed that even here localization is not rigid and absolute, and

that a certain amount of flexibility exists, permitting the functions of damaged
tissue to be taken over by neighboring areas. The sensory projection areas,
on the other hand, appear to be indispensible to perception; destruction of
the optical cortex leads to permanent blindness in an area corresponding to

the location of the lesion, and similar phenomena are to be found in other
sensory modalities. Thus, the extreme hypothesis of equipotentiality
advocated originally by Lashley (Ref. 49) , (who observed that cortical
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ablation appeared to produce a general deficit in performance proportional
to the amount of cortex extirpated, rather than eliminating specific memories
and abilities) has been modified in the direction of relative localization,
which is quite strict for certain sensory functions, and comparatively weak
and readily modified for more complicated control functions, thinking, and
memory.

A father different approach to localization is suggested by the

histological studies of cortical tissue, initiated originally by Brodmann, and

pursued more recently by Lorente de N$ and Sholl (Refs. 52, 93). The
" cytoarchitectonic areas" which have been described in these studies differ
in their microstructure and detailed organization, and attempts have been made

to relate such differences to the function of the cortex in which they occur.
To date, this approach has not led to particularly significant results, although
in principle it may ultimately suggest the essential organizational properties
which must be incorporated into a brain model.

At the primitive level of organization to which our models will
aspire at this time, current data on brain localization are of only secondary
interest. The main features of the brain still seem to be adequately
described by the general topological structure shown in Fig. 1. The
"central integration and control network" indicated in the diagram is known
to possess some important internal demarcations in higher organisms, but

the precise functions of these parts and their interrelations is still largely
speculative. In simpler brains (crustacea, for example) the gross
organization is probably no more complex than indicated by the diagram;
and it seems likely that in general it is the fine structure, rather than the

gross anatomy, which determines the functional properties of the network.
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3.1.4 Innate Computational Functions

There is no doubt that mechanisms of considerable complexity,
sufficient for perceptual tasks and the control of organized behavior, can
be created by genetic control of growth and maturation. This is most
dramatically evident in the instinctual patterns of insects (for example,
the well known communication system of bees, and the frequently cited
behavior patterns of carpenter wasps), but is also clearly present in
vertebrates (e.g., the spawning behavior of salmon, and the migratory
behavior of birds, as described in Ref . 90). Recently, Gibson and Walk
have furnished clear experimental evidence for the innate perception of
depth in mammals (Ref. 24). All of these phenomena require "built-in"
control mechanisms, of a rather intricate sort. In the cases just cited,

these built-in mechanisms are not known in any detail. A number of more
elementary functions have been discovered, however, which provide some
picture of the types of "computational mechanisms" which are likely to

exist throughout the central nervous sytem.

The stimulus analyzing mechanisms discovered by Lettvin and

associates for frog vision have already been mentioned. In these studies, it
is found that certain ganglion cells in the frog retina respond only to contours

or strong contrast gradients within their sensory field; others respond only to

convex images; others to moving boundaries; and still others to a general

dimming of illumination over their entire field. Each of these four cell types
transmits its information to a distinct layer of the frog's tectum, where its

position is mapped topographically. Thus, one layer represents a contour
- — —

Other visual analyzing mechanisms have recently been demonstrated by
Hubel and Wiesel (Ref. 113) in the cat's cortex (see Chapter 23).
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map, or outline drawing of the stimulus field, another represents a location
map for small convex objects or corners, a third represents movement
vectors, and a fourth indicates regions of dimming illumination.

At the motor -control end of the nervous system, a number of
reflex arcs and servo-control systems have been analyzed. The pupillary
reflex, for example, has been analyzed as a typical servomechanism by

Stark and Baker (Ref . 96). A considerable amount of work has also been

done on the cerebellar servomechanisms which regulate muscular action
under the control of cortical decisions and kinesthetic feedback information

(c.f. Ruch, Ref. 89). It is probably safe to assume that similar closed-loop
control systems, employing familiar servomechanism principles , are
employed throughout the central nervous system for such purposes as

controlling level of activity, preventing runaway excitation phenomena

(such as occur in epileptic seizures), and regulating sensitivity to selected
aspects of the sensory input data.

It is worth noting that most of the specific computing mechanisms
used in muscular control appear to be of an analog variety, rather than digital;
they make use of intensities and frequencies of activity for the direct control
of servo-systems, rather than computing a control formula from encoded

data and then generating the control signal required. The stimulus analyzing
mechanisms found by Lettvin, however, constitute a sort of digital code, in

which stimulus properties are represented by presence or absence of signals
from particular neurons . It seems likely, as von Neumann has observed

(Ref. 105) that the brain makes extensive use of both digital and analog
principles in its operation, and it appears that both types of devices may
be genetically determined.
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An interesting example of theoretical speculations on possible
computational functions employed in shape discrimination in the octopus can

be found in Sutherland (Ref. 98). Sutherland reviews several alternative
theories, and presents evidence in support of his own conjecture that the

octopus responds to an analysis of the horizontal and vertical dimensions
of the stimulus measured along all possible cross -sections . No attempt is
made, however, to tie the computational process to a particular neurological
structure, or to indicate a mechanism which might carry out the indicated
operations .

3.1.5. Phenomena of Learning and Forgetting

Thus far, we have concentrated on the anatomical and physio
logical features of the nervous system which appear to be basic for the

design of a brain model. We now turn to some of the behavioristic and

psychological functions which a brain model should be able to demonstrate.

Phenomena of retention and adaptation in organisms have been

studied in a variety of experiments, varying greatly in their design. In

traditional usage, "memory" experiments have been concerned more with
the retention and recall of experience , while "learning" experiments are
concerned with the acquisition and modification of behavior . Both types of

investigation, however, are concerned with lasting modifications in the state
of the organism, and in complicated problems (e.g., those involving

"insight") one tends to merge into the other; accordingly, all of these

experiments will be considered together in this discussion.
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Quantitative studies of learning and memory in psychology
stem from the classical experiments of Ebbinghaus, in 1885, on the learning
and retention of nonsense syllables. Using himself as a subject, he obtained
learning and forgetting curves, and demonstrated many of the phenomena of
recognition and retention which have interested psychologists ever since.

Related phenomena have been studied by Bartlett (Ref . 5 ) using more highly
organized material. A second type of experiment, the conditioned reflex
experiment, first employed by Pavlov, is characterized by the association
of an existing response to a new stimulus, which did not evoke the response
prior to the conditioning procedure. A third type of experiment, employed
originally by Thorndike and recently studied extensively by Skinner and

others, is concerned with the learning of a pattern of behavior which is
instrumental to the solution of a problem, or which satisfies a drive.
Where such problem-solving behavior appears to depend in a crucial way
upon a "cognitive restructuring" of the situation, or the formation of a new

"concept", we have an experiment in "insight" or "concept formation", as
in the studies of the Gestalt psychologists.

It is possible that these three types of experiments are actually
demonstrating fundamentally different mechanisms of learning. The first
deals with recognition and recall of previous perceptual experience; the

second is concerned with the generalization of responses from initial
stimuli to new stimuli by virtue of temporal association; the third is
concerned with the discovery and establishment of problem-solving behavior.
Still other experiments deal with such phenomena as short-term memory
span, acquisition of needs and motives, attitude formation, perfection of a
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motor skill, or learning to make fine perceptual judgements. Undoubtedly,
the same physiological processes are tapped in many of these tasks; on the

other hand, attempts at subsuming all of them under a set of general "laws
of learning" does not seem to be particularly helpful for our present purpose.
From the standpoint of brain model construction, it seems safest to regard
each type of learning experiment as a distinct problem, with its own variables
and rules of behavior which we hope that our model will duplicate under
equivalent experimental conditions. The main value of such psychological
experimentation, then, is to provide us with a set of "calibration experiments",
by means of which a model can be compared with known organisms under well
defined conditions. The reader who is unfamiliar with the literature of

learning experimentation will find the reviews by Hilgard, Brogden, and

Hovland (in Ref . 112 ) particularly helpful.

In a number of experiments, attempts have been made to find
the actual physiological correlates of the learning or memory phenomenon.
Notable among these are the experiments of Penfield (Ref. 68), who finds
that electrical stimulation of selected points on the cortex may evoke long
and vivid sequences of past experience, apparently with hallucinatory clarity.
John (Ref. 39) has recently reviewed experiments in cortical conditioning, and

reported a number of interesting results of his own, which suggest that

memory may involve modification of the connections between the deep centers
of the brain stem and the cerebral cortex, with the reticular formation playing
a particularly significant role. The experiments of Olds (Refs. 64, 65, 66)
on the reinforcing effects of electrical stimulation applied to certain points
in the hypothalamus and adjacent structures suggest that these may be

involved in the motivational aspect of learning. Such experiments, which
have only recently become possible through the improvement of electro

physiological techniques, are likely to become increasingly valuable as
guides to theory construction.
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3.1.6 Field Phenomena in Perception

Early studies of perception were largely concerned with the

absolute question of what perceptions are made of; such studies were
concerned with range and sensitivity of sensory abilities, measurement of
limits and thresholds, and the detailed dissection of sensory stimuli into
fundamental components. Such studies form the main subject matter of

classicial psychophysics . In psychology, they gave rise to an atomistic
approach (reaching its utlimate expression in the work of Titchener) in
which it was proposed that any phenomenon of perception could be accounted
for by a proper compounding of sensory elements, each of which retains its
own identity, like a piece of tile in a mosaic. During the last few decades,
largely under the influence of the Gestalt psychologists, studies of perception
have turned from the question of the constituents of perception to the question
of the conditions under which a given perception occurs. It is now generally
accepted that what is perceived depends not only upon the properties of the

stimulus object, or image, which is recognized, but upon the organization
of the entire sensory field in which it is embedded. This is true not only
in vision, but in other sensory modalities as well.

The field phenomena which have been studied include the effects
of contrast, figure -ground organization, frames of reference, depth perception,
size constancy, and illusions. The reader is referred to Koffka (Ref. 44 )

and Gibson (Ref. 26 ) for detailed discussion of these topics. For present
purposes, the most important implication of this work is that a physical
model for a perceiving system must permit the interaction of all elements
in a spatially organized field. It is not sufficient simply to detect sets of
elements which represent a "pattern"; the perception of a pattern, and the
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interpretation of it, depends in a fundamental way on metric relationships
to other sense data from the same modality, and correlations with sensory
data from entirely different modalities. The perception of a line as "upright",
for example, depends on its observed angles relative to visual standards of

"uprightness", such as the corners of a room, and also upon the gravity
senses and kinesthetic data which provide a frame of reference for "up"
and "down". The decision that two disjoint patches of illumination represent
parts of the same object rather than different objects depends upon their

contrast or resemblance to the field structure around them, as well as on

their relationship to one another. It is possible (as Gibson has suggested)
that recognition is never achieved, in biological systems, by the representation
of a particular receptor configuration, but only by the representation of sets
of relations (angles, ratios, etc.) as its elementary data. If this is the

case, a suitable set of analyzing mechanisms, capable of measuring such
variables must be included in the pre -recognition tracts of a brain model.
As our models gain in sophistication, it is, in fact, becoming increasingly
apparent that such analyzing mechanisms are essential for purposes of

efficiency and economy of design.

The perceptrons to be considered initially will not possess
intrinsic field -organization properties. With the introduction of cross -
coupled systems, such properties begin to emerge. An evaluation of
these systems by means of typical "Gestalt perception experiments" has

barely begun at the present time, but represents one of the most important
tasks to be undertaken.
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3.1.7 Choice-Mechanisms in Perception and Behavior

Selective attention and "set" are fundamental phenomena in
the control of psychological activity. They indicate mechanisms for
choosing between alternative courses of action, or points of view, and

play a logical role analogous to the selection of different branches in a

"flow diagram" of a digital computing routine. Attention and psychological
set are largely determined by the situational context in which behavior
occurs, and by the current "goals" or "purposes" of the organism, which
may be thought of as choices of a superordinate sort, under which sub-
decisions are made to select particular modes of activity. For example,
an individual who is set to ldok for a word in a dictionary will be most
attentive to the sequence of letters in boldfaced type, while someone who
is looking for torn pages will probably be unaware of the particular letter
combinations, and someone who is simply scanning the volume to look for
pictures is apt to notice neither the spelling nor the condition of the

pages.

The importance of set, or attitude, for learning has been

emphasized by Hebb (Ref . 33), but choice mechanisms of this type have
rarely been incorporated in the detailed design of theoretical brain
models. In purely logical models of behavior, they play a considerably
more prominent role -- for example, in Tolman's learning theory, and
in Newell and Simon's models for problem solving behavior (Ref s . 62, 63),
selective choice -mechanisms are specifically designated. In a brain
model, it is clear that such phenomena must be closely related to the

problem of "temporary memory", since the set under which the brain
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is currently operating must be represented by a temporarily stable, but

nonetheless readily altered, state of the system, capable of modifying
processes which go on while it persists. It seems likely (although un

supported by any direct evidence) that pools of neurons connected by
reverberating circuits may be important set -maintaining devices in the

nervous system, exerting their influence on the brain as a whole by
means of a widely distributed barrage of sub-threshold excitation or
inhibition. The plausibility of such mechanisms will be considered in
more detail in a later chapter.

3.1.8 Complex Behavioral Sequences

The discussion of psychological sets and choice mechanisms
brings us to a consideration of even more highly organized behavior and

thought patterns, such as the steps taken in performing an arithmetic
computation, or driving to work, or performing a piece of research.
All of these activities represent orderly sequences of decisions and action,

and can be considered, as Newell and Simon have suggested, as programs
to be performed. In some cases, these programs are highly stereotyped,
and determined by rigid rules; in other cases, they employ chance

mechanisms and heuristic procedures. Much of the classical psychological

literature on problem solving and insight is relevant to this second class
of programs, while a rat running a maze might be considered an example
of the first type. As in the case of selective attention and set, these
problems have not been dealt with in detail by any brain models proposed
to date, but it seems likely that at this level the brain and the computer

begin to approach a common meeting ground. Problems of memory span,
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storage, and sequence control are present in both types of systems, and

many of the logical problems confronted in "heuristic programming"

(Refs. 60, 62, 63 ) seem to be direct translations from human problem-
solving experience to the language of computing machines. This does
not mean that the physical structure of a brain model must ultimately
resemble that of digital devices, but rather that the same basic logical
organization --a memory for programs, a memory for data, and a

mechanism for the sequential performance of a given program -- must be

available. The "programs" themselves presumably take the form of

sequences of selective sets, or bias states, arranged in a heirarchical
manner, so that sub-operations are performed under the control of a

"master set" or "master program" which determines the overall plan of
activity. While the detailed properties of such systems must necessarily
remain speculative at the present time, we shall see that such a concept
is compatible with the organization of perceptrons not too far removed
in complexity from those which we are now capable of analyzing.

3 . 2 Current Issues

While the discussion of the preceding section has attempted
to stick to a relatively conservative and uncontroversial rendition of
physiology and psychology as it applies to the brain model problem, it
is clear that in the last pages we have been drawn into increasingly
speculative and uncertain areas of discourse. In this section, an

attempt will be made to highlight a number of issues which seem most
salient in determining the fate of various brain models, and which are
not answerable at the present time outside the realm of speculation.
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Of necessity, a physical model will have to take a stand on most of these
issues, and it is possible that by investigating the logical consequences of
such a stand, a decision as to the plausibility of various alternatives might
be made; the brain model approach has a chance, here, of providing answers
which empirical studies have so far been unable to discover. In any event,

the decision taken on these issues represent the points at which a brain
model is most vulnerable to future attack, as new evidence is uncovered.

3.2.1 Elementary Memory Mechanisms:

The status of current information on basic memory mechanisms
in the nervous system has been reviewed recently by Burns (Ref . 13). Most

brain models employ some memory hypothesis, but evidence as to the nature
of actual physiological mechanisms which might be involved is almost

totally lacking. It is generally agreed, simply on the basis of definition,

that whatever we call "memory" involves a modification of neural activity
in the central nervous system or its output signals, as a function of

exposure to previous events or "experience". In some models, this

modification has been attributed to persistent activity in closed loops of
neurons, but most theorists are now agreed that, while such a memory
mechanism might account for "short term memory", and might play a

significant role in the establishment of more permanent memory traces,
there must also exist a non -volatile memory mechanism (e.g. , a

structural or chemical change) which can outlast periods of neural in

activity, and is relatively insensitive to transient activity in the nervous

system (see Hebb, Ref. 33, pp. 12-16). The nature of this memory trace

mechanism , it is generally agreed, must be such as to facilitate the use
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or selection of neural pathways which have been active at the time of the

"remembered" experience or behavior, and virtually all specific models
assume that it takes the form of a facilitation of connections between sources
of excitation and responding neurons in the motor system or CNS. In
making such an assumption, the influence of the conditioned reflex model,
which suggests that sensory neurons become coupled to association neurons,

by which they are connected to motor neurons, is clearly evident. An
alternative position, in which the preferred pathways "win out" by surviving
deteriorative changes in unused pathways, rather than by active facilitation,
has not been explored to any significant degree, but appears to be logically
similar to its potentialities.

Granting that the memory mechanism takes the form of some
means of selecting particular patterns of activity in preference to others,

depending upon the input or current state of the nervous system, particular
physiological models include: (1) mechanisms for reconstituting past activity
states of the entire CNS or a major portion of it; (2) mechanisms for selecting
particular output channels as a function of current activity or sensory inputs .

The specific mechanisms proposed generally fall into one of the following
four categories:

(1 ) Extracellular influences and modification of the neural medium:
This has been proposed by Kohler (Ref. 45), Bok (Ref. 8), and others, who

assume that, if a "structural trace" is present at all, it is not laid down in
specific neurons, but in the surrounding medium, where it is capable of
modifying activity in nearby neural tracts. The possible form that such
a mechanism might take has never been specified in detail, and the approach
is generally discounted by current theorists. The motivation for such a
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hypothesis comes in part from attempts at preserving the isomorphism
between a spatially distributed memory trace and spatially organized
visual events, as in Kbhler's system. While it is not implausible to assume

that the surrounding medium participates in the memory trace structure,
it seems likely that such interaction between medium and neurons would
be highly localized, probably influencing only a single neuron or synaptic
junction, rather than forming a widespread organized structure independent
of the neurons themselves. If such a position is accepted, then whatever is
left of this approach can be subsumed under one or another of the remaining
neural modification mechanisms.

(2) Threshold Modification: The hypothesis that the threshold
of an active neuron may be reduced as a consequence of the activity, thus

making it more likely that this cell will respond to future stimuli, has
frequently been proposed as a possible memory mechanism (c.f. , Taylor,
Ref. 99 ). If we take the "threshold", in its conventional sense, to mean
the degree of membrane depolarization or the level of input excitation
which will cause the neuron to discharge, regardless of the particular
synapses involved in the transmission of excitation, then this model
meets two main objections: first, the sensitivity which is acquired is non

specific, making it more likely that the cell will respond to any input, rather
than just those which were effective at the time that the memory trace was
established; second, after a long history of activity, we would expect the

thresholds of all neurons to be reduced to a minimum level, unless some

recovery mechanism exists. If such a recovery mechanism does- exist,
memory will tend to be lost as a consequence, and it. must be shown that
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the rate of forgetting would not vitiate the value of the system. Occasionally,
the concept of "threshold reduction" seems to be used in the sense of an

increase in specific sensitivity of a neuron to a particular afferent fiber.
In this case, the threshold reduction mechanism becomes indistinguishable
from a synaptic facilitation mechanism, which is considered below.

(3) Strengthening of active neurons: Eccles (Ref.. 18), Uttley

(Ref. 102), and Rosenblatt (Ref. 79) have proposed models in which the

output signals of a frequently active neuron gain in strength or effectiveness,

affecting all terminals alike. This model retains the specificity of response
of a neuron (unlike the threshold reduction model) but increases its power
to activate the neurons which follow it in series. If the output signal from
a neuron goes to a single destination only, this is equivalent to a model which
strengthens particular synaptic connections . If the output goes to a number
of different locations, however, there is a lack of specificity in the channel -
selection properties of this mechanism, which must generally be offset by
auxiliary hypotheses. In Rosenblatt (Ref. 79) it is shown that by means of a

suitably organized feedback mechanism, a particular output channel can be

selected through a statistical bias . The feedback guarantees that these cells
which are reinforced all have at least one "desirable" output connection, the
other connections being distributed at random among a large number of
alternative terminal neurons, each of which consequently receives only a

fraction of the total reinforcement applied. While such a model is shown
to be logically workable, the specific feedback connections required make
it physiologically implausible, and it remains less efficient than a model
in which specific synapses, rather than total neurons, are selected for
modification.
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(4) Modification of selected synapses: This model has been

employed by Culbertson (Ref. 17), Hebb (Ref. 33), and others, and is
employed in most current perceptron models. The mechanism takes account
of the correlation of activity between an afferent synapse and the efferent
neuron, augmenting the strength of the synaptic ending (or, equivalently,
the sensitivity of the sub-synaptic membrane) if the correlation is positive,
and, in some cases, diminishing it if the correlation is negative. The
actual physiological process by which such a correlation might occur is
obscure, but the logical advantages of such a mechanism are clear. Hebb

has proposed that actual synaptic growth might occur, improving the contact
between the transmitting and receiving neuron. While Eccles has considered
possible synaptic growth mechanisms in some detail (Ref. 18 ) there is little
evidence to support this conjecture. A possible biochemical mechanism has

been proposed by this writer (Ref. 83), which assumes that large molecules
used as catalysts for the production of transmitter substances in the endbulb
must originate from the nucleoplasm of the post -synaptic cell, and that the

exchange of these molecules is facilitated by membrane depolarization and
periods of activity in both cells. An alternative possibility, in which the mem
ory mechanism is entirely contained within the post-synaptic cell, is
that a persistent sensitization of the subsynaptic membrane in the neigh
borhood of an active synapse occurs, given the hypermetabolic state which
follows activity. The facilitation of a neuron's response to repeated sub

threshold signals which has been reported by Bullock (Ref. 11) indicates
that a localized persistent effect of the sort hypothecated does exist; it

remains to be shown that the subsequent firing of the neuron may serve
to "stamp in", or fix in a more permanent manner, the temporary sensi

tivity which has been observed.
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The evaluation of a particular memory hypothesis must depend,
at this stage, upon its logical power when employed in specific brain models,
as well as its physiological plausibility. The mechanisms which are consi
dered in this report have been selected for their simplicity and their demons
trated ability to yield interesting behavioral results. They suggest plausible
directions in which to look for a physiological mechanism, but it remains
possible that the actual mechanisms employed by the brain may be of a drasti
cally different sort. It is fundamental to this approach, that any lasting
change in the system, whatever its physical form, may act functionally as a

memory trace. It seems likely that there is not a single memory mechanism,

or even only two memory mechanisms at work in the brain, but rather a

great number of dynamic processes, ranging from temporary facilitation
and fatigue effects to permanent structural changes, all of which contribute
in some way to the observed psychological phenomena called "memory".
Among these processes, it is likely that one or two play an outstanding role,
but likely candidates have not yet been found, and in the meantime, it seems
wise to retain an open mind on the entire question.

3.2.2 Memory Localization

There is hardly any more agreement on the question of where
memory traces are to be found (in the gross anatomy of the nervous
system) than there is on the question of what they consist of. Lashley
(Ref . 49) was largely responsible for the emphasis on "distributed memory"
among many theorists over the last few decades, and Sperry (Ref. 95) has
contributed a number of experiments which indicate that the residual
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effects of learning must be widely dispersed throughout the brain. On the

other hand, Penfield (Ref . 68) has shown that specific recall may be evoked
by stimulation of specific selected points in the cerebral cortex. E. R. John,
in a model which is supported by a certain amount of experimental evidence

(Ref. 39), proposes that the memory traces are distributed between the

thalamus and cortex, involving reverberating circuits and feedback loops
between these two regions rather than being localized in one or the other of

them.

The question of localization is of less importance for a functional
model of the brain than is the question of mechanism; as long as we assume
that it is the network topology, rather than the actual anatomical position of

neurons, which is important in determining the brain's logical properties,
there is no reason for requiring that a brain model resemble the biological
system in its spatial organization. The indirect implications of the different
theories of localization are of considerable importance, however. For one

thing, the view that the brain contains its memories in a widely dispersed,
intermingled form, suggests a mechanism in which the same cells parti
cipate in a great variety of different, and perhaps totaly unrelated, memory
organizations. A model which can separate distinct memories from such a

multiply overwritten system will be quite different in character from one in

which each remembered event is stored in its own distinct location. For
another thing, the apparent complexity of memory-sites which may interact
in the recall of a single experience or association (as emphasized in John's
work) impresses us with the possibility that human memory may be a

product of a number of related processes and mechanisms, perhaps

acting in a complex sequence of cause -and-effect, rather than a simple
correlation of inputs and outputs .
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Again, we are stuck with the necessity of simplifying for
lack of detailed knowledge. While it is likely that memory and recall in
the human nervous system involves the coordinated activity of several parts
of a complex structure, we will attempt, at the outset, to see what psycho
logical properties can be duplicated by a system in which memory is located
in a single set of connections, with a minimum of structural differentiation.
As perceptrons are elaborated into more highly structured models, the

question of which connections should be allowed to participate in memory
processes will be reconsidered, and alternative systems will be investigated.

3.2.3 Isomorphism and the Representation of Structured Information

Lashley, Kohler, Greene, Mac Kay, and others (Refs. 28, 45, 50,

55, 56, lio) have dealt with various aspects of the problem of isomorphism
between the representation of an event in the central nervous system and the
physical structure of the event in the outside world. In the naive isomorphism
of Kohler, it is required that the representation in the brain should actually
have a spatial structure resembling the thing that it represents; in the more
sophisticated form advocated by Greene, it is sufficient that the represen
tation should have a logical structure (not necessarily spatial in its physical
manifestation) which permits it to be broken apart, dissected, and reassembled
by suitable manipulations or attention -directing processes, in a way which is
related to the parts, surfaces, or aspects of the real -world phenomenon.
While some such structural representation seems to be inescapable in
human perception,' thinking, and imagery, the exact form that this might
take is again almost totally unknown. This is essentially the problem of
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determining the code employed by the brain in its representation of

perceptual phenomena. We know that the code is one which enables us to

recognize parts, relations, symmetries, and other organizational features

which might be lost in a completely arbitrary representational system (such
as a code which assigns binary symbols, in sequence, to all stimuli, and

then lists all of those which are to be considered as "similar"). We also

know that there are parts of the brain (the sensory projection areas) in

which actual spatial organization of stimulus patterns is retained. We do

not know, however, how far the representational code must go in the

direction of spatial isomorphism in order to account for the organizational

properties of experience. As usual, we shall begin with a simplification
which assumes an unstructured coding, but it seems likely that this will have

to be abandoned in order to deal with problems of figural representation,

perception of relations, and other "gestalt problems". An attempt will be

made in this report, however, to show that the required structuring for
some of these problems may be acquired by adaptive processes and need

not superficially resemble the phenomena which are represented.

3.2.4 Adaptive Processes in Perception

Much of the theoretical work on brain models (Hebb, Hayek,

etc. ) has been concerned with processes by which complex perceptual

organizations can be "built up" out of sensory fragments, by a process
of learning or association. Consequently, the question of adaptability,
or modifiability , of perception is of paramount importance as a guide in

model construction. The history of this problem has recently been

reviewed by Hochberg (Ref. 34). Studies of "perceptual learning" have
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been concerned (1) with the organization of given perceptual elements
into "concepts", or "kinds of objects", and (2) with the modification of the
perceptual elements or "impressions" themselves.

(l)The first type of experiment is concerned with the discrimi
nation, rather than the "appearance" of stimuli. It is clear that much

recognition and discrimination, as in the learning of speech sounds in a

new language, is highly dependent upon learning. Such processes typically
involve diffe r entiation , rather than synthesis of complex patterns out of
readily identified parts. Another, important part of perceptual concept
formation is concerned with associating, or classifying readily discrimin-
able patterns or symbols having the same significance (such as a Roman,
italic, and script form for the letter "A"). (Z) On the other hand, there
are a number of studies concerned with attempts at modifying the seemingly
intrinsic "appearance" of the stimulus itself. Such experiments are not
concerned with refinements in discrimination or assignment of appropriate
names to stimuli; they are concerned with re -structuring the sensory data
at a considerably more "primitive" level. Such experiments include
studies of figural aftereffects (Ref . 25), ambiguous figures (Ref . 107)
the effect of memory upon color perception (Ref. 10), and the various
experiments performed with inverting prisms to determine whether a

human subject could learn to perceive normally with an inverted retinal
field. Work with animals reared in darkness and exposed to the light
for the first time in various test situations has been reported by Riesen
(Ref. 75 ) and Gibson and Walk (Ref. 24) have conducted experiments with
infants and newborn animals to determine whether depth perception is
possible prior to learning. Other data have been collected by von Senden for
congenitally blind human subjects to whom sight is restored by surgery
(Ref. 106).
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In general, the conclusions of this work seem to indicate that

while recognition, in the sense of being able to discriminate and assign an

appropriate name to an object, is largely dependent upon experience, the

"subjective appearance" of a stimulus is relatively inflexible, and in some

species, at least, may be innately given by the structure of the nervous

system. Sperry's work with frogs, for example, in which the optic nerves

are cut and then allowed to rejoin with the eyeballs inverted, suggests that

no amount of relearning can compensate for so drastic a change (Ref . 94)

and the Gibson-Walk experiments support the assumption of a highly

developed sense of depth perception in many mammals from birth. To a

much lesser degree, modification of visual images by experience is
possible; generally, this takes the form of persistent field interactions

(as in figural aftereffects) rather than a basic reorganization of perceptual

experience. The extent to which perception might be organized by adaptive

processes is currently unknown, and this is one of the main areas in which

theoretical brain models may prove helpful to psychology.

3.2.5 Influence of Motivation on Memory

In psychological learning theories, it is commonly assumed

that a "drive" or "motive" must be present in order for an animal to

learn. Conditioned reflex experiments, on the other hand, frequently fail
to show any relationship between the "motivation state" of the animal and

the learning process. Speculation about the role of motivation in perceptual

learning has also been quite extensive, and a number of experiments have

been performed, to test the learning of perceptual discriminations or

related tasks on the basis of "mere repetition" as opposed to directed

learning. In these experiments, it is often hard to distinguish between
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"attention" and "motivation", and the results are generally inconclusive.
It seems that a certain amount of "incidental learning" does indeed occur,
which is not directly relevant to the goal or task of the subject at the time;

the actual degree of motivation, reward or punishment, or "reinforcement"
that may have been involved, however, is impossible to ascertain in any

absolute way. For the brain model problem, it is important to note that
there are some learning situations, at least, in which "reward and punish
ment" can be used to control the acquisition of new responses; whether or
not this is universally the case, and the actual physiological mechanisms
involved, remain open questions at this time. It should be remembered,
however, that any brain model which relies on the intervention of an outside

agent or experimenter to direct the learning process is implicitly taking a

stand on this issue. A possible compromise is found in the approach of
Ashby (Ref. 3) where the brain is described as a complex homeostatic
organization, in which particular "crucial variables" are capable of
triggering random changes in organization if they exceed critical limits;
stabilization of behavior, in such a system, is not a result of learning
from reward, but is due to the cessation of disruptive changes which occur
when the system makes a mistake. The main difficulty in making use of
this approach is in guaranteeing that changes are sufficiently specific and

well-directed so that the organism achieves its new behavior pattern in an

economical and relatively direct fashion, rather than going on a random
walk through all possible alternatives before arriving at the required
solution .
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3.2.6 The Nature of Awareness and Cognitive Systems

While it has been relegated by many theorists of the realm of

philosophy or semantics rather than science, the question of the nature of
consciousness or awareness keeps recurring in the literature. Current
physiologists and psychologists represent the whole range of philosophical
positions on this subject. For Eccles (Ref. 18 ) there is a conscious
"mind" which controls the body by acting upon the nervous system. For
Penfield and Jasper, awareness is a state of the nervous system involving
heightened sensitivity and improved coordination, under the control of the

centrencephalic system, and particularly the reticular formation (Ref. 38 ).

John (Ref. 39) suggests that "awareness may be a property arising from
the process of 'cortico-reticular resonance' ".For Culbertson (Ref. 17),

consciousness is a property of trees of causal relations which tie together
the events of the external physical world and the neural events in the

brain. Lotka (Ref. 53) has suggested that we look to the world of molecular
events for an explanation, and that consciousness involves particular
unstable states of molecular or atomic particles.

To this writer, it seems likely that the question of the "nature
of awareness" can be bypassed, in much the same way that we bypass the

question of the "nature of perception", by concentrating on the experimental
and psychological criteria which may be used to distinguish the actual
phenomena in question. When a subject reports that he is "conscious" or
that he was recently "unconscious", we are led to believe him or dis
believe him on the basis of his behavior, and what he is able to report
about the content of his "experience" at the time in question. From an
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operational point of view, the fact of "consciousness" is closely connected
with the accessibility of information and its ability to influence overt
behavior; it is, in fact, meaningless to say that an individual is "conscious"
unless there is something that he is conscious of. The questions which can
be asked concerning this phenomenon in a theoretical brain model (where we

are not free to assume any intrinsic similarity of processes to those in the
human brain) are questions of what can be discriminated, "seen", "attended
to", or "remembered" under specified conditions. All that we can say,
in the last analysis, is that the system acts as if it were conscious, leaving
the question of the actual existence of consciousness in the system for
metaphysicists to consider.

Systems which represent information internally, in such a way
that it can be utilized for the control of certain kinds of responses (such as

running, thinking, or talking) will be called cognitive with respect to the

realm of information which is represented and the class of responses which
this information controls. Note that this term is used in a relative, rather
than an absolute sense. Thus the representation of information in the form
of an image on the retina is not sufficient to permit us to say whether or
not the organism is cognitive with respect to its visual environment; we

must also demonstrate that this information is accessible to the organism
for the control of some specified set of responses. We might say, for
example, that a man who automatically stops for a red light, but is
unable to state afterwards why he stopped is cognitive with respect to

red signals at the level of overt motor -responses , but not at the level
of verbal recall. Conversely, an unskilled pianist may be cognitive with
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respect to errors in his performance at the verbal level, but not at

the motor control level. We use the term cognitive, then, to indicate
that knowledge of some realm of information is accessible for the control
of some specified class of responses. This usage permits us to reserve

judgement on the definition of such phenomena as perception and awareness,

and still to recognize a class of psychological phenomena involving the

accessibility of information, with which we shall be concerned.

3.3. Experimental Tests of Performance

The purpose of a theoretical brain model is to demonstrate

how p s y c h o 1o gical phenomena can arise from a physical system of
known structure and functional properties. In the preceding sections of
this chapter, we have reviewed the physiological data which suggest the

general form of the model, and the psychological data against which its
performance must be measured. We now turn to a more specific consi
deration of the psychological tests which might be applied to a brain model
in order to evaluate its performance, and to compare alternative systems
with one another.

3.3.1 Discrimination Experiments

In the simplest type of experiment which can yield psycholo
gically significant information about a system, two distinct stimuli are
presented to the model, which is required to respond differentially to

them. In the general case, it is not necessary to limit this experiment
to two specific stimuli or sensory patterns; two or more classes of
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patterns may be employed, each class consisting of "similar" patterns,
such as squares, or triangles, or various sizes and styles of the letter "A".
This experiment may be performed either to look for spontaneous discrimi
nation by the system, in the absence of intervention or guidance by the

experimenter, or to study forced discrimination in which the experimenter
attempts to teach the system to make the required distinctions . In a

learning experiment, a perceptron is typically exposed to a sequence of
patterns containing representatives of each type or class which is to be

distinguished, and the appropriate choice of response is "reinforced"
according to some rule for memory modification. The perceptron is then
presented with a test stimulus, and the probability of giving the appropriate
response for the class of the stimulus is ascertained. Different results will
be obtained, depending on whether or not the test stimulus is chosen to

correspond identically to one of the patterns which were used in the

training sequence. If the test stimulus is not identical to any of the training
stimuli, the experiment is not testing "pure discrimination", but involves
generalization as well. If the test stimulus activates a set of sensory
elements which are entirely distinct from those which were activated in
previous exposures to stimuli of the same class, the experiment is a test
of "pure generalization". The simplest of perceptrons, which will be

considered initially, have no capability for pure generalization, but can
be shown to perform quite respectably in discrimination experiments
particularly if the test stimulus is nearly identical to one of the patterns
previously experienced.
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3.3.2 Generalization Experiments

As indicated above, a pure generalization experiment is one

in which the brain model, or perceptron, is required to transfer a selective
response from one stimulus (say, a square on the left side of the retina)
to a "similar" stimulus which activates none of the same sensory points

(a square on the right side of the retina). Generalization of a weaker sort
may be demonstrated if we simply require the system to transfer a

response to members of a class of similar stimuli, which are not necessarily
disjoint from the one which has been seen (or heard or felt) before. As in
the case of discrimination experiments, it is possible to study either

spontaneous generalization, in which the criteria for similarity are not
supplied by an outside agency or experimenter, or forced generalization,
in which the experimenter's concept of similarity is "taught" by means of
a suitable training procedure. Some of the most significant problems in

brain mechanisms concern generalization phenomena, and particularly
the meaning of "similarity" for a particular kind of system. In common
with a number of other theorists (e.g., Pitts and McCulloch, Ref. 71),

this writer will assume that similarity is primarily determined by a

group of transformations which stimuli may undergo in a particular
physical environment. In the normal physical environment, for visual
stimuli, this would include rigid motions, rotations, size changes,
projective transformations, certain types of distortions or continuous
deformations, and changes in color or contrast. A number of more
subtle forms of, similarity (as in styles of architecture, gestures and

mannerisms, etc.) are presumably due to association of events into
classes at a higher level of organization than we are concerned with at
this point. It should be noted, however, that a perceptron which is taught
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to form arbitrary classes of stimuli might be expected to generalize
along completely arbitrary or abstract dimensions, "similarity of style"

being as legitimate a candidate for a basis of classification as "similarity
of shape". In the simple perceptrons, we will find that "pure generalization"
does not occur, although an apparent generalization of responses to stimuli
which share many sensory points with those previously experienced can be

demonstrated. In this report, this weak form of generalization will be
considered under "discrimination phenomena", the term "generalization"
being reserved primarily for cases in which mechanism for recognizing

actual similarity, rather than a rough approximation to identity, is involved.

3.3.3 Figure Detection Experiments

In the experiments considered above, two or more kinds of

stimuli are always employed, in order to avoid the trivial case in which

the desired response is automatically evoked by any stimulus that might

occur. Since it is assumed that at each moment of time exactly one

stimulus is present, these experiments represent a "forced choice"
situation, in which the brain model is obliged to give one of several

positive identifications in response to whatever it "sees". Such experi
ments have their counterparts in animal and human experimentation,
and permit the study of an important class of psychological problems,

involving simply structured situations. An alternative approach, which

has been less studied to date, is to give the system the task of searching

for a particular figure in a sensory field which may or may not contain it.
In this case, the system is asked to discriminate between "figure present"

and "figure absent" , and is typically only instructed in the recognition of
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one figure at a time. If the figure appears as a solitary object in an

otherwise empty field, the task is a relatively trivial one. If the figure
appears against a background, or as part of a complex of other patterns,
the problem takes on a new aspect of complexity. In the most important
case, this experiment permits us to study figure -ground organizing
tendencies in a perceptron, by presenting it with embedded, or ambiguous
figures which can be recognized as representing one thing if the field is
appropriately structured, and a different thing if the field is structured
differently. The Gestalt properties of "good figure" are supposed to

determine the preference of a human observer to perceive one or another
of the possible figures in such a field. Detection experiments per mit us

to compare the preferences and rules of "good figure" in a perceptron
with those of human subjects, in controlled situations. Perceptrons
considered to date show little resemblance to human subjects in their
figure -detection capabilities, and gestalt -organizing tendencies. In Part IV
of this report, some speculations concerning the development of such
properties in more sophisticated perceptrons will be presented.

3.3.4 Quantitative Judgement Experiments

Another type of experiment with which little work has been

done to date involves the estimation of quantitative properties of stimuli
(size, distance, position, etc . ) by perceptrons. It will be seen that simple
perceptrons are capable of learning to represent stimuli by a continuously
variable "analog" type of response. No work has been done to date, however,

to investigate such questions as the generalization of quantitative judgement
to new stimuli, or the accuracy which can be achieved in specific cases.
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For more advanced systems, an important problem which must ultimately
be faced is that of "perceptual constancies": the tendency in human subjects
to perceive size, color, or other metric properties of a stimulus in terms

of the "actual" physical properties of the object rather than its projection
on the retina. A man, for example, is perceived to be about six feet tall
regardless of whether his retinal image subtends one degree or fifteen

degrees, and a dish appears to be circular in form regardless of whether

its retinal image is a true circle or an elongated ellipse. It has been

demonstrated in many psychological experiments that such phenomena
are not based simply on familiarity with the particular objects involved;

a completely unfamiliar form, seen in normal physical space, is perceived

correctly, in terms of its "true" physical properties, except under

exceptional circumstances (c.f. Gibson, Ref. 26).

3.3.5 Sequence Recognition Experiments

In the above experiments, it has been assumed that the stimuli
are fixed, temporally invariant patterns. Analogous problems exist,

involving discrimination, generalization, figure detection, and metric
estimation for time -varying , or sequential patterns of all sorts. While

static organization problems reach their greatest degree of complexity
in the visual modality, temporal organization becomes comparably

complex in the auditory field. Speech recognition is one particularly
important case to be investigated. Problems include not only the

recognition of particular movements, or sequences, but the segmentation
of movement and sound patterns into figural units, words, or phrases as

well. The recognition of sequences in rudimentary form is well within the

capability of suitably organized perceptrons, but the problem of figural
organization and segmentation presents problems which are just as serious

here as in the case of static pattern perception.
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3.3.6 Relation Recognition Experiments

In a simple perceptron, patterns are recognized before
"relations"; indeed, abstract relations, such as " A is above B" or "the

triangle is inside the circle" are never abstracted as such, but can only
be acquired by means of a sort of exhaustive rote -learning procedure, in
which every case in which the relation holds is taught to the perceptron
individually. At the present time, the main hope for the abstraction of
relations seems to lie in systems which are capable of executing a

sequence of observations, according to a predetermined plan, in which
first one member of the related pair is observed and then the other, the

relationship between them being determined by the sequence of "experience"
during the shift of attention from the first to the second. The problem of
relation recognition is, at the outset, more complex than those previously
considered, since it requires, by its very nature, the ability to recognize
and attend selectively to at least two distinct "parts" of a total organization,
specifying, for example, which part is larger and which smaller, or which
part is "outside" and which "inside". The hypothesis that relation recogni
tion involves a sequence, or program, of observation means that it must

make use not only of figure organization capabilities (to separate the

"parts" referred to) but of sequence recognition and sequential control
capabilities as well. The actual experiments by which relation recognition
can be detected must involve at least two components (such as square and

triangle) which can be shown in such a way as to exemplify the relationship
or not. In an ideal experiment, the system would be trained to recognize
the relation by a number of examples with stimulus patterns or "parts"
which do not resemble or intersect (in their retinal location) the test
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patterns which are employed in evaluating the performance. If the perceptron
can then indicate correctly, for entirely new stimuli, whether or not the

relation holds, it will be considered that the relation has been abstracted
by the system.

3.3.7 Program-Learning Experiments

The learning of sequences of behavior is the counterpart on the

response side of the problem of sequence recognition. The problem has
been discussed in detail by Lashley (Ref . 50). It requires, as a starting
point, the ability to form "selective sets", which introduce a bias to give
one of several alternative responses to a givem stimulus. A capability of
this sort has been shown to exist, to some degree, in relatively simple
perceptrons, provided there is a feedback path from the response units to
the association system (Ref. 79). To date, little has been done to study this
capability in a quantitative fashion, but some of the heuristic arguments will
be reviewed in Chapter 23. One of the most important applications of such
a capability is in the control of the sequential activity involved in recognition
of relations, and the "perceptual exploration" of a sensory field. Related
phenomena, in which this capability plays a central part, are the sequential
control of speech, thinking, and complex behavior patterns. The represen
tation of problem solving activity in the human by heuristic programs has
been studied by Newell, Shaw, and Simon (Refs. 62, 63), and it seems
likely that many of their results might be transferred to a perceptron
which is capable of program controlled activity.
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3.3.8 Selective Recall Experiments

While most of the experiments described above involve "memory"
in the sense of a change in behavior as a consequence of experience, they do

not, in general, require substantive recall, of the sort which is displayed
when we describe a person who we saw yesterday, or the location of furni
ture in a house where we lived last year. In selective recall experiments,
the system is required to produce on demand information relevant to a

particular time, place, or subject. This involves a particular case of
"selective set" mechanisms, and can probably be demonstrated in most
systems which are capable of program-controlled behavior.

3.3.9 Other Types of Experiments

In addition to the experiments considered above, we might
ultimately wish to consider experiments in abstract concept formation,
the formation and properties of a "self concept", creative imagery, and

other higher-order psychological phenomena. At the present time, these
problems seem sufficiently remote from the capabilities of present
perceptrons that we need not consider them further here. Also relegated
to the future is the consideration of such psychological phenomena as
perceptual illusions , figural aftereffects, and related phenomena, even

though these have been considered primary in some of the brain models
hitherto advanced. It is this writer's belief that these phenomena are so

likely to depend on inessential details of brain organization, at almost any

level of complexity, that it would be a mistake to try to rest the case for
or against a particular model on a demonstration that it can duplicate a
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particular kinds of perceptual illusion. It seems more important, at this

stage, to account for "veridical perception" than for its occasional failures,
particularly since these are currently demonstrable in a single species only,
and may lack any generality whatsoever.

3.3.10 Application of Experimental Designs to Perceptrons

The designs considered above have been discussed as if they
were actual "flesh and blood" experiments, performed with real physical
systems. In the study of perceptrons, it is not always practical or necessary
to carry out such experiments in reality; the important thing is that an analysis
of a given model should always be carried out in terms of an experimental
design which is specified in sufficient detail so that it could be carried out
if the system were actually constructed.

In practise, three main methods are employed in the study of
perceptrons:

(1) Mathematical analysis, in which a stimulus environment,
the rules for stimulus presentation and for the modification of the perceptron's
memory state are clearly specified. The object of such analysis is, in
general, to determine the probability of correct performance, or the proba
bility of achieving a given performance criterion, for a specified class of
systems .

(2) Digital simulation, in which the perceptron, its environment,
and the memory modification rules are all represented in a digital computer
program, which carries out the required operations of an experiment in
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step-by-step fashion, calculating the response of every neuron and connection
in the perceptron, and measures the performance of the system. Such a

program, repeated for a sufficient sample of perceptrons in a class, yields
much the same type of information as is obtained from a mathematical
analysis. It has the advantage of being free from all approximations (which
may be necessary in some analyses) but is less likely to yield important
insights into the lawful relations which characterize a class of systems.
Simulation programs are most valuable as an exploratory device, and for
the study of systems of such complexity that an exact mathematical analysis
is impossible.

(3) Study of physical models, involving the actual construction
of a hardware device, and the performance of the indicated experiments. At
present, little is to be gained from the study of actual physical models which
cannot be learned from the other two methods, but as successive models grow
in size and complexity, and as means are found for the inexpensive construction
of electronic models, this method becomes increasingly important. Its main
virtue is the flexibility and adaptability of a hardware perceptron to new types
of learning experiments and procedures, and the ability to use ordinary
physical objects and environments as stimuli, which would otherwise involve
a great deal of time and expense in computer programming. The physical
model itself, however, is apt to be less flexible than a simulated system,
and is best suited for "case studies" of a single representative system,
rather than statistical studies of a class of systems.

In most of the experiments considered in this report, (which
are listed in Appendix D) human performance capabilities are sufficiently
well known to permit us to draw conclusions about possible comparisons
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between perceptrons and biological systems without further study. In
some of the proposed experiments, however, (e.g., the figure organization
experiments described in 3.3.3) additional data may be required on human
performance in order to obtain a base-line for the quantitative evaluation of

perceptrons. Thus it seems likely that in the near future, a program in

experimental psychology with human and animal subjects may be a necessary
adjunct to the evaluation of our brain models. When this occurs, the models
are, in effect, being used as predictive devices, capable of generating data
(probably grossly inaccurate at the outset) which have not yet been actually
observed in human subjects. The ultimate test for a brain model, from the

standpoint of psychological validity, is an experiment of this type, in which
the model correctly predicts phenomena which have yet to be discovered in
biological systems.
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4. BASIC DEFINITIONS AND CONCEPTS

This chapter is devoted to basic definitions of terms which will
be used throughout the report. It is recommended that the reader familiarize
himself with this terminology in a general way, on first reading, and refer
back to this chapter when the terms are reintroduced in the subsequent text.
A list of standard symbols will also be found in Appendix A.

4. 1 Signals and Signal Transmission Networks

The following definitions, which are not specific to perceptrons,
are likely to be helpful:

DEFINITION 1: A signal may be any measurable variable, such as a

voltage, current, light intensity, or chemical concentration.
A signal is typically characterized by its amplitude, time ,

and location .

DEFINITION 2: A signal generating unit is any physical element, or device,

capable of emitting a signal. The output signal of the unit

U-l will be represented by the symbol Ut" .

DEFINITION 3: A signal generating function is any function which defines
the amplitude of the signal emitted by a signal generating
unit.
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DEFINITION 4: A connection is any channel (e.g., a wire or nerve fiber)
by which a signal emitted by one signal generating unit

(the origin) may be transmitted to another (the terminus).
A connection is characterized by its origin and

terminal units ( u- and uj , respectively), and by a

transmission function which determines the amplitude
of the signal induced at the terminus as a function of the

amplitude and time of the signal generated by the origin
unit. This signal will be symbolized by c-tj (t) •

DEFINITION 5: A signal transmission network is a system of signal generating
units, linked by connections.

4.2 Elementary Units, Signals, and States in a Perceptron

A perceptron (which will be defined in the next section) is a

signal transmission network containing three types of signal generating
units: sensory units , association units, and response units. These units
all have signal generating functions which depend on signals originating
elsewhere in the network, or else externally, in an outside environment.
The signals upon which the generating function of a unit depends are called

In previous reports, the term "transfer function" has been used for
this characteristic. Since "transfer function" has a somewhat different
meaning in control system theory and elsewhere, it is avoided here, and
the term "transmission function" is preferred.
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the input signals to that unit. These units are defined here in a sufficiently
general manner as to include biological neurons as a special case. We shall
be chiefly concerned, however, with models which employ simplified versions
of such neurons .

DEFINITION 6: A sensory unit (S-unit) is any transducer responding to

physical energy (e . g . , light, sound, pressure, heat,
radio signals, etc. ) by emitting a signal which is some
function of the input energy. The input signal at time t
to an S-unit A; from the environment, W, is symbolized

jCy/l (t) . The signal which is generated by .d; at time

t is symbolized ^ (t)

DEFINITION 7: A simple S-unit is an S-unit which generates an output
signal -4/ " + I if its input signal, £y/; exceeds a

given threshold, Of , and 0 otherwise.

DEFINITION 8: An association unit (A -unit) is a signal generating unit
(typically a logical decision element) having input and
output connections. An A-unit ctj responds to the

sequence of previous signals £rl received by way of
input connections dj , by emitting a signal aj(t) .

DEFINITION 9: A simple A-unit is a logical decision element, which
generates an output signal if the algebraic sum of its
input signals, oc I , is equal or greater than a threshold
quantity, G > 0 . The output signal a * is equal to ¥- I
if ait > Q and 0 otherwise. If a * = + I , the unit
is said to be active.
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DEFINITION 10: A response unit (R-unit) is a signal generating unit
having input connections , and emitting a signal which is
transmitted outside the network (i.e. , to the environment,
or external system). The emitted signal from unit
will be symbolized by f* .

DEFINITION 11:A simple R-unit is an R-unit which emits the output
f = + 1 if the sum of its input signals is strictly
positive, and f m - /if the sum of its input signals
is strictly negative. If the sum of the inputs is zero,
the output can be considered to be equal to zero or
indeterminate. (A physical unit which oscillates in
response to a zero signal would have the required
properties . )

DEFINITION 12: Transmission functions of connections in a perceptron
depend on two parameters: the transmission time of the
connection, Tt: , and the coupling coefficient or value
of the connection, -v/." The transmission function of
a connection Cij from ui to uj is of the form:
^ijM m ufft-Tijj] • Values may be
fixed or variable (depending on time). In the latter
case, the value is a memory function.

DEFINITION 13:The activity state of the network at time t is defined
by the set of signals, Li; , emitted by all signal
generating units at time t
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DEFINITION 14: The memory state of a network is the configuration of
values associated with all (variable valued) connections

at a specified time .

DEFINITION 15: The phase space of a network is the space of all possible

memory states, for a given network. In general, if there

are N variable -valued connections in the network, the phase

space may be represented by a region in Euclidean N-space,
each coordinate corresponding to the value of one connection.

The memory state of the system at any specified time can

be characterized by a point in this phase space, and the

history of the system by a directed line, or path, followed

by this point.

DEFINITION 16: The interaction matrix for a network of S, A, and R units

is the matrix of coupling coefficients, %r-j , for all pairs
of units, U; and U: . If there is no connection from
U; to U: i "Vij is defined as zero. Specifying an

interaction matrix ie equivalent to specifying a point in

the phase space.

4.3 Definition and Classification of Perceptrons

DEFINITION 17: A perceptron is a network of S, A, and R units with a

variable interaction matrix V which depends on the

sequence of past activity states of the network.
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DEFINITION 18: The logical distance from unit ut- to uj is equal to the

number of connections in the shortest path by which a

signal can be transmitted from Uj to Us .

DEFINITION 19: A series -coupled perceptron is a system in which all
connections originating from units at logical distance d
from the closest S -unit terminate on units at logical
distance dL+ 1 from the closest S -unit.

DEFINITION 20: A cross -coupled perceptron is a system in which some
connections join units of the same type (S , A or R )

which are at the same logical distance from S -units, -

all other connections being of the series -coupled type.

DEFINITION 21: A back-coupled perceptron is a system in which at least
one A or R unit at a distance aLt from the closest
S -unit is the origin of a connection back to an S -unit
or to an A -unit at a distance gt^ ^ °t

f from the closest

S -unit; i.e. , this is a system with feedback paths from
units located near the output end of the system to units
closer to the sensory end.

It should be noted that the above definitions are not exhaustive;

they are intended to designate certain generic classes of perceptrons with
which we shall be concerned. The initial models to be considered are of the
type specified by the following definitions:
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DEFINITION 22: A simple perceptron is any perceptron satisfying the

following five conditions:

1. There is only one R -unit, with a connection

from every A -unit.
2. The perceptron is series -coupled, with connections

only from S -units to A -units, and from A -units

to the R -unit.

3. The values of all sensory to A -unit connections
are fixed (do not change with time).

4. The transmission time of every connection is
either zero or equal to a fixed constant, T

5. All signal generating functions of S , A , and R
units are of the form u; (t) " -f(<X-i M) , where

oCiM *s tne algebraic sum of all input signals
arriving simultaneously at the unit ul^

DEFINITION 23: An elementary perceptron is a simple perceptron with

simple R- and A - units, and with transmission functions
of the form JDQ (t) - uj (t -T)vtj(t) .

Perceptrons can be represented graphically in several different
ways. In particular, frequent use is made of three types of diagrams, which
will be called network diagrams, set diagrams, and symbolic diagrams.
Depending upon the level of specificity required, any one of these diagrams

may be used to represent the same system. The three types of diagrams
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are illustrated in Figure 2. The network diagram shows each connection

and signal unit individually; the arrows indicate the direction of signal
transmission through the connections. The set diagram represents all
S-units as a single set, connected to the Bet of A -units (or association
system) which is represented by a Venn diagram, the subsets of which

are connected to different R-units. Set diagrams of this general type are
found to be particularly useful as an aid to analysis. The symbolic diagram
for this same perceptron merely indicates the kinds of connections which
exist, namely, S to A, A to R, and S to S. The perceptron illustrated
would be called a three-layer perceptron, cross-coupled at the sensory
layer.

Figure 2 PERCEPTRON DIAGRAMS
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4.4 Stimuli and Environments

DEFINITION 24:

to the S -units at time t If there are sensory
units in the retina, then a stimulus can be characterized by
a vector of elements, representing the signal to each
S -unit as an element of the vector. The condition in

which all input signals are equal to zero is not considered
a stimulus unless otherwise specified.

defined for a specified S-unit set. The stimulus world
will be symbolized by W . The number of different stimuli
will usually be denoted by n

environment) is any set of stimulus sequences, each

consisting of an ordered series of stimuli from the set W .

(For example, if the image of a printed word is a stimulus,

and W consists of all words in a dictionary, then the

set of all English sentences would comprise a stimulus -

sequence world. )

DEFINITION 25: A stimulus world (or environment ) is any set of stimuli,

DEFINITION 26: A stimulus -sequence world (or stimulus -sequence

4.5 Response Functions and Solutions

DEFINITION: 27: A response function is any assignment of R -unit output
signals to stimuli in W For a simple perceptron, the

response function R(W) is a vector of n elements.
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( Rt , R2 , - • • , fin ) indicating the value of the
response for each of the stimuli, 5« / Sj , •••, Sh in
the environment.

DEFINITION 28: A classification is an equivalence class of response
functions. Two response functions are considered

equivalent if their corresponding elements agree in
sign. For any perceptron with one simple R -unit, a
classification, C(W) , divides W into two classes:
a positive class consisting of all stimuli for which f*= +1 ,

and a negative class, consisting of those stimuli for which
r*=-f .

DEFINITION 29: A response -sequence function is an assignment of sequences
of R -unit output signals to stimulus sequences in a

stimulus -sequence world. This is a generalization of the

concept of a response function to include a time dimension.

DEFINITION 30: A solution to a response function (or classification) is said
to exist for a given perceptron if there is a point in the

phase space of the perceptron such that the response /?;
(specified by the function) will occur if the stimulus 5;
is shown, for all 5t' in W .

4.6 Reinforcement Systems

DEFINITION 31: A reinforcement system is any set of rules by which
the interaction matrix (or memory state) of a per
ceptron may be altered through time.
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DEFINITION 32: A reinforcement control system is any system or
mechanism external to a perceptron which is capable
of altering the interaction matrix of the perceptron in
accordance with the rules of a specified reinforcement
system.

DEFINITION 33: Positive reinforcement is a reinforcement process in
which a connection from an active unit U-i which
terminates on a unit uj has its value changed by a

quantity Avjj (tj (or at a rate aA/y •/dt ) which
agrees in sign with the signal u:(t)

DEFINITION 34: Negative reinforcement is a reinforcement process in
which a connection from an active unit u; which
terminates on a unit uj has its value changed by a

quantity AlriJ (t) (or at a rate dvij/dt ) which
is opposite in sign from u;(t)

DEFINITION 35: A monopolar reinforcement system is a reinforcement
system in which the values of all connections terminating
on a unit ulj remain unchanged at time t unless uj(t)
is strictly positive.

DEFINITION 36: A bipolar reinforcement system is a reinforcement
system in which the values of connections are subject
to change regardless of whether the output of the

terminal unit is positive or negative .
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DEFINITION 37: Alpha system reinforcement is a reinforcement system
in which all active connections which terminate on

some unit u; (i.e. , connections for which u.*(t-T) 4 0)
are changed by an equal quantity A rr-j (t) = fj or
at a constant rate while reinforcement is applied, and

inactive connections (uj (t-T) m 0) are unchanged at

time t . A perceptron in which oc -system reinforce
ment is employed will be called an oc -perceptron. The

reinforcement will be called quantized if the change is a

fixed quantity (\Azr\ ■ or non -quantized if the value may

change by an arbitrary magnitude .

DEFINITION 38: Gamma system reinforcement is a rule for changing the

values of the input connections to some unit, whereby all
active connections are first changed by an equal quantity,
and the total quantity added to the values of the active
connections is then subtracted from the entire set of

input connections, being divided equally among them.

Such a system is said to be conservative in the values ,

since the total of all values can neither increase nor
decrease. The change in vjj/ is equal to

/ Lu>ij(t)\
A*tj(t) = [cOij(t)- J— -J Y?

where U): •(t) ■ / if U;(t-T)^Ot 0 otherwise;

tfj " number of connections terminating on u.j

If ■ reinforcement quantity (typically + 1 or 0).
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Additional reinforcement rules, and variations of the above,

will be presented as required. The above terminology has been standardized
in previous work on perceptrons, and represents the systems on which most

analysis has been done. In most of the cases to be considered, the reinforce
ment control system employs one of three training procedures, defined as

follows :

DEFINITION 39: A response-controlled reinforcement system ( R -controlled
system) is a training procedure in which the magnitude of

% is constant, and the sign of Y? is entirely deter
mined by the current response, f , regardless of the

current stimulus, 5 . In general, unless otherwise
specified, this term implies that the reinforcement is
always positive (i.e., the sign of If agrees with the

sign of f , in a simple perceptron).

DEFINITION 40: A stimulus -controlled reinforcement system ( S -controlled
system) is a training procedure in which the magnitude of

is constant, and the sigh of is determined
entirely by the current stimulus, S , and a pre
determined classification, C(W) ; the current response
of the perceptron does not influence either the sign or

magnitude of if

DEFINITION 41: An error -corrective reinforcement system (error
correction system) is a training procedure in which
the magnitude of Yf is 0 unless the current response

-91-



of the perceptron is wrong, in which case, the sign of

'p is determined by the sign of the error. In this

system, reinforcement is 0 for a correct response,
and negative (see Definition 34) for an incorrect response,
or, more generally, Yf «=f r*) where R* is the
required response, /•* ii the obtained response, and f
is a sign -preserving monotonic function, such that

f(0) - 0 .

In previous reports (Refs. 41, 82 ) the R -controlled system
has been referred to as a "spontaneous learning system", since the

perceptron evolves in an autonomous fashion, uninfluenced by the "correct
ness" of its outputs. The reinforcement control system requires no

information from the environment in order to control the changes in the
memory state of the perceptron. The S - controlled system has also been
referred to as a "forced learning system", since the r.c.s. imposes a

predetermined classification on the perceptron's responses, without taking
the actual responses of the system into account at any time.

4.7 Experimental Systems

DEFINITION 42: An experimental system is a system consisting of a

perceptron, a stimulus world, W , and a reinforce
ment control system. The reinforcement control
system may be an automatic regulating device (e.g. ,
a thermostat) or a human operator, capable of respond
ing to the responses of the perceptron and the stimuli in
the environment by applying the appropriate reinforcement
rules, altering the memory state of the perceptron.
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Figure 3 EXPERIMENTAL SYSTEM WITH A SIMPLE PERCEPTION
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ACCOMODATION,ETC.

Figure * GENERAL EXPERIMENTAL SYSTEM
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The basic organization of an experimental system with a simple
perceptron is shown in Figure 3. A more general system, in which the

perceptron may be of any variety, and where the output of the perceptron
is capable of modifying its stimulus environment, is illustrated in Figure 4.
A comparison with Figure 1 should indicate the basic similarity between the
perceptron, in a general experimental system, and the biological nervous
system. Analyses of perceptron performance always postulate an experi
mental system, involving, as a minimum, the components shown in Figure 3.

The reinforcement control system can be considered a specialized part of
the environment, in its relation to the perceptron, although it might actually
be built into the same physical mechanism as the perceptron itself. In an

R- controlled system, the information channel shown from W to the r.c.s.
is non -functional, while in an S -controlled system the information channel
from W to the r.c.s. is non -functional, and in an error-correction system,
both channels are essential for reinforcement control. In digital simulation
programs, the r.c.s. is the part of the program concerned with reinforcing
the simulated perceptron, while in experiments with hardware systems it is
generally a human operator.

An experiment involves an experimental system, a training
procedure, and a procedure for testing the perceptron, or measuring its
performance. A number of typical psychological experiments, which are
of interest for perceptrons, were outlined in Chapter 3„ and some of

these will be analyzed \n the following chapters.
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THREE-LAYER SERIES-COUPLED PERCEPTRONS



5. THE EXISTENCE AND ATTAINABILITY OF SOLUTIONS IN
ELEMENTARY PERCEPTRONS

The perceptrons to be considered in Part II all consist of

three layers of units connected in series, with the topology S-* A-*- R.
In the following chapters, it will be seen that the se perceptrons are
capable of learning any set of responses which we might care to have them
make to a universe of stimuli. Their main deficiencies are a lack of ability
to generalize their performance to new stimuli or new situations where they
have not been explicitly taught and a lack of ability to analyze complex
environmental situations into simpler parts.

The first perceptron model to be considered in detail is the

elementary ot -perceptron. In this chapter, we shall examine the intrinsic
ability of such systems to realize solutions to classification problems,
including several theorems concerning the relationship of the size of the

system to the existence of solutions, and the possibility of attaining such
solutions by different training procedures. The term "solution" is used in
the sense of Def . 30, in Chapter 4. Most of these results were first presented
in Ref . 86.

5. 1 Description of Elementary oc -Perceptrons

Elementary 06 -perceptrons were defined in Chapter 4, as a

subclass of simple perceptrons, in which S -units send connections to

A-units, and the A -units all send connections to a single R-unit, no

other connections being permitted, and all connections having equal trans -
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mission times, V . Without loss of generality, V can be taken to be

zero, and this assumption of instantaneous transmission will be made

whenever we deal with simple perceptrons, unless otherwise stated. The
A -units and R -unit in all elementary perceptrons are of the simple type,
i.e., they have a threshold, 0 , (equal to zero in the case of the R -unit)
and emit a signal only if the input signal, OC , is equal or greater than 0
The connections from S to A -units have fixed values, and the connections
from the A -units to the R -unit have variable values, which depend on the
history of reinforcements applied to the perceptron. The connections, in an

elementary perceptron, all have the transfer function (assuming T to be

zero).

In the OC -system, which is to be considered initially, the reinforcement
rule takes the form

In an elementary perceptron, where the only variable connections occur
from A -units to the R -unit, the simplified notation tr- will generally
be taken to mean the value of the connection from unit &i to the R -unit.
The basic parameters with which we shall be concerned in this chapter are
the number of S -units, N± , and the number of A -units, Na
Without loss of generality, we can assume the MA sensory units to be

situated at points in a two-dimensional field, or "retina", and regard the
input stimuli as patterns of illumination on the retina. A typical system
of this type is illustrated in Figure 5.
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RETINA OF
S-UNITS A-UXITS

Figure 5 NETWORK ORGANIZATION OF A TYPICAL ELEMENTARY PERCEPTRON

5.2 The Existence of Universal Perceptrons

Most of the theoretical results obtained to date for elementary
perceptrons are concerned with experiments in which a classification of an

environment, C(w) , is taught to the perceptron by some training proce -
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dure. The first theorems to be considered deal with the question of whether
a solution to such a classification problem exists, or might exist, for a

given perceptron. To begin with, the following theorem shows that the

organization of an elementary perceptron is sufficient to permit the

construction of a "universal system", for which a solution exists for every
possible classification, C(w) . Perceptrons constructed in this manner
are generally not very interesting as brain models, but the theorem indicates
the wide range of possible behavior which might be obtained from such
systems .

THEOREM 1: Given a retina with two-state (on or off) input signals,
the class of elementary perceptrons for which a

solution exists to every classification, C(W) , of

possible environments W , is non-empty.

PROOF: Since it is sufficient to show the existence of such a perceptron,
we proceed by construction. Let there be one A -unit for every possible
stimulus configuration on the retina. Consider stimulus 5/ and its
corresponding A -unit, a; . Let a; have an excitatory connection

(value equal to + 1 ) originating from every "on" point in Si • and an

inhibitory connection from every "off" point in S; , and let its threshold
be equal to the number of excitatory connections. Then there will be one

and only one A -unit responding to every possible stimulus, and no

A -unit responds to more than one stimulus. (We say that a- "responds"
to Sf if ol *4 O . ) Now consider any stimulus world, W . defined on

the retina, and a corresponding classification, C(W) • which associates
a positive or negative classification with each stimulus, Si , in JV .
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In order to realize the classification, it is only necessary to set the

value of the connection from a.; equal to + 1 if the class of 5/ is positive,
or - 1 if the class of S; is negative. Q.E.D.

While this solution is clearly uneconomical and of little practical
interest, it is sufficient to show that there are no "special cases" of

classifications which have no solution, at least for a retina of binary elements.
If the inputs to the S-units are capable of taking on more than two values,

then a more elaborate construction (e.g. , one which separates each combination
of input values to a different Bet of A-units) would be required. It is left to

the reader to satisfy himself that a system with less "depth" than an elementary
perceptron (i.e. , one in which S-units are connected directly to the R-unit,
with no intervening A-units) is incapable of representing a solution to every

C(W) i no matter how the values of the connections are distributed.

5 . 3 The G- matrix of an Elementary oL -Perceptron

In practice, the cases of interest are those in which each
stimulus activates some set of A-units, and each A-unit is likely to

respond to a great many different stimuli in W . In order to deal with
such systems, the concept of a G-matrix has been found to be particularly
helpful, and this will now be defined. The definition given here is suffi
cient for elementary perceptrons, and will be generalized in a later
chapter to permit us to deal with more complex systems.
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DEFINITION: Consider a (simple) perceptron, and a stimulus world, W
consisting of ft stimuli. Then the matrix

S» 9u 9t„
9x. 9,.

• • • •

9hi 9h»'-- 9n

consists of elements gtj called generalization coefficients. Each
element, g.j , is equal to the total change in value ( £ A v-4 ) over
all A-units in the set responding to S/ if the set of units responding to

Sj are each reinforced with, Yj equal to 1/N& (where Afm is equal to
+

the number of A-units in the system). For simple perceptrons and a

given environment, 6 is fixed for all time.

If we are dealing with a particular oC -perceptron, where
A m aJ (t)-y , we have

Sij ' *ij
where Q-j = the proportion of A-units which respond both to S;
and Sj .

If we are dealing with a randomly selected member of a class of perceptrons,
Qij is a random variable , and we have the equation for the expected

value of p-j ,

Z 9U ~

where Q-j = the probability that an A -unit in a given class of

perceptrons responds to both stimuli, S/ and Sj

* 1 /With If = we have a "normalized G-matrix". For some purposes
it is convenient to take - I , in which case the "unormalized G-matrix"
is equal to NA times the normalized matrix defined above.
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For the OC -system, g-j is simply a measure of the inter
section of the sets of A-units responding to S; and to 5; , and is

equivalent to a "set intersection matrix". 6 is always symmetric for
an alpha system. In any elementary perceptron (at a given time b )

the net input signal to the R-unit from the set of A-units responding to

stimulus St" will be called ui and is given by

Ui - <xr(Sc) = 9ii x, t-gu Xt+...+ 9t„ x„ (5.1)

where X: - the amount of reinforcement applied to the system, over all
appearances of S; prior to time t .* In matrix form, the vector U.

of signals U; from all stimuli Sj in W is given by

u = Gx (5.2)

where X is a vector of elements X; , defined as above.i/

5.4 Conditions for the Existence of Solutions

In general, if we are given the rules of organization of a
perceptron and some classification, C(W) , it is by no means easy to

say whether or not a solution to C(W) exists for the perceptron in question.
The following theorems deal with the existence of such solutions from
several different points of view. We first define the bias ratio of an A -unit
as follows:

DEFINITION: Given a classification, C(W) , the bias ratio of an A-unit,
, is defined for any set of stimuli in W as Hi/nf , where »

number of stimuli in the set which are members of the positive class C^and
which activate a- ; = number of stimuli in the set which are members
of the negative class C ~ and which activate a;
* It is assumed here that all initial vy = 0 -
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THEOREM 2: Given an elementary perceptron and a classification

C(W) ■ the following conditions are necessary
but not sufficient for a solution to C(W) to exist:

i) Every stimulus must activate at least one A -unit;

ii) There should be no subset of stimuli containing at

least one member of each class, such that in the

union of the responding A -unit sets, every A -unit
has the same bias ratio (with respect to the stimuli
of the subset).

PROOF: We first prove that the conditions are necessary. Condition i)
is obvious. The proof that condition ii) is necessary is as follows:

Assume there is a subset violating this condition. Let llj -
input signal to R generated by stimulus 5; Then summing the values of
all such signals from stimuli of the positive class in this subset, we have

(since violation of ii) requires that fll'/f,i~ is constant for A -units
responding to stimuli in this subset).

L <v
- H«t* *7 - -5=- ILm~^i = L uj

SjeC* i I SjfC

Thus the sum of the R -unit input signals for stimuli of the positive
class must have the same sign as the sum of the R -unit input signals
for stimuli of the' second class. But then one of the sums must disagree
in sign with the sign of the class, and therefore, one of its components

(i.e. , one of the llj ) must disagree in sign with the class, indicating
that at least one stimulus must be classified incorrectly.
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To show that these conditions are not generally sufficient,

consider the following example: Let there be five stimuli, and four A
The A -units activated by each stimulus are:

-units .

5/ activates a,
S2 activates az
5j activates a3 and a¥

SH activates a, , at , and a3

Ss activates a, , az , and aH

Let the positive class consist of St , S3 , and Sj , and the negative
class consist of 5^ and Ss • Then the bias ratios for at and a? are
not the same as for a, and a¥ . Also, there exists no subset with
stimuli from each class, with equal bias ratios for all A -units. The
values of a, and a2 must be positive, and the sum of the values of Oj
and a¥ must also be positive, to obtain the required the required classifi
cation for the members of the first class. But then it is clear that either

SH or Sf must be classified incorrectly, which proves that conditions i)
and ii) are not sufficient.*

In the next theorem we make use of the symbol U- to denote

a signal vector, such that the element u- agrees in sign with the

classficiation of 5t- in C(W) . Such a signal vector will evoke the

correct response for each stimulus in W . Two such vectors which
agree in the signs of their elements are said to be in the same orthant
(generalized quadrant, in n dimensions).

In Theorem 9. a necessary and sufficient condition, closely related
to the above, will be presented.
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THEOREM 3: Given an elementary oc -perceptron, a stimulus world W ,

and any classification C(W) ; then in order for a solution
to C(W) to exist, it is necessary and sufficient that there

exist some vector u. in the same orthant as C(W) , and

some vector X such that G X - U -

PROOF: The proof would follow trivially from Equation (5.2) and the

definition of IL , were it not for the possibility that a solution might
exist involving some unique assignment of values to the A-R connections,

which could not be attained by any reinforcement vector, X , defined as in

Equation (5. 1). It will be shown, therefore, that if a solution exists, in the

form of any assignment of values to A-R connections, an equivalent solution
must exist corresponding to the reinforcement of each stimulus, 5/ , by an
amount x{- . For brevity, throughout the following discussion, we will speak
of "the value of an A -unit" in place of "the value of the connection from an

A -unit to the R -unit". The following definitions and notation will be used:

1 if the A -unit et; responds to S;

0 otherwise

A is an n by /Va matrix, in which the element a-j — a* (Si) -
A solution to a classification problem is said to exist if there is some
distribution of values over the A -units which enables the perceptron to
perform the discrimination; i.e., there exist vectors v and u. such
that

Air = u
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Consider the matrix AA '
. The £,J element of this matrix (say AjJ ) is

£ a\ (SO a*
A (Sj) - Aij

But the (un -normalized) G -matrix for an OC -System, expressed in

terms of the above functions, has elements,

9ij -L*Sr j

so that the matrix 6 " AA '
. Note that this shows that G is either

positive definite or positive semidef inite .

We then have, for any vector X , such that x,'A — O

1) x'A ■ 0 => %'AA' = X'6 - O
2) x'6 - 0 => x'Sx - ar'>4/0 -<? x'A •< 0

Hence, the rank of G = rank of A , since any vector X which is in
the left null space of G is also in the left null space of A ; therefore the

left null spaces of G and A are identical. Since the rank plus the

dimension of the null space is equal to the dimension of the domain, 6 and

A must be of the same rank.

But the columns of G are linear combinations of the columns of

A , hence the space spanned by the columns of G is identical with the

space spanned by the columns of A
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Since Av is a linear combination of the columns of A , the

existence of ir and a such that Axr-u. implies the existence of a vector
& such that Gx = u . Thus, if a solution exists, there is a solution to

the equation Gx ' u , so that the condition of the theorem is necessary.
But it is also sufficient, since u by definition represents a solution
vector. Q.E.D.

COROLLARY 1: Given an elementary perceptron and a stimulus world W ,

Then if 6 is singular, some C(w) exists for which
there is no solution .

PROOF: Each C(W) requires a solution vector in a different orthant, and

the set of all C(W) , for a given W , requires solutions in every possible
orthant. But if G is singular, it maps the entire space into a hyperplane,
and this plane must fail to intersect certain orthants. Consequently, the

classifications C( W) which are represented by vectors in these orthants
have no solution.

COROLLARY 2: Given an elementary perceptron, if the number of stimuli
in W is n > Na , there is some C(W) for which no
solution exists .

PROOF: From Theorem 3 and Corollary 1, it is clear that there will
be some C(W) which has no solution if and only if G is singular. G

has the same rank as the matrix A ; but A is an n by Na matrix,
implying that A , and therefore G has rank < n .
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COROLLARY 3: For any elementary perceptron, as the number n of
stimuli in W increases, the probability that a randomly
selected classification, C(W) , has a solution approaches
zero (where C(W) is chosen from a uniform distribution
over the possible classifications of W ).

PROOF: From Corollary 2, as n increases beyond the number of A-units
in the perceptron, there must be some C(W) without a solution. At the same
time, increasing n increases the set of possible classifications in proportion
to 2n . But, owing to a theorem by R. D. Joseph and Louise Hay (Ref. 41,

Appendix ), the number n(r) of classifications which have solutions is no

greater than 2 Jj^
J

'J + f) ("ij)^ where r * Na is the rank of the

G-matrix. Therefore, the upper bound of the probability of selecting at random
one of the classifications which has a solution diminishes with n(r)/2n which
goes to zero as n goes to infinity.

Several additional tests for the existence of solutions, which are
of practical utility in diagnosing small systems, will be found in Theorems 9

and 10, at the end of this chapter.

5 . 5 The Principal Convergence Theorem

In the preceding section, the existence of solutions to classification
problems in an elementary perceptron was considered, but nothing has been

said about the ability to achieve such a solution by a training procedure. In
this section, we consider the ability of an elementary oc -perceptron to learn
the solution to a classification C(W) under an error correction procedure.
The following theorem is fundamental to the theory of perceptrons.
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A general definition of an error correction procedure was given
in Definition 41, in Chapter 4. We now define in detail two specific forms of
this procedure, as they apply to the elementary oc -perceptron.

Consider some classification, C(iVj . Let

^t

where i = /,..., n .

+ 1 if stimulus S; is to be in the positive class

- 1 if stimulus 5t- is to be in the negative class

In order to obtain the most general conditions for the following theorem, a

non-quantized error correction procedure is defined as follows: No response
will be considered correct unless the magnitude of the input signal to the

R-unit (u;) is greater than <f , and the sign of u.- agrees with /Ot
for the current stimulus. (This corresponds to an R-unit with a threshold
of cT , or for the special case where <f = 0, it corresponds to a simple

R-unit.) If no error occurs for stimulus 5t
- (i.e., JO; 1*1 > <f ) no

reinforcement occurs; but if an error does occur a quantity q = />-AXi
is added to the value of each active A-unit, Ax; (the number of units of

reinforcement) being just sufficient to bring the magnitude of the signal u-
past the threshold level, <

f

, to the level € > <f In a quantized
correction procedure, the identical rules apply, except that = /O-Ax.; — ± tt~~ ~~~~~~~~~~~~

A X; representing a single unit of reinforcement.
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THEOREM 4: Given an elementary oc -perceptron, a stimulus
world W , and any classification C(W) for which a

solution exists; let all stimuli in W occur in any

sequence, provided that each stimulus must reoccur
in finite time; then beginning from an arbitrary initial
state, an error correction procedure (quantized or

non-quantized)will always yield a solution to C(W) in

finite time, with all signals to the R-unit having magni
tudes at least equal to an arbitrary quantity <f * 0.

PROOF:* The matrix A is defined as in Theorem 3, so that a;j - a*(Si) .
We recall that AA ' *- G . We also define the matrix B such that

bjj m ^. a.j (S;) ; the matrix H " BB ' ; and the diagonal matrix D
such that al-j = 6ij/>i . Note that DD = I, PA -B, and H 'PGP-

We first consider the non-quantized error correction procedure.
In this case, no reinforcement is applied unless an error occurs; if an error
does occur (when — <f ) the quantity />• (Ax; > O) is added

to the value of each active A-unit, Az.; being chosen so that the input to
the response unit is exactly A € ( € > • It will be shown below that
such a Ax; exists.

The proof of this theorem (which was first published by Rosenblatt in
Ref . 86) has undergone a number of modifications. The original treat
ment was insufficient to prove the theorem in a rigorous fashion;
subsequent forms have been due to Block, Joseph, Kesten, and others;
and the present proof owes much to each of these. An interesting
alternative approach, with a slightly modified reinforcement procedure,
has recently been proposed by Papert (Ref. 67) who attempts to shorten
the demonstration and avoids use of the G-matrix. Unfortunately, there
are several logical errors in Papert's argument, the correction of which
would tend to lengthen his demonstration.
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It has been noted previously that the space spanned by the columns
of G is the same as the space spanned by the columns of A (the rank of
6 being equal to the rank of A ). Consequently, for any Na -vector V ,

there is an n -vector Z such that AV =GZ.

An arbitrary initial state for the perceptron is represented by an

Na -vector V of values for the A-units. Let Z° be a corresponding
n -vector. Let Z be the n -vector whose / component, , is

equal to the total quantity of reinforcement given in all previous corrections
for stimulus S; .i.e.,

Let U = GZ° + GZ = G( Z°7 Z) - GD(X°+ X) where X° = DZ° and
X - DZ . The i component of U , u.- , would be the input to the

R-unit if 51 were to occur at the present time. Let W = DU This
equation can be written

where a negative <cu-- (or more precisely, xoy £ <f ) represents an error.
The X- are always non-negative, and this will be understood for the
remainder of the proof. We now define M as the maximum diagonal element,

h;i , of H . We also define the function of the n -vector Z

/>• Az- (summing over all previous corrections).

W = H(X°+ X)

n
K(Z) = Z'HZ- 26 22 ?;i-l
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We then obtain the following results:

1) The existence of a solution means that there is an Na vector V* such
that for all i

where jit- > 0 . In matrix form BV = W

2) Consider X'HX for all X such that || X || « / (and of course > 0 ).

X'HX - (X'B)(X'B)' so that X'HX > 0 - Suppose X'HX - 0 ; then X'B - 0 .

Clearly X'W > 0 , but X 'W* - X'BV * - 0 . This contradiction shows
that X'HX > 0 on this closed, bounded set, so that there exists a minimum
oe. > 0 such that X'HX k ot\x\2 for all X for which X; > 0 for all t .

Note that M ^ c* > O as a consequence. Note also that g-- m h-- 2 oc > 0.

3) £ ^ l^'l (Schwarz's inequality)
and \X'HX°\ * \HXl-lX\ = A \\x\\ (Schwarz's inequality)

4) K(X°+X) - K(X") - K(X) + 2X'HXe

- oc\x\*- 2t/7T\X\ - 2A\X\\

5)
dK(x°+x) - 2uri - 2e

and dxi
> 0 . This latter relation proves the contention at
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the beginning of the proof that A X- k O exists. Specifically, we have

6) A correction is made for S; only if <uri i (f Denote the change in A

when this is done by A K , and by subscript 0 the conditions before the
correction.

„X.i0 ¥-A xi c

_ (*v?0 - e)'

M

7) From 4) and 6) we conclude that the maximum number of corrections
is

M(4 + ef7T)2N » —— r
<xU-<f)z
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8) In particular, if X°=0 and <f = O (corresponding to a perceptron with
a simple R-unit and no initial reinforcement) then 4 - j| //A'<,|| - 0 and

the bound becomes r,M/Gi .
This proves the theorem for the case of the non-quantized

correction procedure, since N is finite, implying that the process arrives
at a solution in finite time. For the quantized case, we have the condition
that Ax.- is always 1 when a correction occurs (the vector / representing
the numbers of unit corrections for each of the n stimuli). For convenience,
we take the case where tf - 0 and e = M = (gi[)ma% • Then in step 6)

we have:

6*) AK(X'+KC) — 2 I (~rj-M) dxk -2l \+ru t ku(*l M\dxLJ* it J*f
X-lo* I

*U

S - M

7a) From 4) and 6a) we have that the maximum number of corrections is

oc M

An alternative bound, found by H. Kesten, is ~ max (- 2/>i utrf*- ha) -
This under some circumstances represents a sharper bound; nonetheless,
both bounds are generally quite poor, as estimates of the actual number
of steps .
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8a) This upper bound is again minimized when X ° = O so that 4 = ||HX°\ = 0.
The bound is then n M/oc

This completes the proof of the theorem for the quantized case.

Q.E.D.

CORO LLARY : Given an elementary perceptron, a stimulus world W ,

and any classification C(W) ; then if a solution to C(W)
exists, the set of possible solutions to C(W) has positive
measure over the phase space of the perceptron.

PROOF: From the proof of the theorem, we know that if a solution exists,
there is a strictly positive vector X such that HX = P (where P is a
strictly positive vector). Let Y beany n -vector; then \\hy\\ - b ||v||
where b is the absolute value of the maximum eigenvalue of H , or the
norm of H . Let >t = "V* />;><? , and let € = * 0 . Let U
be in the 6 -sphere around X , i.e., U • P+Y where \Y\ 4 € Let
Z = Hr , and let | = mf* & \z\\ = \nrl & ^fj < /+. Then

H + h Z yU. - % > 0

HU = H(U-hY) - P + Z

Therefore, HU is strictly positive, and U is an alternative solution.

This means that there is a cone of vectors including X which maps
into the region which contains P , any such vector representing an equiva
lent solution. Since the volume of this cone has positive measure over the
phase space, the corollary follows .
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5 . 6 Additional Convergence Theorems

The theorem in the previous section deals with convergence to a

solution state in an oe -perceptron, trained by the error correction procedure.
In this section, it will be shown, first, that a weaker form of correction
procedure can also be guaranteed to yield a solution; secondly, that
reinforcement procedures in which the magnitude of does not depend on

whether or not the current response is correct cannot, in general, be relied
on to converge to a solution. If a solution state does occur in such a system,
it will be shown that it is apt to be unstable except under special conditions.

DEFINITION: A random-sign correction procedure is one in which some

quantity of reinforcement is applied to the perceptron when an error occurs,
and zero reinforcement is applied when the response is correct. The sign
of f? is chosen at random, with an equal probability of being positive or

negative, regardless of the response of the perceptron.

THEOREM 5: Given an elementary oc -perceptron, with a finite
number of memory states, a random -sequence stimulus

world W , and any classification C(W) for which a

solution can be reached from the starting point by some

reinforcement sequence, then a solution will be obtained
in finite time with probability 1 by means of a random -

sign correction procedure.

PROOF: The random-sign correction procedure consists of a random

walk in which each step corresponds either to a step of the required
correction process, or a step in the reverse direction. In the course of

this process, the vector u, (defined in connection with Theorem 4) will
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eventually reach some attainable trapping state with probability 1 . But the

only trapping states are in the solution space. Consequently, a solution

will be obtained in finite time .

In Chapter 4, (Definition 40) an S-controlled reinforcement
system was defined as a training procedure in which the magnitude of Vf is
constant, regardless of the current response of the system, the sign of >p

being chosen to agree with the sign of the classification of the current stimulus,
5; , in C (IV) . Unlike the methods considered previously in this chapter,

this is not a correction procedure; i.e., the magnitude of reinforcement does
not depend on the occurrence of an error, and only the sign of the required
response is taken into consideration in determining what reinforcement
should be applied. In the following analysis, a solution will be called stable
if , in a given experimental system, all future memory states will also
satisfy the conditions of a solution, no matter how long the experiment
continues. A system employing a correction procedure, since it receives
no further reinforcement once a solution state is achieved, is inherently
stable. The following theorem shows that this is not the case for an

S -controlled system.

THEOREM 6: Given an elementary ot -perceptron, a stimulus world W ,

and some classification C(W) for which a solution exists,
a solution can sometimes be achieved by an S -controlled
reinforcement procedure. However, such a solution cannot
be guaranteed for an arbitrary stimulus sequence i and may be

unstable if it occurs.
PROOF: We will first consider a case in which a stable solution does occur,
for the type of experimental system specified by the theorem. Let W consist
of two stimuli, St and S2 • Let Sf activate some set of A-units , Af ,
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and let 52 activate a disjoint set of A -units, Am • Let C(w) assign S,
to the positive class and S2 to the negative class. Regardless of the

sequence and relative frequency of S. and St , it is clear that each
occurrence of S, will augment ut in a positive direction, while each
occurrence of S« will make u2 increasingly negative . Since the intersection

Atll is assumed to have zero measure, there will be no interference between
the two stimuli, so that the acquired solution will remain stable no matter how
long the process continues. This example proves the first part of the theorem.
Let us now consider the case of intersecting A-unit sets. Suppose S/ activates
two units, af and a£ , while S2 activates units a2 and a.£ (the unit a.A
responding to both stimuli). If the frequencies of S, and S, are equal, their
effect on cl£ will tend to cancel, and a solution with ir. positive, ir2 negative,
and 1^1 equal to zero will tend to occur. As the sequence continues, the magni
tudes of 1/-, and will tend to increase without bound, so that the solution
will become increasingly stable as time goes on. Suppose, on the other hand,

that Sf occurs with ten times the frequency of Sj In this case, OL. will
gain ten units of positive value for every unit of negative value received from

S2 , so that Vj, will tend to increase in a positive direction at nine times
the rate that vj progresses in a negative direction. Thus the net signal, u2 ,

transmitted to the R-unit in response to S2 , which is equal to * %r£ ,

will clearly become strongly positive as time goes on, resulting in an

erroneous classification of S2 Even if the initial state of the perceptron
was a solution state (e.g. , irt = +t , xr2 m ~ I, 1/~c

■ 0 ) it is clear that
the S -controlled procedure will quickly destroy the existing solution, which
is therefore unstable. Q.E.D.
* H. D. Block has pointed out that, while a solution to C(w) can not be guaran
teed with a random stimulus sequence, nonetheless if a solution exists then
there exists some S-sequence which will guarantee a solution with S-controlled
reinforcement. In particular, if Sx. = a is a solution, then the occurrence of
5/ with frequency f- = | x \ (for all t ) will guarantee a solution.
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In the example considered above, it is clear that a frequency bias,

in which the stimuli of one class are much more frequent than members of the
other class, can strongly prejudice the perceptron to always give the response
associated with the more frequent class, in an S -controlled system. Such a

problem would exist, for example, in trying to teach a perceptron to distinguish
the letters "E" and "X" occuring with their normal frequency in English text.
Even if all stimuli occur with equal frequency, however, a similar effect
exists if there is a size bias, in which the stimuli in one class activate
more S -points (or illuminate a larger area of the retina) than the other class.
As will be seen in the following chapter, larger stimuli generally tend to
activate more A-units than smaller stimuli, and in the limiting case, the set
of A-units responding to a smaller stimulus may be entirely contained within
the set responding to a larger stimulus. Suppose for example, that Si
activates units a.f and a2 , while 52 only activates a2 . A solution which
classifies Sf positively and S2 negatively clearly exists (e.g., let = -hf
and irz = _1 ) but if the stimuli occur alternately, uf will tend to become
increasingly positive, while u2 tends to oscillate about zero. The reader
can satisfy himself that (starting with 0 values) a quantized error correction
procedure yields a stable solution to this problem after five stimuli.

In the case of R-controlled reinforcement procedures (Definition 39

in Chapter 4) it makes no sense to talk about the probability of convergence to
solution for an arbitrary classification, C(W) , since the required classi
fication plays no part whatever in determining either the sign or the
magnitude of the reinforcement. As will be shown later, it may happen

that an R-controlled reinforcement system leads to the acquisition of an

interesting stable response function by a perceptron, but this cannot
generally be guaranteed, and any classification which is achieved is necessa-
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rily one which is selected by the perceptron, rather than by the experi
menter. The interesting questions concerning such systems deal with the

types of classifications to which they converge, for different kinds of

environments. In particular, we will be interested in any systems which
tend to form classifications on the basis of some concept of stimulus
"similarity". It will be shown in later chapters that elementary perceptrons
do not, in general, tend to form classes on this basis except under special,
and highly restrictive, environmental conditions, but that cross -coupled
perceptrons appear to have a striking capability for such "spontaneous
organization" .

In the preceding theorems, only perceptrons employing alpha
system reinforcement have been considered. The remaining two theorems
consider two departures from this model. The first demonstrates that an

even weaker form of reinforcement than that in the random-sign correction
procedure can guarantee a solution in finite time, provided it is employed in

a correction procedure, in which the application of reinforcement depends
upon the occurrence of response errors. We define a random perturbation
correction procedure as a reinforcement process in which, if an error occurs,
reinforcement is applied to the active A-units, as in the oc -system, except
that the magnitude and sign of are both chosen independently and

separately for each reinforced connection in the system, according to some
probability distribution.

THEOREM 7: Given an elementary perceptron with a finite number
of memory states, a stimulus world W, and a classi
fication C(w) for which a solution can be reached
from the starting point by some reinforcement sequence,
then a solution can always be obtained in finite time by
means of a random perturbation correction procedure.
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PROOF: The reinforcement process is a random walk, which (for the

given conditions) will eventually take the representative point of the system
to every attainable point in phase space. Since the number of points is assumed
to be finite , a solution must be reached in finite time .

Of the three reinforcement procedures which have been shown
to guarantee solutions in elementary perceptrons (error correction, random-
sign correction, and random perturbation correction procedures) the first
is clearly the strongest, and can be expected to converge most rapidly. The
random perturbation procedure will converge most slowly, since it must
hunt through a large domain of the phase space of the system before achieving
a satisfactory terminal state, and is not guided during this process by any
directional constraints. In this respect, it shares many of the difficulties
of Ashby's homeostat (Ref. 3); but it shares the virtue of the homeostat as
well, that if the solution space is attainable, it will utlimately arrive at a

solution no matter how complicated its functional representation may be.
The random sign and random disturbance procedures may prove to be of
interest in biological models, since the only information required for the

control of reinforcement is whether or not an error has occurred.

In practice, it will be seen that a gamma system (Definition 38,

Chapter 4) generally works at least as well and sometimes better than an

alpha system. Nonetheless, the following theorem indicates that this
system lacks the true universality of the alpha system.
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THEOREM 8: Given an elementary 2T -perceptron, a stimulus
world W , and a classification C(W) , it is possible
that a solution to C(W) exists which cannot be

achieved by the perceptron.

PROOF: Let each A -unit be activated for at least one stimulus in W
and let each stimulus activate a disjoint set of A -units. Let the classification
function C(W) be one which assigns every stimulus to the same class, either
positive or negative, A solution clearly exists, if the values of all connections
are positive (or negative, as required by the classification). But if the initial
state of the system is one in which all values are zero, or of the wrong sign, a

solution can never be achieved by the gamma system, since a solution requires
that the total value of each set A- of units responding to 5/ , and

consequently the total value over the entire A -set, should agree in sign
with the classification. In the gamma system this is impossible, since the

initial sum of the values is constant. The conservative property of the gamma
system gives it one degree of freedom less than the alpha system, making it
impossible to achieve a solution to such problems unless at least one surplus
A -unit (which does not respond to any stimuli) exists.

and establish useful diagnostic procedures for determining the existence of

solutions in both alpha and gamma system perceptrons. As in Theorem 3,

the activity function of the A -unit a; is defined as

The two remaining theorems were proposed by Joseph (Ref . 42),
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For any n -vector, X , with components Xm , the bias number of a-
with respect to X is defined as

n

6;(X) - L X4 a-(S4)i = i
This quantity is clearly related to the bias ratio (defined in 5.4) if X is
taken to be the class -assignment vector for the n stimuli. We will denote
by X* any n -vector X whose components %• do not disagree in sign with
the required classification, C(w) , i.e., Xj i 0 if Sj is in the positive
class, and Xj ^ 0 if Sj is in the negative class. X* will denote a

vector in which the inequalities are strict (no zero components).

THEOREM 9: Given an 0£ -perceptron, and a classification C(W) , a

necessary and sufficient condition that the error correction
procedure reach a solution (in finite time, with arbitrary
starting point) is that there exists no non-zero X* such

that A,-/*" = 0 for all L .

PROOF: For conveneince, an un -normalized G -matrix will be assumed.
For such a matrix,

9j4 = "J4 ^ La?(Sj) o-t(U)i
where r>j£ is the number of A-units in the set responding to both Sj and Sj •

Hence, for any n -vector X ,

x'GX " L *J X* 9J4 - L *J z* a*(5J> a*(S*>
J,4 iij,4

But
2 r YZ.[6i(xj] = £ T^xj*i(Sj) -2Lxjz4at(Sj)aUs^)
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9
Hence x'GX = T, [6

iM]

L

If the condition of the theorem holds, then X'GX i= 0 for

X - X , X i= 0 . But from the proof of Theorem 4, it can be shown

that X'SX > a|| X if for X = X * , where a > 0 . Then the proof of the
correction procedure in Theorem 4 applies, and a solution exists, so that
the stated condition must be sufficient.

If the condition does not hold, then there is a non-zero X*
such that X'GX = 0 • Since G is positive semidefinite, this implies that
X'G = O . Thus, X is orthogonal to all the columns of G • and hence

to any linear combination of the columns of G • Since for an arbitrary
vector Z , GZ is a linear combination of the columns of G , GZ is
orthogonal to X X * cannot be orthogonal to any vector U in which
the signs of all u; agree with C(W) , and hence it follows that there cannot
exist vectors Z and U such that GZ = U . This men s that there
exists no solution to the classification problem, so the condition given must
be necessary. Q.E.D.

COROLLARY: For an oc -system, the condition that there exist no
non-zero vector X* such that b;X*= 0 for all i
is equivalent to the condition that there exist Z and

U such that GZ « U (where U is in the same orthant
as C(W)). Alternatively, this condition is equivalent
to X GX 1= 0 for all non-zero X* .
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THEOREM 10: Given a y -perceptron, and a classification C(W) , a

necessary and sufficient condition that the error correction
procedure reach a solution (in finite time) is that there
exists no non-zero X such that b; X = jc

for all i .

PROOF : For the f -system, the normalized G matrix consists of
elements

t i,h

It is readily seen that G is symmetric . For any n -vector X , X GX

is given by

X'GX = £ Xj gj4J,*

• L XJ x* a*(sj) **(Sa)- tt ZZ xJ x* ai(H)

We now define h*(X) as

From this, we see that

2 z r 12
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- -.2
Hence x'GX = J_

,

\_*>;M - tV^J .

i

From this it follows, first of all, that G is positive definite or positive
semidef inite , as was the case for the of -system. Secondly, it is seen

that X'GX = O if and only if b-(X) = £ for all t . The proof now
proceeds exactly as in Theorem 9.

In practice, it is often possible to show that a given perceptron
does not permit a solution to a given classification problem by substituting
the classification vector itself, C(W) , for the vector X* in the above

A-units, then no solution exists for either the alpha or gamma system. If

they are a constant other than zero, a solution- may exist for the alpha
system, but not for the gamma system. If they are not all identical, then

a solution may exist for either system. While it is sufficient to take the

components of X to be integers, the vector with all components x; = ± 1

the 6; will all be anihilated by X- (1, -2, 1), but not by X = (1,-1, I)-
The condition for the oc -system is equivalent to the requirement that there

should be no vector in the same orthant as C(w) which is orthogonal to the

linear manifold spanned by the activity vectors of the A-units.

COROLLARY: For a y -system, the condition that there exists no

non-zero vector X* such that 6; X* ~ jc for
all i is equivalent to the condition that there exist Z

and U such that GZ = U (where U is in the same
orthant as C(W) ).

theorems, and computing the b- . If these turn out to be zero for all

is not always sufficient. For example, if the
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6. Q -FUNCTIONS AND BIAS RATIOS IN ELEMENTARY PERCEPTRONS

Thus far, we have been mainly concerned with the general
"qualitative" properties of elementary perceptrons. In the present chapter,
the groundwork for a quantitative analysis of their performance will be

presented. In the theorems of Chapter 5, it was shown that the existence
and attainability of solutions, in an elementary perceptron, depends strongly
on the properties of the G -matrix. Each element of this matrix, ,

is a measure of the generalization of reinforcement from stimulus Sj to S;
This generalization coefficient, g-j , varies with the measure of the set of
A -unit s which respond jointly to 5- and Sj Until now, the actual
quantitative measures of these sets have not been taken into consideration,

and only the formal properties of the matrix G have been considered. The

Q -functions, which are introduced in this chapter, represent the probabili
ties that an A -unit in a specified class of perceptrons will respond to a

particular stimulus, or will respond jointly to a designated set of stimuli.
These Q -functions not only determine the expected values of the generali
zation coefficients, g -j , but enter into the analysis of variability of

perceptron performance as well, as will be seen in the following chapter.

6. 1 Definitions and Notation

The Q -functions, defined below, are always specific to a

particular class of perceptrons in which the origin point configurations of
the A-units have been selected according to some designated set of rules
from a specified S-set or retina. The functions Q are defined only for
simple A-units, a; , which are said to be active if the algebraic sums

of their input signals, o££- , are equal to or greater than their thresholds,
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0; For such A -units, Q represents the probability of drawing an

A-unit at random from the specified distribution which responds to each of
a specified set of stimuli. The notation employed is as follows:

Q. = probability that an A-unit in a specified class of
perceptrons responds to stimulus .5- .

probability that an A-unit in a specified class of
perceptrons responds to stimulus S; and also to

stimulus Sj •

QiJ . . tn ~ probability that an A-unit in a specified class of
perceptrons responds to each of the stimuli SltSjt •

6.2 Models to be Analyzed

Three types of models will be considered which differ in the

rules by which connections are made between S-units and A-units. It turns
out that for the three cases, the distribution of input signals to the A-units
is expressed in terms of binomial, Poisson, and normal random variables,
respectively. These models are therefore named binomial .Poisson , and

Gaussian models .

6.2.1 Binomial Models

In a binomial model the input signal, oc- , received by

unit at* , is distributed as the difference of two binomially distributed
random variables. This model characterizes a type of perceptron in which

each A-unit receives a fixed number of connections from the "retina",
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(b) POISSON MODEL, WITH CONSTRAINED ORIGINS

S OUTPUTS FROM
EACH S-UNIT,
WITH RANDOM
TERMINATIONS

S-UNITS A-UNITS

(e) POISSON MODEL, WITH RANDOMORISINS

o o o y =J o
o o O o « V * °o o o o Vi ,* °o o o •*

"
» oo o —^—•> oO -« =J *■ o

S-UNITS A-UNITS

ORIGIN AND TERMINAL POINTS
CHOSENAT RANDOMFOR EACH
CONNECTION

Figure 6 ILLUSTRATION OF TYPICAL S TO A-UNIT CONNECTIONS (ARROWHEADS
INDICATE RANDOMLY SELECTED TERMINATIONS). IN GAUSSIAN MODELS,

THE VALUES OF THE CONNECTIONS (SHOWN HERE AS ± l) ARE NORMAL

RANDOM VARIABLES.
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consisting of exactly X "excitatory" and y "inhibitory" connections . Each
of the excitatory connections has the value +1, and each inhibitory connection
has the value -1 . The threshold, Q , is assumed to be fixed for all A -units.
The origins of the connections to an A-unit are selected independently, with
uniform probability, from the entire set of S -units (or retinal points).
Specifically, a set of equiprobable origin configurations can be constructed
as follows: Let there be V connections, numbered from 1 to v> Let the
S -units be numbered from 1 to Then the set of all possible sequences
of v> integers, each having a value in the range / ^ n 4= N± corresponds
to the complete set of A-units. In this model, the number of distinguishable
A-units possible for a retina of points is *x

*

^
) /

In the binomial model, Q functions do not depend on the number
of sensory units, but on the fraction of them which are illuminated. A variation
of this model has been analyzed in Ref . 79, where the additional constraint is
introduced that no two connections to a single A-unit can originate from the

same S-unit. It has been shown that for moderately large numbers of S -units,
this model is practically indistinguishable from the true binomial model

described above.

6.Z.2 Pois son Models

In a Poisson model, «; is distributed as the difference of
two Poisson -distributed random variables. In this model, it is assumed
that the number of input connections to an A-unit is not fixed, but is a

random variable. The model corresponds to one of two situations, the

equations for the Q -functions being identical for both:
—

The derivation of this formula can be found in Feller, Ref. 21, page 52.
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(1) In the constrained origin model, each S-unit emits a fixed number of

output connections, consisting of y>x excitatory, and inhibitory connections

(with values +1 and -1, respectively). Terminal points are selected at random
from a set of Na A -units. For the model to hold exactly, and AJa
should both be infinite, the ratio ^^/^a being a parameter of the system.
For finite and A/a , the model remains a close approximation.

(2) In the random origin model, a set of Nx excitatory and inhibitory
connections are each independently assigned an origin and a terminus at

random, from a set of S -units and A -units, with uniform probabilities. In
this case, for the model to hold exactly, the numbers Nx , N y and Na

+ N ushould all be infinite, with — Z- being a parameter of the system;
No.

as in the previous case, however, the model is a close approximation for
finite systems.

In the Poisson model, for Case (1), the number of possible A-
units is ( l>x + 1)

•* ( i>„ + I) For Case (2), the number of
possible A -units is (Nx 0 A (Ny + - The binomial model, the

constrained-origin Poisson model, and the random-origin Poisson model
yield increasingly large sets of possible A -units, for the same numbers of
S -units, A-units, and connections .

6.2.3 Gaussian Models

In the Gaussian case, o£; is distributed as the difference
of two normally distributed random variables, i.e., ot; is normally
distributed. While both of the above cases converge to a Gaussian model
as the number of input connections to an A-unit becomes large, we shall
be concerned here with a model in which the number of connections remains
finite, but the values of the connections are normally distributed.
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6.3 Analysis of Q;

For both the binomial and Poisson models, Q- , the probability
that an A -unit is activated by stimulus S; , is given by the probability that

the total input signal OC is equal to or greater than the threshold, Q
Specifically,

(6.1)

oi*e £-I£G E-6 1-0

where K for binomial model

oo for Poisson model

Pz (E) = probability that exactly E of the excitatory connections
to an A-unit originate from active S-points.

Py(I) - probability that exactly I of the inhibitory connections
to an A-unit originate from active S-points.

For the binomial model,

*">-a) «'<-«>'' „.„

where /?- - fraction of retinal points (S -units) activated by stimulus S;
For the Poisson model,

Px(£)m J*i*£-e-i*
(6.3)
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where x =
^z/^a

~ exPecte<i number of excitatory input connections
to an A -unit.

~y = Ny^Na - expected number of inhibitory input connections
to an A -unit.

P(oc) for the Poisson model can be expressed alternatively by
the following identity (pointed out by Prof. H. D. Block):

P(<x) = P {(
e - . .) = oc
j = e

" ** (*
+V)(ffA IM (2 e; fTJ)

Where Ip(x) is a Bessel function of an imaginary argument, given by

The use of this equation makes it possible to compute Q -functions
for the Poisson model by hand, with the aid of tables of Bessel functions (c.f . ,

Ref. 37, pp. 224-233).

For the Gaussain model, equation (6. 1) requires an additional
factor representing the distribution of value for each of the connections.
Specifically, if the absolute values of both excitatory and inhibitory connections
are distributed with mean ^u, and standard deviation er , we have

Efnax *max I

£-0 1= 0 / (6"4)
JD =9
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where

p(DF r) = 7== e 2 * *o /

PX(E) and Py(I) , in equation (6.4) are given either by (6.2) or (6.3),
depending on whether the number of input connections to an A -unit is fixed
(as in the binomial model) or random (as in the Poisson model).

Figures 7 and 8 show representative families of curves for
as a function of R- , for the binomial and Poisson models, respectively.
Note that both models are very similar in their basic characteristics.
Specifically:

1. In all cases, for Rj < -5 and X £ y , Q- increases monotonically
with .

1. For purely excitatory models (.y = 0) Q; goes to 1.0 as R-
approaches 1.0. (Figures 7a and 8a).

3. For models with 0 > x- y , goes to zero as /?• approaches 1.0.
(Figures 7b and 8b).

4. For X ~y , <?; tends to remain invariant except for very small or
very large values of Ri The range over which <f- tends to

remain constant is increased if the number of connections becomes
large (Figs. 7c and 8c). In the limit, with small Q and large X
and y , Q- approaches .5 for all values of R- except 0 and 1.
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5. Keeping x fixed, then for small 6 , Q; is generally greater
for the binomial model than for the Poisson model. For large 6, 0;
is greater for the Poisson model.

6. For the binomial model, Qj - 0 for x < & while for the Poisson
model, Qi - 0 only if Z - O .

6.4 Analysis of 0;j

Q-j is the probability that an A -unit is activated by each of

two stimuli, S; and 5; • For both the binomial and Poisson models, <?;;• j *«/

can be expressed by the equation:

£;+ £^-1.-1^6

where & - threshold of A -uniti
£• m number of excitatory connections originating from points

illuminated by 5; but not by 5y

E; ■= number of excitatory connections originating from points
illuminated by Sj

'but not by 5;

Eg m number of excitatory connections originating from points
common to S; and 5;

I- — number of inhibitory connections originating from points
illuminated by S' but not by Sj

Zj - number of inhibitory connections originating from points
illuminated by Sj but not by S,

'

I. = number of inhibitory connections originating from points
common to 5; and Sj
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The point sets involved in the analysis of Q- • are illustrated in Figure 9.J
For the binomial model, the required probabilities are given by the multi

nomial equations:

Z-E; -E--EA

(6.6)
X

P* (£-£J, *J - s.i£.eJI^-Ej-^i *W<£' O-ArAj-c)'-*

where C = proportion of retinal points illuminated both by 5^ and Sj

A- = R- - C where R- is the proportion of retinal points illuminated

by Si ;

Aj = Rj - C where R; is the proportion of retinal points illuminated
by S; .

For the Poisson model (where x and y are the expected numbers of
excitatory and inhibitory connections to an A-unit),

Px(E;,£j,£j -(£i/EjIMj)~'- ^(&jfi-,-*C(gC)e* . (6 7)

P,(Ii,Ij.IJ = (TjIj/^O~^^HyAifi^~^Ajfie~^gC)1'

As in the case of , the Gaussian model for Q-j requires
an additional factor representing the normal distribution of connection values.
The components of the input signal, ac , which originate from the unique
S -units in S; , the unique points in Sj , and from the common retinal
set are designated P- , Pj , and DA , respectively. By analogy to

(6.4).
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q = iEi-Ii)

4>(Dp) =
<t>(.D£i>,Xi>) , defined as in (6.4).

Then,

oo oo asj j j WJtWWj,^dDi <*Dj

P£--m Di-O-Djc. Dj-e-D*
For some purposes, the distribution of the input signals, oc- , and <x^ , is
of interest. The joint probability, P(ct;, ecj) , is given by

It should be noted that 9^ ■ 9- is a special case of these equations, for
which A; = A; * C - Tables of for binomial and Poisson models

have been published in Ref . 87.

Figures 10 and 11 illustrate the quantitative properties of Q-j ,

as a function of C , the measure of the intersection of stimuli 5j and 5;

on the "retina". For convenience of representation, Q;j is actually plotted
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as a function of the relative intersection (or proportional intersection), C/R ,

R- and Rj being equal for all cases shown. Note that for c/R m 1 ,

Q.j m Q-' m Q. The main features of these curves are:

1. In all cases, Q;j increases monotonically with C

2. For large 0 , tends to remain close to zero, except for
stimuli which approach perfect identity ( c/R close to 1.0).

3. For large values of R , Q-j tends to accelerate more rapidly
as C approaches 1 .

4. For the binomial model, for disjoint or well separated stimuli
( C "* O ) may have a maximum with respect to R This effect
is not found in the Poisson model. (Figs. 10c and 11c. )

5. For equivalent parameters, Q • • tends to show a sharper "shoulder"
in the binomial model than the Poisson model.

The second of these properties is an important factor in
determining the discriminative capability of a perceptron. It is shown best
in terms of the conditional probability, Q-jj , that an A -unit which responds
to §j also responds to 5t

" • Qi\j ls e«Jua' *o Qij/Qj ' an<* *» s^own for
several typical cases in Fig. 12. Note that for large values of Q , the

probability that an A-unit responding to Sj responds to a second stimulus,
S' • is virtually zero, unless the stimuli approach perfect identity. The
difference between the binomial and Poisson models is shown most clearly
in Figures 12(a) and 12(b). Figure 12(c) demonstrates that the conditional
probability depends only slightly on stimulus size. Additional curves for
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these functions can be found in Ref s . 79 and 80.

In analyzing the gamma system, it will be seen that the
conditions under which Q-j « Q;Qj are of particular interest, since for
the gamma system the expected value of g^j is zero for such conditions.
In the binomial model, Q-j - Q- Qj if C ■ Rj This condition
will tend to be met if the stimuli are randomly chosen sets of S -points,
the expected intersection of any two such sets being equal to the product of
the measures of the sets. It can readily be seen that under these conditions,

the probability that an origin point which is in S; i" also in 5; is the same
as the probability that an origin point which is not in Sj happens to be in I

in other words, the probability that the origin of a connection is in Sj does not

depend on whether or not it is in S{ < and consequently the response to Sj
is independent of the response to S; , yielding Q-j - QiQj • tne Poisson
model, however, Q-j - QiQj only if C - O (i.e., for disjoint stimuli) since
the connections received from any disjoint subset of S -units are independent
of connections (or signals) from any other subset.

6 . 5 Analysis of Qjji

In the following chapter, it will be seen that the expected responses
of a simple perceptron can generally be determined from the functions Qi
and Q-j The variability of performance in a class of perceptrons, how
ever, will be seen to depend on the joint probability, QijJi , tha.t an A-unit
responds to each of three stimuli, $, , Sj • and S4 • The equations are a

straightforward generalization of those employed in the last section for Q^j
Specifically, there are now seven excitatory and seven inhibitory signal
components to be considered:
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Excitatory signal from S -units responding to St
'

but not to Sj or 5^

excitatory signal from S -units responding to Sj

but not to St
- or S4

£j - excitatory signal from S-units responding to

but not to St
" or Sy

£.j = excitatory signal from S-units responding to St-

and Sj but not S4

= excitatory signal from S -points responding to Si

and S4
' but not Sj

Ej£ = excitatory signal from S -points responding to Sj

and S4 but not S;

&ijj - excitatory signal from S -points responding to all
three stimuli.

Inhibitory components are defined analogously. This yields the equation:

(6.10)

\cci i e

where

<*, 3 £i * £ij + £u * EijA-h -hj-hA - hjA

«*4
" £A * £iA * £JA * £iJA

~U ~
*iA ~ ljA ~

TU*
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The multinomial and Poisson probabilities employed in (6. 10) for the

binomial and Poisson models, respectively, are obtained by extension
of (6.6) and (6.7), with appropriate measures for the various double and

triple intersections among the stimuli.

6 . 6 Bias Ratios of A -units

Bias ratios were defined in Section 5.4 as the ratio of the
number of stimuli in the positive class to the number of stimuli in the

negative class, which activate an A -unit. In Theorem 2, it was shown
that there must be some variation in the bias ratios of the A-units in a

perceptron, if a solution to a given classification is to exist, and Theorems 9

and 10 showed that the closely related "bias numbers" yield necessary and
sufficient conditions for solutions. Clearly, the distribution of bias ratios
depends on the probabilities Q^j..m , that the A-units will respond to

various possible sets of stimuli, S- , Sj , •••, Sm • Rather than undertake
a detailed analysis of bias ratios, empirical data are presented for a typical
case, to illustrate how we might expect the "responsiveness" of A-units to

different classes of stimuli to be distributed. These data were obtained by
a Monte Carlo procedure, in which 10,000 A-units were tested on a digital
computer to determine to how many stimuli of each class they responded.*

The program was written by A. Geoffrion, for the Burroughs 2Z0
computer at Cornell University.
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The "retina" consists of a 20 by 20 mosaic of S-units , and the stimuli con
sist of 4 by 20 bars, placed vertically or horizontally on the retina, in all
possible positions. The retina is assumed to be toroidally connected, so

that bars placed near one edge of the field may re-enter at the opposite
edge. Thus, there are twenty possible horizontal bars (the positive class)
and twenty possible vertical bars (the negative class). This universe will
be used as a standard one in a number of learning experiments . to be

**
analyzed in the following chapters. Table 1 shows the number of A-units
out of 10,000 responding to each possible combination of N+ horizontal bars
and N vertical bars. An A-unit which responds to 4 horizontal and 6 vertical
bars, for example, is tallied in the 5th row and 7th column of the table. Each

A-unit had five excitatory and five inhibitory connections, and a threshold of 2.

For stimuli which are more similar to one another (in terms of

possible intersection of S-sets) than horizontal and vertical bars,- we would
expect to find the A-units less well distributed, and a greater concentration
around the diagonal. One would also expect that in a universe in which the

stimulus classes are less symmetric in their properties, the distribution
of A-units would be less symmetric than that shown in Table 1. Table 2

illustrates both of these features. In this case, the "positive" class
consists of 4 by 20 horizontal bars, just as before; the "negative" class,
however, consists of a set of 6 by 20 horizontal bars. Again, there are
twenty members of each class, but the maximum intersection possible between
stimuli of the positive and negative class is much greater than before, and the

size difference introduces an asymmetry which was not previously present.

The toroidal retina has the convenient property of being unbounded and
isotropic, with a finite surface. Any relations which hold for a set of
stimuli projected onto the retina hold equally well if all stimuli are
displayed by any combination of horizontal and vertical translations.
This model (with Born -von Karman boundary conditions) is easier to
analyze than a spherical retina which has similar properties.
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TABLE I

JOINT DISTRIBUTION OF 10,000 A-UNITS, WITH RESPECT TO NUMBERS OF
HORIZONTAL BARS AND NUMBERS OF VERTICAL BARS TO WHICH THEY RESPOND

N~
\ (VERTICAL BARS)

(HORIZONTAL BARS)

0 1 2 1 4 s a

0 187 126 IM 112 IM 63 27
1 SIS IM 171 171 IM 71 10
1 I2S 417 Ml IM Ml M 27
1 IM SM IM IM Ml M 17
4 MO 161 IM MO •M M H
s M 17 71 M M 27 1
a 12 M M 27 21 7 1
7 6 9 7 7 a 1 0
8 2 0 1 2 1 1 0

TABLE 2

JOINT DISTRIBUTION OF 10,000 A-UNITS, WITH RESPECT TO NUMBERS OF
4 x 20 AND 6 x 20 HORIZONTAL BARS TO WHICH THEY RESPOND

(« x 20 BARS)

(4 i 20 BARS)

0 1 2 1 1 s 1 7 8 1 10 II
0 117 Ma 22« 47 II 1 0 0 0 0 0 0
1 277 724 507 M4 M M 4 0 0 0 0 0
2 M 2M B72 U9 170 III II 8 1 0 0 0
1 ia H 191 M2 514 424 IM 17 5 2 0 0
4 i 10 M IM IM Ml M2 87 I 3 0 0
t 0 0 II a M III IS4 51 22 1 1 0
a 0 0 0 i II 22 M 24 24 X 0 1
7 0 0 0 0 0 1 4 II 10 1 1 0
a 0 0 0 0 0 0 0 1 1 n 1 0
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While the joint distributions illustrated here are not of great
utility in analyzing perceptron performance, they provide considerable
insight into what takes place within the association system when a perceptron
learns a classification of stimuli. Units situated on the diagonal (i.e., units
which respond equally to both classes of stimuli) are essentially "duds"; they
contribute little to a discrimination, and are as likely to be reinforced
positively as negatively. A -units which have a strong bias towards one class
or the other, however, (those situated in the upper right or lower left corners
of the tables) are useful "discriminators". In learning a classification, the

perceptron relies on combinations of such units, transmitting large -valued
signals, to establish a bias towards the proper class when a stimulus appears.
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7. PERFORMANCE OF ELEMENTARY pe. -PERCEPTRONS IN

PSYCHOLOGICAL EXPERIMENTS

So far, only the formal properties of elementary perceptrons

have been analyzed, without regard to particular experimental situations

or procedures. We are now ready to begin a quantitative analysis of the

performance of these systems in "psychological" experiments, i.e.,
experiments in which the procedures and observations are analogous to

those which might be performed on a biological organism. A number of

such experiments were defined in Part I, Section 3.3. In this chapter, we

shall be chiefly concerned with discrimination experiments (c . f . , Section 3.3.1),
since the capabilities of elementary perceptrons are largely limited to this

category. Before going'on to other types of systems, however, we will
consider what kinds of behavior might be expected of an elementary

system in generalization experiments, figure detection experiments, and

other problems which were discussed in Chapter 3. The analysis of

discrimination experiments which is reported here is basically similar to

that which was originally presented in Ref. 79. The former models have

been substantially simplified, however, and the analysis has been made

more rigorous, thanks largely to the work of R. D. Joseph, (Ref. 41).

7 . 1 Discrimination Experiments with S -controlled Reinforcement

The first problem to be analyzed is that of a discrimination
experiment in which the perceptron is presented with a sequence of stimuli
from an environment, W , and is reinforced for each stimulus in the

sequence in accordance with a predetermined classification, C(W) , with

the reinforcement control constant, Y? , taking the sign of the required
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response. The perceptron is then shown a test stimulus (Sz) and the

response to this stimulus is determined. The measure of performance for
a class of perceptrons (characterized by the parameters Na , 9 , X , and

y for a binomial model or by N&/Na , 9 , X , and y for a Poisson model)
is the probability that a perceptron from the specified class will give the

correct response to Sx after having been "trained" with the specified

sequence of stimuli.

7.1.1 Notation and Symbols

5 • = the J stimulus in the environment

4
+1 if Sj is in the positive class
-1 if 5; is in the negative class

1 if the t A -unit is active for Sj , S^,..., and Sx
0 otherwise

Qj4..x = Ea*(j4..x) - probability that a*(j4..x) = I

(as defined in Chapter 6)

T - duration (number of stimuli) of the training sequence

lr-r(T) - value of the connection from the I *^ A -unit after the

training sequence

c-r(x) - -c*r(x,T) - a*(x) Ts;-r(T) = signal received by the
R-unit on connection £-r
when test stimulus 5X is
shown after the training
sequence. The time T will
be understood unless other
wise specified.
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ux " Oi^(T) m^_,C*rW = total input to the response unit when Sx is shown
i

after the training sequence. For present purposes,
the symbol ux will be used, as in Chapter 5. Time
T is understood unless otherwise specified.

In terms of these symbols, the reinforcement rule for a quantized
OC -system, with S -controlled reinforcement, can be represented by the
following expression for the change in 1s~ir when stimulus Sj is shown:

A^ir (J))

7.1.2 Fixed Sequence Experiments: Analysis

The first case to be considered is that of a fixed training sequence,
in which a definite sequence of stimuli ( St , S, , • • • , Sr ) is shown to the

perceptron. In a later section, random training sequences will be considered.
The fixed sequence consists of a fixed (though not necessarily equal) number
of showings of each stimulus. For <X -perceptrons , the order of occurrence
of these stimuli does not affect the results. All values lr;r are assumed to

be zero initially. The following analysis and theorem follow the treatment
of Joseph (Ref. 41).

If a given perceptron is shown a training sequence, it will place
a test stimulus- Sx in the positive class if u x is greater than zero, and in
the negative class if uz if less than zero. For the given perceptron,
training sequence, and test stimulus, u x is a determinate number.
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Over the class of perceptrons, however, ux is a random variable.
In order to determine the probability that a perceptron from the specified
class will classify Sx correctly, we must know the probability that ctx
has the correct sign. In order to obtain a conservative bound on the

probability of correct response to Sx , without making any assumptions
about the distribution of ux , Joseph makes use of the Tchebysheff
inequality, which states that for any random variable with mean

2
and variance rr ,

Prob > 0j * / - ^TT^T U ^ > 0

Prob \j < oj
- > / - ^i/g-z /* < 0

Consequently, if the ratio yu.Z(ux)/<r 2(ux) can be made arbitrarily large,
the probability that ux for a randomly selected perceptron will agree in

sign with its expected value over the class of perceptrons can be made

arbitrarily close to 1 It thus becomes important, first of all, to know
whether or not the expected value of uz has the proper sign.

Joseph, has pointed out that if the one-sided inequality Pr{f-,u*lJ&
is used in place of the two-sided inequality Pn £| }-m-\ * i} £ f*,slightly sharper bounds may be achieved, i.e.,

In the range of interest, this additional sharpness is insignificant..
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DEFINITION: S% De called a positive stimulus (with respect to a

class of perceptrons , an environment, classification, and training sequence)
if the expected value of u.^ agrees in sign with the assigned class of Sx

In terms of the symbols introduced above, Sx is a positive stimulus if

/>x
•£(ux) > 0

The expected value of for an oc -perceptron (assuming
that all A-R unit connections start out with zero value) is obtained as

follows. Let pj = the number of times stimulus Sj occurs in the

training sequence, divided by T , the total number of stimuli in the

sequence (i.e., the proportion of the training sequence which is Sj )•

Then the value of the connection from unit et^ at the end of the training
sequence will be (since the magnitude of is taken to be 1)

Vir " TL />J Pj */ (J) (7-1)J

where the sum is over all stimuli in JV Consequently, summing over all
A -units, the input signal to the response unit when the test stimulus Sx
occurs will be

*X ' TLL 4 Pj *'U*) -L (X) (7.2)
i J

The expected value of ux is therefore given by

Eu-%
- £{rLL * pj •to*)}

* j
j

(7.3)
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From the above definition, it follows that is a positive stimulus (and

will tend to be correctly classified) if

L 4 At pj Qjx > °J
From Equation (7.3) it is clear that £"0.^ increases linearly

with . Let us now consider the variance of ux This is obtained
from the equation:

*2(«z) -£ 11 «,"• Ulr(x), £*r(*j\ (7. 4)
i < Ft i

For the conditions currently being considered (an ot -system with a

predetermined training sequence) the only source of variability in jCir (x)
is in the selection of the origin point configuration of the unit a.; . But if
we assume (as in all models thus far considered) that the A-units are all
chosen independently from a distribution of admissible origin configurations,
the covariances will all be zero, and a't(£*f.iX)) does not depend on i
Therefore, the general equation (7. 4) reduces to

<f *("X) » Ma<r*U?r (x)) - Na [f - E*£*r w] (7. 5)

(See Rosenblatt, Ref. 7 9 , pp. 82-83, for a more detailed algebraic
discussion of this equality). Now, for an OC -system,

and

This yields, for the required expected values in (7.5),
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and J 4

Substituting in (7.5) and simplifying, this yields

Note that the variance depends on Qj4x , w^ile the expected value depends

only on Qjx This variance, like the expected value, is of the order of
- We are now in a position to prove the following theorem (due to

Joseph):

THEOREM: Given a class of elementary oc -perceptrons , a finite
stimulus world W , a classification C(W) , and a

training sequence; then for every £ > 0 , there exists
an M0(t) such that if Nt.> Ne(f) , the probability
of selecting a perceptron which will correctly identify
the class of every positive stimulus will be greater
than / - £

PROOF: From the Tchebyscheff inequality, we have seen that if
ju. (u-x)/6 (klz) can be made arbitrarily large, the probability
that ux will agree in sign with its expected value over
the class of perceptrons will approach unity.
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It has also been demonstrated (Equations 7.3 and 7.6) that both /tftt-gj
and tf^(u'x) are of the order of ; therefore, ju. *(ux.)/o' 2(ux)
will be of the order of A/a . Thus, for each positive stimulus, Sx ,

the probability that ux agrees in sign with Eut can be made arbitrarily
clost to 1 by choosing sufficiently large. Suppose there are n stimuli
in IV Then, for the J positive stimulus there exists a quantity Nj (t)
such that if A/a > Nj (e) , the probability of selecting a perceptron
which fails to correctly identify Sj will be less than e/n . If we let

N0(e) - *y» (e) , the condition required by the theorem is satis
fied. Q.E.D.

From Equations (7.3) and (7.6), it is seen that for a given set
of stimulus frequencies pj , the ratio ju?//a'1 does not depend on T
Thus any number of repetitions of the same training sequence can occur
without affecting the performance of the system. Since varies

4 Z/ Zlinearly with Na , the normalized ratio —jj—jx./a' forms a convenient
measure for the comparison of different perceptron models. Some numerical
values for typical cases will be considered in the following section.

While the above analysis permits us to obtain a rigorous lower
bound for the probability of correct identification of Sx by a randomly
selected perceptron, it does not actually yield an estimate of this probability.
In order to estimate the probability of correct identification of S% , it will
be assumed that u% is normally distributed. The justification for this
assumption was discussed in Rosenblatt, Ref. 79, and subsequent analysis
has shown that the approximation is very close, even for perceptrons with a

-160-



small number of A -units. Assuming a normal distribution, we have for
the probability of a positive response to Sx

' - P(t\s*) - (7.7,

where §(Z) ■ yJ-r / C~ ' clz

Note that the above equations do not depend on whether the

perceptron is constructed according to the binomial model, Poi»son model,

or any other other model, so long as the A -units are selected independently

of one another. The performance does depend on the Q -functions, however,

which will be different for different models. From equation 7.3 it is clear
that any stimulus Sx will tend to be classified correctly if the average value

of QjX for Sj in the same class as S% is greater than the average value

of Qjx for Sj in the opposite class from Sx . (If the frequencies Pj
are not all equal, each Qyz must be multiplied by its appropriate frequency
in obtaining these averages. ) From the analysis of Q -functions in the

preceding chapter, it is clear that this condition will generally be met if
the stimuli of each class have large intersections with one another (on

the retina) while stimuli from opposite classes have small intersections

with one another. The ideal situation would consist of two disjoint clusters
of stimuli, located in different parts of the retinal field, each cluster
representing one class. In order to discriminate two stimuli reliably
(i.e. , to assign them to opposite classes) it is desirable that Q - , for
the two stimuli should be small, and particularly that the conditional
probabilities Q;\j and Qjj- should be as small as possible . Figure 10,
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in the last chapter, shows that this condition can readily be met if the
stimuli have a small intersection with one another, but becomes increasingly
difficult to meet as the intersection increases. This figure also shows that

a binomial model is better suited to the discrimination of similar stimuli
than a Poisson model, where Q^J is aPl to De relatively large even
for disjoint stimuli.

7.1.3 Fixed Sequence Experiments: Examples

The environment which was considered in the last section of
Chapter 6, involving twenty horizontal bars and twenty vertical bars on a

20 by 20 toroidally connected retina is a convenient one to use for a
"calibration experiment", by which different classes of perceptrons can
be compared. In particular, consider the following discrimination
experiment:

EXPERIMENT 1: Given a perceptron with 400 sensory points arranged in

a 20 by 20 toroidally connected array, or "retina", let W consist of the

twenty possible 4 by 20 horizontal bars, and the twenty possible 4 by 20

horizontal bars. Let C(W) be a classification which assigns every
horizontal bar to the positive class, and every vertical bar to the negative
class. Show every bar in IV to the perceptron exactly once (or in a

sequence with Pj equal for all stimuli). During this training sequence,
the perceptron is reinforced with S -controlled reinforcement. Then
select one of the bars, Sx < and determine whether the response is
correct, according to C(W) .
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Table 3 shows the performance ratios, /x. /o . for a 100

A-unit binomial model oc -perceptron, with various combinations of the

parameters x and y ( Q » 2 in all cases ) . The parameters x~ 3 ,

u m / , Q m 2 , appear to be optimum for this experiment, as can be

seen from the table. (Increasing the threshold results in a definite drop
in performance.) Figure 13 shows the performance of several binomial
and Poisson model perceptrons as a function of Na , computed from
Equation (7.7). The top curve shows the performance of the optimum

(binomial) system. A comparison of the other two curves illustrates the

relatively poor performance of the Poisson model on this particular problem.

It should be emphasized that the parameters found to be optimum
in this experiment will not necessarily turn out to be optimum in other
environments, or other classifications. In general, it appears that as the

classes of patterns to be discriminated become more "similar", (i.e. , as

the maximum possible overlap between stimuli from opposite classes

increases) the optimum number of connections to an A-unit and the optimum
value of 0 tend to increase.

A more difficult classification of the same dichotomy has been
studied in the following experiment:

EXPERIMENT 2: With the same environment as in Experiment 1, number
the horizontal and vertical bars consecutively according to their position on

the retina. Let the classification C(.W) place all even numbered bars in
the positive class, and all odd numbered bars in the negative class. The
training and testing procedures are identical to Experiment 1 .
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TABLE 3

PERFORMANCE RATIOS (M,ju*{) FOR IOO-A-UHIT ELEMENTARY <*-PERCEPTRONS
\er*(ux)/

(BINOMIAL MODEL) FOR EXPERIMENT I (HORIZONTAL/VERTICAL BAR DISCRIMINATION,
FIXED SEQUENCE). 9 = 2 IN ALL CASES.

y
(NUMBER OF
INHIBITORY
CORRECTIONS
PER A-MIT)

X (RUMBER OF EXICITATORY CORRECTIORS PER A-URIT)

2 1 * 8

2.17* 2.831 1.540 .931
2.063 2.912 2.104 1.349
1.708 2.805 2.479 1.773
1.406 2.592 2.670 2.140
1.153 2.329 2.708 2.414
.Ml 2.006 2.630 2.579
.767 1.777 2.473 2.638
.623 1.523 2.271 2.605

TABLE H

PERFORMANCE RATIOS FOR 100-A-UNIT ELEMENTARY <*-PERCEPTRONS
(BINOMIAL MODEL) FOR EXPERIMENT 2. 9 = 2 IN ALL CASES.

X (NUMBEROF EXCITATORY CORRECTIONS)

2 3 4 5

0 .358 .426 .328 .274
1 .365 .502 .436 .363

V 2 .362 .551 .526 .451
(NUMBEROF 3 .350 .578 .596 .533
INHIBITORY 4 .333 .585 .646 .605
CONNECTIONS) 5 .310 .578 .677 .664

6 .285 .558 .690 .707
7 .268 .529 .688 .736
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In this case, the two most similar bars to any test bar (those
which overlap it by 3/4 of its area on either side) are invariably in the

opposite class. Nonetheless, all stimuli may be positive stimuli under
these conditions, with a suitable choice of parameters. Table 4 shows the

2/ zratio ^c/«r for a 100 unit system in this experiment. Figure 14 shows the

performance of a perceptron with the same parameters as before (yC"3, y •

O m2) on this experiment, and also with the best parameters found to date

(x mS, y*7, Q'2). These parameters are the best set for X i 5 and y £ 7

but are probably not optimum, as it seems likely that a further increase in
both X and u would yield a further improvement in performance.

7.1.4 Random Sequence Experiments: Analysis

For the analysis of the performance of perceptrons trained
with random stimulus sequences, it is convenient to make use of an
unnormalized G-matrix (see footnote, page 75), where /p ■»1 instead of

//Na . For such a matrix, in the OC -system, g-j = the number of
units active for both 5; and S; . or

9ij -£,*£<v; (7.8)

The mathematical properties of the unnormalized G-matrix are no different
from those discovered for the normalized matrix, in Chapter 5.

In a random sequence experiment, the training sequence is
assumed to consist of a series of T stimuli, in which each stimulus in
the series is selected independently of the others. The probability of
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■electing stimulus Sj for the t position in the sequence is f>j ,

for all t . We will let m • - the number of times stimulus S ; occurs

in the training sequence. The random vector in - [hnn /nt -•">„) will have
a multinomial distribution with T trials and probability vector
p ■ Cfit, pt , - •-, pn) • The training sequence selected is assumed to be

independent of the particular perceptron selected for a given experiment.
At the end of the training sequence, the input to the R-unit in response to

a test stimulus Sx wiH De

u•* m Z 4- mJ 9xJJ

i J
Therefore, the expected value over perceptrons and training sequences is

which is of the order of T Na . Note that this is identical to equation (7.3).

The variance over both perceptrons and training sequences is
given by

*"*("x) m2L<T2(»<; 9xj)+Z,21 4 PA cov.(mj 9xJ , r»4 gxA)

J
+LL • \f(-j £(9xj 9m*)~ E(»*)£(ixj)£(9**)\

(7.10)
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For the components of the multinomially distributed vector m we have

£(mj) « Tpj

-rcr-Op/ + rPj

Efaj**A) = r(r-t)Pj f>A

Let ft^j z ■ number of A -units active for stimuli S; , Sj , - - • , S#
The symbol ~ over a subscript will be used to denote negation (e.g.,
r>jf - the number of A -units active for stimulus Sj but not for ;

njg ■ ftj - nj£ ). From equation 7.8, it is clear that for the 01 -system,

nli " 91! • Now, any set of n's which is exhaustive (every A-unit counted
in at least one *ij ..x ), such that each A-unit is counted in no more
than one n-j z , will have a multinomial distribution. From this it
follows that

£(9xj) - Wxt
- "a («+-0 Qjx * * Wjx

£(9xj 9x4) " E^nJAt * njIx^njAx * nJ4x)]
' £(*Mx*> +£(njAx »lXJ+e<»ilz "TAJ+^jix "Tax)
'WjAx * "J"* 0 [<?,vu

* * QjAx (Qjx - Qjax)

*Q,Ax(Qax - QjAx) * «b*-«jAx)toAx ~W]
'»+ OjAn I) QJxQ4x
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Substituting in (7.10), this yields

<r'(ux) - TNa 2L fj QJt [«- /) qJx + i]J

3 2The variance of is therefore on the order of TNa + T • at

maximum. Since the square of the mean is on the order of T NA , the

ratio ytc-/*' becomes indefinitely large as and 7* both increase,
and the Theorem stated in Section 7.1.2 is seen to hold for random training

sequences of sufficient length, as well as fixed sequences. As the length of

the training sequence, T , increases, the relative frequencies ">i^T will
approach the probabilities , and the performance of the system will
approach the performance in a fixed sequence experiment. As A^. goes to
infinity, the ratio /«" approaches

7.1.5 Random Sequence Experiments: Examples

As a "calibration experiment" for comparing different
systems, the horizontal vs. vertical bar discrimination problem is parti
cularly convenient. The random sequence version of the experiment is as
follows :
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EXPERIMENT 3: For the same conditions and classification as Experi
ment 1, show the perceptron a random sequence of horizontal and vertical
bars, each bar occurring with equal frequency ( ytv • l/tO for all bars).
During this training sequence, S -controlled reinforcement is used, and the

performance of the perceptron for an arbitrary bar, Sx , is then deter
mined as before .

Figure 15 shows the performance of binomial model oc -perceptrons of

three different sizes on this problem, as a function of the length of the

training sequence ( 7~ )• The parameters X , U , and 0 are the optimum
values (3, 1, 2) found in Section 7.1.3. Further increases in will not

appreciably improve performance in this experiment.

The effect of a "frequency bias" on oc -system perceptrons
is illustrated in the following experiment:

EXPERIMENT 4: The conditions and classifications are the same as in
Experiment 3, but the horizontal bars occur four times as frequently as
the vertical bars; i.e. , pj « OH for horizontal bars and .01 for vertical
bars .

Figure 16 shows the performance of a 100 A -unit system on this experiment.
The upper curve shows the probability of correctly identifying a horizontal
bar, and the lower curve shows the probability of correctly identifying a

vertical bar. The correct response to vertical bars is actually suppressed
as training increases, due to the greater frequency of horizontal bars. The

-170-



—t -1—1~1•1
c= 100

^t^£n1= 300 1

f"...

1

"-/v^ m 100

i

I

I 10 100 1000
NO. OF TRAINING STIMULI [T)

Figure 15 PROBABILITY OF CORRECT INDENT! FICAT10N OF TEST STIMULUS BY BINOMIAL
ar-PERCEPTRONS IN EXPT. 3 (RANDOM SEQUENCES)
( X- 3, y- I, 0- 2)

.2

0

1
_
II ii....

i i
i | l:! r'rEST WITH II ORIZONTAL BAR ( \p =

< -tt

, t , ji! S -— 1 f 1 1 | Mill_.. ii

Iff II

l * *f 111Mill— i i .1 l-M!

i! 1 1 IN~~MEAN PERFORMAW'

I J

-fH

i 1 1 ii — L, i, .,- 11-

| j j j j
*-rf

I il 1 1 ! il: i

ill i i | ijjj ! i | Mm
*i*r[* ♦ .— !—..-{—

-f--J-7
r - k

^~r* —*— *—i • } -•-•TT-ii— f— t—♦—♦-♦-I-'-

i
j

^S^TEST WITH VERTICAL BAR ( f> =n

; ii

. ; 1 i : ^< : ilill!

I 10 100 1000
NO. OF TRAINING STIMULI (T)

Figure 16 PROBABILITY OF CORRECT IDENTIFICATION OF TEST STIMULI IN EXPT.
BINOMIAL -PERCEPTRON WITH Na= 100, X = 3, y = I, 6= 2.

P; m .Ot FOR HORIZONTAL BARS; .01 FOR VERTICAL BARS
-171-



broken curve shows the mean performance on both classes, with test
stimuli drawn from each class with their appropriate frequencies. In the
following chapter, it will be seen that this performance can be considerably
improved in a f -system perceptron. It would also be improved for an

od -perceptron if error correction training were employed instead of
S -controlled reinforcement.

7 . 2 Discrimination Experiments with Error Correction Procedures

The analysis and experiments in the preceding section deal with
S-controlled reinforcement experiments. In Chapter 5, Theorem 6, it was
shown that this procedure cannot be guaranteed to yield a solution to a

classification problem, even though a solution may exist, whereas an error
correction procedure will always yield a solution if any solutions exist . The
error correction procedure would therefore seem to be the method of choice
in training a perceptron to discriminate between two classes of stimuli.
Unfortunately, the type of analysis which was carried out for S-controlled
experiments is not readily performed with error -correction experiments.

Consequently, all data on learning curves for error correction procedures
come from one of two sources: simulation on a digital computer , and
performance of actual experiments on the Mark I perceptron at the Cornell
Aeronautical Laboratory (Refs. 29, 30, 31).

Experiments performed by Carl Kesler on the Burroughs 220 computer
at Cornell University.
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Two main sets of experiments will be described here, the first
with binomial model a£ -perceptrons , and the second with perceptrons
having additional constraints imposed on their S to A-unit connections.

7.2.1 Experiments with Binomial Models

The following four experiments have been performed with
binomial model perceptrons (having fixed numbers of sensory connections
to each A-unit, with origins located at random in the sensory mosaic):

EXPERIMENT 5: The environment of horizontal and vertical bars used
in Experiment 1 is employed, and the stimuli occur in fixed sequence, first
showing all horizontal bars in fixed sequence, then all vertical bars, and
repeating the sequence until perfect performance is achieved. The error
correction procedure is employed, and the performance is tested at the

end of each sequence.

EXPERIMENT 6: The same environment and training procedure is
employed as above, but the stimuli occur in a random sequence, with

for each stimulus (as in Experiment 3).

EXPERIMENT 7: The environment consists of a set of triangles in all
possible positions on a toroidally connected 20 by 20 retina, and a set of
squares in -all possible positions on the retina. The triangles and squares
each cover 80 of the 400 retinal points. The sequence is random, as in
Experiment 6, with f>.- = t/600 for each stimulus. (The set of possible
stimuli is generated by translations of a standard image; rotations are not

permitted . )
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Figure 18 PERFORMANCE OF BINOMIAL ex -PERCEPTROHS IN SQUARE / TRIANGLE DISCRIMINATION
(EXPT. 7) COMPARED WITH HORIZONTAL / VERTICAL BAR DISCRIMINATION (EXPT. 6)
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EXPERIMENT 8: The horizontal/ vertical bar environment is employed, as
in Experiment 6, with stimuli occurring in random sequence. A random
sign correction procedure is employed for training the perceptron (see
Definition, Section 5.6).

Figure 17 shows the results of Experiments 5 and 6, and includes
a theoretical learning curve for an S-controlled experiment for comparison.
The experimental curves show the mean performance for a set of 25 binomial
perceptrons with 300 A -units, and the optimum parameters ( X = 3, y " /,
0-2 ) found in the preceding section. The same 25 perceptrons were
employed in Experiments 5 and 6. It appears to be characteristic that a
random training sequence leads to a more rapid learning rate initially, but

is overtaken by the fixed sequence performance as the duration of training
increases. Note that in both cases, the error correction method yields
considerably better performance than the S-controlled method.

Figure 18 shows the mean performance of a set of 15 perceptrons
on Experiment 7. The parameters are /Va -300 , X - 6 , y " ¥ •

Q — 3 These were the best parameters tested, but are probably not

optimum. The learning curve for the horizontal/vertical bar experiment
(Experiment 6) is shown as a broken line for comparison. The slow learning
rate in this experiment is largely due to the large number of distinct stimuli
in the environment (800) compared to the number in the horizontal/vertical
bar environment (40). The increased number of stimuli means that a much
longer training sequence is required to guarantee a representative sample
of all stimuli, with a reasonably uniform coverage of the retinal field. A
further difficulty is introduced by the fact that the maximum overlap of a
square and triangle is much greater than the maximum overlap of a horizontal
and vertical bar, making the discrimination intrinsically more difficult.
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Figure 19 shows a comparison of the performance of 10

perceptrons on Experiment 8 with the performance of the same 10 perceptrons

on Experiment 6. In Experiment 8, the learning is not only much slower, but

the variability between perceptrons is greatly increased. Of the ten per

ceptrons tested, two achieved perfect performance during the period of the

experiment, which was discontinued after 2000 training stimuli. Nonetheless,

each of the ten perceptrons would ultimately achieve perfect performance if
the experiment were continued (due to Theorem 5, Section 5.6). With the

directed error correction procedure, all ten perceptrons achieved perfect

performance within 300 training stimuli.

While the performance of an elementary perceptron with the

random sign procedure is clearly unsatisfactory for practical systems, it

should be noted that the existence of a consistent bias in the proper direction
still makes this a plausible component of a more reliable mechanism. If a

"majority mechanism" is employed (e.g. , a threshold device which responds

to the difference of positive and negative signals from R-units)
to determine the "majority vote" of /j such elementary perceptrons,
connected independently to the same retina, a highly reliable system would

result. The error probability of this system would be:

4-0

when p is the probability of correct response for a single perceptron

(as shown in Figure 19).
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While the actual learning curve for error correction experiments
cannot at present be stated analytically, R. D. Joseph has obtained an upper
bound for the number of corrective reinforcements that must be applied,
where a solution exists. In the proof of Theorem 4, Chapter 5, it was noted

that an upper bound for the number of corrective reinforcements can be

expressed in terms of the quantity OC , as follows:

(tijAjnnL (7.12)

where M m maximum diagonal element of the G-matrix,
ol " minimum of the function f(x) = x'Hz/\\x\\* (as defined for

Theorem 4, Chapter 5).
-A - ||//x*|| (as in Theorem 4, Chapter 5).

For the case which is of primary interest here, the process
starts from the origin, so that A ,•

||Hx
°
II - 0 .In this case, (7.12)

simplifies to

7.2.2 Experiments with Constrained Sensory Connections

In all perceptrons considered thus far, connections from S-units
to A -units have had their origins randomly chosen from the set of all sensory
points, with equal probability. Such models will be called uniform input
distribution models (u.i.d. models). It has occasionally been proposed that
the performance of a perceptron might be considerably improved by the
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introduction of special constraints on the admissible origin point connections.
For example, the retinal connections could be made to resemble biological
systems more closely by assigning a "retinal field" to each A-unit, and

limiting its choice of origin points to S-units within this field. A similar
procedure would be to construct a network of connections by assigning a

center at random to each A-unit, somewhere on the retina, and selecting
connections from a circular normal distribution about this center. Such

systems will be called normal input distribution models (n.i.d. models).
Further constraints might lead ultimately to specialized A-units, whose
input configurations are specially designed to make them responsive to

stimuli of particular shapes, or configuration properties. We will consider
one further constraint in this section: the case in which the excitatory and

inhibitory connections to an A-unit are assigned distinct centers on the

retina, with origins selected from a circular normal distribution about

these centers. This will be called the divided input distribution (d.i.d. )

model. The n.i.d. model can be considered a special case of the d.i.d.
model in which the excitatory and inhibitory centers and dispersions are
identical.

In the general d.i.d. model, A-units are characterized by

seven parameters: r , u and Q as before, the expected distance
between excitatory and inhibitory centers (ED), the standard deviation
of this distance ( CD ), and the standard deviations of the normal proba
bility distributions about the excitatory and inhibitory centers (rrz and a-y ).

A number of experiments have been performed with such models in an

attempt to discover what sort of improvement might be achieved by an

optimum set of constraints on the sensory connections.
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Experiments 6 and 7 have been used for the study of constrained
input distributions. In the square/triangle discrimination experiment
(Experiment 7) the performance of the d.i.d. models never showed any

improvement over the original u.i.d. model. A large number of combi
nations of X . y , and 8 were tested with various distribution para
meters, in an attempt to find the optimum system for X + u ^ 10

The best performance was obtained for a set of 15 perceptrons with X m 6 ,

y - ¥ , 0 - 3 , ED - 0 , tfD - 0 , fx - 7 , and try - 7 -

This is equivalent to an n.i.d. model with the same centers for excitatory
and inhibitory distributions, and CT — 7 . The performance of this system
did not differ from that of the equivalent u.i.d. model by more than 1% at
any point on the learning curve, and was within 1/4% of the u.i.d. performance
at most of the points tested. The same stimulus sequences were used for
both models in order to make conditions as closely comparable as possible.
These results suggest that for large but spatially concentrated stimulus

patterns, little advantage is to be gained in an elementary perceptron by

imposing radial constraints on the origin point configurations.

In the case of the horizontal /vertical bar discrimination
(Experiment 6) a slight advantage was found for the d.i.d. model for the
parameters X «■1 . y - 9 . & - 1 . ED - 12 , trD - 2 , <rx - 2 , cry - f.
On the basis of a number of simulation experiments, this appears to be

close to an optimum configuration for the d.i.d. model for this experi
ment. Figure 20 shows the results obtained from 25 runs with these
parameters, compared with 25 u.i.d. models with optimum parameters

(x- 3 , u mf,8 — 2) using the identical training sequences. The
difference, although slight, appears to be statistically significant.
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NO. OF TRAIN I KG STIMULI (T)

Figure 20 COMPARISON OF OPTIMUM d.i.d. kWu.i.d. MODELS IN HORIZONTAL / VERTICAL
BAR DISCRIMINATION (EXPT. 6). CURVES SHOW MEANS OF 25 RUNS
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The general conclusion from these experiments seems to be

that (for large stimuli) little is to be gained from special constraints which

affect only the dispersion, rather than the geometric form, of origin point

patterns in elementary perceptrons. A further variation of the model, in

which elliptical rather than circular distributions of origin points are employed

might be more sensitive to contours and directions of elongation in the stimuli.

lie

No quantitative results are available on such a model at this time.

7.3 Discrimination Experiments with R-controlled Reinforcement

In an experimental system with R-controlled reinforcement

(Definition 39) the reinforcement control system receives information about

the outputs of the perceptron, but receives no information directly from the

environment. Such experiments are of interest in determining the "spon

taneous organization" tendencies of perceptrons. It is readily seen, from
theoretical considerations, that the performance of an elementary oi -

perceptron in such experiments is unlikely to be of psychological interest.
In an oc -perceptron, all g-j are generally greater than zero, so that

whatever response is associated to the first stimulus in a training sequence
will tend to generalize to all other stimuli in the environment. Conse

quently, the perceptron, left to its own devices without any attempt to

change its responses, will tend to form a classification C (w) in which

all stimuli in W are either in the positive class or else all in the negative
class, with equal probability.

See Section 23.1.2 for a reconsideration of this problem from the
standpoint of sensory analyzing mechanisms.

**In Ref. 82, such systems have been called "Class C perceptrons".
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Two special cases are of interest, in which it is possible for
a dichotomy to be formed with both classes non-empty. In the first case,

some of the g-j coefficients are zero. This might occur in a system
with high thresholds on the A-units, so that some pairs of stimuli activate
no A -units in common. If 5/ and Sj are two such stimuli, then if S;
is the first stimulus and Sj is the second stimulus in the training

sequence, it is perfectly possible that one will become associated to a

positive response, and the other to a negative response. If these are the

only two stimuli, or if there is no positive generalization from any of the

stimuli which become associated to one class to the stimuli of the second
class, this dichotomy may be stable. In general, however, one class is
apt to become dominant, eventually pulling all stimuli into a single class
as before. The second case in which a dichotomy might be formed is that
in which the values are not initially all zero, but are distributed with some
connections negative and some positive. In this case, the generalization
from the first stimulus will not necessarily wipe out an initial bias in the

opposite direction, and it is possible that a dichotomy will be formed.

While it is possible for dichotomies to be formed in the special
cases mentioned above, there is little reason to suppose that such dicho
tomies would ever be of interest to a human observer. If the stimuli are
uniformly distributed on the retina, or uniformly clustered about the

center of the field, the g-j coefficients which happen to be zero will
generally be unrelated to possible "meaningful" classifications of the

stimuli, so that any division into two classes will tend to be random,

and unrelated to any concept of "intrinsic similarity" of the stimuli. Thus
it is clear that in an elementary ot. -perceptron, psychologically meaning -
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ful discriminations can be achieved only under the control of an experi
menter, or r.c.s. which is capable of evaluating the correctness of the

perceptron's responses according to some predetermined scheme. In the

7" -systems, which are considered in the following chapter, somewhat
more interesting performances.inR-controlled experiments are likely to

occur .

7 . 4 Detection Experiments

In discrimination experiments, such as those considered in
the previous sections, the perceptron is required to give one of two responses
to designate which of two well-defined classes of patterns is present. It is
assumed that one of the two is always present, and that nothing else is
present which might confuse the picture. In detection experiments, a

single pattern, or class of patterns, is taught the perceptron as the "positive
class", and anything else (such as noisy fields, arbitrary patterns, etc. ) is

considered to belong to the "negative class". Moreover, the positive pattern
may appear with an admixture of background noise, irrelevant lines, or
other sensory material. While such detection experiments differ considerably
in their "psychological" character from discrimination experiments, from a

theoretical standpoint they represent a special case of discrimination experi
ments in which the training and the two classes of stimuli are highly asymme
tric, the positive class generally being smaller but more thoroughly trained
than the negative class. Two cases are of interest: detection in noisy
environments , and detection in organized environments . The se are
considered separately in the following sections.
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7.4.1 Detection in Noisy Environments

A noisy environment will be defined as the product set of a

set of well-defined stimulus patterns (including an empty field as a stimulus)
and a set of "random noise patterns" superimposed on the members of the
first set. The random noise patterns are generated by applying signals of
random polarity (positive or negative with . 5 probability) to a randomly
selected set of S-units , chosen independently with probability Pn . Pn will
be called the noise density of the environment, and represents the expected
value of the proportion of S-points which emit random signals at any given
moment of time .

Note that a noisy environment is, in its entirety, a well defined
set of stimuli, with a probability pj associated with each stimulus Sj
Such an environment consists of two classes: a positive class, in which one

of the "positive stimuli" (e.g. , a geometric form) is present in combination
with one of the noise patterns, and a negative class, consisting of the noise
patterns alone, or the "empty field" stimulus with a noise pattern super
imposed. The task of the perceptron is to distinguish between positive and
negative stimuli.

Let 5X represent a test stimulus, selected from the positive
class. Then the probability of correctly identifying as a positive
stimulus in a random sequence experiment, with S-controlled reinforce
ment, is given by equation (7.7), with £(ux) defined by equation (7.9)
and f (ux) defined by equation (7. 11), just as in an ordinary discri-
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mination experiment. Similary, if S„ is a noise -stimulus, from the

negative class, the probability of obtaining the correct (negative) response
is given by the complement of the probability obtained from equation (7.7).
Some special analytic features of this problem are worth noting.

For a binomial model, with a large retina and large association

system (so that all Q -functions and retinal intersections of noise patterns

can be assumed equal to their expected value) the intersection of a noise

pattern with any other stimulus will be equal to the expected value of this
*intersection. If we designate the noise patterns by S„ , S„' , ---,

and positive stimuli by Sx, Sx' then (as explained on page 146),

<?„„' » 0„Qn, and

Let Sx and Sx' represent the same positive stimulus pattern with

different noise patterns superimposed. Then, if the noise density is
low, Qxx- <* Qxx - Qx . But Qx >> Q„QX - Therefore,

Qxx' > > Qxn , which means that the perceptron can be taught quite
readily to give the proper positive response to a test stimulus, Sx

Actually, as noise patterns have been defined, the intersection of a
pure noise pattern with a positive stimulus pattern will be slightly
less than the expected value, since some of the points which normally
are "on" for the positive stimulus will be turned "off" for the noise
pattern. The conclusions above hold rigorously if the noise patterns
are sets of positive signals only.
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The same conclusion does not hold for the identification of a negative

(noise) stimulus, however. In this case, the generalization from a previously
trained noise stimulus, Sn' to Sn is equal to Qn'n ™ (?„ (assuming
all noise stimuli to be equal in area to their expected value). But the

generalization from a positive stimulus is Qxf) - Qx Qn which is generally
greater than Q* , since the area covered by the positive stimulus with
noise superimposed is generally greater than the area of the noise stimulus
alone. Consequently, we would expect the positive response to tend to

generalize to the negative class as well, if both classes are represented
with equal frequency in the training sequence.

A slight modification of the perceptron should improve its
capability of distinguishing negative stimuli from positive ones. If the

R-unit is given a threshold greater than zero, it will tend to remain "off"
for the relatively weak signals coming from noise stimuli, but will go "on"

(to its positive state) for the stronger signals coming from positive stimuli.
With this modification, however, the system is no longer an elementary
perceptron. An alternative procedure, which will improve the performance
of an elementary perceptron, is to "overtrain" the negative stimuli,
composing a stimulus sequence in which negative stimuli occur more
frequently than positive ones. In an error correction experiment, it
should be noted, this bias will be introduced automatically, regardless of
the stimulus sequence, so that a detection problem should be solved much
more readily than with an S-controlled system.
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7.4.2 Detection in Organized Environments

In an "organized environment", where the background material
may closely resemble the stimulus pattern in its characteristics, detection

experiments take on some characteristics of special interest, psychologi
cally. First of all, it should be noted that in attempting to distinguish a

pattern such as the letter "X" against a background of lines occurring in

random configurations, the environment may include stimuli which are

fundamentally ambiguous in character, since patterns closely resembling
the letter "X", or even identical to it, might arise by a chance super-
imposition of straight lines. In such a case, the only reasonable test of

whether or not a pattern should be identified as an "X" would seem to be

the human criterion of whether it looks more like an X or more like a

random assemblage of line segments. While a similar problem might
arise, in principle, in the case of detection experiments in noisy fields, it

is less common there, except under extreme noise conditions. In the case

of organized fields, ambiguous organizations are more the rule of the day,

and the problem requires a different approach. In human perception, the

properties of "good figure"are generally used to determine whether a

particular set of line segments is seen as a letter, or some other known

pattern, or simply as a random collection of unrelated components. Such

judgements are not possible, however, for elementary perceptrons. We

will return to the problem of figural organization in Part IV.

Treating the detection experiment simply as a special case of

a discrimination experiment, the same conclusions apply as in the case

of the noisy environment problem: it is possible, by exhaustively training
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the perceptron with the product set of positive stimuli and irrelevant
patterns to teach it to identify positive stimuli amidst extraneous material.
The learning is apt to be slow, however, and will generally fall considerably
short of what might be expected in a simpler discrimination experiment.

Most of the experimental work done to date on detection
experiments has been carried out with the Mark I perceptron using a gamma
system for the memory dynamics. This work will be reviewed in the follow
ing chapter, which deals with f -perceptrons , but similar results might
be expected with alpha systems .

7 . 5 Generalization Experiments

In the preceding experiments, it has been required that S%

should necessarily occur as one of the stimuli in the training sequence.
When the perceptron is tested with a stimulus which has not been previously
seen, a weak form of generalization is possible with elementary oi -systems.
Clearly, if the intersection of Sx with some other stimulus in the same class,

S^' , which did occur in the training sequence, is large enough, will
tend to evoke the same response as Sx' In this case, Sx is correctly
recognized only because, within the limits of tolerance of the perceptron,
it appears to be identical, rather than merely similar to, the previously
seen training stimulus . Thus, generalization, for an elementary -perceptron,
is based on an- approximation to identity, rather than on similarity. In a

"pure generalization" experiment, as defined in Chapter 3, the perceptron
would be asked to recognize a pattern in a position where it does not
overlap any previously seen patterns of the same class. If such an
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experiment is performed with an 0£ -system, with a single class of
stimuli, the generalization will tend to be positive, due to the fact that Qij
is never zero, for most systems, regardless of the relative positions of
the stimuli. This result is trivial, however, and of no psychological interest,
since any stimulus, whether it resembles the trained stimuli or not, will also
tend to evoke the same response. To prevent such a tribial result, it is
necessary to employ a discrimination test, training the system with two
kinds of stimuli, and then testing it with similar stimuli in a disjoint portion
of the retina to find out whether the appropriate responses have generalized
for both kinds of stimuli. In this case, if the stimuli are of equal area, and

equally trained, no generalization will be found, since the positive generali
zation from one class is exactly balanced by the negative generalization
from the other class. Thus it is clear that an elementary 0/ -system (and,
in fact, any elementary perceptron) is incapable of abstracting similarity
(in either the geometric or the psychological sense) but discriminates only
by measuring a function of the overlaps of a test stimulus with representatives
of both classes .

7.6 Summary of Capabilities of Elementary ot -perceptrons

The elementary ot -perceptrons, being the simplest class
of perceptrons, provide a baseline of performance against which other
systems can be compared. It has been demonstrated that the -system,
with both S-controlled and error correction reinforcement, is capable of
discrimination learning, provided it sees a large representative sample of
the stimuli which it is required to discriminate. It does not generalize
well, to similar forms occurring in new positions in the retinal field, and
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its performance in detection experiments, where a familiar figure appears
against an unfamiliar background, is apt to be weak. More sophisticated
psychological capabilities, which depend on the recognition of topological
properties of the stimulus field, or on abstract relations between the

components of a complex image, are lacking. The elementary perceptron
has no capability of recognizing time sequences, since its responses are
based on the momentary state of the system due to the current stimulus
pattern alone, and are not influenced by the preceding sequence of events.

Quantitative judgement might possibly be learned by an exhaustive training
procedure, in which the system is required to give one response for
stimuli above a certain area, or over a certain length, for example, and

an opposite response if they fall short of the criterion. This is a rather
crude approximation to quantitative estimation, however, and the problem
can be handled much more satisfactorily with perceptrons with linearly
responding R-units, as will be seen in Chapter 10. In R-controlled
experiments, where the perceptron is required to form its own classification
of stimuli, we have seen that the elementary <X -perceptron tends either
to classify everything identically (its most general tendency) or else to

form a random dichotomy, which is of no psychological interest. It will
be found that most of the weaknesses of elementary cv -perceptrons are
true of all simple perceptrons, and that it is necessary to go to topologically
more complicated systems to find performances which are basically more
satisfactory. In special cases, however, other types of simple perceptrons
have advantages, as will be seen in the following chapters.
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7 . 7 Functionally Equivalent Systems

It may be disturbing to some biologically oriented readers to

think of an association unit that changes the sign of its output signal from
excitatory to inhibitory as a function of its training. This is a conceptual
simplification which makes analysis easier, but can be shown to be logically
equivalent to an alternative model in which particular neurons, or A -units,
are designated as excitatory, and others as inhibitory, with no change

permitted in the sign of their outputs. The alternative model (which is
analogous to the models originally presented in Ref s . 79 and 80) is as

follows :

Let the number of A-units be twice the number in the equivalent
C^-perceptron. Let half of the A-units be designated as excitatory units,

and the other half be inhibitory units. All t/~if are initially assumed to be

zero, or else to have positive signs if a- is excitatory, negative signs if
CL: is inhibitory. Each excitatory unit is paired with one of the inhibitory

units, and the same origin point configuration is assigned to both members
of the pair. Thus the responses of the inhibitory units exactly duplicate
the responses of the excitatory units. The reinforcement rule is that a

positive ^ from the r.c.s. affects only the excitatory units, while a

negative affects only the inhibitory units. With this rule, the signal

U-i which goes to the R-unit in response to S; is the sum of an

excitatory component and an inhibitory component, the total being exactly
equal to what it would be in the equivalent at -perceptron.
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The exact pairing of the excitatory and inhibitory units is, of
course, an inessential artifact, introduced only to guarantee that the two

types of systems are truly identical in performance. If the origin confi

gurations of all units are selected independently of one another, the

expected values of the signals will be unaffected, but the variability will be

somewhat increased, due to the greater number of independent A-units
contributing to the signal. Such a system has been previously described as

a "differentiated A-system" (Ref. 79).
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8. PERFORMANCE OF ELEMENTARY T -PERCEPTRONS IN
PSYCHOLOGICAL EXPERIMENTS

It will be recalled that the reinforcement rule for a gamma
system (defined in Chapter 4, Def . 38) is one which guarantees that the

sum total of the value of all connections to any unit remains constant, even

though the values of individual connections may change with time. In the

notation of the last chapter, the change in the value of the connection C-r
due to the reinforcement of stimulus Sj was given by

A-v-r - />j a*(j) for an oc -system. (8.1)

For a gamma system, the corresponding expression is

L a 4 J (8.2)

A variation of the gamma system, which will be designated the f -system,
is of interest chiefly because it is considerably easier to analyze. For this
model,

(8.3)

This is equal to the expected value of Alrif. for the /"-system, and

with large values of the /"-system and / -system become indis -

tinguishable .
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The organization of this chapter will follow closely that

of Chapter 7. The first section deals with the analysis of discrimination
experiments with S-controlled reinforcement, and presents results of a
number of experiments, including comparisons with the <v -systems
considered in the last chapter. Discrimination experiments with error
correction, and discrimination experiments with R-controlled reinforce
ment are then presented, and the final sections deal with detection
experiments, and other performances of JJ" -perceptrons .

8.1 Discrimination Experiments with S-controlled Reinforcement

8.1.1 Fixed Sequence Experiments: Analysis

stimulus, and training sequence under consideration. The notation and

definitions correspond to those employed in Chapter .7. The analysis again
follows that of Joseph (Ref. 41). For the /'-system, the expected value
of ux is obtained as follows: The value of the connection from the A-unit
o - at the end of the training sequence is given by:

compute the ratio
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Consequently, if the test stimulus Sx is now shown, the input to the

response unit will be

yielding, for the expected value of the signal ux ,

« r^Z, \^lLL qJx -^-QxL Qji j L "a fa J

- -t)£ />. fiJ (QJx - Qj Qx )
(8.4)

For a y'-system, the analysis is considerably simplified. In this case,

the value of the connection from unit a,- at the end of the training sequence
is

TTir m 7~L />j (j) ~ Qj]

Collecting the signals from all active connections when occurs yields
the input to the R-unit,

"x~rLL Sjtj \*IU*) - Qj* j
and the expected value of this signal is

*M m TN« L />j *j (Qjx - Qj Qz)J (8.5)
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The variance of a, is again computed from the general
equation (7.4), given in the last chapter. For a f '-system, the same
considerations apply as in the ot -system, namely, that the only source
of variability in the signals £^(x) is due to the origin point configurations
of the A-units, which are selected independently for the different A -units.
Consequently, the equation (7.5) holds identically for a 2T -system. In a

true JT -system, however, the signals £*r(x) are not independent. The
value v-r upon which C;r depends is the result of a series of increments,
AV'if. , each of which depends upon the particular set of A-units which are
active at the time of reinforcement (as shown in Equation 8.2). Consequently,
for a gamma system, the variance is

The reader who is interested in the detailed analysis of this expression
will find a full algebraic expansion of its components in Ref . 41 . The

final equation which results is as follows:

(8.6)

"<*• J A
-PjfA (N* 00-2<lx) [«3jAx -Qj QA Ox)

(8.7)
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An analogous treatment for the JF -system, based on Equation (7.5) , yields
the expression:

J 4

(8.8)

For both the 2T -perceptron and the y '-perceptron, the expectation of u.x
and the variance of ux are both on the order of Na Consequently,2/2the ratio yU /& can be made arbitrarily large by increasing A/a
This means that the theorem stated in the last chapter (Page 159) holds forf and ^"'-perceptrons as well as for etf -systems. Equation (7.7)
can again be used for a close approximation to the actual probability of
correct response for a 2T or /"'-perceptron, substituting the appropriate
expressions for the mean and variance in each case.

It is interesting to note that if the expected values of the

generalization coefficients, g-j , are substituted into equations (7.3),
(8.4), and (8.5), identical expressions are obtained for the expectation
of IX^ for the oi , Jf , and -systems. The expected value of

the un-normalized coefficient, f'-j , for a /* -perceptron is
(N+'XQij-QiQj) ; for a f -perceptron it is M^Qfj -QiQj) .while
for an o£ -perceptron it is ^a.Qij Substituting these quantities, we

obtain, for all three systems,

cm - rL/>jf>j 9xj (8•»)j

ax - rZ,*j*J 9xj (8-10)J
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The special properties of the ft and '-perceptrons are due to the

fact that their generalization coefficients for a binomial model tend to be

negative for sufficiently well separated, or disjoint, stimuli, whereas in

the case of an ac -system, the generalization coefficients are all non-
negative. In a Poisson model, while it is possible for negative generali
zation coefficients to occur due to random variability of individual per
ceptrons, the expected values of g-j are always non -negative , since

Q-j « Q- Qj only if the stimuli are disjoint. These features are of
interest for R -controlled experiments, as will be seen presently.

8.1.2 Fixed Sequence Experiments: Examples

Numerical analyses have been carried out mainly for the

f -perceptrons, since the equations are considerably simpler. For
large values of /Va , the and f -systems will have identical perform
ances. Tables 3 and 4 (in Chapter 7) apply identically to the -system,
for Experiments 1 and 2. The performance curves shown in Figures 13 and

14 are also applicable. Figure 21 shows a comparison of the and f -

systems on Experiment 1 (horizontal vs. vertical bar discrimination), for
the optimum parameters with a binomial model (xm3,y~t,Gm2 )-

Figure 22 shows a similar comparison for the same parameters, with Experi
ment 2.

It is clear that under the conditions of Experiments 1 and 2, the

2T -systems have no advantage over the oc -perceptrons. The equivalence
of the curves is due to the fact that in these experiments, all stimuli are
equal in area (yielding equal for all stimuli), the number of stimuli in
each class is equal, and all stimuli occur with equal frequency. If the sizes
or frequencies are unequal, the f -system may have a marked advantage,
as will be seen in the analysis of Experiment 4, in Section 8.1.4.
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8.1.3 Random Sequence Experiments: Analysis

The un-normalized generalization coefficients for a and

/ '-system are given by

9:: = n; t°r a / -system (8.11)

Q;; = ~0;n; for a r'-system (8.12)

where = the number of A -units responding both to S; and to Sj

As in the <v -system analysis (Section 7. 1.4) the training
sequence is assumed to consist of T stimuli, where each stimulus, Sj
has a probability f>j of being selected at any step of the training sequence.
The analysis has been carried out only for the ' -perceptron, since the

true f -system leads to excessively cumbersome expressions for the
variance. For large Na , as observed in the preceding section, the two

systems should be virtually indistinguishable in performance.

For the /"'-system, the input to the response unit when Sx
occurs after the training sequence is

j
where m • , as before, is the number of times that 5' occurs in the* J
training sequence. Taking the expected value of this expression, we
obtain

E(ux) = T Na £ ft. p. (QJx - Qj Qx )J
(8.13)
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The variance of uz over both perceptrons and training sequences is
again given by equation (7. 10). In the present case, this yields:

'r'(u.x) = rNA^pj\pJX-20jQjx+oJox^(N.rl)(Oj,c-QjQx)2~\J

-(r+»n- 0 (0Jt - Qj QX)(QA x- 04 Qx j\
(8.14)

The detailed derivation of this expression can be found in Ref. 41. It can

readily be seen that the theorem of Section 7.1.2 continues to hold for this
system. Actual performances can again be calculated by using Equation (7.7).

8.1.4 Random Sequence Experiments: Examples

A comparison of binomial ry and tf" '-perceptrons on the

random sequence version of the horizontal /vertical bar experiment
(Experiment 3) is shown in Figure 23. A curve obtained from the simulation
of a true y -system with the same parameters is included for comparison.
The simulation curve shows the average of 100 runs. Figure 24 compares
the performance of the binomial model with that of a Poisson model, on the

same experiment.

In Figure 25, the performance of a T -system in the

"frequency bias" experiment (Experiment 4) is shown, with the mean

performance curve of the equivalent ot- -system, from Figure 14,

included for comparison. A comparison with Figure 16 shows that under
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conditions of unequal frequency for the two classes to be discriminated,
the -system may have a marked advantage. The effect of frequency
bias on a f -system is also shown in a number of simulation experiments
with the IBM 704 computer, which have been described previously (Ref . 84).
The horizontal/ vertical bar discrimination problem happens to show up the

y -system to its best advantage, since, with a binomial perceptron, the

expected value of the generalization coefficient, , where Si and Sj
are in opposite classes, is zero for this particular problem. A Poisson
model, where the interaction between the horizontal and vertical bar classes
is non-zero, would not perform as well in this experiment, and the binomial
model would also perform less well in experiments with classes of stimuli
which could achieve greater intersections.

Figures 26, 27 and 28 show some typical experiments performed
with a digital simulation program, for binomial f -perceptrons of sizes up

to Na " WOO , and a 72 by 72 retina. The stimuli are kept within the

retinal field in these experiments by requiring that their centers remain
within a 13 by 13 field, so that there are 169 possible positions for each
stimulus. In Figure 26(b), the effect of allowing rotations up to 30 degrees
and up to 359 degrees (inclusive), in addition to displacements within the

retinal field, is illustrated. Figure 28 shows the effect of size bias where
one class of stimuli (the letter "F") can be considered as subsets (on the

retina) of stimuli of the other class (the letter "£"). With purely excitatory
connections from the retina, the situation is clearly much worse than with
both excitatory and inhibitory connections, as shown in Figures 28(a) and (b).

From the equations for the expected value of the signal
(Equation 8.13, for example) it can be seen that a bias in the correct
direction may exist even when the perceptron is occasionally reinforced
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Figure 27 SQUARE-DIAMOND DISCRIMINATION. Na= IOOO, X - 10, y = 0, 9*%
CENTERS PLACED IN 13 x 13 FIELD
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in the wrong direction. Several experiments have been carried out by

Hay using the Mark I perceptron at CAL, to study the effect of "random
errors" by the experimenter training the machine (Ref . 30). In an

experiment on the discrimination of the letters "E" and "X" with a ]f -
perceptron employing S-controlled learning, it was found that the perceptron
learned to discriminate the letters with 100% accuracy despite the introduction
of 30% misidentifications by the experimenter (i.e., by the r.c.s.). This
experiment emphasizes the fact that the perceptron can exceed the level
of performance of its "teacher" or reinforcement control system.

8 . 2 Discrimination Experiments with Error -Corrective Reinforcement

While it has been demonstrated in Chapter 5 (Theorem 8) that

the error correction procedure will not always lead to a solution with the

f -eystem, practical systems seem to work about as well as oL -systems,
and may actually learn somewhat faster in some cases. Figures 29 and 30

illustrate two sets of experiments on -perceptrons , using the

Burroughs 220 computer at Cornell University, in which performance is

compared with perceptrons having the same topological organizations, but

employing an -system memory rule. Since the error correction
procedure will lead to a solution regardless of sequence or relative
frequency of stimuli in the classes being discriminated, and regardless
of relative sizes of stimuli, the special advantages of the ^-system in

overcoming frequency bias and size bias are relatively unimportant here.
In most experiments with error-corrective reinforcement, therefore, the

simpler Q£ -rule is generally employed.
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8 . 3 Discrimination Experiments with R-controlled Reinforcement

The performance of a f -perceptron in R-controlled
experiments (where the r.c.s. is entirely isolated from the environment

and reinforces the perceptron positively at all times, regardless of what

its current response happens to be) is somewhat more interesting than that

of the oi. -pe rceptron . Since it is possible to have negative generalization
coefficients for the If -model, two distinct possibilities suggest themselves

which were not present before: (1) The system may form an unstable

classification of the environment, with individual stimuli continually shifting

membership from one class to the other, due to negative interaction between

successive reinforcements; (2) the system may form a stable dichotomy with

some stimuli in the positive class and some in the negative class. The third
possibility corresponds to the expected situation with an OC -system, namely :

(3) The system may form a stable classification with every stimulus in the

same class, the alternative class being empty.

An unpublished theorem by H. Kesten proves that (for a IT -

system in which the values are allowed to grow without bound) the first
alternative is impossible. Every perceptron will ultimately form a "stable"
classification, in which every stimulus is assigned to one of the two classes

and will remain in the same class with probability 1 at any future time. The

remaining two alternatives both remain possible, however.

At the present time, a fully satisfactory analysis of the classi
fication tendencies of y -perceptrons which are "left on their own" in an

R-controlled experiment is not available. A number of special cases can
_

Personal communication.
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be analyzed heuristically , however, and some of these are illuminating.
Moreover, a series of simulation experiments has been completed which
illustrates performance on some typical problems .

The basic feature of this system in an R-controlled experiment
is a tendency to classify stimuli on the basis of retinal location, rather than
geometrical similarity. If two stimuli occur in the same location on the

retina, covering largely the same set of sensory points, a - - will tend to

be positive, so that the reinforcement of one stimulus will tend to generalize
automatically to the other. A "cluster" of such stimuli, projected onto a

limited region of the field, will tend to be classified the same way, either all
positive or all negative. On the other hand, two stimuli which cover disjoint
sensory sets will (in a binomial model) tend to have a negative g-j In
this case, reinforcing S; with /p positive will automatically assign Sj •

to the negative class, if its value was previously zero. Thus, clusters of

stimuli which are "well separated" will tend to go into opposite classes, with

a binomial 2T -perceptron. The following experiment illustrates this

tendency quite clearly:

EXPERIMENT 9: For the same retina and environment of horizontal and

vertical bars described in Experiment 1, let the stimuli occur in a random

sequence, as in Experiment 3. During the training sequence, R-controlled
reinforcement is employed. The response to each of the 40 bars is then
determined, to establish the classification which has been developed by the

perceptron .

In a Poisson model, the expectation of g-j for disjoint stimuli is zero,
in the -system, and all stimuli will tend to go into the same class
unless they form completely disjoint clusters, in which case the class
assignment will be random for each cluster.
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In a number of repetitions of this experiment (which was
simulated with a 704 computer for a very large, or infinite hj^ , binomial
perceptron, it was found in every case that the perceptron placed ten

adjacently located horizontal bars and ten adjacent vertical bars in the

positive class, and the other ten bars of each type in the negative class.
The dynamics of the process can be readily followed in a heuristic fashion.
The first bar to be seen -- say a vertical bar -- may evoke a positive or

negative response at random. If r*m +1 , then the connections from the

responding A-units will each gain a positive increment of value, and connections
from inactive A-units will become slightly negative, so that the total value is
conserved. For two disjoint bars in the "same" class (i.e., both horizontal
or both vertical) g^j will be negative, but for the two closest neighbors on

either side, g-j will be positive. The generalization, g-j , to members
of the "opposite" class (i.e. , one horizontal and one vertical) will be zero,
since the intersection between any horizontal and vertical bar, in this
environment, is equal to its expected value, yielding zero generalization for
a binomial y -system (see Page 146). Consequently, the horizontal and

vertical bars will never interact, regardless of the sequence in which they
occur, and each of these two sets of stimuli will organize independently.
Consider, therefore, the development of a classification for the vertical bars,
after the first has been associated to f m +1 . If the second vertical bar
in the training sequence should happen to be one of the two close neighbors
on either side of the original bar, this will immediately evoke the response

f *• +1 , and will be reinforced in the same direction as the previous bar,

extending the net positive generalization to at least one additional member of

the vertical set. At the same time, vertical bars which are more than two

positions removed from both of the bars already seen will now have twice
the negative reinforcement that they received before, due to the summation
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of the negative g - • . If one of these bars should occur, the response will
be -1 and ^ will be negative. This will not only spread negative value to

the adjacent stimuli, but will add to the positive value of the stimuli which
were previously placed in the positive class. Thus two mutually supporting
"nuclei" of stimuli are formed, one in the positive class and one in the

negative class, which tend to spread their domain to neighboring stimuli,
but tend to "repel" remote stimuli, supporting their adhesion to the opposite
class. Under these conditions, it is plausible that the most stable balance
between classes will be found when the classes are evenly divided, each

tending to attract marginal stimuli from the other to the same degree.

Simulation experiments with this procedure show that a stable
dichotomy tends to be formed after the first few hundred stimuli of the

training sequence, the probability of a change in class membership being
very small thereafter. The terminal condition is of the type indicated above,

with 10 horizontal and 10 vertical bars in each class of the dichotomy.

8 . 4 Detection Experiments

In detection experiments, the same general conclusions hold
true as in the case of 06. -systems (Section 7.4). In the case of noisy
environments with a large retina, it was noted that the intersection of a

noise pattern with any other stimulus will be equal to the expected value
of the intersection, i.e., to the product of the measures of the active
S-sets. For the binomial if -system, this implies zero generalization
from a reinforced "positive" stimulus to a noise pattern, and zero
generalization from one noise pattern to another. This means that a

class of positive stimuli can be learned without any generalization to noise
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patterns, but that negative training on a limited sample of noise patterns
does not generalize effectively to new noise patterns. As in the case of
the Qt-system, the use of a threshold greater than zero on the R-units
should effectively separate positive stimuli from noise patterns. It is
worth noting that for discriminating a single class of positive stimuli
from noise, a monopolar reinforcement system (Defintion 35, Chapter 4)
will work as effectively as a bipolar system, since reinforcement given for
negative responses has little or no effect on future performance (except for
those noise patterns actually seen, or nearly identical to those seen).

Several experiments have been performed with the Mark I

perceptron at CAL to evaluate the performance of 2f -pe rceptrons in noisy
environments, and in problems in which positive stimuli such as letters of

the alphabet have been mixed with extraneous, but similarly organized
stimuli (geometric patterns, other letters, etc.). Performance on the

discrimination of the letters "E" and "X" with various amounts of noise
present has been reported by Hay in Ref. 30. Two 240 A -unit perceptrons
were tested, both learning to perfection in the absence of noise. With noise

present, one perceptron learned as well as before, the second falling to

about 75% accuracy. The amount of noise introduced was not carefully
quantified in these experiments, but it is clear that the perceptron can

perform appreciably better than chance as long as a human observer can
still detect the original letters embedded in the image In the experiments
with superimposed images of irrelevant patterns, a poorer level of
performance is obtained. A perceptron trained to respond positively to

the letter X, with monopolar 2f -reinforcement, will generally give the

proper response whenever an "X" is present, but tends to give the
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positive response quite frequently to triangles, squares, or other letters as

well. The introduction of a high response threshold improves performance

considerably, but a system capable of responding in terms of figure -ground
organization would clearly have a great advantage in such experiments. As
the quantity of background material is increased, the performance of an

elementary perceptron in detection experiments deteriorates rapidly.

A striking difference between an elementary perceptron and a

human observer in detection experiments is that the human will show vast
differences in performance depending upon organizational properties of the

background and its relationship to the figure. For example, the human
observer will readily recognize the letter "E" in Figure (a), but will find
it hard to segregate the "E" from the extraneous lines in Figure (b). An
elementary perceptron would show little or no difference between these two

situations .

(a) -+- (b)

Typical test patterns for detection experiments
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8 . 5 Generalization and Other Capabilities

In "pure" generalization experiments, where the test stimuli
are disjoint from the training stimuli, the if -system has no advantages
over the -system. In fact, the binomial /* -system, due to its
negative ^-j for disjoint stimuli, will actually tend to place a disjoint
stimulus in the opposite class from the reinforced stimulus, unless members
of the opposite class have also been reinforced, in which case the effects tend
to cancel .

Where the training stimuli cover the retina in a representative
sample of locations, the gamma system has the possible advantage of low
or negative generalization to patterns which have small intersections with
the trained patterns. This shows best in such experiments as the horizontal/
vertical bar discrimination experiment, where generalization from horizontal
to vertical bars is zero. As was noted in the case of R-controlled discrimina
tion experiments, generalization in f -systems, as with all elementary
perceptrons, tends to be based on the location rather than the similarity of

the stimuli, in any more fundamental sense. Ideally, we would hope to find

a system in which is large for all pairs of stimuli. Si and Sj • which

are "similar" or "equivalent" under some group of spatial transformations,
such as rigid motions, dilatations, or projective transformations, and small
or negative otherwise. Except in exceptional and highly restrictive
environmental conditions , this condition is not to be found in elementary
perceptrons . Highly artifactual organizations which have the required
property can be designed in the case of four-layer series coupled perceptrons,
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as will be seen in Chapter 15. Systems which spontaneously acquire the

required organizational properties are found chiefly among the cross -

coupled perceptrons, however, and will be discussed in Part III of this
volume .

In general, it is seen that ^"-perceptrons have much the same
properties as ac -systems. In S-controlled experiments , especially with
frequency and size bias present, they perform somewhat better, but in
error correction experiments there is little to be gained from the gamma
rule, and there is the possibility that the ^* -system may fail to work where
an oc -system would have succeeded, as proven in Chapter 5. The
performance in R-controlled experiments is somewhat more interesting
than that of cvT -systems, but the classifications which are formed spon

taneously tend to form on a basis of classification related to position of
stimuli on the retina, rather than similarity, and are consequently of

minimum psychological interest.

The 2T -system may be somewhat more plausible as a biological
memory mechanism, due to its fundamental conservative property. If
biological memory is due to a physical process which maintains some over
all equilibrium, such as a chemical substance the total amount of which
remains invariant, or a competition among afferent processes for "Lebensraum"
in the neighborhood of an efferent neuron, this property would certainly be

indicated. It should be emphasized, however, that the conservation of the

total value, as in the systems considered in this chapter, is insufficient to

keep individual coupling coefficients, V2j , from becoming indefinitely
great, since they may be balanced by negative values of equal magnitude.
Such a condition is quite implausible in any real physical system. In the

next chapter, elementary perceptrons with memory dynamics which limit
the growth of the values are considered.
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9. ~ELEMENTARY PERCEPTRONS WITH LIMITED VALUES

Two basically different mechanisms for limiting the growth of

value s, i/jy , will be considered in this chapter. The first mechanism
is a simple upper and lower bound, such that the value may grow up to the

designated limit but no further. Systems employing this mechanism show

"saturation properties" as the connections attain their limits. The second
mechanism is an exponential decay, which determines an equilibrium point
for each v-j depending upon the frequency with which it is reinforced.
If the decay rate is very small, such systems tend to approach a terminal
state resembling the performance characteristics of a perceptron with un

limited values after a long training sequence. Systems with strictly bounded

values will be considered first.

9 . 1 Analysis of Systems with Bounded Values

Two types of analysis have been carried out for systems

having upper and lower bounds for zr^ The first deals with the

terminal distribution of the values after a long period of exposure to a

random sequence of stimuli, with S -controlled reinforcement. The second

deals with the actual performance of a bounded -value perceptron. In both
cases, we will follow the method of analysis originally employed by

Joseph, in connection with bounded f -perceptrons (Ref. 41) . All of
these analytic results apply to experimental systems using S -controlled
reinforcement procedures.

- -

Bounded -systems have been called A -systems in Ref. 41.
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9.1.1 Terminal Value Distribution in a Bounded cx -system

Suppose an <v -perceptron has upper and lower limits L and £
for the values 'V;f. • Suppose a particular connection, £-r , receives
a reinforcement of +1 with probability p , -1 with probability £ , and 0

with probability 1-p - o. If all stimuli are equiprobable, and the

perceptron is trained by an S-controlled procedure, this would correspond
to a connection from an A-unit with bias ratio f>/.f. (see Definition, Page 77).

It is assumed in the following analysis that the reinforcements occurring at

different times are statistically independent. For convenience, L and -t
are taken to be integers. Then the value, v-j , may assume any one of
L--P+I distinct states ( / ,/*•/,..., L ). Clearly, if unit a;
responds more often to stimuli of the positive class than to stimuli of the
negative class, 7s~;r will tend to grow in a positive direction. Eventually
it will arrive at the limit L At this point, a run of "negative" stimuli
may bring it down again, but it can never exceed L If the unit has a
negative bias, %r-r will similarly tend to remain in the neighborhood of
the lower limit, -£ The problem is to find the terminal probability
distribution (if one exists) for the value Zrt-r , as the duration T of the
training sequence goes to infinity.

In the following analysis, it will first be assumed that a stable
terminal probability distribution for lr;r exists, which will not be
altered by the addition of more stimuli to the training sequence. On the

basis of this assumption, an equation for the distribution can be found. It
will then be proven by induction that the proposed distribution is, in fact,
a stable probability distribution.
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Let TT(x) — probability that vjy - x , in the terminal
probability distribution. Let 7T(J) - £ This will be equal to the

probability of V;r arriving at £. from above, plus the probability that

7/";> remains in state 4 if it is already there. Thus,

TT(4) - A - ? \jTW + TT(£+ 1)
\ f (l-p -9) TTU)

Hence

W«+0 - - *f- (9.1)

For any integer 2 A i * L - 4 ,

TT(4+i-l) - }TT(/+i) + f,TT(/+i-2) +(i-f,-f.)TT(/+i-l)
Hence,

tt(£+0 - nU+i-i) - rr(4+i-2)

9- 9-

(9.2)

Thus, all values of J7(x) can be computed if the probability jC of Wr
being at the lower limit is known. Since the sum of JT for all possible
values of -i/~;r must be 1 , the value of £ can be obtained from the

equation:

L-i

21 rrU+O - 1''° (9.3)
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For the distribution to be stable, it is sufficient that the proba

bility of being at its upper limit satisfies the equation.

7T(L) - f>TT(L-t) * U-%)TT(L)
(9.4)

By induction on i , it will be shown that

p\]T(4+i-tj\ +(t-f)7r(/+i)
(9.5)

for t < i £* L - £ (9.4) is only a special case of (9.5).
To begin with, for i m I , we have 77'(-£) = £. and from (9. 1).

Thus, having assumed (9.5) to be true for / » f , we find that it is
also true for ; consequently it is true for all i , and (9 5)

must be true. From (9.5) it is also clear that the quantities 7T will
all be non -negative , so that the function 7T(x) meets the requirements for
a probability distribution.

TT(/+ 0 - -^r • This clearly agrees with (9.5). Now assume (9.5) is
true for / - r {j * r £ L - 4--i\ . That is

But by (9.2), letting I = r+i , we then obtain

TT(£ +r-H)
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Equation (9.5) can be used to compute TT(x) by assuming an

arbitrary value for £ .arid then normalizing the distribution as in (9.3).
The equation can be simplified by taking the lower limit, £. , equal to
zero, and setting jC " I for the unnormalized distribution. Then

7T(x) '(£-) prior to normalization. For the normalized distri-
button. * -[LJf) J - - t-(fy-M •

This completes the proof of the following theorem:

THEOREM: In a bounded oc -perceptron, with S -controlled reinforce
ment, the probability distirubtion TTQv) (for the value of

a particular connection) approaches a stable terminal
distribution of the form TT(v) = jcC^-f ' where jC

is a normalization constant equal to —/J\L-i~ <

Figure 31 shows the probability distribution for Vfp for
several values of y and for 40 increments between the upper and lower
limits. (The distributions are symmetric for equivalent values of —J- ,

with upper and lower limits reversed. ) Note that with even a slight bias

( i ) there is a very low probability that fj/. will have a sign
opposite to the bias. For ■• . 9 , for example (and taking £ " -20
L = + 20 , as in the figure) the probability of a positive v^r in the

terminal distribution is only .0097. If the range were half as great (20

increments instead of 40) the probability of positive VJ^ for the same
conditions would be increased to .2295.
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TT(v)

20 -10 0 +10 +20

Figure 31 TERMINAL PROBABILITY DISTRIBUTION OF Vir IN BOUNDED ^-SYSTEM

I = -20, L= +20
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The frequency of possible ratios for A -units responding
to horizontal and vertical bars can be determined from Table 1. From this,
it is clear that the majority of units have a pronounced bias towards one

class or the other, so that one might expect fo find the majority of active
connections having values in the neighborhood of the appropriate limit, L
or -£ This heuristic argument supports the conjecture that the bounded

system should still be capable of learning discrimination tasks in S -controlled
experiments, even though the system tends to "saturate", with all values in

the neighborhood of the upper or lower limit. The quantitative performance
of such systems will be taken up in Section 9. 1.3.

9-1-2 Terminal Value Distribution in Bounded JT -systems

In a bounded Jf -perceptron, the analysis of the terminal
distribution for tQ/, is complicated by two considerations. First, there
are at least four possible values of , namely 1 - Q; , - 1 *- <?,• ,

-Q- , and + Q- , each with its own probability. If <
?t
-

is not equal for
all stimuli, the number of possible values for Av is increased in

proportion to the number of different values for Q- . The second
consideration is that the conservation rule, which requires the sum of all
values to remain constant, makes the admissible increment for one
connection dependent on how many of the other connections are currently
free to move. For example, if all of the "active" connections have values
equal to L , the expected decrement, ~0; • for the inactive connections
due to the application of a positive Air cannot occur.
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Due to these complications, an analysis for a true y-system
has never been carried out. An analysis has been completed by Joseph
for a T -system with monopolar reinforcement (i.e. , reinforcement
is applied only for stimuli of the positive class, and Yf

= O for stimuli
of the negative class). In this case there are only two non-zero changes
which might occur, /- Q- for active connections and - Q- for inactive
connections, and the reinforcement of a given connection does not depend

on the state of any other parallel connections, as it does in the -system.
The analysis is a somewhat more complicated form of that presented in the

preceding section (due to the inequality of positive and negative changes in

Ir^f )• Since the equations are of limited interest aside from the specific
model considered, they will not be repeated here, but they can be found,

together with typical distribution curves, in Ref. 41.

9.1.3 Performance of Bounded o£ -systems in S -controlled Experiments

From the preceding analysis, it is clear that with a large
number of increments between the upper and lower limits of Vt'r • t'ie
value will ultimately tend to remain in the neighborhood of the upper or
lower bound, depending upon the bias ratio of tLi . In the following
analysis, the problem is simplified by assuming that the limits are
actually trapping, so that once a connection has arrived at value L or
£ , it remains there permanently, regardless of future reinforcement.

Consider a basic training sequence of m stimuli, St Sm ,

which is then repeated a sufficient number of times to "saturate" the

system, i.e. , to drive all biased values to their limits. If the value of a
connection is ir after the first m stimuli, then after r repetitions
of the training sequence, the value will be
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min (L , fv) if v > 0
min (4, rv) if V < 0

O if V - 0
for a bounded -system. An unbounded -system will have the same

performance after f repetitions of the training sequence as after a single

repetition. The following analysis compares the performance of the

"saturated" bounded -system with that of the unbounded oc -system

at the end of the training sequence. The analysis will be accurate for the
assumption of a large range between L and £ , so that after the first /rt

stimuli none of the values have reached their limits.

Let Px be the probability that R - + 1 for test stimulus Sx ,

for the unbounded oc -system, and be the corresponding probability
for the bounded oc -system. Then the conditional probability (.PX\ Px)
gives the performance of the bounded system as a function of the performance

of the unbounded system (which is known from Chapter 7).

Suppose A -units are activated by the test stimulus, Sx
Then for the unbounded system, (Px\^) ™ 5? fy) wh«re § is the cumulative

distribution function defined by equation (7.7) and

* <rCvir)

where £~(v;r) - expected value of a connection activated by Sx , and

o~(lr;r) m standard deviation of such a connection. The bounded OC -system,

-229-



on the other hand, will give response +1 if the proportion of the Na
active connections having value L is greater than ~j/(L-£). If
£ m _ L , then this reduces to a requirement that the number of active

connections having value L should be greater than the number having value £
The connections having value 0 may be ignored. As with the unbounded

system, it is assumed that after the first m stimuli, Vif is normally
distributed with expected value EOVtp) an<* variance <r *(vir) . This
assumption is reasonable if the range of i/jy , (L-J) is greater than 2m

and tn is fairly large. If the range of ir^f is less than 2m , the analysis
can be considered only an approximation, which becomes increasingly poor
as the range diminishes.

Under these conditions, in the bounded system, the probability
that the terminal value of a connection is L is equal to the probability that

lrir is positive after the first /n stimuli. This is equal to $C)Jv* )
Since ^ is a cumulative probability distribution it is a one-to-one function

from its domain to its range, and is therefore invertible. Thus, given

and A^* , the probability PL that a connection activated by Sx goes to

value L will be:

and this yields

</-r (9.7)
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Figure 32 CONDITIONAL ERROR PROBABILITY FOR BOUNDED <*-SYSTEM vs. ERROR

PROBABILITY FOR UNBOUNDED SYSTEM. (£ * -L)
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where nZ\i\ , the notation [/»] indicating the least integer
greater than or equal to n . To obtain (Pxl^x) • expectation of

(9.7) with respect to is required- For reasonably large values of Na

(px \Pz) * (px\ px' £{"D) - Substituting QXNA for E(N*) this
finally yields :

where

Qx#*

(9.8)

In Figure 32, the conditional probability of error in a bounded

OC -perceptron is shown as a function of the error probability (/ '- Px)
*- \£\for the unbounded system, for several values of . L + \4\ *s

taken to be 1/2. Curves of this function for cases where upper and lower
limits are not symmetric can be found in Joseph, Ref. 41 (Figures 10-14 ).

9.1.4 Performance of Bounded Tf -systems in S -controlled Experiments

The analysis in the preceding section, and the curves shown
in Fig. 32, can be applied without modification to bounded /''-perceptrons .
The true ^-system, however, may perform somewhat better than the

y-system, since not all values can "saturate" independently. If more
than half of the connections have a positive bias, for example, not all of
the positively biased connections can go to the limit L , since this would

It is assumed here that L > O , £ < O .
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require that the remaining connections take on values less than £ ,

in order to satisfy the conservation rule. In the If -system, therefore,
we would expect a greater number of connections to remain at inter

mediate values, rather than going to the limits, and this should result in

a "compromise" between the performance of an unbounded and a bounded

value system. An exact analysis of the T'-system has not been carried out.

9 . 2 Analysis of Systems with Decaying Values

The bounded value systems have two disadvantages relative to

the "ideal" unbounded systems. First, they permit a smaller number of

memory states, and second, in S -controlled experiments they tend to

arrive at a saturation condition in which their performance is actually
poorer than that obtained during the transient learning phase; that is,
their performance curve first increases to a maximum, and then declines
to a terminal asymptote as the system saturates. The first disadvantage is
not serious, if the range of ir-r is reasonably large. The second may be

more critical, since it means that units with a low "utility" for a given
discrimination are pulling as much weight in the saturated system as units

with high utility (as measured by their bias ratios). In the cross -coupled

perceptrons considered in Part III, this latter consideration is more

salient than in elementary perceptrons.

An alternative value -limiting mechanism, which is also of

interest due to its apparent biological plausibility, is obtained by allowing
the values to decay exponentially towards a resting state (generally taken
to be zero). This mechanism is relatively free from the difficulties
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encountered in the bounded value system. In this model, vj— will
continue to grow in the direction determined by the bias ratio of a- , until
the expected rate of reinforcement is exactly balanced by the rate of decay.
At this point a dynamic equilibrium will occur, with vyr tending to fluctuate
about the equilibrium level. This means that connections which are frequently
reinforced, in a consistent direction, will attain higher values, in the limit,
than infrequently reinforced connections, or connections with low bias.

Consider an oi -system with decaying values. Let the decay
rate be equal to tf(f<< I) . Let the probabilities of positive and negative
increments to \Qr be p and £ , as in the analysis of bounded oi -systems.
As long as <f is small, v"t> will tend to approach an expected asymptotic
value equal to (p-f^rf • At this point, the expected rate of gain, per unit
time, is p-y. , and the expected rate of loss is <fvir ■ p -o . If the value
of •* is very small, and the relaxation time correspondingly long relative to

the expected recurrence rate of stimuli from the environment, this system
should approach as a limit the same performance as the unbounded o£ -
system, where i/jr tends to grow in proportion to p - y . If <f is some

what larger, however, we find that the most recent stimuli in the training i

sequence will have the most pronounced effect, progressively earlier stimuli
exerting a progressively dimishing effect due to the decay of 1/\m • Such a

perceptron tends to forget its remote experience in favor of more recent
experience .

The dependence of these systems on the sequence as well as
the identity of training stimuli makes them difficult to analyze when the
relaxation time, or "half -life" of V-r is on the same order as, or
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shorter than, the training sequence. If cf is sufficiently small, per
formance can be assumed identical to the unbounded system. An absolute
bound on the maximum attainable magnitude of v-r for a decaying value
perceptron will be // <f , corresponding to a situation in which £;r is
reinforced continuously in the same direction.

9.3 Experiments with Decaying Value Perceptrons

9.3.1 S -controlled Discrimination Experiments

The essential features of S -controlled discrimination experi
ments with decaying value perceptrons have already been noted in the

preceding section. If the decay rate is small, the decaying value system
approaches the performance of the corresponding "ideal" or unbounded
system. If the decay rate is relatively large, forgetting occurs, which is
greatest for temporally remote events and negligible for recent events in
the training sequence.

9.3.2 Error-correction Experiments

In discrimination experiments with error corrective rein
forcement, a more complicated situation exists than in the case of S-
controlled experiments. In the error correction system, once the

perceptron has learned a task, reinforcement ceases, and the values
of a decaying system would be expected to decay back towards zero.
In a perfectly noise-free system, the values would all decay in proportion
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to their magnitudes, however, and consequently their ratios would never

change as long as no further reinforcement was applied. Thus once per
fect performance is achieved, it will not be lost as long as the values
remain above the noise -level of the system, despite the decay effect.
This also means that if a "run" of correct responses occurs during
training, the ratios of ir;r for different connections will be unaltered, so that
the next error to occur will be no different in the decaying value model than
in the unbounded model. Consequently, the application of reinforcement just
sufficient to correct this error will bring the ratios of the values to precisely
the state that they would have in the unbounded model, and ability to achieve
a solution to a classification problem should be unaffected, in principle.. In
actuality, however, the continuously decaying values clearly present a

problem, since any physical system will ultimately forget , when the values
become small enough to be undetectable.

A variation of the decaying value model is capable of eliminating
the problem caused by the diminution of the values in an unreinforced system.
If ir; r *s held constant so long as no reinforcement signal is received
from the reinforcement control system, but decays exponentially in the

presence of such a signal, the learning ability of the perceptron will still be
unaltered (by the same argument as above), and no change will occur once the

task has been properly learned. This means that the increment to the value
of V;r at time t will be

Air;r(t) = [a'(t) - </Vt> (tj] • p (t)
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where >f(t) maybe +e , -£ , or 0.

It should be noted that in the error -correction procedure, the

loss of temporally remote experience with large values of d does not
occur, in an ideally functioning (noise-free) system. Unlike the S-controlled
system, where the magnitude of new reinforcements remains unchanged as
the values decay, the error correction procedure will require smaller or
less frequent increments in order to correct an error, and earlier experience
tends to be retained about as well as in the unbounded, or non -decaying
system. A loss of early experience does occur, in such systems, but it is
due to "writing over" earlier memory traces with more recent reinforcement,

rather than to a passive decay, as in the case of the S-controlled system.
This observation would seem to indicate a closer correspondence of the
error -corrective system with what is known of forgetting in biological
systems .

The mean performance curves for eight simulated perceptrons
with <f = 0 , d '= -001 , and cf = -01 are shown in Fig. 33. Note that
for these actual systems, there is a progressive deterioration of performance
as the decay rate is increased.

-237-



-238-



9.3.3 R-controlled Experiments

The most interesting experimental results obtained to date

with decaying value perceptrons deal with the performance of decaying
/"-systems in R-controlled experiments. Experiment 9 has been
studied most extensively, by means of simulation experiments repre

senting a very large, or infinite , perceptron. Unlike the previous
experiments (discussed in Section 8.3) monopolar reinforcement was

employed, i.e., the perceptron was reinforced positively for f ■ + / ,

and was not reinforced at all for f ■ -f . The system was further
modified by assuming a slight negative quantity to be added to Av^f (t)
for all i ; that is, an invariant negative reinforcement component was
added uniformly to all connections , regardless of what stimulus occurred,
and regardless of the activity state of the connection. In the absence of

any other components, this would cause a progressive downward drift of
all ir/r until they achieved an equilibrium with the decay rate. It was
assumed that this negative component was sufficient to add a quantity
equal to -0.0001 to the set of connections activated by a single stimulus.
Thus, apart from the decay, the change in values for each reinforcement
could be expressed by the equation:

9ij « *</ -<?/<?,- -0.OOO1

The effect of the fixed negative component in these experiments
is to create a negative generalization from the first stimulus to occur

(say a horizontal bar) to all members of the opposite class (vertical bars)
in place of the zero generalization which would otherwise occur with a
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gr
1 -system. The result is that after having seen a single stimulus

which activates a positive response, all members of the opposite class
are thenceforth permanently classified in the negative class, as no

further events can occur which will make one of them positive. If the
initial stimulus is a horizontal bar, then, with monopolar reinforcement,
no vertical bar will be reinforced, since all vertical bars evoke a -1

response. The next stimulus which can possibly be reinforced is, in fact,
another horizontal bar which happens to be close enough to the previous
one to have received positive generalization from the first reinforcement,
i.e. , the first or second neighbor on either side. The result is a gradual
growth of the positive stimulus set, by accretion of near neighbors which

have received positive generalization from those bars already classified
as "positive". Thus, having started out by randomly placing a horizontal
bar in the positive class, the system has no choice but to include only
horizontal bars in the positive class, and, with sufficient time, all
horizontal bars are so classified.

While this phenomenon occurs even if the decay rate is zero,
it is markedly accelerated by a non-zero decay rate. With (f = 0 , the

perceptron shows a high degree of "rigidity" in its early classification, in
which some horizontal bars are positive, and the remainder still negative
(as in Section 8.3). This is due to the continually increasing magnitude of
the negative values evoked by the "incorrectly" classified stimuli, which
must be overcome in order to change their classification. Thus, as time
progresses, it becomes harder and harder to switch each additional hori
zontal bar into the positive class, since an increasingly large number of
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"marginal" positive stimuli must be reinforced in order to obtain the

required amount of positive generalization. Moreover, as the positive

class expands, the stimuli which are centrally located within the "positive

band" all contribute further negative generalization to the remaining
stimuli, rather than helping to make them positive. These combined effects

lead to a convex, negatively accelerating learning curve, as illustrated in

Figure 33. The addition of a non-zero decay rate limits the negative value

which must be overcome in order to change the classification of an

"incorrect" stimulus, and thus makes the system more flexible.

If the decay rate is increased progressively, it is found that
there is an optimum at about cf = 0.01. If the decay rate is increased
further, instability occurs, due to the loss of stimuli which were previously
classified correctly, but whose positive values have decayed to such an

extent as to be overcome by negative generalization from other stimuli.
These effects are shown both in the learning curves of Fig. 34(a) and in

Fig. 34(b), which shows the expected learning time to perfect performance

(i.e. , perfect dichotomization of horizontal and vertical bars), obtained
from a sample of 10 runs.

It might seem, from these results, that perceptrons organized
in the manner indicated could be expected to form "meaningful" classi
fications of stimuli, on some basis other than retinal position. Unfortu

nately, the results, while illuminating, are highly restricted in generality.
The proposed dynamics are too contrived to be biologically plausible, and
it is found that in any environment in which classes of stimuli to be
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differentiated permit positive generalization between members of different
classes (a much more usual situation) the mechanism which yields good

separation in the above example breaks down. If g - • between a single
horizontal bar and any of the vertical bars were positive, for example,
the spread of generalization would not stop with the members of the

horizontal class, in the above case, but would invade the opposite class
as well. If, instead of 4 by 20 horzontal and vertical bars, the perceptron
is confronted with an environment consisting of the twenty horizontal bars
and a set of twenty pairs of parallel 2 by 20 horizontal bars, separated by
a space of 3 units on the retina, the perceptron will not spontaneously learn
to distinguish single bars from double bars (although this task presents no

difficulty in an S -controlled experiment).

Another shortcoming of the spontaneous organization phenomenon
which has been demonstrated here is the basically unbiological character of
the learning curves. It has already been noted that these curves are. convex,
or decelerating. A human subject, or even an animal subject, confronted
with the problem of distinguishing horizontal from vertical bars might make

many mistakes initially, but would soon accelerate his learning as he began

to generalize to new stimuli. If he had a hundred bars, in different retinal
positions, to classify, the hundredth bar would certainly not present the
almost insurmountable obstacle that it represents for the elementary per
ceptron. Thus it is clear that the most sophisticated generalization phe

nomena which have yet been found in elementary perceptrons are still far
short of what one should expect from an adequate brain model, if biological
standards are employed. This problem will be re-examined at greater
length in Part III, where it will be seen that multi-layer and cross -coupled
perceptrons perform such tasks in a much more suitable fashion than those
systems which have been considered thus far.
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This completes the presentation of elementary perceptrons. In

the following chapters, some other types of minimal (S-A-R) perceptrons
will be considered, but it will be seen that none of these have capabilities
for generalization appreciably beyond those discovered in the elementary
systems .
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10. SIMPLE PERCEPTRONS WITH NON-SIMPLE A AND R-UNITS

In Chapter 4, a simple perceptron was defined as one which

satisfies the following five conditions:

1. There is a single R-unit, with a connection from every A -unit.

2. The perceptron is series coupled, with an S-A-R topology.

3. The values of all S-A connections are invariant.
4. Transmission times of all connections are equal ( V generally

taken as 0).

5. All signals generated by S, A, and R -units are functions of

the algebraic sum of input signals arriving simultaneously
at the unit.

In the preceding chapters, we have considered elementary
perceptrons , which are characterized by the additional constraints that all
A and R-units are "simple" units, and that the transmission function of the
connection c;j takes the form: C*j(t) = a* (t -T) ir;j (t) . A
simple A-unit is a signal generating unit which emits an output signal
a i = + I if the algebraic sum of the input signals, oC[ , is equal

or greater than the threshold G , and O otherwise. A simple R-unit
emits a +1 signal if the sum of its input signals is strictly positive, and -1

if the sum of its inputs is strictly negative. In this chapter, we shall
consider the properties of simple perceptrons in which these contraints
are dropped. This will include a brief consideration of linear networks
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in which all signals are transmitted in proportion to their value; the
properties of perceptrons with linear R -units but non-linear A -units will
then be considered, and finally the question of optimum transmission func
tions will be discussed. In later chapters, the remaining constraints of
simple perceptrons will be modified, and a number of non-simple systems
will be analyzed.

10.1 Completely Linear Perceptrons

A completely linear perceptron is one in which all signal functions
and transmission functions are linear, i.e. , the output of unit Uj is of the

ifform u- " c- ot; , and the signal transmitted by a connection is
of the form £*j - u* trjj . We will consider linear perceptrons in
environments such that the inputs to an S-unit are either 1 or 0 (so that the

conclusions apply equally well to perceptrons which are linear everywhere
except in the S -units). By analogy to Section 5.4, we define the bias ratio
of an S-unit as n+/n~ , where n+ is the number of positive stimuli, and

t>~ the number or negative stimuli which activate the S-unit. For such
systems, the following theorem holds:

THEOREM 1 : Given a completely linear perceptron, a stimulus world,
W , and a classification C(W)such that the bias ratio of
every S-unit is equal (and non-zero), no solution to C(w)
can exist.

PROOF: Let A* = index of any stimulus in positive class -

4.' m index of any stimulus in negative class (.S^-) -

A. — index of sensory unit

£Hi ™ signal transmitted from the ^.'^ sensory unit
to the l^1 A-unit in response to stimulus
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When stimulus Sa occurs, unit a; transmits a signal equal
to M-(4)ir-r to the R -unit, where

The total signal, , received by the R-unit from is therefore:

u4 - Z/ °*/ ^ ^.V mH ZL ^1/ W vyr

Since every signal u.j must agree in sign with the classification of 5/
for a solution to exist, we require that the following inequalities be satisfied:

i * 4+ (10.1)

i * 4~

(10.2)

But it has been stipulated that the bias ratio of each S -point is equal to a

constant, r > 0 This means that, for any t and -d. ,

L <i (*-*) - *-L*li (*~) (r>0)
4* 4-

or, summing over S -units,

LL - *-LL<i(*-) -*
-i- 4' > 4'

Substituting in the expressions (10. 1) and (10. 2) we get the contradiction

£ C irlr > 0
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which proves that a solution cannot exist.

This means that if two stimulus patterns are placed in all
possible positions on a retina, the resulting classes of stimuli cannot
be correctly discriminated by a linear perceptron. As a consequence,
such systems are relatively uninteresting, even though they may successfully
discriminate a moderate number of patterns which are restricted to limited
positions on the retina. In all systems considered from here on, there will
be at least one set of non -linear components subsequent to the S -units in
the perceptron network.

10.2 Perceptrons with Continuous R-units

The next type of perceptron to be considered has simple A -units,
but continuous R-units, such that the response <"/*= A(u-t) , with A an

arbitrary monotonic function of u-i . This includes the case of linear
R-units, where i&(t*-;) — jC u; • An important theorem which is
analogous to Theorem 4 of Chapter 5 deals with the ability of such systems
to learn arbitrary response functions (Definition 27, Chapter 4) under the
error correction procedure. A response function assigns an arbitrary
output signal (rather than just + 1) to every stimulus in W - We first
prove the following Lemma:

LEMMA 1: Given a symmetric positive definite or positive semidefinite
matrix, H , and any vector

^
, then Hj,)~0 only if

//^ - O -
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PROOF: Since H is positive definite or semidefinite, there exists a

matrix B such that H = B'B -

0- - (8,,8jJ
=> 8}

- 0 ==> 0 = B'B} = H}

THEOREM 2: Given a simple <vr -perceptron with simple A -units, an
R-unit with a continuous monotonic sign -preserving
signal generating function, a stimulus world W (in which
each stimulus ultimately reoccurs) and any response
function R ( w) for which a solution exists , then by

means of the error -corrective reinforcement procedure,
the given response function can always be approximated in

finite time by an output vector R(W) + e , where f
is a vector of elements (e, , ez ,•--,e„) , < e' ,
where € ' may be an arbitrarily small quantity greater
than zero.

PROOF : The following proof was suggested by R. D. Joseph. From
Theorem 3 of Chapter 5, we know that under the conditions of the theorem,

a solution ir to the equation &v - u exists. Suppose the system is

currently in the state x , represented by 6u = X From the definition
of the G-matrix, and the fact that every stimulus must activate at least
one A -unit for a solution to exist, we have

J it * j 11'mm
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The difference between the solution vector u and the present state X
is given by

G(ir-y) - u - x
Let xr - y ■^ and

U - X mjUT

Then G} -Mr -

We wish to show that by applying an error correction method to one

component at a time of the vector * , aut must ultimately go to a point
within the e' cube about 0. (The method will apply a correction of the
proper size until a response r*'» fi* is obtained. ) We know that u; mJ*. y-j XjJTherefore, for the difference, . we have

Since 6 is non -negative definite, we know that F ■ fj,, G^) , — *cv~j ,

and from Lemma 1 we know that if + O , F > O Therefore, if

suri> O decreases as a result of decreasing j.^ , F decreases; also,
if <ur; < O increases by increasing ^- , F decreases (see Proof of
Theorem 4, Chapter 5). To prove the theorem, it is sufficient to show
that this implies that Mr must ultimately enter the £ cube about zero.

Let MT^' = initial value of jut; at start of a correction step
= initial value of at start of a Correction step
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Then for the correction, we have

Aw; = - jut-
9/url

9F

AF -

9;;

9U

= 2*v; = [*r/+ 9;.-

-~rr + 9;; (};-};')]
ii 9ii

911

, 2Therefore, AF < < - e '
Hence, there can be only a finite number of corrections, since F i 0 ,

and the vector alt - u. -x must converge to a point within the fc
- cube

about zero. But u is the input to the R-unit. Since r (u) is continuous ,

there exists an e" such that | r "(u * <f) - r*(u) \ < e if \(f \ £ e" - There
fore the response function coverges together with the vector . Q.E.D.

-251-



The following Lemma and Corollaries establish that the various
weaker forms of correction procedures are also capable of yielding a

solution to R(W) .

LEMMA 2: For the same conditions as Theorem 2, given that a

solution exists, the set of all solutions forms a hyperplane
of dimension equal to the nullity of G -

PROOF: Let Gx = u be a solution. Of necessity u.- - Let
Gy = u. be another solution. Then G (x - y) = 0 . consequently x. - y
is in the null space of G . Conversely, if » - x is in the null space of G ,

then G(^-x) = 0 . Therefore, G £ = u , so that ^ is a solution. Q.E.D.

COROLLARY 1: For the conditions of Theorem 2, and a phase space which
is unbounded in all dimensions, the probability of conver
gence to an arbitrarily close approximation to R(w) by
means of a random-sign correction procedure or a random-
perturbation correction procedure may be less than 1.

PROOF: The random-sign and random -perturbation procedures were
defined in Section 5.6. is taken to be any response function,

obtainable by an R-unit with a monotonic signal generating function. For
convergence to occur, it would be necessary that a series of steps by

increments of fixed magnitude, \yf\ , but of random sign, should carry
the system from its initial state to an arbitrarily small distance, £

from its required state. From Lemma 2, the solution states form a hyper -
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plane of dimension equal to the nullity of G, which has zero measure over
the phase space of the system. But a random walk of the type described
may carry the system arbitrarily far from its starting point, in a random
direction, and the probability that a vertex of this path will fall within a

distance e of the solution hyperplane may be less than unity.

COROLLARY 2: Given the conditions of Theorem 2, and a phase space
bounded in all dimensions , then (given that a solution to

R (W) exists in this bounded space) the response function
can always be approximated by means of the random-sign
correction procedure, the system converging in finite time
to an approximation B(W) vector, where
|<f;| < e' for arbitrarily small €

'
> O

PROOF: Since the phase space is finite, the set of solution points within
the bounds defined above has positive measure. The random-sign correction
procedure cannot carry any of the A-unit outputs beyond the limit set for its
value; therefore, if the values approach their limit in any direction, a ran
dom walk in the opposite direction will follow. This procedure will
ultimately take the representative point of the system into every set with
positive measure, provided if is sufficiently small. Consequently, a

solution within the bounds stated by the theorem will be obtained in finite
time .

COROLLARY 3: Given the same conditions as Corollary 2, the

response function can always be approximated by

the random-perturbation correction procedure, the
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system converging in finite time to an approximation

R(W) + £ ,6 having elements of magnitude ^ | Tf \

if the reinforcement is quantized, or 4 e' > O ,

if rf is chosen from a continuous distribution around

zero.

PROOF: The proof follows the same line as that of Corollary 2. Since

each connection can be set to an independent value, in the quantized case
the total error over the set of all connections need not be greater than ,

while in the continuous case it may be made arbitrarily small.

Theorem 2 and its corollaries indicate that it is possible to

teach a simple perceptron to produce responses which are proportional to

some metric feature of the input stimuli, such as their size, or coordinates

of their center of gravity on the retina. In the latter case, the output of

such an R-unit can be fed back to the optical system to control the centering
of a stimulus in the field.

10.3 Perceptrons with Non-linear Transmission Functions

In all perceptrons considered thus far, the transmission
functions of connections from A-units to the R-unit have been of the form

* ♦
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We will now consider functions of the more general form:

Where time is not specified, this is understood to mean

c% (t) - 4 (at It - r) , v£r (*))

Since a* is a function of the input signal, oCj , the transmission
function can be written in a still more general form (allowing for various types
of signal -gene rating functions in the A -units),

This form will be employed in the following theorems .

THEOREM 3: Given a simple perceptron with a simple R-unit, and with
transmission functions for all A-R connections of the form
-f(ac;)%rjf, , where / is any function, and given the

existence of a solution to a classification function C(W)
for this perceptron, then if -p(v) is any polynomial of
odd degree in ir- , there also exists a solution if the

transmission function is changed to f'fat) f> (xr^r) .

PROOF: A polynomial of odd degree can assume all possible values.
Therefore if Vir is the original value of the connection £^r , there
exists a solution to f> (x) * i/^y, yielding a new value, X . for the

connection jC/j. which will cause it to transmit an identical signal under
the new transmission function.
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THEOREM 4: Given the perceptron of Theorem 3 , if a solution exists
for some transmission function f (<x;) i/~;r , a solution

does not necessarily exist for the transmission function

PROOF: Suppose the number of A-units is equal to the number of stimuli
in W . Let B = matrix of elements b;j representing the value of the

function t(m; (J)) which is the coefficient of V;r for stimulus 5; -

Then for a solution to exist, there must be some vector V and some

is singular, there must be some C(W) for which no solution exists. This
can be demonstrated by noting that each C(W) requires a solution vector in

a different orthant, the set of all C(W) requiring solutions in every possible
orthant. But if 8 is singular, it maps the entire space into a hyperplane,
and this plane must fail to intersect certain orthants. Consequently, the

functions C(W) which are represented by vectors in those orthants have no

solution. Now consider the following cases:

CASE 1 : For the transmission function oi ir , let the matrix

This is singular, and consequently there are some insoluble classifications.

g(<x;) V; g # f -

vector U in the orthant required by C(W) , such that B'V = U . But if B

Now change the transmission function to oc ir
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This matrix is non-singular, so that with the non-linear transfer function,
all classifications are soluble.

CASE 2: In this case it is shown, conversely, that there may be situations

in which a linear transmission function will yield solutions which are un

obtainable with a particular non -linear function. Let the transmission

(3

5 8\
4 12 15 1

^"k*s matrix is non-
5 13 17/

singular, so there is a solution for every C(W) • But now let the transmis
sion function be ot2ir . Then B = L? 225 I

w^ic^ *s singular,

\25 169 289/
implying that there is some C(W) with no solution.

THEOREM 5: Given a simple perceptron with A-R connections which

differ in their transmission functions (or with uniform
transmission functions but non-simple A-units) a response

function f?(W) may have a solution which is unattainable by

either the error correction procedure or the random-sign

correction procedure.

PROOF: Consider a perceptron with a single sensory unit and two A-units.
Let the R-unit be a linear amplifier with gain of 1 . Let the sensory unit

emit signals 0, 1, or 2 depending upon the intensity of the stimulus. The

required response function is R(W) = (0, + l,-l) corresponding to a null
stimulus, a low -intensity stimulus, and a high-intensity stimulus, respectively.
Let the transmission function of clr be \ac\v~ , and the transmission function

of c2r be oi ir . The response function R(W) then has a solution if we
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set iSff. " 2-5 and ~u~Zr=-1.5 . But this is the only possible solution,

and is unattainable by the error correction or random-sign procedures, since

both connections are always activated together and consequently must always
be equal in value under these procedures (assuming that their initial values
are equal). This example is sufficient to prove the theorem for the case of

non-uniform transmission functions.

uniform, but the perceptron has non-simple A -units, consider the following
perceptron:

The values of all S-A connections are +1, and the A-units are both linear,
with transmission function ot is . Let the environment consist of the two

the response function P =(+-I, -2) , namely v/r " *3, 'lr2r ~ ~2 '

However, the error -correction or random-sign correction procedures will
not work, since both A-units are always active (where "active"means that

they emit a non-zero signal). Note that a solution also exists to the

classification ( y- / , -/) for this perceptron, and that this is also
unattainable by the methods indicated.

For the second case, in which all transmission functions are

stimuli Sf " -d and 5^ " (•*-t i <d.j) . Then a solution exists to
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The sixth theorem was proposed by R. D. Joseph.

THEOREM 6: Given a simple perceptron with any mixture of transmission
functions fj (ocj , irjr) for the connections -d>r , and

a response function P(W) for which a solution exists; then

there exists some transmission function g (oc,ir) which
is uniform for all connections, such that a solution to P(w)
exists .

PROOF: Let fj (nej , irjr ) - signal from unit a.j when stimulus 5;

occurs. Then we can fit a polynomial

A =0 'I

for each stimulus S; The coefficients, -cjj , (which depend on the

A -unit, q.j ) can be replaced by polynomials

V *
*J4 " £4 (J) =2-, °tA •JI'O

Thus we have, for all values of J , .

fj^j^h 'wjr) =Z, 2L bw' °V ('J - 9(oi'J)A'O t-0
which satisfies the conditions required by the theorem for g(<x,ir)
if we set ir- = ; .j r J
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It should be noted that this theorem applies only to a given response
function for which a solution exists; if a different response function also has
a solution, then there will again be a uniform transmission function for all
A-units which will solve the problem, but this transmission function may
differ from the one obtained for the original response function.

We have seen in Theorem 5 that if the connections differ in
transmission functions, or the A-units differ in signal generating functions,

response functions may have solutions which cannot be obtained by the more

systematic correction procedures. The following theorem proves that in

this case the weakest of the correction procedures (the random perturbation

method) can still be used successfully.

THEOREM 7: Given a simple perceptron with an R-unit which is either
simple or has a continuous signal generating function,

and with any combination of transmission functions from
its A-units (all continuous functions of v(y , equal to

zero if oi- = 0 ), and given a bounded phase space
within which a solution exists for P(W) ; then, if each
stimulus in W ultimately reoccurs, an approximate
solution P (W) + e is always attainable in finite time
by the random-perturbation correction procedure.

PROOF: For an R-unit of the specified type, and a bounded phase space,
the solution set has positive measure, over the region defined by + e

(where e consists of arbitrarily small elements, 6- ^ e' ) . To achieve

an approximate solution within this set, it is only necessary to adjust the

values of the active A-units for each stimulus. Since, under the random
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perturbation procedure, each active connection will independently tend to

assume a value in every admissible range with positive measure, the active
set of connections as a whole will ultimately attain a value configuration
within the solution set.

10.4 Optimum Transmission Functions

The general conclusions of the preceding pages are that while a

completely linear perceptron does not work satisfactorily, there are many
possible transmission functions which seem to work quite well. For many
of these, there is no choice to be made from the standpoint of ability to

achieve a solution, for they all seem to be capable of solving the same
problems equally well. From the standpoint of efficiency of discrimination
and speed of learning, however, the various transmission functions might
differ considerably from one another. In this section, making use of an

analysis due to Joseph, it will be shown that with some fairly weak constraints
on the system under consideration, an optimum transmission function exists,
and that this takes the form of a quadratic function of ir;r rather than a

linear function.

The constraints on the system to be analyzed are as follows:

1. The analysis deals with S -controlled discrimination
experiments, with a fixed training sequence.

2. The conditional distribution of xr;r for connections activated
by a test stimulus of the positive class, 5X , is assumed to be independent
of the choice of Sx . Similarly, the distribution of %r- for active

-261 -



connections is assumed to be independent of the exact choice of Sx when the

test stimulus is selected from the negative class.

3. It is assumed that the conditional distribution of V.-r for
the connections activated by Sx is a normal distribution, and that either
the distributions are different or the probabilities Q; are different, for
test stimuli in the positive and negative classes. These constraints will
generally be met satisfactorily if the positive class consits of all possible
positions on the retina of a large stimulus, and the negative class consists
of all possible positions of a small stimulus. The main requirement is one

of equivalence of stimuli within each class, and dissimilarity between classes,
with respect to the distribution or number of signals transmitted from A -units
to the R-unit.

The discrimination problem can be stated as one of testing a

hypothesis about the test stimulus, 5- • The response unit is required
to test the hypothesis that Sx is a member of the positive class against
the possibility that it is a member of the negative class. If the test stimulus
is a member of the positive class, the output of an A-unit (subject to the

above assumptions about the system being analyzed) will have the distribution

0 with probability 1 - Qx (+)

xr with density function , ^
e*P-\ >— (v~/*(+))* I

>27T "(+) ( 2*<*i J
(10.3)
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where Qx(+), cT(+j , and >^o; are the parameters characterizing
stimuli of the positive class. Similarly, if the test stimulus is a member of

the negative class, the output of an A -unit will have the distribution

0 with probability /~QX(~)
(10.4)

ir with density function Qx( )_ exp f T-(tr->t/.ij2j

where Qx (-), i and /L(-) are tne parameters characterizing
stimuli of the negative class. Thus, the problem can be restated as one of

testing whether the output of an A-unit has the distribution (10.3) or the

distribution (10.4).

There is thus a simple hypothesis (dealing with a single distribution)
and a simple alternative. As Joseph has observed, under these conditions,

for any significance level, the likelihood ratio test is most powerful. In

performing this test, we would make N independent observations of ir
(corresponding to a sample of N A -units with independent origin point

configurations), and obtain the likelihood ratio:
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where N is the number of active A -units, and the summation on i is over

active units only. If L is greater than a preassigned constant L0 , we

accept the hypothesis that Sx is a member of the positive class; if L

is less than L0 , we accept the alternative, that Sx is a member of

the negative class. The constant L0 , corresponding to the threshold

of the R-unit in a perceptron employing this procedure, determines the

power and significance of the test. (The "significance" is measured by

the probability of erroneously rejecting a positive stimulus, and the "power"

is the probability of correctly classifying a negative stimulus.) In logarithmic
form, the condition L ^ LQ becomes

> l-o('-Ox(-))N

and the transmission

"
(l-QxM)N

Thus, the required test is effectively performed If the perceptron is designed
with R-units having a threshold
functions from A to R-units are of the form

r
0 it oi < 9

Jim. UQ+ Ntm i Q

«i9

The actual savings that might be obtained by the use of such a

quadratic form have not been investigated numerically. In practise, they
are probably slight. A further discussion of the optimization problem, inclu
ding the optimization of the upper and lower bounds in a bounded value per-

*ceptron, can be found in Joseph, Ref. 41.

Prof. A. Gamba, in a related paper, has observed that not only the trans
mission functions but the reinforcement rule might be profitably modified
in order to optimize the overall decision function of the system (Ref. 23).
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1 1 . PERCEPTRONS WITH DISTRIBUTED TRANSMISSION TIMES

One of the requirements for a simple perceptron is that the

transmission time, T;j , should be equal for all connections, Cij
In this chapter, we consider the consequences of allowing a distribution
of transmission times. It is obvious that under these conditions the set of

A -units active at time t will depend not on the single momentary stimulus
occurring at time t - X , but rather on the entire sequence of stimuli
occurring between t-V . and t-X . We shall first consider the casesmin max
of binomial and Poisson models where X: • is distributed with a discrete
spectrum, X: ; always being an integer equal to or greater than 1. We

shall then consider the case of a continuous Gaussian distribution for V- •

11.1 Binomial Models with Discrete Spectrum of Tjj

For the binomial case, we shall consider only the case where

each A-unit receives a fixed number of connections of each type (excitatory

and inhibitory) with X; • = 1, and a fixed number with T-j - 2.

Specifically, the parameters of an A-unit are:

9 = threshold (defined as usual)

X, - number of excitatory connections with TJ; = '

tft

- number of inhibitory connections with T;j = /

X, = number of excitatory connections with 7J • =2

<
/ = number of inhibitory connections with X-j = 2
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Models with a greater number of possible values for 2J - can be analyzed

by extensions of the method applied here. The object of the analysis is to find

Q- and Q^j at time t • as functions of the two-step sequences of stimuli:

J; = S;'(t-2) , Si (t -I)

Jj = Sj'(t-2) , Sj(t-I)

The notation S;' will be used consistently to denote the stimulus preceding
the terminal stimulus in sequence J; . Similarly, in sequences of more

than two stimuli, S-" will be used to denote the third stimulus from the

end, etc. In the present model, sequences of length greater than 2 need not

be considered. If it is assumed that A to R-unit connections all have equal
transmission times, the analysis of performance in terms of the Q-functions
will be identical with the analysis for simple perceptrons, the important
difference being that the perceptron is now learning to recognize sequences
of stimuli, rather than isolated momentary events.

The total input signal to an A -unit at time t , ot(t) , is now

a sum of four components, namely,

ot(t) = r, + £2-i, -i2
where Et - number of excitatory connections with T - 1 , having origins

active at i - I

1/ = number of inhibitory connections with V - I, having origins
active at t - I

E2 = number of excitatory connections with T = 2, having origins
active at t -2
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12 - number of inhibitory connections with T = 2,

having origins active at t _2 -

As usual, at- (t) = I if OCf (t) * 0 , and 0 otherwise. Q; is then
given by the following equation, which is analogous to (6.1):

where the probabilities , , PUf and Pyj are defined as in (6.2), with
the substitution of the appropriate parameters, and the stimulus measures

in the expressions for Px and Py^ and R-i in the expressions for Px^
and Pu

In a similar manner, the expression for Q-j can be obtained by
the extension of the treatment employed in Equations 6.5 and 6.6. However,

there are now eight components to be considered for oc for each stimulus
sequence. Specifically,

*M - Ei + E£ * EV + £> -It -1^ -lr -J£'
"(J) - £j * e£ * £j' * -Ij ~I£~lj'- 1*,

where £- and I- are defined, as before, as the excitatory and inhibitory
components originating from the set of retinal points situated in 5t

- an<*

not in 5; • E;' and I;' are the corresponding components originating
from the set of retinal points situated in Si' Dut not in Sj' i and Ej ,

I;, £-'. and I-* are similarly defined. Likewise, £\. and T£ are the
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excitatory and inhibitory components coming from the retinal set common
to 5; and Sj , and Ec- and I£i , are the components from the set

common to S;' and Sj' . Thus we have the equation

OlJ • ZL Pxl(Ei,Ej,E/i)Pvi(Ii,Ij,I£)Pii,<£i.,Ej.,£je,) Py2(Ir.rr,I£-) (11.2)

The required multinomial probabilities being computed from equations (6.6)
with an obvious extension of the above notation to the quantities A; , A- •

C , Ay , A •, , and C' -

Since the Poisson model is much easier to compute, and has

properties which are similar in all essentials to the binomial model, no

numerical examples are given for the binomial model, but examples for the
Poisson model can be found in the following section.

11.2 Poisson Models with Discrete Spectrum of Tjj

The Poisson model to be considered again has two values of V ,
namely V - 1 and f - 2, the parameters x, , x2 , y , , an<* </j

being defined analogously to X and y in the Poisson model considered in

Chapter 6. The equations for Q- and Q-j can, of course, be developed
by extension of the equations of Chapter 6, as has just been done for the
binomial model. A considerably simpler approach is possible in the Poisson
model, however, if the corresponding stimulus areas at times t - 1 and t-Z
are also equal, i.e.. A- = A-, , Aj = Ay , and C = C - In this
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case, the previous equations (6.1, 6.3, 6.5, and 6. 7) hold without modification,

except that J£ — Xf +-X2 and y = y/ + t/2 . More generally, the previous
equations can always be employed by making the appropriate substitutions:

*f*i x2RL'
- w

xAL - *,\ + ***•'
xAj _ +

xc i-,c * z2c'

and similarly, for the inhibitory components. If Xf - Xt and y. » ya ,

the equations for Q- and Q-j again become identical with the equations
of Chapter 6 where g{ - -jr (R; + Hf) , Ai - -j- + \- ) , etc.
By an obvious extension to a spectrum with three or more values of T ,

where xf - X2 = . . . - X„ , and ff - - . . -yn , we can apply
the same equations, substituting the parameters

*/ - * *i' * * -• )\ = -7T(Ai * A- * A^ t ...)

c ~ -jrU + c + c" + ...)

and similarly for R - and A-

-269-



As an example of the performance of such a system, consider
a Poisson model perceptron with an expected value of 6 excitatory and 6

inhibitory connections to each A-unit and Q = 2. Let the environment
consits of a set of 4 by 20 vertical bars, such as were employed in the

experiments of the preceding chapters. The object will be to discriminate
a bar arriving at a certain fixed location by movement from the left from a

bar which arrives at the same location by movements from the right. Clearly,
if a single value of ZJ - is permitted, this task is impossible. Consider
first the case in which half of the excitatory and half of the inhibitory connections
have T - 1 and the remaining half have T - 2, so that xf =

X2
m Ijf m y2 = 3 -

Let sequence J; denote (Sa(t-3), S^(t-l), S^(t-l)) and J- denote

(Se(t-3), S^it-2), S^(t-t)) , where Sa , - - • , Se represent successive
adjacent positions of the vertical bar on the retina. Then Q- * <?•- = .153,

and Q-j = .094. Next, suppose one third of the excitatory connections
and one third of the inhibitory connections have delays V = 3 , one third
have T = 2 , and one third have T = / , so that Z, = 1'2

= *j = y , = = "y3=2.
In this case, - .153, as before, but <?-- is reduced to .063. Further
increasing the spread of the T distributuion will have the effect of further
reducing Q-j (for correspondingly lengthened stimulus sequences ) while
keeping constant. Thus, the greater the spread of the f distribution,
the more readily can such "divergent" time sequences be distinguished.
Conversely, two sequences which are identical save for a momentary
divergence in recent time (say at t - I ) can be distinguished most readily
by a perceptron with T; • concentrated at small values, and increasing
the spread of the T distribution will only increase the difficulty of
discrimination.
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It should be emphasized that the set of active A -units depends
on the order and not merely on the constituents of a stimulus sequence. Thus
the sequence ( 5, • Sj , Sj ) will generally activate a different set of A-units
from the sequence ( 5, , S2 , Sj ) in which the first two members have been

inverted. In principle, a perceptron of this type which receives sequences of

sound spectra from a set of audio-filters (instead of visual patterns) should be

capable of distinguishing spoken words, or other characteristic sound sequences,
such as progressions of chords or melodic fragments.

11.3 Models with Normal Distribution of fjj

A somewhat more "natural" model than the discrete spectrum
models considered above is one where the transmission time of each connection
is an independent random variable drawn from a normal distribution, with
parameters /j.(T) and <r(T) . If an A-unit is to have a non-zero proba
bility of being active at time t in such a model, the dynamics must be
modified by the introduction of an "integration period", At , such that

oc(t) = 21 E(r)-KT)
r•t-at

summing over all values of T for which E or I fche numbers of excitatory
or inhibitory impulses arriving at the A-unit) are non-zero.

The qualitative properties of such a system are clear without
further analysis. If At is short compared to o~(T) , the presentation of

a momentary "or transient stimulus will lead to a gradual increase in the
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proportion of responding A-units (or the value of Q; ) followed by a gradual
decrease. If At is greater than <r(V) , the system will respond with a

momentary burst of activity, maintained for a period equal to At , and

will then immediately relapse to inactivity. We are chiefly concerned with
the case where At is less than rr(T) . In this case, the performance of
the system in discriminating sequences will be close to that of the Poisson
or binomial models, with an appropriate discrete spectrum of T-j , to

approximate the normal distribution. There will be a maximum sensitivity
to differences between the two sequences id; and jJj occurring at

time t - /u(T) , with less sensitivity to more recent or more remote
differences between the sequences.
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12. PERCEPTRONS WITH MULTIPLE R-UNITS

Up to now, the simple "three-layer" topology (S-A-R) with a

single R-unit has been the only one considered. In this chapter, we will
still consider only three -layer perceptrons, but more than one R-unit will
be permitted. The performance of such systems, it will be seen, does not

differ significantly from that of perceptrons which have been considered in

previous chapters, except for the fact that it is now possible to form classi
fications with more than two classes, with simple R -units, or to have

perceptrons respond simultaneously to several different attributes of a

stimulus pattern. The most interesting analytic problems for such systems
are concerned with the optimum coding of the classes of patterns to be

recognized, in order to optimize performance.

12.1 Performance Analysis for Multiple R-unit Perceptrons

Several types of topological organization which are possible for
networks with more than one R-unit are illustrated in Figure 35 . The set of

A -units which are connected to a given R-unit will be called the source-set
of that R-unit. The organization which is most economical in the number of

A-units employed is that shown in Fig. 35(a), where every A -unit is connected

to every R-unit. This is logically equivalent to the disjoint source -set model

shown in Fig. 35(b), if every source set is required to have the same compo
sition of origin point configurations for its A-units. Unless otherwise specified,
it will be assumed that each R-unit receives the same number of input
connections; however, if the R-set is large, and the terminus of each connection
from an A -unit is selected at random, the total number of inputs to each R-unit
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(l) EVERY A-UNIT CONNECTEDTO A R-UNITS. (IN FULLY COUPLED CASE, A m NR)

Figure 35 TYPES OF TOPOLOGICAL ORGANIZATION FOR PERCEPTRONS WITH MULTIPLE R-UNITS
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(i.e., the size of its source set) will be a binomially distributed random
variable. An inversion of this connection procedure is shown in Fig. 3 5(c).
In this case, each R-unit receives exactly N connections, but the origins
are assigned at random among the A -units. Here the number of output
connections from an A -unit will be a Poisson distributed random variable.

It can be readily seen that as /V becomes large, the various
topological connection schemes illustrated in Fig. 3 5 all become logically
equivalent in their performance characteristics, since it does not matter to

the performance of the perceptron whether two R-units are connected to the

identical A-unit or to two different A-units with equivalent origin point
configurations. For the sake of specificity, the following discussion will
assume the organization illustrated in Fig. 35(b), with a disjoint source-set
for each R-unit.

In S-controlled discrimination experiments, it is obvious that

performance of such a system in equivalent to that of N% simple perceptrons

(where is the number of R-units) each of which is exposed to the same
training sequence, but trained on its own independent dichotomy of the environ
ment. For example, if NR - 2, one R-unit might be trained to discriminate
between stimuli in the upper and lower halves of the field, while the second
R-unit is taught to discriminate between right and left halves. The proba
bility that both responses are correct, at the end of the training sequence,
will be the product of the probability that R. is correct on its dichotomy,
and the probability that is correct on its dichotomy. In the present case,

assuming that stimuli occur with equal frequency in all parts of the field, we

would expect the two dichotomies to be equally difficult, so that the probabi
lity of correct performance on the joint response would be the square of the

probability of correct response for either dichotomy considered separately.
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In an error correction procedure, a more interesting problem
arises. Clearly, if each R-unit and its set of input connections are corrected
on an assigned binary classification or response function independently of the

other R-units, the same situation exists as in S-controlled experiments, and
the probability of correct response on the entire set of NR R-units after a

given training sequence will be the product of the probabilities for each of the
response functions considered separately. More generally, if we let

^x. (&i (W) , N; ) = probability of correct response on test stimulus 5 x
for the i response function, given a source-set with N- members
connected to the R-unit, we have

Px(R,,...,Rn) = rr px(p1 (W), n:) (12.1)

for the probability that the joint response to Sx is correct on all R-units.

Suppose, however, the reinforcement control system is only
capable of recognizing that the total response (on all R-units jointly) is right
or wrong, and cannot tell which individual R-units are contributing to the

error. In this case, it might be supposed that the system would eventually
learn the correct joint response by assuming that every R-unit is wrong
whenever an error in the composite response occurs, and correcting the

perceptron accordingly. This supposition, unfortunately, is not true,
as proven by the following theorem.

THEOREM: Given a perceptron with more than one R-unit, and a

response function f?(W) or a classification C{W) for which
a solution exists, it may be impossible to achieve

-276-



this solution by an error correction procedure which
applies negative reinforcement jointly to all R-units
based on errors in the joint response.

PROOF: The theorem can be proven by a simple example. Consider the
perceptron illustrated below, which has two sensory units, two A -units,
and two R-units. (The topology corresponds, in this case, to Fig. 35(a).

Assume all V;r initially = + 1. Let W consist of two stimuli: S<

illuminates sensory point ^ alone, and S2 illuminates A-2 alone. Let
the required joint classification function be:

(r*. rl) = (+1, -/; for st

(n, rl) '(-',+0 for Sz

A solution clearly exists, e.g., by making ir^ and \r22 positive, and T/~l2
and negative. Since all f~{r are initially positive, whichever
stimulus occurs first (say Sf ) will elicit a positive output from both R-units,
which is wrong. The error correction procedure would then apply negative
reinforcement to both R-units, having the effect (if S/ is the stimulus) of
making both connections from a.- negative. But this now makes both

-277-



R-units negative, which is still wrong. Clearly, the error cannot be
corrected by reinforcement in the presence of Sf , since the signals to

both R-units are coupled, and must rise or fall together. If the second
stimulus should occur, the situation is not improved, and the same oscil
latory behavior will continue, with the perceptron switching from
C r* , r2) = (-hi, -hi) to (-1,-1) alternately. Thus a solution will
never be achieved, which proves the theorem.

Note that if, instead of administering negative reinforcement
to all R-units (which assumes that each one is currently wrong) the error
correction procedure were to be modified to apply a correction to each
response unit according to the rule

= (*'- r?) (12.2)

where /(- = value of jf employed in reinforcement of the /?• connections,

and R- and f- are the required and obtained responses, respectively,
for t'

^ R-unit, we then have the same conditions as in the case of
independent correction of each R-unit (see Definition 41, Chapter 5). Thus,
if we let If - - r* be a vector of components, the i component
being given by (12.2), the system will always converge if a solution exists.
This implies, however, that the r.c.s. must not only be able to recognize
the existence of an error in some R-component, but must be able to deter
mine the magnitude (or at least the sign) of the error for each R-unit
independently, and control an appropriate value of tf; for each section
of the network. A logically similar procedure, which also yields a

solution, is to allow the r.c.s. to scan the R-units sequentially, checking
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the correctness of each one in turn, and applying a correction only to the

R-unit currently being examined by applying negative reinforcement when

it is wrong. This requires a longer training process, but requires the r.c.s.
to act on only one component at a time, just as in a simple perceptron.

12.2 Coding and Code -Optimization in Multiple Response Perceptrons

A perceptron with a large number of R-units can clearly be

used to identify many more than two alternative kinds of stimuli. A number
of possible schemes for the representation of information in such systems
have been suggested. As a first possibility, each response may be used to

identify an independent trait, or property of the stimulus, such as left/right
location, size, horizontal or vertical elongation, etc. The combination of

responses occurring when a test stimulus is presented should then serve as

a description of the stimulus in terms of its traits. An alternative scheme
is to assign a distinct response unit to each kind of stimulus, and train the

perceptron to emit a +1 response only if that type of stimulus is present.
In this case, only one R-unit at a time would be active, the active unit

identifying the stimulus class. Unlike the first scheme, where some response
must be made for every binary trait whether applicable or not, the second
scheme has the possibility of rejecting a stimulus altogether as "unknown",

in which case all R-unit outputs would be negative. On the other hand, the

second scheme lacks the economy of which the first is capable, and requires
that every combination of traits which is to be distinguished must be assigned
a special category and taught to the perceptron before it can be recognized.
In the "trait discrimination" approach, a new configuration may still be
correctly described, in terms of the characteristics present, even though it
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has not been seen before. (This last feature is only weakly present in

the perceptrons considered thus far, since it depends strongly on generali
zation. Some of the perceptrons to be considered in later chapters, which

generalize more effectively, can make optimum use of "descriptive codes".)

The above examples illustrate two types of response-codes, which
will be called configuration codes and position codes, respectively. A
configuration code employs the R -units independently of one another, assigning
an arbitrary dichotomy to each. This results in the assignment of a binary
number (if the R-units are two-state devices) to each stimulus. The total num
ber of stimulus types which can be encoded in this fashion, for a perceptron
with Np R-units, is 2 * . A position code, on the other hand, permits
only one R-unit to be "on" (or in the positive state) for any one stimulus; the

code takes the form of a binary number of Nq bits all but one of which are
zeros. The position of the non-zero bit indicates the class of the stimulus
identified. With this system, only types of stimuli can be recognized.
The position code can be considered a special case of a configuration code in
which the positive classes of all dichotomies are disjoint, and the negative
classes are almost completely intersecting. A compromise between the two
approaches (which permits a descriptive statement to be obtained about a

stimulus without forcing a decision on inapplicable characteristics) would
assign n response units to each set of n mutually exclusive traits (for
example, 2 R-units would be assigned to left/right description, 3 to hori
zontal, vertical, or diagonal specification, etc.). Each R-unit would then
be made to discriminate between "trait present" and "trait ab'sent",

permitting any combination to occur. Such a system will be classed under
configuration codes.
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The problem of finding an optimum code for a particular task can

be specified for a given value of , an environment, W , and a classifi
cation, C(W) , into A' types of stimuli. Clearly, if N is greater than Ng ,

a configuration code must be used, or the problem is insoluble. If N is
commensurate with , however, we have a choice of either assigning
a position code, in which each R-unit identifies the presence or absence of

a single type of stimulus, or assigning a configuration code, in which each

R-unit is assigned an arbitrary dichotomy. In general, the problem is to

find the optimum set of dichotomies to be assigned to the R-units, so as to

obtain the greatest probability of correct identification for an arbitrarily
selected test stimulus. Let us assume all stimuli equally likely to occur,
and all classes of equal size (i.e. , an equal number of stimuli in each). The

number of A-units connected to each R-unit is also assumed to be constant.

Let the vector £*— (Vy*, rj , - - - , ffy) ~ the correct response
vector for a given test stimulus. Then, from equation (12. 1) we are

required to maximize

Since we further assume that Sx is chosen arbitrarily, and that every
stimulus is equally likely to be chosen as a stimulus, we require the

expected value

(12.3)
to be maximal. The choice of dichotomies which maximizes (12.3) would be

considered an optimum code for the environment and perceptron in question.
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At present, no general solution to this problem has been found. Several
heuristic cues as to the organization of optimal codes are worth noting,
however .

(1) If a given stimulus class has members which are
disjoint from the stimuli of all other classes, while the remaining classes
have large retinal intersections, it will clearly be advantageous to employ
a single R-unit for the recognition of the stimulus class in question, with a

highly assymmetric dichotomy which does not attempt to divide
the remaining stimuli into two sub -sets, but takes advantage of the

"natural" dichotomy formed on the basis of location.

(2) If the relationships of all stimulus classes are symmetric,
so that no two classes tend to "stick together" more than any other two

classes, and no pair of classes are easier to discriminate than any others,
and if S-controlled reinforcement is to be used, it will probably be best to

use equal dichotomies for all R-units, ( n/2 stimuli in each positive set) so

as to avoid asymmetric generalizations from the larger set to the smaller
one. The results of the frequency bias experiments, illustrated in Figs. 16

and 25, appear to support this conjecture. Where an error correction
method is used, however, empirical results suggest that asvmmetric
dichotomies are preferable.

(3) There exist classifications which cannot be achieved by
means of a position code, which can be achieved with a configuration code.
For example, consider the following case: Let there be three stimuli in
W , such that Sf activates a, , S2 activates a2 and 5j activates
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both af and a2 - Let there be three simple R-units, each connected to

both a. and a2 . It is required to assign a unique code number to each
of the three stimuli. With a position code, the R-unit assigned to identify

must give a positive response when both at and a£ are active, but a

negative response when either af or a2 alone is active. This is clearly
impossible, with simple R-units. However, if a configuration code is
employed, we can assign the R-function (f*i r2 , fj) m

(+1, -1, -l)for 5,
(-1, +1, -l)for S2
(+1, +1, -l)for Sj

which is readily soluble, by an error correction procedure. is
obviously redundant here, and is arbitrarily set to -1 for all stimuli.

(4) A general rule, proposed by Joseph, is the following:
The smallest possible number of R-units should be required to distinguish
between very similar stimuli. The more dissimilar two stimuli are, the

more R-units may be allowed to place the two in opposite classes.

Note that in this example, it is possible to assign an arbitrary classi
fication to an environment of 3 stimuli with only 2 A-units. This could not
be done with a simple perceptron (as proven in Corollary 2 of Theorem 3,
Chapter 5). The addition of a second R-unit in this model substitutes for
the missing A-unit which would otherwise be required.

-283-



In empirical teste with the Mark I perceptron (such as the

experiments described in the following section) it has been found that the

choice of a code, even with binary numbers of a fixed length, can easily
determine whether or not a particular task is within the perceptron's
capability.

12.3 Experiments with Multiple Response Systems

The Mark I perceptron at C.A. L. is equipped with eight binary
R -units, and 512 A -units, which can be employed in any combination. The
network topology is of the type shown in Fig. 3 5(b). A number of experiments
have been performed (Ref . 30) dealing with the recognition of letters of the
alphabet and sets of geometrical patterns where multiple classifications are
required. Two such experiments are illustrated in Figures 36 and 37.

In Fig. 36, learning curves are shown for an S-controlled
experiment on the left, and for an error -correction experiment on the right.
In each case, the perceptron was taught to identify eight letters of the alpha
bet, presented in the form of large block letters in random locations, over a

considerable part of the retinal field. In the error correction procedure,
each of the erroneous R-units is corrected simultaneously .

Figure 37 shows the learning curve for the entire alphabet,
presented in fixed position. A partially optimized binary code employing
five R-units was used here. This represents about the limit of the capacity
of the Mark I system. Attempts at teaching the Mark I to recognize all
26 letters in two type faces simultaneously have been unsuccessful, the
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maximum performance being about 85% on the combined alphabets. With a

discrimination task of this difficulty, any displacement of the patterns from
the position where they have been learned is likely to abolish the correct
response .

On easier problems, such as a four-letter discrimination task,
the choice of code is found to make little difference in system performance.
The code becomes critical only when the discrimination capability is marginal,
as in the 26 letter identification task. Given the choice between a position
code and a configuration code with the number of A-units in a source-set held
constant, the position code generally seems preferable with the kinds of

stimulus material employed in these experiments. If the same total number
of A-units must be divided among the source sets of the additional R-units
used for the position code, however, better performance is obtained with
the more economical configuration code, which uses binary numbers for
identification, with larger source sets.
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13. THREE-LAYER SYSTEMS WITH VARIABLE S-A CONNECTIONS

In the foregoing chapters, we have almost exhausted the

possible ramifications of minimal three -layer perceptrons, having an

S-»-A-»-R topology. Only one constraint remains to be dropped, in order
to obtain the most general system of this class: this is the requirement that
S to A -unit connections must have fixed values, only the A to R connections
being time -dependent. In this chapter, variable S-A connections will be

introduced, and the application of an error -correction procedure to these
connections will be analyzed. It would seem that considerable improvement
in performance might be obtained if the values of the S to A connections
could somehow be optimized by a learning process, rather than accepting
the arbitrary or pre -de signed network with which the perceptron starts out.
It will be seen that this is indeed the case, provided certain pitfalls in the

design of a reinforcement procedure are avoided.

13.1 Assigned Error, and the Local Information Rule

In order to apply an error correction procedure to all connections
of a perceptron, including the S-A connections, we must first re-examine
the concept of "error" which has been employed so far as a criterion for
reinforcement. In the theorem of Section 12.1, it was shown that it will
not do to assume that all units of the perceptron are equally in error when
a mistake in the total response occurs. It was seen that if all connections
are corrected, on the assumption that both R-units are wrong (in the two

R-unit case employed for demonstration) a solution may never be achieved.
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The alternative was to assign an error independently to each R-unit, by a

suitable criterion, and correct the connections leading to each R-unit in
accordance with the corresponding error indication. In the present case,

where A-units as well as R-units are to have their input-connections modified,

it becomes necessary to assign an error indication to each A -unit, as well
as to each R-unit.

In preceding chapters, the assigned error for an R-unit, £r ,

was taken to be equal to (g* - ft*) , where p * is the desired response, and

r*ia the obtained response. A positive error meant that the R-unit was to

be turned to its positive state, and a negative error meant that it was to be

turned to its negative state, in the case of simple R-units. Similarly, for an

A-unit o/ , we might use a positive assigned error, £• , to indicate that the

unit is to be turned "on", and a negative £• to indicate that it is to be turned
"off", or made inactive, in response to the current stimulus. The difficulty is
that whereas £*, the desired response, is postulated at the outset, the desired
state of the A-unit is unknown. We can only say that we desire the A-unit to

assume some state in which its activity will aid, rather than hinder, the

perceptron in learning the assigned classification or response function.

One possible way of obtaining the required activity states of the

A-units would be to examine each possible state of the system, with its
corresponding G-matrix, and determine whether or not a solution to the

assigned problem exists. If a state is found in which a solution does exist,
then the appropriate responses can be taught to each A-unit, by means of a

standard error-correction procedure, operating on the A-units in the same

-288-



manner as on the R -units. Such an approach, however, evades the real
issue of finding a procedure which will guarantee convergence to a solution
without requiring that the reinforcement control system know the solution
state ahead of time. Specifically, in assigning an error -indication to an

A -unit, we wish to base the assignment only on the state of the network at

the time and locality where the error occurs. The following rule will
therefore be accepted as a working premise for all models to be considered:

LOCAL INFORMATION RULE: For any A-unit, a-L , the assignment of an

error £-(t) can depend only on information concerning the

activity or signals received by a.- , the value of its output
connections, and the error assignment at their terminal points
at time t .

In other words, only a; itself and the points to which it is directly
connected can determine the error assignment.

13.2 Necessity of Non-deterministic Correction Procedures

By a "deterministic reinforcement procedure" we mean that if
the same state of the system should occur repeatedly with all signals and

values unchanged, an identical reinforcement will be applied; and that if
two similar subnetworks are in the same state of activity, value, and error
assignment, they will be modified identically. Up to this point, no problem
has been found for which a solution exists, where a suitably defined
deterministic reinforcement procedure could not find a solution. The first
exception to this is stated in the following theorem.
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THEOREM 1: Given a three-layer series -coupled perceptron with
simple A and R -units, and variable -valued S-A connections,

and a classification C(W) for which a solution exists,
it may be impossible to achieve a solution by any determi
nistic correction procedure which obeys the local inform
ation rule.

PROOF: The proqf is by example. Consider the following network:

Let at and a2 have thresholds of 1, and let the stimuli of W consists of
alone (stimulus 5t ) or A.2 alone (stimulus 52 )- Let the required

classification be (P/ , R2) = (+ l , -I) for 5f and + for S2
A solution clearly exists; for example, the following assignment of values
would be satisfactory:
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In this problem , a solution clearly requires an asymmetric assignment of

values for "parallel" and "crossed" connections from each sensory unit and

from each A -unit. If we assume that all values are initially equal, then

either af and a2 are both on, or else both are off. In either case, one

of the R-units is wrong, and whichever one is wrong will induce a symmetric

correction of the values from both A-units. Moreover, since both at and Cl2

are in indistinguishable states (whichever R-unit happens to be wrong) under

the local information rule both units must receive an identical error indication.

But then the connections from whichever S-unit is active will both be modified

identically, and the result is that the members of each value -pair (from each

S-unit and from each A -unit) are still identical. The required asymmetry

between "parallel" and "crossed" connections can therefore never arise, and

the same response must always occur for S, and 5, • Q.E.D.

While this theorem shows that a deterministic procedure cannot

be guaranteed to work, it remains to be shown that a non-deterministic
procedure will work. In the most extreme case, we could employ a procedure

which randomly varies the value of every connection, independently of the others,

as long as errors continue to occur. In this case, if the phase space of the

system is bounded, a solution will certainly occur in finite time, but we have

already seen the devastating consequences of a much less drastic randomization

of the reinforcement process on learning time (c.f . , Figure 19). In the

following section, a more systematically directed procedure is presented,

which can be shown to lead to a solution with probability 1, as in the case

of error correction procedures considered for elementary perceptrons.
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13.3 Back-Propagating Error Correction Procedures

The procedure to be described here is called the "back-
propagating error correction procedure" since it takes its cue from the

error of the R-units, propagating corrections back towards the sensory
end of the network if it fails to make a satisfactory correction quickly at

the response end. The actual correction procedure for the connections to
a given unit, regardless of whether it is an A-unit or an R-unit, is perfectly
identical to the correction procedure employed for an elementary perceptron,
based on the error-indication assigned to the terminal unit. Thus, if the
error £• is positive, a correction is applied to the values of the active
connections terminating on a- which would tend to increase the signal to O;
algebraically, eventually turning it "on"; if E; is negative, a correction,

yf , of the opposite sign is applied to all active connections terminating on

a; . The essential feature of the method is a probabilistic procedure for
assigning the errors, E; .

The rules for the back-propagating correction procedure are
as follows:

1. For each R-unit, set Er = P - r , where P "
required response and f m obtained response.

2. For each association unit, a.; , E; is computed as

follows, for each stimulus: Begin with E- m 0.

a ) If a-L is active, and the connection £-r terminates
on an R-unit with a non-zero error Er which
differs in sign from ir-r , add -1 to E; with
probability P.
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b) If O; is inactive, and the connection c;r
terminates on an R-unit with an error Er which
agrees in sign with lf;r , add +1 to £• with
probability p2 .

c) If a; is inactive, and the connection C;r terminates
on an R-unit with an error Er which does not agree
in sign with %r;r (or if is;r is zero) add +1 to E;

with probability p^ .

For all other conditions, E; is not changed.

3. If £j + 0 -, add r? to all active connections terminating
on the A or R-unit uj , taking the sign of q to agree
with the sign of Ej . In symbols,

Axr;j = a* sgn (Ej)e

where £ is the magnitude of Y{ .

In general, p1 and p2 are taken large relative to p . The effect of these
rules is to try to turn off any A -units (with probability pf ) whose output is
currently contributing to an error in an R-unit, and to try to turn on any

A -units (with probability p ) which are currently off, but whose out

put signals would help correct an error in one or more R-units if they
were on. The purpose of the third probability, ft , is twofold; first,
if no A-units respond to a stimulus, and all of the values have the wrong
sign or are zero (as in typical initial conditions) it guarantees that some
A-units will come on; second, it prevents the permanent loss of A-units
which might be necessary for the proper response to some stimulus.
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even though their values may have the wrong sign at some time during the

training procedure. If fif and fi2 are larger than p , the main changes
in the network will clearly all t^nd to go in the direction of a solution. The
following theorem proves that the procedure is sufficient to guarantee a

solution, if a solution exists, in the form of some assignment of values to the

network.

THEOREM 2: Given a three-layer series -coupled perceptron, with
simple A and R -units, variable -valued S-A connections,

bounded A-R values, and a classification C(w) for which
a solution exists, then a solution to C(W) can be obtained
in finite time with probability 1 by means of a back-
propagating error-correction procedure, given that each
stimulus in W always reoccurs in finite time, and that
probabilities pf , f>t , and p3 are all greater than 0

and less than 1 .

PROOF: The state of the S-A network can be characterized, for present
purposes, by an A/a by n matrix, A* , which consists of the row vectors;

a* r * * * \Ai " (ai/ ' ai2 Ain)

where a.*j « 1,0 m signal generated by unit at- in response to

stimulus Sj Two assignments of values to S-A connections which yield

*

the same A -matrix will be called equivalent S-A states. To each such
matrix, A , there corresponds a G- matrix for the perceptron. We will say
that a given S-A state permits a solution if the corresponding G-matrix is
one for which a solution to C(W) exists.
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First, suppose the system is initially in a state which permits
a solution. Then if it remains in this state sufficiently long, a solution must

occur with probability 1, due to Theorem 4, of Chapter 5. Since S-A
connections only change in value if the errors E- are assigned magnitudes
other than zero, and since the probabilities pf ' P2 ' an<* Pj of ass*8n-
ing non-zero F- are all less than 1, there is a probability p > 0 that the

perceptron will remain in its initial state for any given finite time. Thus,
there is a probability greater than zero that a solution will be achieved
before any change in the A -matrix occurs.

Next, suppose the A -matrix changes to some different state

before a solution is achieved, or suppose that the system starts out in a

state which does not permit a solution. Then it is sufficient to show that
the system will always return to a state which does permit a solution in
finite time with probability 1, and that the probability P of obtaining a

solution for a given S-A state does not approach zero with successive
returns to the same state. If it does always return to such a state , then
each time it arrives at such a state, there will be a probability greater
than zero (and bounded away from zero) that it finds a solution before the

state is destroyed. Thus, with sufficiently many returns to states which
permit solutions, a solution will be found with probability 1.

It is now necessary to show that from an arbitrary starting
state, the system will always achieve an A -matrix which permits a

solution in finite time with probability 1 .
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*If the current A -matrix does not permit a solution, then
either or both of the following conditions must be present:

(a) Some which should be 1 for a solution to be

possible is actually 0;

(b) For some C*j which should be 0 and is actually 1,

there must be a %rt-r the sign of which disagrees with
R for stimulus Sj .

The second condition follows from the fact that if every active connection
from A to R-units has a 1/~;r with proper sign for every Sj , and if
condition (a) is not present, then a solution already exists. Now suppose ,

for an arbitrary A -matrix, Stimulus Sj occurs. Then condition (a) may
exist for some A-units, and condition (b) for others. For each A -unit
which is currently off (including all of those to which condition (a) applies)
Rule 2b or 2c of the correction procedure becomes operative, and there is
some probability that each such unit will receive an error indication. Since
we have assumed the activity of these units to be necessary for a solution,
and have postulated that a solution exists, there must be some assignment
of S-A values for each such unit which will turn it "on" for 5; • Since 5;
is postulated to reoccur infinitely many times, then it follows from
Theorem 4 of Chapter 5 (treating the A-unit and its input connections as
equivalent to an R-unit) that the required will ultimately be obtained.
Since each A-unit is corrected independently of the others, a state will
ultimately occur in which all of the A-units which were wrong by condition (a)

have been corrected. Next consider those A-units for which condition (b)

applies. For these units Rule 2a of the error correction procedure is
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applicable, and by the same argument as above, the c'j will ultimately
all be corrected. But in that case, we have arrived in a state which permits
a solution. Since there is nothing in the above argument which depends on
states prior to the arbitrary starting state, the system can arrive at states
permitting solutions indefinitely often, and a solution must therefore occur
with probability 1 , provided the probability P of finding a solution while in
such a state does not approach zero. This last assumption, though plausible,
still remains to be rigorously proven for the general case.

For the special case in which the values ir;r are bounded, the

remaining assumption can be proven without difficulty. In the proof of
Theorem 4, in Chapter 5, it was shown that the number of corrections
necessary to find a solution is at most equal to

MU + efn)2

where M and <x are constants depending only on the G-matrix (and
therefore on A ), and 4. is the length of the vector Hz ° -. Thus the

number of corrections required to find a solution can incrase only as a
result of an increase in the magnitude of some components of the starting
vector, X , upon successive returns to the same S-A state. But if all
values i/;-r are bounded, the components of x° are also bounded. Conse
quently, A has an upper bound for any given H (or for any given A ).
This means that there is a maximum number of corrections that might
possibly be required (assuming that a solution exists) and that the proba
bility p of arriving at a solution before destruction of the A state is not
only greater than zero but must be bounded away from zero. Q.E.D.
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13.4 Simulation Experiments

At the present time, no quantitative theory of the performance
of systems with variable S-A connections is available. A number of simu

lation experiments have been carried out by Kesler, however, which

illustrate the performance of such systems in several typical cases, shown
in the accompanying figures. In order to show the performance of the

variable S-A system to its best advantage, small perceptrons were used, for
which the learning of a horizontal/vertical bar discrimination (Experiment 6)

falls short of what might be obtained with an optimum S-A organization.

Figure 38 illustrates the effect of various combinations of the
probabilities f f , p , and pt (including the 0,0,0 case where all S-A
connections remain fixed, for comparison). The curves show the mean
performance for 20 perceptrons, with 50 A-units, having 10 input connections
to each. The initial values of all S-A connections are set equal to +10, and

the threshold is 50. The same set of 20 networks and training sequences
was used for each probability combination.

It is found that if the probabilities of changing the S-A
connections are large, and the threshold is sufficiently small, the system
becomes unstable, and the rate of learning is hindered rather than helped
by the variable S-A network. Under such conditions, the S-A connections
are apt to change into some new configuration while the system is still
trying to adjust its values to a solution which might be perfectly possible
with the old configuration. Better performance is obtained if the rate of

change in the S-A network is sufficiently small to permit an attempt at

solving the problem before drastic changes occur. To improve the stability
* The experiments were carried out with the Burroughs 220 computer at

Cornell University, and the IBM 704 at the A.E.C. Applied Mathe
matics Center at New York University.
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of the network,in all experiments shown here, the A-R connections are
reinforced,for each stimulus, before determining whether a correction should

be propagated back to the S-A network. Thus, S-A connections are changed

only if the system fails to correct an error at the A-R level.

In Figure 39, mean performances of a number of 20 A-unit
perceptrons are shown, in one case with 4 connections, and in a second

case with 50 connections to each A-unit. These perceptrons are small enough
so that in many cases we would expect no solution to exist to the horizontal/
vertical bar problem (which requires the classification of 40 stimuli with
only 20 A -units) were it not for the modifiable S-A network. Initial values
of S-A connections are again equal to 10, and thresholds are 1m , where
m - number of connections to each A-unit. Note that with 50 fixed connections
to each A-unit the performance is poorer than with only 4 connections, but that
with P, = .9, P2 = .3 and Pj = .1 , the performance overtakes the 4-connection
model. This is because with large numbers of S -A connections, the per-
ceptron can effectively take its pick of whatever organization might be most
helpful, and can always reduce excess connections to zero value, while
with only a small number of connections at its disposal it is seriously limited
in its potentialities. With only 4 connections, variable S-A connections have

little effect on performance.

These experiments suggest that the best performance will
generally be obtained by taking Pf > P. > Pj .
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T (NO. OF TRAINING STIMULI)

Figure 38 BACK-PROPAGATING ERROR-CORRECTION EXPERIMENTS: MEANS OF 20 PERCEPTRONS

Na = 50, 9 = 50, 10 CONNECTIONS TO EACH A-UNIT. HORIZONTAL/ VERTICAL
BAR DISCRIMINATION (EXPT. 6). (O-SIGNALS COUNTED CORRECT WITH .5
PROBABILITY).
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Figure 39 BACK-PROPAGATING ERROR-CORRECTION EXPERIMENTS: MEANS OF 10 PERCEPTRONS
WITH Na = 20, m CONNECTIONS TO EACH A UNIT, 9 = 2m. HORIZONTAL/ VERTICAL
BAR DISCRIMINATION (EXPT. 6). O-SIGNALS COUNTED AS ERRORS.
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An interesting application of the variable S-A system is in
pre-conditioning a perceptron for stimuli of a particular type (such as line

figures, or blob patterns) by giving it a number of discrimination tasks to

perform on typical material of the given type, and then trying to teach it a

new discrimination on the same kind of stimuli. Due to the prior adaptation
of the S-A system, it is to be expected that the learning curve for the final
discrimination task should show faster learning after the period of pre

conditioning than if the same discrimination task had been attempted with
the original randomly organized S-A network. In other words, the S-A
network should become adapted to the stimuli of a particular kind of universe,
performing better on typical discrimination tasks involving "familiar" kinds
of stimuli than on tasks involving radically different or "unfamiliar" kinds
of stimuli.
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14. SUMMARY OF THREE-LAYER SERIES-COUPLED SYSTEMS:
CAPABILITIES AND DEFICIENCIES

The three -layer series -coupled perceptron (S-*A-»R perceptron)
is the least complicated topological organization which yields fully general
response-capabilities. The analysis presented in the preceding chapters
leads, in effect, to the following conclusion: With a suitable design and

training procedure, a three-layer series -coupled perceptron can be taught
to duplicate the performance of any finite automaton. This means that if we

have a finite universe of potential input sequences ( J j, J . . , J„ ) and

a finite set of possible response sequences ( H , X , . . . , X„ ), then it is
1 it

possible to construct a minimal perceptron such that any response sequence,
X- , can be associated with each possible input sequence, . In order

to do this with full generality, of course, a suitable spectrum of time delays,

T;j , must be present, as indicated in Chapter 11.

Both the generality and the practical limitations of the above

statement should be emphasized. It is perfectly possible, in principle, to

teach a minimal perceptron to duplicte the performance of an arbitrary digital
computer. To do this, every possible sequence of coded instructions and data
must be represented as a stimulus sequence (one of the J; ) and the set of
output numbers generated by the computer as a response sequence (one of
the Xj ). If the perceptron is large enough, it can then be trained, with
an error correction procedure, to make the appropriate association of input
and output sequences. But what the perceptron learns by this process is to

simulate the behavior of the digital computer; it does not acquire the

-303-



computer's logic . If any one of the trillions of possible programs were

omitted from the training sequence, the perceptron would probably fail to
perform correctly if tested on the omitted sequence. The failure to genera
lize, or to learn logical rules, in such a problem makes such an application
of these minimal perceptrons totally impractical.

For practical purposes, we will limit our remarks to the

performance of these perceptrons in recognizing and reporting environmental
events. In this connection, the following capabilities have been established:

(1) A three-layer series -coupled perceptron can be

taught to associate an arbitrary coded output, or sequence of outputs, 7?; ,

to each stimulus, or stimulus sequence, Jl , in a finite environment.

(2) The perceptron need not be explicitly designed for the

task which it is required to learn. The same network may be taught a

variety of alternative outputs, or codifications, of the same environment.

(3) The required training can be accomplished by means of

an arbitrary sequence of events from the specified environment, regardless
of the order or frequency with which they occur, provided each event
ultimately reoccurs in finite time.

(4) The training can be accomplished regardless of the

initial state of the perceptron's memory, and without specifying in detail
the changes which must take place in the state of the system (i.e. , general
dynamic laws are sufficient to bring about the required adaptation).
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(5) A perceptron will tend to assign the same response to

any two stimuli or stimulus sequences, <J- and Jj , which are close to
identity under temporal translation. By means of discrimination training,
however, it can be made to associate a different response to each such
stimulus .

With this kind of universality in the performance of the system,
we obviously cannot hope to find any new kinds of response capabilities in
more complex or sophisticated networks, which cannot be realized by
minimal perceptrons after suitable training. Nonetheless, the three-layer
series -coupled perceptron clearly falls far short of biological systems in
some respects. The differences lie not in what the system can learn to do,

but rather in the speed, efficiency, economy, and reliability of learning or
adaptation. An S -» A-*-R perceptron can be taught to play a game, such as

checkers, only by teaching it what response to make in every conceivable
situation; a biological system can anticipate most of this training by
learning the rules of the game. Or, similarly, an S-»-A-»-R perceptron can
distinguish a circle from a triangle in the lower half of its retina only if it
has previously been trained with triangles and circles in the lower half of
its retina; it will not generalize from experience with similar forms in the

upper half of the field. In Nature, the enormous number of sensory situations
which comprise the potential universe (each situation, individually, having
exceedingly low probability of occurrence) makes the capabilities of
generalization, analysis, and abstraction absolutely essential for an
advanced organism, or recognition device, to function properly. Two main
ingredients of such performance are recognition of similarity and recogni
tion of functional parts, or entities. The first of these is basic to generali-
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zation and induction, while the second is basic to analysis, the abstraction
of relations, and the reduction of complex situations to familiar terms.
Seen in this light, the principal deficiencies of these minimal -topology
perceptrons are:

(1) An excessively large system may be required.

(2) The learning time may be excessive.

(3) The system may be excessively dependent on external
evaluation (by an independent r.c.s.) during learning.

(4) The generalizing ability (inductive ability) is insuffi
cient .

(5) Ability to separate essential parts in a complex
sensory field (analytic ability) is insufficient.

Point (1) is largely attributable to (5); the excessive size of
the perceptrons necessary to deal with complex environmental situations
is due largely to the necessity of having a characteristic set of A-units
representing every possible sensory field or sequence in its entirety. A
preliminary coding of the field in terms of its parts and relations would

greatly reduce the size of the system required to describe a given universe
of situations. To take an extreme case, if a three-layer series -coupled
perceptron is required to produce as an output the coded representation of
the sum of a sequence of a million digits, it must be capable of representing
in its association system every possible sequence of a million digits
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(presented either serially or simultaneously): 10 possibilities in all.
On the other hand, a perceptron which could attend selectively to each

8digit, form a partial sum, and then go on to the next digit, requires only 10
7possible states: 10 to represent the possible values of the partial sum,

multiplied by a factor of ten to allow for each of the possible incoming digits.
The second method is the one employed by a digital computer, or a man
adding a sequence of numbers. In the field of sensory pattern recognition,
similar conditions occur. The recognition of a sentence is made much
easier by breaking it into words, and the recognition of a scene is made

easier by analyzing it into objects and relations.

Similarly, the excessive learning time (point 2) can be largely
attributed to (4), the insufficient generalizing ability of the system. With
improved generalization, several examples should be sufficient to teach
the perceptron to recognize all members of a class of similar events,

whereas at present an unduly large sample is required in order to extend
the response over the class. The insufficient generalizing capability has
been frequently pointed out in the preceding chapters, and is common to

all of the S*-A-*"R perceptrons. Thus points (3), (4) and (5) appear to be

the primary deficiencies.

In connection with point (3), we note the failure of minimal
perceptrons to reach "useful" terminal states under R-controlled
reinforcement procedures, except under exceptional environmental and

organizational conditions. This means that the reinforcement control
system must itself have a great deal of information about the environment,
and must generally know, or have built into it, the precise discrimination
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or response functions which the perceptron is supposed to learn. Thus the

r.c.s. must either be a free agent (e.g., a human trainer) or else some
kind of homunculus within the same physical system as the perceptron. It
has been noted that a perceptron can improve over the performance of the
r.c.s. in some cases (Section 8.1.4) but the functioning of the r.c.s. still
seems to be rather remote from what might be expected of a biological
motivating system. By using a random-sign correction procedure, the

information required from the r.c.s. is minimized; with such a procedure,
the possible outputs of the r.c.s. can be interpreted to mean "hold steady"
or "change", while with a directed correction procedure the three alterna
tives "hold steady", "increase values", or "decrease values" are all
required. But the efficiency of a system employing the randomized
procedure is greatly reduced (c.f ., Figure 19) and the only hope for such

systems seems to be in a "majority rule" procedure, which increases the
size and complexity of the total organization.

If a system could be contrived which would guarantee
generalization of a response from one stimulus of a class to all other

stimuli of that class, an r.c.s. which employs the "trial-and-error"
process of the random-sign procedure might become practical, and a

simple motivation system which senses only the suitability or unsuitability
of the present response or state of the organism might be substituted for
the more complicated r.c.s. assumed for most of the preceding experi
ments. In Part III, it will be shown that multi-layer and cross-coupled
perceptrons are capable of providing just this sort of generalizing capability,
and, moreover, that this capability may be "self -organizing" under
reasonable environmental conditions. That is to say, R- controlled systems
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can learn to form reasonable classes on the basis of a similarity criterion,
provided there is some support for this organization from the environment.

The required support takes the form of a "continuity constraint", which says,

in effect, that stimuli do not occur as momentary flashes, but are more

likely to persist for a time, during which they undergo a series of move

ments or transformations. It will be seen that such a sequential organization

provides sufficient information to enable a multi-layer or cross-coupled
perceptron to abstract a concept of similarity which can then be employed
to obtain immediate generalization in later situations .

The improvements which have been demonstrated to date in

multi-layer and cross -coupled perceptrons will be seen to be primarily
in the field of generalization phenomena, and their main virtue is in

reducing the learning time of a perceptron. Some reductions in size

requirements have also been demonstrated, and the dependence on

external evaluation of performance is largely eliminated. Thus points (1)

through (4), in the list of criticisms of minimal perceptrons can be largely
or entirely eliminated with a multi-layer or cross -coupled topology.
Point (5), however, remains the least understood of the current problems.
While there is some indication that perceptrons of the types to be consi

dered in Part III may have some analyzing ability (for example, they can

isolate contours from solid figures, and may possibly learn to suppress
the partial response of the association system to irrelevant aspects of the

stimulus field) it is not yet possible to say whether such systems are really
sufficient to meet the challenge of point (5), or not. The psychological
problems of figure-ground organization, recognition of relations, and
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"cognitive set" are all involved here. It is likely that "back-coupled
perceptrons", in which R -units or deep association layers feed back to

more superficial layers, may be necessary to deal with these problems.
Several possible approaches will be considered in Part IV, which deals
with current problems, and attempts to establish directions for future

study.
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PART in

MULTI-LAYER AND CROSS-COUPLED PERCEPTRONS



15. MULTI-LAYER PERCEPTRONS WITH FIXED PRETERMINAL
NETWORKS

The perceptrons considered in Part II have all consisted
of three ''layers" of signal generating elements: a sensory layer, a single
layer of association units, and a layer of R -units (containing only a single
unit in the case of simple perceptrons). A perceptron with additional layers
of A -units between S and R-units will be called a multi -layer system. Thus
the network diagram:

represents a four-layer series -coupled system, whereas the diagram

represents a three-layer cross coupled system, since all A-units are at

least the same logical distance from the sensory units (see Definition 18,

Chapter 4). The three -layer structure of the second diagram can be made

clearer if it is drawn in the form:
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5 A

which is topologically identical to the preceding network. Cross-
coupled systems will be considered in detail in the following chapters.

It has been demonstrated that three-layer, series coupled
perceptrons are capable of learning any type of classification, or
associating any responses to stimuli or to sequences of stimuli, that
might possibly be required. Therefore, if a multi-layer topology is to
offer any functional advantages, it will not be in the form of new kinds of
responses to stimuli (since any such response can be achieved with a

three -layer system) but rather in increased efficiency in the acquisition
of such responses. It can, in fact, be demonstrated that the adaptability,
or ease of acquisition of responses, may be greatly improved with a

suitable multi-layer topology. The most striking improvements are to
be found in the generalizing ability of such networks --an ability to give
appropriate responses to stimuli for which they have not been taught. It
has been seen that this "inductive" or generalizing capability is present
only in rudimentary form in three -layer series -coupled systems. Some
multi-layer systems also show improvements in sensitivity to differences
between highly similar stimuli, making such discriminations easier to
learn, as will be seen in Section 15.1.
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In the following sections, we will first consider systems in
which all connections other than connections to R-units have fixed values,

only the R-unit input connections being reinforced. The connections to the

R-units will be called terminal connections, all other connections (from S

to A -units, and A -units to other A-units) being called preterminal connections.
It will be seen in Section 15.2 that the most interesting effects which can be

obtained by such systems depend on special constraints in the organization of

the preterminal network. The following chapter will therefore be devoted to

the examination of dynamic rules by which the preterminal connections
between layers of A-units can be modified, so as to yield the required organi
zations as a result of the system's adaptive functioning, in a suitably organized
environment.

The analysis of multi-layer systems is of interest not only in its
own right, but also because it introduces many of the problems and formal
techniques of analysis which will be encountered in the following chapters on

cross-coupled systems, with feed-back loops within the network. In fact, it
is found that with a suitable transformation, many "closed-loop" cross -
coupled systems can be represented by an equivalent "open -loop" multi
layer system.
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15.1 Multi -layer Binomial and Poisson Models

The most straightforward extension of our previous models to

a multi-layer topology is to assume that each A-unit in the first association
layer is assigned an origin point configuration in the retina, or sensory
layer, chosen independently for each A-unit, as before. Each A-unit in the

(2)second layer (designated A ) is similarly assigned an origin point configu
ration in the A^ ' layer, independently for each such A-unit. In general,

(It)every A-unit in the A layer is independently assigned an origin point
configuration from an appropriate distribution (binomial or Poisson model),

(k-1 )the connections originating from the A layer. All connections from one

A-layer to the next are assumed to be fixed in value, the final A-layer sending
variable -valued connections to the R -units. In order to analyze the perform
ance of such a perceptron, it is sufficient to determine the Q-functions for
the A-units of the last layer .before the R-unit, since, given these Q-functions,
we can then apply the same equations and analysis which were employed
in Part II, for three -layer perceptrons. The notation Qijl.n will be

used to denote the Q-functions for A-units in the first layer (which are
U)identical with the Q-functions discussed in Chapter 6), and Qij..n to

denote Q-functions for units in the it**1 layer.

Even in the simplest case, of a four layer perceptron, the

combinatorial analysis required for a rigorous statement of functions
is awe-inspiring. A special case, in which all inter-layer connections are
inhibitory, and the thresholds of all A units are zero, has been
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analyzed by Joseph (Ref. 41), and the reader is referred to his contri
bution for the detailed considerations. The basic difficulty stems from
the fact that a second layer Q-function, such as Q- depends on the

distribution of the numbers of A-units in the first layer which respond
to 5; alone, Sj alone, and jointly to 5; and Sj The expected
values of these numbers are obtainable from the Q(t* functions in a

straightforward manner, but the non-central moments of the distributions
enter into the analysis in such a way that it becomes unduly complicated.

A practical solution is obtained by assuming that the numbers
of A-units in the 1st, 2nd, . . .i-1**1 layers (designated by

N^' ', Nla3\ ... , N ft ' '
)are all very large, or infinite. In this case,

the proportion of active units in each layer in response to S; will be
equal to Q; , and the expected values of all set-intersections can be
employed in the analysis. In this case, the equations of Chapter 6 can
be employed without modification to compute Qiji, n using <

?/
' ^

in place of the stimulus area, /P
; , q/
j ' in place of the intersection

C , etc. The error introduced by assuming infinite Na for the pre
terminal layers will be slight, as long as the actual N± is reasonably large.

The addition of extra A-unit layers can have one of several
interesting effects, depending upon the parameters x , (/ , and G

(or x t y ,and 9 in a Poisson model) for each layer. The special
case of inhibitory connections and zero thresholds was investigated by
Joseph (Ref. 41), who finds that by optimizing the number of input
connections to each layer, so as to achieve highest probability of correct
recognition, Q- approaches a constant as the number of layers increases,
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regardless of the size of the stimuli or the dichotomy which the perceptron
is required to learn. At the same time, Q;j approaches Q? , Q;j£
approaches Q; , etc. In effect, this represents a condition in which, in
the terminal association layer, a statistically independent set of A -unite
responds to each stimulus in the environment. The consequence is that
all discriminations become equally easy. Specifically, it was found that

/ ju2(ux) \the ratio y g.2 (u
—~J *or 100 A-units in the terminal layer approaches

1.941 as the number of layers is increased, with an environment of 40

stimuli. A comparison with Table 3, in Chapter 7, shows that this
performance is less than would be achieved with a three-layer perceptron
for the task of discriminating horizontal from vertical bars, but it is
considerably better than the performance of a three -layer perceptron
on a more difficult task, such as the odd-even bar discrimination illustrated
in Table 4. Thus the addition of extra association layers can be used to
improve discrimination in difficult problems, but only at the cost of reduced

generalizing ability, since two adjacent stimuli with a large intersection are
now no more closely related (in the A * layer) than two totally disjoint
stimuli.

In Joseph's model, with all inhibitory connections, the above

results are obtained only by optimizing the number of connections to each
new layer of A-units. If, instead of carrying out this optimization, a fixed
number of connections is assumed for all A-units in the system, the

perceptron will be unstable, and will tend to develop oscillations such that
alternate A-layers are totally "on" or totally "off", making all discrimi
nation impossible. Moreover, it is to be expected that a model which has
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been optimized for one environment, with a given size of stimuli, will be
unstable in a different environment, with a slightly different size of stimuli.
In more practical cases, a mixture of excitatory and inhibitory connections
must be used, with thresholds greater than zero, in order to guarantee
stability and convergence of Q; for a range of environmental variations .
Clearly, if X < y +- 9 , Q;** will not go to 1 as 4 increases. If x = y ,

a suitable choice of 9>0 will generally guarantee, as well, that Q-

will not go to zero. From Figure 7(b), for example, it is clear that if
X = y - 5 , and 8=1 , an equilibrium should occur at about Q; = .37 ,

since at this point Q;(i) = Q:(*~
°

. If Q:(4~
^ should rise above . 37,

we will have Q; < Q;( * , while if Q;(*~'* falls below .37 we

will have Q;U) > Q;U~ .* If we increase the amount of inhibition by
making x - 3, y - 7 , then (from the same Figure) we find that the
equilibrium value of <?; is reduced to .14. If the inhibition is increased
still further (e.g., to X. = I, y - 9 , as in the bottom curve of Fig. 7b)

the equilibrium value of Q: is zero, and no matter how large a stimulus
is presented, activity will die away entirely in the "deeper" association
layers .

* This observation will generally not be valid for a small perceptron,
where the actual level of activity may go to zero in one of the layers,
due to random variations in the network. In this case, 0; will be
zero for all subsequent layers. Thus, for a finite system, Q; » 0.
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15.2 The Concept of Similarity-Generalization

So far, the addition of extra association layers has had no

important effect beyond the sharpening of the discriminative acuity of the

perceptron, generally counterbalanced by a loss in the generalizing capa
bility of the system. In the next section, we will consider a four-layer
perceptron with special constraints in the organization of the connections
to the A -units, such that the system tends, spontaneously, to generalize
a response associated to a given stimulus pattern to all "similar" stimuli,
regardless of their location in the retinal field. In the following chapter, it
will be shown that such constraints need not be built into the system ab initio
but can arise through a spontaneous adaptation process (without any inter
vention by the r.c.s. ) if some simple dynamic laws are introduced. In all
of these systems, the concept of "similarity" is of fundamental importance.

The term "similarity" has been used in a number of different
ways, some of them well-defined, as in "two triangles are similar", some
relatively vague and ambiguous, as in "two faces are similar" or "two ideas
are similar". For present purposes, we have need of a concept which will
cover the range of relationships which might make two objects appear
"similar" to a perceiving observer, but which will still permit exact
definition for purposes of analysis. We must also distinguish between
the "objective similarity" of objects in space, the similarity of stimuli
on the retina, and the "subjective similarity" which the observer recognizes
and reports. While the concepts proposed here do not cover all of the

possible meanings of "similarity" in psychology, they are sufficient to

permit the design of a number of perceptual experiments related to the

similarity problem.
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15.2.1 Similarity Classes

We will first consider a definition of similarity which is
applicable to the classification of stimuli. From this point of view, two

stimuli either are similar or they are not; there are no intermediate degrees
of similarity. In the following section, a quantitative definition which per

mits a multidimensional ordering of objects or stimuli according to their
similarity will be considered.

For present purposes, the only constraints which will be placed
on the logical nature of the similarity relation are that it should be

symmetric and reflexive; that is, if A sim B, then B sim A, and A is

always similar to itself. It is not required that the relation of similarity
should be transitive; that is, A sim B and B sim C does not imply A sim C,
except under very special conditions, as will be seen below. There are

clearly a large number of possible relations which meet the logical conditions

for a similarity relation. For example, equality, geometrical congruence,

equality of area, and topological equivalence are all admissible possibilities.
Thus, in specifying the similarity of two stimuli the notation A sim B | #

will be used, where H is 8 particular relation, meeting the conditions

of symmetry and reflexivity.

The set of stimuli which are similar under a given relation
will be said to form a similarity class under that relation. For example,

if fi is defined as the relation of similarity under a rotation group, then

A sim b| tl means that A is a rotated image of B, and B is a rotated

image of A .
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In perceptual problems, a particular kind of similarity class
is of particular importance. This will be called a projective similarity
class, and is defined as follows . Let the sensory points of a perceptron
be embedded in an r -dimensional sensory manifold, J . Let J be

embedded in an r+ 4 dimensional world manifold, 97Z . An object in 972

is defined as any set of points in Vtl Let fl be a set of admissible
objects in 9n Let df be any transformation group in 731 . Let a

projection TT be defined as an operation which maps every point in 971

into at most one point in J Then A aim b|^, J , fl , TT means
that stimuli A and B are both TT -projections onto the sensory points inJ of transforms under J> of the same object in fl

A few moments reflection should show that this encompasses
most of the cases in which we say that two stimuli are perceptually
"equivalent"; for example, any group of rigid movements of an object in
3 -space will yield a projective similarity class on a two-dimensional
retina. Note that this similarity relation is not generally transitive. For
example, if we let stf be the group of rigid motions in 3 -space, and let
r - Z , then the similarity classes generated by a flat cut-out of a

square in 971 , and by a cube in 971 (with orthogonal projection onto the

retina) are related by the Venn diagram:

* The term "object" is used in much the same sense as "distal stimulus"
in psychology. Our use of the term ."stimulus" always signifies a
"proximal stimulus" unless otherwise specified.
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where the intersection includes all cases where the square and a face of
the cube are both parallel to the retinal surface (assuming J to be

Euclidean, which it is not in a vertebrate eye). A tilted square will be

projected as a parallelogram, whereas a tilted cube is projected either
as a rectangle, pentagon, or hexagon, so that the classes, although they
intersect, are not equivalent.

For the special case in which the points of an object and all of
its transforms in 972 can be placed in one-to-one correspondence with the

S-points in J , the relation of projective similarity will be transitive.
This includes the case in which VH and J are of the same dimensionality
and coextensive, objects and transforms consisting only of sensory points in
e)7L . Most stimulus classes considered in experiments up to this point have

been interpretable in this fashion. Alternatively, 972 might have a higher

dimensionality than J , but the group J> may be limited to motions
parallel to the surface of Jt . Here again, with a suitable choice of Jr ,

a transitive similarity relation can be obtained.

The case of greatest psychological interest is that of a three-
dimensional wo rid -manifold, 9?l , and a two-dimensional sensory manifold,

, where ^ is the group of rigid motions and dilatations in 972 . A
perceptron which generalizes strongly between any two members of a

similarity class defined by such a relation, and generalizes weakly between
stimuli which are not in the same similarity class, will duplicate a large
fraction of the perceptual behavior of a biological organism, in the visual

*
domain.

* A consideration of some of the projection operations which apply to
this problem can be found in Gibson, Olum, and Rosenblatt, Ref. 27.
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15.2.2 Measurement of Similarity, Objective and Subjective

Let be a Lie; -group (of dimension r ) of transformations
of the manifold 'M. . Let B be a canonical system of coordinates defined in
the Euclidean r -space, Er , such that every system of equations

9l(t) - a; t (where g- is the coordinate of g in B) gives a one-
parameter subgroup g(t) . Then the distance d(0,g) for any ge(J/)
(9 " £ 9i , 9i , • - • , 9r)) is 8iven by

<*(o,9) = fLgJ
We then define the similarity measure ju.(X, Y)\if,B for the objects X
and Y with respect to J? and B as

ju(X,Y)\Jf,B = M4<0,9) (15.1)

where r - { 9 : X - gY } , ge& (That is, P is the set of all trans
formations in j& which will transform the object Y into the object X . )

Note that this measure is applicable only to objects in 9?2

which are similar under ; it is not applicable to stimuli unless J
is coextensive with Vfl Consequently, the measure J/. will be called
the objective similarity measure with respect to s& and B. This
measure represents the length of a sort of "shortest path" by which Y

* Readers who are unfamiliar with the theory of Lie-groups will find a
useful discussion of this subject in Pontrjagin (Ref. 111).
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can be continuously transformed into X , by means of transformations
of the group jb The choice of the basis, B • determines the relative
weighting attached to various subgroups of jtJ . For example, if J? is
the group of translations in 9n , then can be made proportional to the

length of the displacement vector which would carry Y into X -

Let us also define the subjective similarity measure with

respect to a perceptron, P , a response unit, R , and a projection
operator 7T , by

J+*(X, r)\n,P,fi =QXy(8)/ 7<?x (*) Qy (1) ± 1 (15.2)

where ff^yffil is the value of Qfj for the stimuli corresponding to the

objects X and Y (under the projection 77~ ) measured in the source set
of the response unit R For an oC -system, and stimuli of fixed size,
jjJ*(J(i Y) is proportional to the generalization coefficient gXy , for the
response R . For two identical stimuli, /+*(X,Y) - / If the value
of yu. (X,Y) is a monotonic function of the objective similarity of the

objects X and Y , we would expect the response f to generalize most
strongly to highly "similar" objects, and most weakly to dissimilar objects.
Over any given subgroup of transformations of an object in 9fl . this
induces a "generalization gradient" equivalent to the use of the term in

experimental psychology.

A perceptron which is to simulate perceptual performance
must have or acquire a close correlation between the subjective and

objective similarities of objects in physical space, under the group of
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rigid motions and some kinds of cintinuous deformation. A perceptron in

which such a correlation exists is said to be capable of similarity generali-
zation. Similarity generalization implies that the perceptron not only tends

to generalize to similar objects, but retains its ability to respond differen
tially to dissimilar objects. The demonstration of such a capability will be

our main concern for the remainder of this chapter and the following four
chapters .

15.3 Four-Layer Systems with Intrinsic Similarity Generalization

15.3.1 Perceptron Organization

The four -layer perceptrons to be analyzed have fixed connections

except for the terminal A to R-unit connections, and a topology which is
illustrated in Figure 40 . S, A, and R-units are all assumed to be of the

simple variety, resembling those of an elementary perceptron. The

special features of this system (which might be called a "similarity-
constrained perceptron") are the following:

(1) Each A(l) unit has a threshold 9 , X excitatory and

y inhibitory input connections, and a single output connection to one of the

A units .

(2) Each A^* unit receives connections from a source

set of m A ^ units, and has a threshold equal to 1.
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A11' UNITS

TOROIDAL RETINA

• = EXCITATORY ORIGIN
O = INHIBITORY ORIGIN

VALUES = + I VALUES = + I VARIABLE
VALUES

Figure 40 ORGANIZATION OF A SIMILARITY-CONSTRAINED PERCEPTRON ( x = 2, y
m = 3). J> = TRANSLATION GROUP IN TOROIDAL RETINA.
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(3) The values of all connections from A^* to

units are equal to +1 .

(4) All ) units in the source set of a given A' ^

unit have origin point configurations which are members of a similarity
class, under some similarity relation

The subsequent discussion will be limited to the special case
in which the similarity relation tZ is equivalent to similarity under a

*transformation group, & , in the sensory space of the perceptron. This
(Omeans that, when an origin configuration has been picked for one of the A

units connected to a given A*2) unit, the remaining 972-/ A * units
connected to the same A^ ^ unit must have origin configurations which
are transforms under J7 of the first configuration selected. This is
illustrated in Fig. 40 for a case in which 971 = 3 , and the transformation
group is the group of horizontal and vertical translations on the retina.
In the model to be analyzed, it is assumed that a single template configuration
is chosen at random for each A^2) unit, and the m origin configurations
actually assigned to the A^ units are obtained by selecting m transform
ations at random, without replacement, from the group . This yields
the auxiliary condition that no two A^^ units in the same source set have

identical origin point configurations.

* In the case considered here, the world manifold 971 and the sensory
space d are taken to be coextensive, with a one-to-one correspondence
between objects in 971 and stimuli in J
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15.3.2 Analysis

To begin with, we will attempt to provide an intuitive basis
for understanding the functioning of the similarity-constrained perceptron.
At one extreme, if tyl = I , note that the system becomes functionally
equivalent to an elementary perceptron of the binomial variety, with A-units
having the same parameters as the A units in the 4 -layer model. At
the other extreme, where m is equal to the order of the transformation
group, there is one A(*) unit in each source set for every possible trans
form of the "template configuration". Now if one of the A ' units whose
origin configuration is uJ responds to a stimulus Sx , any transform
T(SX) will necessarily activate the A^1 unit whose origin configuration
is the transform T(cu) . Since both of these A 1 units are connected
to the same A^2^ unit, this unit will respond both to Sx and T($x) ,

since its threshold is 1, and the values of the connections from A^ to

A(2* units are fixed at 1. Thus we have the rule that any A(2 unit
which responds to a stimulus Sx will also respond to all transforms T(SX)
under the group J7 Alternatively, we could state that if 5z sim S„\& ,

(2)and an A unit a- responds to Sx , then this unit will also respond to

5y . Next suppose that in addition to making m equal to the order of the
group, the threshold of the A ' units is 9 = number of excitatory
origins = area of the stimuli, and the number of inhibitory origins is
equal to the complementary area, so that an A^1 unit will respond to

1.2)only one stimulus. We then have an ideal situation,, in which an A unit
responds to all the members of a given similarity class, and only to

members of that similarity class. Under these conditions, if we show the

-329-



perceptron a stimulus, say a square, and associate a response to that

square, this response will immediately generalize perfectly to all
transforms of the square under the group St , and will not generalize at

all to any stimulus which is not a transform of the square under Jf

The conditions considered above, where m is equal to the

order of the group, and each /4 unit responds to only one possible
stimulus, are impractical in the extreme, for a retina of reasonable
size. It should be clear from the above arguments, however, that even
with smaller values of m (so long as m > I ) and lower thresholds, a bias

(2)will exist for an A unit to respond to similar stimuli, rather than

dissimilar stimuli, under the group & . We now pass on to a quantitative
analysis of the performance of this system, first for an environment of

random "salt -and -pepper" stimuli, and then for an environment of square
stimuli.

The performance of a four -layer perceptron of the type under

consideration can be obtained from preceding analyses of elementary per-
ceptrons if we know the G-matrix or the Q-functions of the A

* units. The
expected performance of the system (or the actual performance of a very
large system) is entirely determined by the functions 0/?^ , i.e. . the
probability that a second-layer A-unit will respond both to 5; and to S:
We will consider the case of a perceptron with N± sensory points, and
a universe of random dot-stimuli, each consisting of RN± = ns sensory
points chosen at random from a uniform distribution. Let T be any
transformation in ^ , such that the measure of the set of fixed points
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under the transformation is zero. We will use the notation 5;' to

denote the transform T(S;j , and 5;* to denote some other transform
T*(S;) , (T**T) . With this notation, q\]' is the probability that
an A(2) unit responds to 5; and to T(S;) , and (?;/' is the probability
that it responds to 5; and to ff(S;)

First of all, we have

W" ' ' I' (15.3)
(*) (2)where 0;-|; = conditional probability that an A unit responds to 5;'

given that it responds to 5," • For the first factor of this expression, we

have the close approximation

Q: * f-(/-Q. )
(15.4)

This approximation assumes that the m units connected to an unit

all have an independent chance of responding to stimulus 5; . This will be
approximately true if & « for the A ' units. In this case, since the

stimuli consist of random point configurations, the knowledge that an origin
point of the first A ' unit falls on an active S-point still leaves i

possible S-point s in the same stimulus, any one of which might coincide
with the transform of the origin point for one of the other A " units. In
the range of parametric conditions with which we are generally concerned,
equation (15.4) approaches a perfect equality.
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For the second factor in (15.3) we have the approximation

(which is accurate for small Q-'1 )

CO- I
(15.5)

where cu is the order of the group J? . The first term of this
expression, —— , is the probability that one of the m - I /)"'' units,
other than the. one which is known to have responded to 5; , has an origin
configuration which is a T -transform of the configuration of the "known"
A -unit. There are m-1 non-identical possibilities that this transform is
present, and co-i transforms from which they are chosen. If this condition
is met, then the A^2) unit must certainly respond to 7~(S;) . If this
condition is not met, with probability / - ——j , it is still possible that one
of the A units responds to T(Si) , and this probability is given by the

last term of the above expression. Here Q-'\;* is the probability that an
A " unit, which is known to respond to some transform T*(S;) will also
respond to S;' . Since T may be any transformation (including the

identity) so long as it is not equal to T , all of the m A ' units are
equally good candidates for such a response. Specifically, for the case
under consideration,

(15.6)
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where n£ - the number of common sensory points in 5,"' and 5;* ■

with probability

TP =
NA-i (15.7)

Note that the probability p that a point in 5;* is in the common area is
based on N± - t possible locations, since it cannot occupy the location of its
transform in 5;' ; however, there are na - 1 other points in 5;' whose
locations it might occupy. The only quantity which we still lack is
(I)

Qi'\i* ("c) which is given by

(l) Sa (£
1

0;

where Q-j(C) is computed from Equation (6.5) with C = n£yNA
Substituting, we have

-

1 o.v (15.8)
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Note that as /VA , the number of retinal points, goes to infinity, (with

^a/n^ constant) this quantity approaches

Qi

which is equal to for the binomial model. At the same time, the first
term of (15.5) goes to zero if m remains finite and the order of the group
increases with the number of possible retinal locations of the stimulus.
Thus, for an infinite retina and a transformation group of infinite order,
we have

which is identical to the expression for Q - - for a pair of random,

unrelated stimuli. Thus, with an infinite retina, no additional generalization,
is to be expected from a random stimulus to its transform under the conditions

assumed above. For a finite retina, however, (or for a finite group J? )

we have the inequality

1-0-0!°) (15.9)

and

(15. 10)

due to the effect of the first term in equation (15.5).
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Let us now turn to a modification of the above problem, in

which the environment consists of square patterns with edges alligned
in a square (toroidal) retina, and the group >& consists of all possible
translations. In particular, we will take the transformation T to be

a lateral translation by half the width of the retina. Tne notation 5;'
will be used for T(S;) , and T* will be taken to mean any transformation
in 2? not equal to T and not equal to the identify transformation. For
convenience, we restrict the area of the stimuli so that R £ .25. This
guarantees that 5; and S;' are always disjoint patterns. Qi^ *s

again assumed to be small. In this case we have, in place of (15.5)

where the expectation is with respect to selections of transformations
such that Tj(S;) = S;.J 'j

To avoid the computation of this expectation, we make the

further approximation that the expectation of the product of the above

sequence of Q-functions is equal to the product of the expected values of

the Q-functions. Now it can be shown that for any distribution of ,j

ETT(I-Q) * TTE(t-Q) =TT(l-£Q)

It follows from this that the approximation which we now propose to make
(2)will be a conservative one, yielding values of Q;'\i which are slightly

smaller than they should be. With this approximation, we now have:
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(2) m.i , m-t\Y r <u\m-'/ (i) \

(15.11)

since the "known" A^'* unit which responds to 5,
" has the conditional

probability

(O Q-- (0)Qr\;(0) -

of responding to the disjoint transform. S;' . The expression for
(i)

Q;'\;» is again given by (15.6), only the probability P ' is different
from the random stimulus case. A general equation for will not be
developed here, for a finite retina; in particular cases, it is obtained by
counting all of the possible ways in which a square and its translate can
intersect to yield n£ common points . Some numerical examples will be
considered in the following section. Note that the modification from
Equation (15.5) to (15. 11) will have the effect of tending to diminish the

12)
value of 9,7' for small values of m , so that for m = / the generalization
to a disjoint square will always be less than the generalization from a

square to a random stimulus of the same area, which is still given by
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If we go to the limit of an infinite retina, (and infinite trans

formation group) with the environment of square stimuli just considered,
the results differ considerably from the random stimulus case. The
difference is due to the distribution of the common area, C , which, in
the case of the random stimuli, went to with probability 1. In the

case of randomly placed square stimuli, the probability of a zero inter

section in an infinite retina is given by

4A2P(C =0) = I- —— (15.13)

where 4 = length of edge of square,
r = width of retina (r i 24.) .

The probability of 0 < C £ £ will be 4/r times the area under the

hyperbola y = \{/x from y = 0 to -& . Specifically,

P(0 < C 4<i) - —j

r2

Differentiating ,

(15.14)
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Thus, for a square stimulus of area R in a retina of area 1 (R ^ f)
we have

(I)
Q;

Aime-o. P(C) Q-j(C) dC + 0 -4R)Qii;)(0)
"c-e

4_
[+f]Q!?(<>«.(±-*)<ff(0>

(15.15)

Substituting this in (15. 11) yields an expression for W;'\; for the infinite
retina, and o/-; can be computed by (15.3), as usual.

15.3.3 Examples

Figure 41 illustrates the behavior of a similarity-constrained
perceptron, as a function of m , for various combinations of retinal
size and types of stimuli. The transformation group, in each case,

consists of all horizontal and vertical translations in a square, toroidally
connected retina. The stimuli considered are a pair of independent
random-dot stimuli, Sa and 5j, , a square stimulus 5^

, and the trans
forms Sa- , 5^' , where the transformation employed is a shift of

half the width of the retina. This guarantees that the square stimulus 5«
is disjoint from its transform 5^' . All stimuli have an area R equal
to one fourth of the retina. The parameters of the A units are
X = y = 4 , 0 =2.
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The bottom solid curve provides a baseline, with which the
other conditions can be compared. This curve is identical for Qa^

(both stimuli random and independent), Qaa, (a random stimulus and its
transform) where NA is infinite, and <?^a (a square stimulus vs. a
random stimulus). In a small, finite retina however (specifically, with

N± = 36) a random stimulus will generalize more strongly to its
transform than to an independent random stimulus, for any m > I .

This is shown by the upper of the two solid curves. The broken curves

illustrate the generalization from a square to its (disjoint) transform, both
for the 6 by 6 retina, and for the infinite retina. In both cases, we find
that the system generalizes more strongly to a random stimulus if m is
small, but that as m is increased, the perceptron begins to generalize
more strongly to the disjoint transform than to a random, unrelated
stimulus. For the infinite retina, the cross -over occurs between m = 4

and m = 5 . This means that for a ^-system, with m > S , ^-j will
be positive from a square to any other square, and will be zero from a square
to a random dot stimulus. Increasing the threshold of the A* * units will
reduce Q-*' for all curves, but will increase the relative bias towards

similar stimuli, and will shift the cross -over point further to the left for
the Qq(f' curves.

The difference in performance for squares as opposed to

random stimuli will tend to be characteristics of any coherent stimulus

patterns, provided the transformation group is one which preserves the
coherence, or compactness, of the stimuli. This may be puzzling to

some readers who recognize that under the connection rules employed
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in these perceptrons, there is nothing unique about topologically connected,
or continuous regions, which would affect the perceptron's ability to

recognize them in any different way than disconnected regions. It is,
after all, only the set of points to which connections happen to be made

which determines the response of a perceptron, and if every S-unit were
randomly interchanged with some other S-unit, a corresponding change

being induced in the stimulus environment, the performance of the

perceptron should not be affected at all. This will indeed be true,
provided any transformation group employed in the first perceptron is
replaced by a new transformation group corresponding to the rearranged
retina. The essential feature of coherent stimuli with a group of coherence-
preserving transformations is that the probability distribution of stimulus -

intersections does not concentrate at the expected value of the intersection,

as NA and the order of the group become infinite. This permits a

similarity bias to be maintained for such stimuli which cannot be

maintained for random stimuli. Any group generated by a permutation

operation on the points of the retina will have the same property, provided
the same permutation operation is applied to the stimuli. Another way

of looking at the problem is to note that with random stimuli, a sensory origi
point which is close to a stimulus point, but does not coincide with it

exactly, has a probability of being activated no greater than that of any

other origin-point . With coherent stimuli, on the other hand, an origin-
point which is close to a stimulus point has a greater probability of being
activated than one which is remote from the stimulus point. Thus, for
random stimuli, only a transformed origin configuration which corres
ponds exactly to the transformation T will help in generalizing from 5
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to T(S) For coherent stimuli, it is sufficient that the transformed
origin points should be in the neighborhood of the required transform;
proximity to the required transformation is sufficient to increase the

*probability of being activated by T(S) -

Note that as rn increases, the value of Q;j tends to approach
unity for all curves in Fig. 41 . This means that there will be a maximum
similarity bias at some finite value of m , beyond which the advantage of
similar over random stimuli will approach zero. By increasing the value
of 0 for the A^'^ units, the location of the maximum bias can be shifted
further to the right, until, with 0 = xns , the maximum will occur at

rn = to .

15.4 Laws of Similarity-Generalization in Perceptrons

The results obtained in the previous section illustrate a

number of effects which are found quite generally in perceptrons which

show a capability for similarity -generalization, regardless of whether this
capability is learned or intrinsic, and regardless of whether the perceptron
is series -coupled or cross-coupled. Additional evidence for these general
results will be found in subsequent chapters, and they appear to take on

the status of empirical laws, which have now been substantiated for a
rather wide variety of systems. These laws can be tentatively stated as
follows:

* The effects noted here are directly analogous to those originally
predicted for cross-coupled systems in Ref. 85.
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(1) As the size of the retina increases, it becomes increasingly
difficult to recognize the similarity of two random -pattern stimuli under a

given transformation group, with a finite perceptron. With an infinite

retina (and transformation group of infinite order) the similarity bias for
random stimuli goes to zero.

(2) The similarity-bias for coherent stimuli, under a

coherence -preserving transformation group, will generally be stronger
than for random stimuli, and will not go to zero even for an infinite retina

and transformation group of infinite order.

(3) The similarity bias of a perceptron can be increased
by raising the threshold of its A -units or by increasing the number of

connections to terminal A -units (i.e. , generalization will be limited
increasingly to the members of a similarity class, as the threshold or
number of pre -terminal units is increased).

(4) Generalization to disjoint transforms of a stimulus
may be less than generalization to independent random patterns, for a

perceptron with weak similarity bias; generalization to disjoint transforms
can be made to exceed generalization to random stimuli, however, by an

increase in A-unit thresholds or by increasing the number of inputs to

the terminal A-units of the network.
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16. FOUR-LAYER PERCEPTRONS WITH ADAPTIVE PRETERMINAL
NETWORKS

The physical universe, at a macroscopic level, is characterized
by the continuity of its transformations through time. Objects do not

suddenly appear out of nowhere , persist for an instant, and then vanish
into nothingness. Given an appropriate time-scale, all changes appear to

occur smoothly and progressively. Consequently, stimuli which are highly
similar under a continuous transformation group are more likely to occur in
close temporal succession than dissimilar stimuli. In this chapter, it will
be shown that an initially unbiased perceptron can take advantage of this
property of the physical environment to evolve a capability for similarity
generalization, without any intervention by an experimenter or reinforcement
control system.

The model which is presented here was developed jointly by
Block, Knight, and Rosenblatt, in the hopes that its analysis would assist
in the understanding of closely related problems which occur in cross -
coupled systems. The similarity between the performance of this sytem
and the performance of cross -coupled systems is most striking, as will
be seen in later chapters. The main effects of cross -coupling will be to

accelerate the adaptation process, and to make the system inherently
responsive to stimulus sequences, rather than momentary stimuli. The
presentation in the first parts of this chapter is essentially the same as

that of Block, Knight, and Rosenblatt (Ref. 7).
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16.1 Description of the Model

The perceptron to be analyzed is illustrated in Fig. 42. It is
a four-layer series coupled system, with an equal number (Na) of A^'*

J2) * (2)units and A units. Each A unit receives a variable -valued
connection from each of the A(l) units. In addition, each A^* unit
receives a fixed-value connection from one of the A*' units. For conve-

(l) (2)nience, the A and A units are placed in one-to-one correspondence,
with the fixed connection to each A 2) unit originating from its "mate" in
the A ^ layer. The threshold of the A^^ units is , and the

threshold of the A units is . To simplify notation, we will use
the symbol 9 to designate 9 , unless otherwise indicated. The fixed
connections from A(l) to A * units all have values ^ 9 For
specificity, we assume that all of these fixed values are exactly equal to Q

The variable -valued connection from an A^ unit a- to an A^2) unit a;
has a value u; • (t at time t The symbol u;j will be used to designate
values of A! 1 to Af2) connections, and V;r to designate values of A^
to R-unit connections . The input connections to the A units may be

organized according to any of the models (e.g. , binomial or Poisson) which
were discussed in Part II. Signal transmission times, !*•- , are assumed
to be equal to zero, for all connections. It is assumed that stimuli occur at

times t , t + At , t + 2At , etc .

The numbers of units need not be equal for systems of this type to
work; the constraint is introduced in order to simplify the analysis. It
is equally satisfactory to organize the perceptron with m variable
valued connections and 1 fixed value connection to each A unit,
with origins chosen at random.
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The variable values u-j are assumed to be initially equal to zero,
and change with time as follows: If unit afj? is active at time t and
is active at tt-At , then receives an increment (if - At) , and all
connections U;j decay by a quantity (<t-At)uij . The values of the
to R-unit connections may be varied by any one of the usual reinforcement
rules. Note that under these rules, the values U;j will always be non-

negative, so that if the "mate" of a given A^
' unit is active, the

unit will always be active. In the subsequent analysis, it will be shown
that with a suitable sequential organization of the environment, these
dynamic rules can lead to the development of a perceptron organization
closely analogous to that of the similarity-constrained perceptrons of the

previous chapter.

16.2 General Analysis

16.2.1 Development of the Steady -State Equation

As in the last chapter, our main concern will be to find the
(2)values of Q-j , which will permit further analysis to proceed along the

lines employed for elementary perceptrons. Unlike the perceptrons of
Chapter 15, however, the values of Q: • , and consequently the G-matrix
of the perceptron, are stochastic variables, depending upon the prior
history of the system.

The set of A-units in the A^ layer responding to 5; will
be denoted by A^^CS;) ; the set responding to both S; and Sj is

A*f\Si) H A (S-) • For a perceptron with a known connection
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scheme for the A ' layer (or for a sufficiently large perceptron) the

fraction of A^ units responding to both S,
" and Sj will be ,

and is equal to the number of elements in A^'*(S;) DA^lSs) divided
by Na . These quantities are fixed for all time.

Let oc^(t) denote the total input signal to the unit aj^
at time t , in response to stimulus Si Then

«2?(t) = 6a*(Si) f£^u^(t)a*(Si)r-f
(16.1)

where t f 1 if St
- activates*fr\ / 1 U 5« aCti

I 0 otherwise

This represents the sum of the signal arriving at on its fixed
connection, and all of the signals arriving on the variable -valued connections
at time t Let

Ai} " e»l(Si) (16.2)

No.
r^'M-2Lurjt)a*(Si)

(16 3)r- 1

Then

(16.4)

The indices i , j , and 4. will be used throughout this chapter to
designate various stimuli, and the indices f and A. will be used to
designate particular A -units.
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Note that is & or O depending on whether a2 *s A (S;)
or not; it is invariant with time. On the other hand, fA (t) represents

the effect of the variable /f' to connections.

Now suppose that at time t0 stimulus Sj occurs, and at

time t0+ At stimulus occurs. Then the consequent change in ur.±

will be

(16.5)
where , | 0 for x < 6

[ 1 for X * 9

From (16.3) and (16.5) we get

-iMa

Z

No. "a.

r-l r-t
Hence

r(i)(t. - T(0it.+&t) « (*-M)4>\*%.+M^N*Q%-(*x)J%.+£t) (16 6,

where, for brevity, the subscript A. has been suppressed. It must be

remembered that If and oi . in these equations, refer to any particular
.(*) .. 00A unit, a.
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Now suppose the sequence of stimuli [Sj0 t Sj
^ , • • • , Sj J

occurs at the successive times t , t + At , ... , t * MAt In Equation ( 16 . 6)

we take t0 = t * n,A t , \_m ~ O , 1 , 2 (At - /j] , J - jn , 4 -Jm + t ,

and obtain

(l6. 7)

At) 4, \c
t am+')(t+(m+ f)At)\ Na Q(ijl

- (f-At) Tl'*(t+ (m * ()At)

Summing on to from 0 to M- 1 we get the change in Jf^ due to the

entire sequence of stimuli:

M~ 1
r(i)(t + (M+l)At)-re°(t*A*)-L {(Na^t)4\.c(J^'}(t* ln,+

1)At)\Q!?m

-(<r-At)r(i)(t+(»,+OAt)]
(16"8)

We now divide by MAt and let At approach zero to obtain

m = 0

An alternative treatment is possible in which difference equations are
carried throughout, rather than converting to a differential equation.
The true solution for obtained from such an approach is a
fluctuating function, the local time -average of which corresponds to the
solution of the differential equation, which is obtained here. As long as

Yl and <
f are sufficiently small, the differential equation, which is

somewhat easier to manage,yl elds a close approximation to the true
solution of the finite difference equation.
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Let Fj4 be the number of times the stimulus pair Sj 5^ occurs
in the given sequence Sj^, Sj

^ , ••• , Sj^ ; also, let fj^ - ^ji/^ De

average frequency of the pair Sj S4 • Then from (16.9) we get

^ = Z- £ to K<*(%))<t] -*r%) (16. 10)

where n , as usual, represents the number of distinct stimulus patterns in
the environment. Defining the matrix C — QF , with elements

n

4-1

we have from (16. 10)

-fat) L <KAM+ 7(J)M) -<T7(%) (I6.11,

This gives us a non-linear system of differential equations for (t),..., JT^(t)
with initial conditions JT^ (.0} mO

If the frequencies f^. vary with t , then the coefficients

G;j are time -dependent, but in any case they are non-negative and

bounded; (fi is non-negative, monotone increasing in f , bounded and

continuous on the right. It will be assumed here that the C;y are
constants (corresponding to fixed frequencies, f^j ).
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In preparation for discussing the solution of (16.11), consider
the equilibrium equation

* J?l J (16.12)

This corresponds to a solution of (16. 11) for the steady-state condition in
which the rate of gain (represented by the first term of 16. 11) is exactly
counterbalanced by the rate of decay. But the system of equations (16. 12)

may have more than one solution. However, we shall show that there is a

unique minimal solution (by which we mean a solution none of whose compo
nents exceed the corresponding components of another solution); and

this minimal solution is obtained in a finite number (at most n ) of iterations
of (16. 12), starting with all T m 0 on the right-hand side of the

equation, finding the new values of JC^ from (16.12), putting these back
into the right-hand side, and so on. That is, we take Ta^ m ® ant*

(16.13)

We shall prove first that this process terminates in at most fi
iterations. This can be seen from the following considerations. Since
the right-hand side of (16. 13) is non-negative and fj^ m 0 , it follows
that

2T
f ' ^ Tq' • Now since the right side of (16.13) is a non-

decreasing function of the T-'b, it follows that JTg^ 2 ff^ , - • - •

rH * r<° - Therefore, also ^(/JK r?>,) i *(A(J*+ T?') •

that is, successive <
p 's cannot decrease. If, at a particular step, no ^
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increases, then we are at a solution. The <p 'a have only the values zero
or 1 , so even if only a single w changes at each step, the process terminates
in at most n steps.

(0*The solution thus obtained will be denoted by J" We

shall now prove that this solution is minimal. Let f^' be any solution of
the equilibrium equation (16. 12). Then for the iteration process (16. 13),

we have fl * T ^ , for all / . Since the right-hand side of (16. 13)
is a monotone function of , we have

Similarly, £ fCi) , hence f^** . Hence is
minimal .

To avoid consideration of a special pathological case, we now

make a mild assumption. Consider the sum —%r^-T. C:j taken over a

subset R of the possible values of j ( 1 , 2 , - •. , n ). We assume that no
such sum is equal to 0 . This is not a serious assumption, since by a

small change in this requirement can always be satisfied.

Now suppose that the 7T^(t) satisfy the system of
differential equations (16. 11) and the initial conditions ^

'
(0) = 0

Then we assert that the T^\t) are non -decreasing and

lint (t) "7^^ . That is, the solution obtained by the iterativet —eo
process (16.13) is indeed the solution of the differential equation (16.11),
with initial conditions zero in each case.

-354-



First we shall show that

, (i)
-^j-— > Q. Moreover, if ? (t) > 0 , thend t
dr<"
dt > o.

As a preliminary step, consider the nature of the solution of
dxthe equation = M - dx , where M and d' are positive constants,

M M -<tt/Mand x(0) = o , where C ^ a < -j- . The solution, z = -z e [-g-ir 0 K (J
has the appearance of the following curve:

The solution approaches M/d monotonely from below, and d z/d '- > J
for all t > 0 . Ifat time t = tf we replace M by M, > M the

solution appears as
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as t goes from O to tt the solution approaches M/(f monotone ly from
below; as t increases beyond t/ the solution approaches Mf/<f monotonely
from below. The solution is continuous; so is its derivative, except at tt i

where the left and right hand derivatives are not equal, but both are positive.

If instead of ~ji
—> a St O , we take M = a * O , the solution

is x(t) = O for O 4 t £ tf -

We now proceed to the proof of (oc) . Let
Mp* - NaVf £ Cij <f>(j9 (iK T °*(t)) - Then (16 . 1 1 ) can be writtenJ -I

dT<t) - M(l\t)-ST(i\t)dt " l"
(16.14)

where here and in the following paragraph, i is a generic index of the set

( 1, 2,..., i>) , while j and A will refer to specific indices to be

defined below .

Each equation M^\t) can take on at most 2" possible
(A)values. Let A be a specific value of i and suppose first that M (0) » 0

The only times at which M^(t) can change its value are when one of the
® (indeed one whose corresponding jS^ m 0 ) reaches the value 6

Suppose the first time at which this happens is t. > O . Suppose then
(J) tL Tthat T (tf) ■ G - Since in the interval O < t < t, all — £ 0

we have M (tf) 2 M(i\t9) - Thus the solution f C*\t) appears
as in Figure (b) above; in particular, for all A such that M^(0) > O

we have T(A)(tt) < M
^-(0) 4 — ^ ; and for the others
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TU)(t,) < — j (tl* . Furthermore, since both the left and right
derivatives of f **(tt) are positive we have, for t > t, and sufficiently
close to tf , y (,<>(t) > 6 , so that it will not be until 12 , with tz > tf ,

that there will again be a tf ( t) having the value & . In the interval

tf < t < t2 we have the same pertinent conditions as we had in the interval
O < t < t, ; namely, — = MU)(t,) -<TfU)(t) , with initial values
r(i)(ti) £ M'»(t,) md .n particuUr 7U)(ti) < M(*J(t,) . Th.e in
the interval t. < t < t, we again have ^ 0 , and <*?(i) > o* at at
The same argument applies to successive intervals ( t2 , 13 ) , ( t} , 1 4 ) ,

and so on. Since the tf^^(t) are monotone there are at most n such
intervals .

If M (4J(0) = 0 , then / (4)(t) = 0 for 0 < t < t, . If
M ( tf) > 0 , then we use the previous argument starting at t = tf ;

(A)otherwise tf remains zero at least until t2 , and so on. In any

case, the statement (pi) has been proven.

Next we shall show that

7im r(°(t) - Tll) i i~t,2,...,n. ifi)
t — oo

Since, from the proof of (oi) it is clear that each "f^\t)
is monotone aad bounded, .H«« TM(t) exists; call it T * #

;

it is a sum of the form °^ T. C; • , which was assumed at the
JtK (ftpoutset to be unequal to 9 , and thus tf 9 . Therefore,

r01) is continuous when tf(J) = tf(j'* . Letting t — «

/
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in equation (16. 11) we see that f^'^* is a solution of the equilibrium
equation (16. 12). Hence > ?U)* . since ?U)' is minimal. We

next show that for all t ± 0 , 2T(l)(t)£ lT(>)* .

Note that initially J (''(0) j£ JT !0
*

. Suppose that t,
is the first time at which some f(4)(t)= ?' . From (16. 1 1 ) and
the fact that 0 is non-decreasing we see that at t, ,

dt J

*»*?Lcv*(*(J)+rw')-<rr(4)(t,)

= <tr(A)* - <rr(A*(t,i = o

± 0 ata t '

(A) * oLyIf 7 > 0 , we have from (at) that —f-— > 0 at t. , which is a

contradiction. Suppose that f = 0 , so that also tt = 0 Then,

as long as no 7'^'\t) reaches a non-zero , we have
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Hence over this period T (t) ■ 0 • But no non-zero Jf^ can
ever be attained by T^(t) , since, by the above argument, we

would have -— ^ 0 at the first time this occurs, in contradiction* *
to (ot.) ,

Hence if > 0 .then f0i(t) < r"'" ; and if
rO)'-0 .then T(i)(t)- In general, r(0W*T(0' .

Hence 7,**' - Z<7* 7 (t) £= T . and CdJ follows.

From this point on, we shall be concerned with the steady-state
(0*values f , and for brevity we shall drop the * In the terminal

(2)condition, the A-unit , whose history we have been following up

to this point, is activated by S; if + Tfl^ ^ 9 - The set of A
units which are activated by stimulus St

- are denoted by A^* (Si) In
the initial state, the set A^(Si) is denoted by (Sj) , and in the

terminal state by -^^^(Sj) . The expected fraction of A^ units which
(2)are activated by both Sj and Sj will be and is equal to the expected

number of units in A(2)(Si) D A(2)(Sj) divided by Na -

Once the Q-j are known, the behavior of the perceptron in its
terminal (steady state) condition can be predicted. To determine these

(2)terminal values of Qjj , we can proceed as follows. First, the set of
A^1 units is broken into the smallest possible cells of the Venn diagram
which represents the sets of units responding to different stimuli (c.f . ,

Fig. 43). For the units in each of these cells, there is a characteristic
/3 -vector. For each such ^ -vector, we solve equation (16.12) for
the terminal values of Jf^' . Here we assume yf

| . to be given, and
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can be obtained from previous equations (as in Chapter 6). Initially,
n (2) ^ (l) „ - *(<) ~.d) . . lL* ®ij Knowing /3 and T , we can determine the

region of the A * Venn diagram to which each cell of A units moves.

Thus we obtain the complete terminal distribution of A-units in the Venn
diagram of A ^* , and hence in particular the Qif* It c**1 De seen

that the motion will be for A-units to tend to go into higher -order intersections,
(2)but that points which are initially outside all the A (S;) will stay outside

all the A(2)(S;) .

16.2. 2 A Numerical Example

To clarify the above description, an illustrative example is
worked out here numerically. Suppose there are three stimuli, S, . S2 ,

and S, , which initially activate sets of A^ units (or sets of A ^* units,
which will be equivalent under starting conditions) shown in the Venn diagram
of Figure 43(a). Here the matrix, and the initial value of the Q;j
matrix is

3 . 1 . 1

1 .4 .3
1 .3 .6

Suppose the sequence 5; , S- , •.. » 5- i from the above analysis, is
S, S2 S2 S, S2 S} S, S3 5, S2 - This is repeated over and over

during the training, or "preconditioning" of the perceptron. Then the f-j
matrix is
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Figure ¥3 (a) VENN DIAGRAM OF INITIAL A<2) SETS, FOR ILLUSTRATIVE EXAMPLE.
10 A-UNITS, DISTRIBUTED AS SHOWN.



Consequently, we have the matrix

too

The equilibrium equations (16. 12) then become

'
<p r')
<P{a** r2)
<p(.33+ r3)

Now we begin to trace the destinations of cells of the Venn diagram of
Fig. 43fci). Start with the two A -units which are activated only by S,
Here /3=6(t,0,0). The first iteration of (16. 15) then gives

1 -4 1.0 .4
1.4 .7 .5

V 1.8 .6 .4
(16.15)

If ff /(f < Q/l.8 , then these ~
jf
's are zero, and the points in question

stay in the same resion of the Venn diagram. To be specific,
let us take tf/(f = & = t - Then we get for the first approximation

KH <
•)

W 1

-362-



and for the second iteration,

o fl.S
- 2.6

*3 1 \2.a
which is the fixed point. The two associators in question have consequently
moved into the triple intersection of the Venn diagram in Fig. 43.

Continuing in this fashion with each of the eight cells of the

Venn diagram, we finally arrive at the terminal distribution shown in

Fig. 43(b). For this we have the terminal Q-matrix:

The stimuli S, and S% have become indistinguishable. The G-matrix for
an oC -system is the same as Qij^, while for a f -system, it would be

The "coagulation" of Sf and 52 corresponds to the fact that in the training
sequence (which is reflected in the f;j matrix) Sj and S2 follow one

another quite frequently, whereas they are very rarely followed by Sj
Consequently, Sj tends to remain distinct, in the terminal G-matrix.
In the following section, it will be seen that such behavior is quite character -

istic of this system.

* Another numerical example will be found in Section 17.2, where the
four -layer system is compared with an open-loop cross -coupled model.
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16.3 Organization of Dichotomies

The general analysis of the preceding section can be applied
to a large variety of particular experimental designs. To begin with, we

will show that with a suitable choice of parameters for the perceptron, and
a suitable sequence of stimuli, a perceptron can spontaneously dichotomize
an environment into any two classes, without any control of the reinforcement
process by an external agency or experimenter. The organization of the

stimulus sequence will determine the particular dichotomy which is formed.

Let the sequence of stimuli to which the perceptron is exposed
be S; , S; • •••# Si In tne following discussion, such a sequence
will be called a "preconditioning sequence" . Let Pj denote the fraction
of occurrences of Sj in the given sequence, and let Pj£ denote the

number of times Sj± immediately follows Sj divided by the number of
times Sj occurs. Then fjf " Pj£ Pf . With a sufficiently long
sequence, (M f l)/M <* I , and the equilibrium equation takes the form:

where Pj corresponds to the probability of Sj, and Pj£ corresponds to

the transition probability Pnb. ^
Sy ~- S4
J * Prob. ^
Sj S4 1 Sj
J

.

This can be interpreted as an R-controlled reinforcement system,
although it does not actually depend on the outputs of the R-units in
any essential way.
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EXPERIMENT 10: Take an environment, W , consisting of n stimuli,
such that there is no appreciable difference in the retinal
overlap of different pairs of stimuli. (With a large retina, a

set a random dot stimuli will generally satisfy this condition. )

Divide the stimuli arbitrarily into two classes, so that

Sf, S2,---, Sj( are in Class X • while S/(t ,,..•, 5„ are in

Class Y - All members of a given class are equally likely to

occur. Let the probability of transition to a member of the

same class be p , nearly unity, and to a member of the

opposite class be / - f> , nearly zero. Let the perceptron be

exposed to an extended preconditioning sequence composed

according to these probabilities, without any control by the

r.c.s. At the end of the preconditioning sequence, the perceptron
is exposed to a short additional sequence composed in the same
manner, during which R-controlled reinforcement is administered,

according to the rules of the Jf -system, for A-unit to R-unit
connections. The values of all connections are then "frozen",
and the response of the perceptron to each stimulus in W

is ascertained.

It can be seen that this experiment is closely analogous to

Experiment 9, in which the effects of R-controlled reinforcement were

determined for an environment of horizontal and vertical bars, except for
the preconditioning sequence (which would have no effect at all in a simple
perceptron), and the additional condition that there is no way of determining
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whether two stimuli belong in the same or opposite classes on the basis of

their retinal overlap. The only thing which characterizes two members of the

same class differently from stimuli of opposite classes is the difference in

transition probabilities in the preconditioning sequence.

, where a. > O, q k 0
anc
,0)

We assume Qj - (9 + *<f{</)/Na
Thus the diagonal elements of the matrix are all (q Nq. and all
other elements are q/No. - (Note that by raising thresholds of the
units, with a sufficient number of connections, the ratio can be made
as small as desired.) For the probabilities of stimulus -occurrence indicated
in the experiment, we have

where

Pj '

n -K

( 1/2K for

1 1/2L for S: in YJ

fox[P/K
0-p)/L for

4>/L
for

(hp)/* for

J; in X, $4 in X

in X , in Y
in V, % in Y

in Y , in X

Then we obtain from (16. 16),
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, (0 *?
K K K n n KLL* L L * L L *Z LJ'l 4 =1 j = l A =K*I J =K+t A = l j =K+i A'K-tl

(16.17)

= JL
<S

(9*+'ij)$&*(/'U,+ TW).

A = / A-K+t A = l

Let us now assume that 5X is one of the stimuli of class X
Then

T(*)mJL
A- 1 4-K>/

(16. 18)

We now observe the following:

SJ<*

In words, if the stated inequality holds then, in the terminal
condition, each of the stimuli of class X activates the union of all sets
which were initially activated by any of the stimuli of class X . That is,
each stimulus of a given class has "captured" all of the A-units that initially
responded to all of the other stimuli of that class. The proof follows from
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the fact that any A unit which originally responded to any of the

stimuli in class X contributes a non-zero term in 21 in (16. 18).
The postulated inequality then guarantees that the A -unit will be active in
the terminal state .

U) If ^A±liZ±LtMl <9> then A(J>(Sx) S A?(Sj).

In words, if the stated inequality holds then, in the terminal
condition, no stimulus of class X activates any A-unit outside of the union
of sets initially activated by stimuli of class X . The proof follows from
the fact that, if we were to solve (16. 18) by iteration, then any A-unit
which is activated by none of the X -stimuli has, on the first iteration, no

K
contribution from 2L • In virtue of the assumed inequality it will not

*fmt
have any contribution on any following iteration either, and oC remains less
than 0 Since only a finite number of iterations are involved, this unit
does not become active.

iii) If the inequalities of (i) and (ii) both hold, then A(£{Sz) = U A(* (Sj).J
Necessary and sufficient conditions for both (i) and (ii) to

hold have been found by H. D. Block. They are

a) a > yK(K-t)

b) p > (V-d + pKfK-ljj/^(K+l)

c) K2/(Ap * \f.K) ±
r}/2Q<f

< x/(ji.U-p) + (j.K)
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Condition a) insures that a probability p( 0 < p < l) can be chosen to

satisfy b). Condition b) insures that If/294 can be chosen to satisfy c).
The conditions can be written in the alternative form

a') f> > K/(K+ I)

b') * > <iK(K-t)/[p(K+') - K\

c ) as above .

Under the conditions indicated, if Experiment 10 is completed

by exposing the perceptron to a continuation of the same stimulus sequence

with R -controlled f -reinforcement, the first response to occur will
immediately generalize to all stimuli of the same class as the one which
evoked the response, since each member of the class activates the identical

set of A-units, after the preconditioning sequence. Suppose a member of

class X is the first stimulus to occur, and that this happens to evoke the

response r*= +1 . Then this response will be reinforced, and will
generalize immediately to all other members of class X . However,

under the conditions assumed above, the intersections between the sets of
A-units initially responding to stimuli of class X and stimuli of class V

were all equal to £ , and it was noted that by using large thresholds, g

could be made arbitrarily small relative to the measure of the responding
A-sets. If each A-unit has a large number of distinct origin points (no two

identical ) --j can, in fact, be made small relative to the product Q- Qj

Thus, with a large threshold, in a ~
f -system, the generalization coefficient

g-j for 5; in X and Sj in V will be negative . Consequently, any
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stimuli of class Y will automatically be assigned the opposite response

from stimuli of class X . Thus a completely consistent dichotomy has been
created, from the time the first stimulus of the terminal training sequence
occurs. Further reinforcement will only strengthen the tendencies thus

established.

If the ratio
>?/<f

is made large enough, the perceptron in

Experiment 10 will ultimately arrive at a state in which every stimulus

activates all A -units which ever responded to any stimulus of either class.
However, in practice, the constraints on the parameters need not be as

severe as those indicated in conditions a), b), and c) above, in order to
obtain useful generalization effects from the system. As long as tf/d
is not so large as to cause a complete merging of all A-sets for all stimuli,
it remains possible to teach the "preconditioned" perceptron to discriminate
all stimuli of the two classes correctly with single corrective reinforcement
for one stimulus of each class, as long as the inequality g^jg^lg > q

is satisfied.

16.4 Organization of Multiple Classes

Suppose we have the same kind of environment as in
Experiment 10, but that the stimuli are considered to be of, say, three

classes:
Af , A2 ,...,AK , B, , B2 ,•--, BL, C, , C2,..., CM (K+L+M - n) .

We assume there is not too much overlap between the different types of
stimuli, an assumption which will be made more precise below, (as in
the previous case, the overlap can always be reduced as far as required

-370-



by making 0 sufficiently high. ) The three classes will be called X, Y,
_ (I)and Z . We assume that the Q: - matrix is

<
f-

^Na if Si and Sj are i*1 different classes

<?;•' = - (9 *
- r)/Na. if S,
" and Sj are in the same class, Si ,fc

{%+r +*)/Na if Si = Sj.

From the nature of a Qij matrix it is necessary that 9 2 0, + r) ^ O ,

and ( r + > 0 . We assume A- ^ 0

Suppose that the transition probabilities are large (p) for
transitions to a member of the same class, and small (1 - p) / 2 to each

of the other classes. Within a class each transition is equally likely. Then

f/'K Si in X, Sj in X

<
L

Si in Y, % In Y

?/'M Si in z, Sj in 2

a--p)/2L Si in X, SJ in Y; or Si in in Y

c- p)/2M Si in X, in Z; or 5; in Y, SJ

in Z

a- p)/2K Si in Y, sj in X} or 5; in SJ in X
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The probabilities of occurrence of individual stimuli are given by
"

1/3K In X

1/3L $ in Y

I/3M in Z

Then Equation (16. 16) becomes

Z Z * Z Z*Z Z*Z Z*Z Z (16.19)
jeX AeX jeX AeY jex AeZ jcY AeX j«Y AeY

*z z-z z*zz+z zjeY 4eZ jez AeX. jez AeY jez Aez

where, for simplicity of notation, X , Y , and Z have been used for the

appropriate index sets. Suppose X is in X (!•••, 5^ is in X )- Then

(16. 19) yields

(16. 20)

AeX

!
We can now assert the following:

i) If 1 f*l >0 ,then the set 2 1/ A^Sj)J
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(2)That is, if the stated inequality holds, then every A unit which initially
responded to any stimulus in class X now responds to each stimulus in

(2)class X . This is readily proven by noting that for any A unit which
initially responds to any of the stimuli in class X there is at least one
non-zero (p in ZL in (16.20). The postulated inequality then guarantees

U) 4 £x
that J > 9 for any X such that 5X is in X .

U) If V I"-'";;?*2'*] < 0 . then A(*(St) G A<;)(Sj)

That is, if the stated inequality holds, then every A unit which did not

initially respond to at least one of the stimuli of class X does not respond
to any class X stimulus in the terminal state. This is proven as follows.
For an A-unit which does not respond to any stimulus of class X , none of
the terms in 2L m (16. 18) are present on the first iteration, which
starts with f (J'>" 0 - The stated inequality guarantees that, even if all the
other terms are present, no JT for Sj will reach 9 . Thus no terms

in £j will ever be non-zero.

iii) If both of the above inequalities hold, then A^(Sz) = U (Sj)
SjiX

(2)That is, each stimulus in class X activates exactly the same set of A
units in the terminal state; and that set consists of just those A-units which

originally were activated by any one of the stimuli of class X
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Necessary and sufficient conditions that the inequalities of both

i) and ii) be satisfied have again been derived by Block, and are

a) r > -a/k

b) (f < (Kf * a)/k(K- l)

c) p > [.Z^K(K- I) + K(Kr +4.j\ / (Kr +a){K+2)
d) 3K2/\p(Kr + a) + ?Ar] ^

f}/e<?
< bK/\(t-p){Kr +a)+ 2$K~\

Condition a) guarantees that a suitable q ^ 0 can be chosen
in b); Condition b) guarantees that a suitable p <- I can be chosen in c);
Condition c) guarantees that an Y?'/tf can be chosen to satisfy d).

If the parameters are suitably set we have seen that the response
(2 ) (2Jin the A ' layer to any stimulus in class X is U Ag'(Sj) - Similarly

for classes Y and 2 . This means that a 'jf -systeJm perceptron with a

single R-unit will tend to assign the same response to all members of the

first class of stimuli to be represented in the training sequence. All other
stimuli will receive the opposite response, if the initial intersections of

responding A-sets are small enough. With more than one R-unit and inhi
bitory connections between the R-units, so that only one can go on at one

time (cf. , Chapter 20) it is thus possible for the perceptron to assign a

unique response to each stimulus class. If there is too much initial overlap
between the responding sets of A-units, or if condition i) is satisfied
without condition ii) being satisfied, a single corrective reinforcement applied
for any one stimulus of each class may still be sufficient to yield the correct
response for all stimuli in the environment.
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16.5 Similarity Generalization

In the experiments considered above, the nature of the stimulus
classes was never explicitly stated. Clearly, they could have been

similarity classes, under a suitably chosen similarity relation, and the same
results would have been obtained. In order to obtain generalization over the

entire class, however, it was assumed that "runs" of stimuli from each class
occurred, it being much more likely that a stimulus was followed by another
member of the same class than by a stimulus from a different class. After a

long preconditioning sequence of this type, it might be expected that the

perceptron would have seen each stimulus in the environment a great number
of times. We now consider the generalization of a similarity relation to

stimuli which have not occurred during the preconditioning sequence.

EXPERIMENT 11: Consider an environment of stimuli S,,--., S2 ,---> Sn
and their transforms T(S,), T(S2) , - . . , T(Sn) where T is
any transformation in which the measure of fixed points is zero.
Let the perceptron be exposed to a preconditioning sequence,
consisting of stimuli followed by their transforms, i.e., a

sequence of the form j 5j , T(Si ) , 5 a , T(St ),-•-, 5 a , T(Sa )

where the subscripts -Af , i2,... are picked at random
from the set of integers 1 through n . Now consider a pair of
test stimuli, Sx and Sy , and their transforms T(S%) and

T(Sy) , none of which occured during the preconditioning
sequence. Let one response be associated to 5X and the

opposite response to
5^

, by means of an error correction
procedure. Now test the perceptron to determine its response
to T(5Z) and T(Sy) .

* This is directly analogous to the phenomenon of similarity generali
zation originally predicted for cross -coupled systems in Rosenblatt,
Ref. 85.
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It is predicted that if this experiment is performed with random
dot stimuli in the preconditioning sequence, with a finite retina, and Sx
and S.. are any other stimuli (e.g. , a square and a triangle, or two letters
of the alphabet) the transforms T(Sz) and 7"(5yJ will each tend to activate
the appropriate response, which was associated to Sx and Sy , respectively.
In other words, the perceptron will have learned that any two stimuli which
are similar under the transformation T are to be treated as equivalent,
even though the stimuli have never been seen before.

To begin with, we consider the following problem, which is
essentially a special case of Experiment 11, performed with only a single
test stimulus .

Consider the stimuli 5( , S2 , ---, SK and their transforms

SK+l = T(st) , SK+2 = T(SZ) S2K = T(5K) . For example,
5t SK may be in the left half of the field, and T a transformation
which moves them to the right half of the field. Sx (z = 2K + l) is not
shown during the preconditioning sequence, but is a test stimulus to be
applied later. 5X' = f(Sx}, x' = 2K + 2 = n . Let us assume Sx
intersects S, , - - - , SL( L £ K) to a larger extent than it does the others
and hence Sx' intersects mainly the stimuli SK+I ,•••, SK+L . These
relationships are illustrated in Figure 44.
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Figure "W RELATIONSHIP OF TEST STIMULUS TO PRECONDITIONING STIMULI
AND TRANSFORMS

Specifically, consider the conditions

"xj(0 m
f (9 + *<rXJ)/Na
1 (l*r)/Na

J > L

K-h I < J ^ K + L

j>K+L

In the preconditioning sequence, a stimulus S- is picked at

random from St , • - - , S % , and this is followed by its transform, T ( 5; )
Then another stimulus is picked at random from 5/ , • • •> and this is
followed by its transform, and so on. Then
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i/2K J ± 2K

O J > 2K

( 1 J * K, 4 = K+j
l/K j > k, a± k

\ 0 otherwise

We also specify that no A -unit is activated by more than ju(m< of
the stimuli St , 5 2 , • • - , 5 K

2Kd

From Equation (16.16) we obtain

If 2K K

L K <

(16.21)

2 Kef J 'I J-L+l j=l
(16.22)Hence we have the following results:

i) If y](% + r)/2K<S > 9 .then A(£(SX) 3 A(Q2*(SX) + U A1" (T (Sj)) .

In words, if the stated inequality holds, then, in the terminal state, 5X
activates all those elements originally activated either by itself or by any
of the transforms T(St),---, T(SL)

11) If -l&C^-'-)O • A£(Sz)<^A(02)(SX) + yLA(?(T(Sjj).

iii) If both inequalities hold, then A„ (Sx) = A'f(Sx) + U aq2)(t(Sj)).J £ L
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Thus far, we have considered the generalization of a response
from 5X to the transforms T(St) , T(S2) , etc. Suppose a response
is associated to T(S^) \ we are then interested in determining whether
there is any generalization in the reverse direction, i.e., to T

(X') iWe can obtain ^ from Equation (16. 21), with n replaced by X ,

which yields :

r(z-) 2<d j-tl J
Consequently,

iv) If -JL- <i(K+p.)+ iLfi]<0, then A(l\sx.) = A™(SX-).

If inequalities i), ii), and iv) all hold, then the stimulus Sx generalizes to

T(S,) ... T(SL) , but the transform T(SX) - Sx' does not generalize
to the stimulus Sx . Necessary and sufficient conditions that all three
inequalities hold are easily found: (With r > 0 , then iv) implies ii) ).

a) r > 9
K - L/x

b> 2K ± _JZ_ <
21(2

r 9<f K(K-hyu)^ +Lr/A.

In particular, let L - I . Then A(J* (Sz) - A(fksz) + Al"(T(S,))
Thus, due to the intersection between Ag\sx') a*"* A^(T(Si)) ,
the test stimulus generalizes to its transform, even though neither the test
stimulus nor its transform has occurred during the preconditioning sequence.
Under these conditions, the perceptron will behave in much the same manner
as the specially constrained similarity -biased perceptron of Chapter 15. The
actual magnitude of the bias thus induced, in a simple discrimination experi
ment, can be calculated as follows.
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Let
5^

be another test stimulus, like 5Z , but its chief
intersection is with S2 , say also ^ + r . Then if conditions a) and b) are
satisfied, (with L =/ ) , A(£ ( S}) - A(0"(S}) * A(Q2) (T(S})) and

A1^,' (r(Sj)) = A(q*(t(Sj)) . Suppose the perceptron has zero
initial values on the A to R-unit connections. Let Sz be shown, and all
active A-R connections reinforced by -hi. Then let 5^ be shown, and all
active A-R connections reinforced by - / . Now if the perceptron is shown
T (5X) (which it has never seen before) the input to the R-unit is equal to
the number of A -units in A(£(T(Sx))D (t (S,)) U A^^Sg)]
minus the number of A-units in A(^'(r(Sx)) (1 \A(£( T(S2)) U A(<£ (S}f\ .

which in general is positive; while if it is shown T(S^) the signal to the

R-unit is negative. Thus the discrimination which was taught for Sx and

5^
carries over to T(SZ) and T(S^) •

In the above analysis, it was postulated that the test stimuli
should have larger intersections with some of the preconditioning stimuli
than with others. This assumption is crucial for the predicted effect to
occur. The reader will recall from the discussion of the last chapter, that
in a perceptron with an infinite retina, no similarity bias could be obtained
between random stimuli because the distribution of their intersections had

zero variance. The same situation holds here. If the preconditioning stimuli
are random dot patterns, and the retina is infinite, then every preconditioning
stimulus will have exactly the same intersection with the test stimulus 5X ,

and the required bias cannot occur. In a finite retina, however, the inter
sections will be binomially distributed (as in the analysis of Chapter 15), and
the predicted effect will be obtained.
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We also note an advantage, as before, if compact, coherent
stimuli are employed for preconditioning and as test stimuli. In this case,

even in an infinite retina, the distribution of intersections will have non-zero
variance, and the test stimulus will tend to be more closely related to some
preconditioning stimuli than to others. As long as two test stimuli, bx and

5^ , do not intersect the same sets of preconditioning stimuli to the same
degree, they can be discriminated in the terminal state of the system (provided
the required parametric conditions are satisfied), but each will generalize to

its transform. Thus the claim made for the performance of such a system in
Experiment 11 has been verified in principle. Quantitative studies of actual
cases are not yet complete, but similar experiments with cross -coupled
systems (to be presented in Chapter 19) suggest that highly satisfactory results
can, in fact, be obtained in practice.

The asymmetrical generalization from 5 to T(SJ , but not

from T(S) to 5 can, of course, be overcome by employing a symmetrical
preconditioning sequence, in which a stimulus is as likely to be followed by
the inverse transformation, T '(5) as by T(S) .

For instance, take (S, S„ J = (S
,

SK ; SK + Sn J =
{S,, — ,SK; r(S,),..., r(S«)} where K=n/2 . Let

Pj = I/2K
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4>

P
J £ V, A = K+jj > K , A = j - K

(i-p)/(2K-l) j * K, A * K+j
l(l-p)/(2K-t) j > K, A #=j-K

Let aw = p - (1 - p) /(2K- 1) ; then the P-^ can be
expressed as follows. For I £ j £ K , I £ A & K , we have

PjA = Pj+K, A +K " r

Pj,K+4 = Pj+K,A = r + "-*j*

where r = {l-juj-)/2K = ( I -p)/(2K- I) . This means that the transition
probability from a stimulus to its transform, or vice versa, is r -h ur ,

while for any two unrelated stimuli, the transition probability is r

Then from (16. 16) we have

J0= Nat?
2K<t

2Kd

KT K K 2K 2K K 2K 2KLL*LL*L Z*Z ZJ =l A =t J =l 4 =K+I j'K+i 4 =1 J'/Ctl 4*K+I
Qij PJ* J

K K f{ K

Z Z °v PJA *(« > + Z Z Q!J PJ
, * + K )

J = l 4 = 1 j = l 4 = 1

K K

* Z Z Ql'!j+A p:a,aH^4))+L L°X.*pj.«,*.«*(«("k>)
.;«' 4=1 'I A = l
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Assuming S; e { Sf , SK ] we have

K Kuj = g
2K<r -I 4 =1

/

Thus if p (or .u/- ) is nearly 1 and is large, S; will
generalize to its transform, and conversely T(S;) will generalize to S; ,

since

***** - L [*(~M)+<K"tM)j\ + {^- *(<*"')

To get the specific form of the conditions for such generalization to occur,
K

we extract the term for -&= t in 21 put it with the second term. This
* =l

gives the first required inequality,
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or, replacing f and ur in terms of p , and 2K by n , we get the

condition

i) If r?(t + *p)/<fn Z 9 then A™(Si) 3 A*j}(Si) * A^fr(St)) .

The second required inequality turns out to be

(r?(K-t)/2Kcr)(2K<fr + \f.ur + Ar) < Q

or, replacing f and w in terms of p , we get

ii) If t?(n -2)[9 (n-l)+*0-p)]/2n(n-l)d<e, then A™(S;) £ A^(Si)*A^'(T(St)).

iii) If both inequalities hold, then A^(S;) = A^(S;) + A^^T(S;)) .

Necessary and sufficient conditions that both inequalities hold, given n > 4 ,

are

a) p > (n-2)/(3n-4)

b) ? < [p(3n - 4) - n f 2~]/(n- t)(n-4)

c) /& must be so chosen as to satisfy i) and ii).

For n = 4 , these conditions are satisfied if p > I/4 and

4/(1+ ap) =-£r < i2/[3f +a(i-pj]
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16.6 Analysis of Value -Conserving Models

In dealing with simple perceptrons, a single value -conserving
model, the ^ -system, has been considered. In this system, the total
value of the set of input connections to an A-unit is conserved. In four- layer
and cross-coupled perceptrons two types of value -conserving systems are of

interest: the If -system, defined as beofe, (where the sum of the input values
is held constant) and the P -system, where value is conserved over the set of

output connections from an A-unit, rather than the inputs. In the perceptrons
to be considered in the following chapters, this second system appears to offer
important advantages in performance, and will generally be preferred over the

f -system.

The most important difference between the f -system and the

P -system is that the latter tends to activate those A-units which would
respond to the most probable successor of the present stimulus, whereas the

7f -system tends to activate the set of A-units which respond to the stimulus
for which the present stimulus is the most probable predecessor. The
difference between these two situations can be seen from the following example.
Suppose there are three stimuli, A, B, and C, with transition probabilities as

shown in the following diagram:.

A
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In this case, with the ^"-system, we would expect the set of A -units
responding to stimulus A to become most closely associated to the set
responding to stimulus C, since A is the only possible predecessor of C,
whereas B can be preceded by either A or C. In a f -system, on the other
hand, the set responding to A would be most closely coupled to the set
responding to B, and might even develop inhibitory connections to the set
responding to C, since B is the most common successor of A. Thus the

r -system tends to be predictive, tending to anticipate the most likely
successor of the present stimulus, whereas the f -system tends to antici
pate the stimulus which is most likely to be preceded by the present stimulus.
As shown above, this latter choice is not necessarily a good prediction of
the next event.

16. 6. 1 Analysis of ~
jf -systems

The differential equation for the If -system is identical with
(16.11), except that the constants C- - are now equal to

C;j-i(0!l'-«;"Wl')fjJ

4 = 1

The negative term, - Q- , is familiar from previous analyses of the
^-system, and represents the quantity substracted to balance the gain

in value of the active connections. It will be recalled that for a Poisson
model, Q-£ - Q- Qj is always equal to or greater than zero, so that the
expected value of C-j will remain positive, and the previous analysis
(Section 16 . 2 . 1 ) applies without modification. More generally, however, and

for a binomial model in particular, the C;j may be negative, and the

previous analysis must be reexamined to see how this affects the situation.
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To begin with, it no longer follows that the solution will be
monotone, since different combinations of positive and negative C; • 's may
be picked up in equation (16.11), depending on which 0 's are currently non

zero. Since the solution is non-monotone, it also does not follow that a
solution will occur in n steps, or that the solution of the iteration equation

(16.13) is minimal.

While we are unable, at this time, to provide any short-cut
method of finding the steady state solution (if one exists) for the TP -system,
it is possible to compute a time -dependent solution by the following procedure.
We note, first, that the solution is piecewise exponential, as in the case of the
<x -system, and that the time constants for all Jf^* are equal. This means
that we can readily determine which oJJ> will be the first to cross the level
of & , by computing the initial asymptotes, for all j The "ff^
with the highest value of | will change most rapidly . If the initial
value of oc = 9 , and is negative, (p(<x!j)) will immediately go

to O . If no M is negative, then the first change to occur will be for some (f>

to change from 0 to 1 , and this will occur for that J for which is
greatest. Having thus obtained the first discontinuity point, f, , we can

compute the values of all TP^l\tt) , and determine the next <
fi to change.

This is done by computing the function— -r (t4) (16 23)

$4 (G-/3">)-r<i>(t4)

Joseph has pointed out that singularities are possible. For example, with

6 • 1, <
f - I , /3, - / , and /3t - 0 , if C =(j.jj we have (at t = JU 3/2 )

ft " '/3 , t2 - I • But then f, =2-7, while ?2 = - TT2 . Thus f2
immediately falls below 1, hence back to the original equation, which brings
it back to 1 again. While 72 thus fluctuates about 1, the future history of

If, is not determined.
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for all i. Note that % will be greater than I only if the numerator and

denominator agree in sign, and (M/(f - J") > \0 ~/3 - \ If these
conditions are met (i.e., if £^ > / )• (p(oc(l)) will change value some
time before f reaches its new asymptote. Thus, by finding the value

(or values) of i for which §^ is maximum, at the discontinuity time
we can always determine the next 0 to change. Introducing this new 0

gives us a new set of asymptotes, M% f t {f ) , and the process can be

continued. The values of the TT^'(t) at the discontinuity times can be

readily calculated from the exponential solution:

where the discontinuity time, t^tl , is obtained by solving the equation for
the next T to cross threshold, that is

(t4*1
/S-9 +

M

M 77T

ru'(tt) -) (16. 25)

16.6.2 Analysis of P -systems

The r -system is similar to the T -system, except that
after each increment of reinforcement, the total value is restored to its
former level by subtracting the net gain uniformly from the set of output
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connections from an A-unit, instead of the input connections. The differen

tial equation now takes the form

j-i *'t

The same uncertainties as to existence of steady state solutions
and difficulties of computation occur here as in the case of the T -system
analysis. A time -dependent solution can again be computed, piecewise, by

the same procedure as above. In chapter 19, we shall reconsider the

r -system, in connection with cross -coupled perceptrons.

16.7 Functionally Equivalent Models

In Ref. 41, Joseph has presented an analysis of a perceptron with

"binodal A-units", which is now seen to be functionally equivalent to a variation
of the system analyzed above. In the binodal model, there is only a single

layer of A-units, but each A-unit receives two logically distinct sets of input
connections and has a separate threshold for each set. The first set of

connections is fixed in value, and activates the A-unit according to the usual
rules. The second set consists of a single connection from every sensory
point in the retina, and is variable in value. The reinforcement rule for
these variable connections is that if the A-unit is active at time t , and the

retinal origin point of one of the variable connections is active at t + I , the

variable connection gains an increment in value. At the same time, all
variable connections tend to decay at a fixed rate, d . This is equivalent

(2)to a four-layer model in which each A unit receives its fixed connection

from an A^'^ unit with a normal number of input connections and threshold 6 ,

and receives variable connections from other A^ units, each having a

single excitatory input connection, and a threshold of 1. The main difference
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from the above analysis would then be that the A 3 unit responds to the

logical sum, rather than the algebraic sum, of the inputs from the fixed

connections and the variable connections, i.e., the A^3 unit is active if its
fixed connection (the /3 -component) is active, or if the sum of the variable
connections (the TT -component) S Q . As this writer had previously
predicted on heuristic grounds, Joseph has successfully demonstrated that
similarity generalization will tend to occur in the binodal model, after a

preconditioning sequence analogous to those discussed above. In this system,
the set of fixed connections acts as a "template", and the variable connections
tend to adapt themselves to an origin configuration which resembles the fixed
set under the transformation T. The reader is referred to Reference 41 for a

quantitative analysis.

While it was assumed that the models analyzed in the preceding
sections had a complete set of connections (from every A unit to every

(2)A unit), a system which merely has a large number of input connections
to each A 3 unit, originating from randomly selected A ^ units, can be

seen to be equivalent in all of its essential properties. For such a system,
the Q-j matrix, representing the expected values of the fractions of A 2

units responding to S; and Sj , would have the same equations as before,
except that /Va must be replaced by the number of variable connections to

each A 3 unit.

In the following chapter, it will be shown that a form of weakly
cross-coupled system, in which there are no closed loops, is also virtually
equivalent to the model analyzed in this chapter, and can be represented by

the same equations, with a slight reinterpretation of the /5 -component of
the input signals to the A-units.
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17. OPEN-LOOP CROSS -COUPLED SYSTEMS

The most interesting features of cross -coupled perceptrons are

t ho s e which result from the possibility of closed feed-back loops, or
cycles, in the network. It is possible, however, to design a cross -coupled
system with no closed loops, and such a system has a number of important
features, including the ability to act as an adaptive similarity-generalizing
system equivalent to the perceptrons of Chapter 16, and increased economy
and versatility in general classification problems of the sort considered in
Chapter 5. These properties will be considered briefly, in this chapter,
before proceeding to closed-loop systems, which represent a more challenging
problem in analysis.

17.1 Similarity-Generalizing Systems: An Analog of the Four -Layer System

The three -layer perceptron shown in Fig. 45 is directly comparable
to the four -layer system considered in the last chapter. The A -units are
divided into two subsets, called A1 and A". All A -units receive fixed
connections from the retina, but only the A" units have connections to the

R -units, the A'units sending their output signals to the A" units. Each A'unit
is connected (in a fully-coupled model) to all A" units, and each A" unit is
connected to all A' units. The rule for modifying the connections from A'
to A" units is identical with the rule for modifying A^ to A^' connections,
in the four-layer system considered previously: If the origin of the connection
is active at time t, and the terminus is active at t+1 , the connection gains a

quantity f{ . All inter-A-unit connections decay at a rate (f , as before.
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Figure t5 OPEN-LOOP CROSS-COUPLED SYSTEM (COMPARE Figure »2). BROKEN LINES

INDICATE VARIABLE CONNECTIONS.

Clearly, the only differerence between this model and the

previous one is that the /3 -component, instead of originating from one

of the units, comes direct from the retina, and consequently can take
on more than two values. The differential equation (16. 11) and the equi
librium equation (16.12) thus apply without modification to this system

(where the A' set is equated with the A^' set, and the A" set with the
(2)A set). The additional freedom in choice of /3 -values means that the

sets designated Al
g (Si) , representing sets of units whose /3 -value

in response to 5; is + 1 , must now be fractionated into subsets for
each possible value of /J , and the history of each such subset (having a

given /3 -vector) must be followed separately. Thus the full designation
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of such a subset would be A0 (/3; , S;) . Apart from this further
fractionation of the A-set, the same analysis holds as in the last chapter,
and much the same results would be expected.

• 17.2 Comparison of Four-Layer and Open-Loop Cross-Coupled Models

A numerical comparison of the performance of the perceptrons
considered in this and the preceding chapter will be based on the following
experiment:

EXPERIMENT 12: Take an environment of four stimuli, 5, ... S4 , each
having retinal area /P = .2 . The intersections Cl3 and C24

are each equal to . / , and all other intersections are zero. The
perceptron is exposed to the following sequence, which is
repeated until a steady state is attained:

(5, S2 S, S2 5, S2 S, S2 S, S3 Sj S4 Sj 54 S3 S4 5, S4 S354). This sequence
can be considered to consist of two events, the first consisting of
the alternating pair S/S^ S, S2... with a duration of tor ,

and the second consisting of Sj S4 Sj S4 ••• , also with duration
of 10 r .A matrix of Q- • functions is obtained at the

beginning and end of the preconditioning procedure, to compare
steady state with initial conditions .

The relationship among the four stimuli can be seen from the

following Venn -diagram of the retinal sets, where the double-headed arrows
indicate the oscillating pairs of stimuli, and the number in each cell
indicates its area.
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The initial and terminal Q-matrices have been computed for a four -layer
and open-loop cross-coupled perceptron, as a function of the parameter

Na fj y/ if In both models the parameters of the ' units (or of all
A -units, in the cross-coupled case) were x =3, y=0, and 0 = 2,
with a binomial model. In the four -layer model, 9(2) was also taken to be

2 , so that the systems are directly comparable.

The Q-matrices obtained in this experiment are shown in
Tables 5 and 6. The important Q-functions are also shown graphically in
Fig. 46, as a function of the parameter Na r? /V . Note that for both
models, there is a considerable parametric range within which generalization
is much greater for stimuli which belong to the same event than for stimuli
from different events. This gain in generalization between Sf and S2 ,

and between Sj and S4 is more than sufficient to offset the handicap of
the intersections between 5, and Sj , and between 5^ and 5^ , which
gives the system an initial disadvantage. The cross -coupled model, while
it follows a similar history, has a considerably greater "useful range"
than the four -layer model. For the four -layer system, the range of
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TABLE 5

Q-MATRICES FOR FOUR-LAYER ot- PERCEPTROH IN EXPERIMENT 12

(PARAMETERS: X = 3, y = 0, 6=2)

/. 104 .000 .OSil .000
/ .000 . IW .000 .034

INITIAL Q-MATRIX: I .034 .000 .IW .000\ .000 .03H .000 .104

TERMINAL MATRICES FOR:

7?.0 < Na % < 88.9

88.9 < Na % < 166.6

. 104 .070 .034 .000

.070 .174 .000 .034

.034 .000 . 104 .070

.000 .034 .070 .174

.174 . 140 .034 .000

. 140 .174 .000 .034

.034 .000 .174 .140

.000 .034 .140 .174

.314 .280 .034 .280

.280 .314 .280 .034

.034 .280 .314 .280

.280 .034 .280 .314
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TABLE 6

O-MATRICES FOR OPEN-LOOP CROSS-COUPLED a-PERCEPTRON IN EXPERIMENT 12

(PARAMETERS: X = 3 , y = 0, 9 = 2)

INITIAL Q-MATRIX:

. 104 .000 . 034 .000 \

.000 .104 .000 .034 \

.034 .000 .104 .000 J

.000 .034 .000 .104 /
TERMINAL MATRICES FOR: /.I22 .018 .034 .000 \

„. / .018 .104 . 000 .034 1
38.5 <Na%< 44.5 I ^ .„„„ m „„ I

\ .000 .034 .018 .104 /

(.1
22

.036 .034 .000 \

.036 .122 .000 .034 \

.034 .000 .122 .036 1

.000 .034 .036 .122 /

.174 .082 .034 .000
f,. i .082 .122 .000 . 034

77.0 < Nd l/( < 83.3 | -03„ 000 |7„ og2
.000 .034 .082

100 \

134 \

82 I

22 /

.192 .131 .034 .036 \

.131 .192 .036 .034 \

.034 .036 .192 .131 J

.036 .034 .131 .192 /

.183 .097 .034 -.027 \

„ I .097 .140 .027 .034 |83.3 < 88.9

^ .03, .027 .|g3 .097 J

.027 . 034 .097 .140 /

.192

88.9 <Nt%<\ 17.6 \ -03,
.036

.210 .176 .034 .072

, I .176 .210 .072 .034
117.6 < 166.6 ^ 034 .072 .210 .176

.072 .034 .176 .21 0,

.262 .228 .034 .176
„, i .228 .262 .176 .034

166.6 < /Va% < 235.2 \ .03H . 1 76 .262 .228
.176 .034 .228 .262,

.314 .280 .034 .280 \

„, I .280 .314 .280 .034 \

235.2 \ .034 .280 .314 .280 I

.280 .034 .280 .314 /
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(a) 1-LAYER MODEL (b) OPEN-LOOP CROSS-COUPLED MODEL
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Figure 46 COMPARISON OF FLAYER AND OPEN-LOOP CROSS-COUPLED c^-PERCEPTRONS

ON EXPT. 12. ( X = 3, y = 0, 9 = 2 FOR BOTH SYSTEMS)
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Na/f jtf for which the system tends to classify events "correctly" is
77.0 to 166.6, while for the cross -coupled model this range is extended to

38.5 to 238.2. Thus the cross -coupled model begins to show the generali
zation effects earlier, and saturates later than the four-layer system.
Moreover, the transition occurs more gradually, in eight steps for the

cross -coupled system as opposed to three for the four-layer model.

The matrices shown here assume oi -system reinforcement.
A ~

jf or r -system, with the four -layer model, eliminates
all / activity immediately, in this experiment. In the cross -coupled
model, however, activity is not completely eliminated , and the terminal
Q-matrices obtained for a fl" -perceptron are shown in Table 7. Note
that the bias favoring Qf^ and Q24 is eliminated for most values of

A 'g^Yf J (f , and that the "dynamic range" is greater than in the oc -system.
The r -system, illustrated in Table 8, is similar to the -perceptron
for small values of Naff I V , but it appears to "saturate" more easily.

While the performance of the cross -coupled perceptron closely
resembles the system in Chapter 16, it is a somewhat more satisfying
model from the standpoint of biological plausibility and parsimony, since
it does not require the assumption of a special set of fixed connections
from A^'* to A ^ units in addition to the variable connections - an

assumption which was necessary, in the four -layer system, to provide a

"template" for the organization of similar A^ units to be connected to
(2)each A unit, and in order to prevent all connections from decaying to

zero value. In the present scheme, all S-A connections are fixed, and
all other connections variable, yielding a conceptually simpler organization.
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TABLE 7

Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED ^-PERCEPTRON
IN EXPERIMENT 12

INITIAL Q-MATRIX:

TERMINAL MATRICES FOR:

0 < JH±1 < 68.7

68.7 < < 85.8

tun
<s

85.8 < » f < 101

101 < ^±1 < 152

.52 <Jklif < 303

y=0 , 0 = 2)

.ion .000 .031 .000

.000 .104 .000 .031

.034 .000 .101 .000

.000 .031 .000 .101

.008 .000 .001 .000

.000 .008 .000 .001

.001 .000 .008 .000

.000 .001 .000 .008

.009 .002 .002 .002
.002 .009 .002 .002
.002 .002 .009 .002
.002 .002 .002 .009

.019 .012 .008 .008

.012 .012 .008 .008

.008 .008 .019 .012

.008 .008 .012 .012

.022 .022 .011 .011

.022 .022 .011 .011

.014 .om .022 .022

..OH .011 .022 .022

.025 .025 .017 .017

.025 .025 .017 .017

.017 .017 .025 .025

.017 .017 .025 .025

'.030 .030 .030 .030
.030 .030 .030 .030
.030 .030 .030 .030
.030 .030 .030 .030
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TABLE 8

Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED T-PERCEPTRON
IN EXPERIMENT 12

(Parameters: X = 3, y = 0, 0 = 2)

INITIAL (-MATRIX!

TERMINAL MATRICES FOR

<f0< < 58.5

58.5 < N** < 77.8

77.8 < < 88.5
o

88.5 < —%i- < 92.0

92.0 < < 131

131 < < 181
Q

H^L > i8i

.101 .000 .031 .000

.000 .104 .000 .031

.031 .000 .104 .000

.000 .031 .000 .101

'.008 .000 .001 .000
.000 .008 .000 .001
.001 .000 .008 .000
.000 .001 .000 .008

.009 .002 .002 .002

.002 .009 .002 .002

.002 .002 .009 .002

.002 .002 .002 .009

.019 .012 .008 .008

.012 .012 .008 .008

.008 .008 .019 .012

.008 .008 .012 .012

.022 .015 .011 .011

.015 .015 .011 .011

.014 .om .022 .015

.014 .Oi« .015 .015

.025 .025 .020 .020

.025 .025 .020 .020

.020 .020 .025 .025

.020 .020 .025 .025

'.028 .028 .026 .026
.028 .028 .026 .026
.026 .026 .028 .028
.026 .026 .028 .028

.030 .030 .030 .030

.030 .030 .030 .030

.030 .030 .030 .030

.030 .030 .030 .030
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It will be seen in Chapter 19 that this system, with the addition
of a unit time -delay (all T- - = / ) performs identically to a closed loop
fully cross -coupled perceptron for the first two cycles of operation. By
further extension of the network along the same lines, it will be shown that
additional cycles of closed-loop activity can be duplicated.

17.3 Reduction of Size Requirements for Universal Perceptrons

In the case of simple perceptrons, it was demonstrated that in
order to obtain a "universal perceptron", in which a solution exists for any
classification of n stimuli, at least n A-units are required (Theorem 3,

Corollary 2, Chapter 5). Now consider an open-loop cross coupled perceptron,
constructed as follows: Let the A-units be numbered in series a, , a2 , . - - , aN
and let Na = (the number of S -points). The last of these units, aN
has an output connection to an R-unit. Each A-unit has a variable -valued
connection from every S -point, plus one connection for every A-unit prior
to itself in the series; i.e. , aj receives a connection from every S-point
and from af , a2 ,'••,&;. .

*It has been demonstrated by Cameron that for small values of n

(n = 2 S) only Jo92(n) A -units are required in order to obtain a

universal perceptron, in which a solution exists for all of the 2 possible classi
fication. This was demonstrated by explicit construction for n as
large as 8. At some higher value of n , this ceases to be true, although
the maximum n for which the observation holds true has not yet been
determined .

S. Cameron, personal communication.
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A lower bound for the number of A -units required for a
universal perceptron in such a system has been obtained by Joseph (although

it is not a least upper bound). The analysis (given in the Appendix of

Ref. 41) is based on the Hay-Joseph theorem that the maximum number of

orthants achievable by linear combinations of r vectors in n -space is
n r ' 'approximately M(n,r) =

-p
. - where n is large, and f is small

relative to n . An upper bound for the number of dichotomies achievable

with Na A -units is found to be M (2^, Na+ l) M(VVj , Na + 2) . . . M (2N<1, Wfl + Na) .

It is shown that for large N„ the number of possible dichotomies is increasing
at a much greater rate than the number of achievable dichotomies, so that

there must be some point at which the system ceases to act as a universal
perceptron.

-402-



18. Q-FUNCTIONS FOR CROSS-COUPLED PERCEPTRONS

A general cross -coupled perceptron is illustrated in Figure 47.

It consists of three layers of units, with complete freedom of interconnection
among the A-units. Due to the likelihood of closed circuits of connections
within the network, this is called a closed-loop system.

A-UNITS

Figure 17 TYPICAL CONNECTIONS IN A CLOSED-LOOP CROSS-COUPLED PERCEPTRON

In passing from open-loop to closed-loop networks, several
fundamentally new considerations enter into the analysis. In the first
place, the state of the network at time t becomes a function, not only
of the present sensory input and the momentary values of the connections,

but of the preceding sequence of inputs and past activity states as well.
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The dependence of the system's state upon time -sequences of previous
states means that the transmission time, T- - , which previously
played no part or only a minor part in the analysis of system performance,
now becomes a parameter to be reckoned with at all times. The question
of network stability is also a fundamental one; some cross -coupled
networks, once triggered, will explode into total activity which prevents any
further stimuli from making any impression at all, others will oscillate, and
others will settle down to a stable steady-state condition. In this chapter,
we begin by re-examining the concept of Q-functions, in order to provide a

means of measuring the response of the network to sequences of stimuli,
and comparing its response quantitatively for different stimulus sequences.
These new Q-functions will be found to encompass the functions analyzed
in Chapter 6 as a special case.

18.1 Stimulus Sequences: Notation

In Chapter 4, a stimulus was defined as any set of input signals
to sensory units of a perceptron, excluding the null stimulus. In practice,
these signals are generally taken to be 1 or zero. For present purposes,
the null stimulus (all signals equal to zero) will be re -admitted as a stimulus,
and will be symbolized by 0 when it occurs as part of a sequence. A
stimulus sequence, jJ; ■ (S; ■ S: , - • - , 5; ) can be an arbitrary series
of stimuli which are assumed to occur at successive discrete times

tt , tf + At , t, f 2At , - - - , t. 4- (frt -l)At . An arbitrary set of stimulus
sequences can be taken to comprise a stimulus -sequence world, for a

given perceptron, in the sense of Definition 26 of Chapter 4.
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In this and the subsequent chapters, it will be assumed that the

transmission time, IJ - is equal to At for all connections, C;j , and

this transmission time will be symbolized in abbreviated form by T
Consequently, if a stimulus 5; occurs at time t , the response to this
stimulus in the A -system occurs at time t * T , and is interpreted to

mean the probability that an A-unit is activated at time t if St
- occurs at

time t-T . In a cross -coupled perceptron, however, Q- is not a well-
defined quantity, since in addition to signals from the retina, an A-unit may
receive signals from other A -units at time t , so that the response at time t

depends both on S (t - f) and on the activity state of the association system
at t-T - Q: is therefore redefined to apply to sequences jj{ of length

rrt , which begin at time t - mV , and terminate at t -X , with the association
system assumed to be totally inactive, or "silent" at time t - mT . In this
case, for a sequence of length 1, Q- is interpreted in the usual manner,

and is represented by the equations of Chapter 6, without modification. For a

general sequence of length )rt , we use the notation Q- to designate the

probability that an A-unit is active at time t , given that the sequence Ji

began at time t - mT , so that the m 1 member of the sequence occured at

t-T - More generally, we can write Q-^ to designate the probability
that an A-unit is active at time t if the sequence Ji began at t-fT ,

where r maybe less than, equal, or greater than m . If r is less than m ,

this is equivalent to the probability of response to a truncated sequence,
containing only the first stimuli of the sequence V/ " (5; , -S,^ S;r , • •• , 5/m) •

If r > m , we adopt the convention that the sequence J: is understood to

have been augmented by the addition of C-m null stimuli, yielding the

sequence ( J/ , S2 , - - • , Sm , Of , . . . , 0r.m ) . In other words, it is assumed
that the sequence jJi began at t-fT , and that no other inputs occurred
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through time t - T , the probability of A -unit activity then being determined
for time t . In a simple perceptron, this probability would, of course, be
zero for r > m ; in a cross -coupled system, however, the presence of
persistent cycles of activity, or reverberating loops in the A-system, may
maintain Q-^

> 0 for an indefinite period.

Qlj is redefined in a manner analogous to Q- . Where J-
and Jj are any two sequences, we define

Q; = probability that an A -unit responds at time t if J-L

begins at t -m-T , and also responds at time t

if Jj begins at t - t^T -

It is again assumed that the A-system is "silent" at the start of each sequence
for which the Q-function is defined, and that if jil or if is greater than m ,

the corresponding sequence is augmented by a sufficient number of null
stimuli at the right-hand end. Q -functions with arbitrary numbers of sub
scripts can be generated by an obvious extension of the above definition.

In contexts where no ambiguity can arise, the notation Q- - will
be used to denote (?- • , i.e. , the probability that an A-unit responds
immediately after the termination of J- and also responds immediately
after the termination of J- Note that it is not required that the sequences
J- and Jj be commensurate, i.e., the lengths m and m' maybe different
for the two sequences, without requiring any redefinition of Q;j
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Generalization coefficients, g. , can be defined analogously
to Q-functions. For example, in an alpha system, we would have E()j J^)mQiy»J* '

where Si^.j^ *s a measure of the increment added to the output signal of
the A-set responding after >> stimuli of the sequence Jj , as a result of
an -reinforcement after the /i"1 stimulus of the sequence Jj Again,
if the second-order subscripts are suppressed, it will be assumed that
Q: - m Q; • = the effect of a reinforcement immediately after the termi-
•» lmJm'
nation of Jj upon the signal which follows immediately after the termination
of J- . If reinforcements are always applied and measured immediately
after the end of stimulus sequences, the performance of the perceptron in
learning responses to such sequences can be derived from the resulting G
matrix, in precisely the same manner as was done for elementary perceptrons
in Part II. Thus a knowledge of the Q-functions for a cross -coupled perceptron
permits us to predict the performance of such systems in discrimination and

generalization experiments.

18.2 QL Functions and Stability

The rigorous analysis of Q;v for a cross -coupled perceptron
with a finite number of A-units presents the identical difficulty which was
encountered in the case of Q-functions for multi-layer systems (Section 15.1).
The probability is, of course, identical to the function Q- defined for
the first stimulus of the sequence Jj in accordance with the equations of
Chapter 6; but the probability already depends upon the distribution of
numbers of A-units which respond to the first stimulus, Sif In order to
avoid consideration of these distributions, the Q-functions obtained here will
always represent limits for large networks, where it can be assumed that the
actual proportion of A-units responding after is equal to QiM • I*

should be noted that due to the assumption that the sequence Jj starts with a

"silent" perceptron, Qt = 0
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A number of alternative topological models might be considered.
For convenience, the following analysis takes up the case of a perceptron in
which both the connections from the retina to the A-units and the "internal"
connections to each A -unit are constrained as in the binomial model of
Chapter 6. In this model, we have five parameters for each A-unit:

threshold of A-unit

number of excitatory connections from the S-set,
or retina

number of inhibitory connections from the retina

number of excitatory connections from other A-units

number of inhibitory connections from other A-units

In the present chapter, we shall be concerned only with perceptrons in which
all input connections to A-units are fixed in value, regardless of where they
originate. Systems with modifiable couplings between A-units will be
considered in the following chapter. It is assumed that each of the above

sets of connections has its origin points assigned at random from a uniform
probability distribution over the S-set or the A-set, as required. This
results in the following equation for

H Me*) (18'U

e =

%a =

xa =
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where

/?• = fraction of S-units activated by S'^,

Taking Q- = 0 , (/• can thus be developed recursively in terms of 0;^.t
up to any value of j-;

For a Poisson model, in which the number of output connections

from each A-unit is constrained but the number of inputs is a random

variable (or in which both ends of a set of connections are picked at random)
equation (18. 1) still applies, but the probability functions Pf , P} , Pj , and P^

must be redefined, in a manner analogous to Chapter 6. It is also possible,
of course, to have some kinds of connections (e.g., the internal excitatory
connections) distributed binomially, while the other sets of connections are

organized according to a Poisson model, so that P. , . . . , need not all be
of the same type. For present purposes, however, we shall continue to

concentrate on the pure binomial model defined above. All major conclusions

undoubtedly apply to Poisson and mixed systems equally well.
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One of the first questions to be raised about such a system concerns

the stability of the activity -level, and the possible tendency of the system to

burst into total activity in response to a transient stimulus (which would, of
course, preclude any possibility of learning or discrimination of different
stimuli). Figure 48 illustrates the response to a transient stimulus (i.e., a

sequence of length 1) for a number of representative cases. Figure 49 presents
the response of a number of networks to a steadily maintained stimulus, or a

sequence of stimuli all of which have the identical area. (Note that it follows
from Equation (18.1) that the actual sequence of stimuli does not affect Q- ,

so long as the stimulus area, R- , is fixed for each 5/^ Thus any two

sequences for which the succession of P- are equivalent will yield the same

value of Q- .)

Figure 48(a) illustrates the effect of the size of the "trigger sti
mulus" upon the transient response of the system. Note that the final activity
level is independent of R- ; it is also independent of xa and , so long as

*a ^ 6 Figure 48(b) shows the effect of varying the ratio of internal

excitation to internal inhibition ( xa and ya ). For a purely excitatory
system, total activity of the network is likely to occur, in which all A-units
become and remain active. As the inhibitory component is increased, a lower

level of stable activity results, and with still further increase in ya relative
to za , the initial transient activity will die away entirely. Figure 48(c)
shows that the effect of increasing the threshold of the A-units is similar to

the effect of increasing the internal inhibitory component. It should be noted

that all of these Q- functions in response to transient phenomena in a cross-
coupled system are identical to the succession of Q -functions for successive

layers of a multilayer perceptron (as discussed in Chapter 15). For infinite Na

the equations for Q- and are identical, where v> in the first case

denotes the layer, and in the second the cycle of activity in the A-system.
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Figure 49(a) shows that as the internal inhibitory component is
increased to the point where the terminal steady-state level of the system is

below the value of Q- for the initial impulse from the retina, a damped

series of oscillations occurs, which becomes pronounced as ya is increased.
Changing the threshold (as in Fig. 49(b) ) also serves to reduce the asymptotic

activity level, but does not cause the qualitative alteration from a monotonic to

an oscillating sequence, as does the increase in ya . A sequence which is

either monotone or oscillating for one value of 9 will remain monotone or

oscillating as Q is changed.

18.3 Functions

The function Q- • for a binomial -model cross -coupled per-
ceptron can be calculated by an extension of the treatment employed in the

preceding section. The resulting equation (again assuming large Na ) is:

Oi l - 9
OC; ± e

where ot; = E± f - Ia - Ia * Ea + Ea - 1^ - Ia

*j = Ei + £2 - ii - it + ti * £1 -ii-ia

The above notation for excitatory and inhibitory signal components received

from the "unique" and "common" sets of sensory points and A -units active at

t - V is an obvious extension of the notation employed previously (c.f . ,
Chapter 6). For the multinomial probabilities, we have
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iiuii&Xu-ii-ii-

ll l* 1* u -Ti-I,i-IA

where ^ » proportion of S -points activated both by S; and 5:

Ifo

_ C*. where R^ is the proportion of S -points activated
by Si .

U£ m Rj^'C* wnere Rj^ is the proportion of S-points activated
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For arbitrary values of /j. and t> , Q; can again be calculated by
a recursive operation, assuming that the perceptron is "silent" prior to the

start of each sequence. If the two sequences «/
; and Jj are incommen

surate (or if p. + V ) the values of Ca are thus taken to be zero up to the

time that both sequences have begun. (This is equivalent to extending the

shorter sequence by adding a sufficiei t number of null stimuli at the beginning
to make it equal in length to the longer sequence. )

Two questions are of particular importance concerning these
functions. The first is the question of the sensitivity of the system to

pertubations in a sequence of stimuli; this determines how well a cross -
coupled perceptron can discriminate one stimulus sequence from another. The
second question is the dependence of the present state of the system upon

stimuli from the remote past; this is of importance in order to guarantee a

sufficiently consistent response to a present stimulus so that it can be

correctly identified, and also in justifying an approximation to the perceptron's
performance by means of an analysis of finite sequences (as will be done in the

following chapter). Figures 50 and 51 present the results of an investigation of
these questions.

In Figure 50 the effect of a perturbation in the stimulus sequence
is illustrated. In each case the sequence <

Jt is assumed to consist of 17

stimuli ( Af , A2 , . . . , A/7 ). In the other sequences, one or more
"perturbation stimuli" are introduced in place of some of the "A" stimuli;

The data for these illustrations were computed by W. Eisner, on the
Burroughs 220 computer at Cornell University.
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these are denoted by the letter "B" in the figure. In figure 50(a), a single
ti ti

"B" stimulus is introduced, in place of the eighth A stimulus, with CAH

(the intersection between the "B" stimulus and the corresponding "A"
stimulus, Ag ) being zero. We find that with 6=2 , Ql2 is

abruptly reduced as soon as the "B" stimulus occurs, and then approaches a

new asymptotic level, considerably below the On level. With a threshold of

3, however, the curve following the perturbation returns to the Qff level, so
that three or four stimuli after the perturbation it is impossible to tell from the

active A-set that the perturbation occurred. If the location of the "B" stimulus

in the sequence is changed, the same type of Q curve is found, with the

deflection merely being displaced in time, but not changed in magnitude.
Figure 49(b) shows that the same asymptotic level is approached regardless of
the value of CA g , as long as the "A" and " B" stimuli are not identical

( C < -2 ). In general, it appears that the asymptotic value of Q )2 depends

on the parameters of the network, but is independent of the magnitude of the

perturbation.

Figure 50(c) shows that as the internal inhibitory component is
increased, the asymptotic value of Q approaches the asymptotic value of

Qfl , in much the same manner as when the threshold is increased.
Finally, Figure 50(d) illustrates the effect of increasing the duration of the

perturbation up to four "B" stimuli. Note that the return curve following the

perturbation is practically identical in all cases.

Figure 51 demonstrates the effects of introducing null stimuli
at the beginning of each stimulus sequence, in place of the initial "A"
stimuli. The curves obtained are very similar to those obtained with a
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perturbation of the Jt sequence, and it is again found that by increasing the

threshold or the value of yfl the A-set responding to the altered sequence
can be made to approach the set responding to the original, unaltered sequence.

These results demonstrate that there are two distinct conditions

which may be found in a cross -coupled perceptron, depending on the choice of

parameters. With small 8 , or small values of ya , any perturbation or
variation in the stimulus sequence will cause the system to follow a unique
course for all subsequent time, and the A-set which is active at time t
depends on the entire sequence at all times prior to t . rather than on the

most recent stimuli. By increasing Q or y , however, such a perceptron
can be converted into the second type, in which only the most recent stimuli
appreciably affect the current state of the A -system, and stimuli which are
sufficiently remote in time have a negligible effect. By lowering & or ya
slightly, the duration of the noticeable aftereffects of a sequence perturbation
can be increased, while still permitting an ultimate return to the A-states
associated with the unperturbed sequence. This means, in effect, that the

perceptron has a "short term memory" for sequences of a length commensurate
with the time for the Q- - curve to return to its "normal" level, and such

sequences can be discriminated by the system. In discriminating such

sequences, the most recent stimuli will tend to dominate, and differences
which occur in the remote past will be harder to recognize. With the first
type of perceptron, however, which is obtained abruptly when the threshold
becomes low enough (or ya becomes low enough) even the most remote
stimuli have about the same effect as the most recent stimuli, and the

current A-state gives relatively little information about what the present
stimuli actually are. Thus, in order to guarantee an adequate degree of

correlation between the activity state and the current stimuli, it is necessary
to maintain thresholds or inhibitory components at a sufficiently high level; a

perceptron of the first type is unlikely to be of much practical value.
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19. ADAPTIVE PROCESSES IN CLOSED-LOOP CROSS-COUPLED PERCEPTRONS

In Chapter 18, cross -coupled perceptrons with fixed connection
networks were analyzed to determine their stability and characteristic
responses to sequences of stimuli. In earlier chapters, four-layer and

open-loop cross -coupled perceptrons were analyzed to show that an adaptive
preterminal network could vastly improve the capabilities of such systems for
similarity generalization. We now turn to the consideration of cross-coupled
perceptrons with adaptive interconnections between the A-units, and will
attempt to show that the same phenomena can be found here, in a more general
and more efficient form. The cross -coupled system not only recognizes
sequences of stimuli of arbitrary length, but tends to accellerate its adaptation
process due to positive feedback effects within the system. It will be shown
later that the closed-loop cross -coupled system is equivalent to an infinitely
extended open -loop system, analogous to the one described in Chapter 17.

The first attempt to demonstrate similarity generalization in
cross-coupled systems was that of Rosenblatt, in Ref. 85. This was a

partially analytic and partially heuristic argument, based upon a study of the

similarities of origin-point configurations of the A-units under an arbitrary
transformation. T. While the general predictions in this paper were correct,
and have subsequently been demonstrated in simulation experiments, the

method of analysis failed to yield quantitative predictions of the terminal
state of the system, after a prolonged period of pre-conditioning. The
method employed here is basically different, and yields a more general, as
well as more accurate, result. In the following sections, the time -dependent
evolution equations for the cross-coupled system will first be developed in
their most general form, and specific applications will then be made to
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systems in which the assumptions and initial conditions are simplified, to

permit a more complete analysis. In the final sections, several similarity
generalization experiments will be presented, and performance will be
compared with that of multi-layer perceptrons.

19.1 Postulated Organization and Dynamics

The perceptrons to be analyzed in this chapter will be assumed, for
convenience, to be fully cross -coupled, that is, there is a connection from
every A-unit to every other A-unit and to itself as well. It can be shown that
the conclusions which we shall reach for such a system can be extended to any
perceptron for which the number of cross-coupling connections per A-unit is
large, and the termini of the connections are assigned at random.

Connections from S to A-units are assumed to be fixed in value, and

connections from A to R-units are modifiable according to any of the usual
reinforcement rules. (We shall not be concerned here with the reinforcement
of A-R connections, but shall concentrate upon the evolution of the association
network itself.) The A-units are assumed to be simple, with threshold Q ,

and output signals a* = I or 0 . The transmission time for all connections
is a constant T . Stimuli are assumed to occur at intervals of the transmission--
time, r .

Interconnections among A-units are assumed to be variable,
according to the same rule employed for the four -layer system of Chapter 16;

namely, if a; is active at time t , and a; is active at time t + X , the
value of the connection C;j is increased by a quantity /p-/3t, and at the same

time, all values v;j decay by the quantity cfAt (ir;j) • The time unit, At
will generally be considered large relative to r .In symbols, we have

-422



Air;; (t) =

'
( 1? - <r-ts;j )A t if a*(t- V) aj(t) = I

- tfA t (ir:j) otherwise (19.1)

thus the total signal, oi;(t) , received by the A-unit a; at time t consists
of a fixed-connection component, /3;(t) , originating from the retina, and a

variable component, 7";(t) , coming from those A-units which were active at

t - V .

19.2 The Phase Space of the A-units

Let us suppose that the environment of a cross -coupled perceptron
consists of exactly n admissible stimulus sequences. In order to obtain a

G-matrix for this perceptron, and predict its performance, it is necessary to
know how its A-units will respond to each of the admissible sequences, inclu
ding the response to the 1st, 2nd, ..... m member of the sequence. We

will use the notation a*(Sj^) to denote the output signal of the unit a;
following the y> stimulus of the sequence ijj . If the sequence jjj begins
at t- i>X , the stimulus 5; will occur at t - X , and the input to the unit

a i at time t is given by

<*«•
- A * 'i (t) (19.2)

where /&[•"' is the sum of the signals received from the retina following
the occurrence of Sj and Tf^^it) is the sum of the signals received
from other A-units at time t , given that began at t -Vr- Knowing

OC;^ , we can readily determine a* (Sj ) , since

0 otherwise
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In the perceptrons to be considered here, /5t- is a constant, while

jp. ^(t) is a time -dependent variable (as in the four -layer perceptrons
of Chapter 16).

It will be convenient to represent each abbreviated sequence
consisting of the first p members of any of the original n sequences by
a full sequence of length P . If m is the maximum sequence length, this
results in a set of at most m n sequences. Let A/ be the number of such

sequences, and let them be numbered from through JN . Then in
terms of these new sequences, we can obtain all of the &i(Sj^) ■

where is the sequence corresponding to the first -*> members of the

original sequence J- . The notation a.*(J^) means the signal from a;
following the last member of sequence tJ^ . Similarly, we have

r«>a).

All of the information necessary to predict the response of an

A -unit ot- at time t can now be obtained from the 2N numbers

(^\af,...,fl\N), r/°(t) 7i%))-(4.n(0). Thus the

set of all possible signals (divided into retinal and internal components)
which might affect the activity of a; at time t , can be represented

by a vector of 2N components, which depends on t . The space of all
such vectors can be mapped into a Euclidean 2N -space, where each
point represents a possible A-unit, or set of A -units, of the perceptron.
This will be called the phase space of the A-units. For a large, or infinite
perceptron, there is likely to be some concentration of A-units at each
point in this phase space at time t . Thus, at time t , there is a

probability density associated with each point in the phase space. The state of

the entire association system at a given time, t , can then be represented by

a probability density distribution over the phase space of the A-units.
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For convenience of notation, parentheses for superscripts of

oe , /3 , and 7T components will hereafter be omitted, with the understanding
that the symbol /3- means the /3 -component for unit a- from stimulus

sequence Jr . If exponents are required, they will be expressed by the

notation , which would be /3f to the A power. It should be

remembered that with the symbols oc , /3 , and ~f , subscripts always
denote A-units, whereas superscripts indicate stimulus sequences.

19.3 The Assumption of Finite Sequences

In analyzing the performance of a perceptron, it will generally
be our objective to predict the condition of the association system in the limit,
as the length of the preconditioning sequence becomes infinite. This means

that there are generally an infinite number of possible sequences in the

environment, and the phase space of the A-units is properly represented by
an infinite dimensional Euclidean space. To justify later assumptions, how
ever, it is necessary to assume that the preconditioning sequence is actually
composed of a mixture of a finite number of subsequences of finite length.
While this assumption will be carried through the analysis of the following
section, it will be shown later that it is possible to drop the assumption in
the case of periodic preconditioning sequences.

Justification for an assumption of finite sequences can be found
in one of two ways. First, we may assume that only the m stimuli prior to

time t can have any appreciable effect on the activity state of the A-system
at time t . In this case, we need consider only sequences of length m as

possible determinants of a*(t) . Note that this assumption applies only to
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the activity state of the system, and not to the values of the connections or
memory state of the network, which clearly depends on all prior time. Such
an assumption appears to be supported by the analyses of the last chapter,
which show that for suitable parameters, only the most recent stimuli affect
the activity state of the system at time £ , progressively more remote
stimuli making a progressively smaller contribution, which soon becomes
negligible. Specifically, it has been shown that with suitable parameters, it
makes no significant difference to assume that the sequence began at time
t - mT , rather than at some earlier time, which is equivalent to the assumption
of a finite universe of sequences of length m , in place of the universe of

infinite sequences.

An alternative approach, for which a rigorous analysis rather than

a mere approximation is possible, is the following: Assume that the activity
of the A -units is "quenched" after every rn stimuli; i.e., the perceptron is
shown only sequences of length m , and at the end of each such sequence, its
activity is interrupted by setting all a* m 0 , so that the next sequence begins
with the perceptron in a "silent" state, as required. Let us analyze the

performance of such a perceptron (for which the dimension of the phase space
is finite) and then let m approach infinity. The limiting behavior of such a

system should correspond to a perceptron in which the sequences are uninter
rupted. For specificity, and to permit a rigorous analysis, this type of
inter rupted -activity system will be assumed in the following analysis, although
it will be shown later that the results can be extended to a more general case.

In keeping with the above assumption, it will be assumed that
there are a total of N possible subsequences which comprise the precondi
tioning sequence of the perceptron, symbolized J. , J3 , . . . , JN . The
phase space therefore has dimension 2N , and it is assumed that no stimulus
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sequence (i.e., no subsequence) has more than m members (where m is

finite). By selecting both and sufficiently small, it can be guaranteed
that the change in the memory state of the perceptron during a single sequence
of length m is negligible, or infinitesimal, so that the output signal a* (J4)
depends only on Jj^ and the memory state of the system at the start of the
sequence, and does not depend on changes in the memory state which occurred
during the sequence itself.

19.4 General Analysis;: The Time -Dependent Equation

Given the probability density over the phase space of the A -units
at time t , it is possible to obtain the Q-functions Q- = Q-j for any
pair of sequences (of lengthyx and V , respectively) by integrating the

probability density over the region of phase space for which a"(J;) a."(Jj) = I

That is, we integrate over the region for which ot ' ^ 6 and ocJ S 9

The subscript denoting particular A-units is suppressed here, since we are
concerned only with the density of such A-units, and not with their individual
identity.

The object of a general analysis of the evolution of the association
system in such a perceptron is to describe the "flow" of A-units in this
phase space, so as to obtain the density function at time t as a function of

the initial distribution and the stimulus sequences to which the perceptron
has been exposed. The system can be represented by a sort of hydrodynamic
model; the probability density in the phase space is treated as a sort of
compressible fluid, in which convection phenomena occur, but in which
there is no diffusion, since it will be seen that the A-units which initially
occupy a given point in phase space will always move together, in unison,
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rather than following unique paths. Throughout this analysis, it will be assumed
that we are dealing with finite stimulus sequences (as described in Section 19.3),
and that the rate of flow (the length of the velocity vector) for all points in
the phase space is infinitesimal over the duration of the longest sequence.
The history of the perceptron, then, consists of an endless sequence of such
finite sub-sequences, so that at a given point in time, the perceptron can be

assumed to be exposed to a mixture of all possible sequences, each weighted
according to its probability. The velocity vector for a given point in phase -

space at time t then depends on the combination of velocity components
contributed by each of the stimulus sequences to which the perceptron is
exposed.

We have seen that each A-unit, <2.j , is characterized by a set
/ 2 Hof coordinates in phase space at time t , namely , /3j , • - - , /3-t ,12 M

7/ , 7J ••..iJi )• For the given A-unit, the /3 -components are fixed for all
time, while the "f -components depend on t Thus, to follow the history
of this A-unit (or point in phase space) we must determine the velocity

* / • 2 ' Nvector T;m ( 1) , fi T; ) as a function of time for the
point ( /3t , n )•

We consider first the effect of the reinforcement which occurs
for the last stimulus in a sequence J* upon the component fj" . To be

specific, suppose sequence occurs at time t , and Jf occurs at
t * At , and assume the transmission time T << At . Then the

(infinitesimal) change in f/" due to having reinforced the last stimulus in
sequence at time t will be denoted by (A , Ti (t)) . It is a

function of the location of the point in phase space whose motion is being
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traced, at time t Note that although only the effect due to the last
stimulus of the sequence is considered, all abbreviated sequences are
present among the N possible sequences, so that if we know the effect of
reinforcing the terminal stimulus in each case, the effect of all possible
reinforcements can be calculated.

A notation for the sequence corresponding to

<
J^ with its

terminal member omitted (i.e., the sequence jj^ abbreviated by one

stimulus) will be required. We shall use the symbol *A * to denote such
an abbreviated sequence. The change in the memory state due to the last
stimulus of sequence is then attributable to the modification of the values
of those connections which originate in the set of A-units which respond to

• and which terminate in the set of A-units responding to . From
equation (19. 1) we see that each such connection gains a quantity of value

( Y?

- (fir) At , while all other connections lose a quantity -iff-At

Figure 52 illustrates the relationship of the A-unit sets which
are involved in this transaction, and shows the increments to ^Tr which
result from the occurrence of

<
J^ at time t . The sets responding at

time t and t - tr are designated A^ (t) and A^'(t) , respectively. The
set Ar-(t + At) is the set responding to the preterminal stimulus of

sequence Jr' . The measures of these sets are Q^(t), Q„-(t) and Qr,(t*f\t.) .
Since it was assumed that all A-units are interconnected, the measure of
the set of connections for which Air = (ff - (fir) At is Q i(t) for
Ct- CA^ (t) , and the measure of the set of connections for which
Air = -(firAt is /- • .If a; $ A^(t) , all of its input connections
lose - cfir At . But we are particularly interested in the change in 2^ r

,
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A-SETS RESPONDINS TO
ABBREVIATED SEQUENCES

A-SETS RESPONDING TO
FULL SEQUENCES

Figure 52 EFFECT OF REINFORCING SEQUENCE J UPON fr

which is the sum of the changes of value for all connections originating in
the set Ar' {t * At) , and terminating on the arbitrary unit a; , whose
coordinates are ( /); , fi) . These connections can be divided into
three subsets:

(1) Connections which originate from the intersection
A ,(t) CI Ar-(t+At) and terminate in Aq(t) change by (rf- (fir) At
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(2) Connections which originate from the set

Ar.(t +At) - [Ay,(t) P Ar-(t +At)} and terminate in A^(t) change by
- (fir A t

(3) All connections which originate from the set Ar-( t +At)
and terminate outside of A^(t) change by -(fir At

Now let us consider the difference equation

7i(*>) • T;r(t +At) - Ttr(t) (19.3)

for the A-unit a; whose location at time t is (/3; , f; (t)) . Since

TT-r = >F vji , we can make the substitutions:
«,•«*#•'

aj (Ar-(t)

T:r(t +At) - 2L vjtit+At) = 21 v;;(t) * 21 Avj:
ajtAr,(tt&t) aj£Ar:(t) aj£Ar.(t)

+ JL v?i (t* &t) - ZL v-..(t+At)
aje{Ar'(t*At)-Ar'(t)} aje[Ar-(t)-Ar'(t*At))

Making these substitutions yields:

A$(4,r:(t)) - T Av;;(t) * ± -vj;(t +At) (19.4)
ajtAr,(t) a-jtAAr'

where AAr- = (Ar'(t +At) - Ar' (t)J f [Ar, (t) - Ar'(t +At)] , that is, the

set of A-units added or subtracted from the set Ar'(t) during the period
At . The first sum represents the change of value of the set of connections
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which originate in Ar'(t) and are reinforced at time t due to sequence
. This change in value is readily obtained from the components listed

above, and is given by

a,tAr'(t)

ajeAr-(t) J

for ajA^Ct)
*f(*r'(t)

which may be combined in the form

j^a-vjiit) ~ ^ fl,vft) n'w) -^irw]^ <19-5'

where, as before, (f>(oi)-1 for ot i Q , and 0 otherwise, and fr^(t)
has been substituted for >V Vjt($

The second sum in (19.4) represents the value of the set of
connections which originate from the incremental set, AAr, For this
sum, it will be convenient to substitute the symbol 4* tflt) Thus,

(19.4) becomes

(19.6)

where the subscript i indicates that the subscripted variable is a component
of the vector (/5, f) for the unit
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Now suppose each possible "conditioning sequence", ,

occurs with a probability , and that a statistically uniform mixture of

all such sequences occurs at time t This supposition is justified by
our assumption that the length of each sequence is infinitesimal, relative
to the rate of change in the memory-state of the perceptron. In that case,

we obtain from (19.6)

A r(/3: , Tl M) =2LP*A9 fa • Tt (t))

Nar?At

(19.7)

-&At r:r(t)+A"r:r(t)

where A*2T;r(t) = value added or subtracted due to connections originating

from the combined incremental set due to all If we now divide both

sides by At and allow At to approach zero, we obtain the differential
equation for the velocity component 2r (£j for the unit a; ;

1 (19.8)

where t-lL = Jtim
dt 4t-0 At

Note that the quantity A* ' fi (t) is zero except at those times

that new A -units are added to the set Ar-(t) , since it represents the sum

of the values in the incremental set AAr' Again, we note that for
sequences of length 2 or less, the set Ar,(t) never changes, since new

units can be added to the set only if <j)(olr ) changes from 0 to 1, and for

* Strictly speaking, this is either zero, or fails to exist. However, this
expression will be restated below in terms of delta-functions (see
Equation 19-9).
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sequences of length 2, (f) (ocr ) - <p(y3r ) , which is constant. Similarly,
for sequences of length 2 or less, Q^-r-(t) is constant. Consequently, for
these conditions, the equation (19-8) is equivalent to (16.11), except that

Q-if' tak's the place of Qy'r • ^ general case, however, <i*y-r(t)^dt
is not always zero; at those times that new A -units are added to the set

Ar, , an unknown increment to the value of occurs, which depends upon
the values of the connections from those units whose oer has just become
equal to Q . This quantity is exceedingly difficult to calculate, as it depends
upon detailed correlation of the jQ -vectors for the new transmitting units and

the /3 -vector for the receiving unit, a- . Fortunately, it can be shown that

the steady-state solution to (19.8) does not depend upon the actual value of the

last term, even though it affects the rate of convergence to the steady-state
condition .

In the general case, the solution of (19.8) is discontinuous, unlike

the solution of (16. 11), which was always continuous despite its discontinuous

derivative. From the above discussion as to the nature of A* Ti (t) , it

becomes clear that (19 -8) can be rewritten in terms of Dirac delta -functions:

^f-(t, - /Va?2>* (19 9)

where t£ is any time at which one or more of the <
f> (pij ) changes from 0

to 1 or vice versa .
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19.5 Steady State Solutions

Consider the equilibrium equation corresponding to (19.9). If
an equilibrium exists at time t , then no <p(ot) can change its value at

time t i and thus the last term of (19.9) is zero at this time. Thus, a

steady state solution must correspond to a solution to the equation

dT£e°)
• wZ,^Qfr-M 4=(4*+ T-fa)) -trrfa) - 0 (19.10)

which gives

tfco) - -tt*JL £ Pf Qrr,(o°) <K*>+ r>M) (19.11)
9

or, substituting for Q^'f' ,

2)

Note that the terminal vector [fi, f^) of an A -unit (in a given system)

depends only on the starting vector , tf0) so that we can also write in

place of (19. 12),

(19.13)

where P(/3, 2F0) is the probability that an A -unit is initially situated at the

point (j3, TTe) in the phase space. Thus, in this form, the steady-state

solution requires no knowledge of the individual A-units and their connections,
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but depends only on the initial point-mass distribution over the phase space.

The corresponding time -dependent differential equation represents the

velocity vector for an element of probability-mass in this phase space.

Now a possible solution of (19. 13) can be found by the following
iterative procedure: Assume that initially, the values of all A-A connections

are zero, so that ?a ~ 0 for all units, and (19. 13) depends only on the

/3 -vectors. Begin by inserting J0 - 0 for all fa on the right-hand side
of (19.13), and compute the resulting approximation for Ti(fi, 7"oo) , f°r
all possible /3 -vectors (or for all units, a- ). The first approximation for
Too is then inserted on the right-hand side, to obtain the next approximation,
etc. If we let

T(^) represent the result of the j th iteration, we have

We will now attempt to show that this iteration must converge in a finite
number of steps to the solution of the differential equation (19.9), for
equivalent initial conditions.

We first show that the iteration process itself converges in less
than fJ^N steps (where N = the number of stimulus sequences, and =

the number of /3 -vectors for which P(3) > 0 ) • On the first iteration, it
is clear that the f 's can only increase, since they start out from zero, and
are set equal to a non -negative quantity. But introducing this quantity for the
next iteration can only increase the (j) 's from zero to 1 ; it cannot cause any <

f
to decrease. Consequently, on the next iteration, the J 's can again only

(19.14)
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increase, and similarly for each subsequent iteration. Since '/- is non-
decreasing, <p(/6 + if*") is non -decreasing, for all r . But fr can

change only when some <p changes, and each (f> can change at most once

(from 0 to 1). But there are at most W^N ^-functions, 4>(oir- ) . If all of
these are initially zero, the system is already at a solution, and no further
changes will occur. Therefore, at most n < N^H ^-functions can change,
and the process must converge in less than f/J iterations.

r*Let the end result of this process be Tf. for any unit <Zt- We
ftnow wish to prove that T- is a solution of the differential equation (19.9).

To begin with, we prove that f is a minimal solution of the

equilibrium equation (19. 13).

Let be any solution of the equilibrium equation. Then for
the iteration process, we have yf(0) - iff for all r and all /S-

Since the right-hand side of (19. 13) is a monotone non-decreasing function

of TT-r t we have
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f f f r *Similarly, T £ f. , and hence T. £ T. - Hence f. is
-f(n) i ' i '

minimal .

Now consider the differential equation, (19.9). As long as no 4>

changes value, all 6 functions are zero, and (19.9) simplifies to

where txrfft) = /3F + It) Thus, while the ^ 's are constant, the

differential equation is of the form - M ~ S "/ • where

f

Thus, during this time, there is an exponential approach to the limit fl/d •

analogous to the solution discussed in Chapter 16 (pg . 355 ). Now suppose
at time t( one of the <p's changes. At this point, the last term in

(19.9) is infinite, and the solution is discontinuous, since the value of the

connections from the incremental set AAp. has just been added to 7.

Consequently, the solution takes the form shown in Figure 53.
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Figure 53 FORM OF SOLUTION FOR CROSS-COUPLED (^-SYSTEMS

where

= »*i L [p
j. * z > t H' <>) #f«;v>)J ;

The middle term of this expression represents the value of 1* at time

t* - dt , just prior to the discontinuity. The magnitude of A* if

remains unknown, but we know that it must be non -negative, since it
consists of values of A-unit interconnections which began at zero and can
only have changed in a positive direction. As in the case of the iterative
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process, there are at most N times, t£ . at which these discontinuities
can occur, and each new limit i Moreover, the solution remains
monotone increasing, despite its discontinuities. This last conclusion can be

seen from the fact that the increment if -f.r comes from the values of a set
of connections whose origins are now active for one more stimulus sequence
than previously. Since no previously active A -units have become inactive (all

(f' 's being monotone increasing) the values of these connections will not
diminish, and will, in fact, tend to increase. Thus the new limit for /t. can
be no lower than its present value.

Now consider the first step of the iterative process. This yields

r / pfor j1
' the value of the first asumptotic level, M0 /$ • for all Y. in the

differential equation. This means that if any d changes in the differential
equation prior to reaching the level

M0y^(5

, this 0 must also change in the
first step of the iterative process. (If no <

f> changes prior to the level M0/6
then no <

p will ever change, and we are at a solution for both equations ). But
the new level, Mt/§ , a positive monotonic function of the ^ 's, and the

next step of the iteration process, . corresponds to the level /$
which would have resulted had every 'f actually attained its asymptotic level

r r
M0/S Thus i.^ > 7. (tf ) for every r . But from the same argu
ment, it follows that Y.^ - Y{ (t*) , and in general, if^ ~

i. Jjffcj*)
r* p

Consequently, Y- £ 1^ , and the solutions of the two equations are
indeed identical.

* It is assumed that M is not identically equal to & , in which case the
solutions might coincide only for t = «o
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19.6 Analysis of Finite -Sequence Environments

The term "finite -sequence environment" will be used for any
system in which the stream of activity is periodically interrupted, either by

actively setting all <t* to zero, or by introducing sequences of null stimuli of
sufficient duration to allow all A-unit activity to die out of its own accord. The lat
ter possibility exists only for systems in which the internal connection values

are sufficiently small, or contain a sufficient inhibitory component, to guarantee
that activy will, in fact, die away. Some idea of the conditions for this to occur
may be gained from Section 18.2, and Figure 47. For convenience (and because
it can always be realized, regardless of choice of parameters) the interrupted
activity model will be considered here. Jn either case, finite -sequence
environments are directly analyzeable by the method of Section 19-5. Several
examples are given here, based on the same stimulus environment as in
Experiment 12. It will be recalled that this consisted of four stimuli, with
areas R= ,2 , and intersections C(J and C24 = ./ , all other intersections
being zero. As in the example in Chapter 17, we will consider a binomial
perceptron with parameters 4 = 3 , y = 0 , and 8 = Z i for all A-units.

EXAMPT.F. 1: Suppose the preconditioning sequence consists of an endless
repetition of the subsequence: I ^i^x^i^* where
the symbol / is used to indicate points at which activity is interrupted. Then
for this environment there are actually four possible sequences to be considered
in the analysis, namely

A -ft
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each occurring with probability F> =.25 The fi -vectors for these four
sequences correspond to the signals received from the terminal stimulus in
each sequence, and are listed in Table 9, together with their probabilities.
fi -vectors consisting only of l's and O's represent A-units which will always
remain inactive.

The initial Q-matrix for this experiment is precisely the same
as that found for the corresponding terminal stimuli in Chapter 17, namely,

^. 104 .000 .034 .000s
.000 . 104 .000 .034

Q(0)
~
\ .034 .000 .104 .000
,.000 .034 .000 .104

It is found that no change occurs in this matrix for ^ <- 117.6 - L«t us
therefore consider the case in which

N^T^^fi
- 160 In the open-loop system

of Chapter 17, the sequence of Experiment 12 yielded the terminal Q-matrix:

/. 210 .176 .034 .072\'
. 176 .210 .072 .034 \

Q(co)
=
! .034 .072 .210 .176 )
V.072 .034 .176 . 210 /

If we now compute the terminal matrix for a fully cross -coupled system, from
Equation (19.14), we obtain:

. 104 .000 .034 .000\

.000 . 152 .000 . 130 ]
Q(eo)

=
\ .034 .000 .104 .000 J

-.000 .130 .000 .152 /
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TABLE 9

/^-VECTORS FOR STIMULI OF EXPERIMENT 12

(Ptrueters of A-unitt: X = 2, y = 0)

P(fi)
0000 .061
0001 .018
0010 .018
0100 .018
1000 .018
0011 .021
0110 .021
1001 .021
1100 .021
0101 .072
1010 .072
OKI .030
1011 .030
MOI .030
1110 .030
mi .036

0003 .001
0030 .001
0300 .001
3000 .001
0303 .001
3030 .001
0002 .012
0020 .012
0200 .012
2000 .012
0202 .018
2020 .018
0201 .027
0102 .027
2010 .027
1020 .027
0203 .003
0302 .003
2030 .003

3020 .003
0012 .003
0021 .003
0120 .003
0210 .003
1200 .003
2100 .003
1002 .003
2001 .003
0103 .003
0301 .003
1030 .003
3010 .003
0212 .003
2120 .003
0121 .003
1210 .003
2021 .003
1202 .003
1012 .003
2101 .003
1212 .003
2121 .003
1112 .006
1121 .006
1211 .006
2111 .006
0112 .006
0211 .006
1021 .006
2011 .006
1102 .006
1201 .006
1120 .006
2110 .006
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The only change which occurs in this case is that the set At gains a larger
intersection with the set There is no tendency here for the A -sets
responding to adjacent pairs of stimuli to merge, as would be the case in a

four-layer model, or an open-loop cros s -coupled network with zero transmission
times. This is shown even more strikingly in the following example.

EXAMPLE 2: For the same parameters as Example 1, let us extend the basic
subsequence to 8 stimuli, using as the preconditioning sequence:

Each sequence occurs with probability Pj
. = .125 . The initial Q-matrix

again depends only on the terminal stimuli, and takes the form:

S, Sa S, 5, 5, S4 S,S4 /S
,

S2 S, St53 S+S354 /. . . .
The sequences for this environment are now

J. - (s,) 4
(5,5, 5,5,5,5•)
(5,5,5,5,53 5,5,)
(5,5,5,5,5,5,53s•)

.104 .000 .104 .000 .034 .000 .034 .000

.000 .104 .000 .104 .000 .034 .000 .034

.104 .000 .104 .000 .034 .000 .034 .000

.000 .104 .000 .104 .000 .034 .000 .034

.034 .000 .034 .000 .104 .000 .104 .000

.000 .034 .000 .034 .000 .104 .000 .104

.034 .000 .034 .000 .104 .000 .104 .000

.000 .034 .000 .034 .000 .104 .000 .104
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For the terminal matrix (again with N^^/d = 160 ) we now have

Yob;

.104 .000 .104 .000 .104 .000

.000 .174 .000 .174 .000 .174

.104 .000 .174 .000 .174 .000

.000 .174 .000 .174 .000 .174

.104 .000 .174 .000 .174 .000

.000 .174 .000 .174 .000 .174

.104 .000 .174 .000 .174 .000
000 .174 .000 .174 .000 .174

This corresponds to an oscillating condition, in which each A-unit (after giving
its original unaltered response to the first stimulus of the sequence) responds

either 1,0,1,0, 1,0,1 or 0, 1,0,1,0,1,0 to the remaining seven stimuli of
the sequence.

In contrast to previous models, there appears to be a failure to

associate successive stimuli, and an association of every alternate stimulus

instead. Actually, appearances are misleading here; a strong association of

successive stimuli is masked by the appearance of these stimuli in the test

sequence (which is identical, in this experiment, with the preconditioning

sequence). In other words, the perceptron "predicts" the A-set for the next
stimulus at precisely the time that this stimulus actually appears, and conse

quently the effect of the prediction is not detected. The following experiment
reveals these "hidden associations" in a striking fashion.

EXPERIMENT 13: Using the same four stimuli as in Experiment 12, the
perceptron is shown the preconditioning sequence 5,, S2, S(l S4 /
5, , 5, , 5j ; 54/. ... . It is then tested with the sequence

S, , 0, 0,0..- , and the Q-matrix for all subsequences (from
both preconditioning and test sequences) is obtained.
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If this experiment is performed with N» r^/s
= 100 , and all

other parameters as before, it is found that on presenting the test sequence

{ S, ) 0 ) 0} • • • ) the perceptron recapitulates the identical sequence of active
sets A, ) At , A3 j A+ which would have been activated had the preconditioning
sequence occurred in full. After A + , the system lapses into inactivity, since
the preconditioning sequence is interrupted at this point.

19.7 Analysis of Continuous Periodic Environments

Up to this point, it has been assumed that the activity of the
perceptron is interrupted at least once every *f stimuli. We now turn to the

case of a continuous, unbroken sequence of stimuli, where the activity of the
association system is allowed to run on without interruption. To begin with,
the case of a periodic stimulus sequence will be considered, where the pre
conditioning sequence takes the form:

5, 5t 5j S„ 5, S2 S3 . . . . . . .

the period of the sequence being rrt Such an environment can be considered
as being composed of a set of m subsequences, each of length irt *- I
Specifically, we have the subsequences:

C5,S,S, ...SWSJ
4= (5, S,... S„ S,52)
•

&i 5, 52S, ... 5J
This "hallucinatory recall" effect, in which the perceptron, cued by the

initial stimulus of the sequence, reproduces the identical sequence of internal
states which would have been activated had the stimuli continued in their usual
order, is suggestive of some of Penfield's observations on hallucinatory recall
of stereotyped sequences induced by electrical stimulation of brain foci in
epileptics (Ref. 68).
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Each sequence occurs with probability ) / 77 , and each sequence begins and

ends with the same stimulus .

Now since the preconditioning sequence is assumed to extend
indefinitely into the past, at any arbitrary time t , the antecedent sequence for
the first and last stimulus of any /^-subsequence is the same; consequently
?! = Y* for all t . But this means that there are, in fact, only a finite
number (tt?) of / 's for any A-unit, a.^ , so that the steady-state value of

7^
r can be computed exactly by equation (19. 14), where the sequence Jri is

interpreted to mean the sequence J in the set of irj subsequences specified
above .

Several special cases are of particular interest. Consider first
the case of a steadily maintained stimulus, (S

t 5, 5( . . . .) . Substituting in

(19. 14), we have

and it is readily seen that the set of active units can never change from the

initial set, since this equation yields zero unless $>(/8' ) -0 for the first
iteration. Thus for a steady stimulus, we have

Q..M = Q (0)ti u
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Next, consider the alternating sequence St S2 Sf Sf In this
case, (19. 14) takes the form

*i(} +0 2<f
A-

In this case, if either <p(/3i) or <p(jSf) = I, will generally be non-zero,
and the system will tend to form a union of the sets initially responding to 5,
and S2 (provided Ql2 (0) i* 0 ).

Finally, consider the stimulus sequence of Experiment 12,
consisting of a period of alternation of 5, and 52 followed by an alternation
of S3 and S4 , as described in Chapter 17. Rather than compute the

entire 20 by 20 Q-matrix for Experiment 12, we present here a "miniaturized
version" of this experiment, based upon the eight-stimulus sequence
employed in Example 2 of the preceding section. For the continuous environ
ment, the eight sequences will be:

-448-



J, - (S152SIS2 53 S4 53 54SI)

J2 = (S, S, VS3 S< SJ S4 5<S.)

J} = (S,S2 53S, SJS4SIS2SI)

J4 = (S2S3 S4S3S45,S2S,S2)

J5 = (s3S4S3S4SlSzS,S2S3)

4 ' (S4S3S4S,S2S'S2 SSS4)

J7 - C53 S+ 5, S2S,S2S3S4S3)

Js - (s+s, s2s,s2s3s4s3s,)

It is found that in this experiment, there is no choice of para
meters which will yield an increase in Qf2 , Q34- , Qsf , and Q7g without
producing a corresponding increase in the set of A-units responding jointly to

all stimulus sequences. It can also be shown that no matter how far the
period of the preconditioning sequence is extended (by increasing the duration
of St Sa alternation and also increasing the duration of S3S4 alternation)
the system will never be able to selectively combine the sets (At, A2) and

(A3 , Af") as in previous models. There is, nonetheless, a "predictive" effect
which would be revealed if the stimuli were suddenly cut off, as in Experi
ment 13 .

From this example (and those of the preceding section) it is
clear that the condition for selective merging of A-sets for temporally
adjacent stimuli is not as easily satisfied as in the four -layer system, or
open-loop systems with zero transmission time. Experiment 14, however,

illustrates a simple modification of the preconditioning sequence by which
such a merger can be obtained.
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EXPERIMENT 14: The same four stimuli are employed as in Experi
ments 12 and 13. The preconditioning sequence, however, takes
the form: S,S, Sz S25; 5, S^S..S, S, 53 53 S+S4S3 S3 S+ S4 S3 S, ,
repeated ad infinitum. The terminal Q -matrix is obtained as

before, for the twenty possible sequences of duration 21 .

In this case, it is found that there will be a tendency for the

sets A, and A^ to merge, and for the sets As and A+ to merge in a
*separate "cell assembly". What happens here is that the A-units responding

to S, tend to be associated to the two most common successors of S, in
the preconditioning sequence: namely, S, itself, and St Similarly, St
is associated both to Sz and S, . Thus, when St occurs at the start of
the sequence it tends to be followed (coincident with its second appearance)
by the combined set (A, >A.j) . When the first S4 stimulus appears, At
combines with the "predicted" A, set, and the combined (A, } At) set
tends to persist until the first occurrence of S} , at which point it may
combine with the new As set, or may become inactive, depending upon the

magnitude of hJa r^^S
In order to prevent the original set from persisting

indefinitely (since each A-set tends to predict itself, on the following cycle)

UAf\/S must be kept small enough so that the -/ -components alone are
insufficient to activate A-units whose fi -components are zero. In this
case, only part of the original A -sets will be activated in the absence of the

actual stimulus, but a bias will still remain in the direction of the desired
combination of A -sets .

* The term "cell assembly" seems appropriate here, as the sets which are
formed in the terminal state of a cross -coupled perceptron bear a close
resemblence in organization and functional properties to the cell assembly
concept proposed by Hebb, in Ref. 33.
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In general, if each stimulus which forms part of an "event" can

occur with equal probability after any other stimulus in the same event, then

all of the A -sets responding to these stimuli will tend to merge, at least in

part, and will be evoked by any stimulus of the event-class. This is essen
tially the same effect which was found for four -layer perceptrons in

Chapter 16.

Actually, with the fi -vectors corresponding to those in Table 9,

(for A-units with only three retinal connections) the system is not well
behaved in Experiment 14 regardless of the choice of threshold and

Nar^/<5
With larger numbers of connections and the possibility of higher thresholds,

however, it seems likely that the desired effect could be obtained with the

preconditioning sequence given in the experiment. A f -perceptron (or a

P -perceptron) would probably be somewhat better behaved in this experi
ment, as it would tend to inhibit the sets of A-units characteristic of the
first "event" once the second event began. In the et -system, there is a

strong tendency for all A-sets to merge whenever
^/<5

is sufficient to
permit the merger of the desired sets,

19.8 Analysis of Continuous Aperiodic Environments

If the preconditioning sequence is not periodic, some sort of

approximation procedure must be used, if Equation (19. 14) is to be applied.
Two possibilities suggest themselves: First, the aperiodic sequence (if it
is statistically uniform throughout) can be approximated by a periodic
sequence if the period is sufficiently long to encompass all likely juxta
positions and short subsequences of stimuli. Second, we can consider all
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subsequences of length m , assigning a probability to each, and analyze the

system as though we were dealing with a finite -sequence environment, con
sisting of the various 77? -sequences in an appropriate frequency mixture. In
this case, the analysis should converge to a correct solution as 717 becomes
large, provided the original sequence is statistically uniform. If the statistical
composition of the original preconditioning sequence changes over time,

neither of these methods are applicable, and it seems likely that accurate
solutions can then be obtained only by actually simulating the system and

observing its behavior empirically.

In the experiments which are of primary concern at this time, it
is always possible to assume a statistically uniform preconditioning sequence,
so that one of the two methods described above can be applied. In practice,
this problem is likely to be soluble only for relatively small numbers of
stimuli in the environment, as the Q-matrices rapidly become too large to

handle in currently available digital computers. For long stimulus sequences
and large numbers of stimuli, digital simulation remains the: preferred techni

que, and this offers the additional advantage of being applicable to small
perceptrons or systems where the assumption of infinitesimal transmission
time is inadmissible. In the preceding examples, where theoretical values

(rather than empirical values) of Q. were used, N. was implicitly taken
to be very large.
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19.9 Cross -Coupled Perceptrons with Value -Conservation

The two types of value -conserving systems, 7" -systems and

P -systems, which were considered in section 16.6, are also of interest
in cross -coupled systems. The P -system, which tends to strengthen
connections to the A -set responding to the most likely successor of the

present stimulus, while developing inhibitory connections to the A -units
responding to unlikely successors, appears to be the more promising of the

two. In most environments, however, both systems will probably show
similar phenomena, provided transitions between stimuli Can occur symmetri
cally in either direction. The analysis of the •/•-system, which is somewhat
more familiar from previous work, will be considered first.

19.9.1 Analysis of Y -systems

In the f -perceptron, the total value of the set of input connections
to each A-unit is conserved. Specifically, (assuming the system to be fully
coupled) the change in the value of connection >&, • is given by

(19.15)

Instead of (19. 19), this leads to the differential equation:
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Since
Q^ir,

~
Qy Q , may be negative, the former proof of convergence

again breaks down, since y need not be monotonic. As in the case of the

four -layer system, the approach will be to try to obtain a time -dependent
solution for the •/ 's . The task is complicated in this case, however, by

the presence of the unknown quantities A* (t) in the equation, which
we have not hitherto had to evaluate.

For the "/ -system, any equilibrium equation must be of the
form:

(19.17)

s
Where A" = set of active A-unit sets, A- , for which the value of fr(eo)t •
is computed. As long as all <

f> 's remain fixed, the /'s will tend
exponentially towards such an equilibrium condition , as in previous models.
Now consider the set of units whose (f> 's change value at time
We wish to find the asymptotic value of the change in Y.r due to adding or

subtracting this set of active units to the set Ari at time t£ This is
equal to the difference between the asymptotic value of based on the new

set of active units Ari(t^) and the asymptotic value based on the old set

of active units A ri (t ) Specifically, from (19. 17), and vt th an
obvious extension of previous notation,
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-^zpt^^z^)^;^*f/c»]^'fc))-v*4 "19. 18)

With this equation for the asymptotic value of the "incremental
set" of A-units which become active (or inactive) at time , it becomes
possible to compute the time -dependent solution in much the same manner as
for the four-layer perceptron. To begin with, we obtain the functions

(defined in equation 16.23) for all A. , and thus determine the next oeA

for which ^>("ij^) will change. This gives us the values of <j>fej ^>j)
which are required in equation (19. 18). We then compute the actual value
of A- Y{*(t£) a» follows. The contribution, A* -/J

" , being composed
of a number of individual values, /t",\ , will approach its asymptotic value
exponentially, with the same time-constant as the y 's. Thus, if we can
determine the value of the set of contributing connections at the start of the
interval (time 't^f ) we can determine its value at time t£ Now the

value at t^.t is simply the sum of the tfift^ ) for all f such that $(<Xj )

changes at t£ • We will use the notation A0 Tf^itj^) *or this starting
value. Specifically,

* To avoid computing^ *C-{(.t) , an approximation is required, e.g.,
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Then, by analogy to (16.24), we have

(19.20)

Thus, the complete solution for at time £.* (including the discontinuity

at the terminal end of the interval) is given by:

K. ) J

The value of the dicontinuity time, t , is obtained as before, from
equation ( 16 . 25) .

This completes the analysis of the cross -coupled ? -system.
While no cases have actually been computed at the present time, it seems

likely that this system will generally be better behaved than the oe -system,
particularly in such problems as Experiment 14, where there is a tendency for
all A-sets to merge under oc -system dynamics.

19.9.2 Analysis of V -systems

In the P -system, where the value is conserved over the set of

output connections from each A -unit, the change in the value of the connection
,o. . is now

A J At (19.22)
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This leads to the differential equation and equilibrium equation, respectively

7^ • 1 1 ZPf |? «f VW I * Z*&<W"M (19.2:

s^ Z p7
-
S] V ( 19 •24)

From these equations, a solution for '/'"(^t) can clearly be computed
along the same lines as in the previous section, for the y-system.
Specifically, the asymptotic value for the connections from the difference set

takes the form:

A0 y[ (t\) and A* ff (t±) are comPuted bY equations (19. 19) and (19. 20)
without any modification, so that the final solution can be obtained as before
from Equation (19.21).

Due to its apparent superiority as a predictive system, and since
it appears to have the same advantages in stability of the A -set organization
as the 7 -system, this model seems likely to be the most versatile system
analyzed thus far .

19.10 Similarity Generalization Experiments

The consideration which first drew attention to the importance
of cross -coupled perceptrons was the prediction by Rosenblatt (Ref. 85) that
such networks would be capable of improving their performance in similarity
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generalization, as a result of prolonged exposure to an environment in which
stimuli are more likely to be succeeded by their transforms than by unrelated
stimuli. In Chapter 16, it was shown that a suitably organized four-layer
perceptron has such a capability, and the above analysis shows that for
sequences in which the activity of a cross -coupled perceptron is interrupted
after every other stimulus, its performance should be equivalent to the four-
layer model. Thus the original prediction appears to be upheld.

The mathematical analysis of cross -coupled networks has been
completed too recently to permit detailed examples of similarity generalization
to be worked out at this time. A series of simulation experiments have been

completed, however, employing a program written by Trevor Barker for the

IBM 704. In this program a fully coupled network of 102 association units is
represented, with / -system dynamics. The model differs from those
analyzed above, in that the values do not decay. This leads to "instability" of

the system (a tendency to go into terminal oscillatory modes with massive
A-unit activity, unrelated to the stimuli which are presented), unless some
additional measures are taken to limit the growth of the connection values. The
program was therefore modified for bounded values. In order to prevent the

tendency of the y -system to turn off most of the initially responding A-units
after the first few preconditioning stimuli, a further modification was
included to permit half-integer values for 0 . Thus the values of the
cross -coupling connections have no effect until the magnitude of -/ is at

least equal to \/z
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Even in this modified program, performance is considerably
poorer than might be expected of the decaying value models, since the system
ultimately goes to a saturation condition, with all values either at the upper
or lower bound. Prior to this saturation state, however, (and to a lesser
degree even in its saturated condition) similarity generalization can be
successfully demonstrated, as in the following experiments.

Figure 54 shows the results of two experiments, with five
excitatory and five inhibitory retinal connections to each A -unit, 6 = 1-5 }
n = .005 , and an upper bound of .2 for all values. In each case, the

preconditioning sequence consisted of random stimuli, alternating with their
transforms. The transform, T(S) .consisted of a displacement of S
by half the width of the retina. The retina itself was a 4 by 36 mosaic

(144 points), and all stimuli covered one fourth of these points. In the first
experiment, the preconditioning stimuli consisted of random "salt and pepper
patterns", in which any combination of points is equally likely. In the second
experiment, the stimuli were constructed by a "blob generating program" which
produces coherent, but randomly shaped patterns such as those illustrated in
the figure. The test stimuli, in each case, consisted of the same set of ten

coherent patterns (rectangular designs). After being exposed to the pre

conditioning sequence S, , T(S(), S2 , T(5t)y S3 , T(5,), • • • , activity of

the A-system is interrupted, and a G-matrix is computed for the twenty
sequences :

J.10
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TYPICAL COHERENT STIMULI

Figure 54 CROSS-COUPLED PERCEPTRON SIMULATION EXPERIMENTS
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This G -matrix indicates which of the ten transforms would be identified

correctly if the perceptron were trained to recognize their images, by means

of a single reinforcement. Sequences of duration 2 are used, to provide time

for impulses to propagate over the cross-connections before testing the

response .

The curves show the mean performance of ten perceptrons over

the set of ten test transforms, as a function of the number of preconditioning
stimuli. In the case of the coherent stimuli, note that learning is both more
rapid, and saturation is reached more quickly than with the random stimuli
(where the saturation condition has not been reached even after 5000 pre

conditioning stimuli). While the peak performance level is less than .60, a

statistical evaluation of the data reveals that the trend is definitely significant.
All ten perceptrons, individually, showed a trend in the expected direction,
so that the chance of obtaining these results accidentally would be less than
.001 . It should be noted that since the expected generalization coefficient,

<fr.^
, from a stimulus to its disjoint transform is negative (in a / -system)

these perceptrons had to overcome an initial negative bias before achieving
even the "chance" level of 50% correct identifications.

These experiments confirm the predicted tendency of cross -
coupled perceptrons to generalize on the basis of similarity, in a suitably
organized environment. They also indicate the advantage of coherent over

random stimuli, which is more pronounced in larger retinas than that

illustrated. Doubling the number of retinal points would virtually eliminate

the trend which is found for random stimuli, while the coherent stimulus
curve would be relatively unaffected. All of these results are consistent

with the laws of similarity generalization which were tentatively proposed in

Section 15.4.
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Until further empirical studies are completed, the theoretical
results obtained for cross -coupled systems should still be interpreted with
caution. There is at present no knowledge of the variance in performance

over perceptrons, and how this relates to the size of the system; nor can

we estimate the effects of finite stimulus sequences, in which the assumption
of an infinitesimal rate of reinforcement per stimulus is not fully justified.
The equations of the preceding sections represent limiting behavior for large
values of N» , very gradual memory modification, and very long training
sequences. The assumption of large N/

4 can be obviated by writing the

equations with empirical fi -vectors measured for a particular perceptron,
but in this case the results can be generalized only by means of an empirical
sampling procedure, with many such perceptrons. The given equa

tions will probably be found to yield correct qualitative results, but

considerable work is still required to test their quantitative accuracy.

19.11 Comparison of Cross -Coupled and Multi-Layer Systems

In similarity generalization experiments, it has already been

observed that there is a marked similarity between the performance of the

four-layer perceptron of Chapter 16, the open-loop cross -coupled system
of Chapter 17, and the closed-loop cross-coupled systems considered above.

All of these systems are capable of learning to associate patterns which occur

frequently in temporal succession, and abstracting the principle of simi
larity from a transformation sequence (in which stimuli alternate with their
transforms). All of these systems will tend to work better with coherent

patterns than with random point patterns. In all cases, the constant
N^r^^S

determines the nature of the terminal G- matrix which is obtained, for a
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given environment. Actually, an exact equivalence is found between the
performance of the fully cross -coupled system in finite -sequence environ
ments, with sequences of two stimuli, and the performance of the open-loop
system of Chapter 17 with T - I Suppose the system of Chapter 17 is
extended to include an infinite number of A-sets, each with identical connec
tions from the retina, and with variable connections to each unit in the Jk *

A -set from each member of the Jk-I A -set (and allowing unit time delay
in transmission). It can then be shown that the states of the Jt, A-set for
the first X stimuli in the sequence will correspond exactly to the states of
the equivalent fully cross -coupled model (having all S-A connections equivalent
to those in the open-loop model). Thus, the fully cross-coupled model,

considered through all time, is equivalent to the output of an infinitely extended
open-loop model, of the type discussed in Chapter 17.

While these similarities would lead us to expect basically
similar behavior in most problems for these different types of systems, some

noteworthy differences do exist between the cross -coupled system and multi
layer systems with finite numbers of layers. First of all, there is an inherent
sequence -dependence in the cross -coupled model, which makes its present
state a function of the recent succession of events, (i.e., stimuli) rather
than just the last event to occur. This means that all cross -coupled
systems have some capability for temporal pattern recognition, even without
variation in the transmission times of the input connections. Secondly, the

cross -coupled systems are likely to reach their terminal condition more
rapidly, and with initially accelerating rates of adaptation, since the differ
ential equation depends on changes both in the transmitting and receiving
sets of A-units, while in the four-layer model, the differential equation

-463



depends only on changes in the receiving set, the transmitting set being fixed
for all time. The dependence on both receiving and transmitting sets makes
the cross-coupled system more subject to "instability" phenomena, and
probably tends to reduce the "dynamic range" of the system (as a function of

potentially present, although this remains in the realm of speculation at
present. In a value -conserving cross -coupled perceptron, where there is
the possibility of developing pronounced inhibitory interaction between A-seti,
there is a tendency to develop "cell assemblies" (in Hebb's sense), and these
cell -assemblies tend to rival one another for dominance at all times. It
seems possible that such a phenomenon may provide a basis for figure -
ground separation in complex sensory fields, where it is desired that the
system attend to one object, or component of the input situation, and ignore
the remainder. This will be discussed further in Part IV. If such an effect
can be demonstrated, many of the remaining problems in the design of a

perceiving system would be solved.

A more important difference than any of the above may be
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20. PERCEPTRONS WITH CROSS -COUPLED S AND R -SYSTEMS

A number of interesting effects may be obtained by cross-coupling
the S -units or R -units of a perceptron. Several such systems are considered
briefly in this chapter. The first section deals with cross -coupled sensory

systems; the second section deals with cross-coupled R-systems. Detailed
analyses are not presented here .although several analytic studies are
available in the referenced literature.

20 . 1 Cross -coupled S-units

If the sensory units are arranged in a two dimensional array,
or retina, then it has been proposed that inhibitory interconnections between
each S-unit and its nearest neighbors will tend to inhibit activity most
strongly in the center of a field of illumination, and less around the edges.
Such a system should lead to accentuated edges or boundaries for a visual
pattern, reducing the relatively redundant information coming from interior
regions. Systems utilizing this principle have been proposed by Taylor
(Ref.. 99), by Inselberg, LiJfgren, and von Foerster (Ref. 4), and by a

number of others. The Inselberg-Lofgren-von Foerster treatment includes
a more detailed quantitative analysis than was hitherto available, including
cases in which the probability of interconnection of two units is a Gaussian
function or an exponential function of the distance between them.

While it appears that contour detectors can indeed be constructed

by this means, it should be noted that some information is lost in the

process: namely, the indication of the direction of the illumination gradient

* See also Chapter 23, on visual analyzing mechanisms.
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across the contour. Thus if a square patch of illumination is operated upon
by the network to yield a square outline, there is no way to tell whether
the inside of the square was light and the outside dark, or vice versa. The
contour -detectors proposed by Rosenblatt in Ref. 79, which consist of
A -units with circular or elliptical distributions of origin points, with
slightly different centers for excitatory and inhibitory origin clusters, still
preserve this gradient information.

A somewhat more interesting possibility has been demonstrated
by Inselberg, et all, if three layers of units with anisotropic connections are
superimposed on one another, with a rotation of the axes of symmetry by 60o

in the successive layers. With such a system, it appears to be possible to

construct a network from which there is zero output from a straight -line
stimulus (regardless of its orientation) but a non-zero output from a curved
line. Such systems clearly deserve more study as possible stimulus analyzing
mechanisms for reducing the input data to a perceptron.

Systems with excitatory interconnections between S -units are of

relatively little interest, as such a network would generally lead only to a

spread of activity from the stimulus region. The only useful function which
such connections might have would be in smoothing irregular or broken
images, by filling in holes and gaps; such an application, however, seems
to be of questionable utility at the present time.

20 . 2 Cross -coupled R-units

Inhibitory interconnections between R-units may be useful in
several ways. One application is to guarantee that no more than one R-unit
can be "on" at any time. For this purpose, all R-units are given inhibitory

* See also Hubel, Ref. 113, for relevant biological evidence.
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interconnections to all the others; whichever unit first goes on, inhibits all
the others, holding them off. Such a system will tend to "hang up" in this
state, until the positive signal to the first R-unit is reversed, permitting
some other unit to come on. If the speed of response of an R-unit is
proportional to the magnitude of its input signal, such a scheme can be used
to select the R-unit with maximum input from a given stimulus.

In R-controlled reinforcement systems, inhibitory connections
between R-units may sometimes be employed to guarantee that a unique
response is associated to each new stimulus in succession. Suppose there
are four stimuli, which activate disjoint or nearly disjoint sets of A -units.
Let there be four R-units, with inhibitory connections as follows:

In this scheme, unit Rf inhibits (absolutely) all successive R-units

(f?. +( , R[t£ ) ... ) . Now if stimulus S, occurs, and transmits an

initially positive signal to all R-units, only R can go on. With an

R-controlled value -conserving system (in which the sum of values over all
connections is held constant) 5, will then develop an excitatory signal to

R( , and negative signals to all other R-units. At the same time (since
we have assumed essentially disjoint A-sets) the value -conservi ng system will
guarantee that the R( response generalizes negatively to all other stimuli.
Thus, when S2 occurs, it will tend to turn off R( , but will try to turn
on R2 , Rs and R+ Of these, only R2 can remain on, due to the

inhibitory coupling, so that 5, (or whichever stimulus occurs second in the

sequence) will become associated to f?
2 . Similarly, S3 is associated to

R3 , and S+ to R^
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This scheme becomes somewhat less trivial if it is applied to
the four-layer perceptrons of Chapter 16, subsequent to a preconditioning
sequence in which the perceptron has learned to associate a unique A-set
tp each similarity class of stimuli in a given environment. The above

method can then be employed to assign a unique response to each class of
stimuli (provided the terminal A-sets have sufficiently small intersections).

While the interconnection schemes proposed here for S and

{I -units are occasionally useful for control purposes, they do not introduce
any fundamentally new properties of importance. The most striking pheno
mena to be found in cross-coupled systems are the similarity generalizing
capabilities of the cross -coupled association systems -- with the tantalizing
possibility of a figure -ground mechanism still to be investigated in future
work.
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PART EC

BACK-COUPLED PERCEPTRONS AND PROBLEMS
FOR FUTURE STUDY



21. BACK COUPLED PERCEPTRONS AND SELECTIVE ATTENTION

In Parts II and III of this volume, we have tried to establish the

fundamental properties of two topological classes of perceptrons: series -

coupled and cross -coupled systems. While the possible configurations of
these two types of perceptrons have by no means been exhausted, the most

general forms of series -coupled and cross -coupled networks appear to be

sufficiently well understood so that their principles can now be applied to the

analysis of more elaborate systems. The most general network is achieved
with the addition of back-coupling (Definition 26, Chapter 4), so that layers
of units which are relatively remote from the sensory end of the perceptron
can modify the activity of layers which are relatively close to the sensory
end. Given this additional mode of coupling, then virtually all perceptrons
of interest, however elaborate their structure, can be regarded as compounds
or modifications of the types previously considered.

The modulating effect of back-coupling upon the behavior of a

perceptron will be considered qualitatively in this chapter. It will be seen

that while the analysis of such systems can frequently be carried out in terms
of already established principles, their behavior possesses a new order of

sophistication. In particular, the psychological phenomena of selective
attention and "cognitive set" now begin to emerge. A related exposition of
these ideas can be found in Rosenblatt, Ref. 79, Chapter X.
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21.1 Three-Layer Systems With Fixed R-A Connections

21.1.1 Single Modality Input Systems

The first case to be considered is the class of three -layer
perceptrons having fixed-value connections from the R-units back to the

A-units. For simplicity, it is assumed that there is no cross -coupling
within any of the three layers. Such a perceptron with two R-units can be

represented by the symbolic diagram:

where solid arrows represent fixed-value connections, and broken lines
represent variable -valued connections. In particular, assume that there is
a connection from every R-unit back to every A-unit, half of these connections,
chosen at random, having the value +1, and the other half having the value -1.
In the following section it will be assumed that the R-units are of an "on-off"
variety (having the outputs 1 or 0, rather than +1 and -1) although analogous
effects can be found for simple R-units. It is also assumed, for the sake of

avoiding impossible closed-loop situations, that all connections have a short
time delay, T ; a stimulus, however, is generally assumed to be held on

the retina for a time T >> X
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The signal <o_ ■ which is fed back to an A -unit &. from the

response unit r is given by the linear function
• »

Thus xTrl is equal either to /trp- or 0, depend ing on whether r*■ I or

0 The effect of these feedback signals on the set of A-units responding to

a given stimulus is shown in Figure 55. The symbol A is used to represent
the component of the input signal, OC , which comes to the A -unit from the

retina. It is assumed that there are two R -units, so that there are four
disjoint sets of A-units with roughly units in each set, corresponding to

the four possible combinations of At- - and /V- > . These sets ofr, i rt i
A-units are represented by the four quadrants of the diagram. The circles
indicate the values of • received from the given stimulus, in relation
to the threshold, Q- . The A-units in the innermost circle, for which
/3 ^ Q + 2 , will always be on when the given stimulus occurs, regardless
of the condition of the R-units. Those units for which 8 £ /3 < ©+ 2 will
be on except when they receive an inhibitory signal from both R-units simul
taneously. The units for which /S _ 6 _ I must receive a net excitatory

signal from one or both of the R-units in order to go on, and those units for
which /S = 6-2 will only go on (in the presence of the given stimulus) if
they receive an excitatory feedback signal from both R-units at once. Units

for which C 6-2 will never respond to this stimulus. The magnitudes
of these sets can be calculated from tables of Q-functions (c.f . , Chapter 6

and Reference 87). The shaded area in Figure 55 shows the sets which
respond to the given stimulus when (f* , '"*)=(/,/)
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NET FEEDBACK -

0 FROM (I
+1 FROM (I
-I FROM (0
0 FROM (0

NET FEEDBACK
-2 FROM (
-I FROM (1,0)
-I FROM (0,1)
0 FROM (0,0)

NET FEEDBACK =

+2 FROM (1,1)
+1 FROM (1,0)
+1 FROM (0,1)
0 FROM (0,0)

FEEDBACK =

0 FROM (1,1)
-I FROM (1.0)
+1 FROM (0,1)
0 FROM (0,0)

Figure 55 EFFECT OF FEEDBACK ON ACTIVITY OF A-SET, IN RESPONSE TO A GIVEN
STIMULUS, FOR PERCEPTRON WITH 2 R-UNITS. SHADING SHOWS ACTIVE
A-SETS FOR THE RESPONSE STATE r * , r/ = (1,1).
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Now suppose there are two stimuli, S and 5. . S, is
trained to give the response combination {r* } ^*)~(})0) , while S2 is
associated to the response code (0, I) We assume that the retinal sets
representing the two stimuli are completely disjoint. Having trained the

perceptron, let us now present both stimuli simultaneously (i.e. , a composite
image, S/ US^ , is projected on the retina). Under these conditions, a

series -coupled perceptron might equally well give the response combinations
(0,0),(0,l) , (/, 0) or (/,/) . The present system, however, will
tend to respond either with (I, 0) or with (0, l) .In other words, it

will tend to correlate those R-states which go with one of the two stimuli,
rather than giving a partial response to each. This can be understood by

reference to Figure 56, where the A -sets responding to each of the two

stimuli are shown. For convenience, the sets responding to S, are
assumed to be disjoint from the sets responding to S2 , and the diagram
is simplified by assuming that the set which is active for the composite S, S,

stimulus (in the presence of a given R-state) is equal to the union of the sets

responding to 5, and 5^ alone. This last assumption is not generally
warranted, but the qualitative conclusions reached will still be correct. The

shading shows the reinforced sets for 5, and 5t

At the moment that $ Sz appears on the retina, both R-units
will be off, so that there is zero feedback to the A-system, and the total
signal coming to each R-unit from the A-system will be approximately zero

(consisting of a positive signal from one stimulus, and an approximately
equal negative signal from the other stimulus). Suppose initially, both
R-units go on. In this case, the sets of A-units responding when \)

will become active, and the total signal to each R-unit will still be approxi-
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Figure 56 A-SETS RESPONDING TO THE STIMULI S, AND S2, FOR THREE RESPONSE
CONDITIONS. SHADED AREAS SHOW REINFORCED SETS, AND DOUBLE
HATCHING SHOWS REINFORCEMENT WHICH GENERALIZES TO THE
CONDITION R* = (1,0).
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mately zero, so that the response state is unstable. Alternatively, suppose
the R- state goes to (1,0 ) . In this case, the signal to the R -units comes
from the double -hatched regions of the Venn -diagram in Figure 56, and the

5 set becomes "dominant". If this occurs, the response (1,0) will
tend to remain stable, and may even persist after the stimuli are removed
(provided some of the A-units have thresholds iz I ). Similarly, if the

R-state goes to (0,1) , then the Sz set becomes dominant, and its
response will tend to persist.

If either stimulus has been trained to give the response (0,0)
in the above experiment, the R-units will tend to "hang up" in their initial
condition, and no other response can ever occur to the joint stimulus S, Sa
On the other hand, it is possible to produce an oscillating or cyclical response
by training a given stimulus to give the response (1,1) when the present
response is (0 , 0 ) , then conditioning the (1, 1) set to give the response

( 1, 0 ), conditioning this set to give (0, 1 ) , and finally associating the

response ( 0, 0 )to the A-set responding for (0, 1 ) - In this case, as

long as the stimulus is held on the retina, the R-units will cycle through the

four responses in succession.

The important tendency which has been demonstrated for this
system is a tendency to correlate the output of the R-units so that they
all apply to a single stimulus, when a composite stimulus occurs at the

retina. This now provides the basis for the following experiment:
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EXPERIMENT 15: Using a four-R-unit perceptron, and a universe of

squares and triangles of equal area in all positions on the retina,
train the system to give the responses (p* , P* ) a (| , 0) for a
triangle, and (0,1) for a square; (r * , (l,0) for a
stimulus in the top half of the retina, and (0, /) for a stimulus
in the bottom half. After training with an error -correction
procedure, test the response of the perceptron to the stimuli

5^ = triangle in the top half of the field and square in the bottom
half, and

S^
. = square in the top half with triangle in the bottom

half.

In this experiment, the first pair of responses are used for square/
triangle discrimination, and the second pair for top/bottom discrimination.
For the time being, assume that the error correction procedure is modified
by forcing the correct f?* condition whenever a correction is applied. (This
assumption will be dropped in Section 21 .2.) It is predicted that a back-coupled
system, organized as above, will tend to give one of the two responses
(1,0, 1, 0) or (0, 1, 0, 1) for stimulus Sfc (signifying "triangle, top"
or "square, bottom", respectively), but will give one of the two responses
(1,0,0, 1) or ( 0, 1,1,0) for stimulus S^. (signifying "square, top" or

9

"triangle, bottom"). In other words, the system should give a consistent
description of one of the two stimuli, in terms of shape and location, and
ignore the other stimulus; it will not name the shape of one and the position
of the other, even though both shapes and both positions are simultaneously
present .
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Thai the predicted effects will tend to occur can be seen by

referring to Figure 57, where it is assumed that the combination
(top triangle and bottom square) occurs. Reinforcement is shown by cross-
hatching. The relative sizes of the intersections in the Venn diagram are
drawn to suggest the relative intersections of the A-sets for the response
states of interest. Note that the set responding when R *- (1,0,0,0) tends
to have a relatively large intersection with the (/, 0 , I . 0) set, due to the

fact that three of the four R-units are in identical states . The combined
intersection of the (/, 0, 0,0) set with the sets which are reinforced to

yield the "top" response (l,0) on and r+ is greater than the combined
intersection with the sets which were reinforced for the "bottom" response.

If the triangle first becomes dominant with respect to the r. , l"z pair of

responses (yielding the condition I, 0,0,0) the activated set which has

been most heavily reinforced, shown by cross-hatching, will now tend to

evoke the "top" response from r~
3 and t~4 , since the "top triangle" set now

carries considerably greater weight than the "bottom square" set. Thus a

consistent configuration on all four R-units is induced. If (0,1 , 0, 0) should
occur, however, the system will have an opposite bias for r3 and , tending
to evoke the condition (0,1,0,1). If 5y should occur instead of S6 , the

biases will be found to favor the (/, 0,0,1) or (0, I , I, 0) conditions, as

predicted.

Experiment 15 illustrates the simplest conditions under which
"selective attention" might be said to occur in a perceptron. In a complex
field, with more than one trained stimulus present, rather than giving a

conflicting mixture of responses, the perceptron tends to pick a single
familiar "object" and respond to this object to the exclusion of everything
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Figure 67 SETS AFFECTING THE TRANSITION FROM THE RESPONSE STATE (1,0,0,0)
WHEN THE COMBINED STIMULUS "TOP TRIANGLE" AND "BOTTOM SQUARE" OCCURS.
SHADING SHOWS REINFORCED SETS, AND THE MEASURES OF THE INTERSECTIONS
WITH THE (1,0,0,0) SETS ARE DENOTED BY THE LETTERS a, b, c. AND d.
THE VENN DIAGRAM IS DRAWN SO AS TO EMPHASIZE THE PROBABLE MAGNITUDES
INVOLVED.
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else. By adding additional responses, a complete description might be

obtained of the shape, size, position, etc., of a single object in the field.
The particular object which is selected, however, depends on chance factors,
such as the relative amounts of reinforcement which have been applied to

different A-sets, or momentary noise within the network. In the following
section, it will be shown how a stimulus in a different modality, such as a

spoken word, can be made to direct the attention of the perceptron towards a

selected object or region in the visual field.

21.1.2 Dual Modality Input Systems

The perceptron which is illustrated in Figure 58 is similar
to the one which was described in the preceding section, except that it

possesses two sensory input systems, one visual (a retina) and the other

auditory (e.g. , a filter system). There is a set of A -units for each of these

input sets, designated for the visual association system, and for
the auditory association system. Again, there are four R-units, each one

receiving variable -valued connections from all A -units in both sets, and

sending a set of fixed value connections back to all the A-units. As before,

half of the feedback connections from each R-unit are assumed to be excitatory,
and the remainder inhibitory, with values 1 /
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Figure 58 ORGANIZATION OF A DUAL MODALITY PERCEPTRON, WITH 4 R-UNITS
(BROKEN LINES INDICATE VARIABLE-VALUED CONNECTIONS)

With this system, the following experiment can be performed:

EXPERIMENT 16: Using a dual -modality input system (visual and

auditory), with four R-units, train the perceptron to distinguish
square/triangle and top/bottom, using the same code and
stimuli as in Experiment 15. Then, selecting four discriminate
audio-patterns, SQ, TR, T, and B, train the perceptron by
means of the audio-input to associate the responses for "square",
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"triangle", "top" and "bottom" to these four stimuli. In testing
the perceptron, a composite visual stimulus, consisting of a

triangle in the top half of the field and a square in the bottom
half, is used. Simultaneously with the visual input, the audio -

pattern SQ, TR, T, or B is presented, and the response of the

perceptron is observed for each of these four conditions.

From the discussion of Experiment 15, it is clear that the
visual section of the perceptron will tend to give a consistent response of
(1,0,1,0) or (0,1,0,1) , representing "top triangle" or "bottom square" ,

respectively. The effect of adding the audio-stimuli is to add an additional

bias to the R-units, favoring one of the four "concepts", square, triangle, top,
or bottom. For example, if the TR stimulus is applied (which has been

independently associated to the composite response r( , r2 = 1,0 ) there

will be an auxiliary positive signal to P, , and an inhibitory signal to r2 ,

coming from the Aa set. There will be no bias introduced on r5 and r+

Consequently, the system will be biased to give the initial response
(1,0,0,0 ) , which we have seen tends to transform itself into the stable

condition (1, 0,1, 0) for the given stimulus.

Thus the results which are predicted for Experiment 16 are that

when the audio-pattern TR is given, the perceptron will give the composite

response indicating the shape and position of the triangle; when SQ is

presented, the perceptron will indicate the shape and position of the square;

for the audio -input x , w*ll indicate the shape and location of the top

visual pattern; and for B , it will indicate the shape and location of the

bottom pattern. An audio -command can therefore be used to direct the
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attention of the visual system to a specified location or a specified shape,
and the output of the perceptron will be a consistent description of the indi
cated object.

While it is possible by means of the above procedure to assign
"names" to visual objects or events, and direct the attention of the perceptron
by means of these names, it should be noted that the association is actually
much too complete for this to serve as a model for linguistic "naming behavior".
For the perceptron, there is no difference (at the response level) between the
name for an object and the object itself. Thus the audio -symbol TR and the
visual image of a triangle both turn on the same response combination
(1,0,..) in the experiment considered above . If it is desired to retrain
the system to associate some other visual pattern (say, "trapezoid") with
the TR symbol, it is necessary to completely eliminate the previous asso
ciation of triangles to (1,0, . . ) and train trapezoids to give this response
instead. Words and visual patterns are part of the same conceptual class, for
this perceptron, and cannot be re-associated as distinct entities, but can only
be used as raw material for building up new conceptual classes. The distinction
between the name and the visual object becomes important in practice if we

wish to tell the perceptron to "look for the square" when there is no visual
square present. The audio-symbol "look" might be used to start an auto

matic scan or hunting process, but to stop the process when a square is
found, the perceptron must be capable of distinguishing between the audio -

symbol for "square" (which it must remember for the duration of the search
process to tell it what it is looking for) and the visual pattern of a "square",
which must stop the search when it appears. A perceptron which is capable
of distinguishing between symbols and objects, and is not subject to these
criticisms, will be considered in Section 21.3.
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21.2 Three -Layer Systems With Variable R-A Connections

In the previous examples, the existence of a bias towards one

of the two consistent response configurations when part of the k'
" state is

achieved, is due to the fact that reinforcement is applied only in the presence
of the correct response. This means that whenever a corrective reinforce
ment is applied, the reinforcement control system must first "force" the

desired response configuration. But in a simple error -correction procedure,
as this concept has been used previously, the corrective reinforcement would
normally be applied only when the response is wrong, and this would tend to
reduce the indicated bias quite drastically. For example, in Figure 56, it
can be seen that if St had been negatively reinforced in the presence of the

I?" = (l y 0) state, this negative reinforcement would tend to cancel the effect
of the S( signal. One method of eliminating this problem, which leads to a

system which appears to be generally better -behaved (on the basis of a quali
tative examination of its properties) is to make use of adaptive back-connections,

rather than fixed-value connections, from the R. to A-units.

21.2.1 Fixed Threshold Systems

The first model to be considered corresponds topologically to the
model treated in Section 21.1.1, but differs in having variable connections,
so that its symbolic diagram is of the form:

s—>*£S
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The forward connections, from A to R -units, are assumed to follow the

usual oc -system dynamics, subject to error -correction procedures . The
back-connections, however, are subject to the P -system rule which was

introduced for cross -coupled perceptrons. This means that the total value
of the set of feedback connections from each R-unit remains constant, but

that if both termini (the R-unit and the A -unit) are active in succession, the
connection value is incremented by a positive quantity, f| . At the same
time, a proportional decay occurs in all active R-A connection*, so that in

the absence of reinforcements, they tend to approach zero exponentially. The

net change in value of connection /Or£ at time t is therefore

Assuming, as before, that each stimulus persists for a time T » 7* ■ the

result of this rule is to raise the value of the feedback signal to all S -units
which respond to the current stimulus, from the active R-units, and at the

* Note that in this equation decay occurs only when f * = / . This
means that the feedback signals from different R-units will have
approximately equal weight, regardless of the relative frequency
with which the R-units are used. The transmission delay, T ,
is included only for conformity to previous models, and plays no
essential role here.
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same time to develop inhibitory connections to the A -units which are not

currently active. The decay guarantees that the entire system will tend

towards a dynamic equilibrium, at which the expected rate of gain just
balances the rate of decay.

The effect of this system is illustrated in Figure 59, which shows
the condition after associating stimulus S, to the response (1,0) and St
to the response (0, 1), by an error correction procedure. This corresponds
to the same conditions as Figure 56. The sets which respond when

R* _ (0 , 0) are shown by the large circles. If these sets are initially
reinforced to yield the appropriate response for each stimulus, then when the

composite stimulus appears, they will try to turn on opposite responses, with

about equal strength. Such a condition, however, will be an unstable one. If
one of the sets, say S , carries slightly greater weight than the other,

the condition illustrated in the figure will arise. With f, on, excitatory

Figure 59 A-SETS RESPONDING TO THE COMPOSITE STIMULUS 5, S2 . SHADING

SHOWS ACTIVE A-SETS FOR THE RESPONSE STATE (1,0).
(COMPARE Figure 56).

-487-



signals will be transmitted back to the 5, set, and inhibitory signal* to

all other A -units, including the 5t set. Thus the S, set remains
unchanged, but the Sa set is diminished. Alternatively, if 5X should
gain an advantage, the 5^ set will tend to remain unchanged, and the 5,

set will be reduced.

If we assume that the universe consists of a large number of
stimuli in each class, as in Experiments 15 and 16, the set of A -units
responding to S. would generally not be perfectly preserved, but would
be shifted to include more units which respond to many stimuli in the S,
class, and to eliminate those units which respond only to S, . Thus
there is an additional tendency, in this system, to convert the sets of
A-units for different stimuli which have been associated to the same response,
to sets which are nearly identical. It is clear that if the procedures of
Experiments 15 and 16 are carried out with this system (but with the usual
error -correction practice of reinforcing in the presence of the wrong
responses only, rather than forcing the correct response) the results predicted
in Section 21. 1 will be obtained, but with less chance of confusion or
erroneous bias due to conflicting active sets. The special property of the
variable feedback system can be characterized as a tendency to activate the

A-units responding to one of the previously trained parts of a complex
stimulus, while suppressing those A-units which respond to the remaining
parts .
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21. 2. 2 Servo -Controlled Threshold Systems

In all perceptrons considered thus far, the thresholds of the
A -units have been assumed to be invariant over time. It is possible to vary
the effective threshold of an A-unit by adding an excitatory or inhibitory
component to its input signal. If this is done for all A-units in the system,
the result will be to increase or decrease the proportion of units which
respond to a given stimulus. If all signals and thresholds are quantized, then
the change in the active set will occur by sudden jumps; for example, the

addition of A 6 = + I will suddently activate all A-units whose oc -signal
was equal to 9t

- - / Such a condition would be hard to utilize effectively
for the control of activity. On the other hand, if each A-unit has a threshold
Si selected at random from some continuous distribution, say a Gaussian
distribution, then there will always be some A-units whose thresholds 9t

-

are just below the present value of oc t- , and others whose thresholds are
just above the present value of oc- In this case, a slight change in 9

will always yield a corresponding change in the size of the active A-set, and

the. size of the active set will vary in an approximately continuous fashion
as 9 is changed continuously.

Figure 60 shows a back-coupled perceptron in which the amount
of activity is continuously monitored by a servomechanism, which controls
the magnitude of the thresholds s.o as to keep the total activity constant.
If the fraction of active units falls below the desired level, the servo-system
transmits an excitatory signal to all A-units (equivalent to A 9 < 0 ) while
if the activity rises above the desired level, an inhibitory signal (equivalent
to 4 9 > 0 ) is transmitted to all A-units.
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Figure 60 BACK-COUPLED PERCEPTRON WITH SERVO-CONTROLLED THRESHOLDS.

Such a system is likely to have advantages in many types of
perceptrons. Attached to a series -coupled perceptron, for example, the

Q -servo can guarantee that regardless of stimulus size or intensity, the

level of A-unit activity will be optimum. In a cross -coupled system, it can

be used to prevent "blow-ups" of activity, by providing an active mechanism
for counterbalancing the growth of excitatory weights. It is worth noting
that the 0 -servo can substitute for inhibitory connections from the retina
to A-units, since it generally yields the condition that if stimulus is
a subset of stimulus Sy (on the retina), the corresponding active asso
ciation set A (Sjt) will not be a subset of A (Sy) In the back-coupled
system, the 8 -servo yields particularly interesting results.

Figure 61(a) shows the condition of the A -set for the same stimuli
as in Figure 59, with the R -units in the (0,0) state, so that there is no feed
back. The large circles show the sets which respond to S, and Sx alone,
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normalized by the action of the servomechanism. When the composite
stimulus appears, it is no longer possible for the union of the sets AfS,)
and A(S1) to remain active, however; consequently the active sets
are reduced to those units (shown by the shaded areas of the diagram) for
which /8

[ ^ Q. + A0 . Under these conditions there is still no bias
favbring the S, response or the St response; both sets are still in
balance, and either response might occur. As before, however, this condi
tion tends to be unstable, and (assuming that i S, and 5a have been
associated to the same response codes as previously) either (1,0) or
(0, 1) will tend to occur.

Figure 61(b) shows the stable state of the system in which the

response (1,0) has become dominant. The servo-system is now obliged to

adjust to the effect of the excitatory signal fed back to the A(St) set, and

the inhibitory signal to the A(SZ) set. The result is that the active set is
nearly identical to the set which would be active for 5, alone, the A(SZ)
set being virtually obliterated by the combined effect of the negative
feedback and the increased threshold. It seems likely that by strengthen
ing the excitatory feedback component ( /tr, in the diagram) sufficiently,
the active set can be made to coincide perfectly with the set responding to

S, alone. Thus the effect of selecting the (1,0) response configuration is to

enable the perceptron to respond exclusively to the S, stimulu s .completely
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Figure 61 ACTIVE A-SETS FOR COMPOSITE S, St STIMULUS, IN SERVO-CONTROLLED

BACK-COUPLED SYSTEM. ACTIVE SETS SHOWN BY SHADED AREAS.
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free from interference by the presence of 5, . Reversal of the R* state
would, of course, lead to a reversal of the A -state. These phenomena are

highly suggestive of reversible perspective and figure -ground reversal in

psychological experiments, where one of two ways of perceiving a complex

figure dominates to the exclusion of the other.

In a dual-modality perceptron, the above system will work in a

similar fashion, assuming that separate 0-servos are employed for the

visual and auditory channels. Thus by giving the audio symbol for square
or triangle, top or bottom, in Experiment 16, the perceptron can be directed
to attend to one of the two objects present, and will develop an A-unit state
which corresponds closely to the state which would be expected if only the

indicated object was present in the field.

21.3 Linguistic Concept Association in a Four -Layer Perceptron

In Section 21.1.2, it was noted that although names can be

associated to objects or visual events in a three-layer back-coupled model,

so as to permit the experimenter to direct the attention of the perceptron
selectively to a named object in a compound field of stimuli, the associations
formed tend to be associations of particular stimuli, rather than universals.
It is not possible to change the name of an object (or a class of objects)
without actually undoing the previous perceptual organization of the stimulus
world for the given perceptron, and then reconstructing it in a new form.
Words and visual patterns are not distinguished, at the response level, but

are amalgamated into a common concept.
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A perceptron which is capable of first forming auditory and

visual concepts, or universale, and then associating these with one another,

and which can change its "linguistic associations" without disrupting its
perceptual organization, is illustrated in Figure 62. The system has a

visual input and an audio-input, as in Figure 58. It is also equipped with
a Q -servo, and the back connections to the A^- »«t are variable, as in
Section 21.2. For present purposes no back-connections to the At set are
required. There are two distinct sets of R -units: one set, /?'*~ , receives
its primary inputs from the A. system, and can be associated to visual
stimuli. The second set, , receives its primary inputs from the audio-
system, and can be trained to respond to sound patterns, or words. (By using
a spectrum of 7^ for the Sfc to At connections, or by means of a

cross -coupled A a. -set, the system can be taught to recognize sound
sequences, so that it need not be restricted to momentary sound patterns. )

Figure 62 A DUAL-MODALITY PERCEPTRON FOR LINGUISTIC CONCEPT ASSOCIATION.
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Thus far, we have what amounts to two mutually independent
perceptrons, one for visual stimuli, and the other for auditory stimuli.
Each of these perceptrons can form classes and generalizations by means of

an error -correction procedure applied to the appropriate response sets.
The added feature, however, is the extra association layer, which, in this

system, comes after the R -units. The A-units in this set receive fixed
connections from the R -units (which f\orm a sort of retina for a second -order
perceptron) and send back variable -valued oc -system connections to the

R -units. It is assumed that each R-unit (in both sets) receives connections
from all of the >

|f* units, and that the values of these connections can be

corrected by an error -correction procedure, just as with the connections
from the X"' layer .

Suppose the perceptron has already been trained to recognize
several kinds of visual objects (say squares and triangles) and has also been
trained to recognize several spoken words ("square" and "triangle") for a

variety of intonations, voice qualities, etc. During this training, the A

to R-unit back-connections have not been reinforced. Now let the perceptron
hear the word "triangle", without any visual stimulus being present. The
result will be an appropriate code -configuration in the units, which
will induce a characteristict state of the A**' system , identifying the

spoken word. By means of an error correction procedure, the perceptron
can now be biased to give the f% code for a triangle, and will hereafter
tend to prefer this response to any others when the word "triangle" occurs.
Consequently, when a composite stimulus is presented, as in Experiment 16,

together with the spoken word "triangle", the system will tend to give the
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R response to the triangle, and due to the feedback connections to the A^
set, and the action of the 8 -servo, it will selectively augment the inputs to

those A-units which respond to the triangle, while tending to suppress
activity of A-units responding to other stimuli. Since all idiosynchratic forms
of the spoken word, and all forms of the triangle -pattern, have been asso
ciated to identical response codes, the association will generalize immediately
over both the audio class and the visual class of stimuli, without having to
train the system with multiple examples of each.

Thus the four -layer perceptron can be made to direct its
attention in response to spoken commands in much the same way as the
previous models, but without requiring a modification of the A-R connections,
or "perceptual organization" of the network, in forming the linguistic asso
ciation. By a similar procedure, the A^ to R* connections can be

reinforced in the presence of a visual pattern to create a bias, or "expentancy" ,

favoring the perception of the word corresponding to the perceived object. By
replacing the cc -system back-connections from A*** to the R-units with

P -system connections (as in Equation 21 . 1 )the association can be made
to occur in a relatively spontaneous fashion, by presenting the visual image
together with its spoken name. The result will be a reinforcement of the

connections from the A set which responds jointly to the visual and
auditory codes; since this set will have many units in common with the

separate audio and visual A sets, the reinforcement will tend to
generalize, to yield the desired result.
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This system can be used for the problem of searching for a

named object which is not currently present in the visual field. For this
task, one must assume that the units are of a "flip-flop" variety,
which tend to go on and stay on when they receive a sufficient input signal,
until they are specifically cut off by a strong inhibitory signal. The system
is taught to initiate an automatically controlled search or scan procedure in
response to the spoken word "search". It is also trained (at the A ' level)
to turn off the search response whenever a coincidence occurs between a

spoken name-code, and the visual object-code, but to leave the search-state
alone when either the name or object, but not both, are present. Thus, given
the command "Search for square", the word "search" initiates the search
activity, and the word "square" sets the system to anticipate a square pattern.
When a square appears in the field, the A0i set corresponding to the com
bined object-code and word-code is activated, and transmits a strong inhi
bitory signal to the search response, turning it off. It would be possible to go

a step farther, by training the perceptron (which has now isolated the set of

A^. units responding to the square) to continuously center the image of the

square in the retina, using two continuous R-units to measure # and -y
displacements of the image from the center of the field (as in Section 10.2).
Such a system, having found a moving stimulus, will track it and tend to

keep it centered without being confused by the presence of extraneous objects
in the field.
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22. PROGRAM -LEARNING PERCEPTRONS

In the last chapter, we have seen that a back-coupled perceptron
can be made to attend selectively to parts of a complex field, suppressing
A -unit activity corresponding to objects other than the one attended to. In
the last few paragraphs, it was also shown that such a perceptron can be

made to anticipate decisions which are to be made at a future time, and
execute them when the appropriate perceptual conditions are met. This
lays the basis for the learning of sequential programs of responses in
perceptrons .

Programmed activity is, of course, of supreme importance in

carrying out logical sequences or algorithms, as in a digital computer. It
also appears to provide a possible basis for the recognition of highly complex
stimulus configurations, which depend on relations of simpler parts, rather
than a fixed overall shape. The recognition of a human form, or an animal,
is of this variety. It is also possible that the recognition of abstract topo
logical relations -- a problem which has hitherto defied all perceptrons
analyzed -- can be performed by means of a suitable programmed sequence
of observations. This writer has become increasingly convinced that a

passive filter -type system (such as a simple perceptron) cannot be designed
which will economically recognize topological abstractions and relations
such as "A and B are disjoint" or "A is inside B" or "A is a closed curve".
On the other hand, a perceptron which can attend selectively to part of the

stimulus pattern at a time, and carry out a sequence of observations under
program-control, seems to offer a potential solution to this problem.
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22 . 1 Learning Fixed Response Sequences

A perceptron of the back-coupled or cross-coupled variety can
be taught to execute a fixed, stereotyped sequence of responses without

introducing any new features in the system. If the sequence R , R* , R
is required, for example, when stimulus S( occurs, but the inverse

sequence ( R*, Rl
J

, R* ) when 52 occurs, it is only necessary to

associate the required responses to the succession of A-states which
follow the stimulus in the cross -coupled system, or to the A-states which

result from the interaction of the retinal input and the R-A feedback, in the

back-coupled system. Of these two approaches, the cross -coupled system is
more versatile, since it can be triggered by a momentary stimulus, and will
not return to an identical state if the same response condition should occur
at different points in the sequence. The cross -coupled system, however,

requires that the response sequence occur with exact timing of each element.
If the triggering or execution of each response takes an indeterminate amount
of time, then a closed-loop system of the type shown in Figure 63 would be

more appropriate. This system (which is also applicable to the recognition
of strings of sensory events, such as words or speech sounds, where each
element of the sequence is of indeterminate duration) employs an A l' system
with units which tend to lock on once they are activated, unless specifically
triggered. These units are of the same variety as the "flip-flop R-units"
employed in the R*~ set in Section 21.3. The A*' set is cross-coupled,
with fixed connections, and feeds back (with fixed connections) to the A* '
set.
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Figure 63 FOUR-LAYER PERCEPTRON FOR RECOGNITION AND CONTROL OF R -SEQUENCES

WITH ELEMENTS OF INDETERMINATE DURATION.

When a response occurs in the R-set, it immediately triggers
ft)the A system to assume some characteristic state. The parameters

of the cross -coupling at the level can be so picked (e.g. , by making
all interconnections inhibitory) that the system will immediately assume a

steady state, which will be held until some subsequent response occurs.
When the second response of the sequence occurs, it finds the effective
thresholds of the Att' units modified by the cross -coupling signals from
the units which are already on. Consequently, the A® state which occurs
will depend not only on the new response, but also on the previous flP
state. Unlike the previous cross-coupled systems, however, it does not
depend on the time -lapse since the previous input, since the A**' state
has held steady over the interval.
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By means of the feedback to the A set, the A state

(and consequently the response sequence) can be made to modify the response

of the A'0 system to the present stimulus. Thus a distinct succession

of responses can be associated to the stimulus, each new A1" state

signifying the joint information that the stimulus is present, and that a

particular succession of responses has occurred in the past. To terminate

such a sequence, it is possible to assume that one of the R-units has inhibi
tory connections to all n units, so that when the end of the sequence
is recognized, the A(,* system can be reset to its inactive state, by

turning on this response.

22.2 Conditional Response Sequences

In the last section, the response sequences learned by the

perceptron were assumed to be of a fixed, stereotyped variety, such as

the utterance of a given word or phrase, or the execution of a particular
sequence of movements. Of more general interest, is the possibility of

conditional response sequences, where the execution of the next step

depends upon the realization of a set of conditions at the present time.

In a limited sense, we have already demonstrated the possibi
lity of conditional responses in the perceptron of Figure 63, where the

next response depends not only upon the preceding R-sequence, but also
upon the continuation of the initiating stimulus. A more interesting case,
however, would be one in which the next response depends upon the recogni
tion of some condition which results from the preceding activity of the

perceptron itself. For example, if the perceptron is equipped with a move-
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able appendage by means of which it can apply pressure to external objects,
we might ask it to push aside any object placed in front of it. Such objects

might have their movement blocked, either to the right of to the left, in
which case the perceptron might first bring its "pushing arm" into contact
with the left side of an object and try pushing to the right, but if it finds
that the object remains stationary, it must reverse the position of its arm,
and push to the left.

Such a decision program still seems to be within the capability
of a perceptron of the type just described. It must recognize (through its
visual inputs) the conditions "no object present"," object present to right of
arm location", "object present to left of arm location", arm in contact with
left side but object stationary", "arm in contact with left side and object

moving", etc. The recognition of the contact conditions might be facilitated
by the inclusion of pressure transducers on the arm, providing an auxiliary
Sensory input to the association system. An appropriate response sequence
must then be associated to each of these conditions. For example, if the

condition "arm in contact with left side but object stationary" is recognized,
the response sequence might be

1 . Retract arm
2. Shift arm position to right
3 . Extend arm

This would then yield the condition "object present to left of arm location",
for which the response would be

1 . Shift arm to left until it contacts object
2. Apply pressure
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The conditions of "moving" and "stationary" objects can, of course, be

recognized by a perceptron with time delays from the retina to the A

units, so that there is nothing in the above description which cannot be done,

in principle, by perceptrons which have already been analyzed.

22. 3 Programs Requiring Data Storage

In all of the sequential programs considered above, the next
step has been determined entirely by the conditions at the previous step,
and a knowledge of how many steps have already occurred in the current
sequence. More elaborate programs require a conditional response based on

information which was available several steps previously, but is no longer
preaent in the sensory input. The perceptrons considered so far can solve
such problems only by anticipating all possible sequences of conditions,
and learning a unique response sequence for each special case. This rapidly
becomes impractical, as the sequences become more involved. An example
of such a problem is counting. In counting from zero upwards, we first
produce a sequence of single digits, from one through nine; we then add a

second digit (a one) and reset the low order digit to zero. The one in second
place is held fixed, while the low order digits are recycled, and is then
changed to two, and so forth. At an advanced stage in this procedure, we
may be holding three or four high-order digits "in memory" while modifying
the low-order digits. To pexform such a program expeditiously, an internal
storage mechanism is required, which can be set to hold a given item of

information and read out or altered whenever required. Such a memory
mechanism is much more like a conventional digital computer memory than

anything yet encountered in perceptron theory.
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While it is fairly easy to contrive systems which employ rigidly de

termined gating mechanisms and more-or-less conventional computer memory
logic to provide a temporary storage device for a perceptron, no realy satis
fying solution has been found to date. A biological system undoubtedly employs
something more subtle than a coded address system which transmits its
stored information on command, but the similarity in logical requirements
nonetheless suggests that there might be a similarity in structure at this
particular point. It should be remembered, however, that human ability to

perform complex algorithms without extensive practice and learning time
does not begin to approach that of a digital computer. The human computer
also tends to rely heavily on such external aids as pencil and paper to augment
his memory for relevant data, and with the aid of an external transcription of
its outputs, a perceptron can also be made to perform rather elaborate logic

(in the manner of section 22.2).

Some possible cues as to the nature of temporary data storage in
the human brain come from introspective observations of recall of strings of

digits, words, or melodies, and such exercises as attempting to count in
binary up to the point where one loses track of the number on which one is

operating. In all of these cases, recall is helped by rhythmic grouping of

elements, and by visualization or auditory imagery of the elements in a

continuously recurrent sequence. It seems likely that an active memory,
such as a reverberating loop system, which continuously rewrites itself
on every rehearsal of the stored information, is involved.
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22.4 Attention -Scanning and Perception of Complex Objects

The preceding sections have dealt with the phenomena of

program learning with respect to response sequences. A capability for
program learning is also useful for the direction of attention over a sensory
field, and the perception of a complex pattern or object by noting its parts
and the relations between them. The possibility of directing attention
selectively to part of the visual field was already observed in the last
chapter. A program-controlled perceptron Could, therefore, be taught to
direct its attention successively to different parts of the field in some syste
matic order, e.g., to scan from left to right, or top to bottom. It is also
plausible (although it remains to be demonstrated) that a back-coupled
perceptron can be taught to shift its field of attention along a contour, or
edge of a figure, so that the association set, at any one time, responds

only to part of the contour. Such a system, by starting at one point on a curve

and following it in one direction, could determine whether the curve is closed
or open by indicating whether the scan process returns to its starting point
without having lost the contour at any time.

In the recognition of a complex structured object, such as a

man (regardless of posture, angle of view, etc.) a program of observations
might note significant parts and the transitions between them. There should,

for example, be a head joined to the shoulders, and by following a path from
one of the hands, the system should successively come to a forearm, shoulder,

and torso. The reader may recognize a similarity between this suggestion
and Hebb's concept of a "phase sequence" (Ref . 33). The phase sequence
consists of a progression of cell -assemblies, each of which represents some
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elementary perceptual fragment, the entire sequence representing a

perception of a complex stimulus or experience. In the perceptron, however,
the progression of states is assumed to be under the control of a learned
program, which directs the attention of the system in such a way as to make
first one set of A-units, then another set achieve dominance, by the

mechanisms described in Chapter 21. A sequence -recognizing system, such
as the five -layer perceptron shown in Figure 64, would be required for the
direction of the scanning process and for the recognition of the total configu
ration from its parts . This system employs an ^<t) layer of the same type
as in Figure 63 (cross -coupled, with fixed interconnections, and A-units
which hold their state until triggered by a sufficiently strong signal to change).
The A*'' set in this model, however, has variable -valued connections
both to a new R ' set, which can learn to recognize complex patterns from
sequences of parts, and also back to the R units, so that the system can
be taught to direct its attention in a systematic manner to look for anticipated
parts of the complex.

Figure 64 FIVE-LAYER PERCEPTRON FOR RECOGNITION OF COMPLEX PATTERNS BY

ATTENTION SCANNING PROGRAMS. (BROKEN ARROWS INDICATE
VARIABLE CONNECTIONS).
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22. 5 Recognition of Abstract Relations

It is apparent that the perceptrons proposed above are already
stretching the limits of what has been firmly established analytically and

experimentally. While there is good reason to think that the proposed
systems would work in principle, they are highly speculative, and we are
far from being able to describe their performance in quantitative terms.
Nonetheless, one further venture in extrapolation seems to be of interest:
As was previously noted, the recognition of abstract topological relations
(or metric relations, for that matter) cannot be performed economically
by a perceptron which is required to grasp the relation instantaneously from
a complex pattern. The relation "A is inside of B", for example, would
require that the system be trained with all possible cases of "A inside B"
and "A outside B", even after it has been taught to identify patterns "A"
and "B" correctly. It seems more likely that a program-controlled perceptron,
having been taught to recognize patterns A and B, can determine whether A
is inside of B by means of a directed scanning process.

Suppose we show the perceptron a complex field, containing a

circle and a square, both of which it has previously been taught to identify,
and we ask the system to indicate whether the circle is inside or outside
the square. This question could be answered by means of two attention
sweeps, beginning at the circle and first sweeping to the right, then returning
to the circle and sweeping to the left. If an edge of the square is encountered
on one of the two sweeps but not on the other, then the circle is "outside"
the square; if an edge is encountered both to the right of the circle and to the
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left, the circle is "inside" the square. A somewhat more elaborate
program would determine whether a known figure (e.g. , a square or
triangle) is inside or outside of an arbitrary closed curve.

In the recognition of topological relations or metric relations

(A is larger than B, or A is above B), and in programs which call for
attention scanning, it would probably help considerably to introduce geometric
constraints into the S-A and A-A connections of the perceptron. In the models
which have been of primary interest up to this point, there is no way of telling,
apart from learned association, that activity of a particular A-unit refers to a

particular region of the sensory field. The A-unit space is non -topological in
character; it has no well-defined geometry or dimensionality. This means
that, apart from learning, there is no way of telling from observations on

the state of the A-units, what are the topological or geometrical properties
of the stimulus which is present on the retina. While it seems likely that a

geometrically constrained organization of A-unit connections (e.g. , increas
ing the probability of interconnection between A-units whose retinal fields
lie in close proximity to one another) would be helpful, there is still no

indication of what are the best constraints, or what gain in performance
can actually be realized by such means.
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23. SENSORY ANALYZING MECHANISMS

The term "sensory analyzing mechanism" will be used for any

signal transmission unit or network which detects and transmits information
about selected parts or features of a total stimulus pattern. Such mechanisms
can frequently be used to reduce the amount of information which the perceptron
must be prepared to evaluate. They are particularly useful in highly organized
environments (such as the familiar visual environment, or an environment of
printed words or spoken language) where purely random stimuli are unlikely
to occur or are of little interest. Thus a mechanism which detects boundaries
of a solid image or describes gradients and contrasts in the visual field, or
performs a Fourier analysis of an audio input, or which encodes speech into a

sequence of phonemes, would be considered a sensory analyzing mechanism.
A simple sensory unit which detects the level of illumination at a given point,
or an A-unit which samples the illumination over a selected set of points are
also sensory analyzing mechanisms.

In most models considered thus far, little attempt has been made

to optimize the sensory analyzing mechanisms employed. The random origin
configurations which have generally been employed can be shown to be far
from optimum. In this chapter, various methods of improving this primitive
organization will be considered, particularly with respect to visual and
auditory systems. For the most part, these mechanisms are assumed to take
the form of built-in constraints, such as were considered briefly in the d.i.d.
models of Section 7.2.2, and the similarity-constrained perceptrons of
Section 15.3. The existence of such mechanisms in biological organisms
is supported by an increasing amount of evidence, such as Lettvin's studies of
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frog vision (Ref. 51). Sutherland's studies of octopus vision (Ref. 98),

Gibson and Walk on depth perception (Ref. 24), Sauer's work on bird navigation

(Ref. 90), and Hubel's work on cat vision (Ref. 113). Since most of these

mechanisms appear to be hereditary rather than learned, it seems likely
that they may be realized either by simple spatial constraints in the distri
butions of connections in the sensory network, or else by simple "typological
constraints" governing the kinds of cells which may be interconnected.

23 . 1 Visual Analyzing Mechanisms

A number of basic strategies for processing visual information
have been proposed. Some of these are so closely tied to digital computer
processes that they are of little interest for a biological model, while others
require such a degree of logical precision and so large a system as to be

biologically implausible (e.g., Refs. 16, 17, 71). The techniques to be consi
dered here are grouped under four main headings: (1) Local property detectors;

(2) Hierarchical retinal field organizations; (3) Sequential programs (centering
and scanning methods); and (4) Sampling of sensory parameters. The possible
advantages of each of these methods will be considered (largely in a quali
tative fashion), and the problem of an optimum mixture of analyzing
mechanisms (somewhat analogous to the "mixed strategy" problem in game
theory) will be discussed.

23.1.1 Local Property Detectors

The term "local property detector" will be used for any

mechanism or neuron which responds to some particular feature of the

stimulus pattern at a particular location (for example, brightness, color.
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contour direction, etc.). Contour detectors and other types of property
detectors have been described by Culbertson (Ref. 17), Taylor (Ref. 99),

Inselberg, L&fgren, and von Foerster (Ref. 4), and others. Lettvin and

associates (Ref. 51) have described four mechanisms (for detection of

contrast, convexity, or small spot detection, moving edge detection, and

dimming detection) which appear to map into four distinct layers of the frog's
tectum. Of particular interest for present purposes is the series of experi
ments described by Hubel (Ref. 113), in which the cells of a cat's visual
cortex are shown to respond to lines and bars in particular positions and

orientations, or to stimuli moving in particular directions.

The visual property detectors which appear on an a priori basis
to be of maximum value for pattern recognition in an ordinary terrestrial
environment (where the main purpose of the system is to detect and recognize
coherent physical objects (include the following:

1) Brightness and color detection and measurement

2) Contour and gradient detection

3) Curvilinearity detection and measurement

4) Detection of angles, intersections, and discontinuities
of lines and boundaries

5) Spot detection

6) Sensing of textures, and measurement of texture
gradients

7) Velocity and acceleration detection and measurement
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In order to recognize stimulus patterns or objects, information
of the types listed above must somehow be combined for different parts of
the retina, to provide an indication of the total configuration. This has been
the main job of the association units, in the perceptrons considered thus far.
In all cases considered in previous chapters, the A -units have formed
combinatorial functions of information coming from "local intensity detectors"
(the S -units); thus the only property detectors employed have been of the first
type. The perceptron illustrated in Figure 65 introduces an additional layer
of A-units immediately following the S -unite, which can detect additional

(*)properties of the types indicated above. The A layer, having its origin points
in the A ^' layer, now responds to combinations of local properties such
as lines and gradients, rather than merely to points of light.

Figure 65 ORGANIZATION OF A PERCEPTRON EMPLOYING LOCAL PROPERTY DETECTORS.
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The organization of origin fields for A -units serving as property

detectors of various types is illustrated in Figure 66. The single -connection

"point detector" serves merely as a logical relay for information which

could be obtained equally well directly from the retina. The concentric

field organization of the spot detector appears to be found (in the case of

the cat) more characteristically in the retinal ganglion cells than in the

visual cortex (Ref. 113). The various forms of line detectors and the

"Type 2" termination detector have all been observed in the cat's cortex

by Hubel. Hubel has also reported units which respond only to moving
stimuli, although the organization appears to be different from that suggested

in Fig. 66(a), for the "moving edge detector". There is some evidence that

the movement detectors in the cat rely more upon the simultaneous summation

of "off" signals from uncovered retinal points and "on" signals from retinal
points which have just been covered by the displaced stimulus.

The use of the Type 2 termination detectors is illustrated in

Fig. 66(b). An A unit which receives connections both from a termination

detector and a line detector crossing the same field can recognize that the

line approaches the inhibitory spot of the termination detector, but does not

cross it. The same termination detector, taken in conjunction with lines at

different angles, can serve to indicate termination of any one of the lines, so

that there is considerable saving by this method. In fact, if there are Jt
discriminable angles for straight lines, and r discriminable translates of

each line, (so that there are about r4 distinguishable termination -points

scattered over the retina) then a system which employs Type 1 termination

detectors would require a total of r*A A units to guarantee a detector
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ORGANIZATION OF SENSORY FIELDS OF A ' 1 ' UNITS. BROKEN LINES INDICATE FIELDS
OF INHIBITORY ORIGIN POINTS; SOLID LINES INDICATE EXCITATORY FIELDS.

RETINA A-UNITS

O POINT DETECTOR

Z^3D SPOT DETECTOR

LINE DETECTOR (LIGHT ON DARK GROUND)

LINE DETECTOR (DARK ON LIGHT GROUND)

2^0 TERMINATION OR CORNERDETECTOR (TYPE 2)

BOUNDARYOR GRADIENT DETECTOR

230 TERMINATED LINE DETECTOR (TYPE I)

CORNERDETECTOR (TYPE I )

MOVING EDGE DETECTOR

OBSERVED III
CAT CORTEX

(b) TYPICAL A COMBINATIONS. POSITION OF RETINAL FIELDS OF A < 1 ' UNITS IS SHOWN
RELATIVE TO FIXED AXES, FOR EACH UNIT.

RETINAL ORIGIN FIELDS

■4-

A (') UNITS

RESPONDSTO HORIZONTAL LINE,
TERMINATED AT RI8HT END

RESPONDSTO HORIZONTAL LINE,
MOVING DOWNWARDS

Figure 66 ORIGIN FIELD ORGANIZATIONS FOR LOCAL PROPERTY DETECTORS
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for each combination of angle and termination point. , The use of Type 2

detectors. in conjunction with line detectors (as in Fig. 66(b))would require
only r2+ rA units, to convey the same information. If r and 4

are both equal to 100, this means that 10^ A(l^ units are required with
4Type 1 units, and 2 x 10 with Type 2 units. This may indicate why the

Type 2 configuration appears to be found in the cat, rather than the Type 1

configurations .

Figure 66(b) also demonstrates the multiple use of the same
elementary property detectors ( A!^ units) for a number of more complex

(2)functions at the A level. Thus, the unit a2 is employed both in a

terminated line detector and also as part of a moving line detector. Since
(2)movement detection can thus be obtained quite economically at the A

level, the type of moving edge detector illustrated in Figure 66(a) would
tend to be obviated. Hubel's observations on the cat suggest that (although
more complex organizations may remain to be discovered) the most promi
nent types of property detectors in the visual cortex are of very simple types
such as the line and boundary detectors and Type 2 termination detectors
illustrated in Figure 66(a). In all of these cases, a single excitatory and

inhibitory field, with simple constraints on the density of connections of

each type, is sufficient to yield the mechanism indicated.

The actual advantages which might be realized by means of
various types of property detectors have been investigated for several
simple discrimination problems, with the results shown in Table 10. Two
types of environments were considered: the first consists of the letter "T"
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in right -side -up and upside-down orientations, and the second consists of

the letter "L", also right-side-up and upside-down. Each letter can appear
in all translational positions. The problem of discriminating the right-side-
up "T" from the upside-down "T" is considered for a variety of retinal sizes
ranging from 20 x 20 to 1000 x 1000. The retina is assumed to be torroidally
connected in all cases. With both the T and the L , the horizontal line is
taken to be nine units long, while the height of the letter is ten units. The
thickness of the lines is one unit, throughout. The perceptrons considered
are of the type shown in Figure 65, with the assumption that all inputs to
A-units are excitatory. Rather than attempting to find optimum parameters

(2)for the various types of property detectors, the number of A inputs is

always the minimum number which will permit the discrimination to be

achieved. Other parameters (and the introduction of inhibitory connections)
would undoubtedly permit more economical solutions, but this serves to
illustrate basic principles.

(a)The table gives the probabilities of finding A units which
will discriminate between a given stimulus of the "positive" class (say the

upright position) and all members of the opposite class. The origin points
(2)of the A units are assumed to be chosen at random from among the

units. The first line of the table, in which the A^ units are
simple point detectors, corresponds to the case of a simple perceptron,
where each A-unit receives its input connections directly from the retina.
For such a system, it can easily be seen that at least two excitatory origins
and a threshold of 2 are required in order to distinguish between the

upright and upside-down "L", while three excitatory origins and a threshold
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of 3 are required to distinguish the upright from the upside-down "T".
The figures in the first two columns of the table are influenced by small-
retina effects, which disappear for the 40 x 40 and larger retinas.

Several general conclusions can be drawn from this table.
First of all, it is clear that the value of different types of property detectors

depends upon the stimuli to be discriminated as well as the size of the retina.
For the discrimination of the L-shaped stimuli, which require only two points
or blobs for discrimination, the best results are obtained with large (4 x 4)

square origin point configurations for the A units, while for the T's
a slightly elongated (4x5) configurations with a high threshold is preferable,
since it permits the use of only two A ^ units instead of three per A
unit. Note that the advantage of the rectangular origin configuration over
the 4x4 square is pronounced only for large retinal sizes, however; for a

smaller retina than 20 x 20, the square configuration might actually be
preferable. For the conditions considered in this analysis, the following
equation for the probability of a useful A 2 unit shows the effect of
increasing retinal size:

(23.1)

The reader may find it instructive to examine the Q-matrices for a
binomial perceptron in these problems, and satisfy himself that they
are consistent with the geometrical requirement that three inputs and
a threshold of 3 are required to discriminate between the upright and
upside down "T", in all translational positions.
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where - number of S -points in retina

m - number of useful combinations of A^ origin configurations
(2)for an A unit

f = number of admissible rotational positions for each
configuration

A - number of input connections to each A* unit

For a large retina, P clearly becomes small very rapidly, and the situation
(2)is aggravated by the requirement of many inputs for each A unit. Thus

for the discrimination of the upright and upside-down T , which requires
three point inputs, P goes from 10~^ for a 20 x 20 retina to about 10~^

for a 1000 x 1000 retina. The use of 4 x 5 bars as line detectors instead
of point configurations, while it improves the probability by more than three
orders of magnitude, still leaves a requirement for over 10^ A ^ units
if the x is to be discriminated reliably in the large retina. Even with
optimum parameters, the required number of A units is inadmissibly
large. Nonetheless, the recognition of the position of a 9x10 " T" in a

1000 x 1000 field is certainly well within the limits of human vision. Some
additional means must therefore be found, to provide an economical solution
for this problem without introducing a brainful of special "T -detectors" .

The principles discussed in the following section, combined with the use of

property detectors, will be seen to yield a radical improvement in the

recognition of small stimuli.

-521-



23.1.2 Heirarchical Retinal Field Organizations

The "retinal field" of an A-unit is the region of the retina in
which its origin points may be found. In a multi -layer system, the retinal
field of an V* unit is the union of the retinal fields of the AW units
which are connected to the A*' unit; in general, the retinal field of an

A*^ unit is the union of the retinal fields of the connected ' units . In
a perceptron with a heirarchical retinal field organization, the retinal fields
of the A-units tend to increase in area, the greater the logical distance of the

A-unit from the retina. For example, the A units may have highly local
ized origin configurations for the detection of local properties (as in Table 10);

the A units could then detect combinations of properties over a somewhat
larger field (responding to small, compact figures or parts of larger patterns);
and a layer of A units might then be added to respond to combinations of
sub-figures over the entire retina. While the general principle of organization
is from small to large retinal fields as the A-units increase in depth, it is not

required that all A-units at a given level have retinal fields of the same size;
there may be A units, for example, whose fields are larger than the
smallest X" fields, provided the expected size of the retinal fields
increases with increasing depth.

Such a system is clearly much closer to the organization of
the mammalian visual system than the uniform origin distributions which
were considered in previous models. A brief consideration was given to

constrained origin fields in Section 7.2.2, where it was found that no

appreciable gain in performance was obtained with large stimuli, such as
the squares and triangles of Experiment 7. The effects of employing cons
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trained retinal fields for the A* units in the perceptron of Figure 65

will now be considered, for the range of retinal sizes shown in Table 10.

It was found in the preceding section that as the retina becomes large
relative to the size of the stimuli, the probability of finding a useful /!"
unit becomes inadmissibly small in the unconstrained system. Table 11

shows the effect of limiting A(" retinal fields to a 20 x 20 region of the

retina (located at random in a larger retina). Again, it should be remembered
that the parameters have not been optimized, and that appreciably better

results might be obtained with larger numbers of inputs to the A units,
and the inclusion of inhibitory connections. Nonetheless, a comparison
with Table 10 illustrates the marked improvement in the size of the system
necessary to achieve recognition in a large retina. The first column of
probabilities (for the 20 x 20 retina) is, of course, identical to the correspon
ding column of Table 10, and the first line corresponds to a three -layer
model with constrained origin fields for the A-units. In the case of the
1000 x 1000 retina, using the best of the A<0 origin configurations, a

gain of more than five orders of magnitude is obtained, bringing the discri
mination problem for the first time within the capacity of a human-sized
brain model. Note, however, that the best A.'" origin configuration has
shifted from the 4x5 bar with 0 = 5 to the 4x4 square with 0=1.

The probability P' of finding a useful A unit in this system
is given by the following equation, which is analogous to (23. 1):

(23.2)
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where. 7H , r , and Jt. are defined as for equation 23. 1, N, = number of

of an A unit. Taking the ratio of equations (23,2) and (23.1), we obtain
the relative advantage of the constrained retinal field system over the
unconstrained system:

Thus the advantage increases exponentially with the number of connections
required to each A1" unit, and with the ratio ^s/Nj' • Both of these
effects can be seen in Table 11.

diameter D, the size of the retinal field cannot be taken smaller than D,
without loss of performance; the above equations assume that the retinal
field is large enough so that boundary effects can be neglected. The optimum
size, then appears to be on the order of D, the expected stimulus diameter.
We now have the problem of how to deal with universes of stimuli which vary
in diameter from very small to very large patterns. The best choice of a
distribution of retinal field sizes for the A(l> units will generally be one

which guarantees the same likelihood of finding a useful A unit for all
stimuli. For the particular case in which the stimulus diameter distribution
is uniform between the limits D . and D , this can be approximatelymin max
realized by taking

(23.3)

Clearly, if the system is required to recognize a stimulus of

(23.4)
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where A = fraction of retinal area in an A retinal field

(where D is measured in retinal diameters)

Table 11 suggests that stimuli of the complexity of alphabetic
characters ranging in size from .01 to 1 retinal diameter can be recognized
by a system the size of the human brain ( 10 units) by employing a four-
layer model, with a suitable combination of property detector configurations

(2)and a suitable distribution of A field diameters. The recognition problem
can be made considerably more difficult, however, by adding additional degrees
of freedom to the stimulus organizations. Consider, for example, the following
environment: Let W consist of two classes of composite stimuli. Each
stimulus consists of two 9x10 T's , which may be located at any position
in the retinal field, provided they are at least 10 retinal units apart. If
both T*a are right-side -up or if both are upside-down, the stimulus is a

member of the positive class; if one is right-side-up and the other is upside-
down, the stimulus is in the negative class. Let us consider the probability

(2)of finding a useful A unit for this dichotomy.

If these stimuli are to be differentiated by A -units with random-
point origin configurations (all excitatory, as in the previous examples) then

six connections and a 0 of 6 is required for each A^2^ unit. By employing
one of the line -detector mechanisms of Table 10, 4 inputs and a 0 of 4 are
required. The c6nstrained-f ield system of Table 11 (with 20 x 20 retinal fields

(2)for the A units) cannot be employed here, as the combined stimulus
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pattern may cover the entire retinal field. The best that can be done is to

employ the A'" configuration of 4 x 5 bars, which yields a probability of
6 x 10* 5 of finding a useful AW unit, with a 1000 x 1000 retina. (For
the single random point configuration -- the worst case the probability
is 7.34 x 10-33.)

By employing a five -layer topology, it is possible to take
advantage of the fact that each stimulus actually consists of two organized
sub-patterns, each having quite small dimensions relative to the retina.
Assume the ^ units to have 20 x 20 retinal fields, as in Table 11, while
the AH> units have two excitatory input connections, chosen at random
from among the Au* units. Thus the A10 units serve as local property
detectors, the AU* units serve as sub-pattern detectors, and the Aw
units integrate this information over the whole retinal field. (In this
particular problem, the performance could be improved further by taking a

larger number of input connections for each Aai unit, but as before, we are
trying to demonstrate basic principles rather than find optimum organizations.)
This five -layer system is compared with the four -layer system in Table 12.

For moderate numbers of connections to the Au' units in this system, the

probability of a useful AU> unit (with 8 = 2 ) can be closely approximated by
the binomial probability:

p"'AO r'Q-p'f-1
(23.5)

where p = probability of a useful A unit for "sub-figure"
discrimination, and

4** = number of (excitatory) input connections to an AtW unit

-527-



-528-



Thus with 25 inputs to each A unit the probabilities for the five -layer
systems could be increased by a factor of about 300. Note that even under

these conditions, however, while the problem becomes soluble for a brain-
sized system in the case of a 100 by 100 retina, it is still unmanageable in

the 1000 x 1000 retina.

The difficulty of this problem for the large retina should not

surprise us; it is unlikely that a human subject, asked to perform the

indicated discrimination with tachistoscopically presented stimuli, could do

appreciably better than chance, where the two T's each subtend only 1/100
of the central visual field, and are located at random relative to one another.
Even the case of the 100 x 100 retina (where the T's subtend 1/10 the

diameter of the field) would probably yield marginal results, if the subject
were not permitted time to scan the field or shift his attention during the

exposure. On the other hand, if the T's were constrained to lie relatively
close to one another (say within a 40 x 40 subfield) the problem would
probably not be difficult. This problem, however, could readily be handled
by a five -layer perceptron in which the A'* retinal fields were constrained
to a 40 x 40 region, while limiting the A^ fields to 20 x 20, as before.
Thus it appears that a heirarchical organization with three association layers
is competitive with human visual performance, with respect to resolution of

detailed figures, and recognition of complexes of sub-figures, under condi
tions in which no scanning or shifting of attention is allowed.
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If we were to complicate the problem by adding a third "T" ,

again placing the stimuli in the positive class if all T's face the same way,
and the negative class if some face up and some down, the probabilities of

finding suitable A^ and A units would again fall by many orders of

magnitude. For this problem, it is unlikely that any purely spatial and

parametric constraints on the network would permit a solution with only 10

units, with a retina appreciably greater than the size of the stimuli. It is
also unlikely that a human subject, under tachistoscopic conditions, could do

much better. Thus for complex organizations of organized sub-figures, each
of which has several degrees of freedom independently of the others, some
additional strategy must be sought to improve recognition capability. The use
of sequential observations seems to be indicated at this point.

23 . 1 . 3 Sequential Observation Programs

The perceptrons considered in the last two sections, while
facilitating the discrimination of small patterns in which fine details provide
the essential information, are still far from optimum. For one thing, the
number of A-units required remains very large; for another thing, the

learning time would be correspondingly great, if the discrimination must be

learned for all combinations of figural elements. These difficulties can be

drastically reduced by the employment of a program-learning perceptron, such
as the models considered in the last chapter. In particular, a system of the

type described in Section 22.4, with a selective attention mechanism which
permits it to attend to one detail or sub-figure at a time, is likely to prove
useful in dealing with complex stimuli. Such a system can be employed in
at least two basic ways:
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1) It can be taught to recognize the presence of a sub-pattern

(a spot or region of in which the fine structure is particularly dense) without

having to classify it or differentiate it precisely. It can then direct the visual
centering mechanisms to bring this pattern to the center of the retina, where
high-resolution is possible, and where the system is taught to differentiate
the type of pattern more precisely.

2) The perceptron may be taught to examine each of a number
of retinal regions in turn (either by a systematic scanning procedure, by
following boundaries, or by directing attention to those sub -fields in which
the fine structure is particularly dense). This will result in the recognition
of a definite sequence of details, which, in its entirety, serves to identify
the complex stimulus organization.

The recognition of small objects in a large field may best be

achieved by the first of these methods, while the discrimination of complex
organizations (e.g., individual faces) requires the second method. In
employing the second method, it would be particularly helpful if the

perceptron could shift its field of attention systematically in a given
direction, with the direction of attention shift provided as an additional
piece of information to the association system at all times. In this case,
the general configuration of the letter "A" followed by the letter "B"
followed by "C" could be recognized by starting from the left of the field,
shifting attention right to the first "detail", then right again to the second
detail, and then right again to the third. The recognition of this complete
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sequence would indicate the ABC configuration regardless of the actual
positions of the letters in the field or their relative distances. It seems
likely that the general problem of relation-recognition will ultimately yield
only to sequential programs of this type.

23.1.4 Sampling of Sensory Parameters

A fourth basic strategy for simplifying the sensory data which
the perceptron must deal with is that of independent sampling of sensory
parameters. In a general visual input system, five parameters are of
interest: the intensity of illumination at a point, the frequency or color of
the illumination, the time at which it occurs, and the X and y coordinates
of the location of the point on the retinal surface. Each of these variables
may be varied independently of the others. If we required a retina of 1000

lines resolution (i.e., 10 points), with sensitivity to 10 frequency bands ,

10 levels of illumination, and 10 time delays for the outputs of each S -point,
9a total of 10 retinal points would be required to provide a sensory unit for

each combination of values.

If it is actually required to discriminate between any two patterns,
no matter how minute the difference between them, then there is no way of

escaping this requirement. In general, however, we are satisfied with
approximate information, and it is only under special conditions of "good
observation" that we expect to obtain the highest resolution from the system.
We can take advantage of this by means of the following organization.

One sequential mechanism which may greatly improve performance is to take
a sequence of "looks" at a given stimulus, with different fixation points selec
ted at random, accepting a majority decision for the final response. The gains
which might be expected, assuming independence between "looks", have been
discussed in Reference 79, pp. 156-157.
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Suppose we limit the number of retinal points to 10 .To each
of these S -points, x and y coordinates are assigned at random (from a uni
form distribution over the whole field, rather than just points on a 1000 by
1000 lattice). In addition, a frequency drawn at random from the sensitivity
range of the system is assigned to each S-point, and a threshold and time
delay are similarly assigned at random. Now, if the perceptron sees a

moving figure, with a variety of shading and color variation, it will be less
precise in its judgement as to the exact position of the figure at time t , or
the color of a given point in the retinal field at time t , than would be the

9case with the "complete" system with 10 S -points. If, however, we "fix"
the position of the figure on the retina, and provide maximum contrast
between illuminated and non -illuminated points (i.e, sharpen the figure to

a black and white silhouette), and observe it for long enough to permit all
time delays to propagate, then we have just as good shape -definition as in the

system with 10 ' S-points, since all 10
^ retinal points will contribute one

bit of information. Alternatively, if the entire field is illuminated at maximum
intensity with a given frequency of light, this frequency can be discriminated

6to one part in 10 , or five orders of magnitude better than the previous
model. The same will be true with respect to intensity discrimination if
the field is illuminated with white light, all frequency components being
present with the same intensity. Similarly,, the velocity, acceleration,
and higher derivatives of the velocity of a moving object can be discrimi
nated much better with the 10

^ element randomized-parameter system,
provided the moving image consists of a sharp black and white pattern.
Finally, we note that if we wish to specify the exact retinal coordinates of

a square, the edges of which are alligned with the lattice points, in the first
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model, we can expect a maximum accuracy of one part in 1000, whereas
with the random configuration (where some of the points will fall virtually
on the boundary of the square regardless of its location) we could expect
to improve the performance by several orders of magnitude.

What is sacrificed in this system is the ability to provide full
information about individual retinal points, and the ability to provide maximum
precision of discrimination in the case of shaded, moving figures. It would
be difficult, for example, to precisely locate the boundary of a moving cloud,
or to state the exact colors of specified points in a continuously varying
mixture of colored lights; these are precisely the conditions, however,

under which a human observer would also encounter difficulty, whereas if
we optimize the conditions of observation by providing stationary figures and
sharp contrast, resolution far in excess of the "fixed lattice system" can be

obtained. Note that there is a trade-off between the resolution obtainable in
one parameter and the resolution in other parameters; we cannot simultaneously
optimize conditions for observing position and velocity, or color and intensity,
for example. An interesting analogy can be drawn to the limitations on

simultaneous observation of related variables in quantum mechanics, although
there is no reason to suppose that the analogy is anything other than coinci
dental .
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23.1.5 "Mixed Strategies" and the Design of General Purpose Systems

In the preceding sections, it has been demonstrated that the kind
of network organization which is best suited for one stimulus environment
or discrimination problem may be far from optimum for a different problem.
The upright and upside-down T's , for example, might best be discriminated
by a specially designed T -detector; but in this case every other letter, or
combination of lines which might be encountered would have to have its own

special detector mechanism, and the system would be useless in a general
environment. Thus the question arises, if we know only the general character
of an environment, but cannot anticipate all discriminations that the perceptron
may be required to learn, what is the best combination of stimulus analyzing
mechanisms to provide a good "general purpose" system?

This problem (on which no real analysis has been done to date)
seems to be related, at least superficially, to the mixed strategy problem
in game theory. The object of the game is to minimize the probability that
any discrimination problem likely to arise in nature will be insoluble, subject
to constraints on the size of the system, admissible learning times, etc. In
Equation (23.4) a proposed solution for the distribution of A 2 fields was
presented, for the special case in which the stimulus diameters are uniformly
distributed. A more general solution should also consider the best mixture
of line-detectors, spot-detectors, point -combination detectors, etc., among
the A ' units, the number of layers to be employed and the distribution of
retinal fields among them, etc.
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A few general rules seem to have emerged from studies thus

far. For one thing, it seems to be inadvisable to seek highly specialized
property detectors in the early stages of the network. A few basic types,
such as line and boundary detectors, spot detectors, termination detectors,
and movement detectors are certainly helpful, and yield appreciable
improvements over random-point combinations. But higher-level organizations
seem to be achieved better either by a mixture of simple properties at a

greater logical depth in the network (as in the five -layer system considered
in Section 23.2.2) or else by learning, at the R-unit level. For another
thing, the extension in depth of a heirarchical retinal field system is useful
for a limited number of levels, but extension much beyond three association
layers seems unlikely to improve capabilities appreciably in systems the size
of the human brain. Recognition problems which cannot be dealt with by a

five-layer heirarchical structure, due to the large number of small details
which must be considered in solving the problem, are best handled by a

sequential system, rather than by continuing to increase the depth of the

network.

It is questionable whether analytic procedures will be able to
make much headway in dealing with this problem, although a combined attack
with simulation techniques and analysis wherever applicable should yield
considerably better information concerning the optimum organization for a

given visual universe.

-536-



23.2 Audio -Analyzing Mechanisms

The sensory analyzing mechanisms which are best suited to

an auditory input system are in some respects similar to those which have

been considered for visual inputs. The difference in character of typical

auditory patterns (speech in particular), where temporal organization largely
takes the place of spatial organization, leads to a number of distinctive

requirements. The following sections consider several of these special

problems .

23.2.1. Fourier Analysis and Parameter Sampling

In principle, a number of possible sensory representations

could be used for auditory material, including the continuous measurement

of the amplitude of a waveform; spectral analysis, with the amplitudes given
for all frequency components as a function of time; and various "reduced

information" systems, such as the indication of zero-crossings, or the

outputs of special filter systems. In the human auditory system, phase

information appears to be disregarded, and a Fourier analysis into spectral

components is employed. In a system designed to simulate human perform
ance in speech recognition, musical recognition, and related problems, a

presentation of the actual waveform would burden the system with a great

deal of excessive information. The same word spoken with slightly different

phase relations between the frequency components, for example, would

present completely different wave -shapes, which the perceptron would

have to learn to identify. Thus the spectral analysis of the audio input
seems preferable.
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With a Fourier analyzed input, the important sensory parameters
to be represented by an S-point are the frequency, amplitude (or threshold),
and time relative to the present (generally represented by connection delays).
With these three variables, the principle of independent sampling of sensory
parameters, discussed in Section 23.1.4, is again applicable. If the system
is required to discriminate 100 frequencies, 100 time delays, and 100 ampli
tude s, for ' example, then a total of 10

^ frequency-threshold-delay
combinations would be required with a "complete lattice" system. Using
independently sampled parameters, on the other hand, a system with only
1000 S -units could discriminate 1000 frequencies in an intense sustained
tone or mixture; it could discriminate 1000 amplitude levels in a "white
noise" mixture sustained for the duration of the maximum time delays; or
it could place the occurrence of an intense "pip" of white noise to a

precision of one part in 1000 in time. Under less optimum conditions, the
accuracy of discrimination in separate dimensions would be reduced, but
the composite organization could still be discriminated readily from an

appreciably different organization.

23.2.2 A Phoneme -Analyzing Perceptron

An introductory discussion of the phenomena of speech per
ception can be found in the chapters by Licklider and Miller in Ref. 112.

Perceptrons for speech recognition and the association of names with
objects or events have been discussed in Section 21.3. In these systems,
it is assumed that a complete word must be learned as a primitive pattern,
without preliminary analysis into significant sounds, or phonemes. In
this section, a more sophisticated perceptron, capable of phonemic analysis,
will be described.
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The possible improvement in efficiency which can be obtained

by analyzing a word into a sequence of phonemes can be highly significant.
If we consider a hypothetical (and rather unnatural) language in which there

are 100 allophones (or functionally equivalent sounds) for each phoneme, and

a word of five phonemes consists of an independent choice of one of the

allophones for each phoneme, then the word may appear in any one of
5 10100 = 10 possible forms. For a perceptron with a high degree of

sensitivity to differences in sound patterns, this would mean that the

discrimination of two words would require an enormous number of

utterances (perhaps many millions) in order to generalize to all equivalent
pronounciations (allomorphs) which might occur. (In actuality, the

correlation between choices of allophones for different phonemes, in
ordinary speech, would greatly reduce the sample size required, but the
example will serve for illustrative purposes.) On the other hand, if each
phoneme were first recognized by a distinct R -unit, and the outputs of the

R-units taken as the input for a word recognizing perceptron, this second

perceptron would receive an invariant sequence for each word, and in prin
ciple a single utterance of each word (morphene) would be sufficient for
complete generalization. The phoneme -recognizing units would each have

to distinguish a set of 100 allophones from a universe of 500 (assuming that
only five phonemes are involved, so that the learning at this level might be

achieved quite readily.

In actuality, the recognition of a phoneme is not as simple
as the above discussion suggests, since a single speech sound cannot, in

general, be recognized independently of its context. The preceding and

subsequent sounds may completely alter the sound of a vowel, for example.
Thus a phoneme -recognizing perceptron must itself be a sequence -

recognition device, rather than a momentary -pattern recognizer.
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A perceptron which appears to be capable of analyzing a

sequence of words, so as to spontaneously develop an internal code for the
phonemes employed is illustrated in Figure 67. It is a five layer perceptron,
with variable connections between the A(,' and Av* layers, and between
the A0> layer and the R -units. The A<8> layer can be thought of as
playing the role of "R -units" for the first three layers of the perceptron,
and will eventually learn the phoneme code to be employed. At the same
time, it serves as the "sensory system" for the last three layers, which
act as a three -layer perceptron for word-recognition. The A* system
may either be organized as a cross -coupled system, or its input connections
may be given a spectrum of delays; in either case, it is capable of

recognizing sequences of inputs, rather than just momentary patterns. If
the A** units are cross -coupled (particularly with inhibitory connections)
and are of the "flip-flop" variety, tending to remain in their present "on" or
"off" state until receiving a super -threshold signal, then the A1" system
will tend to go to a state characteristic of the sequence of input patterns
regardless of the duration of the individual patterns in the sequence. This
is particularly true if the Al2* system goes through a sequence of states
(A, B, C, . . . ) where each state is "held" without variation for a time
greater than the "settling -down time" of the All) system (which should
normally be no greater than two or three transmission delays, for the
conditions given). Thus a "word" encoded into a sequence of phonemes
by the /\lJ> units would lead to a fixed state of the A(3) system up<-n iti
termination, regardless of the actual duration of the phonemes.

* This effect, as well as some of the others discussed in this section,
might be employed to advantage in a visual system which is required
to recognize sequences of stimuli, such as successively presented
letters or signals.
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The reinforcement rule for the /f3^ to R-unit connections is a

conventional at -system rule, so that an error correction procedure may
be employed to teach the system to recognize words. The reinforcement
rule for the A ^ to A^ connections, however, is a probabilistic one,

defined as follows:

1. With each connection, ,C-- , from an A^ to an A unit
is associated a time -dependent probability, P;j &) , called the instability
coefficient of the connection.

2. Reinforcement at the preterminal level ( A^ to

network) is applied only upon the decision of the reinforcement control system,
or experimenter. Otherwise, the values of these connections remain
unchanged .

3. If preterminal reinforcement is applied at time t , all
instability coefficients are changed by the amount AP^j ■ a.*e - <fP(j (t), [o <C </].
If no reinforcement is applied at time t , APij = ~ <fP{j (t)

4. If reinforcement is applied, assume that the current
(2)activity states of all A units are "wrong", and apply the correction

Atf;j = 1 J • (a* If) with probability Pq (t) - (This is equivalent
to an OC -system error correction applied probabilistically. )

The actual training procedure can best be described in terms
of the following experiment:
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Assume a language, L, possessing three phonemes, A, B, and
C, with k allomorphs of each phoneme. Time is quantized in units At
Each phoneme persists for a duration At , unless otherwise indicated. Let

L consists of the six words, AB, BA, AC, CA, BC, CB. Assume some

output code, is assigned to each word, w . Then the procedure for
training the perceptron is as follows:

Present a randomly chosen allomorph of the first word (AB), and
observe the response of the perceptron. If this is correct, go on to the next

word (BA); if it is incorrect,' present AB again, ' this1 time applying <i (quantized)
error -correction reinforcement to the terminal connections ( V" to R-units).
Again test the response to the word AB. If the response is now correct, go

on to the next word; otherwise, present the word again, this time reinforcing
the preterminal network ( A to A connections) and leaving the

terminal network unaltered. Then apply a second correction to the terminal
network, and retest the response to AB. Continue alternating between

reinforcements applied to the terminal network and reinforcements applied

to the preterminal network, until AB elicits the correct response. Then go

on to the next word (BA) and repeat the same procedure. Continue cycling

through the complete vocabulary until all words have been learned correctly.

A very limited amount of experimental work has been done with

this system, using coin-tossing experiments and pecil -and -paper simulation

techniques to investigate performance for the three-phoneme language

considered above. Note that in this experiment, the perceptron is never

given a single phoneme in isolation, but always as part of a two -phoneme

word. Moreover, the perceptron is never corrected for "mistakes" in a

single phoneme; reinforcements applied to the preterminal network are
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maintained for the duration of an entire word, regardless of whether one or
both phonemes are causing the difficulty. Nonetheless, it is found that as

(*)long as the number of A units is greater than the number of phonemes

( ■ S has been found to work well), the system tends to form a
(z)phoneme -code at the A level; i. e. , after a period of training, each

(t)phoneme (A, B, and C) activates a different set of A units, and all allo-
phones of a given phoneme tend to activate the identical set of A units.

These results can be obtained in a very short training sequence
(generally less than one complete run through the 6-word vocabulary) with
a suitable choice of the parameters € and $ (which determine the rate of
growth and decay of the instability coefficients, P— ). On the other hand,

no deterministic system has been found which will yield comparable results,
although something like a dozen alternatives have been tried. A rough heuris
tic explanation for the observed effect can be given as follows: When the system

(2)arrives at some state in which the activities of the A units constitute a phoneme-
code for the language, new words can generally be learned with at most one or two

reinforcements of the terminal network, so that there is little occasion to re

inforce the preterminal connections. Consequently, the instability coefficients.
Pij , all decay towards zero, and the probability of disrupting the learned
code, even if a reinforcement of the terminal network does fail to correct
an error, is negligible. On the other hand, if any two phonemes are assigned
the same code, there will be repeated confusions of words which can only be

distinguished by means of the undiscriminated phonemes. Consequently, the

preterminal network will frequently be reinforced for words containing these

phonemes, but not for other words. Therefore, the connections originating
from A units which are activated by one of the conflicting phonemes will tend

to acquire large instability coefficients, leading eventually to the modification
(3)of the A responses to these phonemes. But since the corrections are applied

probabilistically, the system will tend to try out arbitrary codes, and is
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thus immune to "trapping" cycles, which tend to occur in deterministic
models. In brief, the effect of the instability coefficients is to make those

connections most suspectible to change which are most troublesome to the

system.

It remains to be seen why the system tends to assign the same

A^ code to all allophones of a given phoneme, rather than merely making

up totally unique codes for every input pattern. In part, this is helped by
(a)keeping the number of A units small, so that conflicts are likely to arise

if the code is not an economical one. The main effect, however, is due to the

fact that different allophones of a given speech sound are not arbitrary,
independent patterns, but tend to be highly correlated in the frequency-time -

amplitude picture which comes from the sensory system. Thus the condi

tions are ideally suited for generalization from one allophone to nearly

identical sounds, from there to next-nearest neighbors, etc. In fact, the

tendency would be to classify all sounds identically (due to positive y ••

coefficients in an cx-system) were it not for the intervention of the experimenter

or r. c. s. , which forces the separation of significantly different sound patterns.

The spontaneous clustering of "similar" sounds can be compared to the

spontaneous clustering of "similar" visual stimuli discussed in Section 7. 3,

and demonstrated for a Jf-system in Experiment 9 (Pa.-^e 214).

By adding fixed back-connections from the A^ to the A ' units in

the perceptron of Figure 67, the recognition of individual phonemes may be

more readily influenced by the preceding sequence. Alternatively, variable-
valued back-connections from A to A* ^units might be conditioned, by a

(2)suitable training procedure, to provide a bias to the A units, tending to favor

the recognition of the most probable next phoneme, as determined by the

prior sequence.
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While the above discussion has concentrated on demonstrating the
possibility of a self-organizing mechanism for phoneme analysis, it is also
possible to employ a somewhat simpler version of the five-layer system in
which the A units are actually trained by the experimenter to emit a chosen
code for each phoneme. In this case, the A '3* units are actually R-units, and
the probabilistic reinforcement rule for the pre -terminal network is no longer
necessary, an ordinary ol -system error correction procedure being perfectly
suitable. One might also consider the possibility of extending the five-layer
system in depth, by adding another A-unit layer and terminal R-layer after the

last layer of the present model. By reinforcing first the terminal connections,
then the A'J outputs, and finally the V outputs (in case of failure to correct the

mistake at the terminal level), the system might be expected to develop a

phoneme code in the initial part of the network, a syllable code in cne middle,
and a code for complete words or phrases at the level of the final R-units.

23. 2. 3 Melodic Bias in a Cross -Coupled Audio-Perceptron

The final stimulus analyzing mechanism to be considered is one

which seems likely to occur spontaneously in cross -coupled perceptrons (of
the type analyzed in Chapter 19) with audio-inputs. Suppose such a perceptron
is exposed to a random sequence of notes, covering a range of several octaves,
and played by a variety of string and wind instruments. Each note is held long

enough for the cross-connections of the association system to be reinforced,
before the next note is sounded. Then, assuming that the input comes from a

Fourier analyzing system, the fundamental will be associated most strongly
to the major overtones of the sequences characterizing the instruments employed.

Thus the main association will generally be to the octave above or below, next

to intervals of a major fourth and fifth, etc. This means that the main
harmonic intervals of a twelve -tone scale will tend to predominate, rather
than purely random frequency associations.

-546-



Such a system will tend to respond most unambiguously to chords
and combinations of notes bearing a simple harmonic relation to one another

(e. g. , major fifths, fourths, and octaves) while strongly discordant combin
ations will tend to create a conflict (particularly in a ^'-system) such that
the system tends to oscillate between several alternative and mutually
competitive activity states.

By adding variable -valued back-connections from R-units to A-units
(as in Figure 60), and associating a different response to each fundamental
tone, the perceptron can be made to emit responses corresponding to a

melodic sequence, if each response in turn is suppressed shortly after it is
turned on. Such a perceptron, preconditioned as above, will tend to pick a

harmonically consistent sequence, probably avoiding major shifts in tonality
except by means of gradual progressions.

These observations, although suggestive, should not be over-
interpreted. It seems plausible that melodic and harmonic biases in music
have a fundamental basis in the overtone series (as Hindemith has suggested);
however, the ease of vocal transition from one note to the next, and other

considerations which play no part in the above model, are undoubtedly of equal

importance in the determination of musical traditions and the conditioning of

musical perception.
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24. PERCEPTION OF FIGURAL UNITY

In almost all tests of perceptron performance considered in

previous chapters, the environment, or stimulus world, was assumed to

consist of discrete objects, or events, occurring one at a time in an ordered
sequence. The actual physical environment which we experience on a day -to
day basis is not of this form; the visual field, in particular, is likely to contain
a large number of different objects, patterns, or constellations of objects
simultaneously. In human perception, it is easy to detect and name familiar
objects in an unfamiliar scene, such as a landscape or a strange room. For a

perceptron, each such combination of objects represents a new "composite"
stimulus. If the composite organization consists of familiar patterns which
have previously been learned in isolation, then it has been demonstrated that
the perceptron may attend selectively to one object or pattern, and respond
consistently to this object (see Chapter 21). For the human observer, however,

it is not necessary for the individual objects or component patterns in the field
to have been previously learned individually; totally new and unfamiliar organi
zations may nonetheless be perceived as "objects". Other organizations, no

matter how familiar, will always be perceived as sets of objects, rather than

as s ingle entities.

The organization of a complex field into "objects" or distinct entities
is frequently ambiguous, in that the field permits many alternative constructions
or organizations of "meaningful parts" . Problems of reversible perspective,
the interpretation of Rorschach ink blots, or the detection of alphabetic charac
ters in collections of random lines, all serve to indicate this ambiguity. The

recognition of an "object" in the human perceptual process is generally experi
enced as a figure -ground organization, in which the object emerges as "figure"
while the rest of the field serves as "ground". Hebb, who holds the segregation
of figural patterns to be an innate process, has proposed the term "primitive
unity" for such figural entities (Ref. 33). The perception of such unity is clearly
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essential for an organism which must move about and interact with the objects
of its environment. It applies not only to spatial organizations but to temporal
sequences as well; a sequence of human movements is broken up, perceptually,
into acts, steps, or gestures, while speech or music is divided into words or
phrases, even if the sequence of sounds is an unfamiliar one.

The Gestalt psychologists have considered the problem of figural
unity from the standpoint of what constitutes a "good figure" (c.f. , Ref. 44).
It is assumed that certain organizational properties of the stimulus field lead
to a preference for one figural organization rather than another, and considerable
experimental data have been gathered on the influence of such factors as contrast
boundedness, connectedness, and the like. There is no doubt that all of these
factors are important determinants of figure -organization in human perception.
For present purposes, however, we will attempt to work with the hypothesis that

what is most readily seen as a figural entity in a given environment tends to be

an organization which is likely to undergo a continuous transformation in that
environment (e. g. , a detachable rigid object, or surface bounded by discontinu

ities). Whether the patterns which are most likely to be operated on by a

continuous transformation are learned or innately recognized is left open, for
the time being; it seems likely that both innate and acquired biases are at work
in human vision.

Posing the problem in this form suggests that the system must be

sensitive to cues indicating rigid, moveable objects, or surfaces (such as the

faces of a cube) whose two-dimensional projections may undergo transformations
which are discontinuous at their boundaries (i.e., the object moves, but adjoining
regions of the field do not, or undergo a different kind of motion). The attempt
to define figural objects as connected blobs of uniform illumination (as has been

advocated in several computer programs) seems quite inapplicable, except under

highly contrived and artificial conditions. It seems likely that in actuality, a
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combination of many different cues of "good figure" are at work simultaneously,
the final organization being arrived at by an active process, typically involving
a good deal of trial and error before a good "fit" is obtained.

The cues which are suggested by psychological experiments as being
influential in the determination of figural organization, or the perception of

separate entities, include the following:

1) Differential motion of textured or bounded regions, or sets of

points in the retinal field.

2) Cues indicating differential distance or "depth" of surfaces, or
sets of points.

3) Differential surface properties in a bounded region (e.g. , color,
texture, or type of fine -structure).

4) Contours, boundaries, or discontinuities in surface gradients.

5) Object familiarity.

These five types of information are listed in approximate order of their
strength, or dominance. If two constellations of points in a visual field are
seen in relative motion, then even if they are intermixed spatially, they will
tend to be seen as distinct objects, and the observer will have difficulty attend

ing to both simultaneously. This is illustrated by the view of a moving scene
outside a dust-streaked train window: either the window or the outside scene
can be viewed as an object, but not both in combination. An experiment by

Gibson employs-motion pictures of talcum powder scattered on two glass plates,
one behind the other. As long as both plates are stationary, or both moved
jointly, the two planes cannot be separated; as soon as differential motion is
introduced, however, the picture breaks up unmistakeably into two planes,
each with its own distribution of spots.
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The relationship of depth to figure organization is well known, and
suggests that an attack on problems of depth perception in perceptrons will also
contribute a great deal to the figural unity problem. The remaining cues
(contrasting surface areas, boundaries, and familiar object recognition) are
the ones most generally incorporated in attempts at devising computer programs
or nerve -net models for figure segregation. It should be noted that the last of
these (object familiarity) is the only one demonstrated as workable in perceptrons
up to this point, in the selective attention mechanisms of Chapter 21; nonetheless,

this mechanism is only useable under relatively ideal conditions, in which objects
are present without overlap, confusing lines, spots, or "camouflage", and where
it can be assumed that a pattern which contains the sensory components of a

familiar object actually represents the object, rather than a random concatin-
ation of lines or points of illumination.

In order to evaluate the performance of a perceptron in the realm of
figural organization, or the "perception of unity", a suitable set of criterion
experiments must be defined. This proves much more difficult than in the

testing of discrimination capabilities, or the study of generalization over a given
group of transformations. In the simplest case, we may require a decision as to

presence or absence of a figure in a noisy field. In this case, the detection
experiments discussed in Sections 7.4 and 8.4 may be employed, with little
ambiguity. In the case of organized environments, however (c.f. , illustration
in Section 8. 4) it is frequently difficult to decide on an a priori basis that a

particular decision is "right" or "wrong". If the field is sufficiently ambiguous,
or the context is not indicated, a particular pattern of lines might represent the

letter "E" or a random pattern of cracks on concrete. To evaluate performance
on such material, it may be helpful to run the same experiment with human

subjects, to provide an arbitrary standard for comparison. The results, however,

are always subject to interpretation, based on the intentions, experience, and

additional information available to the human observers in contrast to the
perceptron.
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Three types of criterion experiments seem possible:

1) Description of the figure by a multi-response perceptron (e. g. ,

"small right triangle in upper left, with cross-hatched surface").

2) Detection of familiar objects; perceptron is trained to tell
whether object is present or absent.

3) "Test-point experiments" where the perceptron can attend selec
tively to a test-point, or the end of a pointer placed in the field,
and tell whether or not the point is in contact with the figure.
In this way, a description of the figure can be obtained by trac
ing its boundaries, or obtaining an inventory of its parts.

Little work has been done, to date, to determine the capabilities of

cross -coupled and back-coupled perceptrons in experiments of these types.
The detection experiment is the one most readily performed with the systems
analyzed to date, and it is hoped that some data can be obtained in the near

future. Series -coupled perceptrons appear to offer little hope of good perform
ance in these problems.

Cross -coupled perceptrons have been observed to form mutually
exclusive "cell assemblies" in their association systems, under the spontaneous
organization rules considered in Chapter 19. It is possible that with a suitable
choice of preconditioning sequence and network parameters, such cell assemblies
may be related to figural organizations, so that when two or more rival figure -

ground organizations are present, the A-units activated will correspond to one

of these organizations in preference to the others. At present, however, this
conjecture must be regarded as pure speculation, with no real evidence to

support it.

The introduction of back-coupling, however, does permit the percep
tron to take advantage of the first and most powerful cue as to figural organization,
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namely, differential motion. A suitable organization is illustrated in Figure 68.

The perceptron is a three-layer system with multiple R -units, of the "on -off"
variety. Each R-unit is trained to respond to a different motion, or transform-

Figure 68 A PERCEPTRON FOR FI6URAL SEPARATION OF MOVING PATTERNS.

ation. The variable connections from A to R-units and from R to A-units are
reinforced as in Chapter 21, for selective attention systems with variable back-

coupling. Due to the spectrum of time delays, the A-units respond directly to

the movement pattern as well as the shape of the stimulus. The system may be

further improved by adding inhibitory interconnections between the R-units, so

that only one can go on at a time. If there should be two stimulus patterns
simultaneously present on the retina, moving in opposite directions (or one

moving and the other stationary), the dominant response will tend to support
those A-units responding to the stimulus whose motion corresponds to the R-
unit, and will suppress the A-units responding to the second stimulus. The
threshold servo plays the same role as in the systems of Chapter 21. If the

A-system is cross -coupled, with a - -system rule, the effect will be supported

by the formation of "cell assemblies" characterizing different directions or

velocities of motion.
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As the stimulus field becomes increasingly ambiguous in its

organization (as in ink-blot patterns, for example) the field organization which

results in a human observer depends less on a passive response to automatic
mechanisms, and more on an active "construction" of a meaningful figure. In

this process, a number of alternatives may be reviewed in quick succession,

before one of them "settles in", and the field loses its ambiguity. This sort
of active structuring of the field may also be possible for a perc eptron with

feedback loops from the R-units, if the perceptron can evaluate the strength,
or decisiveness of its response, and actively perturb its response state (and

hence the feedback signals to the A-units) until a strong, persistent response is

obtained. This may be done by adding random Gaussian noise signals to the

inputs of the R-units, resulting in frequent changes in the response state as long

as the signals from the A-system are weak and indecisive.

While the above discussion indicates several possibilities which are

open to experimental treatment, it is clear that much fundamental groundwork
remains to be completed before the problem of figural unity can be attacked in

a systematic manner. At the present time, this problem remains one of the

most severe challenges to all theories of brain mechanisms.

555



25. VARIABLE-STRUCTURE PERCEPTRONS

All of the memory mechanisms employed in previous chapters
employ a fixed network structure, in which the weights of connections are
variable. It is occasionally proposed that a system in which the structure of

the network itself is modifiable, with new connections being formed and old ones

discarded on the basis of demonstrated utility, might lead to the evolution of a

better model, with a smaller number of logical elements than would be possible
for a fixed-structure perceptron with random connections. This might, for
example, be a way of evolving special-purpose stimulus analyzing mechanisms
of a high degree of utility for a particular environment. A model in which
structural modification is possible -- i. e. , in which the origins or termini of

connections are changed as a result of activity -- has previously been referred
to as an "evolutionary model". Apart from the possibility that such a system

might provide a useful memory mechanism, or adaptive mechanism, it has been

suggested that by observing the terminal states to which such a model goes,
after long exposure to an environment, we might learn something about the

kinds of physical constraints which could be usefully built into future systems
at the outset.

25. 1 Structural Modification of S-A Networks

To date, very little work has been done with evolutionary systems.
Several examples have been programmed for the IBM 704, which indicate a

slight improvement in some cases, but these programs have proven too costly
in computer time to permit extensive experimentation. The cases illustrated
here come from this group of pilot experiments. * A three-layer perceptron
with a single R-unit was employed, and an --v -system error correction method
was used for reinforcing the terminal network.
—

The programs were written by Kesler, and carried out at the AEC/NYU
Computing Center.
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The rules for changing the structure of the network are closely
analogous to those employed for perceptrons with variable S-A connections,

in Chapter 13. Each A-unit, a; , is continuously evaluated by means of a utility
measure, E-

L . If the current response f is wrong, E- may be increased by 1

with probability ye
y , p2 , or p} , defined as follows:

p = probability of incrementing £t
- if the sign of vjr disagrees

with the desired classification of the current stimulus, and

<z4 is active.

pt - probability of incrementing E-
t if the sign of -v£r agrees with

the desired classification of the current stimulus, and a.;

is inactive.

p3 = probability of incrementing £"t- if the sign of v^r disagrees
with the desired classification, and at- is inactive.

The quantities E-
L are assumed to decay by an amount <
S Ej at each

stimulus presentation time. If £^ reaches or exceeds a threshold level, 6g ,

the origins of all connections to unit at- are reassigned, and £"t- is reset to zero.
In most experiments, p > pt> p3 , so that an A-unit is most likely to have its
connections changed if the value of its output signal frequently disagrees in

sign with the intended classification of the stimulus which activated the unit.

The results of several experiments (on horizontal/vertical bar

discrimination) are shown in Figures 69 and 70, with the performance curves
for the corresponding fixed-structure models shown for comparison. While
there seems to be a slight advantage for the variable -structure systems
(particularly in Figure 69, where only 20 A-units were used), the improvement
over the fixed-structure system is not impressive. Nonetheless, it is possible
that a more sophisticated procedure for determining which A-units are to be

changed would produce better results. It also seems likely that the horizontal/
vertical bar problem, which is not very demanding in the geometry of origin
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configurations required for discrimination, may be a poor choice of a calibration
experiment for evaluating the evolutionary model. Unfortunately, the procedure
is so time-consuming for a digital computer that only a small number of experi
ments have proved feasible.

As a memory process, the above system seems excessively compli
cated. Not only are three distinct probabilities required, under three sets of

logical conditions, but the £- must be stored as an auxiliary variable for each

A-unit. This is clearly implausible for a biological mechanism. The difficulties
encountered seem to be common with those met in all attempts at providing a

useful memory process which operates on the preterminal connections of the

network (as in the variable S-A systems of Chapter 13). It is hard to see what

simple criterion might be employed to identify those connections which should be

changed in order to improve the final output of the R-units. It seems likely that

a local information rule (Page 289) is incompatible with an efficient system of

reinforcement at the preterminal levels of the network.

25. 2 Systems with Make -Break Mechanisms for Synaptic Junctions

A somewhat different kind of structural modification from the model

described above is that in which there is a fixed set of "potential connections"

to each unit, but these connections may be either "made" or "broken" on an

all-or-nothing basis, in the manner of switches or mechanical relays A
possible application of such a mechanism to the terminal network of a three -

layer perceptron is illustrated in Figure 71. The A-units are divided into a

set of excitatory units (E-units) whose output is always positive, and a set of

inhibitory units (I-units) whose output is always negative. All signals are of

unit amplitude, and the connections from I-units to the R-unit are fixed, only

the E-unit connections being modifiable. The connections from E-units to the

R-unit are of the make -break variety, the reinforcement rule being as follows:
_

There is some hope, however, that the "elastic perturbation" system suggested
in Section 26.4 will prove applicable to this problem.
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The reinforcement control system can call for a Air>0 or for
A-v < 0 . If a positive increment is required, excitatory connections with active
origins are made with probability P (applied independently for each unconnected
E-unit), while if a negative Atr is required, excitatory connections with active
origins are broken with probability P . If the system begins with initial conditions
such that the number of connected E-units just balances the number of connected
I -units, and if the number of units is very large, the effect of a single reinforce
ment will be identical to the application of a quantized Oi -system reinforcement
to a system with fixed A-R connections. Thus, under the error correction
procedure, this system can be expected to duplicate the performance of an
y -system perceptron quite closely, provided the number of A-units is large.

Figure 71 SIMPLE PERCEPTRON WITH MAKE-BREAK CONNECTION SYSTEM.

An alternative system is one with equal numbers of E and I-units,
in which the I-connectior.s are also variable. In this case, new connections can
be made, but once established are assumed to be permanent. For Av> 0 , new
E-connections are formed with probability P , as above. For Av^-O, however,
new I-connections are formed with probability P , instead of breaking E-connec
tions. At the outset, assuming that all A-units are initially disconnected, this
system again behaves in much the same way as an of -system perceptron. As
the system "saturates", due to the exhaustion of available connections, the
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increments to the R-unit input signal from each new reinforcement become
progressively smaller. If the number of A-units is infinite, then the system
never saturates entirely, new reinforcements always having some effect,

although this is apt to become negligible as saturation is approached.

These models are of more interest as possible analogs for biological
systems than as significantly new types of perceptrons. Their properties,
short of the saturation condition, closely resemble the systems previously
considered, but they do not require values which change sign, and are sugges
tive of a possible synaptic growth mechanism in biological memory. As engineer
ing devices, their reliance on probabilistic mechanisms is apt to make their
construction more difficult than the ^-system models.
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26. BIOLOGICAL APPLICATIONS OF PERCEPTRON THEORY

When the perceptron was first proposed, it was considered
primarily as a model of biological memory mechanisms. As the models
became more sophisticated, a number of psychological properties not directly
related to memory were investigated, but the main emphasis, as a biological
model, is still on the adaptive mechanisms employed, and the recording of
past experience. In this chapter, the application of perceptron theory to

biological problems will be considered primarily from this point of view.

26. 1 Biological Methods for the Achievement of Complex Structures

The biological evidence which has been cited repeatedly throughout
this volume indicates that highly organized structural constraints exist in
many parts of the nervous system. Apart from the gross anatomical complexi
ty of the brain, the mechanisms of optic nerve growth and regeneration, the

stimulus analyzing mechanisms found by Lettvin in the frog and by Hubel in the

cat, and the better known mechanisms of motor coordination and control
indicate that organization of a rather involved type may occur even in the fine

structure of the network. In perceptron theory, as it has developed to date,

most emphasis has been placed on learning and memory as a means of

achieving such organization. In actuality, a number of alternative procedures
are possible for the creation of complex networks, satisfying a given set of

logical constraints. These include:

1. Logical specification (e.g., let the j}^1 cell of the k**1 row be

connected to the i+lst cell of the k+3rd row, for all i > k).
This is equivalent to an exact blueprint of the network.

2. Natural selection, whereby the useful sub-networks of an

originally random population survive, while the others decay.

3. Simple spatial constraints (gradients, directional bias, or

distributions of connections specified by a small number of

parameters).
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4. Typological constraints (e.g. , cells of Type A can only connect
to cells of Type B or C, where cell types might be distinguished
by chemical properties).

Of these four mechanisms, only the last three seem to be well
suited for the development of biological nerve nets. The first mechanism,
logical specification of the structure, is primarily a contrivance of engineer
ing, which is well suited to the construction of computers, but which seems to

have no clear counterpart in known mechanisms of growth and maturation.
It is this first method of control, however, which has been most investigated
in studies of brain mechanisms during the last few decades (e.g., References
17, 57, 71).

In specifying the initial physical form of the networks in perceptron
theory, most attention has been given to the third alternative; spatial constraints
of a simple sort have been employed throughout. In the last chapter, limited
use was made of the second and fourth methods. The use of typological
constraints has thus far been used mainly to distinguish excitatory from
inhibitory neurons (Section 25. 2), but it seems likely that its use is relatively
widespread in biological systems. In particular, Sperry's work on neural
maturation and fiber regeneration, and Lettvin and Maturana on the regener
ation of scrambled connections in the frog's brain, suggest a chemical control
or "homing mechanism" of remarkable sensitivity.

The limited experiments performed thus far on "natural selection"
as a structural control mechanism do not appear particuarly promising
(Section 25. 1). The evolution of the network occurs too slowly, and is too
subject to disruption and instability of partially achieved organizations, to be

useful in any of the forms examined up to this point. It remains possible,
however, that a more rapidly converging mechanism may be found, and the

field remains open for future investigation. Typological constraints, on the
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other hand, are likely to come into their own with the investigation of

perceptrons having complex mixtures of property detectors, and other
specialized A-units, all deriving their connections from a common sensory
field

26. 2 Basic Types of Memory Processes

Perceptron memory mechanisms have all taken the form of

modifications of the signals transmitted across synaptic junctions. There
appear to be at least two basic types of memory dynamics which are useful
in perceptrons. The first is a system in which values remain stable unless
action is taken by a reinforcement control system, based upon an evaluation
of the current response of the perceptron. The most effective method actually
investigated for this purpose has been the & -system, with an error correc
tion procedure for modifying the values of A to R-unit connections. The
second type of memory is one which achieves stability only in the form of a

dynamic equilibrium with a continuously active reinforcement process. This
second system does not depend upon evaluation of the perceptron1 s output, but

maintains a continuous state of adaptation in the network, based only on local
activity. In practice, it seems likely that a decaying f -system will prove
to be the best of the systems of this type which have been analyzed. The
first type of mechanism permits the system to learn from an external
"teacher", or by reward and punishment experienced as a result of trial and

error activity. The second type permits the perceptron to acquire an internal
model of the "similarity structure" of its environment, as defined by the temporal
relationships of moving stimuli. It may be that more complex forms of organi
zation (such as the recognition of connected patterns, or Gestalten) can also
be achieved by means of dynamic processes of the second type, but this remains
conjectural at this time
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While it is certainly conceivable that additional basic mechanisms
may be required to perform the memory tasks of a complex organism, there
seems to be some reason to believe that the two types of dynamics character
ized above may prove sufficient for the phenomena of "adaptive behavior".
The first variety permits the system to be "set" passively to any desired state,

which will tnen be retained indefinitely. Thus any form of permanent learning
can be handled, in principle, by such a system. The error correction theorems
of Chapters 5 and 10 seem sufficient to demonstrate this assertion. On the

other hand, any spontaneous modification process which is not to be self-
defeating must ultimately achieve some sort of dynamic equilibrium with the

conditions which induce the change in state; without such a mechanism (provided
in the case of our four-layer and cross -coupled perceptrons by the decay term
in the equations) the dynamic range of the memory variables must ultimately
be exhausted, and the system will saturate. In any case, a mechanism which
is to serve as a basis for generating a model of the external environment must
be one which ultimately approaches a stable condition, as the model approaches
a true representation of the external world. Such considerations make the

second mechanism appear to be a natural complement to the first.

Two memory functions which might call for processes of a different
logical character are the serial recording of experience (in the manner of a

tape recorder or motion picture camera) and a temporary memory for data which

are to be used in the immediate future and then forgotten (as in the "memory"
of a digital computer). For the second of these phenomena, it is likely that a

dynamic storage mechanism, such as pools of activity or reverberating loops
which can be triggered and extinguished by a suitable control system, will prove
to be the most effective storage mechanism. The problem of serial memory is

a more serious one, but can only be dealt with together with the problem of selec
tive recall and the mechanisms for its control.
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It is certain that in a simple perceptron, memories are not tagged

in any way which would permit their serial order to be re-established later.
But the "memories" stored in a simple perceptron are in any case merely
associative, rather than substantive. The nature of substantive memory in
humans must be investigated more carefully in the future. While it seems
unlikely that a complete image or state of the association system is stored, it
is nonetheless clear that a great deal more information is retained than is
represented by a simple classification of an experience as belonging to one of

n categories. One alternative is that of storing a description of a large number
of characteristics or dimensions, which jointly permit the reconstruction of

the original experience by the active creation of a model, or image, which
approximates the original state of the association system. Among the charac
teristics stored would be such time -tagging information as the location in which
the event occurred, the time of day, the activity that the subject was engaged in,

etc. An accumulation of such cues would enable a suitable search process to

locate the experience in time, and to associate it with preceding or successive
events in appropriate order (c.f. , Reference 79, Chapter VIII). In any case,

it seems likely that substantive recall is an active, creative (or recreative)
process, rather than merely a passive reading-out of a memory bank.

26. 3 Physical Requirements for Biological Memory Mechanisms

From the considerations just stated, it should be clear that not one

but several memory mechanisms are likely to be encountered in a complex
system. Limiting our attention, for present purposes, to the two basic mechanisms

which have been studied in perceptrons, what can we say as to the probable
physical characteristics of the memory traces?

First, as to location: it appears that the most suitable location is in the

connections, or synapses, which mediate the interaction of particular pairs of

neurons. Perceptrons in which the memory trace affects an entire neuron and
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all of its interactions with other neurons have been investigated (Reference 79)
but this has invariably involved the introduction of artificial constraints on the
topology or logic of the network, in order to limit the effects of reinforcement
to the desired transmission channels. In any case, systems in which the re
inforcement is specific to the connections appear to be far more economical
than those in which reinforcement is applied to an entire neuron, or A-unit.

A second condition is that the memory change should be reversible.
Both the externally controlled error-correction procedure and the fully automatic
memory processes of the cross-coupled perceptrons require reversible modifica
tions. In the case of the error-correction procedure, two antagonistic control
mechanisms seem to be called for, one of which strengthens the excitatory outputs

of active A-units, and the other of which weakens excitatory outputs or strengthens
inhibitory outputs. While most of our analyses have assumed that the actual sign
of the value of a connection may change from positive to negative, this is clearly
a non-biological artifact, introduced for convenience in analysis. The same effects
could be achieved by a system in which half of the connections are always positive,
and half are always negative If the negative connections are fixed in magnitude,
then only the excitatory connections need be modified, yielding a net positive
signal if they exceed the strength of the fixed inhibitory component, and a net

negative signal if they fall below the inhibitory strength. Alternatively, the

excitatory connections might be fixed, and the inhibitory connections variable.
or each type might be variable within its own dynamic range .

The requirement that the "strength" or value of a connection be

modified as a consequence of the correlated activity of both terminal units,
rather than just the transmitting unit, appears to place a unique condition on the

memory process. Most metabolic processes such as growth, changes in cell
chemistry, etc. , which might be involved here are of a type which generally depend

only upon the cell in which the change occurs, and its over-all environment.
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whereas we seem to require a two-factor phenomenon, which depends upon the

activity of two specific cells. This writer has previously stated the conjecture

(Reference 83) that the required effect might be obtained if the production of

transmitter substances depended upon an enzyme or catalyst produced in the

nucleoplasm of the trans -synaptic cell, and released to the medium when that
cell is stimulated to activity. The presynaptic fibers which were most recently
active, being in a heightened metabolic state, would then be in the most favorable
position to compete for the limited supply of this catalyst, which would then
enable them to produce their transmitter substance at an increased rate in the

future. The competition for metabolites in limited supply in the neighborhood
of a particular cell body would tend to create a f -system, in which the most
active cells would gain at the expense of the inactive ones. Whether this is a

correct description of the mechanism or not, some type of symbiotic relationship
seems to be demanded between the presynaptic fibers and the post-synaptic cell,
in order to provide a memory mechanism of the type analyzed in Part III of this
volume.

The memory mechanism employed for error-correction learning
places rather different demands on the biological system. Here the reinforcement
depends not so much on the correlation of activity of the two terminal units, as on

the correlation of the activity of the transmitting unit with the decisions of the

reinforcement control system. It is conceivable that this might again involve
the release of a catalyst in the neighborhood of the active connections, but in this
case the release must be remotely controlled -- perhaps through glandular action.
In one respect this is a simpler requirement, conceptually, than the former case,

where the activity of two specific cells had to be considered for each connection
which might be reinforced. In the present case, the general release of an

excitatory or inhibitory reinforcing agent from a central source would appear to

be sufficient; the recently active connections, being most metabolically active,

would tend to be most strongly affected. In a second respect, however, this
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mechanism presents a new problem which is more serious: the problem of
limiting the effect of reinforcement to the specific response which is to be

corrected.

It was demonstrated in Chapter 12 that the error correction procedure
can be guaranteed to work only if the correction is limited to the erroneous
responses, in a multiple response system. To achieve this condition in a biologi
cal system, it seems that a mechanism is called for which can select one response,
or response component, at a time as a candidate for reinforcement, and limit the

corrective action to the selected locality. In dealing with motor responses, the

topographical mapping of the motor control areas of the cortex is likely to prove
helpful here, particularly if we adhere to the hypothesis that the memory trace
involves the release of a chemical agent which affects everything in its neighbor
hood. *

The proportional decay mechanism which is required for the "spontane
ous" memory process is probably the easiest of the requirements to rationalise
in a biological model; a chemical mechanism, in particular, would tend to exhibit
decay at a rate which increases with the concentration.

At present, any treatment of the compatibility of perceptron theory
with biological memory mechanisms must remain entirely speculative. It is
to be hoped that as additional evidence on synaptic transmission and neurochemistry
comes to light, it can be fitted into the picture. Thus far, there seem to be no
serious conflicts, although there are a number of missing links. The considera
tions stated above do suggest several plausible hypotheses for experimental
investigation.

A procedure is now being investigated by which an error correction is applied
to a randomly chosen set of R -units, the value increments being transient
rather than permanent, unless the correction actually proves effective. It is
hoped that this technique will yield an efficient reinforcement mechanism which
does not depend on specification of the erroneous R-units. (see Section 26.4)
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26.4 Mechanisms of Motivation

The problem of motivation for perceptrons, considered as models
for biological nervous systems, has hardly been treated adequately up to this
time. The reinforcement control system, which forms part of the experimental
system, plays the role of a sort of deua ex machina, which not only has know

ledge of right and wrong responses, but can control the distribution of re
inforcement to individual R-units in the perceptron, as required. A more
"natural" system with only a slight reduction of efficiency does seem to be

possible, however, although at present the model proposed is a heuristic one,

on which no quantitative analysis has been completed.

The proposed model for biological reinforcement mechanisms is
illustrated in Figure 72. In this system, the r. c. s. is no longer external to

the system, but is essentially part of the perceptron. It is assumed that the

perceptron system includes a sensing device for a physiological condition
which has been arbitrarily called the "discomfort level", measured by the vari
able D. This might be compared to Ashby's concept of "essential variables".
In addition to continuously measuring the variable D, which is assumed for
simplicity to be some function of the current stimulus pattern, a second
mechanism (readily represented by a neuron with inhibitory input connections
with a short time delay and excitatory connections with a longer time delay,
both originating from the " D-detector" ) responds to a negative dD/dt. The
corrections to this system are random perturbations applied either to active
connections, or to all connections of the perceptron; the increments, however,

take the form of "elastic perturbations'1, so that the connections tend to decay
back to their previous values unless a "positive reinforcement" occurs to "fix"
the new values. Thus negative reinforcement applies a slight random perturba
tion, which tends to disappear unless it actually proves helpful, in which case it

is stabilized by a positive reinforcement.
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Figure 72 EXPERIMENTAL SYSTEM EMPLOYING ELASTIC PERTURBATIONS, STABILIZED
BY IMPROVEMENTS IN SENSORY SITUATION (COMPARE Figure ■»).

For this system to function efficiently, it is again necessary to

assume some degree of temporal continuity in the environment, so that the

change in D indicates a true improvement in the response of the system, rather
than an irrelevant change due to a sudden alternation of the environment.
Preliminary simulation experiments to evaluate this scheme are now in progress,
employing the Burroughs 220 computer, and indicate that the system should work
with a reasonable degree of efficiency, as compared to a system employing a

more deterministic error correction procedure. The results of these experi
ments will be reported as soon as the data are complete. The system has the

advantage that it works well with an arbitrarily large number of R -units,
without requiring an individual decision as to the error of each one, as long as

D is some monotone increasing function of the joint error, such as the norm of

the difference vector, ||>C*- r'\\ . Such a representation will work best when all
of the R-units are continuous transducer units, so that any random value -

perturbation will have a 0. 5 probability of yielding an improvement.
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27. CONCLUSIONS AND FUTURE DIRECTIONS

Man's intelligence is a unique phenomenon on our planet, occurring
at such a level of complexity in a single species only. The lack of other
similarly intelligent species is unfortunate from the standpoint of science,
for it makes it difficult to tell from comparative evidence which features of

human psychology are accidental products of man's peculiar biological constitu
tion, and which are fundamental to the nature of intelligence itself. Despite
this lack of comparative material, some of us believe that it may ultimately be

possible to answer such questions through an understanding of the physical basis
of psychological phenomena, independently of the biology of any one species. The
perceptron program represents a small part of such an undertaking; it is an

attempt to study the psychological properties of certain highly simplified mathe
matical or physical models of the central nervous system, in the hope that such
a study may throw light on basic principles which can then be applied to more
sophisticated models.

The use of "models" to represent complicated natural phenomena
has been an essential technique in the physical sciences for many centuries.
The model is a simplified theoretical system, which purports to represent the

laws and relationships which hold in the real physical universe. The solar
systems of Ptolemy, Copernicus, and Einstein, and the Atomic models of

Democritus, Bohr, and Heisenberg represent two successions of such models,

each in turn coming somewhat closer to an adequate representation of its subject
matter. In some cases (the concept of an "ideal gas" for example) the model
deliberately neglects certain complicating features of the natural phenomena
under consideration, in order to obtain a more readily analyzed system, which
will suggest basic principles that might be missed among the complexities of

a more accurate representation. Such simplified models may then be refined

through a series of "perturbations", which introduce the known complications
one at a time, in a manner which permits the mathematician to incorporate them
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into his analysis. It is this approach which has been most characteristic of the
perceptron program.

Stated in simplest terms, our objective has been to discover a

physical system, or abstract model, which will be capable of "perceiving" its
environment, and learning to recognize those objects or events which it has
perceived in the past. However, since it is our purpose to understand the actual
mechanisms employed by the brain, rather than simply to construct a new type
of computing device, the perceptron models are constrained in their organization
and dynamic properties by what is known of the biological nervous system. Rather
than attempting to "invent" or "construct" a machine which will calculate such
things as similarities or geometrical properties of stimuli, the approach has
been to begin with a hypothetical network of idealized neurons, or nerve cells,
resembling the brain in its general organization, and then analyze the system
mathematically to determine whether or not it possesses "psychological"
properties of interest. Where the model is found to deviate markedly from the

behavior of biological systems, modifications are suggested, and the new model
that results is subjected to the same sort of analysis. In this fashion, it is hoped

that the necessary conditions for a system to "perceive" in the same manner as

the brain can be abstracted.

In this chapter, we will attempt to summarize the principle results
which have thus far emerged from this approach, the problems which have now

come to the foreground, and the means by which these problems might be attacked.
The possible applications of perceptron theory to engineering devices and the

construction of physical brain models will also be considered. Finally, an attempt

will be made to anticipate the future relationship of the neurodynamic approach to

the various alternative strategies by which the problems of understanding and

simulating intelligence are being investigated.
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27. 1 Psychological Properties in Neurodynamic Systems

Our main conclusions deal with the properties of closed experimental
systems, such as those illustrated in Figures 3, 4, and 72. It has been shown
that as the topological organization of the perceptron increases in complexity,
new psychological properties emerge. The principle results can be summarized
as follows:

(1) A network consisting of less than three layers of signal transmission
units, or a network consisting exclusively of linear elements connect
ed in series, is incapable of learning to discriminate classes of

patterns in an isotropic environment (where any pattern can occur
in all possible retinal locations, without boundary effects).

(2) A three -layer series -coupled perceptron is a minimal system capable
of learning to discriminate arbitrary classes of stimulus patterns
or stimulus sequences. Any discrimination problem can, in princi
ple, be solved by such a system, and any arbitrary response function

can be assigned to the stimuli of a given universe.

(3) By means of an oL -system error-correction procedure, a three-
layer series -coupled perceptron with simple A-units and a fixed
preterminal network can always be taught the solution to any classi
fication problem or response function for which a solution exists.

(4) Equations for the learning curves of simple perceptrons under

various reinforcement rules have been presented. The results
indicate that for simple tasks, such as the recognition of large
alphabetic characters against a plain background, the three -layer
series-coupled system performs with reasonable efficiency,
although it may require a lengthy training procedure with large
samples of each stimulus class to guarantee recognition of all
variations, or "allomorphs" of a pattern.
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(5) In perceptrons with variable -valued preterminal networks, a non-

deterministic reinforcement rule may be required to guarantee that
the solution to a classification problem will be achieved, given that
the solution exists.

(6) Generalization capabilities of three -layer series -coupled systems
are poor, and in "pure generalization" experiments (where the test
stimuli have no sensory points in common with the training stimuli)
there is essentially no generalization capability.

(7) Series -coupled perceptrons with randomly organized origin-point
configurations for the A-units tend to be highly resistant to stimulus
noise and network damage; in a complex field containing mixtures of
familiar stimuli, however, they are easily confused, and are incapable
of responding selectively to one stimulus or object at a time.

(8) The addition of a fourth layer of signal transmission units, or
cross -coupling the A-units of a three-layer perceptron, permits
the solution of generalization problems, over arbitrary transform
ation groups.

(9) Four -layer and cross -coupled systems with suitable rules for
modifying their connection values (Chapters 16, 17, and 19) are
capable of learning a group of transformations which have occurred
commonly in sequences of stimuli, and later recognizing the

similarity of stimuli which are equivalent under the observed
transformation group. This phenomenon occurs "spontaneously",
without any external influence on the perceptron apart from the

occurrence of stimuli.
(10) In back-coupled perceptrons, selective attention to familiar objects

in a complex field can occur. It is also possible for such a perceptron
to attend selectively to objects which move differentially relative to
their background.
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(11) By a suitable combination of geometric constraints (Chapter 23)

a multi-layer perceptron can be enabled to recognize detailed
patterns in high -re solution fields with markedly increased efficiency,
compared to a randomly organized three -layer system. For a given
universe of stimuli, there will be an optimum organization of such
a system, which will rarely exceed three layers of A-units for
tasks commensurate with human capabilities under tachistoscopic
conditions .

(12) A number of speculative models which are likely to be capable of

learning sequential programs, analysis of speech into phonemes,
and learning substantive "meanings" for nouns and verbs with
simple sensory referents have been presented in the preceding
chapters. Such systems represent the upper limits of abstract
behavior in perceptrons considered to date. They are handicapped
by a lack of a satisfactory "temporary memory", by an inability to
perceive abstract topological relations in a simple fashion, and by
an inability to isolate meaningful figural entities, or objects,
except under special conditions.

The capabilities which are outlined above, and the variety of networks
and dynamic principles considered, map out a substantial territory, much of

which still remains to be explored in detail. While rudimentary perceptual
behavior appears to be present in these systems, it seems likely that to deal
adequately with the problems of complex perceptual fields and the recognition
of abstract relations between objects or events, additional principles must
still be found.

27. 2 Strategy and Methodology for Future Study

A number of perceptrons analyzed in the preceding chapters have

been analyzed in a purely formal way, yielding equations which are not readily
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translated into numbers. This is particularly true in the case of the four-layer
and cross -coupled systems, where the generality of the equations is reflected
in the obscurity of their implications, except for the few cases where explicit ex
amples have been 'worked out. For. other models, only qualitative results are
available, although the way is clear for quantitative work to be initiated. Those
problems which appear to be foremost at this time include the following:

(1) Theoretical learning curves for the error correction procedure.

(At present, only empirical results are available, and no

attempts at theoretical analysis have proven successful. )

(2) Determination of the probability that a solution exists to a

given problem, for a perceptron drawn from a specified class.

(3) The development of optimum codes for the representation
of complex environments, in perceptrons with multiple R-
units (see Section 12.2).

(4) Development of an efficient reinforcement scheme for pre
terminal connections (c.f. , Chapter 13).

(5) Optimum organization of stimulus analyzing mechanisms and

networks with geometrically constrained connections (c.f. ,

Chapter 23).

(6) Terminal performance of cross -coupled and four -layer percep
trons in generalization experiments, as a function of network
parameters, reinforcement dynamics, and environment
characteristics .

(7) Theoretical analysis of convergence -time and learning curves
for adaptive four-layer and cross -coupled perceptrons.

(8) Quantitative studies of effects of threshold servos on system
performance (c.f., Chapter 21).
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(9) Quantitative studies of speech recognition and phoneme analyzing
systems.

(10) Performance of back-coupled systems in selective attention and

detection experiments.

(11) Quantitative studies of sequential program learning in back-
coupled systems.

(12) Effect of spatial constraints in cross -coupled systems (e.g. ,

limiting interconnections to pairs of A -units with adjacent
retinal fields).

(13) Studies of possible figure -segregation (figure -ground) mechanisms.

(14) Studies of abstract concept formation, and the recognition of

topological or metrical relations.

(15) Biological memory mechanisms, and studies of neurophysiology
in relation to perceptron theory.

Four basic techniques are available for the study of these problems:
theoretical analysis, digital simulation, the construction of physical models,
and physiological experimentation. The first two problems of the above list
are specifically mathematical in character. The third, while posed as a

theoretical question, might best be investigated at the outset by means of simu
lation studies. In the case of problems (4) and (5), simulation studies seem to
be indicated for preliminary exploration, although it is hoped that some theore
tical formulations may ultimately be achieved. The sixth problem — the

determination of terminal performance of adaptive four-layer and cross -coupled
systems -- calls in effect for a variety of explicit solutions to the steady-state
equations presented in Part III. Such a program is currently being carried out

both by direct computation of the equations and by simulation techniques. For
the cross-coupled systems, simulation is likely to prove more economical in
most cases than the numerical solution of the equations. The seventh question
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again is a theoretical one, although preliminary results obtained from simulation
programs should prove enlightening. The problem of threshold s e rvomechanisms
can be investigated both by theoretical means and by simulation.

It has recently been proposed that an audio-perceptron should be

constructed at Cornell University to study the problem of speech recognition.
Since this Is a problem in which the chief interest is in performance under
typical environmental conditions, rather than in theoretical problems of pattern
recognition (which have all been solved on paper, insofar as spoken inputs
resemble any other form of sensory sequences), it seems best to provide for
convenient input to a real-time system, rather than working with simulated
perceptrons and samples of digitalized speech. The problem of phoneme analysis,
however, still presents enough theoretical problems and uncertainty as to the best
solution, so that a digital simulation program is indicated. The system proposed
in Chapter 23 is now being investigated by this means. The problems of back-
coupled systems referred to in (10) are probably also best referred to an actual
physical model, although a certain amount of useful simulation can be performed
in checking out the general theory before such a model is built. Problem (11)

is also of this character. Problem (12) is again of the type which will yield most
readily to simulation at this time. It is of interest in connection with possible
figure-ground mechanisms, which are included in a more general way in Prob
lem (13).

Problems (13) and (14) are primarily speculative in character, and
must await new insight into possible mechanisms, the exact nature of which is
not yet clear. It is hoped that studies of the other problems, which are all well
enough formulated to be investigated directly, will suggest possible approaches
to these two problems, which represent the most baffling impediments to the

advance of perceptron theory in the direction of abstract thinking and concept
formation. The previous questions are all in the nature of "mopping -up" oper
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ations in areas where some degree of performance it known to be possible, and

where suitable mechanisms can be described, at least in qualitative terms; the

problems of figure -ground separation (or the recognition of unity) and topological
relation recognition represent new territory, against which few inroads have been

made.

The last problem the correlation of perceptron theory with
biological evidence represents at once an area of investigation in its own

right, and a potential source of insights into solutions to the prior problems.
To date, little has been done to obtain relevant physiological data directly.
Nonetheless, several hypotheses have been suggested (c.f. , Chapter 26), and

a great deal of useful work along the line of Hubel's studies of the cat cortex
can be carried out using known laboratory techniques.

27. 3 Construction of Physical Models and Engineering Applications

From a purely scientific standpoint, physical models of particular
perceptron organizations seem to be indicated only for relatively advanced
systems (such as the speech recognition, selective attention, and program
learning perceptrons referred to above) where the theory is reasonably well
known, but the actual quantitative behavior under realistic environmental
conditions remains in doubt. In some cases, it may ultimately prove more
economical to build a physical model than to simulate a highly parallel signal
network on a sequential computer. Digital simulation, however, always has
the advantage of greater versatility and adaptability to radical changes in design
and dynamics of the simulated network. Its main difficulties are insufficient
speed, insufficient high-speed memory, and difficulty of programming the

simulation of complicated "naturalistic" environments required for some exeri-
ments. This last disadvantage can be overcome by the design of special sensory
input devices (such as audio analyzers and flying-spot scanners) for digital
computers, and it is hoped that such equipment will be available in the near
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future. While most problems can be investigated successfully in scaled-down
versions using a computer comparable to the IBM 704 or 7090, a problem
occasionally occurs which places a severe strain on the capability of even the
best digital equipment now available. The study of evolutionary models, and
adaptation processes in cross -coupled systems appear to be of this variety.
A special purpose digital computer (such as the Mark II design proposed by
C. A. L. ) may ultimately prove to be the most expedient solution to these
problems, although the limits of useful simulation with conventional computers
have not yet been reached.

The construction of physical perceptron models of significant size
and complexity is currently limited by two technological problems: the design
of a cheap, mass -produceable integrator, and the development of an inexpensive
means of wiring large networks of components. The Mark I (Frontispiece)
employs motor -driven potentiometers for integrators, and a large patch-panel
for connections - both intolerable solutions for very large systems. The

integrator problem is currently being attacked by groups at Aeronutronic
and Stanford Research Institute, who have developed magnetic integrators which
are suitable for alpha-system perceptrons, and at Cornell University, where an

electrochemical system is under investigation. While these approaches seem to

offer some hope of an "intermediate" solution to the problem, an ultimate
solution is more likely to come from some of the solid state work and studies
of microelectronics, such as the work of Shoulders at SRI (Reference 114).

This last technique offers a potential solution to the interconnection problem,
as well as a possible means of fabricating large numbers of digital integrators
at low cost.

Since the main emphasis in this volume has been on neurodynamic
theory, rather than applications, little has been said about the engineering aspect*
of the field. It is clear that if the objective of a coherent theory of brain mechanisms
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is achieved, it is likely to prove applicable to pattern recognition and control
devices, as well as the development of advanced computing systems of many
varieties. Preliminary studies have been carried out dealing with possible
applications of perceptrons to photo-interpretation (Reference 116) and the

recognition of events in bubble chambers (Reference 115). More abstract
applications of the pattern recognition ability, such as the diagnosis of clinical
syndromes or meteorological prediction, have occasionally been proposed,
although little evidence has been accumulated regarding the relative suitability
of perceptrons as opposed to more conventional techniques for dealing with such
problems. The applications most likely to be realizeable with the kinds of
perceptrons described in this volume include character recognition and "reading
machines", speech recognition (for distinct, clearly separated words), and

extremely limited capabilities for pictorial recognition, or the recognition of
objects against simple backgrounds. "Perception1' in a broader sense may be

potentially within the grasp of the descendants of our present models, but a

great deal of fundamental knowledge must be obtained before a sufficiently
sophisticated design can be prescribed to permit a perceptron to compete with
a man under normal environmental conditions.

The most important technological development which may be inherent

in the future development of brain models, would be the provision of "eyes and

ears" for conventional computers and automata, giving them a common universe
of discourse with their operators. Current attempts at heuristic problem -solving
programs (such as Newell and Simon's programs) and at automatic language
translation, are hampered by a lack of common referents for symbols, which
can be no more than code -numbers for the computer, but which have a wealth
of associated meanings for the operator. The development of a system which, by

virtue of shared sensory experience, can "comprehend" the nature of the physical
referents in a descriptive statement, is probably a necessary first step to the

creation of a truly useful problem-solving computer. Linguistic capability, related
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to perceptual experience, is of the essence for an "intelligent" system, artificial
or otherwise.

27. 4 Concluding Remarks

The last four years have seen the development of perceptron theory
from the study of a few primitive models to the mapping of a comprehensive
field of investigation. In its present form, this theory is definitive only in its
treatment of relatively simple systems, although a considerable number of more
advanced systems are now understood at least in a qualitative fashion, and the

way is now open to quantitative studies of well-defined problems.

As advanced perceptron models become more sophisticated in their
psychological properties, it becomes more appropriate to consider them as

devices capable of performing arbitrary programs of observation, response, and
manipulation of data. As this condition is reached, the methodology of perceptron
studies is likely to merge with that of the "heuristic program" approach to
psychological functioning, advocated by Newell and Simon (Reference 62). In
such programs, goal -motivated behavior becomes the main object of study,
whereas in perceptrons studied to date, the behavior is motivated primarily by
the present environment and state of the system. A merger of these approaches will
not only open up new territory, but will be a sign of the "psychological maturity"
of perceptron theory, inasmuch as it will permit the study of non -trivial prob
lems in the psychology of thinking and problem-solving, in terms of neurodynamic
systems of known physical structure.

On the other hand, the "biological maturity" of neurodynamic theory
must await the solution, or at least a more promising approach, to the biological
memory problem. Once this is achieved, a fruitful interaction between percep
tron theory and neurophysiology can be expected; but the memory problem remains
paramount in importance.
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The theoretical approach presented in this volume is clearly a long
way from an adequate "explanation" of the foundations of human experience. The
work will have fulfilled an important purpose, however, if it has succeeded in

conveying a recognition of the potential power of a mathematical study of neuro-
dynamic systems, not only for understanding the physical mechanisms of the
brain itself, but for comprehending the relationship of the cognitive process in
man to the nature of the environment in which it occurs.
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APPENDIX A
NOTATION AND STANDARD SYMBOLS

1 . Notational Conventions

While the mathematical notation employed in this volume may still be
capable of further improvement, several conventions have been established which
appear to work reasonably well. They include the following:

(1) Individual signal-units in the perceptron are referred to by a lower
case letter to indicate the type, and a subscript to designate the

particular unit in question (at = /^A-unit). Individual stimuli are
referred to by a subscripted capital {Sj), while stimulus sequences
are designated by script capitals (Jj).

(2) Numbers of signal units are designated by a capital N , with a

subscript to indicate the type of unit in question (#a= number of A-
units). The number of stimuli is indicated by a small n .

(3) An asterisk is used to denote activity: a.* = activity state (or
output signal) of the unit a.-t; = number of active A-units;

C*j = signal transmitted by connection £ij .

(4) Sets of units may be designated either by a subscripted capital or
by a functional notation. For example, the set of A-units respond
ing to stimulus Sj may be designated either by A; or by A(Si).

(5) Where it is necessary to refer both to the unit receiving a signal
and to the stimulus for which the signal occurs, a tensor notation
is employed, with the signal unit indicated by a subscript and the

stimulus by a superscript. For example, oeft) - input signal to the
i '* unit from the j stimulus at time t . An obvious extension
would permit this notation to be applied to origins as well as
termini pf signals; thus c*j\t) would designate the signal trans -
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mitted to unit J from unit i in response to stimulus 5^ at

time t .

(6) Whenever pairs of subscripts are used to designate a signal or
connection (as in «---) the first subscript indicates the origin,
and the second the terminus. In generalization coefficients

{9;j), the first subscript indicates the "recipient" and the

second subscript indicates the "source" stimulus.

(7) In multi-layer systems, the layers are counted separately for
each type of unit, and the number of the layer may be denoted

(J)by a superscript in parentheses (e. g. , = number of units
in the second association layer; - i'h R-unit of the third
R-unit layer).

Matrix and vector notations, where employed, follow usual conventions,

the particular symbols being defined in the text where they appear. The symbol
if , when it appears without subscripts, indicates a decay rate, and should not be

confused with Kroneker's delta, which appears only with subscripts (<f(-•), or with
Dirac delta -functions, rf(z) , for which the functional notation is always used.

2. Standard Symbols

The following list includes those symbols which are used consistently
throughout the text. A number of additional symbols are occasionally employed
for convenience in particular expositions, and are defined where they occur.

u; - generic symbol for the i.
' signal -unit of a perceptron, or, in

simple perceptrons, signal to the R-unit from the i th stimulus.
. th= i sensory unit

<*; ith association unit
.thn - t response unit

- connection from unit i to unit J
A output signal from A; .
* output signal from a; .
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r' - output signal from r- .

tf-l - sequence of response states occurring as outputs of a perceptron.

c*j = signal transmitted to unit j from unit i , on connection C;j
(measured at point of arrival at the terminal unit).

- transmission time of connection C; -

v+j = value of connection (occasionally abbreviated to v- in simple
perceptrons, indicating the value of the connection from a; to
the R-unit).

NA = number of S -units

Na ■ number of A -units
Nr = number of R -units
oi- - total input signal to the i unit. The signal due to stimulus Sj

is designated either by oe-JSj) or by art . If the tensor notation
is employed, then oi- designates the vector of signals Cot/, ocf,..., cc
Similarly, ccJ may be used to designate the vector (ofj , oc% oe£ )

/3? = component of oti consisting of the sum of all signals originating
from the S -units.

Tf;J - component of m- consisting of the sum of all signals originating
from the A -units.

(The vectors /3; , /3J , f-t , and TJ are defined analogously to the correspond
ing cc vectors. )

(p(a) = functional notation for activity state of a simple A-unit. 0=1Hol^G, 0 otherwise.
Z = number of excitatory input -connections to an A-unit

y a number of inhibitory input-connections to an A-unit

G = threshold (specifically, &- = threshold of I unit)
. th

5; = i stimulus

Jl - i' sequence of stimuli

§ .thJ;' = t sequence of stimuli up to, but not including, the terminal
stimulus

P- = normalized retinal area (or fraction of sensory points) covered by S,
-

C-j = common area (retinal intersection) of stimuli S; and Sj

(V = stimulus world, or universe
n = number of stimuli in W

N = number of admissible stimulus sequences, consisting of stimuli
in W
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C(w) m classification of stimuli in W , into two or more equivalence
classes.

R(w) - response function, assigning possible R-unit states to each
stimulus in *V

Pj = sign of classification of stimulus Sj (+1 or -1) in a binary
classification, C(W)

tf = increment of reinforcement per connection (typically ±1 or 0,
in quantized systems)

cf = decay rate, generally applied to decaying values, but occasionally
used in connection with other quantities which are subject to
exponential decay.

g-j = generalization coefficient; the change in the signal to an R-unit
for stimulus S[ as a result of applying a unit of positive re
inforcement ( = +1) for stimulus Sj

-G = matrix of generalization coefficients, o - •

Q' = probability that an A-unit, in a given class of perceptrons,
responds to stimulus S(

-

Vt- = probability that a layer A-unit responds to 5:
Q; . = probability that an A-unit responds to the >>

"* stimulus in
sequence </-

Q-j = probability that an A-unit responds both to 5,
- and to Sj

Q; Qj^= probability that an A-unit responds both to the /J stimulus of Ji

and to the v> stimulus of J-j

(The probability of joint response for an arbitrary number of stimuli, Q;- mi
is similarly defined. When it is understood that the environment consists of
stimulus sequences, as in discussions of cross -coupled perceptrons, the sub
scripts of the Q -functions are always understood to refer to stimulus
sequences, rather than individual stimuli.)

/x.(x) = mean of the random variable x
£(z) = expected value of x
a~(x) = standard deviation of z

P - probability, particularly probability of correct performance in
a given experiment.

PZM - notation commonly used for the probability that the random
variable X has the value c \. equivalent to P(x - c)
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T(S) a the transform obtained by applying transformation T to
stimulus 5

t = time
T - number of stimuli (or duration, in units At ) in a training

sequence

oc.Ti &nd r as prefixes indicate types of reinforcement systems.
r.c. s. = reinforcement control system.

-593-



APPENDIX B

LIST OF THEOREMS AND COROLLARIES

This appendix contains those results which have been explicitly
stated in the form of theorems, for convenient reference. Theorems are

numbered by chapter and theorem number, in the order in which they

originally appear.

THEOREM 5. 1: Given a retina with two -state (on or off) input signals,
the class of elementary perceptrons for which a solution exists to

every classification, C(W) , of possible environments, W , is non
empty.

THEOREM 5. 2: Given an elementary perceptron and a classification
C(W) , the following conditions are necessary but not sufficient for
a solution to C(w) to exist:

i) every stimulus must activate at least one A-unit;

ii) there should be no subset of stimuli containing at least

one member of each class, such that in the union of the

responding A-unit sets, every A-unit has the same bias

ratio (with respect to the stimuli of the subset).

THEOREM 5. 3: Given an elementary oc -perceptron, a stimulus world
W , and any classification C(W) ; then in order for a solution to C(W)
to exist, it is necessary and sufficient that there exist some

vector u in the same orthant as C(W), and some vector x such

that Cx = u .

COROLLARY 1: Given an elementary perceptron and a stimulus world
W , then if G is singular, some C{w) exists for which there is no

solution.

COROLLARY 2: Given an elementary perceptron, if the number of

stimuli in W is n >Na, there is some C(W) for which no solution

exists.
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COROLLARY 3: For any elementary perceptron, as the number n of
stimuli In PV increases, the probability that a randomly selected
class if ieationj 'C(W), has a solution approaches zero (where C(w)
is chbsen from a uniform distribution over the possible Classifica
tions of W ).

THEOREM 5. 4: Given an elementary oc -perceptron, a stimulus world
(V , and any classification CM for which a solution exists; let all
stimuli in W occur in any sequence, provided that each stimulus
must reoccur in finite time; then beginning from an arbitrary
initial state, an error correction procedure (quantized or non-
quantized) will always yield a Solution to C(w)vn finite time, with all
signals to the R-unit having magnitudes at least equal to an arbitrary
quantity tf * 0 .

COROLLARY: Given an elementary perceptron, a stimulus world \N ,

and any classification CffW; then if a solution to C(W) exists, the set
of possible solutions to C(w) has positive measure over the phase
space of the perceptron.

THEOREM 5. 5: Given an elementary ot -perceptron with a finite number
of memory states, a random -sequence stimulus world W , and any

classification C(w) for which a solution can be reached from the
starting point by some reinforcement sequence, then a solution
will be obtained in finite time with probability 1 by means of a

random-sign correction procedure.

THEOREM 5. 6: Given an elementary a -perceptron, a stimulus world
W , and some classification C(W) for which a solution exists, a

solution can sometimes be achieved by an S -controlled reinforce
ment procedure. However, such a solution cannot be guaranteed
for an arbitrary stimulus sequence, and may be unstable if it

occurs.

-596-



THEOREM 5. 7: Given an elementary perceptron with a finite number of

memory states, a stimulus world W , and a classification C(w) for
which a solution can be reached from the starting point by some
reinforcement sequence, then a solution can always be obtained in
finite time by means of a random perturbation correction procedure.

THEOREM 5. 8: Given an elementary /-perceptron, a stimulus world
W i and a classification C(W), it is possible that a solution to C(W)
exists which cannot be achieved by the perceptron.

THEOREM 5.9: Given an oL -perceptron, and a classification C(w),

a necessary and sufficient condition that the error correction
procedure reach a solution (in finite time, with arbitrary starting

0point) is that there exists no non-zero vector X (whose components
0do not disagree in sign with C(w) ) such that X = 0 for all i

(where t>
i is the bias number, defined as in Chapter 5).

COROLLARY : For an <x -system, the condition that there exist no non-
zero vector X such that b;X - 0 for all * is equivalent to the
condition that there exist Z and U such that GZ = U (where U is
in the same orthant as C(w)) .

THEOREM 5. 10: Given a /-perceptron, and a classification C(W, a

necessary and sufficient condition that the error correction procedure
reach a solution (in finite time) is that there exists no non-zero X*
such that kiX* '= jc for all i .

COROLLARY For a / -system, the condition that there exist no non-

zero vector X such that X = c for all i is equivalent to the
condition that there exist Z and U such that GZ ■ U (where U is
in the same orthant as C(w)).

THEOREM 7. 1: Given a class of elementary oi-perceptrons, a finite
stimulus world W , a classification C(W) , and a training sequence;
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then for every c>0, there exists an N0(e) such that if Na> Nait) ,

the probability of selecting a perceptron which will correctly
identify the class of every positive stimulus will be greater than
i - e -

(see Page 157 for definition of positive stimulus. )

THEOREM 9. 1: In a bounded oc -perceptron, with S -controlled reinforce
ment, the probability distribution TTM(ior the value of a particular
connection) approaches a stable terminal distribution of the form
TT(v) where £. is a normalization constant equal to

THEOREM 10- 1: Given a completely linear perceptron, a stimulus
world W , and a classification C(w) such that the bias ratio of
every S-unit is equal (and non-zero) no solution to C(w) can exist.

THEOREM 10. 2: Given a simple oi -perceptron with simple A-units,

an R-unit with a continuous monotonic sign-preserving signal
generating function, a stimulus world W (in which each stimulus
ultimately reoccurs) and any response function for which a

solution exists, then by means of the error -corrective reinforce
ment procedure, the given response function can always be

approximated in finite time by an output vector R(W)+e , where
€ is a vector (ef , tx , ... , €„ ), |€; | < c', where c' may be an

arbitrarily small quantity greater than zero.

LEMMA 1: Given a symmetric positive definite or positive semi-
definite matrix, H , and any vector y , then (j.W?) = O only
if M? =0 .

LEMMA 2: For the same conditions as Theorem 10. 2, given that a

solution exists, the set of all solutions forms a hyperplane of

dimension equal to the nullity of G
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COROLLARY 1: For the conditions of Theorem 10. 2, and a phase space
which is unbounded in all dimensions, the probability of convergence
to an arbitrarily close approximation to R(W) by means of a random-

sign correction procedure or a random -perturbation correction
procedure may be less than 1.

COROLLARY 2: Given the conditions of Theorem 10. 2, and a phase space
bounded in all dimensions, then (given that a solution to RQM) exists
in this bounded space) the response function can always be approximated

by means of the random-sign correction procedure, the system converg

ing in finite time to an approximation R(W)+£, C a vector, where

\€i\< e' for arbitrarily small €'><? .

COROLLARY 3: Given the same conditions as Corollary 2, the response
function can always be approximated by the random -perturbation
correction procedure, the system converging in finite time to an

approximation R(W)+€ , £ having components of magnitude |fj & \r?\

if the reinforcement is quantized, or € > 0, if Yf is chosen
from a continuous distribution around zero.

THEOREM 10. 3: Given a simple perceptron with a simple R-unit, and

with transmission functions for all A-R connections of the form
f(oti)vjr, where f is any function, and given the existence of a

solution to a classification function C(w)for this perceptron, then

if f>(v) is any polynomial of odd degree in V , there also exists a

solution if the transmission function is changed to f(oe;) /tCvif) -

THEOREM 10.4: Given the perceptron of Theorem 10. 3, if a solution
exists for some transmission function f(oLi)vlr, a solution does not

necessarily exist for the transmission function f(*i)vif, g # f .

THEOREM 10. 5: Given a simple perceptron with A-R connections which

differ in their transmission functions, or with uniform transmission
functions but non-simple A-units, a response function R(w) may
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have a solution which is unattainable by either the error correction
procedure or the random -sign correction procedure.

THEOREM 10.6: Given a simple perceptron with any mixture of trans
mission functions f;(ot.-,ir-) for the connections £-,. , and a responsej j */* ' j ' •

function P(w) for which a solution exists; then there exists some

transmission function g(oc,ir) which is uniform for all connections,

such that a solution to P(w) exists.

THEOREM 10. 7: Given a simple perceptron with an R-unit which is either

simple or has a continuous signal generating function, and with any
combination of transmission functions from its A-units (all continu

ous functions of v-r , equal to zero if et- " 0 ), and given a bounded

phase space within which a solution exists for Q {w) ; then, if each

stimulus in W ultimately reoccurs, an approximate solution R(W) * e

is always obtainable in finite time by the random -perturbation
correction procedure.

THEOREM 12. 1: Given a perceptron with more than one R-unit, and a

response function P(W) or a classification C(w) for which a solution
exists, it may be impossible to achieve this solution by an error
correction procedure which applies negative reinforcement jointly
to all R -units based on errors in their joint response.

THEOREM 13.1: Given a three -layer series -coupled perceptron with

simple A and R -units and variable S-A connections, and a classi
fication C(w) for which a solution exists, it may be impossible to
achieve a solution by any deterministic correction procedure which
obeys the local information rule.

THEOREM 13. 2: Given a three-layer series -coupled perceptron, with

simple A and R-units, variable -valued S-A connections, bounded

A-R values, and a classification C(W) for which a solution exists,
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then a solution to c(w) can be obtained in finite time with
probability 1 by means of a back -propagating error-correction
procedure, given that each stimulus in w always reoccurs in
finite time, and that probabilities P( , p , , and p3 are all greater
than 0 and less than 1.

(See Section 13. 3 for definition of the back -propagating correction
procedure. )
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APPENDIX C
BASIC EQUATIONS

The following equations are those most likely to be referred to

repeatedly, and are listed here in a somewhat different order from their
appearance in the text.

(1) Generalization Coefficients

For an <x -system,

9iJ m "ij
EQ.. = £>.- (normalized form)

For a J -system,
9iJ

* niJ ~ ( '/"a ) n: nJ
E9:: " Q;;-Q;Q; (normalized form)

(2) R-unit Input Signals

For an oc or f -system,
u m Gx

where u is the vector of R-unit input signals, and x-L m/*;f; ( fi being
the number of times S; has been reinforced).

(3) Q-Functions

For individual stimuli, in a simple perceptron,
E-e

Q; - ZL H f>xm P (I)£-,•9 1-8 "
, _ f z for binomial modelwhere E-~,„r - \ , ~ . , ,max l oo for Poisson model

PX(E) - probability that f excitatory connections to an
A-unit originate from active S-points (see
Equations 6. 2 and 6. 3)

Py(I) = probability that I inhibitory connections to an
A-unit originate from active S-points (see
Equations 6. 2 and 6. 3)
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where Px and P are defined by Equations 6.6 and 6. 7, for binomial and
Poisson models.

For series -coupled perceptions with distributed transmission
times, see Sections 11. 1 and 11.2 for prototype equations.

For multi-layer series -coupled systems, Q-functions for the
<6 layer can be computed by the approximation described in Section 15. 1.

For similarity -constrained four -layer perceptrons, Q-j for
two random or unrelated stimuli is given by:

where m is the number of A11' units connected to each A^2^ unit.

For a stimulus S; , and its transform 5,-' , in a similarity-
constrained model,

'2j (2) (Z)" C; O.-'i;
where Q* tl-(i- Q-1))m and Q-Ju can be approximated by Equations 15.5
and 15. 8 for the case of random stimulus patterns in a finite retina. In an

infinite retina, with random stimuli, Q--- = Q;jJ- For coherent stimuli and
assuming T to be a topological transformation,

where uj is the order of the transformation group, and <2,•'[,•*' *s given
by Equation 15. 6. A particular solution for the case of square stimuli can
be found in Equation 15. 15.

For cross -coupled perceptrons with fixed connections, Q;^ and

Q- are given by Equations 18. 1 and 18.2, respectively.

For adaptive four-layer and cross -coupled systems, the terminal

values of the Q-functions are obtained as a product of the iterative procedures
described in Chapters 16, 17, and 19, and take the form:
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(4) Equations for Learning -Performance

For an error correction procedure, an upper bound on the

number of corrections that will be required to achieve a solution from zero
initial conditions is given by

N 4: nM/oL
where n is the number of stimuli in W , M is the maximum diagonal
element g.. , and oc is the minimum of the function x'H r/\\z ||* as defined
for Theorem 4, Chapter 5. For a more general bound, see Equation 7. 12.

For an S-controlled learning procedure, in an elementary
perceptron, a bound on the error probability for a "positive stimulus" 5X
is given by

p , <r (ux)

An improved estimate of the probability of correct response, employing a

normal distribution assumption, is given by Equation 7. 7.

For fixed training sequences,

jVtfa J^fij Pj Qjx for an ot -system

JN*Z./>Jp;(Qjx'<*SQx) for a ^or /"-system

- r\ £ £ fi.flt p. Pt (qJ4x - qjz qtz)
for an <x-system, and

for a ^'-system. The equation for a true 7' -system is given in Equation 8. 7.

For random training sequences, t(nr)it as above, and the variances
are given by Equation 7. 11 for an ot -system, and Equation 8. 14 for a ^'-system.
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(5) Steady -State Equations for Four-Layer and Cross-Coupled Systems

For an adaptive four -layer oc -perceptron (Chapter 16), the

terminal values of the signals transmitted by the variable -valued connec
tions are given by iterating the equation:

; Nxn y , , j j
}' (-»*t) <r 'j " I' '<»)/J*'i n (i)where T(0)

= O and C- ; =T^Q;^ ?tj ( f+
j being the frequency of the

sequence S^S;). This equation will converge in at most n steps to the

terminal value of / ' . Equations for ~
T and r -systems are presented

in Chapter 16.

For an open-loop cross -coupled system, the above iteration
equation applies without modification.

For a closed-loop cross-coupled « -perceptron, the iteration
equation becomes

which is specific to the i A-unit, or to the set of A-units having the

,:i -vector . The solutions for f and P -systems are discussed in
Chapter 19.
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APPENDIX D

STANDARD DIAGNOSTIC EXPERIMENTS

A number of experiments have been described in the course of

the text which are employed for comparison and evaluation of different percep-
tron models. Those experiments which are referred to by number are listed
here for convenience in cross-referencing figures and discussions in the text.

EXPERIMENT 1: Horizontal/vertical bar discrimination, in 20 by 20
toroidaliy connected retina, with 4 by 20 bars. Stimuli occur in
fixed sequence. S -controlled reinforcement is employed,
(see Page 162)

EXPERIMENT 2: Same environment and procedure as Experiment 1, but
with alternating positions in opposite classes, (see Page 164)

EXPERIMENT 3: Same as Experiment 1, but with stimuli occurring in
random sequence- (see Page 170)

EXPERIMENT 4: Same as Experiment 3, but horizontal bars occur four
times as frequently as vertical bars, (see Page 170)

EXPERIMENT 5: Same as Experiment 1, but with error -correction reinforce
ment- (see Page 173)

EXPERIMENT 6: Same as Experiment 5, but with stimuli occurring in
random sequence, (see Page 173)

EXPERIMENT 7: Triangle/Square discrimination experiment, with error-
correction procedure, in 20 by 20 retina. Random sequence, with
stimuli occurring in all translational positions with equal probability-
(see Page 173)

EXPERIMENT 8: Horizontal/vertical bar discrimination, with random
sequences, and random-sign correction procedure, (see Page 176)

EXPERIMENT 9: Horizontal and vertical bars in random sequence, with R-
controlled reinforcement, (see Page 214)

EXPERIMENT 10: "Spontaneous organization" experiment, with an environ
ment of n stimuli, such that all pairs have equal intersections. The
stimuli are divided into two classes, and the perceptron is exposed to
a preconditioning sequence in which the transition probability between
members of the same class is large, and the transition probability
between classes is small. At the end of the preconditioning sequence,
R-controlled reinforcement is applied for a brief period, (see
Page 365)
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EXPERIMENT 11: "Transformation learning" experiment, in which percep-
tron is exposed to alternating preconditioning sequence of stimuli and
their transforms. After the preconditioning period, the perceptron
is taught to discriminate two test stimuli, which were not previously
seen, and is then tested on their transforms, (see Page 375)

EXPERIMENT 12: The preconditioning sequence consists of a repetitive
sequence of four stimuli, with spatial relationships favoring the
dichotomy (S,,S}) vs (5(,^), while temporal association favors (5f,Sf^
vs (S},Sj). The Q -matrix is evaluated at the end of the preconditioning
period, (see Page 393)

EXPERIMENT 13: "Sequence prediction" experiment. The preconditioning
procedure uses a finite sequence environment with the same stimuli as
in Experiment 12, but the perceptron is tested (in addition) with the
stimulus Sf followed by a sequence of null stimuli, and the Q -matrix
for all subsequences is obtained- (see Page 445)

EXPERIMENT 14: Preconditioning procedure with same stimuli as in
Experiment 12, but with each stimulus repeated two times whenever
it occurs. The terminal Q-matrix for all subsequences is determined,
(see Page 450)

EXPERIMENT 15: Selective attention experiment, for a four R-unit percep
tron trained to discriminate shapes and retinal positions of stimuli,
and then tested with complex stimuli combining two shapes and two
positions simultaneously- (see Page 478)

EXPERIMENT 16: Selective attention in an audio-visual perceptron,
trained to discriminate shapes and positions as in Experiment 15, but
biased by the addition of an auditory name for the shape or position
of part of the stimulus pattern- (see Page 482)
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